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Abstract. We study several questions about the weak-type boundedness of the
Fourier transform F on rearrangement invariant spaces. In particular, we charac-
terize the action of F as a bounded operator from the minimal Lorentz space Λ(X)
into the Marcinkiewicz maximal space M(X), both associated to a rearrangement
invariant space X. Finally, we also prove some results establishing that the weak-
type boundedness of F , in certain weighted Lorentz spaces, is equivalent to the
corresponding strong-type estimates.

1. Introduction

The Fourier transform of a function f in Rn, defined as

F(f)(x) = f̂(x) =

∫
Rn

f(t) e−ix·t dt,

is a bounded operator from L1 to L∞ and it can also be extended continuously on
L2 where, in fact, it defines an isometry. In particular, the Fourier transform maps
L1 + L2 into L2 + L∞.

One of the main results included in the work [4] concerns the boundedness of the
Fourier transform in rearrangement invariant Banach functions spaces (r.i. spaces,
see [3] for standard definitions and notations) and asserts that the largest r.i. space
which is mapped by the Fourier transform into a space of locally integrable functions
is, in fact, L1 +L2. It is also shown that L2 is the only r.i. space X on Rn, on which
the Fourier transform is bounded:

(1) F : X → X if and only if X = L2.

In this work we want to study this same kind of question, but relaxing the hy-
pothesis, assuming now that F is of restricted weak-type on X. Let us first briefly
recall the necessary definitions to describe this result: For a given r.i. space X, the
fundamental function ϕX is defined as

ϕX(t) = ‖χA‖X , where |A| = t.

Note that on a r.i. space the expression above is independent of the set A, so ϕX

is a well defined quasi-concave function; that is, an increasing function such that
ϕX(t)/t is non-increasing and ϕX(t) 6= 0, for t > 0. Let us consider the minimal
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Lorentz space Λ(X) = ΛϕX
and the maximal Lorentz space (or Marcinkiewicz space)

M(X) = MϕX
defined, respectively, as

Λ(X) =

{
f : ‖f‖Λ(X) =

∫ ∞
0

f ∗(t) dϕX(t) <∞
}
,

and

M(X) =
{
f : ‖f‖M(X) = sup

t>0
f ∗∗(t) ϕX(t) <∞

}
,

where f ∗ is the decreasing rearrangement of f and f ∗∗(t) =
1

t

∫ t

0

f ∗(s) ds.

It is well known [3, Theorem II.5.13] that for every r.i. space X we have

Λ(X) ⊂ X ⊂M(X),

and all r.i. spaces Y satisfying Λ(X) ⊂ Y ⊂M(X) have an equivalent fundamental
function: ϕY ≈ ϕX .

Regarding (1), and in view of what is known for the strong-type estimates [4], it
is now natural to ask about weaker conditions on the r.i. space X, in terms of its
fundamental function ϕX , to ensure that the Fourier transform F maps the minimal
Lorentz space Λ(X) into the Marcinkiewicz space M(X) (i.e., it is of restricted weak-
type on X). This is completely answered in Section 2 (see Theorem 2.1).

Also, motivated by the results in [2, 13], we consider the boundedness of F between
different weighted Lorentz spaces. If p ∈ (0,∞) and v is a non-negative weight, the
Lorentz space Λp(v) is the set of functions f : Rn −→ R for which

‖f‖Λp(v) =

(∫ ∞
0

(f ∗(t))p v(t) dt

)1/p

is finite. Denoting by V (t) =
∫ t

0
v(s) ds the primitive of the weight v, the weak-type

Lorentz space Λp,∞(v) is the set of all functions f such that

‖f‖Λp,∞(v) = sup
t>0

f ∗(t) V (t)1/p <∞.

In the particular case of v(t) = tp/q−1, we obtain the classical Lorentz spaces Lq,p,
0 < p, q <∞. Similarly, the space Γp(v) is the collection of those f for which

‖f‖Γp(v) =

(∫ ∞
0

(f ∗∗(t))p v(t) dt

)1/p

is finite. Analogously, we define the corresponding weak-type space Γp,∞(v), which
is the set of all measurable functions f such that

‖f‖Γp,∞(v) = sup
t>0

f ∗∗(t)V (t)1/p <∞.

It is easy to see that we always have the following collection of embeddings:

Γp(v) ⊂ Λp(v)
∩ ∩

Γp,∞(v) ⊂ Λp,∞(v)

For a general review on normability properties, for these weighted Lorentz spaces,
see [5].
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In [2], Fourier mapping theorems in weighted Lorentz spaces were obtained in the
Banach space setting. In particular the authors proved that for 1 < p ≤ q and q ≥ 2,

(2) ‖f̂‖Λq(u) ≤ C‖f‖Λp(v),

provided that u is a non-increasing weight, v is in the Bp class of Ariño and Muck-
enhoupt [1], which is given by the following inequality

(3)

∫ ∞
t

v(s)

sp
ds ≤ C

tp

∫ t

0

v(s) ds,

and also satisfies

(4) sup
s>0

s

(∫ 1/s

0

u(x) dx

)1/q (∫ s

0

v(x) dx

)−1/p

<∞.

Conversely, if the inequality (2) holds for some weight functions u and v on (0,∞)
and 1 < p, q < ∞, then u and v satisfy (4). In fact, (4) is the condition obtained
when (2) is tested on radial characteristic functions in Rn.

An important technique to study the action of the Fourier transform on r.i. spaces
was proved by Jodeit and Torchinsky [7], who showed that an operator T is of type
(1,∞) and (2, 2) if and only if there is a constant C such that

(5)

∫ z

0

(Tf)∗(x)2 dx ≤ C

∫ z

0

(∫ 1/t

0

f ∗(s) ds

)2

dt, f ∈ L1 ∩ L2, z > 0.

In [2], and also in [13], weighted extensions of this result were obtained as part of
the study of the boundedness of the operator T between weighted Lorentz spaces;
namely,

(6)

(∫ ∞
0

(Tf)∗(x)q u(x) dx

)1/q

≤ C

(∫ ∞
0

(∫ 1/t

0

f ∗(s) ds

)p

v(t) dt

)1/p

.

To interpret (6) as a Lorentz space inequality we take w(t) = tp−2v(1/t), we change
the variable t by 1/t, and then (6) is equivalent to the inequality

‖Tf‖Λq(u) ≤ C‖f‖Γp(w).

In the case 0 < p ≤ 2 = q, one of the main results included in [13] yields a simple
condition on weights u and v which is necessary and sufficient for (6) when T is the
Fourier transform (see Theorem 3.3). We observe that (5) is a particular case of (6),
just by taking p = q = 2 and u = v = χ(0,z).

As in our previous consideration for general r.i. spaces, in Section 3 we are inter-
ested in the weak-type boundedness of the Fourier transform F on Lorentz spaces
(see Theorem 3.6) and we show that the necessary and sufficient conditions exhibited
in Theorem 3.3, proving the boundedness of F from Γp(w) into Λ2(u), 0 < p ≤ 2,
also work for characterizing the corresponding weak-type boundedness of F from
Γp(w) into Λ2,∞(u) or Γ2,∞(u), in the same range of p.

2. Fourier transform of restricted weak-type in rearrangement
invariant spaces

For a given rearrangement invariant space X, with rearrangement invariant norm
‖·‖X , let us denote by X ′ its associate space (see [3] for the definition and properties)
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which is also a rearrangement invariant space whose norm, for a function g, is defined
by the expression

‖g‖X′ = sup

{∫ ∞
0

|f ∗(x)g∗(x)| dx : f ∈ X, ‖f‖X ≤ 1

}
.

Our following result extends (1) to the a priori weaker case of restricted-weak
type estimates for F . However, we can still prove that even under these conditions,
there are no other spaces where the boundedness holds, except those sharing the
same fundamental function as L2.

Theorem 2.1. Let X be an r.i. space. Then F : Λ(X)→M(X) is bounded if and
only if ϕX(t) ' t1/2, t > 0.

Proof. The assumption that ϕX(t) ' t1/2 implies that Λ(X) = L2,1 and M(X) =
L2,∞, since F maps L2 into L2 continuously, the assertion follows from the fact that
L2,1 ↪→ L2 ↪→ L2,∞.

For the converse, we observe that F : Λ(X) → M(X) is equivalent, by duality,
to F : Λ(X ′)→M(X ′). Since L1 + L2 is the largest rearrangement invariant space
which is mapped by the Fourier transform into a space of locally integrable functions
[4, Theorem 1], it follows that

Λ(X) ⊂ L1 + L2 and Λ(X ′) ⊂ L1 + L2,

or, equivalently,

Λ(X) ⊂ L1 + L2 and L2 ∩ L∞ = (L1 + L2)′ ⊂ (Λ(X ′))′ = M(X).

Taking into account the minimal and maximal properties, respectively, of Λ(X) and
M(X), we obtain that

Λ(X) ⊂ L1 + L2,1 and L2,∞ ∩ L∞ ⊂M(X).

These inclusions can be written in terms of the corresponding fundamental functions
of the spaces involved as follows

min(t, t1/2) . ϕX(t) . max(1, t1/2).

Therefore, we obtain that

(7) ϕX(t) ' t1/2, for t ≥ 1.

Hence, we just have to prove that for 0 < t ≤ 1, ϕX(t) ' t1/2. Now, for any a > 0,
let us consider f(t) = χ(−a,a)(t), so that

f ∗(t) = χ(0,2a)(t) and f̂(ξ) = 2
sin(aξ)

ξ
= 2a sinc(aξ).

Since (f̂)∗∗(s) = 2a sinc∗∗(as), we may take s = (2a)−1 to get

ϕX

( 1

2a

)
2a sinc∗∗(1/2) = ϕX

( 1

2a

)
(f̂)∗∗

( 1

2a

)
≤ ‖f̂‖M(X) ≤ C‖f‖Λ(X) = CϕX(2a).

For all t > 0, replacing 2a by t and also by 1/t gives two inequalities that combine
to show

ϕX(t) ' tϕX(1/t).

Using (7) we see that ϕX(t) ' t1/2 for t < 1 as well. �
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Corollary 2.2. If w is a weight, W (t) =
∫ t

0
w(s) ds, 1 ≤ p <∞, and

wp(t) =
d

dt

(
W (t) + tp

∫ ∞
t

w(s)

sp
ds

)1/p

,

then F : Λ1(wp)→ Γ1,∞(wp) if and only if W (t) + tp
∫∞
t

w(s)
sp

ds ≈ tp/2.

Proof. If we denote by X = Γp(w), then ϕp
X(t) = W (t) + tp

∫∞
t

w(s)
sp

ds. Therefore
Λ(X) = Λ1(wp), M(X) = Γ1,∞(wp), and the result follows from Theorem 2.1. �

Remark 2.3. From the proof of Theorem 2.1, we observe that, given a rearrange-
ment invariant space X, a necessary condition to obtain the boundedness of F from
Λ(X) into M(X) is that both minimal Lorentz spaces Λ(X) and Λ(X ′) are contained
in L1 + L2, but this is not sufficient.

As a counterexample, let us consider X = L2,1∩L∞ which coincides with its min-
imal Lorentz space Λ(X), has associate space X ′ = L2,∞+L1 and its Marcinkiewicz
space is M(X) = L2,∞ ∩ L∞. Hence, Λ(X) = L2,1 ∩ L∞ ⊂ L1 + L2, Λ(X ′) =
L2,1 + L1 ⊂ L1 + L2.

Since L2,1 ∩ L∞ ⊂ L2 ⊂ L2,∞, it holds that F : Λ(X) −→ L2,∞. Therefore, in
order to see that F : Λ(X) 6−→M(X) we have to show that F : Λ(X) 6−→ L∞.

For this purpose, let us consider E = (−a, a), for a > 1 and the family of charac-
teristic functions χE. It holds that χ̂E(ξ) = 2a sinc(aξ) and then ‖χ̂E‖∞ = 2a. Since
‖χE‖Λ(X) = max(1,

√
2a) =

√
2a, we conclude that there is no positive constant C

such that ‖χ̂E‖∞ ≤ C‖χE‖Λ(X). Observe that ϕL2,1∩L∞(t) 6' t1/2, for t > 0.

3. Weak-type boundedness on weighted Lorentz spaces

The use of level function techniques introduced in [6] and [8] was an important tool
to study the boundedness of the Fourier transform in the context of Lorentz spaces,
as established in [13]. The following proposition gives the basic properties needed to
prove our main result, which is an extension to weighted inequalities on weak-type
spaces (see [12, Proposition 2.1 and Proposition 5.1] and also [10] and [11]). Let us
denote by L+ the set of Lebesgue measurable functions h : (0,∞) −→ [0,∞].

Proposition 3.1. [12, Proposition 2.1] To each h ∈ L+ there corresponds a non-
increasing function ho ∈ L+, called the level function of h, having the following
properties:

(a) For all non-increasing function ϕ ∈ L+,
∫∞

0
ϕ(x)h(x) dx ≤

∫∞
0
ϕ(x)ho(x) dx.

(b) If 0 ≤ hn ↑ h pointwise then hon ↑ ho pointwise.
(c) If h is bounded and compactly supported then there exists a (necessarily finite

or countable) collection of disjoint intervals (aj, bj), each of finite length, such
that

ho(x) =
1

bj − aj

∫ bj

aj

h(y) dy, for aj ≤ x ≤ bj,

and ho(x) = h(x), for x 6∈ ∪j(aj, bj).

To use this proposition, and following [13], we introduce the class A of averaging
operators A defined by

Ah(x) =


1

bj − aj

∫ bj

aj

h(y) dy, for aj ≤ x ≤ bj

h(x), otherwise,
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where {(aj, bj)}j is a finite or countable collection of disjoint subintervals of (0,∞)
each of finite length. Proposition 3.1 implies that, for h bounded and compactly
supported there exists Ah ∈ A such that ho = Ahh. The next lemma relates the
level function with the averaging operators A.

Lemma 3.2. [13, Lemma 2.5] If u ∈ L+, for all x > 0

1

x

∫ x

0

uo(t) dt = sup
A∈A

1

x

∫ x

0

Au(t) dt ≤ 2 sup
y≥x

1

y

∫ y

0

u(t) dt ≤ 2

x

∫ x

0

uo(t) dt.

For u and v positive measurable functions defined on (0,∞) and uo the level
function of the weight u, let us consider the constant:

K0 = sup
x>0

(∫ ∞
0

min(x−2, t−2) uo(t) dt

)1/2(∫ ∞
0

min(x−p, t−p) v(t) dt

)−1/p

' sup
x>0

(
x−2

∫ x

0

uo(s) ds

)1/2(∫ ∞
x

(
1

t

∫ t

0

v(s) ds

)
dt

tp

)−1/p

.

Using Lemma 3.2, one can prove that K0 is equivalent to

K1 = sup
x≤y

(
x

y

∫ y

0

u(s) ds

)1/2(
xp
∫ ∞
x

(
1

t

∫ t

0

v(s) ds

)
dt

tp

)−1/p

,

which is independent of uo. We will also need to recall the following result, whose
extension to weak-type boundedness on Lorentz spaces is the main goal of our The-
orem 3.6:

Theorem 3.3. [13, Corollary 5.2] Suppose 0 < p ≤ 2 and u,w ∈ L+. The following
conditions are equivalent:

(i) F : Γp(w) −→ Λ2(u).
(ii) F : Γp(w) −→ Λ2(uo).

(iii) F : Γp(w) −→ Γ2(uo).
(iv) F : Γp(w) −→ Γ2(u).
(v)

(8) sup
x≤y

(
x

y

∫ y

0

u(t) dt

)1/2
(
xp
∫ 1/x

0

(
tp
∫ ∞
t

w(s)
ds

sp

)
dt

t

)−1/p

<∞.

Remark 3.4. As we have already mentioned in the Introduction, condition (4)
gives another characterization of the boundedness of F : Γp(w) −→ Γ2(u), whenever
1 < p ≤ 2, w ∈ Bp (since Λp(w) = Γp(w) [9, Theorem 4]) and u is decreasing (and
hence, u ∈ B2 and again Λ2(u) = Γ2(u)). Therefore, under these hypotheses (4) and
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(8) are equivalent. In fact, we can give a direct proof:

sup
0<x≤y

(
x

y

∫ y

0

u(t) dt

)1/2
(
xp
∫ 1/x

0

(
tp
∫ ∞
t

w(s)
ds

sp

)
dt

t

)−1/p

≈ sup
0<x

(U(x))1/2

(
xp
∫ 1/x

0

(
tp
∫ ∞
t

w(s)
ds

sp

)
dt

t

)−1/p

≈ sup
0<x

(U(x))1/2

(
xpW (1/x) +

∫ ∞
1/x

w(s)

sp
ds

)−1/p

≈ sup
0<x

(U(x))1/2 (xpW (1/x))−1/p

≈ sup
0<s

sU1/2(1/s)W−1/p(s),

which is (4).

The next lemma gives a very handy expression to calculate necessary conditions
for weak-type estimates by means of the action of F on some test functions, and is
the analogue (in the weak-type setting) to [13, Corollary 4.8]:

Lemma 3.5. If z > 0, wz(t) = min(t−2, z−2), and u ∈ L+, then

sup
A∈A
‖Awz‖L1,∞(u) ' ‖wz‖L1,∞(uo).

Proof. For each s > 0, define A(0,s) to be the averaging operator in A based on the
single interval (0, s). That is,

A(0,s)f(t) =


1

s

∫ s

0

f(r) dr, for 0 < t ≤ s,

f(t), for t > s.

If t ≥ z, we may take s = t to get

A(0,t)wz(t) =
1

t

(2

z
− 1

t

)
' 1

tz
.

On one hand, each A(0,t) ∈ A, so for all t ≥ z

sup
A∈A
‖Awz‖L1,∞(u) ≥ ‖A(0,t)wz‖L1,∞(u)

≥ A(0,t)wz(t)

∫ t

0

u(r) dr ' 1

tz

∫ t

0

u(r) dr.

On the other hand, since wz is nonincreasing, wz(t) ≤ A(0,t)wz(t) and, moreover,
the largest average of wz on any interval that includes t is the average over (0, t).
Thus, for each A ∈ A,

Awz(t)

∫ t

0

u(r) dr ≤ A(0,t)wz(t)

∫ t

0

u(r) dr

'


1

z2

∫ t

0

u(r) dr, for t < z

1

tz

∫ t

0

u(r) dr, for t ≥ z

 ≤ sup
t≥z

1

tz

∫ t

0

u(r) dr.
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Combining these two estimates, applying Lemma 3.2 and using that uo is decreas-
ing, we finally get

sup
A∈A
‖Awz‖L1,∞(u) ' sup

t≥z

1

tz

∫ t

0

u(r) dr ' 1

z2

∫ z

0

uo(r) dr ' ‖wz‖L1,∞(uo).

�

Theorem 3.6. Let 0 < p ≤ 2, and u,w be two functions in L+. Then, the following
conditions are equivalent:

(i) F : Γp(w) −→ Λ2,∞(u).
(ii) F : Γp(w) −→ Λ2,∞(uo).

(iii) F : Γp(w) −→ Γ2,∞(uo).
(iv) F : Γp(w) −→ Γ2,∞(u).
(v) Condition (8) holds.

Consequently, the strong-type conditions included in Theorem 3.3 are also equivalent
to the corresponding weak-type boundedness.

Proof. First of all, we observe that the finiteness of condition K1 is equivalent to
condition (8) but expressed in terms of the weight v(t) = tp−2w(1/t). So, we will first
restrict to prove that F : Γp(w) −→ Λ2,∞(u) if and only if K0 <∞ or, equivalently,
K1 <∞.

The sufficiency of the condition follows from [13, Theorem 5.1], since K0 <∞ or
K1 < ∞ is equivalent to the fact F : Γp(w) −→ Λ2(u). To prove the necessity, we
suppose that the boundedness holds which, in terms of the weight v(t) = tp−2w(1/t),
by a change of variables implies that

sup
t>0

U1/2(t)(f̂)∗(t) ≤ C

(∫ ∞
0

(∫ 1/t

0

f ∗(s) ds

)p

v(t) dt

)1/p

.

Following the same idea as in [13, Corollary 4.8], let us consider z > 0 and wz(t) =
min(t−2, z−2). Fix R > 0 and A ∈ A. Then by [13, Corollary 4.7], there exists a
function f such that f ∗ ≤ χ(0,1/z) and for all y ∈ (0, R)

Awz(y)1/2 . (f̂)∗(y).

Then, we obtain the following

U1/2(y)Awz(y)1/2 . U1/2(y)(f̂)∗(y) . ‖f̂‖Λ2,∞(u)

.

(∫ ∞
0

(∫ 1/t

0

f ∗(s) ds

)p

v(t) dt

)1/p

.

(∫ ∞
0

(∫ 1/t

0

χ(0,1/z)(s) ds

)p

v(t) dt

)1/p

=

(∫ ∞
0

wz(y)p/2v(y) dy

)1/p

,

since y ∈ (0, R) and R > 0. Letting R → ∞, this implies that for some positive
constant C > 0

‖Awz‖L1,∞(u) ≤ C‖wz‖Lp/2(v).
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Let us consider

D = sup
A∈A,z>0

‖Awz‖L1,∞(u)

‖wz‖Lp/2(v)

<∞,

where the supremum is taken over A belonging to the class A of averaging operators.
As a consequence of Lemma 3.5, we obtain that

D = sup
A∈A,z>0

‖Awz‖L1,∞(u)

‖wz‖Lp/2(v)

' sup
z>0

‖wz‖L1,∞(uo)

‖wz‖Lp/2(v)

,

and this last quantity can be estimated by

D ' sup
z>0

‖wz‖L1,∞(uo)

‖wz‖Lp/2(v)

= sup
z>0

supt>0 U
o(t) min(z−2, t−2)(∫ ∞

0

min(z−p, t−p)v(t) dt

)2/p

' sup
z>0

sup
z≤t

t−2U o(t)(∫ ∞
z

(
1

s

∫ s

0

v(x) dx

)
ds

sp

)2/p
= sup

t>0

t−2U o(t)(∫ ∞
t

(
1

s

∫ s

0

v(x) dx

)
ds

sp

)2/p
.

It follows from Lemma 3.2 that

U o(t) ' sup
y≥t

t

y
U(y),

and we obtain

D ' sup
t≤y

U(y)

y

1

t

(∫ ∞
t

(
1

s

∫ s

0

v(x) dx

)
ds

sp

)2/p
= K2

1 ,

which is finite.
Since uo is non-increasing we have that (uo)o = uo and it follows that K0 < ∞

for the pair of weights (u, v) if and only if it is finite for the pair (uo, v). Arguing as
before, this is equivalent to F : Γp(w) −→ Λ2,∞(uo).

Again, the fact that uo is non-increasing implies that Λ2,∞(uo) = Γ2,∞(uo). There-
fore, F : Γp(w) −→ Γ2,∞(uo) is also equivalent to K0 <∞.

Finally, for any measurable function f , the inequalities

sup
t>0

f ∗(t)U(t)1/2 ≤ sup
t>0

f ∗∗(t)U(t)1/2 ≤ sup
t>0

f ∗∗(t)U o(t)1/2

imply Γ2,∞(uo) ⊆ Γ2,∞(u) ⊆ Λ2,∞(u). Thus F : Γp(w) −→ Γ2,∞(u) is also equivalent
to K0 <∞. �

Remark 3.7. It is interesting to compare Theorem 2.1 and Theorem 3.6 to see
which conditions we obtain for the same kind of spaces. For example, under the
hypotheses and notations of Corollary 2.2, if we further assume that w satisfies (3)
(i.e., w ∈ Bp), then X = Γp(w) = Λp(w) [9, Theorem 4] and hence ϕX(t) ≈ W 1/p(t).
Thus, F : Λ1(wp)→ Γ1,∞(wp) if and only if W (t) ≈ tp/2, which for p = 1 gives

(9) W (t) ≈ t1/2, t > 0.

On the other hand, under the same considerations, with p = 1, we have that
Λ1(w1) = Λ1(w) = Γ1(w) and using [5, Theorem 6.5] it turns out that Γ2,∞(u) =
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Γ1,∞(w) if and only if

(10) U1/2(t) ≈ t sup
t≤s

W (s)

s
≈ W (t).

Therefore, if (10) holds and we use Theorem 3.6, we have that F : Λ1(w1) →
Γ1,∞(w1) if and only if F : Γ1(w)→ Γ1,∞(w) which, using (8) and (3), is equivalent
to

sup
0<x≤y

(
x

y
W 2(y)

)1/2(
x

∫ 1/x

0

t

∫ ∞
t

w(s)
ds

s

dt

t

)−1

= sup
0<x≤y

(
x

y
W 2(y)

)1/2(
xW (1/x) +

∫ ∞
1/x

w(s)

s
ds

)−1

≈ sup
0<x≤y

W (y)
√
y

1√
xW (1/x)

<∞.(11)

Thus, we finally obtain that, for w ∈ B1, the boundedness of the Fourier transform
F : Λ1(w)→ Γ1,∞(w) is equivalent to any of the two conditions (9) or (11).

Observe that W (t) =
√
t satisfies (11). Conversely, if (11) holds then if we

consider the values 1 = x ≤ y, we get that W (y) .
√
y and, with 0 < x ≤ y = 1,

W (1/x) & 1/
√
x, which gives (9) whenever t ≥ 1. A symmetric argument finally

shows the remaining case 0 < t < 1.
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