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1. SUMMARY 

Fossil resources are running out on our planet, while environment and sustainability 

concerns are gaining importance year by year. New targets have been settled in Europe in 

order to reduce emission of pollutants and particles to the atmosphere. In order to fulfill with 

these targets, a reformulation in transport fuels is needed since they are the principals 

originators. 

Butyl levulinate is an ester which seems to be a potential additive in biodiesel blends. Its 

properties as boil point, viscosity or miscibility in water and in diesel, make it a suitable 

candidate. Its presence in biodiesel blends reduce significantly the emissions, and in addition, 

improve their cold flow properties. Synthesis of butyl levulinate is obtained through esterification 

of levuinic acid with butanol, which can be achieved from dehydration of monosaccharides like 

fructose or glucose, from alcoholysis of furfural alcohol or from levulinic acid. 

Levulinic acid is a platform molecule which have a significant interest in industry. Is obtained 

by Biofine process, in which biomass is used as raw material. Nowadays, tarting from biomass 

is interesting. This is why it is being studied the feasibility of butyl levulinate synthesis from 

fructose or glucose. Previous studies have been made in order to evaluate the type of catalyst 

that can enhance the most butyl levulinate formation, with a temperatures range between 100 

and 130 ºC and in atmospheric pressure. In this study, same conditions were settled in order to 

test which proportions between fructose and butanol, and which quantity of catalyst, can obtain 

the best results. 

It has been observed the importance that water presence in initial mixture have regarding 

humins formation. Reducing the viscosity of the initial mixture enhances butyl levulinate 

formation and decreases humins presence. Molar rations between butanol and fructose around 

6 gave better results than the others, and excepting one case, yields increased according with 

catalyst dosage. 

. 
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2. RESUM 

Els recursos fòssils del nostre planeta s’estan esgotant I la preocupació per la sostenibilitat I 

el medi ambient va agafant un paper més important any rere any en la nostre societat. A 

Europa s’han establert objectius per reduir la emissió de contaminants i partícules en suspensió 

a l’atmosfera. Per tal de complir aquests objectius, és necessari plantejar-se una reformulació 

dels combustibles utilitzats en el transport ja que són els principals emissors. 

El butil levulinat és un èster que té interès com a additiu per les mescles de biodièsel. Les 

seves propietats com el punt d’ebullició, la viscositat o la miscibilitat en aigua i en dièsel, el fan 

un candidat perfecte. La seva presencia en les mescles de biodièsel, fa que les emissions a 

l’atmosfera es vegin reduïdes, i a més millora les propietats en fred del combustible. La seva 

síntesi passa per l’esterificació de l’àcid levulínic amb butanol, que es pot dur a terme a partir 

de la deshidratació de monosacàrids com la glucosa o la fructosa, a partir de l’alcohol furfural o 

bé partint del propi àcid levulínic. 

L’àcid levulínic és una molècula plataforma que té un gran interès a nivell industrial. S’obté 

a partir del procés Biofine en el qual s’utilitza biomassa com a matèria prima. Partir directament 

de la biomassa és de gran interès. És per això que s’està investigant la viabilitat de la obtenció 

del butil levulinat partint directament de la fructosa. S’han realitzat estudis previs per avaluar 

quin tipus de catalitzador afavoreix més la formació del butil levulinat, en un rang de 

temperatures entre 100 i 130 ºC i a pressió atmosfèrica. En aquest estudi s’ha treballat en les 

mateixes condicions per avaluar quines proporcions entre fructosa i butanol, i amb quina 

quantitat de catalitzador, es poden aconseguir millors resultats. 

S’ha observat la importància que té la presència inicial d’aigua en el sistema per la formació 

de humins. Reduint la viscositat de la mescla afavoreix la formació de butil levulinat i disminueix 

la presència final de humins. Relacions molars entre butanol i fructosa properes a 6 han donat 

millors resultats que la resta, i exceptuant un cas, els rendiments augmenten amb la massa de 

catalitzador. 
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3. INTRODUCTION 

3.1. CURRENT ROLE OF BIOFUELS 

Nowadays, an unsustainable situation is generated as energy demand increases along with 

the world population. In turn, this situation accelerates global warming. The main originator of 

that issue is the emission of the GHG, greenhouse gases. It is known that in the EU, an 

estimated 21% of the greenhouse gas emissions are produced by transport [1].  

One of the first’s steps of the European Community to start facing that issue was the 

Regulation No 443/2009 of the European Parliament and of the Council, in which the standards 

emissions for new passenger cars as part of the Community’s integrated approach to reduce 

CO2 emissions from light-duty vehicles were settled. The objective was the achievement, before 

2020, of a 20% reduction of GHG emissions compared to 1990 levels [2]. The following 

regulations have established long-term emission reductions targets for 2030 and 2050, with a 

40% and an 80% reduction respectively [3]. In order to fulfill these targets, there must be a 

reconsideration on fuels formulation. 

 Among all kinds of fuels, fossil fuels have been considered the most appropriate due to 

their high energy density and their availability. Besides, it was found that these fuels were the 

best option thanks to the advances made in their processing technology and their availability. 

This concern about sustainability though, have made consider the possibility of replacing fossil 

fuels for biofuels so it has been proved that fossil fuels are not a good solution in terms of 

reducing global warming. In addition, it is estimated that if human keep this consumption rate, 

crude oil will run out in 45 years [4]. Facing all these problems, biofuels seem to be the solution, 

considering that they pollute less than fossil fuels and they are made from biomass, which 

means that unlike fossil fuels they are made from renewable feedstock.  Among all renewable 

energy sources, biomass is differentiated by two aspects: a low conversion efficiency of 

sunlight into energy stored in plants (1-3%) and the fact that any change in the biomass 

production will have an impact in any organism’s life [5]. Four different generations of biofuels 

have been developed, according to their feedstock and sustainability level [1]. 
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First generation biofuels are produced from food carbohydrates, vegetable oils, and animal 

fats [1]. They show some benefits regarding CO2 emissions, such as cleaner and greener 

combustion, and they are also good blenders with petroleum-based fuels. Biodiesel, bioethanol, 

and biogas are the main biofuels of this group. They are getting increasingly competitive as the 

oil price has risen this last decade [6]. Biodiesel is produced by transesterification of vegetable 

oils and has a lot of profits: it can be blended with fossil diesel or as a full substitute as well. 

Bioethanol can have an important role, namely as a gasoline substitute. Although it can be a full 

substitute, it can also serve to produce ethyl tert-butyl ether [6], which blends more easily with 

gasoline. The problem with these first generation biofuels is the competitiveness with food 

crops, the dilemma of food versus fuel that made them an unsustainable choice. As mentioned 

before, the population on Earth keeps growing and so the demand of commodities as well, so 

betting on first-generation biofuels would mean use land that is potentially viable for food crops, 

to produce fuel, and consequently, the price of food would be affected [7]. 

Taking into account the first-generation drawbacks, more suitable and sustainable 

alternatives must be considered in order to confront the emission of GHG. Second generation 

biofuels are made from lignocellulosic feedstock which is totally viable since cellulose and 

hemicellulose can be converted to sugars through biochemical or thermochemical pathways [8].  

One of the most promising thermochemical processes to obtain biofuels is the Fischer-

Tropsch process, also referred to as Biomass-to-liquids (BTL) which its product, a syngas, is 

free of sulfur, nitrogen and aromatics content [9]. This process consists of a pre-treatment 

Figure 1. Four possible specific pre-treatment and feeding options for different biomass streams 
[59]. 
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followed by three stages: gasification, cleaning, and conditioning. According to the type of 

biomass, the pre-treatment will be different as it is shown in Figure 1. Although there have been 

made many tests run in pilot plants, biomass-to-liquids is not very commercially expanded yet 

due to the lack of industrial development. In fact, in Europe, in 2013 the first biomass 

gasification plant was built in Vaasa, Finland, whereas when it comes to pyrolysis, there are a 

total of seven operational plants in Europe [10]. As biochemical routes, fermentation and 

transesterification are the choices to obtain bioethanol and biodiesel. With fermentation, the 

pretreated biomass is hydrolyzed by cellulose enzymes to obtain fermentable sugars [11]. The 

other option is to subject biomass to esterification and transesterification of free fatty acids and 

triglycerides, respectively [12]. These methods though, still have many drawbacks like low 

fermentability of mixed sugar stream or the generation of inhibitory soluble compounds i.e. 5-

hydroxymethylfurfural [13]. 

In conclusion, even though second generation biofuels feedstock has a lower impact on 

total costs than the first generation biofuels (45-58%) [8], advanced technologies are needed to 

make them cost-competitive with fossil fuels, due to the current expensive costs that lignin 

treatment requires.  

With second-generation biofuels, the land competitiveness between fuels and food remains 

solved, but the equipment and technologies to produce biofuels that are developed and well-

established for first-generation feedstock, are not for the second generation. That is when a 

new kind of sources is needed and third generation biofuels are introduced. In this case, macro 

and micro algae are the feedstock. These organisms are surrounded by a lot of benefits, such 

as they don’t need arable land (so fertilizers neither) and they can be cultivated all over the year 

[1]. Besides, higher photosynthetic efficiency than terrestrial plants makes them more 

potentially biomass producers, with a faster growth rate [7]. Among all types of algae, 

microalgae consist of lipids, proteins, and carbohydrates, and depending on the cultivation and 

the type of nutrients, their lipid content can be enhanced and reach up high levels (80% of 

weight). There are two main processes to produce biofuels from algae, anaerobic digestion, 

and trans-esterification. As shown in Figure 2, the first is able to produce methane, carbon 

dioxide, new biomass, and inorganic residues, and with trans-esterification of algae, methyl 

ester is produced, which is the most common component of biodiesel [14]. Huang et al. [15] 

produced microbial oil from sulphuric acid-treated rice straw hydrolysate by the cultivation of the 
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microorganism Trichosporon fermentans, with lipid yield of 11.5 g/l which proves that this 

organism is capable of accumulate lipid with a high yield. However, it still needs more research 

to do in order to make them economically viable, and more investigating is needed since this 

new source of biofuels has been drawing attention as a promising sustainable source. 

Finally, the fourth generation of biofuels, keeping the basis of the third generation which is 

the use of the capacity of algae to store high content of lipids, it enhances it with metabolic and 

genetic engineering of microalgae. There is some debate about whether the third generation 

includes metabolic engineering so then fourth-generation does not really exist. In any case, in 

this work, both are distinguished as two different generations of biofuels. 

The aim is to acquire specific desired properties for micro algae in order to make them 

more efficient. These organisms can be cultivated in two ways, outdoor and indoor, with its 

benefits and drawbacks. Uncontained cultivation (outdoor) is done in open-pond systems and 

even though it is more difficult to control all variables of the process, the low energy 

requirements and the low operation costs, make outdoor cultivation the chosen operating mode 

for most companies [16]. Indoor cultivation is carried out in closed photobioreactor systems 

where variables like temperature, pressure and medium composition are controlled [17], so 

energy demand is higher which means that operating costs are also higher. Since this field is 

still under development, it has to be completely studied in order to prevent any possible 

damage, whether in human or environmental health [18]. 

Figure 2. Schemes of anaerobic digestion process (left) and trans-esterification (right) [14]. 
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At the moment, only the first generation of biofuels is at a commercial level since their 

technological advances and industry are well-known. Regarding the feedstock, both first 

generation and second generation are easier to obtain, but when it comes to processing it, 

second-generation biofuels feedstock still presents some difficulties. Nevertheless, the current 

production of biofuels is not as sustainable as desired. Therefore, many researchers keep 

working on finding more environmentally friendly alternatives. Since a complete substitution of 

fossil fuels it is not yet possible, blending them with biofuels is the most appropriate solution. 

Biodiesel can work both as a single fuel and in fossil diesel mixtures, which is the most 

common option. However, bioethanol must be blended since it would require many 

modifications in diesel engines [19]. 

3.2. ALKYL LEVULINATES AS BLENDERS 

As it has been mentioned, blends of diesel and biodiesel are the provisional solution in 

order to reduce GHG emissions and start to replace fossil fuels. However, there is the 

possibility to improve the properties of these blends by adding other substances, additives that 

increase their oxygen content. Alkyl esters from levulinic acid are suitable as they can also 

improve the lubricity of the mixture, which prevents the engine from wear.  

Biodiesel can present some important drawbacks when it is blended alone with fossil diesel, 

especially at low temperatures, where it can begin to gel and thereby clog filters and even 

increase its viscosity so it cannot be pumped from the tank fuel to the engine [20]. Cold flow 

properties are a key aspect of fuels performance, but first of all, a few important concepts need 

to be highlighted. When the temperature is decreasing, fuels nucleate and form wax crystals 

that remain suspended, then those with higher melt points start to crystallize until crystals are 

visible (0.5 μm), that temperature is the Cloud Point of the substance [21]. As the temperature 

keeps decreasing, the growth rate of crystals is accelerated and once they are have turned 

bigger, they can form agglomerates. When fuel no longer flows or turns solid is called Pour 

Point.  

Different pathways to obtain alkyl levulinates are defined by the raw materials used and the 

type of reaction that occurs (Figure 3). Among all the possible sources, the most commons are 

cellulose, saccharides, chloromethyl furfural and alcohol furfural, from which many techniques 

have been developed in order to produce alkyl levulinates [22]. In this work, some of these 

sources are defined. 
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Figure 3. Synthesis of alkyl levulinates from various biomass reactants [23]. 

Alkyl levulinates can be produced through alcoholysis of furfuryl alcohol. This intermediate 

is produced by the reduction of furfural, which is obtained from xylose, a hemicellulose 

component of lignocellulosic biomass [23]. High conversions and selectivities are generally 

obtained through this reaction. Some research has been made, testing many different kinds of 

catalysts to find which is more suitable for this reaction. Srinivasa et al. [22] used titanium 

exchanged heteropoly tungstate catalyst for the production of ethyl levulinate, achieving a full 

conversion of furfuryl alcohol and product yield of 98%. Carbon-based ArSO3H catalysts with 

hollow mesoporous spherical morphologies were tested by Song et al. [24] and showed 

interesting results as well, with an 81.3% of ethyl levulinate yield. As furfural can be produced in 

high yields in a continuous flow, furfuryl alcohol can also be synthesized through continuous 

flow hydrogenation of furfural. This alternative was studied by Zhao et al. [25] using a catalytic 

bed-packed with zeolites and 80% of methyl levulinate yield was obtained, which proves that it 

has the potential to be industrially developed as well. 
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Another important pathway to obtain alkyl levulinates is by the esterification of levulinic acid 

with the corresponding alcohol (see Figure 4).  One of the firsts direct esterifications of levulinic 

acid reported was carried out by Schuette et al. [26], where many alkyl esters were synthesized 

from levulinic acid in order to evaluate their vapor pressure. There is not an established and 

determined system for the production of alkyl levulinates from levulinic acid since a lot of 

catalysts and initial conditions have been proved. Russo et al. [27] studied the kinetics of 

levulinic acid esterification in a batch reactor and in two continuous bed reactors, with 

homogeneous (sulfuric acid) and heterogeneous (Smopex-101) catalyst respectively, and were 

able to estimate parameters and thus, run some simulations to compare them with 

experimental data. Another kinetics analysis was recently carried out by Zainol et al. [28] using 

lignin-furfural carbon cryogel catalyst. 

 

 

Finally, there are some important sources that bring some great interest to the scientific 

community. Monosaccharides like glucose and fructose can be a feasible choice due to its 

availability and low-market price that make them easy to acquire, so they seem to be a perfect 

raw material. The reaction route goes through the formation of the intermediate 5-

hydroxymethylfurfural (5-HMF) to produce levulinic acid and then, by esterification with the 

corresponding alcohol, the formation of alkyl levulinates. The formation of ether species from 5-

HMF can bring alkyl levulinates as well, by dehydration and rehydration [23]. The yield in this 

case though is lower than the other pathways mentioned above. The reason is that is a 

complex reaction system with multiple side-reactions that give undesired products. 

As it is a promising source of some chemicals platforms production, namely alkyl 

levulinates, recently it has gained important attention for researchers. Liu et al. [29] used 

carbon nanotubes and nanofibers with sulfonic groups to produce 5-HMF and ethyl levulinate 

from fructose. The effect of temperature was studied testing the same experiment at 80, 100 

Figure 4. Esterification of levulinic acid with ethanol to produce ethyl levulinate [27]. 
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and 120ºC, and could be observed how both, the yield of ethyl levulinate and conversion of 

fructose increased with temperature, reaching a top 86% of product yield with a full conversion 

of fructose. Ionic liquids with sulfonic acid-functionalized were also used to carry out the 

production of ethyl levulinate from sucrose, glucose, and fructose by Saravanamurugan et al. 

[30]. This study showed that selectivity towards ethyl levulinate decreased increasing fructose 

initial concentration, while selectivity towards di-ethyl-ether increased, with a full conversion of 

fructose. 

A lot of research has been done to study the feasibility of ethyl levulinate as it seemed to be 

the most suitable alkyl levulinate to be blended with diesel. It shows good properties as low and 

high solubility in water and diesel, respectively, low cloud point, and density and viscosity 

values inside an acceptable range for diesel blends (see Table 1). But butyl levulinate has 

gained recently more attention due to the improved properties of blending it in comparison with 

ethyl levulinate blends. Christensen et al. [31] evaluated the properties of butyl levulinate and 

its blends with diesel to compare them with ethyl levulinate, and it showed less solubility in 

water and more miscibility with diesel. The only drawback detected is the increase in NOx 

emissions, due to the fact that blends with butyl levulinate have a lower cetane number than the 

ones with ethyl levulinate. 

EN 14214-Property Units Low. Limit Up. Limit Test-Method 

Ester content % (m/m) 96.5 - EN 14103 

Density at 15ºC kg/ m3 560 900 EN ISO 12185 

Viscosity at 40ºC mm2/ s 3.5 5 EN ISO 3104 

Flash Point ºC >101 - EN 22719 

Sulfur content mg kg-1 - 10 UV Fluorescence 

Cetane number - 51.0 - EN ISO 5165 

Phosphorus content mg kg-1 - 10 EN 14107 

Water content mg kg-1 - 500 EN ISO 12937 

Acid Value mg KOHg-1 - 0.5 EN 12634 

Oxidation stability at 110ºC hours 6 - EN 14112 

 
Table 1.Limits and methods of testing for EN 14214 standard of B100 biodiesel [57] 
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3.3. ACID SOLID CATALYSTS FOR ESTERIFICATION OF LEVULINIC ACID 

Solid catalysts have taken a fundamental role in the chemical industry since they are easy 

to separate from the rest of the products and reactants and easy to reuse them. Also, it is 

estimated that 90% of all the chemical processes use heterogeneous catalysts [32]. Among the 

heterogeneous catalysts, heteropoly acids (HPA), and namely zeolites play an important role in 

the research of biomass to biofuels, but more recently ion-exchange resins have gained 

attention as well. 

3.3.1. Heteropoly acids and zeolites 

Heteropoly compounds, also known as polyoxometalates, make reference to their 

heteropolyanion hierarchy. This kind of catalyst has a lot of benefits due to their polyanion 

structure mentioned before, and their acid and redox properties [33]. 

That structure is classified into three levels: primary structure, secondary structure, and 

tertiary structure. The primary structure comprises the polyanion structure, a central metal atom 

bonded to four oxygen atoms. Generally, there are two types of HPA regarding the primary 

Figure 5. Representation of HPA with Keggin 
structure  [PW12O40]3- [58]. 
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structure type, those with Keggin units and those with Dawson units. HPA with Keggin structure 

(see Figure 5) is more used as a catalyst than the ones with Dawson, though [33]. The 

secondary structure is the three-dimensional sequence of polyanions, cations, and additional 

molecules, and it is variable and flexible. Finally, the tertiary structure shows how secondary 

structures are assembled to form solid particles. 

Zeolites can be described as heteropoly compounds since they are a three-dimensional 

tetrahedral molecule, composed by one center atom of Si, surrounded by four oxygen atoms. 

This Si atom though, can be replaced for an Al atom and create a negative charge. These 

aluminosilicates framework material have microporous channels which interconnect cavities, 

and they can be readily synthesized offering good control over both pore size and three-

dimensional structure [34]. Zeolites can have a wide range of applications, not only as a 

catalyst but also as ion-exchangers and adsorbents. When they are composed by the same 

amount of Al and Si atoms, their cation exchange capacity is maximum and can be used in 

detergents. For catalytic applications, a framework mostly composed by Si atoms is more 

appropriate since high temperatures are needed for catalytic and regeneration cycles [35].  

Kalpana et al. [36] tested various acidic zeolites for the esterification of levulinic acid and it 

was founded that the most suitable zeolite was H-BETA, with large pores, giving an 82.2% of 

LA conversion with a 100% selectivity towards butyl-levulinate. Saravanamurugan et al. [37] 

went further and tested zeolites for direct transformation of glucose to methyl levulinate and 

ethyl levulinate, achieving 49% and 41% of product yield, respectively. 

Heteropolyacids can present some drawbacks as a catalyst like low surface area, poor 

mechanical strengths or solubility in polar solvents [33]. It has been found that zeolites can offer 

good performance as support of HPA since they are hydrothermally stable and present a larger 

surface area [38]. Manikandan et al. [38] found that silicate-1 offers better performance as 

support of HPA with intracrystalline nanovoids, since they increase the external surface area 

and enhance dispersion of HPA as well. There are other substances that can work as support 

of HPA too, like organic polymers, active carbon, SiO2, TiO2 or ZrO2. However, those with high 

silica content appear to be the favorite used in experimental literature [39]. 
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3.3.2. Ion-exchange resins 

Ion-exchange resins have a crucial role in today’s chemical industry, especially in water 

treatments. They are very abundant in dehydration processes, i.e. condensation of alcohols to 

ethers, alcohols to alkenes, conversion of carboxylic acids to acid anhydride or amides to 

nitriles. Ion-exchange resins also take part in hydrogenation and alkylation reactions, and very 

important in esterification for the production of value added petrochemicals and oleochemicals, 

among others [40]. 

 They have a cross-linked functional polymer matrix composed of copolymers of 

divinylbenzene and styrene, with sulfonated acid groups grafted on its benzene rings [41]. 

There are two morphological types of functional resins: gel-type and macroreticular. Gel-type 

resins in dry state do not offer any kind of porosity which means zero internal surface area, and 

only a few catalytic sites are appreciable on the surface. These conditions in dry state indicate 

that they need a swelling medium. Therefore in swollen state, they present mesopores that 

make the interior of the resin accessible, besides micropores (for inaccessible parts of the 

matrix). Macroreticular resins already present macropores in dry state, but they also have 

micropores due to the swelling of the polymer matrix. 

Figure 6. Representation of dry and swelling state of gel-type (A) and macroreticular 
(B) resins [42]. 
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The difference in both types of resins is made when copolymerization of the matrix is 

carried out, wherein macroreticular resins this happens in the presence of a certain solvent that 

gives these permanents pores to the resin. The main parameter that characterizes the resin is 

the cross-linking content (divinylbenzene), which determines the surface area and the pore size 

distribution. These values will rule the three main stages of ion-exchange resin catalysis, 

absorption, reaction, and desorption. Both gel-type and macroreticular are supplied as spherical 

beads between 0.3-1.25 mm of diameter, but some types also can be supplied as powder, 

particles with less than 0.22 mm of diameter [42]. 

Ion-exchange resins have always been object of study, since they are potentially useful in a 

wide range of applications. Alexandratos et al. [43] studied their feasibility for selective 

complexation of metal ions, synthetizing bifunctional ion-exchange resins with different cross-

linking degrees to see which one gave the rigidity needed for these kind of reactions. Also and 

as mentioned before, ion-exchange resins are very used in catalysis of esterification and 

transesterification. Wang et al. [44] studied the upgrading of bio-oil properties such as viscosity, 

stability and heating value, converting the organic acids that were present into their 

corresponding esters. They utilized 732 and NKC-9 resins, both macroreticular. Another study, 

carried out by Özbay et al. [45], tested Amberlyst and Dowex resins in order to reduce free fatty 

acid content of waste cooking oils, which can cause undesired saponification reactions when 

transesterification of waste cooking oils is needed to produce biodiesel. They also studied the 

effect of catalyst amount, concluding that conversion increased with increasing reaction 

temperature and catalyst mass. Regarding to alkyl levulinates, as it has been said that some 

esters of levulinic acid are high potential additives for biodiesel, ion-exchange resins have been 

used to study their behavior in esterification of levulinic acid. Tejero et al. [46] concluded that, 

even though Amberlyst resins (macroreticular) presented great accessibility of their surface 

active sites, their low number make Dowex resins (gel-type) more suitable due to their higher 

reaction rates. Furthermore, reaction rates increased with reduction on cross-linking degree, so 

the resin that showed better results was the one with less divinylbenzene content (Dowex 

50Wx2, 2% DVB).  
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4. OBJECTIVES 

Biomass to biofuels is a new step that society must take in order to reach all the objectives 

settled. Alkyl levulinates are already known as a potentials biodiesel additives but there is still a 

lack of study in their production to rise them on a commercial level.  

Along with other works, this study is a contribution of a larger project focused on the 

synthesis of fuel additives derived from biomass. The aim of this current study is to set the 

conditions which are the most suitable for the production of butyl levulinate from fructose, 

regarding the proportions of the reactants and the mass of catalyst used.  

These experiments will be carried out with water removal, which is expected to enhance the 

reaction since it moves the equilibrium towards the production of butyl levulinate. Besides, the 

presence of water in this kind of reaction systems can be harmful, since the production of 

humins might be promoted by water presence.  
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5. EXPERIMENTAL SECTION 

5.1. MATERIALS: REACTANTS AND CATALYST 

For all the experimental part of this work, various substances have been used. As 

reactants, 1-butanol (99.5%, ACROS ORGANICS, Code: 232080025) and D-Fructose (99%, 

Alfa Aesar, Lot: 10207896 and Labkem).  

As there are already other studies that have focused on evaluate which catalyst can offer 

better performance in the synthesis of butyl levulinate [47] [48] [49], this work has not tested 

more than one catalyst, because the effects to study were others as has been said in the 

objectives. The catalyst that has been used in all experiments is an ion-exchange resin 

polystyrene-divinylbenzene conventionally sulfonated (CS) and gel-type, Dowex 50Wx4 (Dow 

France S.A.S., Code 20580). 

For the Gas Chromatograph (GC) calibration, the same butanol has been used with butyl 

levulinate (98%, Aldrich Chemistry, Code: 101495705), Di-n-butyl ether (99+%, ACROS 

ORGANICS, Code: 149690010) and butyl formate (98%, ACROS ORGANICS, Code: 

403541000). 

To heat the mixture as a hot fluid, it has been used silicone oil for heating baths LBSil 100 

AUX (Labkem, Batch no.: 18C24485ABM). Finally, grease is used in order to lubricate the joints 

and make easier the dismantling of the equipment.  

5.2. EXPERIMENTAL SETUP 

All the experiments have been carried out in the same installation composed by a distilling 

flask, a Dean-Stark connected (AFORA, 5366/2E) and a Dimroth condenser (DRA). The 

distilling flask contains the mixture throughout the experiment and has one liter of capacity and 

three ground-necked. The angle-neck is used for a sounding line to measure temperature, the 

central neck for loading the reactants and the other one is connected to the Dean-Stark. 
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The Dean-Stark apparatus consists of a vertical tube with a stopcock on the bottom and a 

protruding tube which goes connected to the distilling flask, all made of glass. The top is 

opened to get engaged with the condenser. The principal tube is graduated with a total volume 

of 25 mL. This piece has a lot of importance because is the one responsible for the water 

removal. During an experiment, the vapor gets condensed and is deposited on the principal 

tube where two layers are formed. The upper layer is the organic, and the lower is the aqueous, 

due to the fact that water has a higher density than the organic compounds condensed. As 

water remains at the bottom, the stopcock allows remove it so it has no way back to the 

distilling flask. 

The Dimroth condenser is a wide tube of glass with a cooling coil inside. This cooling coil 

has its enter and exit on the upper part of the tube while the top is opened. It is recommended 

that the condensed front does not get over a quarter of the tube length, so this must be 

controlled with the cooling water flow. 

There are other essentials devices that make the installation works. The temperature meter 

(CRISON thermometer 621) able to handle six sounding lines (although only one it has been 

used), by which the temperature of the mixture inside the distilling flask is measured. To heat 

up the mixture, a heat-stir SB162 (StuartR) is used, so it also supplies the stirring. Thereby the 

temperature and the stirring can be regulated up to 300ºC and 900 rpm respectively.  

 Figure 7. Installation used and its parts indicated. 
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Samples analysis are carried out in a gas chromatograph 6890N Network GC System 

(Agilent Technologies). The column where the samples are injected within it is 20 micrometers 

of internal diameter, 0.5 micrometers stationary thickness, and 50 meters length. Helium gas is 

used as a carrier gas and methyl siloxane as the stationary phase. 

GC runs analysis method FRUCTOSA_BUOH_MANUAL.M, where initially the oven is at 

60ºC and holds it 2 minutes. Then the first ramp starts and oven temperature begins to increase 

with a 10ºC/min rate until it reaches 120ºC when the second ramp starts with a 15ºC/min rate 

until it reaches 250ºC. Once the oven is at 250ºC, it holds this temperature 8 minutes, then the 

analysis is over with a total of 24.67 minutes of running time. 

5.3. EXPERIMENTAL PROCEDURE 

5.3.1. Catalyst treatment 

An acidic ion-exchange resin has a very sensible behavior so it needs to be treated 

carefully. This resin is commercially sold in a very wet state, so it must be dried before use it. 

With the help of a spatula, the desired quantity of resin is deposited in a porcelain plate. Then it 

must be putted in the oven between 14 and 24 hours before use it. It has to be known that 

approximately, for 4-5 grams of wet resin, there is 1 dried, so if 3 grams of resin is needed, 

between 12 and 15 grams of wet resin must be taken.  

Once the resin is taken out of the oven, it must be saved in a closed glass because is very 

hydrophilic and it can absorb easily the humidity of the air. To weight the desired quantity of 

resin, a box of paper is used. Finally, when it is time to load it to the reactor, a funnel of paper 

can help if the neck is so tight that there is danger of throw it out of the flask. 

5.3.2. Reactor loading 

It will be tried that the volume mixture is always 400 mL approximately, so with a fixed ratio 

of reactants, their quantities can be known. First, all reactants are weighted before to put them 

in the reactor. As has been said above, the central neck will be used to load both reactants and 

catalyst. Butanol must be loaded first with the magnetic stirring device switched on, so then 

fructose can get mixed avoiding stirring issues due to the viscosity of the mixture. It must be 

loaded bit by bit anyway.  
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5.3.3. Experimental launching 

When all reactants are already loaded, a final check to the installation must be done. All the 

joints must be checked so they are enough closed to avoid any possible leak. The level of the 

oil bath must be over the level of the mixture in the distilling flask, in such a way that it stays 

immersed. Also, the stopcock of the Dean-Stark must be closed. As said before, the stirring is 

already working so only the heat must be switched on at 225ºC approximately. The refrigeration 

valve is opened too. 

The mixture will take between 20 and 30 minutes to reach 99-100ºC and then the first drop 

falls into the Dean-Stark. This is considered time zero, so the experiment starts at this moment. 

5.3.4. Sampling 

When time begins to count, temperature and volume of the aqueous phase in the Dean-

Stark are measured every 5 minutes and every 10 minutes when the rate has decreased 

enough. Every time the level of the aqueous phase reaches 20 mL, the stopcock is opened and 

10-12 mL are removed and saved in a glass pot. 

The experiment ends after 8 hours from time zero and then the heat is shut down. It is 

recommended that the stirring keeps working because if it is switched off too it may cause 

some turbulence inside the flask that can get to the Dean-Stark and contaminate the organic 

phase. Once the mixture is no longer boiling, the stirring can be switched off. Then, the 

aqueous and organic phases are saved both in different glass pots. The installation is 

dismantled and the remainder inside the flask is saved in another pot as well. All samples are 

weighted once they are collected. 

5.3.5. Samples analysis 

All three samples are analyzed in the gas chromatograph. Three replicates are done for 

each sample. As it has been said, the method loaded for analysis is 

FRUCTOSA_BUOH_MANUAL.M. Only 0.2 μL is needed for each analysis. When the GC is 

ready, the syringe is putted in the manual injector, and button Start is pressed. The syringe 

piston is not pushed yet until the time analyzed does not reach 0.1 minutes, then is pushed with 

one and fast movement, trying to make it as an impulse input. When the time passes 0.5 

minutes, the syringe is extracted from the injector. 
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When samples from the flask are analyzed, after each injection the syringe must be 

cleaned with acetone. That is because these samples can content different viscous polymers 

that might damage the inside of the syringe. 

In order to analyze all compound, those samples extracted from the flask are taken to the 

Separation Techniques Unit inside Scientifics and Technological Services from the University of 

Barcelona. An HPLC column is used, composed by a 2695 Separations Module, a 2414 

Refractive Index Detector, and a 2996 Photodiode array detector, all from Waters. 

5.3.6. Clean-up 

Regarding the gas chromatograph, once all samples have been analyzed low-consumption 

mode is activated. All samples are labeled and stored in the fridge. The distilling flask is 

cleaned and prepared for the next experiment. A chromium mixture can be used to clean it if it 

is necessary. 

5.4. EXPERIMENTAL CONDITIONS 

All the experiments carried out had a duration of 8 hours as said before. The pressure was 

the atmospheric and the temperature was started at 20ºC ad up to a range of 115-120ºC. The 

stirring was settled at 300 rpm, but at the beginning, the stirring could not work at this rate due 

to the viscosity inside the flask. Thus, initially stirring was settled at a low rate, and then while 

the mixture is starting to heat up, increased slowly. As the aim of this study is to optimize all 

reactants and catalyst proportions in order to have the maximum butyl levulinate production, 

their quantities were varied through all the experiments. Butanol mass though was fixed at 355 

mL which corresponds to 288 g.  

The mass of water used to dissolve fructose was limited due to its immiscibility with butanol 

at some proportions. At 20ºC, the solubility of water in 1-butanol is 20.1 w/w% [50] so this 

means that with a mass of 288 g of butanol, the maximum quantity of water avoiding a two-

phase formation inside the flask would be 60.5 g. The formation of two phases inside the flask 

is an undesired fact because it would affect directly the reaction, making the system less 

homogeneous. Besides, to analyze the sample of the flask, as the composition would not be 

the same at every point, the output of the analysis would not be reliable. So all of this can be 

avoided adding the correct amount of water and also with the removal of water thanks to the 

Dean-Stark. 
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6. RESULTS AND DISCUSSION 

6.1. CALCULATIONS 

Some parameters of the reaction must be calculated in order to obtain a quantitative 

analysis of the experimental part of this work. Selectivities and conversions could not be 

calculated due to the composition and nature of the samples, which contaminated the output 

signal of HPLC (see Appendix 4). The yield of a product was calculated with the following 

equation: 

𝑌𝑘 =
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑓𝑟𝑢𝑐𝑡𝑜𝑠𝑒
 

 

where k can be any product such as butyl levulinate, butyl formate, 5-HMF, levulinic acid, 

formic acid, dibutyl ether or butoxymethyl furfural. Due to the issue regarding the HPLC, only 

butyl levulinate and butyl formate yields could be calculated. 

In order to compare all the experimental outputs, time must be normalized with the 

expression below:  

 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒 [𝑚𝑖𝑛] ×
𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑚𝑎𝑠𝑠 [𝑔]

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑠 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑓𝑟𝑢𝑐𝑡𝑜𝑠𝑒 [𝑚𝑜𝑙]
 

 

which gives an approach of contact time between catalyst and reactant, and it has to be taken 

into account since every experiment had different initial conditions. 

Concentrations of water, butanol, butyl levulinate, butyl formate, dibutyl ether, and 

butoxymethyl furfural were calculated by the expressions from the gas chromatograph 

calibration (see Appendix 2). Samples were measured three times to minimize experimental 

error. Also, it was revised that all experiments had shown less than 10% of mass balance error, 

so their results could be reliable. 
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6.2. SETTING INITIAL CONDITIONS 

The first experiments were carried out to observe and study the behavior of the system. A 

molar ratio of 10 between butanol and fructose was settled on the firsts 5 experiments, and no 

water was loaded on the first 3. Due to that, the first problem that was detected was the 

viscosity. The magnetic stirrer was not able to spin with the mixture only composed by butanol 

and fructose, and a huge presence of humins was detected so adding water was considered as 

solution. 

As can be shown in Figure 6, the boiling point of the mixture decreases with the increase of 

water loaded. That is expected because without water, the boiling point of butanol which is the 

reactant in excess, is 118ºC, so when fructose is reacting producing water, in the experiment 

with 0 mL of water added, the boiling point of the mixture is 112.3ºC. Another point that can be 

noticed, is that the progression of temperature without water is lower than the others. As it has 

been said above, the problem of viscosity prevented the mixture from a fluency stirring. That 

harms the reaction and is traduced in a low maximum temperature, which corresponds with a 
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Figure 8. Temperature monitoring of the reaction varying the amount of water loaded. Between 2 
and 3 g of catalyst was used. 
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low production on butyl levulinate (which have a boiling point of 130ºC approximately). The 

minimum amount of water necessary will be added since its presence moves the equilibrium 

towards reactants, which is the reason of why is then removed in the Dean Stark. When 

fructose undergoes dehydration to produce intermediate 5-HMF, three molecules of water are 

released for each molecule of fructose, so less content of water enhances this reaction [51]. 

Although two molecules of water are consumed for each of 5-HMF in order to form levulinic and 

formic acid, water is released again in esterification of both organic acids. Besides, butanol is in 

excess so part of it can go through dehydration to form dibutyl ether, where another molecule of 

water is produced. Butene formation can also be considered, which would release another 

molecule of water, but its formation cannot be detected due to its high volatility.   

 The presence of humins was detected but even though it is known that having water in the 

system favors its production, an increase of butyl levulinate production was observed so for the 

next experiments an amount of 45 mL of water approximately, was added. In the following 

table, it is shown the initial conditions of all experiments (see also Appendix 1). 

 

Experiment RBuOH-Fr [mol/mol] RBuOH-Water [mol/mol] Catalyst [g] 

2 9.84 - 2.988 

3 9.93 - 3.194 

4 9.96 2.99 2.456 

5 10.02 1.61 2.046 

6 5.98 1.52 3.622 

7 4.95 1.51 3.717 

8 4.92 1.54 7.105 

9 5.99 1.54 7.002 

10 5.37 1.47 3.018 

11 5.55 1.59 7.064 

12 6.90 1.53 3.521 

13 5.90 1.53 7.131 

Table 2. Initial conditions for all the experiments. 
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6.3. DESCRIPTION OF A TYPICAL EXPERIMENT 

Figure 7 shows an example of an experiment, with its evolution of both temperature and 

water recollected. The evolution is quite similar in all experiments, as temperature varies 

between 100 and 119ºC (it never reaches 120ºC). Water must be removed every time that 

aqueous phase level is approaching the upper zone of the Dean-Stark, in order to avoid its 

recirculation. When this is done, the level of organic phase is reduced and recirculation is 

interrupted until it is reached again. That causes little increases of temperature which can be 

observed in temperature line. It can be observed that the first half of the experiment, the 

production of water follows a lineal tendency, while temperature has more an exponential 

behavior. When water production rate is slowed down, it means that reaction is ending, so 

temperature progression is interrupted as well. 

While composition inside the flasks were different, organic phase were similar and aqueous 

phase almost equal in every experiment. That is expected to happen, because the same 

volatile compounds were always present in the mixture so they are going to boil with the same 

fraction. Butanol is in excess in every experiment and is miscible in little quantities with water, 
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so will be detected in every aqueous sample. Butyl formate is more volatile and is a product of 

esterification of formic acid. It can also be produced from butoxymethyl furfural, but in a less 

portion. That can explain that its fraction will be more sensible as will vary in organic phase 

more than butanol in aqueous phase. In figure 10 it can be seen examples of typical 

compositions of both aqueous and organic phases. 

Regarding the flask samples, their composition had an important fraction of butanol non 

reacted (because it was loaded in excess) of approximately 80% in mass. The rest of 

compounds such as butyl formate, butyl levulinate, dibutyl ether, and buthoxymethyl furfural 

were detected with more varied fractions. As organic acids cannot be well detected in a gas 

chromatograph, formic and levulinic acid were not quantified but it could be observed their 

presence with little peaks at 5 and 15 minutes of elapsed time, respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 10. Composition of experiment 13, aqueous phase (above) and organic 
phase (below). 
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6.4. EFFECT OF CATALYST MASS 

Besides the quantity of reactants, different amounts of catalyst were also chosen to 

evaluate its optimal load for the production of butyl levulinate. Mostly of experiments have been 

tested with 3-3.5 g and 7 g of catalyst. First thing to take into account is that increasing the 

mass of catalyst, increases the contact time between catalyst and reactant, and this can be 

shown in Figure 10. 

     

 

With the same physic time (8 hours), it can be observed that the line corresponding to 7 g 

of catalyst has more contact time for reacting (lower slope), so therefore is expected to 

enhance butyl levulinate production. The effect on temperature is the same, as it increases 

according with the reaction evolution. Maxim temperature and total water recollected values do 

not have any appreciable change or increase by increasing mass catalyst 

As it has been said, it is expected for butyl levulinate production to be enhanced increasing 

contact time between catalyst and reactants. Next figure shows the butyl formate and levulinate 

concentration obtained in the flask regarding to catalyst and fructose loaded. 
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Figure 11.Comparison of water recollected of experiment 7 (3.5 g of catalyst) and 
experiment 8 (7 g of catalyst). 
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It can be observed that results are quite as expected. With more catalyst dosage, yields for 

butyl formate are higher than with less dosage. For butyl levulinate, although at higher fructose 

loads yields increase according catalyst mass, there is one case in which its yield is quite 

higher with less catalyst. No explanation has been found for this isolate case 

 

 

Figure 12.Yields of BL (above) and BF (below) regarding the catalyst 
mass. 
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6.5. BUTANOL-FRUCTOSE MOLAR RATIO 

 The primary objective of this work was to set the proportions between fructose, butanol, 

and catalyst that could give better results, and it has been already seen how the amount of 

catalyst affects the reaction yield. The total of butanol loaded was fixed at 355 mL, so the 

amount of fructose was the manipulated variable. As explained before, viscosity had an 

important role on the feasibility of the experiments, so it could not be loaded a huge quantity of 

fructose because it would have required a bigger quantity of water to avoid stirring problems, 

and the amount of water was restricted for its miscibility with butanol. Hence, as it can be 

shown in Table 2, the fructose loaded went from 69 g to 140 g. 

With the quantity of butanol fixed, it is about to study which quantity of fructose favors more 

the desired reaction. In the following figure, it is shown the yield of butyl levulinate and butyl 

formate for each experiment. Also this results can be read in Table 3.  
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  By observing this plot, it can be easily seen that higher yields are around a molar ratio 

between butanol and fructose of 6. Regarding butyl formate, there is no appreciable variation 

as all yields are quite similar. 

  

6.6. HUMINS FORMATION 

As it has been commented, humins were detected in all experiments carried out. It is an 

important part of this work to try to minimize any aspect that can harm the reaction yield, so 

humins production deserves to be discussed. Literature about char formation during this kind of 

reactions has been searched in order to compare it with the results obtained in this work. 

Formation of humins is not exactly understood yet, but everything seems to indicate that is 

a condensation cross-polymerization of 5-HMF with fructose [52]. Dee et al. [53] proposed a 

mechanism for the formation of humins, in which an oxocarbonium ion is formed after 

protonation of an aldehyde group of 5-HMF reacted with a fructose molecule. Then a cyclic 

compound is formed when the oxocarbonium ion reacts with a cis-hydroxyl group of fructose. 

Then, another oxocarbonium ion is formed by protonation in the hydroxyl group of 5-HMF or 

fructose. This will allow propagating the molecule in order to form higher molecular weight 

products. A schematic vision of this mechanism is shown in the following figure. 

Experiment Fructose [g] Catalyst [g] BL Yield [%] BF Yield [%] 

6 5.98 3.622 30.72 20.83 

7 4.95 3.717 18.90 20.09 

8 4.92 7.105 19.56 27.47 

9 5.99 7.002 21.98 29.56 

10 5.37 3.018 14.35 17.17 

11 5.55 7.064 20.44 27.27 

12 6.90 3.521 15.05 21.94 

13 5.90 7.131 24.49 29.40 

Table 3. Different yields of butyl levulinate and butyl formate of each experiment 
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Chuntanapum et al. [54] studied the role of the intermediate 5-HMF in humins formation, 

and they observed that polymerization occurred more from glucose dehydration than from 5-

HMF as reactant. This suggests that it is more important the interaction between glucose and 

fructose with 5-HMF, than other compounds that can be formed just with the presence of 5-

HMF. This study gives credit to mechanism proposed by Dee (Figure 14). Humins formation 

just from 5-HMF, without interacting with a monosaccharide, was studied by Patil et al. [55] and 

they could support a proposed model which says that humins from 5-HMF are formed from 2,5-

dioxo-6-hydroxy-hexanal, instead of being formed from levulinic or formic acid.  

In this work, humins could not be quantified and their visual detection was quite similar in all 

experiments. Their presence though, can be detected in chromatograms of HPLC. Since these 

polymers are formed from 5-HMF and fructose, their molecules have similarities with the others 

and their response in the analysis is expected to have the same features.  

Fructose could only be detected by RI detector, whereas 5-HMF was detected by UV 

absorbance detectors in a wavelength of 285 nm. Their retention times were 8.83 minutes and 

27.86 minutes, respectively. All signals had numerous peaks that did not correspond to the 

compounds of patterns. In addition, in some cases the peak expected to be found at some 

Figure 14. Mechanism suggested by Dee et al. [53] for the production of humins. 
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retention time is covered by a heavier peak with a similar retention time that is superimposed, 

which is the main reason that any compound could not be quantified with HPLC analysis. 

Dilutions were made and less quantity of sample were injected in order to have cleaner signals 

but it was not enough and peaks were still covered. A detailed purification study would be 

required in order to isolate the desired peaks, taking into account the nature of every 

compound, but this would involve more research which escapes from this work’s magnitude. 

Two chromatograms are shown in the next figure to appreciate the humins presence 

surrounding fructose and 5-HMF peaks:  

 

 

 

Figure 15. HPLC analysis for experiment with 128.64  g of fructose, 44.96 ml of water, 362.37 ml of 
butanol, and 7.064 g of catalyst. Chromatogram of 5-HMF (above) and fructose (below). 
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In the first chromatogram, as it has been said, the corresponding peak of 5-HMF is missing 

due to an overlap with a heavier peak near. Unlike 5-HMF, fructose gives an appreciable peak 

distinguished from the others, although is also surrounded by various peaks. A little bit of sound 

can be observed in both diagrams (see also Appendix 4 for the rest of chromatograms) which 

can be attributed to the complex composition of the samples analyzed. 

There are some authors that have investigated the effects of reaction parameters in humins 

formation. Hu et al. [56] studied the humin-type polymer formation in dehydration of glucose 

with methanol. Their results concluded that with an initial methanol:water ratio of 10 (methanol 

rich medium), humins formation was significantly lowered. In this work, since it was tried to load 

the same quantity of butanol, and water amount was also fixed at 45 mL, variations in 

butanol:water ratio were negligible (from 6.06 to 6.35) and this effect could not be studied. 

Regarding catalyst dosage, Hu et al. did not find any appreciable change in polymer formation, 

testing from 1 to 10 wt.%. Comparison of chromatograms between experiments with same 

initial conditions but with different catalyst load are shown in the following figures: 

 

 

Figure 16. Above: 128 g of fructose with 3.0 (left) and 7.1 (right) g of catalyst.  
Below: 140 g of fructose with 3.7 (left) and 7.1 (right) g of catalyst 
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It can be observed the differences between diagrams from the left than from the right. The 

two diagrams on the left correspond to experiments with less amount of catalyst (3-3.7). The 

other two on the right are diagrams of experiments with the same amount of reactants than the 

ones on the left, but with the double dosage of catalyst approximately. It can be quickly seen 

that with less catalyst, there is more area from other compounds, other peaks with different 

retention times than 5-HMF. Furthermore, with less catalyst, the peak that should correspond to 

5-HMF is missing, and in the diagrams with more catalyst, these peaks are found and 

recognized by the program. This suggests that more dosage of catalyst hinders polymerization 

of 5-HMF by-products with fructose. Namely it can be observed that there is one peak on the 

left of 5-HMF peak, which is highly increased with catalyst dosage decrease.  

Humins analysis is normally carried out by IR spectroscopy, i.e. FT-IR or Raman 

spectroscopy, with wavenumbers between 600 and 4000 cm-1, and a resolution of 2-4 cm-1. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

This study has proven that synthesis of butyl levulinate can be obtained directly from 

fructose, at atmospheric pressure with a temperature range of 115 to 120ºC, in the presence of 

butanol and with water removal since it shifts the equilibrium towards butyl levulinate production. 

In this system, water addition was found to be an important aspect since, without it, the 

viscosity of the mixture became a problem, prevent it from a fluency stirring. Water does not 

favor the reaction and that is why it is removed. But its initial addition diluted fructose and 

therefore, mixture viscosity was reduced so the magnetic stirrer was able to spin properly and 

this was traduced in higher yields of butyl levulinate.  

Molar ratios from 5 to 10 between butanol and fructose were tested and the results obtained 

were varied which suggests that plays a very important role in reaction yield. Molar ratios near 6 

gave the highest butyl levulinate yields. Regarding the catalyst mass effect, yields seemed to 

increase accordingly to the catalyst amount, excluding some case.  

Humins formation has been an important topic in this work. Although in previous similar 

works [47] they were not detected, their presence was noticed in every experiment. Some 

authors [56] concluded that alcohol-water initial molar ratio was a determinant factor to reduce 

humins formation, and that catalyst dosage did not seem to be influential. In results from HPLC 

analysis, it could be seen that chromatograms from experiments with less catalyst dosage, had 

more and heavier peaks surrounding 5-HMF and fructose peaks, which seems to correspond 

with humin-type polymers formed during the reaction. On the contrary, those experiments with 

more catalyst dosage showed less and cleaner peaks. Then, it can be suggested that more load 

of catalyst can reduce humins formation, but this cannot be confirmed in this work since none of 

these compounds were quantified. 

In order to achieve more accurate results, this study could be done in a reactor with a 

mechanic stirrer, which have more power so the initial mixture can be homogenized without 

having to add water. In addition, various experiments could be carried out with a time reaction 

from 1 hour, and adding two hours of reaction time on the next experiment, so it can be studied 

the progression of both the reaction, and the products concentration.  
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9. ACRONYMS 
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APPENDIX 1: EXPERIMENTAL DESIGN 

It was tried to test as much experimental conditions as possible in order to fill all possibilities 

inside the boundaries conditions like solubility and viscosity. This 3D graphic shows the initial 

conditions of all experiments carried out. as a complement of Table 1. 

 

 

 

Figure 17. 3D graphic of experimental design. Done it with Wolfram Mathematica 
11.3Student Edition. 
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APPENDIX 2: GC CALIBRATION 

Ten vials were prepared in order to simulate all proportions of substances that could appear 

on the samples. Using the same method in the gas chromatograph. vials were analyzed three 

times. All results were adjusted with the linear expression of which parameters fitted better. Five 

expressions were obtained for water. butanol. butyl formate. butyl levulinate and dibutyl ether. 

The same expression of butyl levulinate was used to quantify the butoxymethyl furfural. 

 

Mass [%] 

Vial Water Butanol BF BL DBE 

1 0 83.3 0 15.7 1.0 

2 8.7 75.2 2.1 14.0 0 

3 14.1 68.4 2.9 12.7 1.9 

4 17.1 61.4 4.5 12.2 4.8 

5 21.2 51.5 8.2 12.1 7.0 

6 82.1 1.8 6.5 9.1 0.5 

7 2.3 40.7 4.2 8.1 44.7 

8 85.1 2.1 12.1 0 0.7 

9 93.6 0 5.5 0 0.9 

10 44.7 28.5 11.7 15.1 0 

 

 

 

 

 

Table 4. Mass composition of all vials. 
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Component Equation R2 

Water %Mass=(1.00±0.03)·%Area+(-0.36±1.35) 0.994 

Butanol %Mass=(0.99±0.02)·%Area+(-1.03±1.01) 0.997 

Butyl formate %Mass=(0.90±0.06)·%Area+(0.96±0.39) 0.963 

Butyl levulinate %Mass=(1.09±0.06)·%Area+(0.60±0.58) 0.974 

Dibutyl ether %Mass=(1.011±0.005)·%Area+(-0.05±0.06) 0.999 

Figure 18. Graphics from GC calibration. 
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APPENDIX 3: EXPERIMENTAL DATA 

Experiment 2  

Butanol [g] Fructose [g] Catalyst [g] Molar ratio BuOh-Fr 

283.02 69.9 2.988 9.84 

 

 

 

 
 

 

Experiment 3 

 

 

 
  
 
  
 
 

 
 
  
 
 
 

 Mass fraction [%] 

 Water Butanol BF BL DBE BMF 

Aqueous phase 91,76 6,00 1,23 0,00 0,00 0,00 

Organic phase 16,28 66,68 14,51 0,00 0,00 0,00 

Flask 2,12 84,11 1,88 4,40 0,00 8,49 

Butanol [g] Fructose [g] Catalyst [g] Molar ratio BuOh-Fr 

284,1 69,57 3,19 9,93 

 Mass fraction [%] 

 Water Butanol BF BL DBE BMF 

Aqueous phase 93,11 5,08 0,00 0,00 0,00 0,00 

Organic phase 93,11 5,08 0,00 0,00 0,00 0,00 

Flask 0,75 90,79 1,55 3,56 0,00 3,89 

Table 7. Experimental data of experiment 3. 

Table 6. Experimental data of experiment 2. 
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Experiment 4 

 

Butanol [g] Fructose [g] Catalyst [g] Water [mL] Molar ratio BuOh-Fr 

283,63 69,19 2,46 23,07 9,96 

 

 Experiment 5  

 

Experiment 6 

 Mass fraction [%] 

 Water Butanol BF BL DBE BMF 

Aqueous phase 92,90 5,34 0,00 0,00 0,00 0,00 

Organic phase 15,10 75,82 7,30 0,00 0,00 0,00 

Flask 0,00 84,38 2,99 7,80 0,58 3,64 

 Mass fraction [%] 

 Water Butanol BF BL DBE BMF 

Aqueous phase 92,85 5,32 0,97 0,00 0,00 0,66 

Organic phase 19,24 73,39 5,28 0,00 0,00 0,00 

Flask 0,00 85,92 2,56 7,72 0,21 4,64 

Butanol [g] Fructose [g] Catalyst [g] Water [mL] Molar ratio BuOh-Fr 

284,94 69,12 2,05 42,85 10,02 

Butanol [g] Fructose [g] Catalyst [g] Water [mL] Molar ratio BuOh-Fr 

285,58 116,15 3,62 45,69 5,98 

 Mass fraction [%] 

 Water Butanol BF BL DBE BMF 

Aqueous phase 93,51 4,74 0,00 0,00 0,00 0,00 

Organic phase 16,75 70,25 10,74 0,00 0,10 0,00 

Flask 0,00 74,94 3,93 11,13 0,34 9,30 

Table 8. Experimental data of experiment 4. 

Table 9. Experimental data of experiment 5. 

Table 10. Experimental data of experiment 6. 
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Experiment 7 

 

 Mass fraction [%] 

 Water Butanol BF BL DBE BMF 

Aqueous phase 93,07 5,18 0,00 0,00 0,00 0,00 

Organic phase 19,36 66,30 12,07 0,00 0,00 0,00 

Flask 0,00 77,20 4,34 7,80 0,00 11,66 

 

 Experiment 8 

 

 Mass fraction [%] 

 Water Butanol BF BL DBE BMF 

Aqueous phase 93,70 4,55 0,00 0,00 0,00 0,00 

Organic phase 21,41 62,31 10,56 2,50 0,36 3,48 

Flask 0,33 72,86 6,36 8,75 0,73 11,55 

 

Experiment 9 

 

Butanol [g] Fructose [g] Catalyst [g] Water [mL] Molar ratio BuOh-Fr 

286,92 116,48 7,00 45,17 5,99 

 

 

Butanol [g] Fructose [g] Catalyst [g] Water [mL] Molar ratio BuOh-Fr 

285,58 140,20 3,72 45,85 4,95 

Butanol [g] Fructose [g] Catalyst [g] Water [mL] Molar ratio BuOh-Fr 

283,64 140,2 7,1053 44,74 4,92 

Table 11. Experimental data of experiment 7. 

Table 12. Experimental data of experiment 8. 
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 Experiment 10 

 

 Mass fraction [%] 

 Water Butanol BF BL DBE BMF 

Aqueous phase 93,46 4,79 0,00 0,00 0,00 0,00 

Organic phase 17,84 70,88 9,32 0,00 0,00 0,00 

Flask 0,89 81,10 3,32 5,35 0,00 10,28 

 

Experiment 11 

 
Butanol [g] Fructose [g] Catalyst [g] Water [mL] Molar ratio BuOh-Fr 

293,52 128,64 7,06 44,96 5,55 

 

 
 
 
 
 

 Mass fraction [%] 

 Water Butanol BF BL DBE BMF 

Aqueous phase 93,69 4,56 0,00 0,00 0,00 0,00 

Flask phase 1,13 75,12 5,99 7,72 0,91 9,15 

Butanol [g] Fructose [g] Catalyst [g] Water [mL] Molar ratio BuOh-Fr 

283,53 128,30 3,02 46,75 5,37 

 Mass fraction [%] 

 Water Butanol BF BL DBE BMF 

Aqueous phase 93,69 4,56 0,00 0,00 0,00 0,00 

Organic phase 16,57 67,11 13,78 0,00 0,03 0,00 

Flask 0,00 75,70 5,49 8,14 0,46 11,24 

Table 13. Experimental data of experiment 9. 

Table 15. Experimental data of experiment 11. 

Table 14. Experimental data of experiment 10. 
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Experiment 12 

 

 

Experiment 13 

 

Butanol [g] Fructose [g] Catalyst [g] Water [mL] Molar ratio BuOh-Fr 

284,95 117,35 7,13 45,37 5,90 

 

 

 
 
 
 
 
 
 

Butanol [g] Fructose [g] Catalyst [g] Water [mL] Molar ratio BuOh-Fr 

284,17 100,08 3,52 45,02 6,90 

 Mass fraction [%] 

 Water Butanol BF BL DBE BMF 

Aqueous phase 93,49 4,76 0,00 0,00 0,00 0,00 

Organic phase 17,90 84,32 9,63 0,00 0,00 0,00 

Flask 0,00 84,32 3,46 4,88 0,11 11,38 

 Mass fraction [%] 

 Water Butanol BF BL DBE BMF 

Aqueous phase 93,76 4,49 0,00 0,00 0,00 0,00 

Organic phase 15,38 67,19 14,67 0,00 0,20 0,00 

Flask 0,00 75,32 5,48 9,49 0,91 8,97 

Table 16. Experimental data of experiment 12. 

Table 17. Experimental data of experiment 13. 
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APPENDIX 4: HPLC CHROMATOGRAMS 

 

HPLC analysis was carried out in order to trying to quantify fructose, 5-HMF, levulinic acid, 

and formic acid. Fructose was analyzed by RI detector while the rest were analyzed by UV 

detector. 5-HMF was detected at 285 nm, levulinic acida t 265 nm, and formic acida t 210 nm. In 

the next figures, some examples of HPLC chromatograms are shown. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 18. HPLC detection of fructose of experiment 11. 
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Figure 20. HPLC detection of 5-HMF of experiment 11. 

Figure 19. HPLC detection of LA of experiment 11. 
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Figure 21. HPLC detection of FA of experiment 11. 
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