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SUMMARY 

Nanofiltration is a membrane separation process whose driving force are pressure changes, 

which is used to remove ionic species from aqueous solutions. This technique lies between 

reverse osmosis and ultrafiltration membranes. Nanofiltration has received much attention in the 

last decades due to its applications in textile, paper, and food industries including water 

desalination. 

The separation mechanisms of nanofiltration membranes include steric and electric effects. 

Most of these membranes acquire an electrical charge when they come into contact with a polar 

medium due to the adsorption of charged species from the bulk to the pore walls, which leads to 

the favored transport of counter-ions and the exclusion of co-ions. 

The development of adequate mathematical models for nanofiltration is extremely important 

for better understanding of electrolyte transport phenomena and prediction of separation 

parameters. The transport of ions in charged membrane pores can be described by the system 

of Nernst–Planck, Poisson, and Navier–Stokes equations.  

In this work is modeled the behavior of ions, in our case NaCl, through a nanofiltration 

membrane with the system of differential equations of Nernst-Planck and Poisson in 1-D in 

transient. The system of partial differential equations is solved by means of numerical 

algorithms with the Wolfram Mathematica program. The results are compared with a more 

complex model (Poisson, Nernst-Planck and Navier Stokes in 2D) and a simpler model 

(Donnan-Steric-Partition-Dielectric exclusion model) to verify our work and later to be able to 

use the algorithm for more complex ionic systems. 

Keywords: Nanofiltration, Membrane Transport Phenomena, Electro diffusion, Numerical 

modelling, Wolfram Mathematica. 
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RESUM 

La nanofiltració és un procés de separació de membranes, la seva força motriu són els 

canvis de pressió, que s'utilitzen per eliminar espècies iòniques a partir de solucions aquoses. 

Aquesta tècnica es troba entre les membranes d'osmosi inversa i d'ultrafiltració. La nanofiltració 

ha rebut molta atenció en les últimes dècades a causa de les seves aplicacions en indústries 

tèxtils, papereres i alimentàries, incloent la dessalinització de l’aigua. 

Els mecanismes de separació de les membranes de nanofiltració inclouen efectes estèrics i 

elèctrics. La majoria d’aquestes membranes adquireixen una càrrega elèctrica quan entren en 

contacte amb un medi polar provocant l’adsorció d’espècies carregades de la solució a les 

parets de la membrana, el que condueix al transport de contra-ions i l'exclusió de co-ions. 

El desenvolupament de models matemàtics adequats per a la nanofiltració és 

extremadament important per a una millor comprensió dels fenòmens del transport electrolític i 

la predicció dels paràmetres de separació. El transport d'ions en membranes es descriu pel 

sistema de les equacions de Nernst – Planck, Poisson i Navier – Stokes. 

En aquest treball s’ha modelat el comportament d'ions, en el nostre cas NaCl, a través 

d'una membrana de nanofiltració amb el sistema d'equacions diferencials de Nernst-Planck i 

Poisson en 1-D en no estacionari. El sistema d’equacions diferencials parcials s’ha resolt 

mitjançant algorismes numèrics amb el programa Wolfram Mathematica. Posteriorment s’han 

comparat els resultats amb un model més complex (Poisson, Nernst-Planck i Navier Stokes en 

2D) i un model més senzill (model Donnan-Steric-Partition-Dielectric exclusion) per verificar el 

nostre treball i, més endavant, poder utilitzar l’algorisme per a sistemes iònics més complexos.  

Paraules clau: Nanofiltració, fenòmens de transport de membrana, electro difusió, modelització 

numèrica, Wolfram Mathematica. 
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1. INTRODUCTION 

Membrane processes are relatively new technology with many expectations for the future, 

applicable to many separation processes. They can be driven by various driving forces such as 

pressure, temperature, and electric potential. Pressure-driven membrane processes such as 

reverse osmosis (RO), ultrafiltration (UF) and microfiltration (MF) use pressure gradient across 

the membrane in order to transfer species. These types of membranes are very useful in the 

separation of salts from aqueous solutions, e.g., to produce potable water. The major 

disadvantage of RO membranes is that they need high pressures [1]. For example, the reverse 

osmosis plant that supplies water for the Spanish province of Almeria requires a full third of the 

province’s electricity [2]. 

 Since RO membranes traditionally operate at high pressure and entail a high energy cost in 

the 1970s RO membranes operating at low pressure and with relatively high-water flows were 

investigated. These RO membranes at low pressure had great acceptance to be implemented 

as separation technology and have been called nanofiltration membranes [3]. The NF 

membranes are characterized by a pore diameter of a few nanometers, and an operating 

pressure between (7-30 bars). These operating characteristics place it between the RO 

membranes and the MF membranes [4]. As you can see in the following figure: 

 
Figure 1. Differences in diameter of pores between pressure-driven membranes. (Crittenden et al. 2012) 
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Below can be seen a table with the main differences between the pressure membranes: 

 

 
Figure 2. General characteristics of pressure-driven membranes.  Sivonen et al. 2014 

 

 MEMBRANE CHARGE 

The separation mechanisms of NF membranes include steric, dielectric and Donnan effects. 

Steric effect is caused by the ion size and the size of membrane pore, dielectric effects is 

caused by the difference of the dielectric constant between the bulk solution and the membrane 

domain, and Donnan effect is caused by the charge polarities of the ions and the surface charge 

of the membrane [5]. 

The membrane acquires electrical charge by three possible mechanisms [6]: 

• Ionization of surface groups: 

• Dissociation of acidic groups on a membrane surface will give a negatively 

charged surface. 

• Dissociation of any basic groups on a membrane surface will give a 

positively charged surface. 

• The surface charge depends on the acidic or basic strengths of the surface 

groups and the ionic strength of the solution. 
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Figure 3. Charged membrane by ionization of surface groups. 
 

Differential loss of ions from the crystal lattice 

• If a crystal of Agl is placed in water, it starts to dissolve. 

• If equal amounts of Ag+ and l- ions were to dissolve, the surface would be 

electroneutral. 

• Ag+ ions dissolve preferentially leaving a negatively charged surface. 

 

 

 

 

 

 

 
 
 
 

Figure 4. Charged membrane by the dissolve of preferentially ions. 
 
 
 
 

 



4 Sureda Croguennoc, Alexandre 

• Adsorption of charged species 

• Surfactant ions may be specifically adsorbed onto the surface of a particle. 

• Cationic surfactants would lead to a positively charged surface. 

• Anionic surfactants would lead to a negatively charged surface. 

 

 

 

 

 

 

 

 

 

Figure 5. Charged membrane by the adsorption of charged species. 

 ELECTRICAL DOUBLE LAYER MODELS 

The electrical behaviour of a charged particle in an electrolyte solution depend strongly on 

the distribution of electrolyte ions and on the electric potential around the particle. In 

electrostatics the potential distribution is usually described by the Poisson-Boltzmann equation. 

Poisson-Boltzmann assumes: 

i. Electrolyte ions are point charges 

ii. Ion-ion correlation is neglected 

iii. Solvent is a continuum dielectric with a uniform dielectric permittivity εr. 

iv. Charges on the particle surface are smeared out to give a uniform surface charge 

density  

A membrane in contact to an electrolyte is usually charged with adsorption of ions onto the 

membrane and/or ionization of dissociable groups on the surface explained in the last section. 

Cationic surfactant Anionic surfactant 
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Electrolytes with charges of the opposite sign are the counter ions and with the same sign are 

the co-ions. 

They tend to approach the particle surface and to neutralize the surface charge, but thermal 

motion of these ions prevents accumulation of the ions so that around the membrane is formed 

an ionic cloud. In the ionic cloud the concentration of the counter ions become very high while 

that of co-ions become very low. The ionic cloud together with the surface charge forms an 

electrical double layer, often called electrical diffuse double layer [7]. 

 

 

 

 

 

 

 

 

Figure 6. A positive particle surrounded by an electrical double layer of thickness 1/𝜅 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 

+ 

+ 
+ + 

+ + 

+ 

1/𝜅 
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1.2.1 HELMHOLTZ-PERRIN MODEL 

Created by Helmholtz in 1879, is the simplest model to describe interactions in surface 

charges. Suppose an electrode with a surface charge density + : 

 

 

 

 

 

 

 

 

 

Figure 7. Schematic figure of Helmholtz-Perrin model  

 

In the figure 7. can be seen that the charge on the electrode is balanced by the ions of the 

electrolyte solution with an equal but opposite amount of charge resulting two layers separated 

by a thickness d. 

The boundary through the centre of the negative ions is called Outer Helmholtz Plane 

(OHP), this immobile layer was thought to completely neutralize the charge on the electrode [8]. 

Were the model of the electrical interface being precisely analogous to a parallel capacitor 

composed of two plates of opposite charge. The potential in the region d between the two 

parallel plates can be described by 

E =


𝜀𝑟𝜀𝑜

 

 

(1) 

E = −
d

𝑑𝑥
=



𝜀𝑟𝜀𝑜

 𝑑 

 

(2) 

Where E is the electrical field,  the surface charge density, 𝜀𝑟𝜀𝑜  the product with the 

permittivity of vacuum and the permittivity of the region. 
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Where the capacitance per unit area of the system is 

 

C =
𝜀𝑟𝜀𝑜

𝑑
 (3) 

 

The potential results the classical solution of a parallel capacitor 

 

 =
 A

𝐶
 

 

Where A is the surface of the electrical layer. 

(4) 

Model limitation: 

•  decreases linearly with the distance to the surface 

•  does not account the concentration dependence  

•  ≠ f(I) ≡ Ionic strength 

•  ≠ f(T) , does not account the thermal motion of the ions 

1.2.2 GOUY CHAPMAN MODEL 

Gouy and Chapman suggested that the capacitor parallel plate layer of Helmholtz model be 

replaced by a diffuse cloud of charge that was more concentrated near the electrode surface 

and extended out into the bulk solution [9]. The principle of the Gouy Chapman model assumes 

Local equilibrium hypotheses (LEH) that is a simplification of the non-equilibrium 

thermodynamics. LEH assumes that the variables of the system are varying in space and time 

but assumes that each small volume element of the system is well mixed (the variables changes 

very slowly and can be assumed that are constant in the volume element). 

LEH can be described by the Boltzmann distribution based on the mean field theory having 

the assumptions in the 1.2 section. 
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Figure 8. Schematic figure of Gouy-Chapman model  

LEH can be described by the Boltzmann distribution based on the mean field theory that 

assumes the ions interacts with the charged surface through a mean potential generated by all 

ions in solution and all the surface charges, this assumption allows to describe all the ions as a 

continuum domain. 

The electric field generated by a charge distribution can be described by the Poisson 

equation  

−∇ . (ε ∇ 𝜓) = ∑𝜌𝑖

𝑁

𝑖

 

 

(5) 

Where ε is the electric permittivity of the double layer and the 𝜌𝑖 is the charge density. The 

charge density can be described as the sum of charges density of ions 

 

∑𝜌𝑖

𝑁

𝑖

= ∑ɀ𝑖𝐹 𝑐𝑖

𝑁

𝑖

 

 

(6) 

Where ɀ𝑖 is the valence of the ion, F the Faraday’s constant and  𝑐𝑖  the ion concentration. 
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And the boundary conditions of the System 

 

(
d

𝑑𝑥
)
𝑥=0

= −


𝜀
 

 

(7) 

(x → ∞) = 0 (8) 

The Boltzmann distribution in molar units has the form 

 

𝑐𝑖 = 𝑐𝑖,∞𝑒
−ɀ𝑖𝐹𝜓

𝑅 𝑇⁄   (9) 

Where 𝑐𝑖,∞  is the ion concentration of the bulk. 

The Poisson-Boltzmann expressed in molar units can be expressed 

 

−∇ . (ε ∇ 𝜓) = ∑ɀ𝑖𝐹 𝑐𝑖,∞𝑒
−ɀ𝑖𝐹𝜓

𝑅 𝑇⁄

𝑁

𝑖

 
(10) 

Where 𝐹 = 𝑁𝐴𝑒 

Solution of Poisson-Boltzmann allows us to find the potential distribution, and the 

concentration profiles of ions in solution.  

 

 

 

 

 

 

 

Figure 9. Concentration and potential profiles for different surface potential  
 

+ 

+ 

+ 

+ 

+ 

+ 

o 

o 
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1.2.2.1 LOW POTENTIAL APPROXIMATION 

If the potential is low, in this case the thermal energy is bigger than the electrostatic 

interactions, this approach is called Debye-Hückel approximation. This approximation can be 

described as 

ɀ𝑖𝐹 𝜓
𝑅 𝑇⁄ ≪ 1 

 

Where R is the universal gas constant of ideal gas. 

(11) 

Now the exponential term of the Poisson-Boltzmann equation can be expanded in series 

𝑒
−ɀ𝑖𝑒𝜓

𝑅 𝑇⁄ = 1 −
ɀ𝑖𝐹 𝜓

𝑅 𝑇⁄ +
(
ɀ𝑖𝐹 𝜓

𝑅 𝑇⁄ )
2

2!
− ⋯ 

 

(12) 

The series can be truncated at the first two terms, the Poisson Boltzmann equation can 

be rewritten as 

−∇ . (ε ∇ 𝜓) = ∑ɀ𝑖𝐹 𝑐𝑖,∞ (1 −
ɀ𝑖𝐹 𝜓

𝑅 𝑇⁄ )

𝑁

𝑖

 
(13) 

 

The electroneutrality condition in the bulk electrolyte gives 

 

∑ɀ𝑖𝐹 𝑐𝑖,∞

𝑁

𝑖

= 0 
(14) 

 

Inserting the electroneutrality condition in the P-B equation  

 

−∇ . (∇ 𝜓) =
1

ε 𝑅 𝑇
∑ɀ𝑖

2𝐹2 𝑐𝑖,∞𝜓

𝑁

𝑖

 

 

(15) 
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Poisson-Boltzmann can be written in terms of the parameter 

 

−∇ . (ε ∇ 𝜓) = κ2𝜓 

 

(16) 

 

This equation is called the linearized Poisson Boltzmann equation, and the Debye-

Hückel parameter can be defined as 

 

κ2 =
1

ε 𝑅 𝑇
∑ ɀ

𝑖
2𝐹2 𝑐𝑖,∞

𝑁

𝑖

 

 

(17) 

 

If the ionic strength is defined the Debye-Hückel parameter can be rewritten as 

𝐼 =
1

2
∑ɀ𝑖

2 𝑐𝑖,∞

𝑁

𝑖

 

 

(18) 

κ = (
1

ε 𝑅 𝑇
∑ɀ𝑖

2𝐹2 𝑐𝑖,∞

𝑁

𝑖

)

1
2⁄

= (
2 𝐹2 𝐼

ε 𝑅 𝑇
)

1
2⁄

= [𝑚]−1 

(19) 

 

 

The inverse of Debye-Hückel parameter κ−1 has units of length and is called the Debye 

length, having an important physical significance because represents the thickness of the 

electrical double layer. In the following graphics can be seen that if the ionic strength increases 

de Debye length decreases, this succeed because when the ionic strength increases the 

counter ions are more attracted to the interface and making the thickness of the double layer 

smaller.  
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Figure 10. Electrical potential for different ionic strengths (a) and charge valence (b) 

 

Gouy Chapman model limitations: 

• Ion-ion interactions are not considered 

• Ions are considered punctual 

• Homogeneous distribution of surface charges 

• It is not possible to consider adsorbed ions 

• Constant permittivity in all the diffuse layer 

1.2.3 STERN MODEL 

Stern developed the double layer with a more realistic way for describe the interface. Stern 

model is a combination between the Helmholtz and Gouy Chapman model, describes the 

double layer by the compact layer of Helmholtz and next the diffuse layer of Gouy Chapman 

model. The model considers the ionic radius and the thickness of OHP layer depends of it. 

 

 

 

𝜓

𝜓0

 

𝑥 

𝜓

𝜓0
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Figure 11. Schematic figure of Stern model  

 

 NERNST PLANCK EQUATIONS 

The last models based on Poisson-Boltzmann equation are correct to predict electrostatic 

phenomena, because they assume a Boltzmann distribution assuming they are in equilibrium. 

But in the case if membranes, not only the electrostatic interactions are included, the ions move 

by diffusion and by the fluid flow. In this case it is an electrodynamic phenomena, for predict 

these systems a more complex model is needed to be able to model it. 

Considering a membrane in a confined region immersed in an electrolyte solution with a 

continuum dielectric permittivity and a continuum dielectric permittivity in the membrane.  

Can be described by the system of equations of Poisson, Nernst-Planck and Navier-Stokes 

equations in 2-D. 

The Nernst Planck (NP) equation is a conservation equation of mass species that describes 

the ionic concentration gradient influenced by an electric field. For deriving this equation, we can 

start with the conservation of mass equation for an incompressible fluid (∇. u) = 0: 

 

𝜕𝑐𝑖

𝜕𝑡
= 𝑢∇. 𝑐𝑖 + ∇. 𝐹𝑖 

 

(20) 
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The convection term (𝑢∇. 𝑐𝑖) in dilute theory is easy to define, it is just the mass averaged 

velocity of the fluid, in this the velocity of the ions is the same as the fluid flow. But when the 

case is in concentrated solutions, this term become more difficult to define, because in this case 

we must distinct between the ion velocity and the solvent flow. 

The flux for Nernst-Planck equations can be defined by: 

 

𝐹𝑖 = −𝑀𝑖𝑐𝑖 ∇⃗⃗ 𝑖̃
 

 

(21) 

Where Mi is the mobility of the ion, defined by the Einstein relation 

 

𝑀𝑖 =
𝐷𝑖

𝐾𝑏𝑇
 (22) 

 

 ci is the molar concentration of the ion and 
𝑖̃
 is the electrochemical potential, the chemical 

potential is defined by the dilute theory as: 

 


𝑖
= (

𝜕𝐺

𝜕𝑐𝑖

)
𝑇,𝑃,𝑐𝑗≠𝑖

= 
0
+ 𝑅𝑇 𝑙𝑛

𝑐𝑖

𝑐𝑖,0

 

 

Where 𝑐𝑖,0 is the concentration equal to 1M. 

(23) 

The electrochemical potential can be described adding de Coulombic force to the chemical 

potential 


𝑖̃
= 

0
+ 𝑅𝑇 𝑙𝑛

𝑐𝑖

𝑐𝑖,0

+ ɀ𝑖𝐹 𝜓 

 

(24) 

The gradient of the electrochemical potential is 

 

∇⃗⃗ 
𝑖̃
= 

𝑖
+ ɀ𝑖𝐹 ∇⃗⃗  𝜓 = 𝑅𝑇 𝛻⃗  𝑙𝑛 𝑐𝑖  + ɀ𝑖𝐹 ∇⃗⃗  𝜓 (24.a) 
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Where : 

𝛻⃗  𝑙𝑛 𝑐𝑖 =
𝛻⃗ 𝑐𝑖

𝑐𝑖

 
(25) 

With this relationship gives: 

 

∇⃗⃗ 
𝑖̃
= 𝑅𝑇 

𝛻⃗ 𝑐𝑖

𝑐𝑖

+ ɀ𝑖𝐹 ∇⃗⃗  𝜓 

 

(26) 

 

With the Einstein relation and the chemical potential, the molar flux can be defined as 

 

𝐹𝑖 = −𝑀𝑖𝑐𝑖 ∇⃗⃗ 𝑖̃
= −𝐷𝑖 (∇⃗⃗ 𝑐𝑖 +

ɀ𝑖𝐹

𝑅𝑇
𝑐𝑖  ∇⃗⃗  𝜓) 

 

(27) 

This equation gives the flux due to the diffusion given by Fick's law and the second term is 

due to electromigration. With the continuity mass equation and the flux defined we can write the 

Nernst-Planck equation in molar units: 

 

𝜕𝑐𝑖

𝜕𝑡
= −𝑢𝛻. 𝑐𝑖 + 𝐷𝑖  𝛻. (∇⃗⃗ 𝑐𝑖 +

ɀ𝑖𝐹

𝑅𝑇
𝑐𝑖  ∇⃗⃗  𝜓) 

 

(28) 

The Nernst Planck equations gives the transport of each ion influenced by diffusion, 

electromigration and convection. Can be seen that the equations give two incognits, the ion 

concentration and the electrical potential the electric potential is described by the Poisson 

equation explained before 

 

  

−∇ . (ε ∇ 𝜓) = ∑𝜌𝑖

𝑁

𝑖

 (29) 
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Where ε is the electric permittivity of the double layer and the 𝜌𝑖 is the charge density. The 

charge density in the case of NF membranes can be defined as a sum of the charge density of 

the ions and the fix charge density of the membrane: 

 

∑𝜌𝑖

𝑁

𝑖

= ∑ɀ𝑖𝑒𝑐𝑖 + 𝜌𝑓𝑖𝑥

𝑁

𝑖

 

 

(30) 

Supposing a cylindrical pore membrane, the fixed charge of the membrane 

expressed in terms of concentration is 

𝜌𝑓𝑖𝑥  =
2 σ 

𝐹 r𝑝 
 

 

 

 

(31) 

Where σ is the surface charge density, F is the Faraday’s constant and r𝑝  is the pore 

radius. 

Rewriting the Poisson equation gives: 

 

−𝛻 . (𝜀0𝜀𝑟 𝛻 𝜓) = ∑ɀ𝑖𝑒𝑐𝑖 + 𝜌𝑓𝑖𝑥

𝑁

𝑖

 

 

(32) 

Where ε𝑟ε𝑟 is the product by the permittivity of vacuum and the membrane or solvent. 

 

The Poisson-Nernst-Planck equations that describes the ion transport results a nonlinear 

system of hyperbolic-elliptic partial differential equations. The system resulting is: 

 

𝜕𝑐𝑖

𝜕𝑡
= −𝑢∇. 𝑐𝑖 + 𝐷𝑖  ∇. (∇⃗⃗ 𝑐𝑖 +

ɀ𝑖𝐹

𝑅𝑇
𝑐𝑖  ∇⃗⃗  𝜓) 

 

(33) 

−∇ . (ε0ε𝑟 ∇ 𝜓) = ∑ɀ𝑖𝑒𝑐𝑖 + 𝜌𝑓𝑖𝑥

𝑁

𝑖

 
(34) 
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The velocity u obeys the Navier-Stokes equations 

 

𝜕𝑢

𝜕𝑡
+ 𝑢. ∇⃗⃗ 𝑢 − 𝜗 ∇2𝑢 + ∇⃗⃗ P = 𝜌𝑖  𝐸⃗  (35) 

 

Where 𝜗 is the kinematic viscosity, P the pressure and E is the electric field 𝐸⃗ = −∇⃗⃗  𝜓 . 

The right-hand side of the equation is the Lorentz force that is the influence of the electrical field 

to the fluid. 

The system of Poisson, Nernst-Planck and Navier Stokes equations was called by Osterle 

and co-workers space charge model (SC) [10]. This system of nonlinear partial differential 

equation in 2-D requires much computational resources. For that many simplifications are 

considered to solve these equations, the first is to reduce the system in 1-D, neglecting the 

radial variation, this assumption is valid when the Debye length is larger than the pore 

membrane. Another consideration is to suppose that the velocity is constant or that have a 

laminar profile ignoring the viscous effects and the force gradients that act to the fluid. With this 

assumption the Navier Stokes can be ignored. 

The third assumption is the electroneutrality condition in all the regions of the system. This 

assumption considers that there’s not charge separation anywhere in solution and so neutrality 

is maintained in all the system. When charges separation occurs, coulombic force influences the 

transport of ions described by the Poisson and Nernst-Planck equations.  

For describe the electroneutrality condition analytically must be done by the dimensional 

analysis in Poisson equation [11]. The electrical potential can be normalized by the ratio with 

electrical potential and the thermal voltage, and the concentration by the bulk concentration 𝑐𝑖,∞ 

of the electrolyte. 

Ψ =
𝑒 𝜓

𝐾𝑏𝑇
=

𝐹 𝜓

 𝑅 𝑇
 

 

(36) 

𝜃 =
𝑐𝑖

𝑐𝑖,∞

 

 

(37) 

−∇ . (ε0ε𝑟  ∇⃗⃗  𝜓) = ∑ɀ𝑖𝐹𝑐𝑖

𝑁

𝑖

 
(38) 
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With the non-dimensional concentration and electrical potential, the Poisson equation can 

be written as 

−∇ . (∇⃗⃗  𝜓) =
𝐹2𝑐𝑖,∞

ε 𝑅 𝑇
∑ɀ𝑖𝑐𝑖

𝑁

𝑖

 

 

(38.1) 

 

The Poisson equation in that form gives also the same parameter that in the Debye-Hückel 

theory explained before, the Debye length 

 

κ = (
𝐹2 𝑐𝑖,∞

ε 𝑅 𝑇
)

1
2⁄

 

 

(39) 

κ−1 = 𝜆𝐷 = (
ε 𝑅 𝑇 

 𝐹2𝑐𝑖,∞

)

1
2⁄

 

 

(39.1) 

 

The Poisson equation rewritten in terms of the Debye length 

 

−𝜆𝐷
2 ∇2𝜓 = ∑ɀ𝑖𝑐𝑖

𝑁

𝑖

 

 

(40) 

 

The Debye length as be stated before indicates the length of the electrical double layer. If 

there are charge separation, the electrical field can vary, and hence over which ∇2𝜓 can take a 

large value, is limited by the Debye length [12]. 

Considering that the Debye length is very small compared to the other length scales of the 

system, the Poisson equation gives 

 

 λ𝐷
2  

𝜕2 Ψ

𝜕𝑥2
≅ 0 (41) 
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And gives the electroneutrality condition 

 

∑ɀ𝑖𝑐𝑖

𝑁

𝑖

= 0 (42) 

 

If the system has fixed charge density like a membrane, the electroneutrality condition gives 

 

∑ɀ𝑖𝑒𝑐𝑖 + 𝜌𝑓𝑖𝑥

𝑁

𝑖

= 0 

 

(43) 

The physical significance of this equality is that there is no local accumulation of charge in 

all the points of the system.  The gradient of electrical potential is important to consider 

interactions with small particles and charges surface phenomena but is generally unimportant 

with the bulk solution. The electroneutrality condition implies that the potential distribution is 

governed by Laplace’s equation( ∇2𝜓=0), because the right-hand side of the Poisson equation 

is 0 [12].  

Can be observed that the electroneutrality condition gives a paradox, because that one 

cannot use both Poisson’s equation and the electroneutrality condition, this over specifies the 

problem.  

In summary, the electroneutrality condition will never be applicable very close to a boundary 

where charge separation takes place like in the electrical double layer where the gradient of the 

electrical field become very large. 

1.3.1. NERNST PLANCK WITH STERIC EFFECTS 

 

Also an important phenomena that appears in the selective membranes is the steric effect, 

making this crucial for what type of molecules can pass through the membrane. The steric effect 

is based in the length of the pores and the ions, basically arise from a fact that each ion 

occupies a certain amount of space, for this reason the ions interact with them and with the 
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membrane, because the smaller ions will be able to pass through the membrane, but the ions 

with bigger radius than the pore radius can’t be able to pass. 

But the Nernst-Planck equations are based to dilute solution theory, that assumes the ions 

don’t interact with them and her movement is independent between the other ions. For this 

reason the statistical-physics scientists developed a modification to Nernst-Planck equations 

based on variation of free energy: 

 

 

 

𝐸 = ∫(
𝜌

2
𝑢2 + 𝐾𝑏𝑇 ∑𝑐𝑖 log 𝑐𝑖 +

1

2
(∑ɀ𝑖𝑒𝑐𝑖 +  𝑒 𝜌𝑓𝑖𝑥

𝑁

𝑖

𝑁

𝑖

)𝜓)𝑑𝑥 + ∑ 𝑔𝑖𝑗 ∫𝑐𝑖𝑐𝑗𝑑𝑥

𝑁

𝑖,𝑗=1

 
(44) 

 

 

 

The Nernst Planck equations with steric effects can be written as 

 

𝜕𝑐𝑖

𝜕𝑡
= −𝑢𝛻. 𝑐𝑖 + 𝐷𝑖  𝛻. (∇⃗⃗ 𝑐𝑖 +

ɀ𝑖𝐹

𝑅𝑇
𝑐𝑖  ∇⃗⃗  𝜓 +

𝑐𝑖

𝑅𝑇
∑ 𝑔𝑖𝑗𝛻

𝑁

𝑗
𝑐𝑗) (45) 

 

Where the coefficient 𝑔𝑖𝑗  is  

𝑔𝑖𝑗 = 𝜖𝑖𝑗(𝑎𝑖 + 𝑎𝑗)
12 (46) 

 

Where  𝜖𝑖𝑗  is a coefficient that depends of molecular interactions that only be adjusted to 

reproduce experimental data or calculated from quantum mechanics, and 𝑎 are the diameter of 

the ions. 

The equation approximates the repulsive term of the Lenard Jones (LJ) potential added to 

the concentration flux. The LJ is a well-known mathematical model for describing the interaction 

between a pair of ions, and in this work is used to describe the steric effects of the ions [13]. 

Entropy Kinetic energy Electric energy steric energy 

Classical PNP 

PNP with steric effects 
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1.3.2. TEORELL-MEYER-SIEVERS 

TMS model is a less rigorous model compared to the SC model explained before, but it has 

large applicability in the case of NF membranes.  

The model assumes: 

• Radial variation negligible (1-D) 

• Convective flow constant 

• Local Electroneutrality condition 

• Uniform distribution of fixed charges 

• Membrane and adjacent solution interfaces are in Donnan equilibrium 

• Steady state 

In TMS model can be seen that the three simplifications explained in the las section are 

applied. Also supposes that the fixed charge density is distributed uniformly, and the most 

important statement of this model is that supposes a Donnan equilibrium is given in the 

interfaces of the solution and the membrane.  

The Donnan equilibrium is based when ions are too large to pass through the membrane, 

these ions are accumulated in the interface attracting ions of opposite charge and repelling ions 

of the same charge, for this reason appears an electrical and concentration gradient, these 

gradients are equal but with opposite sign. In the equilibrium, the product of the ionic 

concentrations of each side of the membrane are constant. 

In the absence of the Poisson equation for describe the transport of ions through the 

membrane, the Donnan theory can be able to describe the concentration profiles in the interface 

with partition coefficients obtained from the Donnan equilibrium. This concept is explained in the 

following figure. 
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Figure 12. Schematic figure of the TMS model  

 

In the figure can be seen that the concentration suffers a jump in the interface caused by the 

difference of the electrical potential between the solution and the membrane, the electrical 

potential in the interface is called Donnan potential. 

The Donnan equilibrium must be explained by the dilute solution theory. At equilibrium the 

electrochemical potential in the two phases must be equal. 

 


𝑖̃
= 

0,𝑠
+ 𝑅𝑇 𝑙𝑛

𝑐𝑖,𝑠

𝑐𝑖,0

+ ɀ𝑖𝐹 𝜓𝑠 = 
0,𝑚

+ 𝑅𝑇 𝑙𝑛
𝑐𝑖,𝑚

𝑐𝑖,0

+ ɀ𝑖𝐹 𝜓𝑚  (47) 

 

This model states that the surface potential is at Donnan equilibrium, this assumption makes 

the D  constant . The equality can be written in the form of a constant partition constant.  

 

𝑐𝑖,𝑚

𝑐𝑖,𝑠
= 𝑒

−ɀ𝑖𝐹 𝐷
𝑅 𝑇

⁄ = β𝑖 = constant (48) 

 

Note that the equation gives a distribution of Boltzmann with the Donnan potential. With this 

partition coefficient the concentration ion in the boundary membrane can be calculated with the 

concentration in the solution interface. 

ci,p(δ +) 

D (0) 

ci,m(0+) 
 (0-) 

ci,p(δ -) 

D (δ) 

ci,s(0-) 

m (0+) 

D1 

δ 

 (δ +) 

D2 

m (δ-) 
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The equations that describes the profile concentration and the electrical potential in the TMS 

models are the Nernst-Planck equation and the electroneutrality condition based it on the 

Poisson equation. 

The flux defined by the Nernst-Planck equation is 

 

𝐹𝑖 = −𝐷𝑖 (
𝑑𝑐𝑖

𝑑𝑥
+

ɀ𝑖𝐹

𝑅𝑇
𝑐𝑖  

𝑑𝜓

𝑑𝑥
 ) + 𝑢𝑐𝑖  

 

(49) 

The flux is described by diffusion, electromigration and the convective flow, in the steady 

state the flux is constant, note that in this case the derivative is total and not a partial derivative 

like the transient case. And the electroneutrality condition in the solvent and the permeate 

solution: 

∑ɀ𝑖𝐶𝑖,𝑠

𝑁

𝑖

= 0             ∑ɀ𝑖𝐶𝑖,𝑝

𝑁

𝑖

= 0 

 

(50.a) 

(50.b) 

The electroneutrality condition in the membrane 

 

∑ɀ𝑖𝑐𝑖,𝑚 + 𝜌𝑓𝑖𝑥

𝑁

𝑖

= 0 

 

(51) 

The molar and volume fluxes are described by the filtration condition which relates the 

concentration of the permeate and the ionic and volume fluxes in the steady State 

 

𝐹𝑖 = 𝑢 𝐶𝑖,𝑝(δ
+) 

(52) 

 

Inserting to the equation of the flux gives 

 

𝑢 𝐶𝑖,𝑝(δ
+) = −𝐷𝑖 (

𝑑𝑐𝑖

𝑑𝑥
+

ɀ𝑖𝐹

𝑅𝑇
𝑐𝑖  

𝑑𝜓

𝑑𝑥
 ) + 𝑢𝑐𝑖  (53) 
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Can be written as 

 

𝑑𝑐𝑖

𝑑𝑥
=

𝑢

𝐷𝑖

(𝑐𝑖 − 𝐶𝑖,𝑝(δ
+)) −

ɀ𝑖𝐹

𝑅𝑇
𝑐𝑖  

𝑑𝜓

𝑑𝑥
 

 

(54) 

Multiplying the equation by ɀ𝑖 and derive the electroneutrality equation in the membrane the 

equation can be written as sum of all the ions 

 

∑ɀ𝑖

𝑑𝑐𝑖

𝑑𝑥

𝑁

𝑖=1

= ∑(ɀ𝑖

𝑢

𝐷𝑖

(𝑐𝑖 − 𝐶𝑖,𝑝(δ
+)) −

𝐹

𝑅𝑇
ɀ𝑖

2𝑐𝑖  
𝑑𝜓

𝑑𝑥

𝑁

𝑖=1

) = 0 

 

(55) 

 

The electrical potential can be written as 

 

𝑑𝜓

𝑑𝑥
=

∑ ɀ𝑖
𝑢
𝐷𝑖

(𝑐𝑖 − 𝐶𝑖,𝑝(δ
+))𝑁

𝑖=1

𝐹
𝑅𝑇

∑ ɀ𝑖
2𝑐𝑖  

𝑁
𝑖=1

 
(56) 

 

Considering the case of 1:1 electrolyte the equation obtained is 

 

𝑑𝜓

𝑑𝑥
=

ɀ1
𝑢
𝐷1

(𝑐1 − 𝐶1,𝑝(δ
+)) − ɀ2

𝑢
𝐷2

(𝑐2 − 𝐶2,𝑝(δ
+))

𝐹
𝑅𝑇

(ɀ1
2𝑐1 + ɀ2

2𝑐2)
 

 

(57) 

 

The electroneutrality conditions in this gives the following relations 

In the solute 

 

ɀ1𝐶1,𝑠(0
+) + ɀ2𝐶2,𝑠(0

+) = 0                   𝐶2,𝑠(0
+) = −

ɀ1𝐶1,𝑠(0
+)

ɀ2

 (58) 
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In the permeate 

ɀ1𝐶1,𝑝(δ
+) + ɀ2𝐶2,𝑝(δ

+) = 0                     𝐶2,𝑝(δ
+) = −

ɀ1𝐶1,𝑝(δ
+)

ɀ2

 

 

(59) 

In the membrane 

ɀ1𝑐1(x) + ɀ2𝑐2(x) + 𝜌𝑓𝑖𝑥 = 0                     𝑐2(x) = −
ɀ1𝑐1(x) + 𝜌𝑓𝑖𝑥

ɀ2

 (60) 

 

With these relations the equation can be written in terms of only one ion 

 

𝑑𝜓

𝑑𝑥
=

ɀ1𝑢 (
1
𝐷1

−
1
𝐷2

) 𝑐1(𝑥) − ɀ2𝑢 (
1
𝐷1

−
1
𝐷2

) 𝐶1,𝑝(𝛿
+) −

𝑢 𝜌𝑓𝑖𝑥

𝐷2

𝐹
𝑅𝑇

(ɀ1
2𝑐1(𝑥) − ɀ2ɀ1𝑐1(𝑥) + ɀ2𝜌𝑓𝑖𝑥)

 

(61) 

 

With the electrical potential defined the equation of concentration profile can be solved 

 

𝑑𝑐1(𝑥)

𝑑𝑥
=

𝑢

𝐷𝑖

(𝑐1(𝑥) − 𝐶1,𝑝(δ
+)) −

ɀ1𝐹

𝑅𝑇
𝑐1(𝑥)

𝑑𝜓

𝑑𝑥
 

 

(62) 

 

For solve the electrical potential and concentration equation must be defined one boundary 

condition for each one, because they only have one derivative, the boundary condition must be 

the concentration of the solvent, and then with the Donnan partition coefficient describes the 

jump across the interface membrane. 

 This reason makes this model easier than the PNP equations, but the model only allows to 

describe the concentration and potential profiles inside the membrane because assumes that 

the concentration in the solvent and in the permeate are constant. 

These equations are simpler than the PNP equations, but have non-lineal terms making 

difficult to solve analytically the equations. Usually are solved numerically by the Runge-Kutta 

method, in some works supposed that the profile in the membrane is lineal making the spatial 
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derivative the thickness of the membrane and turn the equations simpler to solve in analytic 

way. 

For understand clearly the difference between the PNP equations and the TMS model, the 

following figure shows a qualitative profile of ions concentration with the two theories. 

 

 

 
Figure 13. Differences between the PNP model and the TMS model 

 

The idea of the Donnan potential can be explained with capacitors theory, imagine two 

parallel plate with opposite charge separated by a distance 𝜆𝐷 that represents the Deby length. 

This system represents the interface between positive ions and a membrane with negative 

surface charge. 
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Figure 14. Description of the electrical double layer like a parallel plate with opposite charge  

 

The simplicity to solve TMS model makes very attractive to be implemented in modelling of 

NF membranes, but due the simplifications that assumes makes difficult to predict the behavior 

of the ions. For this reason, many modifications are implemented to the TMS model for make it 

more realistic.  

The extended Nernst-Planck equation was proposed by Schlogyl, Dresner, and Johnson 

[14], is the classical NP equation but adding hindrance coefficients in the diffusion coefficient 

and in the convective flow and take account to steric and dielectric effects.  

These hindrance factors are considered to take count the steric effect at the pores 

membrane, if a ion with a bigger diameter than the pore radius can’t pass through it, also the ion 

diffuses very different in a solution than in a pore membrane, in the pore membrane the ion 

bounces in the walls of the pore making the diffusion coefficient different. 

 

 

 

 

 

 
 

Figure 15. Description of the difference of the diffusivity between the bulk and the pores. 
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For describe the variations of diffusion coefficient and in the convective flux. These are 

corrected with the hindrance factors, both dependent on the ratio of solute radius and to pore 

radius. For de convective flux the hindrance factor to take account the effects of the pore on the 

species motion by the following equation [15]: 

 

𝐾𝑖,𝑐 = (2 − 𝜑𝑠𝑡𝑒𝑟𝑖𝑐)( 1 + 0.054 𝜆𝑖 + 0,988 𝜆𝑖 
2 + 0,441 𝜆𝑖 

3) 

 

(63) 

Where 𝜑𝑠𝑡𝑒𝑟𝑖𝑐  is the dimensionless steric partition coefficient of the ion expressed as 

𝜑𝑠𝑡𝑒𝑟𝑖𝑐 = (1 − 𝜆𝑖 )
2 

 

(64.a) 

And 𝜆𝑖  is the ratio of the ionic radius by the pore radius 

 

𝜆𝑖 =
𝑟𝑖
𝑟𝑝

 (64.b) 

 

For the diffusive effects, the hindrance factor is defined as 

 

𝐾𝑖,𝐷 = ( 1 − 2,30  𝜆𝑖 + 1,154 𝜆𝑖 
2 + 0,224 𝜆𝑖 

3) (65) 

 

The diffusion and the convective flow in the membrane are corrected with the hindrance 

factors by the following form  

𝐷𝑖,𝑝 = 𝐾𝑖,𝐷𝐷𝑖,∞

𝜂𝑜

𝜂
 (66.a) 

𝑢𝑝 = 𝐾𝑖,𝑐  𝑢 (66.b) 

Where 𝐷𝑖,∞ is the diffusion coefficient in the bulk, u the velocity, 𝜂𝑜 the viscosity in the bulk 

and 𝜂 is the viscosity affected by the effect of the pore membrane, the ratio 
𝜂𝑜

𝜂
 : 

 



Numerical solution of transport phenomena equations for nanofiltration membranes. 29 

 

𝜂𝑜

𝜂
= 1 + 18(

𝑑

𝑟𝑝
) − 9(

𝑑

𝑟𝑝
)

2

 
(66.c) 

 

When the pore radius decreases, the viscosity of the solution increases. The steric effect 

and the dielectric effect are very important to take account in the interface of the solution and 

the membrane because the steric and dielectric effects have a crucial decision that what ions 

can pass through the membrane and not.  

 

For this reason, the partition coefficient in the interface based on the Donnan equilibrium is 

modified adding the steric and dielectric effects as 

 

𝑐𝑖,𝑚

𝑐𝑖,𝑠

= 𝑒
−ɀ𝑖𝐹 𝐷

𝑅 𝑇
⁄  𝜑𝑠𝑡𝑒𝑟𝑖𝑐  β𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐  (67) 

 

 

The steric partition coefficient was defined, the dielectric partition coefficient is described by 

the Born model.  

β𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = 𝑒
−W𝑖

𝐾𝑏 𝑇⁄
 

 

(68.a) 

Where W𝑖 is the energy solvation barrier of the ion in the interface and is defined by the 

Born model as 

W𝑖 =
(ɀ𝑖𝐹)2

8 𝜋 𝜀𝑜 𝑟𝑖  
(

1

𝜀𝑝

−
1

𝜀𝑏

) (69) 

 

Where 𝜀𝑏 is the electric permittivity of the bulk and 𝜀𝑝 is the electric permittivity of the pores. 

This equation based on the Poisson-Boltzmann equation describes the solvation energy 

barrier that is formed by the effects to the interaction of ions with the polarized surface 

membrane due to the difference of their dielectric constant [16]. 

With these modifications the model is known as DSPM-DE (Donnan Steric Pore Model – 

Dielectric effect). With the corrections the equations can be written as 
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𝑑𝑐𝑖

𝑑𝑥
=

𝐾𝑖,𝑐  𝑢

𝐷𝑖,𝑝

(𝑐𝑖 − 𝐶𝑖,𝑝(δ
+)) −

ɀ𝑖𝐹

𝑅𝑇
𝑐𝑖  

𝑑𝜓

𝑑𝑥
 

 

(70) 

 

This model has been identified very appropriate and accurate for the characterization of the 

NF membranes because with the empirical coefficient is able to correct the error produced by 

the simplifications considered in TMS theory. 
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2. OBJECTIVES 

The main objective of the work is to propose a model of ion transport in a generalized way 

and solve it with the minimum of simplifications. 

The transport phenomena model proposed for describe the behaviour of ions, in our case 

NaCl, through a nanofiltration membrane is the system of partial differential equations of 

Poisson and Nernst-Planck including steric effects and in 1-D in transient. 

The system of partial differential equations will be solved by means of numerical algorithms 

with the Wolfram Mathematica program. The results will be compared with a more complex 

model (Poisson, Nernst-Planck and Navier Stokes in 2D) and a simpler model (Donnan-Steric-

Partition-Dielectric exclusion model) to verify our work. 

With the model validated many simulations will be done for view the effects of all the 

variables that depend the system.  
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3. MEMBRANE MODEL 

The system to model in this work is the transport of two symmetric ions (|ɀ+ |=|ɀ- |) in this 

case Na+ and Cl- in a NF membrane described by the Poisson-Nernst-Planck system in 1-D. In 

this work is assumed that the velocity is constant making simpler the computational complexity 

because the Navier-Stokes equation is not considered. The system of equations for two 

symmetrical ions with opposite charge are: 

 

𝜕𝑐𝑁𝑎+

𝜕𝑡
= −𝑢

𝜕𝑐𝑁𝑎+

𝜕𝑥
+ 𝐷𝑁𝑎+

𝜕

𝜕𝑥
(
𝜕𝑐𝑁𝑎+

𝜕𝑥
+

ɀ𝑖𝐹

𝑅𝑇
𝑐𝑁𝑎+

𝜕𝜓

𝜕𝑥
 ) 

 

(71) 

𝜕𝑐𝐶𝑙−

𝜕𝑡
= −𝑢

𝜕𝑐𝐶𝑙−

𝜕𝑥
+ 𝐷𝐶𝑙−

𝜕

𝜕𝑥
(
𝜕𝑐𝐶𝑙−

𝜕𝑥
+

ɀ𝑖𝐹

𝑅𝑇
𝑐𝐶𝑙−

𝜕𝜓

𝜕𝑥
 ) 

 

(72) 

Considering the Nernst-Planck equations with steric effects 

 

𝜕𝑐𝑁𝑎+

𝜕𝑡
= −𝑢

𝜕𝑐𝑁𝑎+

𝜕𝑥
+ 𝐷𝑁𝑎+

𝜕

𝜕𝑥
(
𝜕𝑐𝑁𝑎+

𝜕𝑥
+

ɀ𝑖𝐹

𝑅𝑇
𝑐𝑁𝑎+

𝜕𝜓

𝜕𝑥
 +

𝑐𝑁𝑎+

𝑅𝑇
∑ 𝑔𝑖𝑗

𝜕𝑐𝑗

𝜕𝑥

𝑁

𝑗
) 

 

(73) 

𝜕𝑐𝐶𝑙−

𝜕𝑡
= −𝑢

𝜕𝑐𝐶𝑙−

𝜕𝑥
+ 𝐷𝐶𝑙−

𝜕

𝜕𝑥
(
𝜕𝑐𝐶𝑙−

𝜕𝑥
+

ɀ𝑖𝐹

𝑅𝑇
𝑐𝐶𝑙−

𝜕𝜓

𝜕𝑥
 +

𝑐𝐶𝑙−

𝑅𝑇
∑ 𝑔𝑖𝑗

𝜕𝑐𝑗

𝜕𝑥

𝑁

𝑗
) (74) 

Where  

∑ 𝑔𝑖𝑗

𝜕𝑐𝑗

𝜕𝑥

𝑁

𝑗
= 𝑔𝑁𝑎+

𝜕𝑐𝑁𝑎+

𝜕𝑥
+ 𝑔𝐶𝑙−

𝜕𝑐𝐶𝑙−

𝜕𝑥
 

 

(75) 

The Poisson equation 
 

−ε0ε𝑟

𝜕2𝜓

𝜕𝑥2
= ɀ𝑁𝑎+𝐹𝑐𝑁𝑎+ + ɀ𝐶𝑙−𝐹𝑐𝐶𝑙− + 𝜌𝑓𝑖𝑥 (76) 
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The one-dimensional system can be described with this scheme: 

 

 

 

 

 

 

 

Figure 16. Model membrane system. 

 

A planar membrane with a fix charge density and surface charge separates two aqueous 

solutions of Na+ and Cl-. The dielectric permittivity is different between the solution and the 

membrane. 

The boundary conditions of the reservoirs are located at  ∂Ω𝑠 and  ∂Ω𝑝 respectively, and 

the flux is normal to the axial direction of membrane.   

And the fixed charge density of the membrane is defined as: 

 

𝜌𝑓𝑖𝑥 = {

0              Ω𝑠

𝜌𝑓𝑖𝑥           Ω𝑚

0              Ω𝑝

 
(77) 

 

The system of equations is solved in dimensionless form because by transforming a PDE in 

dimensionless form all the parameters that governing the system are reduced to only a few 

dimensionless numbers. For example, making the Navier-Stokes dimensionless, can be seen 

that the governing parameters are reduced to the Reynolds number, what is quite 

advantageous.  

 

 

 

ε𝑠 

 

ε𝑚 

 

ε𝑠 

 

L1 

 

 

L2 

 

 

L3 
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The system of PNP equations are non-dimensionless by the Pi Buckingham theorem that 

can be viewed with more detail in the Appendix 2. 

 The dimensionless PNP equations gives 

 

𝜕𝜃𝑁𝑎+

𝜕𝑡
= −𝑃𝑒𝑁𝑎+

𝜕𝜃𝑁𝑎+

𝜕𝑥
+

𝜕

𝜕𝑥
(
𝜕𝜃𝑁𝑎+

𝜕𝑥
+ 𝜃𝑁𝑎+

𝜕Ψ

𝜕𝑥
 ) (78) 

𝜕𝜃𝐶𝑙−

𝜕𝑡
= −𝑃𝑒𝑁𝑎+

𝜕𝜃𝐶𝑙−

𝜕𝑥
+

𝜕

𝜕𝑥
(
𝜕𝜃𝐶𝑙−

𝜕𝑥
− 𝜃𝐶𝑙−

𝜕Ψ

𝜕𝑥
 ) 

 

(79) 

𝜕𝜃𝑁𝑎+

𝜕𝑡
= −𝑃𝑒𝑁𝑎+

𝜕𝜃𝑁𝑎+

𝜕𝑥
+

𝜕

𝜕𝑥
(
𝜕𝜃𝑁𝑎+

𝜕𝑥
+ 𝜃𝑁𝑎+

𝜕Ψ

𝜕𝑥
 +

 𝜃𝑁𝑎+

𝑅𝑇
∑ 𝑔𝑖𝑗

𝜕 𝜃𝑗

𝜕𝑥

𝑁

𝑗
) 

 

(80) 

𝜕𝜃𝐶𝑙−

𝜕𝑡
= −𝑃𝑒𝑁𝑎+

𝜕𝜃𝐶𝑙−

𝜕𝑥
+

𝜕

𝜕𝑥
(
𝜕𝜃𝐶𝑙−

𝜕𝑥
− 𝜃𝐶𝑙−

𝜕Ψ

𝜕𝑥
 +

 𝜃𝐶𝑙−

𝑅𝑇
∑ 𝑔𝑖𝑗

𝜕 𝜃𝑗

𝜕𝑥

𝑁

𝑗
) 

 

(81) 

λ̃𝐷
2  

𝜕2 Ψ

𝜕𝜉2
= 𝜃𝑁𝑎+ − 𝜃𝐶𝑙− + 𝜁𝑓𝑖𝑥  (82) 

 

Where 

Ψ =
F  

𝑅 𝑇
 

 

Dimensionless electrical potential 

τ =
𝐿2 

𝐷 𝑡 
 

 

Dimensionless time scale 

ξ =
𝑥  

𝐿 
 

 

Dimensionless length scale 

𝑃𝑒 =
𝑢 𝐿  

𝐷
 

 

Peclet Number 

𝜆̃𝐷
2  = (

𝜆𝐷

𝐿
)
2

=
𝜀 𝑅 𝑇 

𝐿2  ∑ 𝐹2𝑐𝑖,∞
𝑁
𝑖

=
𝜀 𝑅 𝑇 

𝐿2 2 𝐹2 𝐼
 

Dimensionless Debye length 
(electrical double layer) 

𝜃 =
𝑐  

Co
 

 

Dimensionless concentration 

𝜁𝑓𝑖𝑥 =
𝜌𝑓𝑖𝑥   

F Co
 

Dimensionless fixed charge 
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In dimensionless form can be seen that all the parameters of the system only depends of 

the Peclet Number (is the ratio of the convective term by the diffusive term, and describes the 

Taylor-Aris dispersion of the system) and the dimensionless Debye length that describes the 

electric interactions of the ions in the electrical double layer.  

Note that these parameters depend by physical constants and by parameters that depends 

of the system specified, with dimensionless form if the system is different only affect the 

dimensionless parameters. 

The most difficult thing to solve of this system of equations is to specify correctly the 

boundary conditions at the limit of reservoirs and the interface conditions. In this work the 

boundary conditions and the initial conditions for solve the PDE’s are 

Type BC’s Physical significance Boundary 

Dirichlet 𝑐𝑁𝑎+(0) = 𝑐𝑁𝑎+,∞ 

𝜃𝑁𝑎+(0) = 1 

Initial concentration at the 

boundary 

∂Ω𝑠  

Dirichlet 𝑐𝐶𝑙−(0) = 𝑐𝐶𝑙−,∞ 

𝜃𝐶𝑙−(0) = 1 

Initial concentration at the 

boundary 

∂Ω𝑠  

Dirichlet 𝜓(0) = 0 

Ψ(0) = 0 

No current at the boundary ∂Ω𝑠  

Neumann (−𝑢𝑐𝑁𝑎++𝐷𝑁𝑎+(
𝜕𝑐𝑁𝑎+

𝜕𝑥
+

ɀ𝑖𝐹

𝑅𝑇
𝑐𝑁𝑎+

𝜕𝜓

𝜕𝑥
)) |

𝑥=𝐿
= 0 

(−𝑃𝑒𝑁𝑎+
𝜕𝜃𝑁𝑎+

𝜕𝑥
+

𝜕𝜃𝑁𝑎+

𝜕𝑥
+ 𝜃𝑁𝑎+

𝜕Ψ

𝜕𝑥
) |

𝑥=𝐿
= 0 

 

No flux at the boundary 
∂Ω𝑝 

Neumann (−𝑢𝑐𝐶𝑙−+𝐷𝐶𝑙−(
𝜕𝑐𝐶𝑙−

𝜕𝑥
+

ɀ𝑖𝐹

𝑅𝑇
𝑐𝐶𝑙−

𝜕𝜓

𝜕𝑥
)) |

𝑥=𝐿
= 0 

(−𝑃𝑒𝐶𝑙−
𝜕𝜃𝐶𝑙−

𝜕𝑥
+

𝜕𝜃𝐶𝑙−

𝜕𝑥
+ 𝜃𝐶𝑙−

𝜕Ψ

𝜕𝑥
) |

𝑥=𝐿
= 0 

 

No flux at the boundary 
∂Ω𝑝 

Neumann 𝜕𝜓

𝜕𝑥
|
𝑥=𝐿

= 0 

 
𝜕Ψ

𝜕𝑥
|
𝑥=𝐿

= 0 

 
 

No current flux at the 
boundary ∂Ω𝑝 
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Note that for the Neumann boundary conditions of the ions appears the current flux, but with 

the no current flux condition at the boundary, makes 0 this term. But is written in the general 

form the flux. 

 It’s obviously that the analytic solution of this system of equations is not possible and must 

be solved with numerical methods. 

Numerical solution of partial differential equations (PDE) can be schematized in the 

following diagram: 

 

 

 

 

Figure 17. Scheme of numerical solutions of PDE’s 

The first thing to do is convert the PDE’s into a system of algebraic equations, and the 

boundary condition in discrete algebraic equations, this process is called discretization. There 

are many methods of discretization, the most common used are the finite difference method, the 

finite element method and spectral methods.  

In this work we implement the finite difference method for discretize the equations and for 

solve the System of PDE is used the Method of Lines in the Mathematica code. 

The numerical Method of Lines is a technique for solving partial differential equations by 

discretizing one dimension and then integrate the semi-discretized problem as a system of 

Ordinary Differential Equations (ODE’s) or Differential Algebraic Equations (DAE’s).  

The only restriction for use this method is that the PDE problem must be an initial value 

problem (Cauchy), because the ODE and DAE integrators used are initial value problem 

solvers. This rules out purelly elliptics equations like Poisson equations but in this work the 

Poisson equation is coupled with the Nernst-Planck equations and that fact makes the Poisson 

equations dependent of time and can be considered a Cauchy problem. 

For implement finite difference schemes to discretize in Mathematica we used an algorithm 

proposed by [17], where is extensively explained in the Appendix 1: Mathematical method.  

Discretization System of algebraic 
equations 

EDP’s 
Boundary conditions 
Initial conditions 

Solution method 
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Where is compared the algorithm with the analytical solution of the diffusion equation, first 

with Dirichlet boundary conditions and the second with Neumann boundary conditions for make 

sure that the method is consistent with different conditions. 
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4. RESULTS AND DISCUSSION 

 MODEL VALIDATION 

First, the numerical solution must be compared with analytic or numerical solution that are 

validated with experimental data.  

The numerical solution is compared with the numerical solution of Allen. T, Hong.L. A 

charged nanoporous model for nanofiltration. Dept. of Applied Math. Feng Chia University. Allen 

and Hong modeled the NF membrane by the most complex model, the SC (space charge 

model) in 2D.  

Allen and Hong computational domain 2D 

 

 

 

 

 

 

 

 

Figure 18. Membrane domain of Allen and Hong project. 

via: https://www.tims.ntu.edu.tw/download/talk/120604_Tzyy-Leng%20Horng.pdf 
 

Can be seen that the 2D system of 18 nm of length is represented by two reservoirs (6nm 

each one) and a charged membrane with 6 nm of length with a pore of 2r of diameter, the 

boundary conditions at the walls is zero flux, in the reservoirs are applied the same boundary 

conditions as this project. 

A comparison table between the model of this project and the project of Allen and Hong 

https://www.tims.ntu.edu.tw/download/talk/120604_Tzyy-Leng%20Horng.pdf
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 This project Allen and Hong project 

Dimensions 1D 2D 

 

Equations 

1. Poisson equation 

2. Nernst-Planck or Modified 

Nernst-Planck with steric 

effects 

1. Poisson equation 

2. Nernst-Planck or 

Modified Nernst-Planck with 

steric effects  

3. Navier-Stokes 

Parameters used for comparing the numerical method (view page 37 of Allen and Hong). 

(Note: In Allen and Hong project the ions that are modelled are K+ and Cl-, the only 

difference between sodium and potassium to take account are the diffusivity and the ion radius: 

 

[KCl] = 0.011982M 

𝑐𝐾+,∞ = 0.011982𝑀 

𝑐𝐶𝑙−,∞ = 0.011982𝑀 

 

Initial concentration 

rp= 2nm Pore radius 

DNa+= 1.33 10-9 m2/s 

DCl-= 2 10-9 m2/s 

Di,pore=0.25 Di,bulk 

 

Diffusivity in the pore and the bulk 

 

uo / uref =0.03       where uref = 0.97850 m/s Dimensionless velocity 

σ̃ =-2 

 

Dimensionless surface charge 

σ̃ =
 σ 

 𝐶𝑜𝐹 r𝑝  
 

T= 293.15 K Temperature 

ε0ε𝑏𝑢𝑙𝑘 = 78.5 ε0   water 

ε0ε𝑝𝑜𝑟𝑒 = 80 ε0 

Permittivity of the solvent and the bulk. 

Where ε0 = 8.85 10-12 F/m  

Is the permittivity of vacuum 

L= 18 nm Length of the system 
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The diffusion coefficients, and the velocity, dielectric permittivity and the fixed charge 

density are modelled as Heaviside functions, for differentiate the parameters that are different 

depending on the region: 

𝑢 = {

𝑢              Ω𝑠

𝑢𝑝𝑜𝑟𝑒           Ω𝑚

𝑢              Ω𝑝

                𝐷𝑖 = {

𝐷𝑏𝑢𝑙𝑘               Ω𝑠

𝐷𝑝𝑜𝑟𝑒           Ω𝑚

𝐷𝑏𝑢𝑙𝑘               Ω𝑝

 

 

ε0ε𝑏𝑢𝑙𝑘 = {

ε0ε𝑏𝑢𝑙𝑘             Ω𝑠

ε0ε𝑝𝑜𝑟𝑒           Ω𝑚

ε0ε𝑏𝑢𝑙𝑘              Ω𝑝

                    𝜌𝑓𝑖𝑥 = {

0              Ω𝑠

𝜌𝑓𝑖𝑥          Ω𝑚

0              Ω𝑝

   

The velocity in the membrane is calculated with the equations (58) in the section 1.3.2. Note 

that the model is in dimensionless form, so the dimensionless parameters like the Peclet 

number also varying in the axial direction. 

For example, the diffusion coefficient of the ion sodium has this form in the axial direction 

 

 

 

 

 

 

 

Figure 19. Diffusivity of sodium in the pore in this case Dpore = 0.25 Dbulk. 

 

With all the parameters used in one of the examples of Allen and Hong project, the solution 

can be compared with our numerical solution. 

 

 

 

 

 

𝐷𝑁𝑎+,𝑏𝑢𝑙𝑘  𝐷𝑁𝑎+,𝑏𝑢𝑙𝑘  

𝐷𝑁𝑎+,𝑝𝑜𝑟𝑒  

DNa+ (m2/s) 

x 

Ω𝑠 Ω𝑝 Ω𝑚  
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Figure 20. Comparison between the numerical solution of Allen and Hong project (points) and the 
numerical solution of this project. 

 

At first glance, can be seen that the result of our model fits the Allen and Hong solution. But 

see that the solution of Poisson Nernst Planck equations it deviates slightly from the final 

concentration, because without the steric effects the Nernst-Planck equations in only one 

dimension they are not accurate enough to describe the system. Also, can be viewed that in the 

2D model of Allen and Hong the ions are more sensible to the charge of the membrane making 

maxims and minims greater than our model. 

But if we add the steric effects to the equations, it fits perfectly and correctly predicts the 

final concentration. In this case the steric coefficient selected is 0.02. 

For compare the numerical solution with the DSPM-DE (Donnan Steric Partitioning model-

Dielectric exclusion) model explained in the 1.3.2 section is selected a simulation with the 

DSPM-DE model that appears in the Allen and Hong project (page 76)  where is solved with the 

𝑥

𝐿
 

𝑐𝑖

𝑐𝑖,∞
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same parameters as before with a dimensionless fixed charge density = -4 and pore permittivity 

ε080.  

 

 
 

Figure 21. Comparison between the numerical solution of Allen and Hong solution of DSPM-DE model 
(lines) and the numerical solution of this project. 

 
 

Can be seen that the numerical solution of PNP solution without steric effects can predict 

very good the tendency of the concentration of ions but cannot predict correctly the final 

concentration. The DSPM-DE model is not a good model for describe the interior of membrane 

because assume many simplifications explained in the section 1.3.2 but has a good acceptance 

to model the concentration of permeate of NF with all the relations at the interface.  

But the PNP with steric effects can predict with exactitude the tendency and the final 

concentration, in this case the steric coefficient is 0.02. So if the DSPM-DE model is good for 

predict the concentration at the permeate and the PNP the comportment of the ions in the 
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membrane, a good way to modelized NF membranes can be in the first case model with the 

DSPM-DE model to find the final concentration of the ions, then solve the PNP equations and 

choose a steric coefficient that correct the PNP equations to find the final concentration. 

As it be explained in the 1.3.2 section, the DSPM-DE model assumes electroneutrality in all 

the regions of the system, this can be seen making a plot of the density charge of the DSPM-DE 

model of Allen and Hong between the numerical solution of this project. 

 

 
Figure 22. Comparison of the dimensionless charge density between the DSPM-DE model and the PNP 
model. 

 
 . 

Can be seen that in the DSPM-DE model the electroneutrality the condition is fulfilled 

throughout the system, but in the PNP model the electroneutrality condition is only true in the 

bulk regions and in the centre of the membrane, this  this gives consistency to the Gouy 

Chapman’s model that says that in the electrical double layer the gradients became very high 

and not satisfying the electroneutrality condition . 

In the exterior interfaces of the membrane the density charge becomes positively high 

because the counter ions are attracted to the surface of the membrane. 

In the interior interface of the membrane the density charge is very negative because the 

fixed charge of the membrane is higher than the concentration of the ions, in the centre of the 

membrane the concentration of ions is balanced making electroneutral the region. 
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 EFFECT OF VARIABLES 

Parameters used 
 

[NaCl] = (5 x 10-3 – 3 )M Initial concentration 

rp= 2nm Pore radius 

DNa+= 1.33 x 10-9 m2/s 

DCl-= 2 x 10-9 m2/s 

𝐷𝑖,𝑝𝑜𝑟𝑒 = 𝐾𝑖,𝐷𝐷𝑖,∞

𝜂𝑜

𝜂
 

 

Diffusivity in the pore and the bulk 

 

𝜂𝑜= 1000 Kg / m2 Viscosity 

u= 0.03 m/s    

  𝑢𝑝𝑜𝑟𝑒 = 𝐾𝑖,𝑐𝑢 

Dimensionless velocity 

𝜁𝑓𝑖𝑥=( -0.1 to  -2) Dimensionless fixed charge of the membrane  

 

T=293.15 K Temperature 

ε0ε𝑏𝑢𝑙𝑘 = 78.5 ε0   water 

ε0ε𝑝𝑜𝑟𝑒 = 80 ε0 

Permittivity of the solvent and the bulk. 

Where ε0 = 8.85 10-12 F/m  

Is the permittivity of vacuum 

L= 200 nm 

L1= 50 nm 

L2= 100 nm 

L3= 50 nm 

Length of the system 

Solvent bulk length 

Membrane length 

Permeate bulk length 

 
 
 

i. Effect of time 

Initial concentration  
𝑐𝑁𝑎+,∞ = 0.5𝑀 

𝑐𝐶𝑙−,∞ = 0.5𝑀  

Debye length 
𝐷= 13.43 nm 

Fixed charge density 
𝜁𝑓𝑖𝑥= -3 
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Figure 23. Profiles of dimensionless ion concentration for different dimensionless times. 
 

 

 

 

 

 

 

 

 

 

 

Figure 24. Profiles of dimensionless electrical potential for different dimensionless times. 

 

In the figure 19. can be seen that the co-ions (Cl-) decreases very fast, because the surface 

charge membrane makes a barrier of same charge, also in the first times, the co-ions and 

counter-ions they are attracted to each other in the boundary. 
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 But in the steady state the profiles stabilized making a state of pseudo equilibrium in the 

interface, the Donnan equilibrium, because the counter-ions are accumulated at the interface 

membrane attracting the co-ions resulting a constant gradient of ions. 

In the electrical potential can be seen that the potential increases in the right of the 

membrane, because the ions concentration decreases. 

These systems are dynamically very fast, reaching the steady state very fast. 

  

ii. Effect of initial concentration 

 

Initial concentration  
 
𝑐𝑁𝑎+,∞ = 3𝑀 

𝑐𝐶𝑙−,∞ = 3 𝑀  

 
𝑐𝑁𝑎+,∞ = 0.5𝑀 

𝑐𝐶𝑙−,∞ = 0.5𝑀  

 
𝑐𝑁𝑎+,∞ = 0.05𝑀 

𝑐𝐶𝑙−,∞ = 0.05𝑀  

 

Debye length 
 
𝐷= 5.5 nm 
 
 
 
𝐷= 13.43 nm 
 
 
𝐷= 42.5 nm 
 
 

Fixed charge density 

𝜁𝑓𝑖𝑥= -1 

 

 

The initial concentration is an important variable, because the ionic force is dependant of it 

and the Debye length increase or decreases according to the ionic force. 
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Figure 25. Profiles of dimensionless ion concentration for initial concentration or ionic strength. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. Profiles of dimensionless ion concentration with different initial concentration or ionic strength. 
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Can be seen that the initial concentration of the bulk makes crucial the behaviour of the ions 

in the membrane, if the initial concentration is high, then the ionic strength becomes high 

making the Debye length very small, because the counter ions are very attracted to the 

membrane. This also can be viewed with the electrical potential, that when the ionic strength 

increases the electrical potential also increases. 

 

iii. Effect of fixed charge density membrane 

 

Initial concentration  
𝑐𝑁𝑎+,∞ = 0.5𝑀 

𝑐𝐶𝑙−,∞ = 0.5𝑀  

 

Debye length 
 
𝐷= 13.43 nm 
 
 

Fixed charge density 

𝜁𝑓𝑖𝑥= -0.1 

𝜁𝑓𝑖𝑥= -1 

𝜁𝑓𝑖𝑥= -2 

 

 
 

 
Figure 27. Profiles of dimensionless ion concentration with different fixed density charge of membrane. 
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Figure 28. Profiles of dimensionless ion concentration with different fixed density charge of membrane. 

 

The numerical solution also gives good physical significance with the dependence of the 

fixed charge of the membrane, when the fixed charges decreases, in the membrane the 

concentration of co-ions decreases significantly, and the counter-ions becomes very high. Also, 

the electrical potential is proportional to the fixed charge density, note that when the electrical 

potential becomes very negative, the concentration of counter-ions increases significantly. 

iv. Effect of velocity 

 

Initial concentration  
𝑐𝑁𝑎+,∞ = 0.5𝑀 

𝑐𝐶𝑙−,∞ = 0.5𝑀  

Debye length 
 
𝐷= 13.43 nm 
 

Fixed charge density 

𝜁𝑓𝑖𝑥= -1 

T= 293.15 K 

Velocity 
u = 0.03 m/s 
u = 0.5 m/s 
u = 2 m/s 
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Figure 29. Profiles of dimensionless ion concentration with different fluid flow velocity. 

 

In the graphic can be seen that when the velocity increases, in the membrane the co-ions 

concentration descreases and increases in the case of counter-ions. Also, the curves becomes 

asymmetric when the velocity increases, this is because the increment of flux pushes the ions 

towards the membrane causing the convective flow to exceed the electrical forces. 

Also, can be viewed that the final concentration increases because the flow drags the ions 

to the outside of the membrane making the permeate more concentrated in ions. 
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v. Effect of Temperature 

Initial concentration  
𝑐𝑁𝑎+,∞ = 0.5𝑀 

𝑐𝐶𝑙−,∞ = 0.5𝑀  

Debye length 
 
𝐷= 13.43 nm 
 

Fixed charge density 

𝜁𝑓𝑖𝑥= -2 

Temperature 
T = 293 K             𝐷= 13.43 nm 
 
T =350 K              𝐷= 14.73 nm 
 
T = 600 K             𝐷= 19.3 nm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Profiles of dimensionless ion concentration with different temperature. 

 

For visualize the effect of temperature is better to plot the profile concentration from the bulk 

to the interface of membrane (x/L = 0.25). 
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Figure 31. Profiles of dimensionless ion concentration from the bulk to the membrane interface with 
different temperature. 
 

 
 
Figure 32. Profiles of dimensionless ion concentration from the bulk to the membrane interface with 
different temperature. 
 
 

The temperature is also a decisive variable in this kind of systems, because the length of 

the electrical double layer depends on it. When the temperature increases the thermal energy 

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0 0,2 0,4 0,6 0,8 1 1,2

Dimensionless electrical potential

potential
(T=293 K)

potential
(T=450 K)

potential
(T=650 K)

𝑐𝑖

𝑐𝑖,∞

 

𝑥

𝐿
 

Ψ 

↑  𝑇      ↑  𝜆𝐷 = (
ε 𝑅 𝑇 

 𝐹2𝑐𝑖,∞

)

1
2⁄

 

0

0,5

1

1,5

2

2,5

0 0,05 0,1 0,15 0,2 0,25

Dimensionless concentration Na+
(T=293
K)

Cl-
(T=293
K)



54 Sureda Croguennoc, Alexandre 

increases, so the diffusive layer spreads, in other words, the diffusion of the ions exceed the 

electrostatic forces making the Debye length bigger. This can be seen with the Einstein relation: 

 

𝐷𝑖 = 𝑀𝑖𝑅 𝑇 

 
 

With the Einstein relation this is more clearly, when the Temperature increases the brownian 

motion increases making the diffusivity larger. 

In the case of potential, can be explained by the section 1.2.2.1 Low potential 

approximation, in the potential plots can be seen that when the temperature increases the 

electrical double layer also increases making the electrical potential smaller, this is because the 

thermal energy produced by the brownian motion exceed the electrical potential energy. 

 

vi. Effect of steric coefficient 

Initial concentration  
𝑐𝑁𝑎+,∞ = 0.5𝑀 

𝑐𝐶𝑙−,∞ = 0.5𝑀  

Debye length 
 
𝐷= 13.43 nm 
 

Fixed charge density 

𝜁𝑓𝑖𝑥= -2 

Steric coefficient 
gij = 0 
gij = 0.05 
gij = 0.5 
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Figure 33. Profiles of dimensionless ion concentration with steric coefficient. 

 

In this graphic can be observed that the steric effect is crucial for the exclusion of the ions in 

the membrane, the classic Nernst-Planck equations are able to predict in a general way the ions 

behaviour but not with exactitude to describe the exclusion. When the Nernst-Planck equations 

include the steric effects, the exclusion of the ions became very high like in the real systems of 

membranes. 

 This reason is because the NP equations are general for predict transport of ions in dilute 

solutions and in cases where the pore radius don’t have a crucial decision in the exclusion of 

ions, but in the case of NF membranes the pore radius is very important, and the interactions of 

ion-ion also have a very important role, so including the steric effects in the NP equations can 

predict with more exactitude this complex systems with continuum models and making it 

unnecessary to resort to statistical physics and molecular dynamics simulations  
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5. CONCLUSIONS 

 

After the validation of the model and the discussion of the effect of the variables that depend 

our system, can be concluded that the numerical method developed accomplish the objective: 

“The main objective of the work is to propose a model of ion transport in a generalized 

way and solve it with the minimum of simplifications”. 

The model has physical consistency, because all the numerical solutions ratify the double-

layer theory of Gouy-Chapman. Also, the numerical solution is compared with a more complex 

model in 2D that also includes the Navier-Stokes equations, so if our model predict with 

exactitude the results of more complex models, ratify that the model of this project is very 

versatile giving good results with less computation resources. 

Also is compared with a model that have very acceptance for predict the permeate 

concentration in the membrane engineering, the DSPM-DE model. The results of this work 

predict with exactitude the results of DPM-DE model. 

So if the model is able to predict the behaviour of the ions inside the membrane and also the 

final concentration of the ions for a type of membrane, can be concluded that our model is 

useful to describe the concentration of ions for a given membrane and for designing membrane 

processes. 

To finish, the effect of the variables is confirmed that the model is stable and meets its 

expectations, but in the case of classical Nernst-Planck equations they are not able to predict 

with absolute accuracy the exclusion of the ions, but including the steric term in the partial 

differential equations gives them the accuracy that they lack, so the steric effects are crucial to 

determine the selectivity of the membrane making extremely important to take into account. 
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ACRONYMS 

 

DAE Differential algebraic equations 

LEH Local Equilibrium Hypothesis 

MF Microfiltration 

NF Nanofiltration 

ODE Ordinary differential equation 

OHP Outer Helmholtz Plane 

PDE Partial Differential equation 

PNP  Poisson Nernst Planck 

RO Reverse osmosis 

SC Space charge model 

TMS Teorell Meyer Sievers 

UF Ultrafiltration 

  

 Avogadro’s number 

 Boltzmann’s constant 

 Born energy solvation 

 Boundary 

 Bulk diffusivity 

 Bulk permittivity 

 Bulk viscosity 

C Capacitance 

 Chemical potential 

 Chloride concentration 

 Chloride diffusivity 

 Chloride valence 

 Concentration bulk of the ion 

 Concentration of the ion 

 Convective hindrance coefficient 
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 Debye’s length 

 Debye-Hückel parameter 

Ki,D Diffusion hindrance coefficient 

 Diffusivity at the pore membrane 

 Diffusivity of the ion 

 Dimensionless concentration 

 Dimensionless Debye length 

 Dimensionless electrical potential 

 Dimensionless fixed charge density 

 Dimensionless length scale 

 Dimensionless steric partition coefficient 

D Donnan potential 

 Electrical potential 

E Electrical field 

 Electrochemical potential 

e Electron mass 

F Faraday’s constant 

 Fixed charge density of the membrane 

G Gibbs energy 

ri Ionic radius 

I Ionic strength 

 Kinematic viscosity 

 Membrane region 

 Membrane thickness 

 Mobility of the ion 

 Molar flux 

 Molecular steric coefficients 

Pe Peclet number 

 Permeate concentration 

 Permeate region 

 Permittivity of the solvent 

 Permittivity of vacuum 

 Pore permittivity 

rp Pore radius 

 Pore viscosity 

P Pressure 

 Ratio of the ionic radius by the pore radius 

 Sodium concentration 

 Sodium diffusivity 
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 Sodium valence 

 Solvent concentration 

 Solvent region 

 Steric coefficient 

 Surface charge density 

R Universal gas constant 

 Valence of the ion 

u Velocity 

 Volumetric charge density 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 Sureda Croguennoc, Alexandre 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 



Numerical solution of transport phenomena equations for nanofiltration membranes. 65 

 

APPENDIX 1: MATHEMATICAL METHOD 

 

The method of finite difference can be defined by the standard definition of the derivative: 

 

𝑓′(𝑥) = lim
ℎ→∞

𝑓(ℎ + 𝑥𝑖) − 𝑓(𝑥𝑖)

ℎ
 

 

And can be approximated to 

𝑓′(𝑥)𝑎𝑝𝑝𝑟𝑜𝑥 =
𝑓(ℎ + 𝑥𝑖) − 𝑓(𝑥𝑖)

ℎ
 

 

But a definition for the difference formula by the Taylor expansion  

 

𝑓(𝑥𝑖+1) = 𝑓(𝑥𝑖) + ℎ 𝑓′(𝑥𝑖) +
ℎ2

2
𝑓′′(𝜉𝑖);  𝑥𝑖 < 𝜉𝑖 < 𝑥𝑖+1 

 

Which is more useful because the error can be estimated: 

 

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)

ℎ
−

ℎ2

2
𝑓′′(𝜉𝑖) 

 

It is important to think that 𝜉𝑖  must lie between 𝑥𝑖+1  and 𝑥𝑖  because the error is local. 

Typically, the error is expressed in asymptotic form: 

 

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)

ℎ
+ 𝑂(ℎ) 

 

This finite difference formula is referred to first-order forward difference, the backward 

difference the interval used lie between 𝑥𝑖 and 𝑥𝑖−1. 
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Taylor expansions can be used to derive high-order approximations. For example: 

𝑓(𝑥𝑖+1) = 𝑓(𝑥𝑖) + ℎ 𝑓′(𝑥𝑖) +
ℎ2

2
𝑓′′(𝑥𝑖) + 𝑂(ℎ3) 

And  

𝑓(𝑥𝑖−1) = 𝑓(𝑥𝑖) + ℎ 𝑓′(𝑥𝑖) +
ℎ2

2
𝑓′′(𝑥𝑖) + 𝑂(ℎ3) 

Solving for 𝑓′(𝑥𝑖) gives the second-order centered difference formula for the first derivative 

 

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖−1)

2ℎ
+ 𝑂(ℎ2) 

And the second order centred difference formula for the second derivative  

𝑓′′(𝑥𝑖) =
𝑓(𝑥𝑖+1) − 2𝑓(𝑥𝑖) + 𝑓(𝑥𝑖−1)

ℎ2
+ 𝑂(ℎ2) 

 

Mathematica provided a kernel function with the Fonberg algorithm that is not difficult to 

implement in Mathematica. Finite differences have been implemented through a data object that 

allows efficient evaluation of finite differences over an entire grid given a vector representing the 

function values on the grid.  

When the data object is constructed for a derivative and grid, finite difference weights are 

computed using the fast and accurate weight computation algorithm of Fonberg and formed into 

a (sparse) differentiation matrix that the data object stores. The weight generation algorithm 

makes it easy to support uniform or non-uniform grids along with an arbitrary approximation 

order of finite difference. The approximation order can be specified by an option. The default of 

4th order differences was chosen because for a large class of functions you can use far fewer 

spatial points and still get a better approximation than with second order differences, but going 

to higher order can increase both roundoff error and implicit solving complexity without as much 

decrease in the number of spatial points. Boundaries are handled by one-sided derivative 

approximations. An easy way to see the formulas that are being used is to give symbolic 

function values [18]. For example, on a uniform grid with spacing h = 1 with 4 grid points the first 

derivative approximated with finite difference method with difference order 4 is 
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Is the Matrix form of the discretized first derivative of the function on the grid with 4th order 

Taylor series. Here is a table to present the kernel function of the finite difference method used: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Description of the finite difference algorithm by Wolfram Mathematica. 

 

Typically, when computing a PDE solution, it is common to repeat the same finite difference 

scheme to different values or function on the same grid. For this reason, Mathematica gives a 

kernel function with the same finite difference algorithm but does not require to specify the 

function or values on the grid, by this way can be used the algorithm for different values. In the 

The grid that the derivative is 
evaluated 

The function that the finite difference 
derivative is applied 

Derivative order who has to be 
discretized 
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last table can be seen that in the Mathematica function the third argument are the function 

values, when you omit this argument the result will be an NDSolve FiniteDifferenceDerivative 

Function, which is the finite difference weights stored in an efficient form for future use. 

 

For example, suppose you have values of the sine function on a grid with uniform spacing 

between 0 and 2π.  

Example by Knapp.R "A Method of Lines Framework in Mathematica." Journal of Numerical 

Analysis, Industrial and Applied Mathematics, 2007. 

 
 

Then, constructing a FiniteDifferenceDerivative object on the grid for the first derivative 

returns a function that optimizes finite difference approximation. 

 

 
 

The function can be applied to the vector of values to get the vector of derivative values as 

shown in figure 

 

 

 
Figure 2. Plot of the function Sin[x] and his derivative. 
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Where the circles are the values of the function and the squares are the first derivative of 

the values. 

The information of this method from Mathematica is 

 

 

 

 

 

 

 

 

 

 
Figure 3. Description of the finite difference algorithm by Wolfram Mathematica. 

 

When the derivatives are discretized with this algorithm the result is a system of ODEs or 

DAEs with temporal derivatives. If the refinement of the grid is high, the number of grid points 

becomes very high and the system of ODEs or DAEs becomes very large. For represent the 

finite differences weights in large systems is convenient to express the finite difference weights 

with Differentiation Matrix.  

Finite difference approximation is a linear operation, the alternative to express 

FiniteDifferenceDerivative Function is with a matrix. Differentiation matrices are not always the 

best way but in finite difference approximations can be used to reduce complexity and error. 

For illustrate the Differentiation Matrix is discretized with second-order centred difference 

formula for the first derivative and the second-order one-sided difference are required at the 

boundaries 

𝑢′
𝑖 =

𝑢𝑖+1 − 𝑢𝑖

2ℎ
+ 𝑂(ℎ2) 

𝑢′
𝑖 =

−3 𝑢𝑖 + 4 𝑢𝑖+1 − 𝑢𝑖+2

2ℎ
+ 𝑂(ℎ2) 

𝑢′
𝑖 =

 𝑢𝑖−2 − 4 𝑢𝑖−1 + 3 𝑢𝑖

2ℎ
+ 𝑂(ℎ2) 

For i=1,...N, be a grid of equally spaced points [0,1] where h= 1/(N-1)  
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Using the finite difference formula, the first derivative values can be approximated by 
 

𝑢′
𝑖 = 𝐷 𝑢𝑖 

Where D is a NxN differentiation matrix  

 

With the Mathematica algorithm has the next form 

 

Define the grid nx for i=0,...1 equally spaced with h =1 /(npts-1) 

 

Apply the finite difference algorithm for a first derivative approximated to second order 

Taylor.  

And we apply the kernel function Differentiation Matrix to get the matrix defined before 

 
 
 
 
 N 

𝐷 =
1

ℎ
 

Differentiation matrix of the first  
derivative approximated to second 
 order Taylor 

N 
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If we do the product 𝐷 𝑢𝑖 result 

𝑢′
𝑖 = 𝐷 𝑢𝑖 

 
 

Before starting to implement the Line Method algorithm to solve the system of PNP 

equations. it will solve PDEs that have analytical solution and verify that the numeric method 

works correctly. 

The basic example of PDE is the classical diffusion equation that have analytical solution in 

semi-infinite and infinite regions. The first example is a diffusion process in a semi-infinite 

regions with the following conditions. 

 

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2
   ; 0 < 𝑥 < ∞ 

𝐼𝐶: 𝑐(𝑥, 0) = 𝐶0 

𝐵𝐶: 𝑐(0, 𝑡) = 0 

𝐵𝐶: 𝑐(∞, 𝑡) = 𝐶0 
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Scaling the equation 

 

𝑐

𝑡
= 𝐷

𝑐 

𝛿2
  ⟶ 𝛿 = √𝐷 𝑡        𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 

 

 
 

With the dynamical length can be defined a non-dimensional variable that involves the two-

dimensional independent variable (similarity variable)  

𝜉 =
𝑥

𝛿
=  

𝑥

√𝐷 𝑡
 

The solution c(x,t) will be the form 

𝑐(𝑥, 𝑡) = 𝐶0𝐹 (
𝑥

2√𝐷 𝑡
 ) 

And the dimensionless concentration 

𝜃 =
𝑐(𝑥, 𝑡)

𝐶0

= 𝐹 (
𝑥

2√𝐷 𝑡
 ) 

 

Considerations 

𝜕𝜉

𝜕𝑡
= (

𝑥

2√𝐷 
 ) (−

1

2
𝑡−

3
2) = (

𝑥

2√𝐷 
 𝑡−

1
2) (−

1

2
𝑡) 

𝜕𝜉

𝜕𝑡
= −

𝜉

2𝑡
 

𝜕𝜉

𝜕𝑥
=

1

2√𝐷𝑡 
 

For the rule of change of variables and make the concentration dimensionless gives 

 

𝜕𝜉

𝜕𝑡

𝜕𝜃𝐶0

𝜕𝜉
=

𝜕

𝜕𝑥
(
𝜕𝜉

𝜕𝑥

𝜕𝜃𝐶0

𝜕𝜉
) 

 
 
 

𝐶0 

𝑐 

𝑥 

𝛿 = √𝐷 𝑡 
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With the considerations and the equation gives 

𝑑2𝜃

𝑑𝜉2
+ 2𝜉

𝜕𝜃

𝜕𝜉
= 0 

Reconsidering the conditions with the similarity variable 

 

𝐼𝐶: 𝜃(𝑥, 0) = 1 → 𝜃 (
𝑥

0
) = 𝜃(∞) = 1 

𝐵𝐶: 𝜃(0, 𝑡) = 0 → 𝜃 (
0

2√𝐷𝑡 
) = 0 

𝐵𝐶: 𝜃(∞, 𝑡) = 1 → 𝜃(∞) = 1 
 

We can see that the initial condition and the infinite boundary condition with this new 

formulation becomes the same, this method is called similarity variable and can be used with 

that cases when many conditions becomes the same and the equation can be simplified to an 

ODE.  

Introducing the new notation to the PDE gives 

𝜃 =
𝑐(𝑥, 𝑡)

𝐶0

= 𝐹(
𝑥

2√𝐷 𝑡
 ) 

 
𝑑2𝜃

𝑑𝜉2
+ 2𝜉

𝑑𝜃

𝑑𝜉
= 0 

𝑑2𝐹(𝜉)

𝑑𝜉2
+ 2𝜉

𝑑𝐹(𝜉)

𝑑𝜉
= 0 

Introducing the integrator factor 

 
𝑑2𝐹(𝜉)

𝑑𝜉2
+ 2𝜉

𝑑𝐹(𝜉)

𝑑𝜉
=

𝑑

𝑑𝜉
(𝑒𝜉2 𝑑𝐹(𝜉)

𝑑𝜉
) = 0 

 

Note that integrating factor is to be able to integrate the ODE, integrating the equation gives 

𝑒𝜉2 𝑑𝐹(𝜉)

𝑑𝜉
= 𝐴 

𝑑𝐹(𝜉) = 𝐴𝑒−𝜉2
𝑑𝜉 

 

Integrating the equation and apply the boundary condition  
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𝐹(𝜉) = ∫ 𝐴𝑒−𝑠2
𝑑𝑠

𝜉

0

 

𝐹(∞) = ∫ 𝐴𝑒−𝑠2
𝑑𝑠

∞

0

= 1 = 𝐴
√𝜋

2
= 1 

 

𝐴 =
√𝜋

2
 

Giving the solution of the equation 

𝐹(𝜉) =
√𝜋

2
∫ 𝑒−𝑠2

𝑑𝑠
𝜉

0

=
√𝜋

2
erf(𝜉) 

 
 
 

𝑐(𝑥, 𝑡) = 𝐶0

√𝜋

2
erf(

𝑥

2√𝐷 𝑡
) 

 

For solve this PDE with the Method Of Lines in Mathematica code have the following form: 

First of all, the grid must be defined 

 
 

nx for i=0,...1 equally spaced with h =1 /(npts-1). The next step is to implement the finite 

difference algorithm in the grid to approximate the second spatial derivative of the PDE in a 

differentiation matrix 

The second derivative approximation is called d2x2 and is approximated with a second 

difference order in a differentiation matrix like the before examples. 

 

The dimensionless diffusion equation in Mathematica has the following form 

 
 
 
 
 
 
 
 
 

Error function 
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For define the function u[x,t] an Array has used, but in this case de spatial variable is 

discrete because the finite difference method is used, and the temporal variable is continuous . 

For this reason the Array defined is a vector that depend on [nx=grid] and [t] and the simplest 

way to implement it is to use an Array function.  

The definition of an Array in Mathematica is  
 

  
 
Example:  
 

But for define an Array that depends on two variable and one of them is continuos, 

(temporal variable because is not defined a grid for the time), is to use the # notation. The # 

notation in Mathematica is to represent an argument defined by &,(object). Example: 

 

 

The result of this Array on the function is : 
 

 
 
 
 
 
 
 

 

The boundary condition are declared with this form 

 

The [[ n ]] notation in Mathematica is a way to extract the “n” of a list, is an easy way to 

declare the value on the extremes of the grid. 

The resulting system of DAEs with the boundary conditions are 
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The initial condition  

 

 
 
And solve the system of DAEs with a NDSolve 
 

 

The variable “vars” is used to can be solve the equation in NDSolve , because without this 

change of variable in NDSolve must be defined the variable “x” and “t” and the spatial variable 

was defined in the grid. 

⋮ 
⋮ 
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For view the concentration solution in the spatial direction we must be define a time scale. 

The solution is in dimensionless form, for this reason an initial concentration, diffusion 

coefficient , an axial longitude and a dimensional time must be defined.  

Note: For compare the analytical solution and the numerical solution, the diffusion 

coefficient and the time scale must be small, because the analytical solution is in a semi-infinite 

region [0,∞] for this reason the comparison between the analytical and numerical solutions will 

be valid when the value 
𝑥

2√𝐷 𝑡
 on the last point of the grid tends to infinity. 

𝐶𝑜 = 0.5 
𝑚𝑜𝑙

𝑚3
 

𝐷 = 0.25 
𝑚2

𝑠
 

𝑡1 = 0.05 𝑠 

𝑡2 = 0.15 𝑠 

𝑡3 = 0.25 𝑠 
𝑡3 = 0.5 𝑠 

𝐿 = 1 𝑚 
 

And the dimensionless time scale and the dimensionless concentration are 

 𝜏 
𝑡 𝐷

𝐿2
 

𝜃 =
𝑐

𝐶𝑜

 

The numerical solution in Mathematica is dimensionless, for express the solution with the 

before conditions must be defined in dimensionless variables 

 

 

And the plot of the solution with the different time scales is 
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And the analytical solution with these conditions 𝑐(𝑥, 𝑡) = 𝐶0
√𝜋

2
erf(

𝑥

2√𝐷 𝑡
) 

 

 
 
 
 
 
 
 

1 0 𝑥 

𝐶0 = 0.5
𝑚𝑜𝑙

𝑚3  

𝐶0 𝜃 = c 

𝐶0 = 0.5
𝑚𝑜𝑙

𝑚3  

𝐶0 𝜃 = c 

𝑥 0 1 
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The comparison between them 

 
 
 
 

Can be concluded that the numerical solution is valid, but when the time scale becomes 

large in the red line when t=0.5 the semi-infinite analytical solution it needs more longitude to 

arrive to initial concentration. 

The numerical method is also compared to the diffusion equation with a Neumann boundary 

condition for can be conclude that the method is consistent. For example, when the flux is 

specified in the begin of the domain: 

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑐(𝑥, 𝑡) 

𝜕𝑥2
   ; 0 < 𝑥 < ∞ 

𝐼𝐶: 𝑐(𝑥, 0) = 0 

𝐵𝐶:−𝐷
𝜕𝑐(0, 𝑡)

𝜕𝑡
= 𝑓 

𝐵𝐶: 𝑐(∞, 𝑡) = 0 
 

With the same method that the before PDE is solved this equation with these conditions 

gives: 

 

 

𝐶0 𝜃 = c 

0 𝑥 1 
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𝑐(𝑥, 𝑡) = 2√
𝑡

𝐷
𝑓 ( 

𝑒−𝜉2

√𝜋
− 𝜉 erfc (

𝑥

2√𝐷 𝑡
)) 

 

Where  erf 𝑐 (
𝑥

2√𝐷 𝑡
) = 1 − erf (

𝑥

2√𝐷 𝑡
) 

 

 
 

With the same procedure that the last example was solved in Mathematica, the numerical 

solution with these conditions gives 

𝑓 = 0.5 
𝑚𝑜𝑙

𝑚2𝑠
 

𝐷 = 0.25 
𝑚2

𝑠
 

𝑡1 = 0.05 𝑠 
𝑡2 = 0.1 𝑠 

𝑡3 = 0.2 𝑠 

𝑡3 = 0.3 𝑠 
𝐿 = 1 𝑚 

𝑥 

2√
𝑡

𝐷
𝑓 

𝑐 
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The comparison between the analytic solution is 

 
 
 
 
Can be concluded the numerical method is able to solve the diffusion equation with Dirichlet or 
Neumann boundary conditions. 

 

 

 

 

 

 

𝑐 

𝑥= nº points 

𝑐 

𝑥= nº points 
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APPENDIX 2: DIMENSIONAL ANALYSIS: 
BUCKINGHAM’S THEOREM 

A quantity of interest is determined by n measurable quantities (the independent variables 

and parameters) {x1, x2, . . . , xn} as  

Ω = 𝑓 ( 𝜔1
𝛼1, 𝜔2

𝛼2, , … , 𝜔𝑛
𝛼𝑛)       

That is to say, we expect to be able to make the units of Ω by combining the parameters ωi, 

these parameters can be the density, viscosity, diffusion, etc. In summary, the parameters are 

dependent of fundamental units, and each parameter is raised to some power αi. 

The fundamental units like time, length, temperature, etc. Are called fj, where the index is for 

the jth fundamental unit that appears in the problem.  

The number of fundamental units are represented by k. Another way of representing the 

units of Ω is by using those fundamental units: 

Ω =  ( 𝑓1
β1, 𝑓2

β2, , … , 𝑓𝑚
β𝑘) 

Where the βj are the powers of the fundamental units that make up the units of Ω. Since 

both  equations are equal to the same thing, we can set them equal to each other: 

𝜔1
𝛼1, 𝜔2

𝛼2, … , 𝜔𝑛
𝛼𝑛 =  𝑓1

β1, 𝑓2
β2, , … , 𝑓𝑚

β𝑘
            

 The parameters ωi has some units, so we can also represent them using the fj : 

[𝜔] =  𝑓1
𝛾1𝑖𝑓2

𝛾2𝑖 …𝑓𝑘
𝛾𝑘𝑖

 

where the γji are the powers for the jth fundamental unit in the ith parameter. Substituting in 

ωi and making all the exponents equal gives a system of equations that can be expressed in 

matrix form:  

(

𝛾11 𝛾12 ⋯ 𝛾1𝑛

𝛾21 𝛾22 ⋯ 𝛾2𝑛
⋮

𝛾𝑘1
⋮

𝛾𝑘2
⋱
⋯

⋮
𝛾𝑘𝑛

)(

𝛼1
𝛼2
⋮

𝛼𝑛

) = (

β1
β2
⋮

βn

)  

 

The matrix γji tells us how to convert between the parameters and the dimensions. 
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The matrix in a more compact notation: 

𝛾̿ 𝛼̅ = β̅ 

This equation is very useful, because tells the way to combine the parameters to get the 

right units, and obtain the parameters of the system involving all the fundamental units. 

Supposing nondimensional parameters a particular combination of α's and nondimensional 

parameter denoted by π. 

The equation can be written as  

𝛾̿ (𝛼𝑜̅̅̅̅ + π̅) = β̅ 

The non dimensional parameter π does not change the units, because is dimensionless, so 

can be subtracted the following statement 

𝛾̿ π̅ = 0    

The solution is the zero vector, and is called the nullspace of a matrix, in this case of the 

matrix γ. So this statement says that the π has no dimensions, the nullspace of the system 

gives the dimensionless parameters. 

The rank nullity theorem can be written in a simpler form like 

Rank(𝛾̿) + dim(𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒(𝛾̿)) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 

 

The number of columns is the fundamental units k, and the number of columns the number 

of parameters n. 

Then, the dimensionless parameters are 

𝑝 = 𝑛 − 𝑘          
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Applying this method to our System of equations gives 

 

Parameter Dimensions 

L Length 

R (Gas constant) (energy)T-1mol-1 

T (Temperature) T 

F (Faraday’s constant) (charge) mol-1 

C (concentration) mol (length)-3 

Co (reference concentration, ej. bulk) mol (length)-3 

ε (permittivity)  (charge)-2(energy)-1(length)-1 

D (diffusivity) (length)2(time)-1 

u (velocity) (length)(time)-1 

x (axial direction) length 

t (time) time 

 (electrical potential) charge (energy)-1 

𝜌𝑓𝑖𝑥  charge(length)-3 

 

 L R T F C Co ε D u x t  𝜌𝑓𝑖𝑥  

mol 0 -1 0 -1 1 1 0 0 0 0 0 0 0 
Length 1 0 0 0 -3 -3 -1 2 1 1 0 0 -3 
T 0 -1 1 0 0 0 0 0 0 0 0 0 0 
Charge 0 0 0 1 0 0 2 0 0 0 0 1  1 
energy 0 1 0 0 0 0 -1 0 0 0 0 -1 0 
time 0 0 0 0 0 0 0 -1 -1 0 1 0 0 
 
 

The matrix has Rank=6 and 13 columns, by the nullity theorem the number of dimensionless 

parameters is 

dim(𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒(𝛾̿)) = 7 
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Gives the null space matrix 

 
 L R T F c Co ε D u x t  𝜌𝑓𝑖𝑥  

Π1 0 0 0 1 0 1 0 0 0 0 0 0 -1 

Π2 0 -1 -1 1 0 0 0 0 0 0 0 -1 0 

Π3 2 0 0 0 0 0 0 -1 0 0 -1 0 0 

Π4 1 0 0 0 0 0 0 0 0 -1 0 0 0 

Π5 -1 0 0 0 0 0 0 1 -1 0 0 0 0 

Π6 2 -1 -1 2 0 1 -1 0 0 0 0 0 0 

Π7 0 0 0 0 1 -1 0 0 0 0 0 0 0 

The dimensionless parameters are 

 

Π1 =
F Co 

𝜌𝑓𝑖𝑥

 𝜁𝑓𝑖𝑥 =
𝜌𝑓𝑖𝑥

F Co
 

Dimensionless fix charge 
density 

Π2 =
F  

𝑅 𝑇
 Ψ =

F  

𝑅 𝑇
 

Dimensionless electrical 
potential 

Π3 =
𝐷 𝑡 

𝐿2 
 

 

τ =
𝐷 𝑡 

𝐿2 
 

 

Dimensionless time scale 

Π4 =
𝑥  

𝐿 
 

 

ξ =
𝑥  

𝐿 
 

 

Dimensionless length scale 

Π5 =
𝐷  

𝐿 𝑢
 

 

𝑃𝑒 =
𝑢 𝐿  

𝐷
 

 

Peclet Number 

Π6 =
𝐿2𝐹2 Co   

ε 𝑅 𝑇 
 

 

λ̃𝐷
2  =  

ε 𝑅 𝑇  

𝐿2𝐹2 Co  
  

Dimensionless Debye length 
(electrical double layer) 

Π7 =
𝑐  

Co
 

 

𝜃 =
𝑐  

Co
 

 

Dimensionless concentration 

 

Can be seen that this method is very powerful, because all the parameters obtained have 

physical significance, and only with the matrix of the governing parameters can be obtained all 

the dimensionless parameters that governing the system. 
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APPENDIX 3:  MATHEMATICA CODE 
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