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Abstract: we fit lattice QCD results of baryon-baryon potentials in the strangeness S= -4 sector using the 
Effective Field Theory (EFT) and show how good this fit is. Next, we estimate some physical parameters associated 
to this interaction. These parameters include scattering length and the Ξ axial coupling constant (𝑔஺). Finally, we 
compare our results to One Boson Exchange models.

  

I. INTRODUCTION 

Quantum chromodynamics is the fundamental theory 
which explains the strong interaction. Despite its success, 
QCD has not been able to explain successfully processes that 
involve baryons and mesons. The reason why is that at low 
energies the couplings of quarks and gluons become so large 
that is not possible to treat the problem in a perturbative way. 
But, at high energies (due to asymptotic freedom) it is 
possible. 

The EFT approach consist of a low energy realization of 
QCD at hadronic level. The EFT includes the degrees of 
freedom relevant at low energy, while preserving QCD 
symmetries. The terms obtained in this way can be sorted out 
by the development parameter (𝑄/𝛬)௩, leading to a contri-
bution hierarchy (Q and Λ corresponding to low and high 
energy scale). 

The effective field theory that describes the physics of 
hadronic processes is known as chiral perturbation theory 
(ChPT). 

Weinberg suggested to calculate nucleon-nucleon 
potential in two steps: the first one was calculating order by 
order the nucleon-nucleon (NN) potential using ChPT and 
then introducing the potentials thus obtained in a Lippmann-
Schwinger (or Schrödinger) equation. 

We are allowed to use EFT to describe Ξ-Ξ interaction, 
because of this theory only takes into account the 
symmetries: Ξ and N both have the same Spin and Isospin. 
That fact leads to the same leading order (LO) and next to 
leading order (NLO) potentials obtained in NN, but with 
different parameters, such as 𝑔஺, the axial coupling constant. 

In this project we will confine ourselves to use the Ξ-Ξ 
potentials thus obtained at leading order and at next to 
leading order. We also will only consider the ଵ𝑆଴ and ଷ𝑆ଵ 
channels, which are the most relevant ones at low energy. 

II. POTENTIALS AT LO AND NLO 

In the ChPT the potentials are made up of two type of 
terms: contact terms and pion exchange terms. Figure 1 
shows the associated diagrams at LO and NLO. In [5] we can 
find the associated Lagrangians in both orders, but we are not 
going to write them owing to space needs. 

 At LO, (𝑄/𝛬)଴, the potential is made up of One Pion 
Exchange (OPE) potential (coming from 1 one-pion 
exchange diagram) and 𝛿ଷ(𝐫) (coming from the 
contact Lagrangian at LO). 

 A NLO, (𝑄/𝛬)ଶ, we have to add the Two Pion 
Exchange (TPE) potential (coming from 5 two-pion  

exchange diagrams) and a ∇ሬሬ⃗ ଶ𝛿ଷ(𝒓) (coming from the 
contact Lagrangian at NLO). 

 Contact terms 

Owing to the fact that EFT is based on a Lagrangian with 
local meson-nucleon coupling, multi-meson exchange 
processes lead to a potential that is highly singular at short 
distances. To renormalize these short-distances (UV) 
divergences one has to introduce counterterms in the 
Lagrangian and hence any dependence on physical scales 
much higher than the ones of the problem at hand can be 
encoded in few low energy constants [1]. These take the form 
of the following contact terms of the Lagrangian in the 

momentum expansion: (𝛹ഥ𝛹)ଶ at LO and (𝛹ഥ𝛹)൫𝛹ഥ∇ሬሬ⃗ ଶ𝛹൯ at 

NLO, where 𝛹 stands for the baryon field. 
From [5], we present the contact NN potentials at LO and 

at NLO (momentum space). We will present only the 
projections of these potentials corresponding to ଵ𝑆଴ and 

ଷ𝑆ଵ channels. 

 At LO:  ൜
𝑉ଵ௦଴ =  𝐶ௌ − 3𝐶் ≡ 𝑎ଵ

𝑉ଷ௦ଵ =  𝐶ௌ + 𝐶் ≡ 𝑎ଶ
 

 At NLO:  ൜
𝑉ଵௌ଴ = 𝑏ଵ · 𝐤ଶ

𝑉ଷ௦ଵ =  𝑏ଶ · 𝐤ଶ  

Where 𝑎ଵ, 𝑎ଶ, 𝑏ଵ,   𝑏ଶ are fitting constants and k is the 

momentum transfer. 

We apply Fourier Transformation in order to obtain them in 
the r-space: 

        𝑉௅ை(𝒓) =
ଵ

(ଶగ)య ∫ 𝑎௜𝑒
௜𝐤·𝐫𝑑ଷ𝐤

𝑹𝟑 = 𝑎௜𝛿
ଷ(𝐫),   𝑖 = 1, 2. (1) 

  
ே௅ை(𝒓) =

ଵ

(ଶగ)య ∫ 𝑏௜𝒌
𝟐𝑒௜𝐤·𝐫𝑑ଷ𝐤

𝑹𝟑 = 𝑏௜𝛁ሬሬ⃗ 𝟐𝛿ଷ(𝒓),   𝑖 = 1, 2. (2) 

In order to eventually compare with numerical data, δଷ(𝐫) 

and 𝛁ሬሬ⃗ 𝟐𝛿ଷ(𝒓) will be regulated as follows: 

 𝛿ଷ(𝒓) = ቀ
௸

√గ
ቁ

ଷ

· 𝑒ି௸మ·௥మ
. 

 𝛁ሬሬ⃗ 𝟐𝛿ଷ(𝒓) =
ଵ

௥

డ

డ௥
ቀ𝑟

డ

డ௥
ቁ 𝛿ଷ(𝒓) = (−4𝛬ଶ + 4𝛬ସ𝑟ଶ)𝛿ଷ(𝒓). 

Figure 1: LO left) and NLO (right) diagrams. Solid 
lines represent nucleons and dashed lines pions. 
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Where Λ is the cut-off. This cut-off has to absorb any 
dependence on physical scales much higher than the ones of 
the problem at hand (Ref. [1]). 

 One Pion Exchange 

We take de LO NN-potential (k-space) given in ref [1], 
and using the Fourier Transformation, we obtain the 
following expression in r-space: 
 

    𝑉(𝐫) =
ଵ

ସ଼గ
ቀ

௚ಲ

௙ഏ
ቁ

ଶ

𝑚గ
ଶ𝝉𝟏𝝉𝟐 ቄቂ𝑆ଵଶ ቀ1 +

ଷ

௠ഏ௥
+

        
ଷ

(௠ഏ௥)మቁ + 𝝈𝟏𝝈𝟐ቃ
௘ష೘ഏೝ

௥
−

ସగ

ଷ
𝝈𝟏𝝈𝟐𝛿ଷ(𝐫)ቅ 

 
(3) 

Where 𝑔஺ is the nucleon axial-vector strength, 𝑓గ =

93 𝑀𝑒𝑉 is the pion decay constant, 𝑚గ = 138 𝑀𝑒𝑉, 𝝈𝟏, 𝝈𝟐 
and 𝝉𝟏, 𝝉𝟐 are the spin and isospin operators of each nucleon. 
𝑆ଵଶ = 𝒓ො · 𝝈𝟏𝒓ො · 𝝈𝟐 − 𝝈𝟏𝝈𝟐 is only non-zero when the angular 
momentum of the initial and final states differs by ∆𝐿 = 2 
[4]. So, for initial and final state S-waves, it does not 
contribute. This leads to a simplified expression in our both 
channels (ignoring δ term): 

 
𝑉(𝐫) =

1

48𝜋
൬

𝑔஺

𝑓గ

൰
ଶ

𝑚గ
ଶ𝜏ଵ𝜏ଶ𝜎ଵ𝜎ଶ

𝑒ି௠ഏ௥

𝑟
 

  
(4) 

Notice that LO potential is written as a two factors sum. The 
first one is the OPE potential and the second is the contact 
term at LO. 

Now, let’s see spin and isospin projections for each 
channel: 

⟨𝝈𝟏𝝈𝟐⟩ = ൜
−3,   𝑆 = 0, 𝐼 = 1 →  𝑠𝑝𝑖𝑛 − 𝑠𝑖𝑛𝑔𝑙𝑒𝑡

1,   𝑆 = 1, 𝐼 = 0 →  𝑠𝑝𝑖𝑛 − 𝑡𝑟𝑖𝑝𝑙𝑒𝑡
 

⟨𝝉𝟏𝝉𝟐⟩ = ൜
1,   𝑆 = 0, 𝐼 = 1 →  𝑠𝑝𝑖𝑛 − 𝑠𝑖𝑛𝑔𝑙𝑒𝑡
−3,   𝑆 = 1, 𝐼 = 0 → 𝑠𝑝𝑖𝑛 − 𝑡𝑟𝑖𝑝𝑙𝑒𝑡

 

According to this projections, we have in both channels  
that ⟨𝝉𝟏𝝉𝟐𝝈𝟏𝝈𝟐⟩ = −3. So, the OPE potential has exactly the 
same shape: 
 

  𝑉
ௌబ

భ
ை௉ா(𝐫) = 𝑉

ௌ𝟏
𝟑
𝑶௉ா(𝐫) = −

1

16𝜋
൬
𝑔஺

𝑓గ

൰

ଶ

𝑚గ
ଶ

𝑒ି௠ഏ·௥

𝑟

 
  (5) 

 Two Pion Exchange 

At NLO, TPE potential expression in r-space (neglecting 
contributions suppressed by the Ξ mass) given in Ref. [3] and 
Ref. [6] are: 

 
𝑉

ௌబ
భ
்௉ா =

1

8𝜋ଷ

𝑚గ

(2𝑓గ)ସ

1

𝑟ସ
{𝑥(1 + 10𝑔஺

ଶ − 

 𝑔஺
ସ(59 + 4𝑥ଶ)) · 𝐾଴(2𝑥)  + (1 + 10𝑔஺

ଶ − 

−59𝑔஺
ସ + (4𝑔஺

ଶ − 36𝑔஺
ସ)𝑥ଶ) · 𝐾ଵ(2𝑥)  

 
 
  (6) 
 
 

 
 

𝑉
ௌభ

య
்௉ா =

1

8𝜋ଷ

𝑚గ

(2𝑓గ)ସ

1

𝑟ସ
{𝑥((81 + 12𝑥ଶ)𝑔஺

ସ 

−3 − 30𝑔஺
ଶ) · 𝐾଴(2𝑥)  + ((81 + 44𝑥ଶ)𝑔஺

ସ 

−3 − (30 + 12𝑥ଶ)𝑔஺
ଶ) · 𝐾ଵ(2𝑥) } 

 
 
  (7) 
 
 

Where 𝑥 = 𝑚గ · 𝑟 and 𝐾௡(2𝑥) are the modified Bessel 
functions. 

III. LATTICE QCD RESULTS ON Ξ-Ξ 
INTERACTION 

In Ref. [7] N. Ishii et al. present baryon-baryon potentials 
in 𝑆 = −3, −4 sectors. They are constructed using HAL 
QCD method based on the Nambu-Bethe-Salpeter (NBS) 
wave functions generated by lattice QCD. Pion mass is stated 
at 𝑚గ = 146𝑀𝑒𝑉. It includes the ΞΞ potential plot in 

𝑆଴
ଵ with 𝐼 = 1, and in 𝑆ଵ

ଷ  with 𝐼 = 0 respectively. We have 
extracted these data from their FIG. 1,  taking potential 
values from 0.4 𝑓𝑚 to 2.0 𝑓𝑚, using a 0.1 𝑓𝑚 step. We have 
also included an error bar for each potential value: 

 

  

Figure 2: ΞΞ potential plot in 𝑆଴
ଵ with 𝐼 = 1, and in 𝑆ଵ

ଷ         
with 𝐼 = 0. 

As we can see, error bars are very significant. So we have to 
be aware that this fact will condition our fits. 

IV. FITTING DATA WITH EFT 

In this section, we will fit the potentials at LO and at NLO 
(at ଵ𝑆଴ and ଷ𝑆ଵ channels) obtained in section II to the data 
extracted from [7], which is shown in Figure 2.  

Initial considerations: 

 NN axial coupling constant value is well-known. 
But, taking into consideration that this constant is 
not constrained by the symmetries, we can expect 
a different value of the constant in the ΞΞ system. 
So, we will to treat 𝑔஺ as a fitting parameter. 

 In order to fit the potentials, we will use Wolfram 
Mathematica function NonLinearModelFit[]. 
That function gives us the fitted function together 
with the estimated parameters and their 
confidence intervals. 

 Estimated parameters will be presented in the 
confidence interval provided by Wolfram 
Mathematica function NonLinearModelFit[]. 

 We will include two additional fitting parameters 
(𝑉଴,   𝑉଴′). They correspond to the potential value 
at infinity and are introduced in order to readdress 
any data shift. 

 The fit will be done simultaneously for the both 
channels (1S0, 3S1) so that the cut-off (𝛬) and de 
𝑔஺ will be a common parameter while the other 
parameters (𝑉଴ or the parameter that multiplies 
𝛿′𝑠 functions) will be different for each channel. 

0.6 0.8 1.0 1.2 1.4 1.6 1.8

20

20

40

60 1S0

3S1
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 In order to estimate the goodness of this fit, we 
will use 𝜒ଶ test: 

𝜒ଶ =
1

𝑁 − 𝑑 − 1
෍

(𝑉௜ − 𝑓(𝑟௜))ଶ

(𝑒𝑟𝑟௜)ଶ

௡

௜ୀଵ

 
 
(8) 

Where 𝑉௜ is the potential value at 𝑟௜, 𝑒𝑟𝑟௜  its 
associated error, 𝑓(·) is the fitted function. N is 
the number of potentials values we are fitting and 
d is the degrees of freedom (number of fitting 
parameters). 
As much closer 𝜒ଶ gets to 1 much better will be 
the fit. Fits with 𝜒ଶ < 1 usually reflect large 
errors in the data and hence a certain freedom to 
describe data with different functions. 

 Leading Order 

 As we have seen, at LO, potentials have the 
following form: 

𝑉
ௌబ

భ
௅ை = 𝑉଴ + 𝑎ଵ · ൬

𝛬

√𝜋
൰

ଷ

· 𝑒ି௸మ·௥మ

+ 𝑉
ௌబ

భ
ை௉ா(𝐫) 

 
(9) 

𝑉
ௌభ

య
௅ை = 𝑉଴

ᇱ + 𝑎ଶ · ൬
𝛬

√𝜋
൰

ଷ

· 𝑒ି௸మ·௥మ

+ 𝑉
ௌ𝟏

𝟑
𝑶௉ா(𝐫) 

 
(10) 

Where 𝑎ଵ,   𝑎ଶ, 𝛬 are fitting parameters. 

 LO fitting outcome is presented below: 

   

Figure 3: Channels 1s0 3s1. Fitting at LO. 

 Expected value Confidence interval 
𝛬 521 MeV [470 𝑀𝑒𝑉, 567 𝑀𝑒𝑉] 
𝑎ଵ 1

(247 𝑀𝑒𝑉)ଶ
 

1

(270 𝑀𝑒𝑉)ଶ
,

1

(230 𝑀𝑒𝑉)ଶ
] 

𝑎ଶ 1

(241 𝑀𝑒𝑉)ଶ
 [

1

(230 𝑀𝑒𝑉)ଶ
,

1

(180 𝑀𝑒𝑉)ଶ
] 

𝑔஺ 
1.95 [1.4, 2.3] 

Table 1: Estimated parameters (LO). 

 Fit goodness: ቊ
𝜒ଶ

ଵௌ଴
= 0.58

𝜒ଶ
ଷௌଵ

= 0.20
   

 Next to Leading Order 

At NLO we came up with the linear combination of   𝛿ଷ(𝒓) 

and  ∇ሬሬ⃗ ଶ𝛿ଷ(𝒓), which is written as follows: (𝑎௜ − 4𝑏௜𝛬
ଶ +

4𝑏௜𝛬
ସ𝑟ଶ) ቀ

௸

√గ
ቁ

ଷ

eି௸మ·௥మ
, where parameters 𝑎௜ and 𝑏௜ (i = 1, 2) 

are defined in section  II. 

 As we have seen, at NLO, the potentials have the 
following form: 

          𝑉
ௌబ

భ
ே௅ை = 𝑉଴ + (𝑎ଵ − 4𝑏ଵ𝛬ଶ +  

        +4𝑏ଵ𝛬ସ𝑟ଶ) ቀ
௸

√గ
ቁ

ଷ

eି௸మ·௥మ
+ 𝑉

ௌబ
భ
ை௉ா(𝐫) + 𝑉

ௌబ
భ
்௉ா(𝐫) 

(11) 

             𝑉
ௌభ

య
ே௅ை = 𝑉଴

ᇱ + (𝑎ଶ − 4𝑏ଶ𝛬ଶ + 

        +4𝑏ଶ𝛬ସ𝑟ଶ) ቀ
௸

√గ
ቁ

ଷ

𝑒ି௸మ·௥మ
+ 𝑉

ௌ𝟏
𝟑
𝑶௉ா(𝐫) + 𝑉

ௌభ
య
்௉ா(𝐫) 

(12) 

 𝑁𝐿𝑂 fitting outcome is presented below: 

 

Figure 5: Channels 1s0 3s1. Fitting at NLO. 

 Expected 
value 

Confidence interval 

𝛬 398 MeV [371 𝑀𝑒𝑉, 424 𝑀𝑒𝑉] 
𝑎ଵ 1

(210 𝑀𝑒𝑉)ଶ
 [

1

(232 𝑀𝑒𝑉)ଶ
,

1

(185 𝑀𝑒𝑉)ଶ
] 

𝑎ଶ 1

(167𝑀𝑒𝑉)ଶ
 [

1

(191 𝑀𝑒𝑉)ଶ
,

1

(145 𝑀𝑒𝑉)ଶ
 ] 

𝑏ଵ 
−

1

(441 𝑀𝑒𝑉)ସ
 [−

1

(407 𝑀𝑒𝑉)ସ
, −

1

(500 𝑀𝑒𝑉)ସ
 ]

𝑏ଶ 
−

1

(410 𝑀𝑒𝑉)ସ
 [−

1

(394 𝑀𝑒𝑉)ସ
, −

1

(428 𝑀𝑒𝑉)ସ
 ]

𝑔஺ 0.22 [0.18, 0.27] 

Table 2: Estimated parameters (NLO). 

 Fit goodness: ቊ
𝜒ଶ

ଵௌ଴
= 0.70  

𝜒ଶ
ଷௌଵ

= 0.12
  

 Discussion 

 About δ’s function & the cut-off: The physics that 
we are omitting corresponds to higher resonances 
σ, ρ, ω (Ref. [8]), and because of their associated 
energy is in the range 500-800 MeV, the cut-off, 
Λ, should be near this range. In fact, in Ref [1], 
the cut-off is done such that: 𝑚గ ≪ 𝛬 ≪

𝑀~4𝜋𝑓గ~1100𝑀𝑒𝑉, which is compatible with 
the previous range. But in our case we have 
obtained a bit lower cut-off value. That is not 
catastrophic but a higher cut-off would have been 
a better result. 
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1S0

3S1

 About the aଵ, aଶ, bଵ, bଶ parameters: Because of 
the potentials that we are fitting are hadronic, the 
order of parameters that we have obtained in the 
fit should be hadronic (≳ 400𝑀𝑒𝑉).  

That means that, 𝑎ଵ, 𝑎ଶ ≳
ଵ

(ସ଴଴ெ௘௏)మ  and  𝑏ଵ,

𝑏ଶ ≳
ଵ

(ସ଴଴ெ௘௏)ర. (In [2], this parameters are stated 

at ~ ቀ
ெ

ଶగమ 𝛬ቁ
௠

~(300𝑀𝑒𝑉)ଶ௠ , with 𝑚 = 1, 2 at 

LO and NLO resp.). 
We have obtained a resulting parameters 𝑎ଵ, 𝑎ଶ 
lower than expected, but, in contrast,  𝑏ଵ, 𝑏ଶ 
agree with what we expected. 

 We have seen that the axial coupling constant, 𝑔஺, 
changes one order of magnitude from LO to 
NLO. This instability can be solved assuming that 
at NLO the fit will be more accurate, and hence 
taking the latter one as a better estimation. In fact, 
it has been calculated in the very recent paper 
[10] where 𝑔஺ = 0.27. This value falls within our 
confidence interval when we are at NLO. 
To convince ourselves, we have first imposed 𝑔஺ 
obtained at NLO to LO and next 𝑔஺ obtained at 
LO to NLO: 
- If we fit at LO imposing 𝑔஺ obtained at NLO 

we get an acceptable fit with these 𝜒ଶ: 
𝜒ଶ

ଵௌ଴
= 3.51;      𝜒ଶ

ଷௌଵ
= 0.33 

- But in the reverse case, which means 
imposing LO 𝑔஺ to NLO, the fit is 
catastrophic: all the parameters become 0.  

 Finally, we have to remark that the goodness of 
the fit only improves from the LO to NLO in 1S0 
channel. In 3S1 channel the goodness of the fit 
remains with a similar low value in both orders. 

V. ONE BOSON EXCHANGE MODELS 

In this last section we will briefly treat the problem under 
One Boson Exchange Models and compare the result with 
EFT. We will use OBE potential (from [8]) which includes 4 
resonances: π, σ, ω, ρ: 

 
𝑉

ௌబ
భ
ை஻ா = 𝑉଴ −

ଵ

ଵ଺గ
ቀ

௚ಲ

௙ഏ
ቁ

ଶ

𝑚గ
ଶ ௘ష೘ഏ·ೝ

௥
− 

௚഑ಿಿ
మ

ସగ

௘ష೘഑·ೝ

௥
+

௚ഘಿಿ
మ

ସగ

௘ష೘ഘ·ೝ

௥
− 

௙ഐಿಿ
మ

଼గ

௠ഐ
మ

ெమ

௘ష೘ഐ·ೝ

௥
 

 

    
(13) 

     
𝑉

ௌబ
భ
ை஻ா = 𝑉଴

ᇱ −
ଵ

ଵ଺గ
ቀ

௚ಲ

௙ഏ
ቁ

ଶ

𝑚గ
ଶ ௘ష೘ഏ·ೝ

௥
−              

௚഑ಿಿ
మ

ସగ

௘ష೘഑·ೝ

௥
+

௚ഘಿಿ
మ

ସగ

௘ష೘ഘ·ೝ

௥
−

௙ഐಿಿ
మ

଼గ

௠ഐ
మ

ெమ

௘ష೘ഐ·ೝ

௥
 

 

 
 
(14) 

Where 𝑀 ≈ 1300 𝑀𝑒𝑉  (Ξ mass), 𝑚గ = 146 𝑀𝑒𝑉, 𝑚ఠ ≈

𝑚ఘ ≈ 780 𝑀𝑒𝑉. 

 We will use once again Wolfram Mathematica 
function NonLinearModelFit[].  

 The fit will be done simultaneously in both 
channels (1S0 and 3S1) with these shared fitting 
parameters: 𝑔஺, 𝑔ఙேே,  𝑔ఠேே , 𝑚ఙ, 𝑓ఘேே. 

 𝑉଴, 𝑉଴′ will be two other fitting parameters with 
the same meaning that they have in the previous 
fits. 

 We will include for each parameter its confidence 
interval provided by Wolfram Mathematica itself. 

 Results 

During the fitting tests we have obtained 𝑔ఙேே ~10ିଵ଺, 
we can read that result as that (σ) resonance does not 
contribute at all. Furthermore, we have obtained 
𝑓ఘேே~10, but since this term has multiplying factor 1/𝑀ଶ 

we can neglect that contribution. 
So, the only non-vanishing terms are π and ω resonances 
and we present their fitting outcome just below: 

  

Figure 6: Fitting with OBE model of channels 1s0, 3s1. 

 Expected value Confidence interval 
𝑔஺ 2.2 [1.5, 2.7] 

𝑔ఠேே 21.1 [14.9, 27.3] 

Table 3: Estimated parameters (OBE model). 

 Fit goodness: ቊ
𝜒ଶ

ଵௌ଴
= 2.16

𝜒ଶ
ଷௌଵ

= 0.70
 

 Discussion  

It is shocking to realise that the fit removes σ-term: this 
term is not suppressed by Ξ mass (as occurs with ρ -term). 
Furthermore, while π and ω terms are the only relevant their 
masses are sorted out as 𝑚గ < 𝑚ఙ < 𝑚ఠ. So, it is not clear 
in which order should contribute each resonance. Also, 
adding more resonances does not seem to improve the fit: we 
obtain almost the same fit parameter with or without ρ, σ 
resonances. 

In contrast, in the EFT we have seen that we have a clear 
contribution hierarchy: We could expect that fit will improve 
as many terms we add and we can quantify the contribution 
of each order. 

VI. SCATTERING LENGTHS 

In this section, we will compute numerically the 
scattering length of all the potentials that we have covered in 
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this project using the J-Matrix code provided freely in Ref. 
[9] which computes the phase shift. Using this code, we are 
able to compute the scattering length by iterating the product 
( 𝑘 ∗ cot 𝛿଴(𝑘)) with decreasing k, till it converges. Where 
𝛿଴(𝑘)) is the phase shift when the incident particle has an 
angular momentum 0, and a wave number k, then we have, 

 1

𝑎௦

=  − lim
௞→଴

𝑘 ∗ cot 𝛿଴(𝑘). 
    

In order to compute the scattering lengths, we will use the 
EFT potentials at LO, NLO and the OBE potentials all of 
them projected for channels 1S0 and 3S1 (discussed in 
section II and V resp.). As potentials parameters we will use 
the expected value obtained in the fit (table 1, table 2 and 
table 3 resp.). Also, we will estimate the error of these 
scattering lengths by computing them with the same 
potentials but changing their fitted parameters within their 
confidence interval, and taking the spectrum of each 
scattering length as its confidence interval.  
     In the following, we present the results at LO and NLO of 
EFT: 

 Expected value Confidence interval 

𝑎ௌ൫ 𝑆଴
ଵ ൯ 1.79 𝑓𝑚 [1.64 𝑓𝑚, 1.97 𝑓𝑚] 

𝑎ௌ൫ 𝑆ଵ
ଷ ൯ 3.18 𝑓𝑚 [2.93 𝑓𝑚, 3.56 𝑓𝑚] 

     Table 4: Scattering lengths at LO. 

 Expected value Confidence interval 

𝑎ௌ൫ 𝑆଴
ଵ ൯ 1.77 𝑓𝑚 [1.67 𝑓𝑚, 1.92 𝑓𝑚] 

𝑎ௌ൫ 𝑆ଵ
ଷ ൯ 2.50 𝑓𝑚 [2.06 𝑓𝑚, 3.31 𝑓𝑚] 

     Table 5: Scattering lengths at NLO. 

And the results using OBE potential we have fitted: 

 Expected value Confidence interval 

𝑎ௌ൫ 𝑆଴
ଵ ൯ 1.73 𝑓𝑚 [1.01 𝑓𝑚, 2.42 𝑓𝑚] 

𝑎ௌ൫ 𝑆ଵ
ଷ ൯ 1.91 𝑓𝑚 [0.87 𝑓𝑚, 2.69 𝑓𝑚] 

     Table 6: Scattering length (OBE). 

Note that the scattering lengths that we have just 
calculated have the typical scale we would expect within 
strong interaction frame. 

It is also interesting to note that while 𝑎ௌ൫ 𝑆଴
ଵ ൯  is 

remarkably stable (and thus we can rely on that value), 

𝑎ௌ൫ 𝑆ଵ
ଷ ൯ has an strong dependence on the fit. 

VII. CONCLUSION  

 We have seen that the system ΞΞ behaves 
likewise NN, and we can describe it using the 
same EFT.   

 Also, we have seen that EFT, unlike OBE models, 
provides a consistent method to construct NN 
potentials. Furthermore, EFT reproduce 𝛯𝛯-
potential more accurately than OBE models, 
according to our results. 

 Using NLO EFT potential we have obtained a 𝑔஺ 
estimation which agree with [10].  

 We have calculated scattering lengths of ΞΞ 
in ଵ𝑆଴ and ଷ𝑆ଵ channels using all the potentials 
covered in this project. 

 To sum up, we have learnt that we are able to 
estimate relevant EFT parameters such as 𝑔஺ by 
using lattice QCD results. Then, we have seen 
that we can make use of these EFT parameters to 
get physical quantities that can be measured such 
as scattering length. 
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