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Abstract: Turbulence in active fluids has been proposed as a new universality class of turbulence.
However, the mechanisms governing these flows are poorly understood. In this work, we study
numerically the formation of uni-dimensional patterns in a minimal model for an active polar nematic
fluid, for arbitrary values of the flow alignment coefficient ν. In addition, we determine analytically
the linear stability of the asymptotic states, as a function ν. We describe the complete bifurcation
diagram for uniform states in 1D and show the existence of transversal (2D) instabilities, in particular
in the so-called flow alignment regime |ν| > 1. This result shows that the secondary instabilities
leading to turbulence are not specific of the case ν = 0, thus reinforcing the conclusion that active
flows constitute a new universality class of turbulence.

I. INTRODUCTION

In recent years, the nature of turbulence in active mat-
ter has become an important focus of interest in funda-
mental non-equilibrium physics [1]. While classical iner-
tial turbulence is associated with large Reynolds number
Re � 1, [2], a recent study [3] shows that active fluids
in the Stokes limit Re = 0 with absence of topological
defects also exhibit power-law turbulence scaling. More
precisely, the kinetic energy spectrum has been shown to
scale as k−1, instead of the k−5/3 of Kolmogorov’s law,
thus suggesting a new universality class of turbulence.
Remarkably, the scenario of energy cascades in k-space
is not valid for active turbulence, where energy is injected
in all scales and dissipated at the same scale in which it is
injected. This has only been shown in a minimal model
with flow alignment coefficient ν = 0, so the degree of
universality of those findings is yet to be established.

Here we extend the minimal model introduced in [3] to
finite ν. This parameter encodes the hydrodynamic cou-
pling between the flow ~v and the orientation field ~p. As
discussed in the field of liquid crystals [4], one may distin-
guish two qualitatively different regimes: |ν| < 1, called
tumbling and |ν| > 1 known as flow alignment. Power-
law scaling for active turbulence has been found so far for
ν = 0, but it has been conjectured that this behaviour
should be expected for arbitrary values of the alignment
coefficient. To check whether the route to turbulence
observed for ν = 0 is indeed generic, here we study nu-
merically the 1D dynamical scenarios of the problem with
arbitrary ν, and we determine analytically the complete
bifurcation diagram of uniform states, including their 2D
stability, a point that is crucial to confirm the transition
to chaos for arbitrary ν.

The layout of this thesis is as follows. We first report
the model equations that define our physical system, and
we briefly report on the numerical approach developed.
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Then, we examine the 1D dynamics for ν = 0 which
yields some exact solutions. The central part of our work
is the study for arbitrary values of ν, in particular, fo-
cusing on the stability of stationary states in order to
extrapolate consequences in 2D and confirm the route to
turbulence.

II. MODEL EQUATIONS

With the spirit of setting the simplest physical model
to capture universal properties, we will take the simplest
possible model of an incompressible polar nematic fluid as
described in [5, 6], based solely on symmetries and linear
irreversible thermodynamics. Writing the equations in
dimensionless variables as described in [3] and using the
stream function ψ, defined by vx = ∂yψ and vy = −∂xψ,
it is required a long mathematical development (see [3]
for details) to reach our minimal equations for ψ and
the angle θ of the orientation vector ~p (assumed to be
unitary) with respect to the x-axis,
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The two dimensionless parameters are the viscosity
ratio ρ = γ/η, being γ and η the rotational and
shear viscosity respectively, and the activity parame-
ter Z = |ξ∆µ| ρL2/K ≡ L2/`2c , with ξ∆µ the ac-
tive stress, L the size of the system, K the elastic
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Frank constant and `c is an intrinsic length of the
problem. Moreover, S = −ξ∆µ/ |ξ∆µ| is +1 (−1)
for extensile (contractile) stresses, and finally h‖ =
ν
2

[
sin 2θ

(
∂2
yψ − ∂2

xψ
)

+ cos 2θ∂2
xyψ

]
corresponds to the

parallel component of the so-called molecular field [4],
the conjugate field of the polarization ~p.

From these previous expressions, one can also compute

the linear dispersion relation Ω(~k) for linear perturbation

of wave-vector ~k making an angle φ with respect to ~p, to
get a dimensionless linear growth rate Ω of the form [3],
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Due to the presence of the activity, perturbation of suf-
ficiently long wavelength may be unstable. The growth
rate is anisotropic and implies that most unstable modes
occur in a 1D subspace. The outcome of the instability is
thus 1D patterns, which justifies reducing the analysis on
the early stages to 1D. We then fix the initial orientation
of the base state to θ0 = 0 and assume, unless otherwise
specified, ∂x = 0.

III. NUMERICAL APPROACH

In order to gain physical insights and to ease the way
to the analytic approach, we solved the above equations
in 1D using a Matlab code. This preliminary study was
important to characterize the transient dynamics from
the onset of instability to the asymptotic states at the
deeply nonlinear regime, and was instrumental to guide
the analytic results that will be specified later.

The usual setup for the simulations was fixing L = 1,
and vary `c to address different activities. In order to
have a periodic system, the perturbations considered
were sinusoidal of the form A sin

(
kyy + π

2

)
, with the di-

mensionless amplitude A ≈ 0.75, and the wave-vector
ky = 2πn

L , for the different modes n. Then, the dynamics
was solved using an Euler algorithm written from scratch.
In some cases, we add a random white noise term to test
the robustness of the solutions.

IV. BEHAVIOUR FOR ν = 0

In this case, not only the flow alignment coupling is
neglected but also the nematic elasticity [4]. Then, it
can be shown that the problem is reducible to a single
dimensionless parameter that combines ρ and Z, namely
Z ′ = Z/ (2 + ρ/2) so that the dispersion relation reads

Ω (ky) = −
k2
y

Z ′
− S

2
. (6)

Then, for contractile stresses, the system will always be
unstable under perturbations of ky < kcrit ≡

√
Z ′ =

L/`′c. It is important to highlight that, contrary to the
common scenario in non-equilibrium pattern formation,
here there is not a natural selection of an intrinsic wave-
length at linear level, since the evolution will be dom-
inated by the perturbation with lowest ky, limited by
the system size. On the other hand, the equation that
governs the dynamics is simplified to the Overdamped
Sine-Gordon equation
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being L a Lyapunov functional, i.e., a non-equilibrium
potential that has to be minimized and relaxes the evo-
lution until a stationary state. In fact, these can be
found by identifying the expression with the nonlinear
pendulum equation (writing time and angle instead of
y and 2θ), so the solutions span wavelengths between
λ = 2π`′c with small amplitude and infinite wavelength,
with domains connected by the kink function (assuming
that θ (−∞) = −π/2 and θ (∞) = π/2) given by

θkink = ± tan−1
[
exp

(√
Z ′ (y − y′)

)]
∓ π

2
. (9)

For large systems (L � `′c), the relaxational dynamics
given by Eq. (7) will produce a coarsening dynamics until
a periodic state of wavelength L is reached, where states
of uniform angle are connected by such kink-antikink so-
lutions.

FIG. 1: Orientation field in the asymptotic stationary states
for ν = 0 and different values of the activity parameter Z,
with a fixed ρ = 1.

The width of the step between the asymptotic values is
of the order of `′c, so for Z ′ � 1, the states with uniform
angle ±π2 will be separated by very narrow walls splitting
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the original system into two domains perpendicularly ori-
entated respect to the original angle but with opposite
sense of rotation. Note also that the x-component of the
velocity is localized at the transition regions between the
saturation angles, while the fluid is at rest in the regions
of uniform angle.

Remarkably, the same instability of a uniform polar-
ization will apply now in the 2D system, under perturba-
tions in the x-direction. This induces a transient cascade
of instabilities into smaller length scales that will only
cease at scales of the order of `′c.

V. BEHAVIOUR FOR ν 6= 0

As we will examine now, the fact of not neglecting elas-
tic contributions makes the system much richer. From
Eq. (1), (2), and considering a x-homogeneous fluid, we
obtain the 1D dynamical equation of the form

∂tθ =

[
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Z
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) ]
∂2
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. (10)

Here we will not address variations of ρ. First of all, note
that this expression does not admit any reduction of their
variables ρ, Z, and to our knowledge it is studied for the
first time. Its stationary states will be given by[
4 + ρ(ν2 + 1) + 2ρν cos 2θ

]
∂2
yθ

Z
= − sin 2θ (1 + ν cos 2θ) .

(11)
This cannot be solved analytically, but contains similar
kink-antikink solutions, with widths fixed by the pre-
factor of ∂2

yθ and connecting uniform asymptotic an-
gles given by the zeroes of the right-hand side. Ac-
cordingly, the stationary uniform angle θstat of solu-
tions reached (locally) at long times will be given by
sin 2θstat (1 + ν cos 2θstat) = 0, that is,

θ
(1)
stat = 0, θ

(2)
stat = ±π

2
, cos

(
2θ

(3)
stat

)
= −1

ν
. (12)

Note that the two values of θ
(2)
stat correspond to the same

state, given the nematic symmetry of the problem. No-
tice also that the three possibilities are stationary so-
lutions only when |ν| > 1, while for tumbling regimes

(|ν| < 1) only θ
(1)
stat and θ

(2)
stat are achievable. Moreover,

when ν > 1 we have |θ(3)
stat| ∈

(
π
4 ,

π
2

)
but for ν < −1, the

range is |θ(3)
stat| ∈

(
0, π4

)
instead. All of these results are

actually supported by numerical simulations that reflect
the same situation as explained in the previous section: a
coarse-graining dynamics of small perturbations towards

an stationary kink-antikink solution with θ
(1)
stat, θ

(2)
stat and

θ
(3)
stat as the asymptotic values for the orientation field.

However, there are two notable differences. On the one

hand, the x-component of the velocity does not vanish
but shows a constant shear, which can be analytically
derived from Eq. (1) to obtain

∂2
yψ = ∂yvx =

2S sin (2θ)− 2ρZ−1∂2
yθ (1 + ν cos (2θ))

4 + ρν2 sin2 (2θ)
.

(13)

Hence, in the saturation regions of θ
(1)
stat and θ

(2)
stat the sit-

uation is the same discussed before for ν = 0, but the new
stationary orientation is qualitatively different, involving
a constant gradient of velocities. The extreme values of
vx are achieved in the transition kink regions, specifically
at the points where θ vanishes. The other special feature
is that the stationary angle achieved depends on the flow
alignment coefficient (see the illustration of this discus-
sion in FIG. 2 and FIG. 3). To fully understand what are
the actual asymptotic values of the angle selected by the
dynamics one requires to determine their linear stability.

FIG. 2: Dimensionless x-component of the velocity of the sta-
tionary state of the system for several values of the alignment
coefficient, with Z = 106 and ρ = 1.

A. 1D linear stability of stationary solutions

To explain which stationary angles will be selected by
the 1D dynamics for a given flow alignment coefficient ν
we address the linear stability analysis of uniform angle
solutions. The 1D version of Eq. (5) for the correspond-
ing perturbations in y (∂x = 0 or φ = ±π2 ) is

Ω (ky) = −
k2
y

Z

[
1 +

ρ

4
(1 + ν)

2
]
− S

2
(1 + ν) . (14)

We see that for contractile stresses (S = −1), the system

will be unstable whenever ν > −1, and so, θ
(1)
stat will be

stable only when ν < −1. The case of θ
(2)
stat is symmetri-

cally equivalent to the case of a kx-perturbation (φ = 0)
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FIG. 3: Asymptotic stationary states for the orientation for
different values of ν when Z = 106 and ρ = 1.

to the initial state θ0 = 0, so we will have

Ω (ky) = −
k2
y

Z

[
1 +

ρ

4
(1− ν)

2
]

+
S

2
(1− ν) , (15)

Then, this case will be stable when ν < 1 (assuming

S = −1). Finally, for θ
(3)
stat, we have to perform the linear

stability analysis anew, since the constant shear makes
this state not directly reducible to Eq. (5). We have
made this analysis taking into account that at this time
the perturbation affects states with ~v 6= 0 given by Eq.

(13) when θ = θ
(3)
stat. Let us define A(ν) ≡ ∂yvx by

the right-hand side of Eq. (13). After some algebra,
we deduce that the linear growth rate takes the form,

Ω (ky) = −
k2
y

Z
− |A (ν)| ν

√
1− 1

ν2
. (16)

Notice that this relation is independent of S. Now, a
careful analysis of all possible cases including different
signs of the alignment coefficient conclude that the states

θ
(3)
stat are only linearly stable for ν > 1.
We can summarize all possible cases in a bifurcation

diagram (FIG. 4) that describes all branches of possi-
ble stationary solutions and their stability together in
the same plot. From there, we observe the existence of
two pitchfork bifurcations at ν = ±1 that control the
dynamic evolution in the whole range of ν.

Correspondingly, we can also plot in FIG. 5 the gra-
dient of vx as a function of the alignment coefficient of
the stationary cases, which must follow Eq. (13). From
there, we observe that it presents a maximum (minimum)

for negative (positive) values of θ
(3)
stat. We can derive its

exact expression which reads

νm = ±

√
3ρ+

√
ρ (ρ+ 32)

4ρ
. (17)

FIG. 4: Exact bifurcation diagram for solutions with uniform
angle as a function of ν, including their linear stability within
the 1D dynamics.

In fact, we are interested in the positive sign since the
negative one corresponds to the unstable solution. This
is a decreasing function of the viscosity ratio, so the lower
ρ, the bigger (in modulus) this extreme value will be.

FIG. 5: Dimensionless stationary shear rate as a function of
ν, for the stationary solutions with uniform angle, showing
also the 1D linear stability of the corresponding states. It
was taken ρ = 1.

B. 2D linear stability of stationary solutions

In line with the reasoning for ν = 0, we try to infer con-
sequences on the two-dimensional dynamics by studying
the stability of the 1D patterns, with large domains of
uniform angle, now to transversal kx-perturbations.

For the situation at hand of S = −1, let us distin-
guish cases according to the saturation angle achieved.
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Beginning with the stable stationary θ
(1)
stat, the solution

obtained when ν < −1, we can recover the result for a
kx-perturbation from Eq. (15) exchanging x by y, and
consequently, this state will be stable to this perturba-

tion. For θ
(2)
stat (obtained only when ν < 1), we repeat

the symmetry discussion to take advantage of Eq. (14)
and deduce that it will also be kx-unstable if ν > −1,
giving rise to the cascade phenomena discussed in the
previous section for ν = 0. Finally, to test the sta-

bility of θ
(3)
stat, a new development is required. We use

an ansatz of the form θ = θ
(3)
stat + δθ, ψ = ψ

(3)
stat + δψ,

with δθ = θ
(3)
state

ikxx+Ωt and δψ = ψ
(3)
state

ikxx+Ωt the
transverse perturbation respect to the equilibrium state

cos(2θ
(3)
stat) = − 1

ν , ∂2
yψ

(3)
stat = A(ν), which is constant for a

given ν. After a long calculation that we cannot include
here, we obtain the following notable result,

Ω (kx) = −k
2
x

Z

[
1 +

4ρ

4 + ρ (ν2 − 1)

]
− 4S

ν [4 + ρ (ν2 − 1)]
,

(18)
implying that the nontrivial branch of states with inter-
mediate ν−dependent angles for ν > 1 will always be
kx-unstable. Furthermore, note that the most unstable
perturbation will be given when ν = 1, implying a max-
imum linear growth rate of value 1.

To sum up, all stationary stable states for ν >
−1 resulting of perturbations along y-axis turn up to
be unstable for perturbations in the perpendicular x-
direction. Accordingly, the physical picture of 1D coarse-
graining dynamics followed by secondary instabilities in
the transversal direction identified as a route to turbu-
lence in [3] can be extrapolated to the complete tumbling
regime, and most importantly to the alignment regime
(ν > 1 for S = −1 and ν < −1 for S = +1, the latter not
shown), a case which is qualitatively different because of
the structure of the flow field. These results reinforce the
claim of universality for the transition to turbulence in
active fluids.

VI. CONCLUSIONS

We have studied analytically and numerically the early
stages of the instability of a uniformly oriented active
polar nematic fluid, which is dominated by the one-

dimensional dynamics. The aim was to extend the sce-
nario of transition to active turbulence elucidated for
ν = 0, to arbitrary values of this parameter, in order to
explore the universality of the phenomenon. The specific
tasks and results are the following:

• We have developed a Matlab code for general 1D
dynamics of the problem, allowing for a detailed
study of the coarse-graining evolution. We have ob-
tained numerically the steady states including the
kink solutions and the structure of the flow field in
the fully nonlinear regime.

• In the tumbling regime (|ν| < 1), we have extended
the results of ν = 0 to domains with angle ±π2 and
vanishing velocity, confirming also their instability
to transversal 2D perturbations.

• In the flow alignment regime (|ν| > 1), we must
distinguish between positive and negative values of
ν. When ν < −1, the stable stationary angles are
0, ±π2 which remain also stable in 2D. On the con-
trary, for ν > 1, new branches of stable uniform ori-
entation states are found at ± 1

2 arccos
(
− 1
ν

)
, with

nontrivial constant shear flow. Most importantly,
we have found that these are also unstable to trans-
verse 2D perturbations. This result reinforces the
claim of universality of the transition to turbulence
in active fluids.

To conclude, it is worth mentioning the natural outlook
of this work into the pursuit of the study for the full 2D
dynamics, to characterize the turbulence not only with
a scaling exponent but also by quantifying its effective
embedding dimension. The main objective would be to
certify that chaotic active flows do constitute a new uni-
versality class of turbulence.
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