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Landscape of Solutions in Constraint Satisfaction Problems
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We present a theoretical framework for characterizing the geometrical properties of the space of
solutions in constraint satisfaction problems, together with practical algorithms for studying this structure
on particular instances. We apply our method to the coloring problem, for which we obtain the total
number of solutions and analyze in detail the distribution of distances between solutions.
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Constraint satisfaction problems (CSPs) offer a unified
language describing many complex systems. Originally
investigated by computer scientists in relation with algo-
rithmic complexity [1], CSPs have recently attracted much
interest within the physics community, following the dis-
covery of their close ties with spin-glass theory [2,3]. They
are currently used to tackle systems as diverse as, among
others, error-correcting codes [4], rigidity models [5], and
regulatory genetic networks [6]. The ubiquity of CSPs
stems from their general nature: Given a set of N discrete
variables subject to M constraints, a CSP consists in decid-
ing whether there are assignments of the variables satisfy-
ing all the constraints. Of special interest is the class of NP-
complete problems [1], for which no algorithm is known
that guarantees to decide the satisfiability of a problem
instance in a time polynomial in N. A well-studied example
is the g-coloring problem (¢g-COL): Given a graph with N
nodes and M edges connecting certain pairs of nodes, and
given g colors, can we color the nodes so that no two
connected nodes share a common color?

Much insight into CSPs is gained by focusing on typical
instances drawn from an ensemble with a fixed density of
constraints &« = M/N. As « is varied, a threshold phe-
nomenon is generically observed. Below a critical value
o, instances are typically satisfiable (SAT phase): At least
one satisfying assignment (or solution) exists with proba-
bility one when N — oo; above «,, they are typically
unsatisfiable (UNSAT phase). Rigorous bounds on a,
have been derived [7]. The running time of algorithms
often increases greatly near «,. [8].

CSPs enter the standard framework of statistical physics
by associating to each assignment of the N variables o =
{o:}¥.| an energy E[c] defined as the number of con-
straints violated by o. The satisfiability problem reduces
to the determination of the ground-state energy E, =
min,E[o]: If E; > 0, the instance is UNSAT; if E, = 0,
it is SAT. In recent years, several methods borrowed from
statistical physics [3,9,10] have pointed to the existence of
a second threshold a,; < «,, associated with clustering of
the space S of all solutions. For & < a, (easy-SAT phase),
S is typically connected: Any two solutions are joined by a
path of moves involving a finite number of variables. For
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a; < a < a, (hard-SAT phase), S is typically discon-
nected: Solutions gather into clusters far apart from each
other [as illustrated in Fig. 1(a)], which can be joined only
by moves involving a finite fraction of the variables. This
scenario, which has been confirmed rigorously in some
cases [11], suggests that computational hardness may be
caused by the trapping of local algorithms in metastable
clusters, which are exponentially more numerous than
clusters of solutions.

In this Letter, we introduce methods to analyze in detail
the structure of the solution space of CSPs in the hard-SAT
phase. The first aspect we analyze is the entropic structure.
A cluster A typically contains an exponential number of
solutions M, = exp(Ns,), where Ns, is the internal en-
tropy of A (we write ay = by when Inay/Inby — 1 as
N — o0). We introduce the entropic complexity 2,,(s) that
counts the number N y(s) = exp[N2,(s)] of clusters with
internal entropy Ns and a method for computing 3, (s) and
the total entropy density s, yielding the total number of
solutions |S| = exp(Ns,,) for individual instances of any
CSP. The problem of counting the number of solutions of a
CSP is, in general, #P-complete [1,12], a class of problems
even harder than NP-complete. Estimating | S| is important
in applications such as graph reliability [12] and comput-
ing partition functions.

A second, related aspect of the structure of S is its
geometry. We introduce a method to compute the geomet-
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FIG. 1. (a) Illustration of the clustering phenomenon. In the

easy-SAT phase a < a,, all the solutions are connected. In the
hard-SAT phase a,; < @ < «,, solutions separate into distinct
clusters. (b) Notations used in the cavity approach: The message
(cavity field) t,bf};j) gives the probability that node i has color o
in the absence of node ;.
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ric complexity 2. ,(d), which counts the number of clusters
at a given distance Nd from a reference assignment [see
Fig. 1(a)], and the related weight enumerator function, of
direct interest in coding theory [13]. Finally, we indicate
several generalizations of these methods.

Our methods are based on extensions of the “‘energetic”
cavity method (CM) of Ref. [14]. We illustrate them for
q-COL and show numerical results for g = 3, but we
emphasize that any CSP can be studied along the same
lines. The energy function associated to g-COL is that of
the antiferromagnetic Potts model, E[o] =Y )8s,0,
where o; € {1, ..., g} and the sum is over the M graph
edges. We study Erd6s-Rényi random graphs [15], con-
structed by connecting any pair of nodes with probability
2a/N. For large N, this gives M = aN and a Poisson-
distributed connectivity with mean 2a.

In the unclustered phase (“‘replica symmetric” phase in
the language of spin-glass theory), the zero-temperature
energetic CM [14] computes the ground-state energy re-
cursively by adding one node at a time. For large enough «,
the recursion no longer admits a unique solution and is
generalized, via the one-step replica symmetry breaking
ansatz (1RSB), to a distributional recursion which can be
solved self-consistently, yielding the energetic complexity
> (€), which counts the number N y(€) = exp[N2 (€]
of clusters of local minima with energy E = Ne. In parti-
cular, % .(0) is found positive in an interval a € [ozz({), a.l.
The method was applied to g-COL in Refs. [16,17], which
report ag) ~221, a, =234 for g = 3 (see also Fig. 3).
The validity of the 1RSB ansatz in an interval [«,,, asp]
containing «, was established for g-COL in Ref. [18],
using the stability analysis of Ref. [19], with «,, =~ 2.25,
agp = 2.50 for g = 3.

Counting solutions.—The energetic CM has the virtue
of being simple enough, and it thus allows a precise
determination of «, and the development of a powerful
new class of algorithms (survey propagation [10]). This
simplicity is obtained because one focuses only on clusters
in which some of the variables are frozen, i.e., constrained
to adopt a unique color. Computing the entropy requires a
more detailed information and, thus, a different formalism,
as first identified in Ref. [9] within the replica framework.
Our approach to computing entropies is illustrated in
Fig. 1(b). The basic quantity we consider is the number
ngj) of solutions for the “cavity” graph obtained from
the original graph by removing node j, when the color of
node i is fixed to ¢;. In the unclustered phase, due to the
locally treelike structure of large random graphs, the quan-
tities Zﬁi‘f") , with k denoting any of the nodes connected to
i except j (in symbols, k € i — j), are independent of each
other for large N. Hence, a recursion relation holds,
ZST") =[lkei-; X0 0, zﬁi‘j”. By defining a cavity field
as the probability of having color o on node i in the
absence of j, zpfﬁf’) = Zg_'j) / ZTZ(THJ'), the recursion rela-
tion translates to

o = g = 2 [T =™
kEi=j

with Z fixed by normalization. The ensemble of these
equations on all oriented links, known as belief propaga-
tion equations [20], has a unique solution for o < . In
general, a; = agf ) holds, since af'if ) refers to the onset of
clusters with frozen variables, while at «, clusters without
frozen variables may also appear. It is not difficult to show
that the total entropy of the whole graph is given by
Nso = 3 ;A8 — 3 ) ASG) where, similarly to the en-
ergetic CM [3], we need to substract the link contributions
ASGD) = In(1 — ZT;lf(Ti_'j) a,b(Tj_'i)) from the node contribu-
tions ASY =S, [Te:(1 — 4¥77) to avoid double
counting. Above a,, following the 1RSB ansatz [21], we
assume the existence of many clusters. We then compute a
potential ¢(x) related to the entropic complexity 2 (s)
through

NOW — f e NS, )+ g, 2
where x is a Lagrange multiplier which fixes the internal
entropy and S, Smax are the points at which X ,(s) van-

ishes. Assuming the independence of the quantities in‘j”
within each cluster, we introduce probability distributions
of the cavity fields PU~)(y—7) with respect to the clus-
ters and generalize the cavity recursion to

P o [T dPd =) 2t
kEi-j

X S0 — D (). 3)
After solving Eq. (3), the potential is computed as

Nop(x)=>In f [Pt ASO()

j€i

—Zlnf I

(@.j) a=(i—),(j—1i)

dP(a) (l/l(a) ) exAS("'-” (i, ¢l_/ai))’

“)
where AS®, AS(J)) are given above. A saddle point evalu-
ation of Eq. (2) gives x = —9,2,(s). Hence, from ¢(x)
we obtain 3(s) via the Legendre transform s(x) =
9,(x), 2,(x) = ¢p(x) — xs(x). We solve numerically
Eq. (3) on individual graphs by representing the distribu-
tions P~/ with a population of N cavity fields on each
oriented link. The resulting message passing algorithm is
an entropic generalization of survey propagation [10]. Our
entropic CM provides greater information at the price of
greater computational difficulty, due to the continuous
nature of the cavity fields.

Figure 2 displays some of our results for 3-COL, for
three individual graphs with N = 5000. In particular, the
total entropy of solutions is given by s, = (1) = spaxs
where the last equality holds because, according to our
numerical results in Fig. 2, 3,(x) vanishes at x = x* < 1,
with s, = 9,0 (x = x*). Therefore, for 3-COL the total
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entropy is dominated by a subexponential number of giant
clusters: A randomly chosen solution falls almost surely in
one of such rare clusters. We also find that the fraction of
frozen variables is finite in the interval [$in, Smax -

We also implemented a version of Eq. (3) averaged
over Erd6s-Rényi graphs, by considering a population of
links with Poisson connectivity and a population of cavity
fields on each link. Figure 3 shows the graph averages
obtained in this way for s, the typical internal entropy
Syp = argmax,2(s), and the typical complexity X, =
2 (syp)[= 2(0)], as a function of a. The graph-averaged
complexity curves 2(s) (not shown) resemble those in
Fig. 2. (Graph-to-graph fluctuations for N = 5000 are
significant: For & = 2.3, the standard deviation of Etyp is
about 27% of the mean.) The negative complexities in
Fig. 2 have no direct interpretation on individual graphs,
but for the graph-averaged case they are related to rare
atypical graphs [22].

The above formalism can be generalized to yield
2. s(€ s), the complexity associated with metastable clus-
ters of energy Ne >0 and entropy Ns, with 2. (0, s) =
3.,(s), by adding a second multiplier y [23]. Equivalent
information is contained in the finite temperature complex-
ity Ef(f; B) [21], where f is the free energy and B the
inverse temperature, based on the identity

[eN[Ee,x(e,SFyﬁx.ﬂdeds = [eN[Ef(f:B)*XBf]df, )

with f = € —s/B and y = Bx. The energetic CM is re-
covered for B — o0 and x — 0 with y = Bx fixed, which
amounts to ignoring all entropic effects [24].

Counting clusters at a given distance.—We now turn
to the geometric structure and show how the CM can be
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FIG. 2. Entropic complexity for three individual Erdds-Rényi
graphs with N = 5000 and different values of « = M/N. Data
obtained with a population size Np = 512 on each oriented link
(we verified that using Np = 4096 gives a change smaller than
the error bars). The dotted lines are obtained by a polynomial fit
of the potential ¢(x), the symbols by direct computation of the
derivative 9, ¢(x) in Eq. (4) [27].

used to investigate intercluster distances. We illustrate this
by addressing the problem of counting the number of
clusters as a function of their distance from a fixed refer-
ence configuration s, which we rephrase as a new CSP,
named dCSP, whose thermodynamics reflect the geome-
try of the solution space of the initial CSP. The valid
assignments of dCSP are the solutions o € S of the ini-
tial CSP: These are configurations of zero energy, and in
this sense dCSP concentrates on the zero-temperature
case of the original problem. But we introduce in dCSP
a new energy function which is the Hamming distance
from s, Ep[o] = Y¥,(1 — & ,,). Therefore, the clus-
ters (assignments) of dCSP with energy Ep, are the zero-
energy clusters (solutions) at distance Ej from s in the
initial CSP.

The optimization problem for dCSP consists in finding
the maximal (or the minimal) distance between s and a
solution of the original problem. By applying the energetic
CM to this problem [25], we obtain a geometric complex-
ity 2 ;(d) giving the number of clusters at distance Nd of s,
N y(d) = exp[N2 ,(d)]. Figure 4 shows results for 3-COL
on individual graphs. Two features are worth noticing:
(i) 2,4(d) becomes positive only above a threshold dy,,
reflecting the fact that clusters are well separated; (ii) a
plateau appears between d; and d,, reflecting the finite
diameter of clusters. We have verified that the size of this
plateau coincides with the typical diameter computed
within the entropic CM [23].

Generalizations.—The above method can be extended
to count the number of solutions at distance Nd from s,
known as the weight enumerator function Ay(d) in coding
theory [13]. This can be deduced from the complexity
2.45(d, s), which gives the number of clusters with internal
entropy N at distance Nd from the reference configuration
s. Such a complexity can be obtained by studying the dCSP
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s ‘ ‘ : ‘ 0.10
222 224 226 228 230 2.32 2.34 2.36

a=M/N

FIG. 3. Graph-averaged Etyp, Siyp> and sy Notice the different
vertical scales. Data obtained with a population of 16000 links
and Np = 512 fields on each link. The vertical line shows the
threshold «,, = 2.255 below which the 1RSB ansatz is unstable
[18]. The straight line is the ‘“liquid” or infinite-temperature
solution s;,, = (1 — a)In(q) + aln(g — 1).
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FIG. 4. Geometric complexity for the same individual graphs
as in Fig. 2. Within the error bars, 2,(d;) = % ,(d5) = 2(sp).
The horizontal lines are a guide to the eye.

with a finite value of a new inverse temperature 35, which
is conjugate to the energy E (keeping the original tem-
perature B! to zero) [23]. Once X (d, s) has been found,
one obtains the leading behavior of the weight enumerator
as Ay(d) = exp[Nmax (2 ,(d, s) + s)]. In the same spirit,
our analysis can be extended to metastable configurations:
In order to compute the complexity . ; (€, d, s) counting
clusters with energy Ne, entropy N, at distance Nd from
s, one needs to introduce three Lagrange multipliers x, y, z.
All the previous complexities are particular limits of this
more general framework [23].

Conclusions.—We have presented methods to analyze
the entropic and geometric structure of the clustered phase
in g-COL, which give access to quantities such as internal
cluster entropies not accessible to previous methods. Our
results for 3-COL show the existence of giant, atypical
clusters which contain the majority of solutions. General-
ization to other CSPs such as k-SAT, where a similar
picture may hold, is straightforward.

Notice that the present results were obtained within a
1RSB ansatz, and the stability of our solution should thus
be checked (extending the method of Ref. [19]) to assess
whether the solution is exact or only an approximation to a
more complicated one involving higher order RSB.

The new information extracted with our entropic CM
could be exploited to design new algorithms for finding
solutions to individual instances, improving on present
survey propagation algorithms which use only energetic
information [10]. We also envision applications to infer-
ence problems such as Bayesian belief networks [26].

We thank D. Battaglia and R. Zecchina for discus-
sions and A. Pagnani for sending the SP code used in
Refs. [16,17]. This work was supported in part by the
European Community’s Human Potential Programme
under Contract No. HPRN-CT-2002-00319 (STIPCO)
and by the Community’s EVERGROW Integrated Project.

Note added in proof.—The recent paper [28] addresses
similar questions in the simpler unclustered case.

(1]
(2]
(3]
(4]
[51
(6]
(7]
[8]

[25]

(26]
(27]

(28]

200202-4

C.H. Papadimitriou, = Computational
(Addison-Wesley, Reading, MA, 1994).
R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and
L. Troyansky, Nature (London) 400, 133 (1999).

M. Mézard, G. Parisi, and R. Zecchina, Science 297, 812
(2002).

D. Battaglia, A. Braunstein, J. Chavas, and R. Zecchina,
Phys. Rev. E 72, 015103 (2005).

J. Barré, A.R. Bishop, T. Lookman, and A. Saxena, J. Stat.
Phys. 118, 1057 (2005).

L. Correale, M. Leone, A. Pagnani, M. Weigt, and
R. Zecchina, cond-mat/0412443.

D. Achlioptas, A. Naor, and Y. Peres, Nature (London)
435, 759 (2005), and references therein.

P. Cheeseman, B. Kanefsky, and W.M. Taylor, in
Proceedings of the 12th International Joint Conference
on Artificial Intelligence (IJCAI-91) (Morgan Kaufmann,
San Mateo, CA, 1991), pp. 331-337.

G. Biroli, R. Monasson, and M. Weigt, Eur. Phys. J. B 14,
551 (2000).

M. Mézard and R. Zecchina, Phys. Rev. E 66, 056126
(2002).

M. Mézard, T. Mora, and R. Zecchina, Phys. Rev. Lett. 94,
197205 (2005).

L. G. Valiant, STAM J. Comput. 8, 410 (1979).

D.J.C. MacKay, Information Theory, Inference, and
Learning Algorithms (Cambridge University Press,
Cambridge, England, 2003).

M. Mézard and G. Parisi, J. Stat. Phys. 111, 1 (2003).

B. Bollobas, Random Graphs (Cambridge University
Press, Cambridge, England, 2001), 2nd ed.

R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina, Phys.
Rev. Lett. 89, 268701 (2002).

A. Braunstein, R. Mulet, A. Pagnani, M. Weigt, and
R. Zecchina, Phys. Rev. E 68, 036702 (2003).

F. Krzakala, A. Pagnani, and M. Weigt, Phys. Rev. E 70,
046705 (2004).

A. Montanari and F. Ricci-Tersenghi, Eur. Phys. J. B 33,
339 (2003).

F.R. Kschischang, B. Frey, and H.-A. Loeliger, IEEE
Trans. Inf. Theory 47, 498 (2001).

M. Mézard and G. Parisi, Eur. Phys. J. B 20, 217 (2001).
O. Rivoire, J. Stat. Mech. (2005) P07004.

M. Mézard, M. Palassini, and O. Rivoire (to be published).
When B — oo at fixed x, the cavity field (B) used in
computing > (f; B) in Eq. (5) yields either the purely
entropic field ¢ = limg_,.,#%(3) or the energetic field 1 =
limg_.{In[)(B)]/B} (the value of x is irrelevant in the
latter case). The supplement of entropic information con-
veyed by ¢ defines the ‘“‘evanescent field” [9] A/ =
limg_o{In[¢(B)]/ — Bh}.

If s € S, the minimal distance is zero, but by focusing on
the metastable (glassy) states, the cavity method allows
one to ignore this trivial (crystalline) ground state.

D. Roth, Artif. Intell. 82, 273 (1996).

The numerical solution of Eq. (3) becomes difficult for
small s as the distributions become broad. We display data
only conservatively down to the lowest s, at which 9, ¢(x)
computed by direct derivation of Eq. (4) coincides with
the derivative of a polynomial fit of ¢(x).

A. Bandyopadhyay and D. Gamarnik, math.PR/0510471.

Complexity



