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Abstract. The Lee-Carter model is a useful dynamic stochastic model to represent the evolution of central mortality rates 
throughout time. This model only considers the uncertainty about the coefficient related to the mortality trend over time but not 
to the age-dependent coefficients. This paper proposes a fuzzy-random extension of the Lee-Carter model that allows quantify-
ing the uncertainty of both kinds of parameters. As it is commonplace in actuarial literature, the variability of the time-dependent 
index is modelled as an ARIMA time series. Likewise, the uncertainty of the age-dependent coefficients is also quantified, but 
by using triangular fuzzy numbers. The consideration of this last hypothesis requires developing and solving a fuzzy regression 
model. Once the fuzzy-random extension has been introduced, it is also shown how to obtain some variables linked with central 
mortality rates such as death probabilities or life expectancies by using fuzzy numbers arithmetic. It is simultaneously shown 
the applicability of our developments with data of Spanish male population in the period 1970-2012. Finally, we make a com-
parative assessment of our method with alternative Lee-Carter model estimates on 16 Western Europe populations.  

Keywords: Lee-Carter model, Fuzzy Numbers, Fuzzy Regression, Fuzzy-random modelling. 

1. Introduction 

Classical actuarial methods graduate mortality by 
only taking into account the age of persons without 
calendar year considerations. Due to the progressive 
increase of life expectancy in all developed countries, 
this kind of methods systematically overestimate the 
mortality rates and, as a consequence, may increase 
the longevity risk when pricing life annuities. 

In the last decades of the 20th century, several pa-
pers developed dynamic stochastic approaches for the 
evolution of mortality rates throughout calendar time 
and, so, projecting mortality to the future with these 
models became more accurate. In this way, the method 
in [26], that we will name LC, is one of the most ex-
tended methodologies. The LC model proposed ad-
justing a linear function to the logarithm of central 

mortality rates of each year and age, 𝑚௫,௧. The coeffi-
cients of the linear function depend on the age 𝑥 
whereas the independent variable is a non-observed 
intensity index 𝑘௧  associated to the time calendar 𝑡 . 
Once the parameters of the model have been adjusted, 
to make predictions on mortality dynamics it is neces-
sary projecting 𝑘௧ to the future. It is commonly made 
with an ARIMA model. 

There are two main reasons why the LC model 
boasts great acceptance. On the one hand, it has been 
applied in many countries with good results 
[7,8,10,13,21,23,25,30,37]. Likewise, the LC method 
is relatively easy to compute in its seminal version, ei-
ther by using the singular value decomposition (SVD) 
method or with the approximation to the SVD solution 
suggested in [26].  

Several papers proposed technical extensions to the 
original LC model as [8,12,13,21,23,31,36]. All these 
extensions have two common features. Firstly, more 
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completeness and sophistication of the model suppose 
more computational effort. Secondly, all of them con-
sider that the age-specific historical influences not 
captured by the model are due to a stochastic error-
term, as the LC model does. However, stochastic var-
iability may not be the unique source of uncertainty 
since it can also come from fuzziness (e.g. due to in-
complete or imprecise information) and, consequently, 
it can be modelled with Fuzzy Sets Theory tools. In 
this way, [22] developed two alternative fuzzy formu-
lations of the LC model. The first model considers that 
all the parameters are fuzzy numbers (FNs) and arith-
metical operations are carried out by means of the 
weakest t-norm. This first approach was object of sev-
eral refinements in [14,24]. In the second approach, 
the centres and spreads of the FNs that estimate the 
parameters of the LC model are supposed to be ran-
dom variables and are estimated with Bayesian meth-
ods. The comparison between the fuzzy and the fuzzy-
stochastic models seems to show very similar results, 
but the second model requires much more computa-
tional effort. 

Mixing fuzziness and randomness in actuarial mod-
elling is not new. [33] described fuzzy random varia-
bles with actuarial applications in view and [19] de-
veloped a non-life individual risk model where the 
number of claims follows a Poisson process and their 
amount is estimated with a triangular FN (TFN). In a 
life insurance context, [5,6] used fuzzy random varia-
bles for the valuation of life contingencies. 

This paper also blends fuzziness and randomness 
and proposes a fuzzy-random approach of the LC 
model which is conceptually different to those devel-
oped in [22]. We consider that the behaviour of the in-
dependent variable 𝑘௧ follows an ARIMA stochastic 
process. Likewise, we assume that the variability of 
the age-specific coefficients is due to fuzziness and it 
is captured by means of FNs. Under these hypotheses, 
for a given outcome of the random variable 𝑘௧, we will 
have a concrete result of the central mortality rate, 
𝑚௫,௧, which will be given by a FN. 

In order to adjust the fuzzy coefficients of the loga-
rithm of 𝑚௫,௧, we use the model of fuzzy regression 
(FR) developed by [20], that mixes Ordinary Least 
Squares (OLS) regression and the FR method by [35], 
but also allows a non-symmetrical shape for the coef-
ficients. 

The rest of the paper is organized as follows. We 
firstly make a brief review of the LC model. Then, we 
describe some concepts of FNs and FR that will be 
necessary to develop our work. Section 4 features our 
fuzzy-random extension to the LC model, exposes 

how to project future mortality from this formulation 
and shows an empirical application for Spanish male 
population, evaluating both the capability of the model 
to adjust central mortality rates to sample data and to 
predict out-of-sample data. In the fifth section, we 
show how some mortality tables variables can be ob-
tained from the results of previous sections. Subse-
quently, focused on life expectancies of Spanish male 
population, we test the capability of our model to pre-
dict future values. Section 6 includes a complete com-
parison of the predictive performance of the proposed 
method with both the basic LC method in [26] and the 
fuzzy extension by Koissi and Shapiro in [22]. This 
comparison shows the advantages of our fuzzy-ran-
dom extension of the LC model. We finish the work 
by pointing out the main conclusions and suggesting 
possible extensions. 

2. Overview of the Lee-Carter model 

Lee and Carter in [26] proposed modelling the log-
arithm of the central death rate for each specific age 
and each year with a linear function. In such a way, if 
𝑚௫,௧ is the central death rate of a person aged 𝑥 in the 
calendar year 𝑡, the Lee-Carter (LC) model considers: 

ln൫𝑚௫,௧൯ ൌ 𝑎௫ ൅ 𝑏௫𝑘௧ ൅ ௫,௧  (1) 

or, equivalently: 
𝑚௫,௧ ൌ exp൫𝑎௫ ൅ 𝑏௫𝑘௧ ൅ ௫,௧൯ (2) 

where: 

expሺ𝑎௫ሻ is the specific value of the central mortal-
ity rate at age x regardless of the time calendar t, 

𝑏௫ quantifies the sensitivity of the central death log-
arithm rate for age 𝑥 in year 𝑡 respect to changes in 

𝑘௧ ቀ
ௗ୪୬൫௠ೣ,೟൯

ௗ௧
ൌ 𝑏௫

ௗ௞೟

ௗ௧
ቁ, 

𝑘௧ is a specific mortality index for each year 𝑡 that 
represents the trend of the mortality across time, 

௫,௧ is a random error term, with mean 0 and stand-
ard deviation 𝜎 , which reflects particular age-spe-
cific historical influences not captured by the model. 

Notice that whereas the parameters 𝑎௫  and 𝑏௫  are 
age-dependent, the parameter 𝑘௧  is time-dependent. 
To estimate the model for a given matrix of rates 𝑚௫,௧, 
the authors seek the least squares solution to the equa-
tion (1). This model is undetermined since, given a so-
lution ሺ𝑎௫, 𝑏௫, 𝑘௧ሻ , any transformation of the type 
ሺ𝑎௫, 𝑏௫ 𝑐⁄ , 𝑐𝑘௧ሻ or ሺ𝑎௫ ൅ 𝑐𝑏௫, 𝑏௫, 𝑘௧ െ 𝑐ሻ, ∀𝑐 ∈ ℜ, is 
also a solution. In order to avoid this issue [26] intro-
duced the constraints ∑ 𝑏௫ ൌ 1௫  and ∑ 𝑘௧ ൌ 0௧ . So, 
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the estimations of 𝑎௫  are simply the averages over 
time of 𝑙𝑛൫𝑚௫,௧൯, i.e.: 

𝑎௫
∗ ൌ

∑ ୪୬ ሺ௠ೣ,೟ሻ೅
೟సబ

்ାଵ
   (3a) 

being the considered calendar years 𝑡 ൌ 0,1, … , 𝑇 and 
𝑥 ൌ 0,1, … , 𝜔 the different ages with 𝜔 the maximum 
attainable age. 

The model (1) cannot be fitted by ordinary regres-
sion techniques because on its right side there are two 
parameters to be estimated but 𝑘௧  is unobservable. 
However, [26] showed that a least squares solution can 
be obtained by applying singular value decomposition 
(SVD) to the matrix 𝑍௫,௧ ൌ  ln൫𝑚௫,௧൯ െ 𝑎௫

∗ . Alterna-
tively, in their paper (appendix A) it is also proposed 
an approximation to the SVD solution. As the param-
eters 𝑏௫ are assumed to follow the constraint ∑ 𝑏௫ ൌ௫
1, the parameter 𝑘௧, for each 𝑡 ൌ 0,1, … , 𝑇, can be fit-
ted as: 

𝑘௧
∗ ൌ ∑ ln൫𝑚௫,௧൯ െ௫ ∑ 𝑎௫

∗
௫   (3b) 

And finally, each 𝑏௫  can be found by regressing 
through Ordinary Least Squares (OLS) the linear 
model 𝑍௫,௧ ൌ 𝑏௫𝑘௧ ൅ ௫,௧. So: 

𝑏௫
∗ ൌ

∑ ௓ೣ,೟௞೟
∗

೟

∑ ൫௞೟
∗൯

మ
೟

ൌ
∑ ൫ ୪୬൫௠ೣ,೟൯ି௔ೣ

∗ ൯௞೟
∗

೟

∑ ൫௞೟
∗൯

మ
೟

  (3c) 

Once the parameters of the model have been fitted, 
for 𝑡 ൌ 0,1, … , 𝑇 and 𝑥 ൌ 0,1, … , 𝜔, the trend of the 
mortality across time, 𝒌𝒕 , for 𝑡 ൌ 𝑇 ൅ 1, …  can be 
forecasted with an ARIMA model and related varia-
bles, as confidence intervals for 𝒌𝒕 , life and mortality 
probabilities or life expectancies, can be obtained. 

3. Fuzzy numbers and fuzzy regression 

3.1. Fuzzy numbers and their arithmetic 

This paper quantifies uncertain quantities as a com-
mon type of Fuzzy Number (FN), Triangular Fuzzy 
Numbers (TFNs), that will be symbolized as 𝐴 ෩ ൌ
ሺ𝐴, 𝑙஺, 𝑟஺ሻ being 𝐴 the core of the TFN (𝜇஺෨𝐴ሻ ൌ 1) 
and 𝑙஺ and  𝑟஺ its left and right spreads, respectively. 
The -cuts of this kind of FNs are closed and bounded 
intervals ∀ ∈ ሾ0,1ሿ: 

𝐴ఈ ൌ ൣ𝐴ሺ𝛼ሻ, 𝐴ሺ𝛼ሻ൧ ൌ ሾ𝐴 െ 𝑙஺ሺ1 െ 𝛼ሻ, 𝐴 ൅ 𝑟஺ሺ1 െ 𝛼ሻሿ (4a) 

The expected interval of a FN 𝐴 ෩ ,𝑒ூ൫𝐴 ෩ ൯, is a crisp 
interval that in the case of TFNs is: 

𝑒ூ൫𝐴 ෩ ൯ ൌ ቂ׬ 𝐴ሺ𝛼ሻଵ
଴ 𝑑𝛼, ׬ 𝐴ሺ𝛼ሻ𝑑𝛼

ଵ
଴ ቃ ൌ ቂ𝐴 െ

௟ಲ

ଶ
, 𝐴

௥ಲ

ଶ
ቃ (4b) 

Let 𝑓 be a continuous real-valued function of 𝑛-real 
variables 𝑥௝ , 𝑗 ൌ 1,2, … , 𝑛,. If 𝑥௝  are not crisp num-
bers, but the FNs 𝐴ሚ௝, j=1,2,..,n, 𝑓 induces the FN 𝐵෨  in 
such a way that 𝐵෨ ൌ 𝑓൫𝐴ሚଵ, 𝐴ሚଶ, … , 𝐴ሚ௡൯. In order to ob-
tain the -cuts of 𝐵෨ , 𝐵ఈ, the results of [9] can be used. 
If the function 𝑓 is increasing respect to the first 𝑚 
variables, 𝑚 ൑ 𝑛, and decreasing respect to the last 
𝑛 െ 𝑚 variables: 
𝐵ఈ ൌ ൣ𝐵ሺ𝛼ሻ, 𝐵ሺ𝛼ሻ൧ ൌ 

ൌ ቂ𝑓 ቀ𝐴ଵሺ𝛼ሻ, 𝐴ଶሺ𝛼ሻ, … , 𝐴௠ሺ𝛼ሻ, 𝐴௠ାଵሺ𝛼ሻ, 𝐴௠ାଶሺ𝛼ሻ, … 𝐴௡ሺ𝛼ሻቁ , 

𝑓 ቀ𝐴ଵሺ𝛼ሻ, 𝐴ଶሺ𝛼ሻ, … 𝐴௠ሺ𝛼ሻ, 𝐴௠ାଵሺ𝛼ሻ, 𝐴௠ାଶሺ𝛼ሻ, … , 𝐴௡ሺ𝛼ሻቁቃ(5) 

The result of evaluating non-linear functions with 
TFNs is not a TFN. In this way, [16] proposed a TFN 
approximation for any real-valued function, derivable 
and increasing (decreasing) respect to the first (last) 𝑚 
(𝑛 െ 𝑚) variables, built up from the first-order Taylor 
polynomial expansion from the 1-cut to any -cut. It 
can be demonstrated that in (5) 𝐵෨ሺ𝐵, 𝑙஻, 𝑟஻ሻ where, 
naming the vector that comprises the centres of 𝐴ሚ௝ , 
𝑗 ൌ 1,2, … , 𝑛, 𝐴஼ ൌ ሺ𝐴ଵ, 𝐴ଶ, … , 𝐴௡ሻ: 

𝐵 ൌ  𝑓ሺ𝐴஼ሻ 

𝑙஻ ൌ ∑ డ௙ሺ஺಴ሻ

డ௫ೕ
𝑙஺ೕ

െ௠
௝ୀଵ ∑ డ௙ሺ஺಴ሻ

డ௫ೕ
𝑟஺ೕ

௡
௝ୀ௠ାଵ   

𝑟஻ ൌ ∑ డ௙ሺ஺಴ሻ

డ௫ೕ
𝑟஺ೕ

െ௠
௝ୀଵ ∑ డ௙ሺ஺಴ሻ

డ௫ೕ
𝑙஺ೕ

௡
௝ୀ௠ାଵ  (6) 

Arithmetic operations between real numbers can be 
extended to FNs by using the appropriate real-valued 
function. Since this work uses TFNs, when this func-
tion is linear the result of the arithmetic operation will 
also be a TFN. Otherwise, the result will be approxi-
mated by using (6). So, it is obtained: 
- Addition: 

𝐵෨ ൌ ෍ 𝐴 ෩௝

௡

௝ୀଵ

ൌ ቌ෍ 𝐴௝

௡

௝ୀଵ

, ෍ 𝑙஺ೕ

௡

௝ୀଵ

, ෍ 𝑟஺ೕ

௡

௝ୀଵ

ቍ 

- Scalar multiplication: 

𝐵෨ ൌ 𝑘𝐴 ෩ ൌ ൜
ሺ𝑘𝐴, 𝑘𝑙஺, 𝑘𝑟஺ሻ 𝑘 ൒ 0

ሺ𝑘𝐴, |𝑘|𝑟஺, |𝑘|𝑙஺ሻ 𝑘 ൏ 0
 

- Product of two positive TFNs (i.e. their supports are 
contained within ା): 

𝐵෨ ൌ 𝐴 ෩ ଵ ∙ 𝐴 ෩ ଶ ൌ ൫𝐴ଵ𝐴ଶ, 𝐴ଶ𝑙஺భ
൅ 𝐴ଵ𝑙஺మ

, 𝐴ଶ𝑟஺భ
൅ 𝐴ଵ𝑟஺మ

൯ 

- Division of two positive TFNs:  

𝐵෨ ൌ
𝐴 ෩ ଵ

𝐴 ෩ ଶ
ൌ ቆ

𝐴ଵ

𝐴ଶ
,
𝑙஺భ

𝐴ଶ
൅

𝐴ଵ𝑟஺మ

ሺ𝐴ଶሻଶ ,
𝑟஺భ

𝐴ଶ
൅

𝐴ଵ𝑙஺మ

ሺ𝐴ଶሻଶቇ 

- Exponential function: 
𝐵෨ ൌ exp ሺ𝐴ሚሻ  ൎ ሺexp ሺ𝐴ሻ, exp ሺ𝐴ሻ𝑙஺, exp ሺ𝐴ሻ𝑟஺ሻ 

- Logarithmic function: 

𝐵෨ ൌ ln ሺ𝐴ሚሻ  ൎ ൬ln ሺ𝐴ሻ,
𝑙஺

𝐴
,
𝑟஺

𝐴
൰ 
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3.2. Fuzzy regression model with asymmetric 
coefficients 

This paper uses the fuzzy regression (FR) model of 
[20] that combines the least squares method with the 
minimum fuzziness principle in [35]. This type of FR 
method has been used in financial and actuarial appli-
cations like fitting options volatility smile [3,28] or 
calculating claim reserves [1]. In the actuarial field, a 
wide survey of FR models can be found in [2]. 

Let us suppose that for the 𝑗-th observation of the 
sample, 𝑗 ൌ 0,1, … , 𝑛, the pair of the dependent varia-
ble (that may be a FN) and the independent variables 
(that we suppose crisp) is ሺ𝑦෤௝,𝑥௝ሻ௝ୀଵ,ଶ,…,௡ where 𝑥௝ ൌ

ሺ𝑥ଵ,௝, 𝑥ଶ,௝, … , 𝑥௠,௝ሻ, 𝑦෤௝ ൌ ቀ𝑦௝, 𝑙௬ೕ
, 𝑟௬ೕ

ቁ, 𝑥௜,௝. Like-

wise, we suppose a linear relationship and also that the 
coefficients of the linear function are TFNs 𝑎෤௜ ൌ
൫𝑎௜, 𝑙௔೔

, 𝑟௔೔
൯, 𝑖 ൌ 0,1, … , 𝑚. So: 

𝑦෤௝ ൌ 𝑎෤଴ ൅ ෍ 𝑎෤௜𝑥௜,௝

௠

௜ୀଵ

 

and then: 

ቀ𝑦௝, 𝑙௬ೕ
, 𝑟௬ೕ

ቁ ൌ ൫𝑎଴, 𝑙௔బ
, 𝑟௔బ

൯ ൅ ෍൫𝑎௜, 𝑙௔೔
, 𝑟௔೔

൯

௠

௜ୀଵ

𝑥௜,௝ 

where: 

𝑦௝ ൌ 𝑎଴ ൅ ෍ 𝑎௜

௠

௜ୀଵ

𝑥௜,௝ 

𝑙௬ೕ
ൌ 𝑙௔బ

൅ ෍ ห𝑥௜,௝ห𝑙௔೔

௠

௜ୀଵ
௫೔,ೕஹ଴

൅ ෍ ห𝑥௜,௝ห𝑟௔೔

௡

௜ୀଵ
௫೔,ೕழ଴

 

𝑟௬ೕ
ൌ 𝑟௔బ

൅ ෍ ห𝑥௜,௝ห𝑟௔೔

௠

௜ୀଵ
௫೔,ೕஹ଴

൅ ෍ ห𝑥௜,௝ห𝑙௔೔

௡

௜ୀଵ
௫೔,ೕழ଴  

The final objective is obtaining the estimates of 
𝑎෤௜ ൌ ൫𝑎௜, 𝑙௔೔

, 𝑟௔೔
൯, 𝑖 ൌ 0,1, … 𝑚 , that will be denoted 

by 𝑎෤௜
∗ ൌ ൫𝑎௜

∗, 𝑙௔೔
∗, 𝑟௔೔

∗൯. Following [20], we implement 
the following steps: 

Step 1. By taking the centres of the dependent var-
iable, 𝑦௝, 𝑗 ൌ 0,1, … , 𝑛, we fit the centres of the fuzzy 
coefficients 𝑎෤௜

∗, 𝑎௜, 𝑖 ൌ 0,1, … 𝑚, by using OLS on the 
expression 𝑦௝ ൌ 𝑎଴ ൅ ∑ 𝑎௜𝑥௜,௝

௠
௜ୀଵ . In such a way, we 

obtain the estimates ൫𝑎଴
∗, 𝑎ଵ,…,

∗ 𝑎௠
∗ ൯. To solve this step 

we can use (3a)-(3c). 
Step 2. We fit the spreads of parameters applying 

the minimum fuzziness criterion in [35]. So, spread es-
timates must minimize the uncertainty of the estimated 
outputs and simultaneously these estimated outputs 
have to contain the real observations, with a member-
ship level of at least 𝛼. If we symbolize the estimates 

of the spreads as 𝑙௔೔
∗  and 𝑟௔೔

∗  𝑖 ൌ 0,1, … 𝑚 , the esti-

mated output for 𝑦෤௝ will be 𝑦෤௝
∗ ൌ ቀ𝑦௝,

∗, 𝑙௬ೕ
∗ , 𝑟௬ೕ

∗ ቁ, where 

𝑦௝
∗ ൌ 𝑎଴

∗ ൅ ∑ 𝑎௜
∗𝑥௜,௝

௠
௜ୀଵ . 

Considering, as in [35], that 𝑦෤௝  𝑦෤௝
∗𝑦௝𝑦௝

∗ , 
the spreads 𝑙௔೔

∗  and 𝑟௔೔
∗, 𝑖 ൌ 0,1, … 𝑚, minimise for a 

prefixed level 𝛼: 

min
௟ೌ೔

,௥ೌ
೔

𝑧 ൌ ෍ 𝑙௬ೕ

௡

௝ୀଵ

൅ ෍ 𝑟௬ೕ

௡

௝ୀଵ

  

And accomplish the constraints: 

𝑦௝𝑦௝
∗ , 𝑗 ൌ 1,2, … , 𝑛 

𝑙௔೔
∗ , 𝑟௔೔

∗ 0,    𝑖 ൌ 0,1, … , 𝑚 (7) 

[11] proposed a rule to choose 𝛼 when the observa-
tions on inputs are crisp. 𝛼 must reach a compromise 
between containing observed outputs in 𝑦෤௝

∗ reasonably 
well but, likewise, 𝑦෤௝

∗ must be narrow enough in order 
to be a useful prediction. 

If we name as 𝑦෤௝
∗ ൌ ቀ𝑦௝

∗, 𝑙௬ೕ
∗, 𝑟௬ೕ

∗ቁ the estimate of 

the jth observation of the dependent variable at a given 
, we can define the credibility level 𝑐௝

ఈ as: 

𝑐௝
ఈ ൌ

𝜇௬෤ೕ
∗𝑦௝ሻ

𝑙௬ೕ
∗ ൅ 𝑟௬ೕ

∗ 

Thus, the credibility for the entire sample 𝑐ఈ  is 

𝑐ఈ ൌ ∑
ఓ೤෥ೕ

∗௬ೕሻ

௟೤ೕ
∗ା௥೤ೕ

∗
௡
௝ୀ଴ . [11] showed that maximizing 𝑐ఈ  

is equivalent to solve the following quadratic linear 
programming problem: 

max 𝑐ఈ ൌ െ𝑝଴𝛼ଶ ൅ ሺ𝑝଴ െ 𝑐଴ሻ𝛼, 𝛼ሾ0,1ሿ 
where: 

𝑝଴ ൌ ෍
1 െ 𝜇௬෤ೕ

∗బ𝑦௝ሻ

𝑙௬ೕ
∗଴ ൅ 𝑟௬ೕ

∗଴

௡

௝ୀ଴

 

𝑐଴ ൌ ෍
𝜇௬෤ೕ

∗బ𝑦௝ሻ

𝑙௬ೕ
∗଴ ൅ 𝑟௬ೕ

∗଴

௡

௝ୀ଴

 

being the solution of this problem: 

 ൌ ቊ
ଵ

ଶ
ቀ1 െ

௖బ

௣బቁ 𝑐଴ ൏ 𝑝଴

0 otherwise
  (8) 

Therefore, the process that we follow to fit the fuzzy 
coefficients consists in implementing Step 2 for 𝛼 ൌ
0. Once the spreads 𝑙௔೔

∗଴  and 𝑟௔೔
∗଴, 𝑖 ൌ 0,1, … , 𝑚, have 

been obtained, the optimal value of 𝛼,  𝛼ᇱ, will be cal-
culated by using the expression (8). Following [27], 
the final value of 𝑙௔೔

∗   and 𝑟௔೔
∗ , 𝑖 ൌ 0,1, … 𝑚 is, simply: 

𝑙௔೔
∗ ൌ 𝑙௔೔

∗ఈᇲ
ൌ

௟ೌ೔
∗బ

 ଵିఈᇲ and 𝑟௔೔
∗ ൌ 𝑟௔೔

∗ఈᇲ
ൌ

௥ೌ
೔

∗బ

 ଵିఈᇲ 
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4. Fuzzy-random approach of the Lee-Carter 
model 

4.1. Fuzzy-random fitting of the Lee-Carter model 

Our fuzzy-random approach of the LC model con-
siders two different sources of uncertainty: 

1. It is supposed that historical influences of each 
specific age are due to fuzziness in the model structure. 
As a consequence, both, the coefficient that describes 
the average age-specific pattern of mortality and the 
coefficient which reflects the variation in the central 
death across time, turn into FNs and so 𝑎෤௫ ൌ
൫𝑎௫, 𝑙௔ೣ, 𝑟௔ೣ൯ and 𝑏෨௫ ൌ ൫𝑏௫, 𝑙௕ೣ, 𝑟௕ೣ൯. 

2. The mortality index 𝑘௧ follows an ARIMA sto-
chastic process, i.e., 𝑘௧ is an outcome of a random var-
iable (RV) 𝒌𝒕. 

Under these assumptions, once the average pattern 
of mortality, 𝑎෤௫, and the decline in mortality, 𝑏෨௫, have 
been estimated we can obtain for an outcome of the 
RV 𝒌𝒕, 𝑘௧, the central rate of mortality (and its loga-
rithm) as: 

ln൫𝑚෥௫,௧൯ ൌ 𝑎෤௫ ൅ 𝑏෨௫𝑘௧  (9a) 
where: 

ln൫𝑚෥௫,௧൯ ൌ ቀln൫𝑚௫,௧൯, 𝑙୪୬൫௠ೣ,೟൯, 𝑟୪୬൫௠ೣ,೟൯ቁ (9b) 

being: 
ln൫𝑚௫,௧൯ ൌ 𝑎௫ ൅ 𝑏௫𝑘௧  (9c) 

𝑙୪୬൫௠ೣ,೟൯ ൌ ቊ
𝑙௔ೣ

൅ 𝑘௧𝑙௕ೣ
 for 𝑘௧ ൐ 0 

𝑙௔ೣ
െ 𝑘௧𝑟௕ೣ

  for 𝑘௧0  (9d) 

𝑟୪୬൫௠ೣ,೟൯ ൌ ቊ
𝑟௔ೣ

൅ 𝑘௧𝑟௕ೣ
 for 𝑘௧ ൐ 0 

𝑟௔ೣ
െ 𝑘௧𝑙௕ೣ

  for 𝑘௧0   (9e) 

In order to fit the estimates 𝑎෤௫
∗ ൌ ൫𝑎௫

∗ , 𝑙௔ೣ
∗ , 𝑟௔ೣ

∗ ൯ , 
𝑏෨௫

∗ ൌ ൫𝑏௫
∗, 𝑙௕ೣ

∗ , 𝑟௕ೣ
∗ ൯ and 𝑘௧

∗, 𝑡𝑇,  we follow the process 
described in section 3.2 as follows: 

Step 1. By taking the centres of ln൫𝑚෥௫,௧൯ , 𝑡 ൌ
0,1, … , 𝑇 and 𝑥 ൌ 0,1, … , 𝜔, we fit the centres of 𝑎෤௫

∗  
and 𝑏෨௫

∗ and the outcomes of the RVs 𝒌𝒕, 𝑘௧
∗, as we de-

scribed in section 2. In this step, it is necessary to point 
out that the observed values of the central rate of mor-
tality (and its logarithms) in which we will base our 
work are crisp. So, ln൫𝑚෥௫,௧൯ ൌ ln൫𝑚௫,௧൯. 

Step 2. We have to calculate the values 𝑙௔ೣ
∗଴ , 𝑙௕ೣ

∗଴ , 
𝑟௔ೣ

∗଴ and 𝑟௕ೣ
∗଴ by solving the linear problem (7) for  ൌ

0, i.e.: 
min

௟ೌೣ,௟್ೣ,௥ೌ ೣ,௥್ೣ

ሺ𝑇 ൅ 1ሻ ෍ ሺ𝑙௔ೣ
௫

൅ 𝑟௔ೣ
ሻ ൅ ෍ |𝑘௧| ෍ ሺ𝑙௕ೣ

௫
൅ 𝑟௕ೣ

ሻ
௧

 

subject to: 
𝑎௫

∗ + 𝑏௫
∗ 𝑘௧

∗ ൅ 𝑟௔ೣ
൅ 𝑘௧𝑟௕ೣ

൒  ln൫𝑚௫,௧൯ for 𝑘௧ ൐ 0 

𝑎௫
∗ + 𝑏௫

∗ 𝑘௧
∗ ൅ 𝑟௔ೣ

െ 𝑘௧𝑙௕ೣ
൒   ln൫𝑚௫,௧൯ for 𝑘௧0 

𝑎௫
∗ + 𝑏௫

∗ 𝑘௧
∗ െ 𝑙௔ೣ

െ 𝑘௧𝑙௕ೣ
൑  ln൫𝑚௫,௧൯ for 𝑘௧ ൐ 0 

𝑎௫
∗ + 𝑏௫

∗ 𝑘௧
∗െ𝑙௔ೣ

൅ 𝑘௧𝑟௕ೣ
൑  ln൫𝑚௫,௧൯ for 𝑘௧0 

𝑏௫
∗ െ 𝑙௕ೣ

0 if 𝑏௫
∗0 

𝑏௫
∗ ൅ 𝑟௕ೣ

<0 if 𝑏௫
∗<0 

𝑙௔ೣ
, 𝑙௕ೣ

, 𝑟௔ೣ
, 𝑟௕ೣ

൒ 0, 𝑥 ൌ 0,1,2, … , 𝜔 

Let us remark that the constraints 𝑏௫
∗ െ 𝑙௕ೣ0 and 

𝑏௫
∗ ൅ 𝑟௕ೣ<0, ensure that the estimate of the centre of 𝑏෨௫, 

𝑏෨௫
∗, will have clearly defined its sign. It will make eas-

ier to fit fuzzy-probabilistic confidence intervals for 
out-of-sample predictions. 

Step 3. We obtain the optimal value 𝛼ᇱ from (8). Fi-
nally, the spreads 𝑙௔ೣ

∗ , 𝑙௕ೣ
∗ , 𝑟௔ೣ

∗  and 𝑟௕ೣ
∗  are obtained, 

simply, dividing 𝑙௔ೣ
∗଴ , 𝑙௕ೣ

∗଴, 𝑟௔ೣ
∗଴ and  𝑟௕ೣ

∗଴ by 1 െ 𝛼ᇱ. 

By using 𝑎෤௫
∗ , 𝑏෨௫

∗ and 𝑘௧
∗ , it is possible to have a 

fuzzy estimate for the observed central mortality rates. 
In fact, from (9a)-(9e) we obtain: 
ln൫𝑚෥௫,௧

∗ ൯ ൌ ቀln൫𝑚௫,௧
∗ ൯, 𝑙୪୬൫௠ೣ,೟

∗ ൯, 𝑟୪୬൫௠ೣ,೟
∗ ൯ቁ= 

ൌ ൫𝑎௫
∗ , 𝑙௔ೣ

∗ , 𝑟௔ೣ
∗ ൯ ൅ 𝑘௧

∗൫𝑏௫
∗, 𝑙௕ೣ

∗ , 𝑟௕ೣ
∗ ൯ (10a) 

where: 
ln൫𝑚௫,௧

∗ ൯ ൌ 𝑎௫
∗ ൅ 𝑏௫

∗𝑘௧
∗  (10b) 

𝑙୪୬൫௠ೣ,೟
∗ ൯ ൌ ቊ

𝑙௔ೣ
∗ ൅ 𝑘௧

∗𝑙௕ೣ
∗  for 𝑘௧

∗ ൐ 0 
𝑙௔ೣ

∗ െ 𝑘௧
∗𝑟௕ೣ

∗   for 𝑘௧0  (10c) 

𝑟୪୬൫௠ೣ,೟
∗ ൯ ൌ ቊ

𝑟௔ೣ
∗ ൅ 𝑘௧

∗𝑟௕ೣ
∗  for 𝑘௧

∗ ൐ 0 
𝑟௔ೣ

∗ െ 𝑘௧
∗𝑙௕ೣ

∗   for 𝑘௧
∗0  (10d) 

and, consequently, 𝑚෥௫,௧
∗ ൌ exp൫𝑎෤௫

∗ ൅ 𝑏෨௫
∗𝑘௧

∗൯ . Using 
the results in section 3.1., 𝑚෥௫,௧

∗  can be approximated 
by a TFN: 
𝑚෥௫,௧

∗ ൎ ቀ𝑚௫,௧
∗ , 𝑙௠ೣ,೟

∗ , 𝑟௠ೣ,೟
∗ ቁ ൌ ቀexp ሺ𝑎௫

∗ ൅  𝑏௫
∗ 𝑘௧

∗ሻ, exp ሺ𝑎௫
∗ ൅

 𝑏௫
∗ 𝑘௧

∗ሻ𝑙୪୬൫௠ೣ,೟
∗ ൯, exp ሺ𝑎௫

∗ ൅  𝑏௫
∗ 𝑘௧

∗ሻ𝑟୪୬൫௠ೣ,೟
∗ ൯ቁ   (11) 

4.2. Forecasting with the fuzzy-random Lee-Carter 
model 

To forecast future central mortality rates and related 
variables, it is necessary projecting the values of the 
index 𝑘௧ . In our approach, these values are the out-
comes of the RVs 𝒌𝒕 for each year 𝑡 ൐ 𝑇 that actuarial 
literature commonly fits by an ARIMA(p,1,q) on the 
data set ሼ𝑘௧

∗ሽ, 𝑡𝑇 . Subsequently, these projections 
must be combined with (10a)-(10d) and (11). 

[39] developed a framework for predictions that 
mixes conventional regression and fuzzy parameters. 
Following those developments, the predicted values of 
𝒌𝒕, 𝑡 ൐ 𝑇, that may be point values or statistical con-
fidence intervals with a linked significance level, will 
allow obtaining predictions for the central rate of mor-
tality. The values for the central rates of mortality that 
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we obtain from a point prediction of 𝒌𝒕 are FNs given 
the fuzziness of 𝑎෤௫ and 𝑏෨௫ . If we use a probabilistic 
confidence interval of 𝒌𝒕, the prediction of the central 
rate of mortality is a fuzzy-probabilistic confidence in-
terval, i.e. a probabilistic interval whose lower and up-
per bounds are FNs. 

We can use three different estimates for 𝒌𝒕, 𝑡 ൐ 𝑇, 
and so, forecasted central rates of mortality change: 
 If we use the mathematical expectation, 𝐸∗ሺ𝒌𝒕ሻ, 
the mathematical expectation of the logarithm of the 
central rate of mortality, ln൫𝑚෥௫,௧൯, is denoted by 

𝐸෨∗ ቀln൫𝑚෥௫,௧൯ቁ , and: 

 𝐸෨∗ ቀln൫𝑚෥௫,௧൯ቁ ൌ ൬ 𝐸∗ ቀln൫𝑚௫,௧൯ቁ , 𝑙 ா∗ቀ୪୬൫௠෥ ೣ,೟൯ቁ, 𝑟 ா∗ቀ୪୬൫௠෥ ೣ,೟൯ቁ൰ ൌ 

 

ൌ ൫𝑎௫
∗ , 𝑙௔ೣ

∗ , 𝑟௔ೣ
∗ ൯ ൅ 𝐸∗ሺ𝒌𝒕ሻ൫𝑏௫

∗, 𝑙௕ೣ
∗ , 𝑟௕ೣ

∗ ൯ (12a) 

that can be calculated with (10a)-(10d). So, the central 
rate of mortality obtained from 𝐸∗ሺ𝒌𝒕ሻ,  𝐸෨∗൫𝑚෥௫,௧൯,  is: 

 𝐸෨∗൫𝑚෥௫,௧൯ ൌ exp ൬ 𝐸෨∗ ቀln൫𝑚෥௫,௧൯ቁ൰ (12b) 

which can be approximated by a TFN using (11). 

 If we estimate 𝒌𝒕  by its 𝜀 -percentile, 𝑘௧
∗,ఌ , the 

fuzzy forecast of the logarithm of the central rate of 

mortality, ln൫𝑚෥௫,௧൯, is denoted by ln൫𝑚෥௫,௧
∗ ൯

ఌ
 , being: 

- If 𝑏௫
∗ െ 𝑙௕ೣ

∗ 0: 

ln൫𝑚෥௫,௧
∗ ൯

ఌ
ൌ ቀln൫𝑚௫,௧

∗ ൯
ఌ
, 𝑙୪୬൫௠ೣ,೟

∗ ൯
ഄ, 𝑟୪୬൫௠ೣ,೟

∗ ൯
ഄቁ ൌ

൫𝑎௫
∗ , 𝑙௔ೣ

∗ , 𝑟௔ೣ
∗ ൯ ൅ 𝑘௧

∗,ఌ൫𝑏௫
∗, 𝑙௕ೣ

∗ , 𝑟௕ೣ
∗ ൯ (13a) 

- If 𝑏௫
∗ ൅ 𝑟௕ೣ

∗ <0: 

ln൫𝑚෥௫,௧
∗ ൯

ఌ
ൌ ቀln൫𝑚௫,௧

∗ ൯
ఌ
, 𝑙୪୬൫௠ೣ,೟

∗ ൯
ഄ, 𝑟୪୬൫௠ೣ,೟

∗ ൯
ഄቁ ൌ

൫𝑎௫
∗ , 𝑙௔ೣ

∗ , 𝑟௔ೣ
∗ ൯ ൅ 𝑘௧

∗,ଵିఌ൫𝑏௫
∗, 𝑙௕ೣ

∗ , 𝑟௕ೣ
∗ ൯ (13b) 

And it can be implemented with (10a)-(10d). The 
central rate of mortality obtained from 𝑘௧

∗,ఌ, 𝑚෥௫,௧
∗, , is: 

𝑚෥௫,௧
∗, ൌ exp൫ln൫𝑚෥௫,௧

∗ ൯
ఌ
൯ ቀ𝑚௫,௧

∗, , 𝑙௠ೣ,೟
∗, , 𝑟௠ೣ,೟

∗, ቁ (13c) 

and this FN can also be approximated with (11). 
Of course, with this procedure, we maintain the 

fuzzy uncertainty of 𝑎෤௫
∗  and 𝑏෨௫

∗  but the probabilistic 
uncertainty of 𝒌𝒕 is reduced to a point estimation. 

 If we take for 𝒌𝒕 its probabilistic 1 െ 𝜀 confidence 

interval, 𝑘௧
∗,ఌฐ ൌ ൤𝑘௧

∗,
ഄ
మ, 𝑘௧

∗,ଵି
ഄ
మ൨, following [39], the 1- 

confidence interval prediction for ln൫𝑚෥௫,௧൯ –or 𝑚෥௫,௧–, 

that we denote ln൫𝑚௫,௧
∗ ൯

ఌᇩᇭᇭᇪᇭᇭᇫ
 - or 𝑚෥௫,௧

∗,ฑ- is a fuzzy-proba-
bilistic confidence interval. 

- If 𝑏௫
∗ െ 𝑙௕ೣ

∗ 0, the lower bound of ln൫𝑚௫,௧
∗ ൯

ఌᇩᇭᇭᇪᇭᇭᇫ
 is the 

FN ln൫𝑚෥௫,௧
∗ ൯

ഄ
మ ൌ ൫𝑎௫

∗ , 𝑙௔ೣ
∗ , 𝑟௔ೣ

∗ ൯ ൅ 𝑘௧

∗,
ഄ
మ൫𝑏௫

∗, 𝑙௕ೣ
∗ , 𝑟௕ೣ

∗ ൯ 

whereas the upper bound of ln൫𝑚௫,௧
∗ ൯

ఌᇩᇭᇭᇪᇭᇭᇫ
 is 

ln൫𝑚෥௫,௧
∗ ൯

ଵି
ഄ
మ ൌ ൫𝑎௫

∗ , 𝑙௔ೣ
∗ , 𝑟௔ೣ

∗ ൯ ൅ 𝑘௧

∗,ଵି
ഄ
మ൫𝑏௫

∗, 𝑙௕ೣ
∗ , 𝑟௕ೣ

∗ ൯. 

- If 𝑏௫
∗ ൅ 𝑟௕ೣ

∗ <0, the lower bound of ln൫𝑚௫,௧
∗ ൯

ఌᇩᇭᇭᇪᇭᇭᇫ
 is 

ln൫𝑚෥௫,௧
∗ ൯

ഄ
మ ൌ ൫𝑎௫

∗ , 𝑙௔ೣ
∗ , 𝑟௔ೣ

∗ ൯ ൅ 𝑘௧

∗,ଵି
ഄ
మ൫𝑏௫

∗, 𝑙௕ೣ
∗ , 𝑟௕ೣ

∗ ൯  and 

the upper bound of ln൫𝑚௫,௧
∗ ൯

ఌᇩᇭᇭᇪᇭᇭᇫ
 is ln൫𝑚෥௫,௧

∗ ൯
ଵି

ഄ
మ ൌ

൫𝑎௫
∗ , 𝑙௔ೣ

∗ , 𝑟௔ೣ
∗ ൯ ൅ 𝑘௧

∗,
ഄ
మ൫𝑏௫

∗, 𝑙௕ೣ
∗ , 𝑟௕ೣ

∗ ൯ 
In both cases, we have to apply (13a)-(13b). 
To calculate the bounds of the fuzzy-probabilistic 

confidence interval 𝑚෥௫,௧
∗,ฑ we implement: 

𝑚෥௫,௧

∗,

మ =exp ൬ln൫𝑚෥௫,௧

∗ ൯
ഄ
మ൰  and 𝑚෥௫,௧

∗,ଵି

మ=exp ൬ln൫𝑚෥௫,௧

∗ ൯
ଵି

ഄ
మ൰ 

as we do in (13c). 
Let us remark that [26] did not take into account the 

uncertainty of 𝑎௫ and 𝑏௫ but only that from 𝒌𝒕. In our 
model, it is the particular case where 𝑎෤௫ and 𝑏෨௫ have 
null spreads and the expressions of the fuzzy-proba-
bilistic 1 െ 𝜀 confidence intervals of the logarithm of 
the central rate of mortality turn into conventional 
confidence intervals: 

ln൫𝑚෥௫,௧
∗ ൯ᇩᇭᇪᇭᇫ

ఌ

=൤𝑎௫
∗ ൅ 𝑘௧

∗,
ഄ
మ𝑏௫

∗, 𝑎௫
∗ ൅ 𝑘௧

∗,ଵି
ഄ
మ𝑏௫

∗൨ if 𝑏௫
∗ ൒ 0

 (14a) 

ln൫𝑚෥௫,௧
∗ ൯ᇩᇭᇪᇭᇫ

ఌ

=൤𝑎௫
∗ , ൅𝑘௧

∗,ଵି
ഄ
మ𝑏௫

∗, 𝑎௫
∗ ൅ 𝑘௧

∗,
ഄ
మ𝑏௫

∗൨ if 𝑏௫
∗ ൏ 0

 (14b) 

4.3. An empirical application of the fuzzy-random Lee-
Carter model: the case of Spanish male population 

We apply our extension of the LC model to Spanish 
male population within the period 1970-2000 and we 
test its out-of-sample performance during 2001-2012. 
Central mortality rates have been collected from the 
“Human Mortality Database”, [38] 
(http://www.mortality.org). Ages are grouped in 5 
year intervals, except for ages less than one year, for 
ages from 1 to 5 years and for ages greater or equal to 
110 years. The values of the estimates 𝑎෤௫

∗  and 𝑏෨௫
∗  are 

in Table 1, whereas the estimates of the behaviour of 
𝒌𝒕 are in Figure 1. 

The unit root test [15] on ሼ𝑘௧
∗ሽ௧ୀଵଽ଻଴,ଵଽ଻ଵ,…,ଶ଴଴଴ , 

suggests that it is 𝐼ሺ1ሻ. We cannot reject the null hy-
pothesis of one unit root on the level (the Students’ 𝑡 
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is -0.202) but we reject that null hypothesis on the first 
difference because the Students’ 𝑡 is -7.563. 

 

 

Table 1. Parameters 𝑎෤௫
∗  and 𝑏෨௫

∗ for Spanish male population for the period 1970-2000. 
 𝑎௫

∗  𝑏௫
∗ 

Age Centre Left spread Right spread Centre Left spread Right spread 
[0, 1) -4.49273 0.30688 0.25300 0.17351 0.00000 0.00000 
[1, 5) -7.48194 0.20455 0.18860 0.12731 0.00000 0.00000 
[5,10) -8.10376 0.21022 0.22686 0.11147 0.00000 0.00000 
[10,15) -8.11329 0.12371 0.11770 0.08472 0.00000 0.01665 
[15,19) -7.17041 0.12666 0.21927 0.03932 0.00000 0.02229 
[20,24) -6.77416 0.12234 0.33523 0.02428 0.00000 0.02060 
[25,29) -6.64539 0.19804 0.43116 0.00113 0.00000 0.00113 
[30,34) -6.47171 0.30079 0.29775 -0.01338 0.01338 0.00000 
[35,39) -6.25015 0.17167 0.12575 0.00356 0.00356 0.00000 
[40,44) -5.89617 0.07598 0.04676 0.02483 0.00243 0.00000 
[45,49) -5.45921 0.06226 0.02487 0.03075 0.00000 0.00520 
[50,54) -5.00591 0.05166 0.05161 0.03864 0.00000 0.00000 
[55,59) -4.55867 0.06395 0.05231 0.04121 0.00000 0.00087 
[60,64) -4.10372 0.08045 0.05451 0.04445 0.00000 0.00000 
[65,69) -3.64283 0.07091 0.04687 0.04724 0.00000 0.00523 
[70,74) -3.15519 0.07888 0.05236 0.05065 0.00030 0.00000 
[75,79) -2.66456 0.09569 0.05943 0.04685 0.00210 0.00000 
[80,84) -2.18259 0.07938 0.05492 0.04257 0.00203 0.00001 
[85,89) -1.72857 0.06846 0.04214 0.03342 0.00580 0.00000 
[90,94) -1.32104 0.06281 0.04782 0.02257 0.00465 0.00028 
[95,99) -0.97328 0.04833 0.02706 0.01436 0.00810 0.00692 

[100,104) -0.68435 0.05068 0.02508 0.00759 0.00636 0.00759 
[105,109) -0.46013 0.04953 0.03142 0.00277 0.00000 0.00277 
[110,) -0.31708 0.04852 0.03221 0.00017 0.00000 0.00017 

 

 
Fig. 1. Evolution of 𝒌𝒕 for Spanish male population in the period 1970-2000. 

 
Table 2. Autocorrelation statistics for the time series ሼ𝑘௧

∗ሽ௧ୀଵଽ଻଴,ଵଽ଻ଵ,…,ଶ଴଴଴. 
Lag Autocorrelation Partial Autocorrelation Q-Statistic p-value 

1 -0.305 -0.305 30.004 0.120 
2 0.145 0.005 38.019 0.149 
3 -0.01 0.054 38.053 0.283 
4 -0.101 -0.109 41.836 0.382 
5 0.174 0.123 53.422 0.376 
6 -0.023 0.092 53.638 0.498 
7 -0.002 -0.004 53.927 0.612 
8 -0.112 -0.174 59.353 0.654 
9 -0.333 -0.437 11.001 0.276 
10 0.014 -0.055 12.450 0.256 
11 0.22 -0.152 14.886 0.188 
12 0.11 -0.023 15.530 0.215 
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In Table 2, Ljung and Box Q-statistic suggests that 

a pure random walk for the first difference is accepta-
ble. So, we model 𝒌𝒕 as 𝒌𝒕

∗  ൌ  െ0. 375 ൅ 𝒕
∗, where 

the estimate for the standard deviation of 𝒕
∗ is 0.68. 

Figure 2 represents the evolution that we predict for 
𝒌𝒕 for years 2001-2012 which has been elaborated by 
using the bootstrapping procedure for ARIMA time 
series described in [29]. 

We now check the capability of our extension of the 
LC model to fit the central rate of mortality, 𝑚௫,௧ , into 
the sample used to adjust the coefficients, 𝑡 ൌ
1970,1971, … ,2000  but also its performance in out-
of-sample predictions at t= 2001,2002,…,2012. We 
measure this capability with the membership level that 
the actual central mortality rate 𝑚௫,௧ has in its fuzzy 
estimate 𝑚෥௫,௧

∗ , ௠෥ ೣ,೟
∗ ൫𝑚௫,௧൯. Figure 3 shows the aver-

age of grades of membership, for all age groups, for 

the period 1970-2000, i.e., ௧തതത ൌ
∑ ೘෦ೣ,೟

∗ ൫௠ೣ,೟൯ೣ

ே
, with 𝑁 

the number of age groups that have been considered 
( 𝑁 ൌ 24 ). Likewise, Figure 4 represents, for 𝑡 ൌ

2001, … ,2012 , the values of ௧തതത ൌ
∑  ಶ෩∗൫೘෦ೣ,೟൯  ൫௠ೣ,೟൯ೣ

ே
, 

where the central rate of mortality has been forecasted 
by using 𝐸∗ሺ𝒌𝒕ሻ, and so, with (12a)-(12b). 

Figure 3 shows that the mean grade of membership 
until the middle of the 80s oscillates, depending on the 
year, between 0.4 and 0.8. Subsequently, ௧ഥ  remains 
always around 0.6. In Figure 4, where we also predict 
central mortality rates with (12a)-(12b), we can check 
that with the exception of 2003 and 2005, the average 

grade of membership of the real observed central rates 
of mortality in  𝐸෨∗൫𝑚෥௫,௧൯ is at least 0.4. Therefore, it 
can be said that the capability of the model to fit the 
central mortality rates in the sample as well as to ex-
trapolate them for a period of more than 10 years is 
reasonably good. 

Table 3 shows the TFN predictions for the central 
mortality rates of year 2010 that come from 𝐸∗ሺ𝒌𝒕ሻ 

and from the bounds of 𝑘௧
∗,ଵ଴%ᇩᇪᇫ ൌ ൣ𝑘௧

∗,ହ%, 𝑘௧
∗,ଽହ%൧, i.e. 

we forecast the mathematical expectation and the 10% 
fuzzy-probabilistic confidence interval of 𝑚௫,ଶ଴ଵ଴. For 
example, if we consider the age group ሾ30,34ሻ: 

 𝐸෨∗൫𝑚෥ሾଷ଴,ଷସሻ,ଶ଴ଵ଴൯ ൌ ሺ0.00176, 0.00053, 0.00087ሻ 
which means that the forecasted mean of the cen-
tral rate of mortality in the year 2010 is approxi-
mately 0.00176,  although it can vary between 

0.00123 and 0.00263. Likewise, 𝑚෥ሾଷ଴,ଷସሻ,ଶ଴ଵ଴
∗,ଵ଴%ᇩᇭᇭᇭᇪᇭᇭᇭᇫ has as 

lower and upper bounds, 𝑚෥ሾଷ଴,ଷସሻ,ଶ଴ଵ଴
∗,ହ%  and 

𝑚෥ሾଷ଴,ଷସሻ,ଶ଴ଵ଴
∗,ଽହ% , the TFNs (0.00168, 0.00051, 0.00075) 

and (0.00184, 0.00055, 0.00100), respectively, i.e. the 
real central mortality rate in the year 2010 is contained, 
with a probability of 90%, between approximately 
0.00168, in the most optimistic scenario, and approxi-
mately 0.00184, in the most pessimistic scenario. If we 
were using the basic LC model, which only takes into 
account the uncertainty related to the index 𝒌𝒕, the re-
sults would not be FNs but the real numbers: 0.00176 
for the mathematical expectation and [0.00168, 
0.00184], for its 90% confidence interval. 
 

 

 
Fig. 2. Estimation of the evolution of 𝒌𝒕 for Spanish male population in the period 2001-2012. 
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Fig. 3. Values of ௧ഥ ൌ
∑ ೘෦ೣ,೟

∗ ൫௠ೣ,೟൯ೣ

ே
 in the period 1970-2000. 

 

 

Fig. 4. Values of ௧ഥ ൌ
∑  ಶ෩∗൫೘෦ೣ,೟൯  ൫௠ೣ,೟൯ೣ

ே
 in the period 2001-2012. 

 

Table 3. TFN approximations of the estimates of  𝐸෨∗൫𝑚෥௫,௧൯ and the bounds of  𝑚෥௫,௧
∗,ଵ଴%ᇩᇭᇪᇭᇫ (𝑚෥௫,௧

∗,ହ% and 𝑚෥௫,௧
∗,ଽହ%) for 

year 2010. 
  𝐸෨∗൫𝑚෥௫,௧൯ 𝑚෥௫,௧

∗,ହ% 𝑚෥௫,௧
∗,ଽହ% 

Age Centre Left spread Right spread Centre Left spread Right spread Centre Left spread Right spread 
[0, 1) 0.00206 0.00063 0.00052 0.00115 0.00035 0.00029 0.00379 0.00116 0.00096 
[1, 5) 0.00016 0.00003 0.00003 0.00011 0.00002 0.00002 0.00025 0.00005 0.00005 
[5,10) 0.00010 0.00002 0.00002 0.00007 0.00001 0.00002 0.00015 0.00003 0.00003 
[10,15) 0.00013 0.00004 0.00002 0.00010 0.00003 0.00001 0.00018 0.00004 0.00002 
[15,19) 0.00052 0.00018 0.00011 0.00046 0.00019 0.00010 0.00060 0.00016 0.00013 
[20,24) 0.00090 0.00029 0.00030 0.00083 0.00033 0.00028 0.00098 0.00025 0.00033 
[25,29) 0.00129 0.00037 0.00055 0.00128 0.00038 0.00055 0.00129 0.00037 0.00056 
[30,34) 0.00176 0.00053 0.00087 0.00168 0.00051 0.00075 0.00184 0.00055 0.00100 
[35,39) 0.00186 0.00032 0.00047 0.00184 0.00032 0.00049 0.00189 0.00032 0.00045 
[40,44) 0.00216 0.00016 0.00015 0.00199 0.00015 0.00016 0.00235 0.00018 0.00015 
[45,49) 0.00315 0.00036 0.00008 0.00284 0.00037 0.00007 0.00351 0.00033 0.00009 
[50,54) 0.00460 0.00024 0.00024 0.00403 0.00021 0.00021 0.00526 0.00027 0.00027 
[55,59) 0.00701 0.00051 0.00037 0.00610 0.00046 0.00032 0.00810 0.00056 0.00042 
[60,64) 0.01070 0.00086 0.00058 0.00922 0.00074 0.00050 0.01251 0.00101 0.00068 
[65,69) 0.01651 0.00201 0.00077 0.01409 0.00197 0.00066 0.01949 0.00202 0.00091 
[70,74) 0.02602 0.00205 0.00144 0.02194 0.00173 0.00124 0.03107 0.00245 0.00169 
[75,79) 0.04410 0.00422 0.00352 0.03766 0.00360 0.00327 0.05196 0.00497 0.00377 
[80,84) 0.07445 0.00592 0.00556 0.06450 0.00513 0.00526 0.08642 0.00687 0.00584 
[85,89) 0.12816 0.00877 0.01264 0.11452 0.00784 0.01353 0.14409 0.00986 0.01129 
[90,94) 0.21414 0.01404 0.01994 0.19846 0.01321 0.02159 0.23176 0.01497 0.01781 
[95,99) 0.32848 0.03803 0.03485 0.31297 0.04353 0.04175 0.34543 0.03162 0.02684 

[100,104) 0.46845 0.05871 0.04225 0.45663 0.06889 0.05097 0.48107 0.04750 0.03266 
[105,109) 0.61439 0.05071 0.03279 0.60868 0.05592 0.03249 0.62038 0.04519 0.03311 
[110,) 0.72704 0.03900 0.04508 0.72661 0.03941 0.04506 0.72748 0.03858 0.04511 
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Note: (a) stands for  ா෨∗൫௠෥ ሾబ,భሻ,೟൯  ൫𝑚௫,௧൯ and (b) stands for ௠෥ ሾబ,భሻ,೟

∗,వఱ%  ൫𝑚௫,௧൯. 

Fig. 5. Membership levels  ா෨∗൫௠෥ ሾబ,భሻ,೟൯  ൫𝑚௫,௧൯ and ௠෥ ሾబ,భሻ,೟
∗,వఱ%  ൫𝑚௫,௧൯ in 2001-2012. 

 
Figure 5 depicts the membership level of true ob-

served values of 𝑚ሾ଴,ଵሻ,௧ for the period 2001-2012 in 

the TFNs  𝐸෨∗൫𝑚෥ሾ଴,ଵሻ,௧൯  and 𝑚෥ሾ଴,ଵሻ,௧
∗,ଽହ% . Such important 

age group is not well predicted when the mathematical 
expectation of the parameter 𝒌𝒕 is used because from 
the year 2002 on the forecasted rates never contain the 
real values, i.e. their grade of membership is always 0. 
Nevertheless, it does not happen when considering the 
upper bound of the fuzzy-probabilistic 90%  confi-
dence interval of 𝑚෥ሾ଴,ଵሻ,௧

∗ ଽହ%. In this case, membership 
levels are never lower than 0.4. We statistically test 
the capability of  𝐸෨∗൫𝑚෥௫,௧൯  to predict actual central 
mortality rates for each year t = 2001, 2002,…,2012. 

Table 4 shows the results. Following [4], it is desirable 
that the observed rates 𝑚௫,௧ attain membership levels 
of at least 0.5, in the fuzzy prediction 𝐸෨∗൫𝑚෥௫,௧൯ i.e, 
 ா෨∗൫௠෥ ೣ,೟൯  ൫𝑚௫,௧൯0.5 . So, for each year t = 2001, 

2002,…,2012 we implement a Wilcoxon rank test for 
the null hypothesis that the median value of 
 ா෨∗൫௠෥ ೣ,೟൯  ൫𝑚௫,௧൯ is 0.5. It can be seen in Table 4 that 

only in years 2003 and 2012 the median of 
 ா෨∗൫௠෥ ೣ,೟൯  ൫𝑚௫,௧൯ is under 0.5 and the null hypothesis 

is rejected at standard significant levels. 
 

 
Table 4. Assessment of the capability prediction of  𝐸෨∗൫𝑚෥௫,௧൯ with a Wilcoxon rank test in 2001-2012. 

Year 𝑊 Median Mean Year 𝑊 Median Mean 
2001 92* 0.602 0.656 2007 93 0.414 0.381 
2002 141 0.488 0.643 2008 141 0.438 0.256 
2003 77** 0.181 0.439 2009 59** 0.534 0.246 
2004 140 0.454 0.431 2010 122 0.462 0.233 
2005 117 0.165 0.337 2011 67*** 0.521 0.255 
2006 61*** 0.528 0.320 2012 62*** 0.202 0.182 

Notes: (1) 𝑊 stands for the value of Wilcoxon rank test statistic. (2) “*”, “**” and “***” stand for the rejection of the null hypothesis that 
the median value of  ா෨∗൫௠෥ ೣ,೟൯  ൫𝑚௫,௧൯ is 0.5 with a significance level of 10%, 5% and 1% respectively. 

 

5. Forecasting life expectancy with the fuzzy-
random Lee-Carter model 

5.1. Calculating life expectancy from fuzzy estimates 
of central mortality rates 

We now compute probabilities of death or survival 
and life expectancies after calculating estimates of 
central mortality rates. Let us denote the width of the 
age group as 𝑛௫ years. 

To obtain the probability that a person in the age 
group 𝑥, at calendar year 𝑡, does not reach the follow-
ing age group, 𝑞௫,௧௡ೣ ,we have to take into account that 
it is a function of 𝑚௫,௧. 

𝑞௫,௧ ൌ
௡ೣ௠ೣ,೟

ଵା௡ೣቀଵିೣ,೟ቁ௠ೣ,೟
௡ೣ    (15) 

where ௫,௧ ∈ ሾ0,1ሿ is the average fraction of the 𝑛௫ -
year period lived by those who died in that period and 
we will suppose that this coefficient is fixed before-
hand. Given that: 

𝜕 𝑞௫,௧௡ೣ

𝜕𝑚௫,௧

ൌ
𝑛௫

ቂ1 ൅ 𝑛௫ ቀ1 െ ௫,௧ቁ 𝑚௫,௧ቃ
ଶ ൐ 0 

0

0,2

0,4

0,6
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by considering (15) and bearing in mind that 𝑞෤௫,௧
∗

௡ೣ ఈ
  

is a prediction of a probability, i.e. 𝑞෤௫,௧
∗

௡ೣ ఈ
⊆ ሾ0,1ሿ, we 

can obtain the 𝛼-cuts of 𝑞෤௫,௧
∗

௡ೣ , 𝑞෤௫,௧
∗

௡ೣ ఈ
: 

𝑞෤௫,௧
∗

௡ೣ ఈ
ൌ ቂ 𝑞௫,௧

∗
௡ೣ

ሺ𝛼ሻ, 𝑞௫,௧
∗

௡ೣ
ሺ𝛼ሻቃ 

ൌ ቎max ቐ0,
𝑛௫ቂ𝑚௫,௧

∗ െ 𝑙௠ೣ,೟
∗ ሺ1 െ 𝛼ሻቃ

1 ൅ 𝑛௫ ቀ1 െ ௫,௧ቁ ቂ𝑚௫,௧
∗ െ 𝑙௠ೣ,೟

∗ ሺ1 െ 𝛼ሻቃ
ቑ , 

min ቐ1,
𝑛௫ቂ𝑚௫,௧

∗ ൅ 𝑟௠ೣ,೟
∗ ሺ1 െ 𝛼ሻቃ

1 ൅ 𝑛௫ ቀ1 െ ௫,௧ቁ ቂ𝑚௫,௧
∗ ൅ 𝑟௠ೣ,೟

∗ ሺ1 െ 𝛼ሻቃ
ቑ቏ 

It may be useful to obtain a triangular approxima-

tion for 𝑞෤௫,௧
∗

௡ೣ , 𝑞෤௫,௧
∗

௡ೣ ൎ ቀ 𝑞௫,௧
∗

௡ೣ , 𝑙 ௤ೣ,೟
∗

೙ೣ
, 𝑟 ௤ೣ,೟

∗
೙ೣ

ቁ, with: 

𝑞௫,௧
∗

௡ೣ ൌ
௡ೣ௠ೣ,೟

∗

ଵା௡ೣቀଵିೣ,೟ቁ௠ೣ,೟
∗    (16a) 

In order to obtain the support of 𝑞෤௫,௧
∗

௡ೣ   , we have to 
take into account that it is a probability and so, its sup-
port must be within the interval [0, 1]. Then: 

𝑙 ௤ೣ,೟
∗

೙ೣ
ൌ min ቊ 𝑞௫,௧

∗
௡ೣ

,
௡ೣ௟೘ೣ,೟

∗

ቂଵା௡ೣቀଵିೣ,೟ቁ௠ೣ,೟ቃ
మቋ (16b) 

and: 

𝑟 ௤ೣ,೟
∗

೙ೣ
ൌ  min ቊ1 െ 𝑞௫,௧

∗ ,
௡ೣ௥೘ೣ,೟

∗

ቂଵା௡ೣቀଵିೣ,೟ቁ௠ೣ,೟ቃ
మ௡ೣ
ቋ  (16c) 

To determine the probability that a person in the age 
group 𝑥, at calendar year 𝑡, reaches the following age 
group, 𝑝௫,௧௡ೣ , from the crisp relationship 

𝑝௫,௧ ൌ 1 െ 𝑞௫,௧௡ೣ௡ೣ , under fuzziness we state 

𝑝෤௫,௧ ൌ 1 െ 𝑞෤௫,௧௡ೣ௡ೣ  where: 
𝑝௫,௧

∗
௡ೣ ఈ

ൌ ቂ 𝑝௫,௧
∗

௡ೣ
ሺ𝛼ሻ, 𝑝௫,௧

∗
௡ೣ

ሺ𝛼ሻቃ ൌ ቂ1 െ 𝑞௫,௧
∗

௡ೣ
ሺ𝛼ሻ, 1 െ 𝑞௫,௧

∗
௡ೣ

ሺ𝛼ሻቃ 

From (15a)-(15c), 𝑝෤௫,௧
∗

௡ೣ
ൎ ቀ 𝑝௫,௧

∗
௡ೣ

, 𝑙 ௣ೣ,೟
∗

೙ೣ
, 𝑟 ௣ೣ,೟

∗
೙ೣ

ቁ: 
𝑝௫,௧

∗
௡ೣ

ൌ 1 െ 𝑞௫,௧
∗

௡ೣ
; 𝑙 ௣ೣ,೟

∗
೙ೣ

ൌ 𝑙 ௤ೣ,೟
∗

೙ೣ
; 𝑟 ௣ೣ,೟

∗
೙ೣ

ൌ 𝑟 ௤ೣ,೟
∗

೙ೣ
 

The life expectancy of a person in the age group 𝑥, at 
calendar year 𝑡, 𝑒௫,௧ can be calculated with the expres-
sion: 
𝑒௫,௧ ൌ ∑ ∏ ቀ1 െ 𝑞௝,௧௡ೕ

ቁ ቂ𝑛௜ െ ቀ𝑛௜ െ ௜,௧ቁ 𝑞௜,௧௡೔
ቃ௫ஸ௝ழ௜௜ஹ௫   (17) 

As: 
𝜕𝑒௫,௧

𝜕 𝑞௜,௧௡೔

ൌ െ ቊෑ ቀ1 െ 𝑞௝,௧௡ೕ
ቁ ቂ𝑛௜ െ ቀ𝑛௜ െ ௜,௧ቁቃ

௫ஸ௝ழ௜
 

൅ ෍ ෑ ቀ1 െ 𝑞௝,௧௡ೕ
ቁ ቂ𝑛௦ െ ቀ𝑛௦ െ ௦,௧ቁ 𝑞௦,௧௡ೞ

ቃ௫ஸ௝ழ௦
௝ஷ௜௦வ௜

ൡ 

it turns out that 𝑒௫,௧ is a decreasing function of 𝑞௜,௧௡೔
 

(and so, of its linked central mortality rate). 
By evaluating (17) with 𝑞෤௜,௧

∗
௡೔

,  we will obtain a 

fuzzy estimate for 𝑒௫,௧, 𝑒̃௫,௧
∗  . Moreover, it is straight-

forward to see that its 𝛼 –cuts, 𝑒௫,௧
∗

ఈ
, are: 

𝑒௫,௧
∗

ఈ
ൌ ቂ𝑒௫,௧

∗ ሺ𝛼ሻ, 𝑒௫,௧
∗ ሺ𝛼ሻቃ 

ൌ ቈ෍ ෑ ቆ1 െ 𝑞௝,௧௡ೕ
ሺ𝛼ሻቇ ቂ𝑛௜ െ ቀ𝑛௜ െ ௜,௧ቁ 𝑞௝,௧௡ೕ

ሺ𝛼ሻቃ
௫ஸ௝ழ௜௜ஹ௫

, 

෍ ෑ ቆ1 െ 𝑞௝,௧௡ೕ
ሺ𝛼ሻቇ ቂ𝑛௜ െ ቀ𝑛௜ െ ௜,௧ቁ 𝑞௜,௧௡೔

ሺ𝛼ሻቃ
௫ஸ௝ழ௜௜ஹ௫

቉ 

A TFN approximation of 𝑒̃௫,௧
∗ , 𝑒̃௫,௧

∗ ൎ

ቀ𝑒௫,௧
∗ , 𝑙௘ೣ,೟

∗ , 𝑟௘ೣ,೟
∗ ቁ, can be obtained by using (6): 

𝑒௫,௧
∗ ൌ ∑ ∏ ቀ1 െ 𝑞௝,௧

∗
௡ೕ

ቁ௫ஸ௝ழ௜ ቂ𝑛௜ െ ቀ𝑛௜ െ ௜,௧ቁ 𝑞௜,௧
∗

௡೔
ቃ௜ஹ௫  (18a) 

𝑙௘ೣ,೟
∗ ൌ ෍ ቊෑ ቀ1 െ 𝑞௝,௧

∗
௡ೕ

ቁ ቀ𝑛௜ െ ௜,௧ቁ
௫ஸ௝ழ௜௜ஹ௫

 

൅ ෍ ෑ ቀ1 െ 𝑞௝,௧
∗

௡ೕ
ቁ ቂ𝑛௦ െ ቀ𝑛௦ െ ௦,௧ቁ 𝑞௦,௧

∗
௡ೞ

ቃ௫ஸ௝ழ௦
௝ஷ௜௦வ௜

ൡ 𝑟 ௤೔,೟
∗

೙೔
 

(18b) 

𝑟௘ೣ,೟
∗ ൌ ෍ ቊෑ ቀ1 െ 𝑞௝,௧

∗
௡ೕ

ቁ ቀ𝑛௜ െ ௜,௧ቁ
௫ஸ௝ழ௜௜ஹ௫

 

൅ ∑ ∏ ቀ1 െ 𝑞௝,௧
∗

௡ೕ
ቁ ቂ𝑛௦ െ ቀ𝑛௦ െ ௦,௧ቁ 𝑞௦,௧

∗
௡ೞ

ቃ௫ஸ௝ழ௦
௝ஷ௜

௦வ௜ ቋ 𝑙 ௤೔,೟
∗

೙೔
 

(18c) 

Of course, if in (18a)-(18c) we take as a prediction 
of the index 𝒌𝒕  its mathematical expectation, 𝑘௧

∗ ൌ
𝐸∗ሺ𝒌𝒕ሻ, we will obtain a fuzzy estimate of life expec-
tation that we symbolize as  𝐸෨∗൫𝑒̃௫,௧

∗ ൯.  
If the prediction of the mortality trend comes from 

its probabilistic confidence interval, 𝑘௧
∗,ఌฐ ൌ

൤𝑘௧

∗,
ഄ
మ, 𝑘௧

∗,ଵି
ഄ
మ൨ , we can built up a fuzzy-probabilistic 

confidence interval of the life expectancy 𝑒௫,௧
∗,ఌฏ ൌ

൤𝑒௫,௧

∗,
ഄ
మ, 𝑒௫,௧

∗,ଵି
ഄ
మ൨. In the common case where the sensitivity 

of the central rate of mortality respect to changes in 
the index 𝒌𝒕 is strictly positive, i.e. 𝑏෨௫

∗>0 (𝑏௫
∗ െ 𝑙௕ೣ

∗0), 

𝑘௧

∗,
ഄ
మ  will determinate 𝑒௫,௧

∗,ଵି
ഄ
మ , whereas  𝑘௧

∗,ଵି
ഄ
మ  will de-

fine the lower life expectancy 𝑒௫,௧

∗,
ഄ
మ. 

5.2. Predicting life expectancies of Spanish male pop-
ulation in 2001-2012 

Tables 5 and 6 show the estimates for the mean 
value and the 90% confidence fuzzy-probabilistic in-
terval of the life expectancy for the age groups ሾ0, 1ሻ 
and ሾ65, 69ሻ during the period 2001-2012. These 
ages are significantly important because they are con-
sidered in order to quantify life expectancy at birth and 
at retirement, respectively. If only the centres of the 
fuzzy life expectancies are considered, predictions that 
come from the basic LC method are found. So, for ex-
ample, the point estimate for 𝑒ሾ଴,ଵሻ,ଶ଴ଵଶ is 78.19 years 
and the 90% confidence probabilistic interval is [76.56, 
79.75] years. The fuzzy-random extension of the LC 
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model allows introducing the fuzziness into the coef-
ficients 𝑎௫  and 𝑏௫  and, as a consequence, point pre-
dictions and probabilistic interval predictions, as well, 
are fuzzified. So, the projection of 𝑒ሾ଴,ଵሻ,ଶ଴ଵଶ  is the 

TFN (78.19, 1.25, 1.30) years, whereas the lower and 
upper bounds of the 90% confidence fuzzy probabilis-
tic interval are, respectively (76.56, 1.19, 1.28) and 
(79.75, 1.34, 1.33). 

 
 

Table 5. TFN approximation of the estimates of  𝐸෨∗൫𝑒̃ሾ଴,ଵሻ,௧
∗ ൯ and 𝑒̃ሾ଴,ଵሻ,௧

∗,ଵ଴%ᇩᇪᇫ, with lower and upper bounds 𝑒̃ሾ଴,ଵሻ,௧
∗,ହ%  

and 𝑒̃ሾ଴,ଵሻ,௧
∗,ଽହ%, in 2001-2012. 

  𝐸෨∗൫𝑒̃ሾ଴,ଵሻ,௧
∗ ൯ 𝑒̃ሾ଴,ଵሻ,௧

∗ ହ% 𝑒̃ሾ଴,ଵሻ,௧
∗ ଽହ% 

Year Centre Left spread Right spread Centre Left spread Right spread Centre Left spread Right spread 
2001 76.31 1.18 1.28 75.73 1.17 1.28 76.96 1.20 1.28 
2002 76.49 1.19 1.28 75.72 1.17 1.28 77.20 1.21 1.29 
2003 76.66 1.19 1.28 75.75 1.17 1.28 77.54 1.22 1.29 
2004 76.84 1.20 1.28 75.82 1.18 1.28 77.85 1.23 1.30 
2005 77.01 1.20 1.29 75.89 1.18 1.28 78.07 1.24 1.30 
2006 77.18 1.21 1.29 75.94 1.18 1.28 78.29 1.25 1.30 
2007 77.35 1.21 1.29 75.94 1.18 1.28 78.60 1.27 1.31 
2008 77.52 1.22 1.29 75.97 1.18 1.28 78.80 1.28 1.31 
2009 77.69 1.23 1.29 76.10 1.18 1.28 79.05 1.29 1.32 
2010 77.85 1.23 1.30 76.13 1.18 1.28 79.28 1.31 1.32 
2011 78.02 1.24 1.30 76.26 1.18 1.28 79.50 1.32 1.33 
2012 78.19 1.25 1.30 76.56 1.19 1.28 79.75 1.34 1.33 

 

Table 6. TFN approximation of the estimates of 𝐸෨∗൫𝑒̃ሾ଺ହ,଺ଽሻ,௧
∗ ൯ and 𝑒̃ሾ଺ହ,଺ଽሻ,௧

∗,ଵ଴%ᇩᇭᇪᇭᇫ, with lower and upper bounds 

𝑒̃ሾ଺ହ,଺ଽሻ,௧
∗,ହ%  and 𝑒̃ሾ଺ହ,଺ଽሻ,௧

∗,ଽହ% , in 2001-2012. 

  𝐸෨∗൫𝑒̃ሾ଺ହ,଺ଽሻ,௧
∗ ൯ 𝑒̃ሾ଺ହ,଺ଽሻ,௧

∗ ହ% 𝑒̃ሾ଺ହ,଺ଽሻ,௧
∗ ଽହ% 

Year Centre Left spread Right spread Centre Left spread Right spread Centre Left spread Right spread 
2001 17.06 0.48 0.64 16.67 0.46 0.63 17.51 0.51 0.65 
2002 17.18 0.49 0.64 16.66 0.46 0.63 17.68 0.52 0.65 
2003 17.30 0.49 0.64 16.68 0.46 0.63 17.92 0.53 0.66 
2004 17.42 0.50 0.65 16.73 0.46 0.63 18.15 0.55 0.66 
2005 17.54 0.51 0.65 16.78 0.46 0.63 18.31 0.56 0.67 
2006 17.67 0.52 0.65 16.82 0.47 0.63 18.47 0.57 0.67 
2007 17.79 0.52 0.66 16.82 0.47 0.63 18.70 0.58 0.67 
2008 17.91 0.53 0.66 16.83 0.47 0.63 18.85 0.59 0.68 
2009 18.03 0.54 0.66 16.92 0.47 0.63 19.04 0.61 0.68 
2010 18.15 0.55 0.66 16.94 0.47 0.64 19.21 0.62 0.68 
2011 18.27 0.55 0.67 17.03 0.48 0.64 19.38 0.63 0.69 
2012 18.40 0.56 0.67 17.24 0.49 0.64 19.57 0.64 0.69 

 

 
Note: (a) stands for  ா෨∗ቀ௘̃ሾబ,భሻ,೟

∗ ቁ  ൫𝑒ሾ଴,ଵሻ,௧൯, (b) stands for 𝜇௘̃ሾబ,భሻ,೟
∗,ఱ% ൫𝑒ሾ଴,ଵሻ,௧൯ and (c) stands for 𝜇௘̃ሾబ,భሻ,೟

∗,వఱ%൫𝑒ሾ଴,ଵሻ,௧൯. 

Fig. 6. Membership levels  ா෨∗ቀ௘̃ሾబ,భሻ,೟
∗ ቁ  ൫𝑒ሾ଴,ଵሻ,௧൯, 𝜇௘̃ሾబ,భሻ,೟

∗,ఱ% ൫𝑒ሾ଴,ଵሻ,௧൯ and 𝜇௘̃ሾబ,భሻ,೟
∗,వఱ%൫𝑒ሾ଴,ଵሻ,௧൯ in 2001-2012. 
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Note: (a) stands for  ா෨∗ቀ௘̃ሾలఱ,లవሻ,೟

∗ ቁ  ൫𝑒ሾ଺ହ,଺ଽሻ,௧൯, (b) stands for 𝜇௘̃ሾలఱ,లవሻ,೟
∗,ఱ% ൫𝑒ሾ଺ହ,଺ଽሻ,௧൯ and (c) stands for 𝜇௘̃ሾలఱ,లవሻ,೟

∗,వఱ% ൫𝑒ሾ଺ହ,଺ଽሻ,௧൯. 

Fig. 7. Membership levels  ா෨∗ቀ௘̃ሾలఱ,లవሻ,೟
∗ ቁ  ൫𝑒ሾ଺ହ,଺ଽሻ,௧൯, 𝜇௘̃ሾలఱ,లవሻ,೟

∗,ఱ% ൫𝑒ሾ଺ହ,଺ଽሻ,௧൯ and 𝜇௘̃ሾలఱ,లవሻ,೟
∗,వఱ% ൫𝑒ሾ଺ହ,଺ଽሻ,௧൯ in 2001-2012. 

 
Table 7. Assessment of the capability prediction of  𝐸෨∗൫𝑒̃௫,௧

∗ ൯ with a Wilcoxon rank test for the period 2001-
2012. 

Capability prediction of  𝐸෨∗൫𝑒̃௫,௧
∗ ൯ per years 

Year 𝑊 Median Mean Year 𝑊 Median Mean 
2001 92* 0.602 0.718 2007 93 0.414 0.589 
2002 141 0.488 0.656 2008 141 0.438 0.586 
2003 77** 0.181 0.338 2009 59*** 0.534 0.555 
2004 140 0.454 0.653 2010 122 0.462 0.445 
2005 117 0.165 0.440 2011 67*** 0.521 0.443 
2006 61*** 0.528 0.699 2012 62*** 0.202 0.409 

Capability prediction of  𝐸෨∗൫𝑒̃ሾ଴,ଵሻ,௧
∗ ൯ and  𝐸෨∗൫𝑒̃ሾ଺ହ,଺ଽሻ,௧

∗ ൯ on life expectancy 
at birth and retirement 

 Median Mean 𝑊 

 𝐸෨∗൫𝑒̃ሾ଴,ଵሻ,௧
∗ ൯ 0.628 0.567 37 

 𝐸෨∗൫𝑒̃ሾ଺ହ,଺ଽሻ,௧
∗ ൯ 0.655 0.609 19 

Notes: (1) Each year has 24 predictions on life expectations, one per age group. (2) Each age group has 12 predictions available, one for 
each assessed year. (3) 𝑊 stands for the value of Wilcoxon rank test statistic. (4) “*”, “**” and “***” stand for the rejection of the null 
hypothesis that median value of  ா෨∗൫௘̃ೣ,೟

∗ ൯   ൫𝑒௫,௧൯ is 0.5 with a significance level of 10%, 5% and 1% respectively. 

 
Figures 6 and 7 represent the membership level of 

true observed values for life expectancies, 𝑒௫,௧ , into 

their estimates  𝐸෨∗൫𝑒̃௫,௧
∗ ൯, 𝑒̃௫,௧

∗,ହ% and 𝑒̃௫,௧
∗,ଽହ%. Concretely, 

we take the estimates calculated in Tables 5 and 6. We 
can check that 𝑒ሾ଴,ଵሻ,௧  is fitted quite accurately by 

 𝐸෨∗൫𝑒̃ሾ଴,ଵሻ,௧
∗ ൯  from 2001 to 2005. On the other hand, 

from 2006 to 2012, 𝜇 ா෨∗ቀ௘̃ሾబ,భሻ,೟
∗ ቁ

൫𝑒ሾ଴,ଵሻ,௧൯ decreases to 

values near 0. However, we can also remark that in 
those years the membership level of 𝑒ሾ଴,ଵሻ,௧ into the 

TFN 𝑒̃ሾ଴,ଵሻ,௧
∗,ଽହ% stands clearly up to 0.5. Likewise, for ሾ65, 

69ሻ, Figure 7 shows that  𝐸෨∗൫𝑒̃ሾ଺ହ,଺ଽሻ,௧
∗ ൯ fits  𝑒ሾ଺ହ,଺ଽሻ,௧, 

from 2006 to 2012, with clearly satisfactory member-
ship levels that are usually up 0.8. It is true that 
𝜇 ா෨∗ቀ௘̃ሾలఱ,లవሻ,೟

∗ ቁ
൫ 𝑒ሾ଺ହ,଺ଽሻ,௧൯  has low values in the years 

2003 and 2005 but they are compensated by the 
greater membership levels of 𝜇௘̃ሾలఱ,లవሻ,೟

∗,ఱ% ൫ 𝑒ሾ଺ହ,଺ଽሻ,௧൯. In a 

similar way as in subsection 4.3., we statistically test 

the capability of fuzzy mean life expectancies to pre-
dict actual life expectations at t = 2001,2002,…, 2012. 
Again, for each year t =2001,2002,…,2012 we imple-
ment a Wilcoxon rank test with the null hypothesis 
that the median value of  ா෨∗൫௘̃౮,೟

∗ ൯  ൫𝑚௫,௧൯ ൌ 0.5. Table 

7 shows that, except for the year 2003, in the years 
where the median of  ா෨∗൫௠෥ ೣ,೟൯  ൫𝑚௫,௧൯  is under 0.5, we 

cannot reject the null hypothesis. On the other hand, in 
the years 2001, 2007, 2010 and 2011, there are statis-
tical evidences that the median is above 0.5. 

Due to the interest in actuarial analyses in life ex-
pectancy both at birth and at retirement, we test the 
quality of the prediction by  𝐸෨∗൫𝑒̃௫,௧

∗ ൯ in years [0,1) an 
[65,69). The results are also collected in Table 7. We 
can check that the median and mean membership lev-
els of observed life expectancies in the period 2001-
2012 are consistently above 0.5. However, the Wil-
coxon rank test does not reject in both age groups that 
𝜇 ா෨∗൫௘̃౮,೟

∗ ൯൫𝑒୶,௧൯ ൌ 0.5. 
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6. Empirical assessment of the Fuzzy Random Lee-
Carter model in eight Western European 
countries1 

6.1. Methodological considerations 

In this section we make a comparative assessment 
on the prediction capability of our proposed fuzzy-ran-
dom extension of the LC model (FRLC) with both the 
basic LC (BLC) in [26] and the pure fuzzy LC version 
in [22] (FKSLC). Let us remark that BLC only con-
siders random uncertainty of coefficients 𝑘௧ . On the 
other hand, FKSLC introduces fuzzy uncertainty in all 
the coefficients of the LC model by means of symmet-
rical TFNs. Likewise, FKSLC handles uncertainty 
with the weakest t-norm instead of the commonly used 
minimum operator.  

To carry out the analysis, we use central mortality 
rates collected separately for men and women in eight 
Western Europe countries (i.e. we use 16 databases) 
from [38] (http://www.mortality.org). As we made in 
sections 4 and 5 for the case of Spanish male popula-
tion, we fit the model parameters by using central mor-
tality rates in the period 1970-2000 and we test models 
out-of-sample performance during 2001-2012. Ages 
are again grouped in 5 year intervals, except for ages 
lower than 1 year, for ages from 1 to 5 years and for 
ages greater or equal to 110 years.  

We assess two aspects regarding the fitting quality 
of the models: 

Item 1. We measure and compare models’ perfor-
mance to make point predictions on central mortality 
rates and life expectancies. This is made by using the 
conventional error measures: Root Mean Squared Er-
ror (RMSE), Normalised Mean Squared Error 
(NMSE) and Mean Absolut Error (MAE). We con-
sider these point predictions: the expectation for BLC, 
the core of the fuzzy expectation for FRLC and, finally, 
the core of the fuzzy prediction for FKSLC. Notice 
that point predictions by BLC and FRLC are the same 
by definition. So, in fact, we are making a comparison 
of a couple of predictive methods: BLC/FRLC versus 
FKSLC. Following [32], this pairwise comparison be-
tween techniques is made with both a sign test 
(Wins/Losses) and a Wilcoxon rank test. 

Item 2. We evaluate the capability of BLC, FRLC 
and FKSLC to predict future values of 𝑚௫,௧ , and 𝑒௫,௧ 
by means of confidence intervals. In this second item, 
we measure the accuracy of a method as the rate of 

                                                           
1 This section is especially benefited by the helpful sugges-
tions of one anonymous referee. 

right predictions on 𝑚௫,௧  or 𝑒௫,௧  through confidence 
intervals estimates provided by the methods. 

In this regard, let us make the following remarks: 
- BLC only considers random uncertainty of 𝑘௧. So, 

after establishing a significance level 𝜀, that in our nu-
merical assessment will be 10%, BLC predicts life 
variables as a 1 െ 𝜀 confidence interval like in (14). 

- FRLC estimates the lower and upper bounds of the 
1 െ 𝜀 confidence interval by means of two TFNs. To 
obtain standard confidence interval predictions, we 
transform these estimates into a conventional confi-
dence interval that comes from the convex hull, 𝐶ሺ൉ሻ, 
of the expected intervals (4b) corresponding to 

ఌ

ଶ
 and 

1 െ
ఌ

ଶ
 percentiles of fuzzy predictions (5% and 95% in 

our numerical application). So, for 𝑚௫,௧ , the 1 െ 𝜀 

confidence interval prediction is 𝐶 ቆ𝑒ூ ൬𝑚෥௫,௧

∗,

మ൰ ∪

𝑒ூ ൬𝑚෥௫,௧

∗,ଵି

మ൰ቇ. Analogously, the 1 െ 𝜀 confidence in-

terval prediction of 𝑒௫,௧  is 𝐶 ቆ𝑒ூ ൬𝑒̃௫,௧

∗,

మ൰ ∪ 𝑒ூ ൬𝑒̃௫,௧

∗,ଵି

మ൰ቇ. 

For example, the life expectancy at birth of a Spanish 
man born in 2004 for 𝜀 ൌ 10%  is built up from 
𝑒̃ሾ଴,ଵሻ,ଶ଴଴ସ

∗ ହ% ൌ ሺ75.82, 1.18,1.28ሻ  and 

𝑒̃ሾ଴,ଵሻ,ଶ଴଴ସ
∗ ଽହ% ൌ ሺ77.85,1.23,1.30ሻ (see Table 5). We 

easily find that 𝑒ூ൫𝑒̃ሾ଴,ଵሻ,ଶ଴଴ସ
∗ ହ%൯ ൌ ሾ75.23, 76.46ሿ and 

𝑒ூ൫𝑒̃ሾ଴,ଵሻ,ଶ଴଴ସ
∗ ଽହ%൯ ൌ ሾ77.23, 78,50ሿ . Then, the 90% 

confidence interval prediction for 𝑒ሾ଴,ଵሻ,ଶ଴଴ସ   is (in 
years): 

𝐶ሺሾ75.23, 76.46ሿ ∪ ሾ77.23, 78,50ሿሻ
ൌ ሾ75.23, 78.50ሿ 

- FKSLC directly predicts mortality variables as 
FNs. The expected interval of the FN obtained from 
this method is taken as its confidence interval. 

The analysis of both questions is developed in two 
levels: 

a) In each population, we independently assess the 
predictive capability of each method. For a given pop-
ulation we must predict 24 variables for each of the 12 
years that testing period 2001-2012 comprises. In each 
year we find the mean value of the accuracy measures 
and so, for each population, we have 12 available 
mean values of accuracy (one per year). The results 
that we find in this case are exclusive to the population 
studied. 
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b) We will use the mean results of the accuracy pre-
dictions within the whole period 2001-20012 of all 
populations to make an inter-population assessment. It 
may lead to extract more general conclusions about 
the method performance. In this case, we will work 
with a sample of 16 different goodness of fit measures 
and we will extract more general conclusions. 

Following [17] and [18], an adequate non-paramet-
rical test to carry out this kind of analysis is the Fried-
man rank test (Friedman 2 and Iman-Davenport F 

statistics) that may be completed by the pairwise com-
parisons that allow using Friedman ranks (Z-score). 
Likewise, given that FRLC and FKSLC are extensions 
of BLC, we will implement the multiple sign test de-
scribed in [17] where the control technique is BLC. 

 

 
Table 8a. Mean RMSE, NMSE and MAE (per years) of central mortality rates point predictions for Spanish men 
by the evaluated methods (Item 1). 

 RMSE NMSE MAE 
Year BLC/FRLC FKSLC BLC/FRLC FKSLC BLC/FRLC FKSLC 
2001 0.006 0.002 0.0039 0.0009 0.0031 0.0003 
2002 0.007 0.011 0.0044 0.0051 0.0040 0.0097 
2003 0.020 0.011 0.0108 0.0058 0.0280 0.0088 
2004 0.012 0.023 0.0070 0.0091 0.0110 0.0392 
2005 0.018 0.018 0.0101 0.0082 0.0240 0.0247 
2006 0.011 0.020 0.0066 0.0111 0.0103 0.0297 
2007 0.015 0.022 0.0084 0.0095 0.0168 0.0360 
2008 0.016 0.022 0.0089 0.0115 0.0204 0.0361 
2009 0.014 0.018 0.0078 0.0097 0.0151 0.0240 
2010 0.013 0.016 0.0074 0.0089 0.0139 0.0202 
2011 0.011 0.015 0.0066 0.0085 0.0110 0.0175 
2012 0.022 0.026 0.0119 0.0129 0.0407 0.0498 

 Wins/Losses 10/2** Wins/Losses 9/3* Wins/Losses 10/3**  
 𝑊 8** 𝑊 11** 𝑊 15*  

Notes: (1) “Wins/Losses” stands for the number of cases in which BLC and FRLC point predictions are better/worse than FKSLC. (2) 𝑊 stands 
for the value of the Wilcoxon rank test statistic. (3) “*”, “**” and “***” stand for the rejection of the null hypothesis with a significance level of 
10%, 5% and 1% respectively. 

 
Table 8b. Mean RMSE, NMSE and MAE (per years) of life expectancy point predictions for Spanish men by the 
evaluated methods (Item 1). 

 RMSE NMSE MAE 
Year BLC/FRLC FKSLC BLC/FRLC FKSLC BLC/FRLC FKSLC 
2001 0.152 0.246 1.51E-04 2.45E-04 0.122 0.160 
2002 0.194 0.232 1.91E-04 2.30E-04 0.149 0.155 
2003 0.327 0.218 3.21E-04 2.16E-04 0.287 0.202 
2004 0.190 0.400 1.83E-04 3.90E-04 0.173 0.287 
2005 0.270 0.344 2.61E-04 3.35E-04 0.235 0.264 
2006 0.348 0.647 3.30E-04 6.19E-04 0.235 0.484 
2007 0.306 0.571 2.89E-04 5.44E-04 0.251 0.404 
2008 0.443 0.754 4.14E-04 7.38E-04 0.308 0.561 
2009 0.560 0.889 5.18E-04 8.30E-04 0.008 0.010 
2010 0.712 1.060 6.51E-04 9.79E-04 0.007 0.009 
2011 0.769 1.127 6.98E-04 1.03E-03 0.007 0.008 
2012 0.703 1.056 6.36E-04 9.75E-04 0.012 0.013 

 Wins/Losses 11/1* Wins/Losses 11/1** Wins/Losses 11/1**  
 𝑊 9** 𝑊 9** 𝑊 5**  

Notes: (1) “Wins/Losses” stands for the number of cases in which BLC and FRLC point predictions are better/worse than FKSLC (2) 𝑊 stands 
for the value of the Wilcoxon rank test statistic. (3) “*”, “**” and “***” stand for the rejection of the null hypothesis with a significance level of 
10%, 5% and 1% respectively. 
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Table 8c. Mean proportion of successful predictions on central mortality rates of BLC, FRLC and FKSLC with 
confidence intervals (Item 2). 

 Proportion of successful predictions Test Results 
Year BLC FRLC FKSLC Global comparison 

Friedman 2 = 20.667*** 
Iman-Davenport F Statistic = 31*** 

2001 0.625 0.875 0.708 
2002 0.625 0.875 0.750 
2003 0.542 0.667 0.458 Pairwise comparisons 

 
FRLC versus BLC 
Z score = 2.858 
p-values: (a) 4.27E-03; (b) 0.013; (c) 0.009 
 
FKSLC versus FRLC 
Z score = -4.491 
p-values: (a) 7.10E-06; (b) 2.13E-05; (c) 2.13E-05 
 
FKSLC versus BLC 
Z score = -1.633 
p-values: (a) 0.102; (b) 0.307; (c) 0.102 

2004 0.625 0.833 0.458 
2005 0.542 0.667 0.292 
2006 0.625 0.792 0.375 
2007 0.583 0.792 0.500 
2008 0.583 0.708 0.333 
2009 0.583 0.750 0.250 
2010 0.583 0.750 0.292 
2011 0.583 0.708 0.333 
2012 0.542 0.583 0.167 
Multiple sign test (the control method is BLC) 

Wins/Losses of FRLC against BLC: 12/0 +  
Wins/Losses of FKSLC against BLC: 2/10 - 

Notes: (1) Friedman 2 follows a Squared-Chi with 2 grades of freedom and Iman-Davenport F follows a Snedecor F with 2(24) grades of 
freedom. (2) “*”, “**” and “***” stand for the rejection of the null hypothesis with a significance level of 10%, 5% and 1% respectively. (3) (a) 
indicates standard p-value, and (b) and (c) Nemenyi and Holm p-value corrections for multiple pairwise comparisons. (4) “+” indicates that the 
evaluated method outperforms the control method with at least at 10% significance level whereas “-“ indicates that the evaluated method under-
performs the control method with at least at 10% significance level. 

Table 8d. Mean proportion of successful predictions on life expectancies of BLC, FRLC and FKSLC with confi-
dence intervals (Item 2). 

 Proportion of successful predictions Test Results 
Year BLC FRLC FKSLC Global comparison 

Friedman 2 = 8.0417*** 
Iman-Davenport F Statistic = 5.5431** 

2001 0.792 0.958 0.958 
2002 0.833 0.958 0.958 
2003 0.667 0.792 0.667 Pairwise comparisons 

 
FRLC versus BLC 
Z score = 2.756 
p-values: (a) 0.006; (b) 0.018; (c) 0.012 
 
FKSLC versus FRLC 
Z score = -3.878 
p-values: (a) 6.88E-05; (b) 2.06E-04; (c) 1.38E-04 
 
FKSLC versus BLC 
Z score = -1.123 
p-values: (a) 0.262; (b) 0.785; (c) 0.262 

2004 0.833 0.958 0.625 
2005 0.750 0.833 0.458 
2006 0.875 0.958 0.375 
2007 0.833 0.917 0.583 
2008 0.833 0.875 0.292 
2009 0.875 0.917 0.292 
2010 0.875 0.958 0.250 
2011 0.833 0.958 0.250 
2012 0.833 0.875 0.167 

Multiple sign test (the control method is BLC) 
Wins/losses of FRLC against BLC: 12/0 + 
Wins/losses of FKSLC against BLC: 3/9 

Notes: (1) Friedman 2 follows a Squared-Chi with 2 grades of freedom and Iman-Davenport F follows a Snedecor F with 2(24) grades of 
freedom (2) “*”, “**” and “***” stand for the rejection of the null hypothesis with a significance level of 10%, 5% and 1% respectively. (3) (a) 
indicates standard p-value, and (b) and (c) Nemenyi and Holm p-value corrections for multiple pairwise comparisons. (4) “+” indicates that the 
evaluated method outperforms the control method with at least at 10% significance level whereas “-“ indicates that the evaluated method under-
performs the control method with at least at 10% significance level. 

6.2. Comparison of BLC, FRLC and FKSLC for 
each population 

We now show the adequacy of the three LC meth-
ods evaluated in 16 populations. We present in a more 
detailed way the results corresponding to Spanish 
male population (Table 8a-8d) and a summary table 
for all the analysed countries (Tables (9a-9e)). 

Regarding item 1, we can check in Tables 8a and 8b 
that for Spanish male population, BLC/FRLC point 

predictions of 𝑚௫,௧ , and 𝑒௫,௧  are, generally, more accu-
rate than those by FKSLC and this best adjustment has 
a consistent statistical significance. Furthermore, Ta-
ble 9a shows that in the studied populations, as in the 
case of Spanish men, point predictions of 𝑚௫,௧ from 
BLC/FRLC are normally better than those from 
FKSLC and this fact has also statistical significance. 
We can appreciate three exceptions: Belgian male 
population, where FKSLC beats BLC/FRLC with a 
consistent statistical level and UK and Netherlands fe-
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male populations where we do not appreciate any sig-
nificant better method. Table 9c shows that in the pre-
diction of 𝑒௫,௧, it is less clear that BLC/FRLC predic-
tions are better than those by FKSLC. BLC/FRLC 
beats FKSLC with a clear statistical significance in 
eight populations but in five populations FKSLC 
works clearly better. Likewise, in three populations 
the possible superior performance of a given method 
has no statistical significance. 

In regards to item 2, in Spanish male population, we 
can check in Tables 8c and 8d that Friedman rank test 
rejects the homogeneity in the accuracy of the predic-
tions over analysed life variables by the three assessed 
methods. Pairwise comparisons lead us to conclude 
that FRLC makes better interval predictions than BLC 
and FKSLC. However, despite the fact that we can de-
tect that BLC beats FKSLC, this superior performance 
has no statistical significance. In this sense, multiple 
sign test shows that our method clearly beats the con-
trol method and, on the other hand, the control method 
seems to be superior to FKSLC but without statistical 
significance. Tables 9c-9d show that those facts are 
common to all studied populations. So, Friedman 2 

and Iman-Davenport statistics always reject the homo-
geneity of the prediction capability by the three meth-
ods. This fact applies for 𝑚௫,௧ , and for 𝑒௫,௧. Pairwise 

Friedman ranks tests show that the prediction on cen-
tral mortality rates by FRLC beats significantly those 
obtained by BLC and FKSLC. Likewise, we can also 
check that BLC usually makes more accurate interval 
predictions than FKSLC but that better performance, 
except for the case of French women, has not statisti-
cal significance. 

In the analysis of life expectancy predictions, pair-
wise Friedman ranks tests (see Table 9d) reveal that 
FRLC predicts confidence intervals consistently better 
than other methods in most populations. In any case, 
it is also true that in French and Italy female popula-
tions and Portugal male population (Netherlands male 
population) the greater accuracy of FRLC over BLC 
(FKSLC over FRLC) is not statistically significant. 
We can also check that in most cases BLC includes 
more percentage of observed values of 𝑒௫,௧  than 
FKSLC but it is only statistically relevant in five pop-
ulations. However, in the case of Netherlands male 
population, FKSLC model predicts life expectancies 
better than BLC with a clear significance level. Re-
sults of multiple sign tests in Table 9e show that our 
method improves significantly BLC (the control 
method) whereas this clearly does not follow with 
FKSLC method. 

 
 
Table 9a. Results of sign and Wilcoxon tests on the difference between the accuracy of point estimates on central 
mortality rates by BLC/FRLC and FKSLC in the period 2001-2012 (Item 1). 

 RMSE NMSE MAE 
  Wins/Losses 𝑊 Wins/Losses 𝑊 Wins/Losses 𝑊 
Austria (Men) 12/0** 0*** 12/0** 0*** 12/0** 0*** 
Austria (Women) 12/1** 0*** 12/0** 0*** 12/0** 0*** 
Belgium (Men) 3/9* 23 5/7 25 2/10** 18 
Belgium (Women) 12/0** 0*** 12/0** 0*** 12/0** 0*** 
France (Men) 11/1** 12** 11/1** 11** 11/1** 11** 
France (Women) 11/1** 11** 10/2** 22 11/1** 11** 
Italy (Men) 12/0** 0*** 12/0** 0*** 12/0** 0*** 
Italy (Women) 11/1** 8** 8/4 34 11/1** 3*** 
Netherlands (Men) 9/3* 15* 10/2** 11** 9/3* 16* 
Netherlands (Women) 8/4 31 8/4 28 8/4 30 
Portugal (Men) 10/2** 22 9/3* 24 10/2** 16* 
Portugal (Women) 4/8 23 3/9* 14** 4/8 22 
Spain (Men) 10/2** 8** 9/3* 11** 10/2** 15* 
Spain (Women) 12/0** 0*** 12/0** 0*** 12/0** 0*** 
UK(Men) 11/1** 11** 12/0** 0*** 11/1** 12** 
UK (Women) 5/7 27 6/6 38 5/7 31 

Notes: (1) “Wins/Losses” are accounted from the perspective of BLC/FRLC. (2) “*”, “**” and “***” stand for the rejection of the null hypothesis 
with a significance level of 10%, 5% and 1% respectively. 
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Table 9b. Results of sign and Wilcoxon tests on the difference between the accuracy of point estimates on life 
expectancies by BLC/FRLC and FKSLC in the period 2001-2012 (Item 1). 

 RMSE NMSE MAE 
  Wins/Losses 𝑊 Wins/Losses 𝑊 Wins/Losses 𝑊 
Austria (Men) 12/0** 0*** 12/0** 0*** 12/0** 0*** 
Austria (Women) 0/12** 0*** 0/12** 0*** 0/12** 0*** 
Belgium (Men) 0/12** 0*** 0/12** 0*** 0/12** 0*** 
Belgium (Women) 12/0** 0*** 12/0** 0*** 12/0** 0*** 
France (Men) 11/1** 12** 11/1** 12** 11/1** 12** 
France (Women) 9/3* 11** 9/3* 29 9/3* 28 
Italy (Men) 12/0** 0*** 12/0** 0*** 12/0** 0*** 
Italy (Women) 4/8 30 4/8 30 3/9* 26 
Netherlands (Men) 0/12** 0*** 0/12** 0*** 0/12** 0*** 
Netherlands (Women) 4/8 18 4/8 18 4/8 18 
Portugal (Men) 12/0** 0*** 12/0** 0*** 12/0** 0*** 
Portugal (Women) 12/0** 0*** 8/4 37 8/4 37 
Spain (Men) 11/1** 9** 11/1** 9** 11/1** 9** 
Spain (Women) 1/11** 12** 1/11** 12** 1/11** 12** 
UK(Men) 12/0** 11** 12/0** 0*** 12/0** 0*** 
UK (Women) 0/12** 0*** 0/12** 0*** 0/12** 0*** 

Notes: (1) “Wins/Losses” are accounted from the perspective of BLC/FRLC. (2) “*”, “**” and “***” stand for the rejection of the null hypothesis 
with a significance level of 10%, 5% and 1% respectively. 

Table 9c. Results of Friedman rank tests and pairwise Friedman rank tests for the accuracy of the confidence interval 
predictions on central mortality rates by BLC, FRLC and FKSLC in sample populations in the period 2001-2012 
(Item 2). 

 Pairwise Z scores from Friedman ranks Friedman test 
 FRLC vs BLC FKSLC vs FRLC FKSLC vs BLC Friedman 2 Iman-Davenport F 
Austria (Men) 3.164*** -3.776*** -0.612 8.542** 6.079*** 
Austria (Women) 3.062*** -4.082*** -1.021 14.083*** 15.621*** 
Belgium (Men) 2.654** -4.491*** -1.837 18.375*** 35.933*** 
Belgium (Women) 2.654** -4.695*** -2.041 22.167*** 133.026*** 
France (Men) 2.858** -4.491*** -1.633 20.660*** 68.042*** 
France (Women) 2.449** -4.695*** -2.245* 20.000*** 55.000*** 
Italy (Men) 2.654** -4.491*** -1.837 16.420*** 23.828*** 
Italy (Women) 2.654** -4.695*** -2.041 22.167*** 133.026*** 
Netherlands (Men) 2.858** -4.491*** -1.633 20.667*** 68.208*** 
Netherlands (Women) 2.654** -4.287*** -1.633 10.830*** 9.046*** 
Portugal (Men) 2.654** -4.695*** -2.041 22.167*** 133.026*** 
Portugal (Women) 3.062*** -3.674*** -0.612 15.500*** 20.059*** 
Spain (Men) 2.858** -4.491*** -1.633 20.667*** 68.208*** 
Spain (Women) 3.062*** -4.082*** -1.021 14.083*** 15.621*** 
UK(Males) 2.654** -4.082*** -1.429 5.417* 3.207* 
UK (Women) 2.654** -4.491*** -1.837 16.417*** 23.815*** 

Notes: (1) “*”, “**” and “***” stand for the rejection of the null hypothesis with a significance level of 10%, 5% and 1% respectively. (2) 
Friedman 2 follows a Squared-Chi with 2 grades of freedom and Iman-Davenport F follows a Snedecor F with 2(24) grades of freedom. 

Table 9d. Results of Friedman rank tests and pairwise Friedman rank tests for the accuracy of the confidence interval 
predictions on life expectancies by BLC, FRLC and FKSLC in sample populations in the period 2001-2012 (Item 
2). 

 Pairwise Z scores from Friedman ranks Friedman test 
 FRLC vs BLC FKSLC vs FRLC FKSLC vs BLC Friedman 2 Iman-Davenport F 
Austria (Men) 3.164*** -4.185*** -1.021 19.042*** 42.247*** 
Austria (Women) 2.449** -3.266*** -0.816 7.750** 5.246** 
Belgium (Men) 2.143* -4.287*** -2.143* 18.370*** 35.892*** 
Belgium (Women) 2.245* -4.491*** -2.245* 20.100*** 56.692*** 
France (Men) 2.347* -3.470*** -1.123 12.540*** 12.037*** 
France (Women) 1.123 -3.572*** -2.449** 9.375*** 7.051*** 
Italy (Men) 2.449** -4.899*** -2.449** 24.000*** *** 
Italy (Women) 2.041 -2.449** -0.408 6.500** 4.086** 
Netherlands (Men) 4.695*** -2.041 2.654** 22.167*** 133.026*** 
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Netherlands (Women) 2.347* -3.470*** -1.123 12.542*** 12.041*** 
Portugal (Men) 2.245* -3.572*** -1.327 13.040*** 13.088*** 
Portugal (Women) 1.429 -3.878*** -2.449** 11.420*** 9.986*** 
Spain (Men) 2.756** -3.980*** -1.225 16.250*** 23.065*** 
Spain (Women) 2.960*** -2.449** 0.510 14.083*** 15.622*** 
UK(Males) 2.552** -4.491*** -1.939 20.000*** 55.000*** 
UK (Women) 2.654** -4.695*** -2.041 22.167*** 133.026*** 

Notes: (1) “*”, “**” and “***” stand for the rejection of the null hypothesis with a significance level of 10%, 5% and 1% respectively. (2) 
Friedman 2 follows a Squared-Chi with 2 grades of freedom and Iman-Davenport F follows a Snedecor F with 2(24) grades of freedom. 

Table 9e. Results of multiple sign test for the confidence interval predictions of FRLC and FKSLC with a control 
method (BLC) (Item 2). 

 Central mortality rates predictions 
 FRLC vs BLC FKSLC vs BLC 
 Wins Losses rj Wins Losses rj 
Austria (Men) 12 0 0 ** 3 8 3  
Austria (Women) 10 0 0 ** 3 8 3  
Belgium (Men) 10 0 0 ** 2 10 2 ** 
Belgium (Women) 10 0 0 ** 1 11 1 ** 
France (Men) 11 0 0 ** 2 9 2 ** 
France (Women) 6 0 0 ** 0 9 0 ** 
Italy (Men) 12 0 0 ** 0 12 0 ** 
Italy (Women) 8 0 0 ** 0 8 0 ** 
Netherlands (Men) 12 0 0 ** 12 0 0 ** 
Netherlands 
(Women) 10 0 0 ** 3 9 3  
Portugal (Men) 11 0 0 ** 2 10 2 ** 
Portugal (Women) 6 0 0 ** 1 10 1 ** 
Spain (Men) 12 0 0 ** 2 9 2 ** 
Spain (Women) 11 0 0 ** 6 5 5  
UK(Men) 11 0 0 ** 1 10 1 ** 
UK (Women) 12 0 0 ** 1 11 1 ** 
 Life expectancy predictions 
 FRLC vs BLC FKSLC vs BLC 
 Wins Losses rj Wins Losses rj 
Austria (Men) 12 0 0 ** 3 8 3  
Austria (Women) 10 0 0 ** 3 8 3  
Belgium (Men) 10 0 0 ** 0 10 0 ** 
Belgium (Women) 10 0 0 ** 1 11 1 ** 
France (Men) 11 0 0 ** 2 9 2 ** 
France (Women) 6 1 1 ** 0 9 0 ** 
Italy (Men) 12  0 ** 0 12 0 ** 
Italy (Women) 8 0 0 ** 2 6 2 ** 
Netherlands (Men) 12 0 0 ** 12 0 0 ** 
Netherlands 
(Women) 10 0 0 ** 3 9 3  
Portugal (Men) 11 0 0 ** 2 10 2 ** 
Portugal (Women) 6 0 0 ** 1 10 1 ** 
Spain (Men) 12 0 0 ** 2 9 2 ** 
Spain (Women) 11 0 0 ** 6 5 5  
UK(Men) 11 0 0 ** 1 10 1 ** 
UK (Women) 12 0 0 ** 1 11 1 ** 

Notes: (1) “**” stands for the rejection of the null hypothesis with a significance level of at least 5%. (2) “Wins/Losses” stands for the number 
of wins/losses of the evaluated method over the control method. (3) rj stands for the minimum between number of wins and losses of the evaluated 
method. 

6.3. A global comparison of BLC, FRLC and FKSLC 

In this section we show the results of testing BLC, 
FRLC and FKSLC from a sample composed by the 
mean values of accuracy prediction measures within 

2001-2012 of the 16 populations considered in this pa-
per. They are summarized in Tables 10a-10d. Regard-
ing item 1, when evaluating predictions about central 
mortality rates, Table 10a shows that BLC and FRLC 
have greater accuracy than FKSLC method and it is 
significant. From Table 10b we can also indicate that 
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point predictions on life expectancy by BLC/FRLC 
are more accurate than those by FKSLC but this better 
performance has not enough statistical significance. 

Tables 10c and 10d reveal that Friedman rank test 
undoubtedly rejects that the three evaluated methods 
provide interval confidence predictions with homoge-

nous accuracy. Likewise, we can observe in these ta-
bles that from the interval confidence prediction per-
spective, our method improves BLC and FKSLC. Also, 
that BLC provides better predictions than FKSLC. In 
this sense, multiple sign tests reveal that whereas 
FRLC improves BLC significantly, FKSLC performs 
poorer than the control method. 

 
Table 10a. Mean value of RMSE, NMSE and MAE of the predictions on central mortality rates in 2001-2012 in 
sample populations (Item 1). 

 RMSE NMSE MAE 
 BLC/FRLC FKSLC BLC/FRLC FKSLC BLC/FRLC FKSLC 

Austria (Men) 0.0462 0.0538 0.0711 0.0698 0.0249 0.0295 
Austria (Women) 0.0037 0.0024 0.0003 0.0002 0.0017 0.0029 
Belgium (Men) 0.0207 0.0151 0.0295 0.0150 0.0096 0.0074 
Belgium (Women) 0.0150 0.0425 0.0208 0.1658 0.0076 0.0213 
France (Men) 0.0059 0.0178 0.0029 0.0245 0.0033 0.0096 
France (Women) 0.0056 0.0114 0.0043 0.0135 0.0030 0.0053 
Italy (Men) 0.0125 0.0204 0.0147 0.0327 0.0062 0.0105 
Italy (Women) 0.0083 0.0108 0.0086 0.0118 0.0042 0.0050 
Netherlands (Men) 0.0141 0.0150 0.0129 0.0146 0.0073 0.0086 
Netherlands (Women) 0.0080 0.0124 0.0067 0.0219 0.0043 0.0060 
Portugal (Men) 0.0117 0.0176 0.0130 0.0210 0.0063 0.0089 
Portugal (Women) 0.0124 0.0115 0.0075 0.0061 0.0126 0.0086 
Spain (Men) 0.0138 0.0170 0.0165 0.0247 0.0078 0.0084 
Spain (Women) 0.0055 0.0080 0.0032 0.0061 0.0029 0.0037 
UK(Men) 0.0101 0.0143 0.0080 0.0149 0.0049 0.0082 
UK (Women) 0.0104 0.0093 0.0114 0.0086 0.0052 0.0047 
 Wins/Losses 12/4** Wins/Losses 11/5 Wins/Losses 13/3** 
 𝑊 50 𝑊 62 𝑊 30** 

Notes: (1) “Wins/Losses” stands for the number of cases in which BLC and FRLC point predictions are better/worse than FKSLC. (2) 𝑊 stands 
for the value of the Wilcoxon rank test statistic. (3) “*”, “**” and “***” stand for the rejection of the null hypothesis with a significance level of 
10%, 5% and 1% respectively. 

 
Table 10b. Mean value of RMSE, NMSE and MAE of the predictions on life expectancies in 2001-2012 in sample 
populations (Item 1). 

 RMSE NMSE MAE 
 BLC/FRLC FKSLC BLC/FRLC FKSLC BLC/FRLC FKSLC 

Austria (Men) 1.284 1.429 1.26E-03 1.42E-03 0.999 1.122 
Austria (Women) 0.3710 0.2432 2.97E-04 1.95E-04 0.3293 0.2158 
Belgium (Men) 0.6309 0.5018 6.31E-04 5.02E-04 0.5594 0.4443 
Belgium (Women) 0.1325 0.3647 1.06E-04 2.91E-04 0.1169 0.3298 
France (Men) 0.3806 0.5661 3.61E-04 5.44E-04 0.3155 0.4776 
France (Women) 0.1896 0.2127 1.41E-04 1.58E-04 0.1627 0.1818 
Italy (Men) 0.5940 0.9189 5.50E-04 8.65E-04 0.4933 0.7639 
Italy (Women) 0.1770 0.1739 1.34E-04 1.32E-04 0.1595 0.1558 
Netherlands (Men) 1.3555 1.2628 1.34E-03 1.25E-03 1.1806 1.1047 
Netherlands (Women) 0.3707 0.2834 3.00E-04 2.31E-04 0.3242 0.2526 
Portugal (Men) 0.6177 0.7797 6.27E-04 8.03E-04 0.4653 0.5970 
Portugal (Women) 1.2565 1.2897 2.34E-03 2.51E-03 0.5543 0.5793 
Spain (Men) 0.4146 0.6287 3.87E-04 5.95E-04 0.1495 0.2130 
Spain (Women) 0.2247 0.1671 1.68E-04 1.26E-04 0.1944 0.1433 
UK(Men) 0.9079 0.9679 8.82E-04 9.48E-04 0.7989 0.8514 
UK (Women) 0.5779 0.5256 4.74E-04 4.32E-04 0.4970 0.4516 
 Wins/Losses 9/7 Wins/Losses 9/7 Wins/Losses 9/7 
 𝑊 61 𝑊 55 𝑊 65 

Notes: (1) “Wins/Losses” stands for the number of cases in which BLC and FRLC point predictions are better/worse than FKSLC. (2) 𝑊 stands 
for the value of the Wilcoxon rank test statistic. (3) “*”, “**” and “***” stand for the rejection of the null hypothesis with a significance level of 
10%, 5% and 1% respectively. 
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Table 10c. Mean proportion of successful predictions on central mortality rates in 2001-2012 by BLC, FRLC and 
FKSLC in sample populations (Item 2). 

 Proportion of successful predictions Test Results 
 BLC FRLC FKSLC Global comparison 

Friedman 2 = 32*** 
Iman-Davenport F Statistic = *** 

Austria (Men) 0.326 0.729 0.295 
Austria (Women) 0.524 0.847 0.431 
Belgium (Men) 0.434 0.576 0.236 Pairwise comparisons 

 
FRLC versus BLC 
Z score = 2.858 
p-values: (a) 0.005; (b) 0.014; (c) 0.005 
 
FKSLC versus FRLC 
Z score = -5.567 
p-values:(a) 0.000; (b) 0.000; (c) 0.000 
 
FKSLC versus BLC 
Z score = -2.828 
p-values: (a) 0.005; (b) 0.014; (c) 0.009 

Belgium (Women) 0.576 0.760 0.354 
France (Men) 0.618 0.733 0.340 
France (Women) 0.587 0.767 0.396 
Italy (Men) 0.514 0.656 0.306 
Italy (Women) 0.681 0.802 0.476 
Netherlands (Men) 0.385 0.590 0.316 
Netherlands (Women) 0.618 0.806 0.483 
Portugal (Men) 0.566 0.705 0.257 
Portugal (Women) 0.583 0.778 0.451 
Spain (Men) 0.587 0.750 0.410 
Spain (Women) 0.556 0.792 0.486 
UK(Men) 0.458 0.688 0.358 
UK (Women) 0.698 0.858 0.451 

Multiple sign test (the control method is BLC) 
Wins/Losses of FRLC against BLC: 16/0 +  
Wins/Losses of FKSLC against BLC: 0/16 - 

Notes: (1) Friedman 2 follows a Squared-Chi with 2 grades of freedom and Iman-Davenport F follows a Snedecor F with 2(32) grades of 
freedom. (2) “*”, “**” and “***” stand for the rejection of the null hypothesis with a significance level of 10%, 5% and 1% respectively. (3) (a) 
indicates standard p-value, and (b) and (c) Nemenyi and Holm p-value corrections for multiple pairwise comparisons. (4) “+” indicates that the 
evaluated method outperforms the control method with at least at 10% significance level whereas “-“ indicates that the evaluated method under-
performs the control method with at least at 10% significance level. 

 
Table 10d. Mean proportion of successful predictions on life expectancies in 2001-2012 by BLC, FRLC and FKSLC 
in sample populations (Item 2). 

 Proportion of successful predictions Test Results 
 BLC FRLC FKSLC Global comparison 

Friedman 2 = 30.125*** 
Iman-Davenport F Statistic = 241*** 

Austria (Men) 0.326 0.729 0.295 
Austria (Women) 0.524 0.847 0.431 
Belgium (Men) 0.434 0.576 0.236 Pairwise comparisons 

 
FRLC versus BLC 
Z score = 3.005 
p-values: (a) 0.003; (b) 0.008; (c) 0.005 
 
FKSLC versus FRLC 
Z score = -5.480 
p-values: (a) 0.000; (b) 0.000; (c) 0.000 
 
FKSLC versus BLC 
Z score = -2.475 
p-values: (a) 0.013; (b) 0.004; (c) 0.013 

Belgium (Women) 0.576 0.760 0.354 
France (Men) 0.618 0.733 0.340 
France (Women) 0.587 0.767 0.396 
Italy (Men) 0.514 0.656 0.306 
Italy (Women) 0.681 0.802 0.476 
Netherlands (Men) 0.385 0.590 0.316 
Netherlands (Women) 0.618 0.806 0.483 
Portugal (Men) 0.566 0.705 0.257 
Portugal (Women) 0.583 0.778 0.451 
Spain (Men) 0.587 0.750 0.410 
Spain (Women) 0.556 0.792 0.486 
UK(Men) 0.458 0.688 0.358 
UK (Women) 0.698 0.858 0.451 

Multiple sign test (the control method is BLC) 
Wins/Losses of FRLC against BLC: 16/0 +  
Wins/Losses of FKSLC against BLC: 1/15 - 

Notes: (1) Friedman 2 follows a Squared-Chi with 2 grades of freedom and Iman-Davenport F follows a Snedecor F with 2(32) grades of 
freedom. (2) “*”, “**” and “***” stand for the rejection of the null hypothesis with a significance level of 10%, 5% and 1% respectively. (3) (a) 
indicates standard p-value, and (b) and (c) Nemenyi and Holm p-value corrections for multiple pairwise comparisons. (4) “+” indicates that the 
evaluated method outperforms the control method with at least at 10% significance level whereas “-“ indicates that the evaluated method under-
performs the control method with at least at 10% significance level. 
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7. Conclusions and further extensions 

This paper proposes a fuzzy-random approach of 
the Lee-Carter (LC) model. A fuzzy version of the LC 
model was firstly proposed by [22], who considered 
two different formulations. In the first one, which was 
refined in the works [14,24], the authors introduced 
fuzziness in all the parameters of the model by using 
TFNs. Nevertheless, the model developed in this paper 
assumes, as it was done in the seminal paper [26] and 
its subsequent extensions, that the trend of mortality 
across time is captured with an ARIMA model. 

This fuzzy-random approach of the LC model can 
also be used to derivate variables linked to central 
mortality rates as probabilities of death or survival and 
life expectancies. From these variables, it is possible 
to price life annuities or insurance contracts. It can be 
done by using directly fitted fuzzy probabilities, as in 
the framework exposed in [34] or, alternatively, by re-
ducing these fuzzy probabilities to a crisp value with 
the use of a defuzzifiying method. 

When applying this new model to Spanish male 
population within the period 1970-2012, it is found 
that the model is satisfactory when it comes to its ca-
pability of fitting outcomes in the estimation sample 
(1970-2000) and forecasting central mortality rates 
over a time horizon of more than 10 years (2001-2012). 

Moreover, we have made a comparative assessment 
of our fuzzy random methodology with seminal LC 
method [26] and fuzzy version of LC [22] and we have 
checked that, from interval confidence prediction per-
spective, our proposed methodology improves the 
models of these papers. 

Acknowledgments 

Authors thank helpful comments of two anonymous 
referees. 

References 

[1] Andrés-Sánchez, J. de (2012). Claim reserving with fuzzy re-
gression and the two ways of ANOVA. Applied Soft Computing 
12(8), 2435-2441. 

[2] Andrés-Sánchez, J. de (2016) Fuzzy Regression Analysis: An 
Actuarial Perspective. In: Kahraman, C. and Cengiz, K. (eds.) 
Fuzzy statistical making: Theory and Applications, 175-201. 
Springer International Publishing. 

[3] Andrés-Sánchez, J. de (2017). An empirical assessment of 
fuzzy Black and Scholes pricing option model in Spanish stock 

option market. Journal of Intelligent & Fuzzy Systems 33(4), 
2509-2521. 

[4] Andrés-Sánchez, J. de (2018) Pricing European options with 
triangular fuzzy parameters: assessing alternative triangular ap-
proximations in the Spanish stock option market. International 
Journal of Fuzzy Systems 20 (5), 1624-1643. 

[5] Andrés-Sánchez, J. de and González-Vila Puchades, L. (2012) 
Using fuzzy random variables in life annuities pricing. Fuzzy 
Sets and Systems 188, 27-44. 

[6] Andrés-Sánchez, J. de and González-Vila, L. (2017) The valu-
ation of life contingencies: A symmetrical triangular fuzzy ap-
proximation”. Insurance: Mathematics and Economics 72, 83-
94. 

[7] Booth, H. y Tickle, L. (2003). The future aged: new projections 
of Australia’s elderly population. Population Studies, 22(4), 
38-44. 

[8] Brouhns, N., Denuit, M. and Vermunt, J. (2002) A Poisson log-
bilinear regression approach to the construction of projected 
lifetables. Insurance: Mathematics and Economics, 31(3), 373-
393. 

[9] Buckley, J.J. and Qu, Y. (1990) On using 𝛼-cuts to evaluate 
fuzzy equations. Fuzzy Sets and Systems 38, 309-312. 

[10] Carter, L. and Prkawetz, A. (2001) Examining structural shifts 
in mortality using the Lee-Carter method. Mpidr wp 2001-007, 
Center for Demography and Ecology Information, University 
of Wisconsin-Madison. 

[11] Chen, F., Chen, Y., Zhou, J. and Liu, Y. (2016) Optimizing h 
value for fuzzy linear regression with asymmetric triangular 
fuzzy coefficients. Engineering Applications of Artificial Inte-
lligence 47, 16-24. 

[12] Currie, I., Kirkby, J., Durban, M. and Eilers, P. (2004) Smooth 
Lee-Carter models and beyond. In Workshop on Lee-Carter 
Methods. Edinburgh. 

[13] Debón, A., Montes, F. and Puig, F. (2008) Modelling and fore-
casting mortality in Spain. European Journal of Operational 
Research 189 (3), 624-637  

[14] Demirel, D. F. and Basak, M. (2015) A modified fuzzy Lee-
Carter method for modeling human mortality. In: Rosa, A. 
Merelo, J.J., Dourado, A., Cadenas, J.M., Madani, K., Ruano, 
A. and Filipe, J. (eds.) Proceedings of the 7th International 
Joint Conference on Computational Intelligence 2015, (1), 17-
24. 

[15] Dickey, D.A. and Fuller, W.A. (1979) Distribution of the esti-
mators for autoregressive time series with a unit root. Journal 
of the American statistical association 74 (366a), 427-431. 

[16] Dubois, D. and Prade, H. (1993) Fuzzy numbers: an overview. 
In: Dubois, D., Prade, H. and Yager, R.R. (eds.) Fuzzy Sets for 
intelligent systems, 113-148. Morgan Kaufmann Publishers. 

[17] García, S., Fernández, A., Luengo, J. and Herrera, F. (2010) 
Advanced nonparametric tests for multiple comparisons in the 
design of experiments in computational intelligence and data 
mining: Experimental Analysis of Power. Information Sciences 
180, 2044–2064. 

[18] García, S. and Herrera, F. (2008) An Extension on "Statistical 
Comparisons of Classifiers over Multiple Data Sets" for all 
Pairwise Comparisons. Journal of Machine Learning Research 
9, 2677-2694. 



23 
 

[19] Huang, T., Zhao, R. and Tang, W. (2009) Risk model with 
fuzzy random individual claim amount. European Journal of 
Operational Research 192, 879–890. 

[20] Ishibuchi, H. and Nii, M. (2001) Fuzzy regression using asym-
metric fuzzy coefficients and fuzzified neural networks. Fuzzy 
Sets and Systems 119, 273–290. 

[21] Jong, P. de, Tickle, L. and Xu, J. (2016) Coherent modeling of 
male and female mortality using Lee-Carter in a complex num-
ber framework. Insurance: Mathematics and Economics 71, 
130–137. 

[22] Koissi, M.C and Shapiro, A. (2006) Fuzzy formulation of the 
Lee-Carter model for mortality forecasting. Insurance: Mathe-
matics and Economics 39, 287-309. 

[23] Koissi, M.C., Shapiro, A. and Högnäs, G. (2006) Evaluating 
and extending the Lee–Carter model for mortality forecasting: 
Bootstrap confidence interval. Insurance: Mathematics and 
Economics 38, 1–20. 

[24] Kou, Y. (2016) Fuzzy Formulation of the Lee-Carter Model for 
the Mortality Forecasting with Age-Specific Enhancement. In: 
Cao, B.-Y., Wang, P.-Z., Liu, Z.-L. and Zhong, Y.-B. (eds.) In-
ternational Conference on Oriental Thinking and Fuzzy Logic, 
177-196. Springer International Publishing. 

[25] Lee, R. and Nault, F. (1993) Modeling and forecasting provin-
cial mortality in Canada. Montreal: World Congress of the In-
ternational Union for Scientific Study of Population. 

[26] Lee, R.D. and Carter, L.R. (1992) Modeling and forecasting US 
mortality. Journal of the American Statistical Association 419 
(87), 659–675. 

[27] Moskowitz, H. and Kim, K. (1993) On assessing the H value in 
fuzzy linear regression. Fuzzy Sets and Systems 58 (3), 303-327. 

[28] Muzzioli, S. and De Baets, B. (2013). A comparative assess-
ment of different fuzzy regression methods for volatility fore-
casting. Fuzzy Optimization and Decision Making 12(4), 433-
450. 

[29] Pascual, L., Romo, J. and Ruiz, E. (2004) Bootstrap predictive 
inference for ARIMA processes. Journal of Time Series 
Analysis 25 (4), 449-465. 

[30] Renshaw, A. and Haberman, S. (2003) Lee-Carter mortality 
forecasting: a parallel generalized linear modelling approach 
for England and Wales mortality projections. Journal of the Ro-
yal Statistical Society 52, 119–137. 

[31] Renshaw, A. and Haberman, S. (2006) A cohort-based exten-
sion to the Lee-Carter model for mortality reduction factors. In-
surance: Mathematics and Economics 38(3), 556–570. 

[32] SCI2S (Soft Computing and Intelligent Information Systems 
research group, University of Granada) Statistical Inference in 
Computational Intelligence and Data Mining. 
https://sci2s.ugr.es/sicidm. 

[33] Shapiro, A. (2009) Fuzzy random variables. Insurance: Math-
ematics and Economics 44, 307-314. 

[34] Shapiro, A. (2013) Modeling future lifetime as a fuzzy random 
variable. Insurance: Mathematics and Economics 53, 864-870. 

[35] Tanaka, H. (1987) Fuzzy data analysis by possibility linear 
models. Fuzzy Sets and Systems 24, 363–375. 

[36] Wilmoth, J.R. (1993). Computational methods for fitting and 
extrapolating the Lee-Carter model of mortality change. Tech-
nical report, Departament of Demography, University of Cali-
fornia. 

[37] Wilmoth, J.R. (1996) Health and Mortality among Elderly Pop-
ulations. In: Mortality projections for Japan: A comparison of 
four methods, 266–287. Oxford University Press. 

[38] Wilmoth, J.R., Andreev, K., Jdanov, D., et al. (2017). Methods 
Protocol for the Human Mortality Database. University of Cal-
ifornia, Berkeley, and Max Planck Institute for Demographic 
Research, Rostock, URL: http://mortality.org [version Novem-
ber 27, 2017]. 

[39] Yager, R.R. (1982) Fuzzy prediction based on regression mod-
els. Information Sciences 26, 45-63. 


