Evidence for Charged B Meson Decays to $a_{1}^{ \pm}(1260) \pi^{0}$ and $a_{1}^{\mathbf{0}}(\mathbf{1 2 6 0}) \pi^{ \pm}$

B. Aubert, ${ }^{1}$ M. Bona, ${ }^{1}$ D. Boutigny, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ X. Prudent, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ J. Garra Tico, ${ }^{2}$ E. Grauges, ${ }^{2}$ L. Lopez, ${ }^{3}$ A. Palano, ${ }^{3}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ L. Sun, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ M. Battaglia, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ J. A. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ D. Lopes Pegna, ${ }^{5}$ G. Lynch, ${ }^{5}$ L. M. Mir, ${ }^{5}$ T. J. Orimoto, ${ }^{5}$ M. T. Ronan, ${ }^{5, *}$ K. Tackmann, ${ }^{5}$ W. A. Wenzel,,${ }^{5}$ P. del Amo Sanchez, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ A. T. Watson, ${ }^{6}$ T. Held, ${ }^{7}$ H. Koch, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ M. Pelizaeus, ${ }^{7}$ T. Schroeder, ${ }^{7}$ M. Steinke, ${ }^{7}$ D. Walker, ${ }^{8}$ D. J. Asgeirsson, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{9}$ B. G. Fulsom, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ A. Khan, ${ }^{10}$ M. Saleem,,${ }^{10}$ L. Teodorescu, ${ }^{10}$ V.E. Blinov, ${ }^{11}$ A.D. Bukin, ${ }^{11}$ V. P. Druzhinin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ K. Yu. Todyshev, ${ }^{11}$ M. Bondioli, ${ }^{12}$ S. Curry, ${ }^{12}$ I. Eschrich, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ P. Lund, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ E. C. Martin, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ S. Abachi,,13 C. Buchanan, ${ }^{13}$ S. D. Foulkes, ${ }^{14}$ J. W. Gary, ${ }^{14}$ F. Liu, ${ }^{14}$ O. Long, ${ }^{14}$ B. C. Shen, ${ }^{14}$ L. Zhang, ${ }^{14}$ H.P. Paar, ${ }^{15}$ S. Rahatlou, ${ }^{15}$ V. Sharma, ${ }^{15}$ J. W. Berryhill, ${ }^{16}$ C. Campagnari, ${ }^{16}$ A. Cunha, ${ }^{16}$ B. Dahmes, ${ }^{16}$
T. M. Hong,,${ }^{16}$ D. Kovalskyi, ${ }^{16}$ J.D. Richman, ${ }^{16}$ T. W. Beck, ${ }^{17}$ A. M. Eisner, ${ }^{17}$ C. J. Flacco, ${ }^{17}$ C. A. Heusch, ${ }^{17}$ J. Kroseberg, ${ }^{17}$ W. S. Lockman, ${ }^{17}$ T. Schalk, ${ }^{17}$ B. A. Schumm, ${ }^{17}$ A. Seiden, ${ }^{17}$ M. G. Wilson, ${ }^{17}$ L. O. Winstrom,,${ }^{17}$ E. Chen, ${ }^{18}$ C. H. Cheng, ${ }^{18}$ F. Fang, ${ }^{18}$ D. G. Hitlin, ${ }^{18}$ I. Narsky, ${ }^{18}$ T. Piatenko, ${ }^{18}$ F. C. Porter, ${ }^{18}$ R. Andreassen, ${ }^{19}$ G. Mancinelli, ${ }^{19}$ B. T. Meadows, ${ }^{19}$ K. Mishra, ${ }^{19}$ M. D. Sokoloff, ${ }^{19}$ F. Blanc, ${ }^{20}$ P. C. Bloom, ${ }^{20}$ S. Chen, ${ }^{20}$ W. T. Ford, ${ }^{20}$ J. F. Hirschauer,,${ }^{20}$
A. Kreisel, ${ }^{20}$ M. Nagel,,${ }^{20}$ U. Nauenberg, ${ }^{20}$ A. Olivas, ${ }^{20}$ J. G. Smith, ${ }^{20}$ K. A. Ulmer, ${ }^{20}$ S. R. Wagner, ${ }^{20}$ J. Zhang, ${ }^{20}$ A. M. Gabareen, ${ }^{21}$ A. Soffer, ${ }^{21}$ W. H. Toki, ${ }^{21}$ R. J. Wilson, ${ }^{21}$ F. Winklmeier, ${ }^{21}$ D. D. Altenburg, ${ }^{22}$ E. Feltresi, ${ }^{22}$ A. Hauke, ${ }^{22}$ H. Jasper, ${ }^{22}$ J. Merkel, ${ }^{22}$ A. Petzold, ${ }^{22}$ B. Spaan, ${ }^{22}$ K. Wacker, ${ }^{22}$ V. Klose, ${ }^{23}$ M. J. Kobel, ${ }^{23}$ H. M. Lacker, ${ }^{23}$ W. F. Mader, ${ }^{23}$ R. Nogowski, ${ }^{23}$ J. Schubert, ${ }^{23}$ K. R. Schubert, ${ }^{23}$ R. Schwierz, ${ }^{23}$ J.E. Sundermann, ${ }^{23}$ A. Volk, ${ }^{23}$ D. Bernard, ${ }^{24}$ G. R. Bonneaud, ${ }^{24}$ E. Latour, ${ }^{24}$ V. Lombardo, ${ }^{24}$ Ch. Thiebaux, ${ }^{24}$ M. Verderi, ${ }^{24}$ P. J. Clark, ${ }^{25}$ W. Gradl,,${ }^{25}$ F. Muheim, ${ }^{25}$
S. Playfer,,25 A. I. Robertson, ${ }^{25}$ Y. Xie, ${ }^{25}$ M. Andreotti, ${ }^{26}$ D. Bettoni, ${ }^{26}$ C. Bozzi, ${ }^{26}$ R. Calabrese, ${ }^{26}$ A. Cecchi, ${ }^{26}$ G. Cibinetto, ${ }^{26}$ P. Franchini, ${ }^{26}$ E. Luppi, ${ }^{26}$ M. Negrini, ${ }^{26}$ A. Petrella, ${ }^{26}$ L. Piemontese, ${ }^{26}$ E. Prencipe, ${ }^{26}$ V. Santoro, ${ }^{26}$
F. Anulli, ${ }^{27}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ S. Pacetti, ${ }^{27}$ P. Patteri, ${ }^{27}$ I. M. Peruzzi, ${ }^{27, \dagger}$ M. Piccolo,,${ }^{27}$ M. Rama, ${ }^{27}$ A. Zallo, ${ }^{27}$ A. Buzzo, ${ }^{28}$ R. Contri, ${ }^{28}$ M. Lo Vetere, ${ }^{28}$ M. M. Macri, ${ }^{28}$
M. R. Monge, ${ }^{28}$ S. Passaggio, ${ }^{28}$ C. Patrignani, ${ }^{28}$ E. Robutti, ${ }^{28}$ A. Santroni, ${ }^{28}$ S. Tosi, ${ }^{28}$ K. S. Chaisanguanthum,,${ }^{29}$ M. Morii, ${ }^{29}$ J. Wu, ${ }^{29}$ R. S. Dubitzky, ${ }^{30}$ J. Marks, ${ }^{30}$ S. Schenk, ${ }^{30}$ U. Uwer, ${ }^{30}$ D. J. Bard, ${ }^{31}$ P. D. Dauncey, ${ }^{31}$ R. L. Flack, ${ }^{31}$ J. A. Nash, ${ }^{31}$ W. Panduro Vazquez, ${ }^{31}$ M. Tibbetts, ${ }^{31}$ P. K. Behera, ${ }^{32}$ X. Chai, ${ }^{32}$ M. J. Charles, ${ }^{32}$ U. Mallik, ${ }^{32}$ V. Ziegler, ${ }^{32}$
J. Cochran, ${ }^{33}$ H. B. Crawley, ${ }^{33}$ L. Dong, ${ }^{33}$ V. Eyges, ${ }^{33}$ W. T. Meyer, ${ }^{33}$ S. Prell, ${ }^{33}$ E. I. Rosenberg,,${ }^{33}$ A. E. Rubin, ${ }^{33}$ Y. Y. Gao, ${ }^{34}$ A. V. Gritsan, ${ }^{34}$ Z. J. Guo, ${ }^{34}$ C. K. Lae, ${ }^{34}$ A. G. Denig, ${ }^{35}$ M. Fritsch, ${ }^{35}$ G. Schott,,${ }^{35}$ N. Arnaud, ${ }^{36}$ J. Béquilleux, ${ }^{36}$ M. Davier, ${ }^{36}$ G. Grosdidier, ${ }^{36}$ A. Höcker, ${ }^{36}$ V. Lepeltier, ${ }^{36}$ F. Le Diberder, ${ }^{36}$ A. M. Lutz, ${ }^{36}$ S. Pruvot, ${ }^{36}$
S. Rodier, ${ }^{36}$ P. Roudeau, ${ }^{36}$ M. H. Schune, ${ }^{36}$ J. Serrano, ${ }^{36}$ V. Sordini, ${ }^{36}$ A. Stocchi, ${ }^{36}$ W.F. Wang, ${ }^{36}$ G. Wormser, ${ }^{36}$ D. J. Lange, ${ }^{37}$ D. M. Wright, ${ }^{37}$ I. Bingham, ${ }^{38}$ C. A. Chavez, ${ }^{38}$ I. J. Forster, ${ }^{38}$ J. R. Fry, ${ }^{38}$ E. Gabathuler, ${ }^{38}$ R. Gamet, ${ }^{38}$ D. E. Hutchcroft, ${ }^{38}$ D. J. Payne, ${ }^{38}$ K. C. Schofield, ${ }^{38}$ C. Touramanis, ${ }^{38}$ A. J. Bevan, ${ }^{39}$ K. A. George, ${ }^{39}$ F. Di Lodovico, ${ }^{39}$ W. Menges, ${ }^{39}$ R. Sacco, ${ }^{39}$ G. Cowan, ${ }^{40}$ H. U. Flaecher, ${ }^{40}$ D. A. Hopkins, ${ }^{40}$ S. Paramesvaran, ${ }^{40}$ F. Salvatore, ${ }^{40}$ A. C. Wren, ${ }^{40}$ D. N. Brown, ${ }^{41}$ C.L. Davis, ${ }^{41}$ J. Allison, ${ }^{42}$ N. R. Barlow, ${ }^{42}$ R. J. Barlow, ${ }^{42}$ Y. M. Chia, ${ }^{42}$ C. L. Edgar, ${ }^{42}$ G. D. Lafferty,,${ }^{42}$ T. J. West, ${ }^{42}$ J. I. Yi, ${ }^{42}$ J. Anderson, ${ }^{43}$ C. Chen, ${ }^{43}$ A. Jawahery, ${ }^{43}$ D. A. Roberts, ${ }^{43}$ G. Simi, ${ }^{43}$ J. M. Tuggle, ${ }^{43}$ G. Blaylock, ${ }^{44}$
C. Dallapiccola, ${ }^{44}$ S. S. Hertzbach, ${ }^{44}$ X. Li, ${ }^{44}$ T. B. Moore, ${ }^{44}$ E. Salvati, ${ }^{44}$ S. Saremi, ${ }^{44}$ R. Cowan, ${ }^{45}$ D. Dujmic,,${ }^{45}$ P. H. Fisher,${ }^{45}$ K. Koeneke, ${ }^{45}$ G. Sciolla, ${ }^{45}$ S. J. Sekula, ${ }^{45}$ M. Spitznagel, ${ }^{45}$ F. Taylor, ${ }^{45}$ R. K. Yamamoto, ${ }^{45}$ M. Zhao, ${ }^{45}$ Y. Zheng, ${ }^{45}$ S. E. Mclachlin, ${ }^{46, *}$ P. M. Patel, ${ }^{46}$ S. H. Robertson, ${ }^{46}$ A. Lazzaro, ${ }^{47}$ F. Palombo, ${ }^{47}$ J. M. Bauer, ${ }^{48}$ L. Cremaldi, ${ }^{48}$ V. Eschenburg, ${ }^{48}$ R. Godang, ${ }^{48}$ R. Kroeger, ${ }^{48}$ D. A. Sanders, ${ }^{48}$ D. J. Summers, ${ }^{48}$ H. W. Zhao, ${ }^{48}$ S. Brunet, ${ }^{49}$ D. Côté,,49
M. Simard, ${ }^{49}$ P. Taras,${ }^{49}$ F. B. Viaud, ${ }^{49}$ H. Nicholson, ${ }^{50}$ G. De Nardo, ${ }^{51}$ F. Fabozzi, ${ }^{51, \ddagger}$ L. Lista, ${ }^{51}$ D. Monorchio, ${ }^{51}$ C. Sciacca, ${ }^{51}$ M. A. Baak,,${ }^{52}$ G. Raven, ${ }^{52}$ H.L. Snoek, ${ }^{52}$ C.P. Jessop, ${ }^{53}$ J. M. LoSecco, ${ }^{53}$ G. Benelli, ${ }^{54}$ L. A. Corwin, ${ }^{54}$ K. Honscheid, ${ }^{54}$ H. Kagan, ${ }^{54}$ R. Kass,,${ }^{54}$ J. P. Morris, ${ }^{54}$ A. M. Rahimi, ${ }^{54}$ J. J. Regensburger, ${ }^{54}$ Q. K. Wong,,${ }^{54}$ N. L. Blount, ${ }^{55}$ J. Brau, ${ }^{55}$ R. Frey, ${ }^{55}$ O. Igonkina, ${ }^{55}$ J. A. Kolb, ${ }^{55}$ M. Lu, ${ }^{55}$ R. Rahmat, ${ }^{55}$ N. B. Sinev, ${ }^{55}$ D. Strom, ${ }^{55}$ J. Strube, ${ }^{55}$ E. Torrence, ${ }^{55}$ N. Gagliardi, ${ }^{56}$ A. Gaz ${ }^{56}$ M. Margoni, ${ }^{56}$ M. Morandin, ${ }^{56}$ A. Pompili, ${ }^{56}$ M. Posocco, ${ }^{56}$ M. Rotondo, ${ }^{56}$ F. Simonetto, ${ }^{56}$ R. Stroili, ${ }^{56}$ C. Voci, ${ }^{56}$ E. Ben-Haim, ${ }^{57}$ H. Briand, ${ }^{57}$ G. Calderini, ${ }^{57}$ J. Chauveau, ${ }^{57}$ P. David, ${ }^{57}$ L. Del Buono, ${ }^{57}$ Ch. de la Vaissière, ${ }^{57}$ O. Hamon, ${ }^{57}$ Ph. Leruste,,${ }^{57}$ J. Malclès, ${ }^{57}$ J. Ocariz,,${ }^{57}$ A. Perez, ${ }^{57}$ L. Gladney, ${ }^{58}$ M. Biasini, ${ }^{59}$ R. Covarelli, ${ }^{59}$ E. Manoni, ${ }^{59}$ C. Angelini, ${ }^{60}$ G. Batignani, ${ }^{60}$ S. Bettarini, ${ }^{60}$ M. Carpinelli, ${ }^{60}$ R. Cenci, ${ }^{60}$
A. Cervelli, ${ }^{60}$ F. Forti, ${ }^{60}$ M. A. Giorgi, ${ }^{60}$ A. Lusiani, ${ }^{60}$ G. Marchiori, ${ }^{60}$ M. A. Mazur, ${ }^{60}$ M. Morganti, ${ }^{60}$ N. Neri,,${ }^{60}$ E. Paoloni, ${ }^{60}$ G. Rizzo, ${ }^{60}$ J. J. Walsh, ${ }^{60}$ M. Haire, ${ }^{61}$ J. Biesiada, ${ }^{62}$ P. Elmer, ${ }^{62}$ Y. P. Lau, ${ }^{62}$ C. Lu, ${ }^{62}$ J. Olsen, ${ }^{62}$ A. J. S. Smith,,62 A. V. Telnov, ${ }^{62}$ E. Baracchini, ${ }^{63}$ F. Bellini, ${ }^{63}$ G. Cavoto, ${ }^{63}$ A. D'Orazio, ${ }^{63}$ D. del Re, ${ }^{63}$ E. Di Marco, ${ }^{63}$ R. Faccini, ${ }^{63}$ F. Ferrarotto, ${ }^{63}$ F. Ferroni, ${ }^{63}$ M. Gaspero, ${ }^{63}$ P.D. Jackson, ${ }^{63}$ L. Li Gioi, ${ }^{63}$ M. A. Mazzoni, ${ }^{63}$ S. Morganti, ${ }^{63}$ G. Piredda, ${ }^{63}$ F. Polci, ${ }^{63}$ F. Renga, ${ }^{63}$ C. Voena, ${ }^{63}$ M. Ebert, ${ }^{64}$ T. Hartmann, ${ }^{64}$ H. Schröder, ${ }^{64}$ R. Waldi, ${ }^{64}$ T. Adye, ${ }^{65}$ G. Castelli, ${ }^{65}$ B. Franek, ${ }^{65}$ E. O. Olaiya, ${ }^{65}$ S. Ricciardi, ${ }^{65}$ W. Roethel, ${ }^{65}$ F. F. Wilson, ${ }^{65}$ R. Aleksan, ${ }^{66}$ S. Emery, ${ }^{66}$ M. Escalier, ${ }^{66}$ A. Gaidot, ${ }^{66}$ S. F. Ganzhur, ${ }^{66}$ G. Hamel de Monchenault, ${ }^{66}$ W. Kozanecki, ${ }^{66}$ G. Vasseur, ${ }^{66}$ Ch. Yèche, ${ }^{66}$ M. Zito, ${ }^{66}$ X.R. Chen, ${ }^{67}$ H. Liu, ${ }^{67}$ W. Park, ${ }^{67}$ M. V. Purohit, ${ }^{67}$ J. R. Wilson, ${ }^{67}$ M. T. Allen, ${ }^{68}$ D. Aston, ${ }^{68}$ R. Bartoldus, ${ }^{68}$ P. Bechtle, ${ }^{68}$ N. Berger, ${ }^{68}$ R. Claus, ${ }^{68}$ J. P. Coleman, ${ }^{68}$ M. R. Convery, ${ }^{68}$ J. C. Dingfelder, ${ }^{68}$ J. Dorfan, ${ }^{68}$
G.P. Dubois-Felsmann, ${ }^{68}$ W. Dunwoodie, ${ }^{68}$ R. C. Field, ${ }^{68}$ T. Glanzman, ${ }^{68}$ S. J. Gowdy, ${ }^{68}$ M. T. Graham, ${ }^{68}$ P. Grenier, ${ }^{68}$ C. Hast, ${ }^{68}$ T. Hryn'ova, ${ }^{68}$ W.R. Innes, ${ }^{68}$ J. Kaminski, ${ }^{68}$ M. H. Kelsey, ${ }^{68}$ H. Kim, ${ }^{68}$ P. Kim, ${ }^{68}$ M.L. Kocian, ${ }^{68}$ D. W. G. S. Leith, ${ }^{68}$ S. Li, ${ }^{68}$ S. Luitz, ${ }^{68}$ V. Luth, ${ }^{68}$ H. L. Lynch, ${ }^{68}$ D. B. MacFarlane, ${ }^{68}$ H. Marsiske, ${ }^{68}$ R. Messner, ${ }^{68}$ D. R. Muller, ${ }^{68}$ C. P. O'Grady, ${ }^{68}$ I. Ofte, ${ }^{68}$ A. Perazzo, ${ }^{68}$ M. Perl, ${ }^{68}$ T. Pulliam, ${ }^{68}$ B. N. Ratcliff, ${ }^{68}$ A. Roodman, ${ }^{68}$ A. A. Salnikov, ${ }^{68}$ R. H. Schindler, ${ }^{68}$ J. Schwiening, ${ }^{68}$ A. Snyder, ${ }^{68}$ J. Stelzer, ${ }^{68}$ D. Su, ${ }^{68}$ M. K. Sullivan, ${ }^{68}$ K. Suzuki, ${ }^{68}$ S. K. Swain, ${ }^{68}$ J. M. Thompson, ${ }^{68}$ J. Va'vra, ${ }^{68}$ N. van Bakel, ${ }^{68}$ A. P. Wagner, ${ }^{68}$ M. Weaver, ${ }^{68}$ W. J. Wisniewski, ${ }^{68}$ M. Wittgen, ${ }^{68}$ D. H. Wright, ${ }^{68}$ A. K. Yarritu, ${ }^{68}$ K. Yi, ${ }^{68}$ C. C. Young, ${ }^{68}$ P.R. Burchat, ${ }^{69}$ A. J. Edwards,,${ }^{69}$ S. A. Majewski, ${ }^{69}$ B. A. Petersen, ${ }^{69}$ L. Wilden, ${ }^{69}$ S. Ahmed, ${ }^{70}$ M.S. Alam, ${ }^{70}$ R. Bula, ${ }^{70}$ J. A. Ernst, ${ }^{70}$ V. Jain, ${ }^{70}$ B. Pan, ${ }^{70}$ M. A. Saeed, ${ }^{70}$ F. R. Wappler, ${ }^{70}$ S. B. Zain, ${ }^{70}$ W. Bugg, ${ }^{71}$ M. Krishnamurthy, ${ }^{71}$ S. M. Spanier, ${ }^{71}$ R. Eckmann, ${ }^{72}$ J. L. Ritchie, ${ }^{72}$ A. M. Ruland, ${ }^{72}$ C. J. Schilling, ${ }^{72}$ R.F. Schwitters, ${ }^{72}$ J. M. Izen, ${ }^{73}$ X. C. Lou, ${ }^{73}$ S. Ye, ${ }^{73}$ F. Bianchi, ${ }^{74}$ F. Gallo, ${ }^{74}$ D. Gamba, ${ }^{74}$ M. Pelliccioni ${ }^{74}$ M. Bomben, ${ }^{75}$ L. Bosisio, ${ }^{75}$ C. Cartaro, ${ }^{75}$ F. Cossutti, ${ }^{75}$ G. Della Ricca, ${ }^{75}$ L. Lanceri, ${ }^{75}$ L. Vitale, ${ }^{75}$ V. Azzolini, ${ }^{76}$ N. Lopez-March, ${ }^{76}$ F. Martinez-Vidal, ${ }^{76,8}$ D. A. Milanes, ${ }^{76}$ A. Oyanguren, ${ }^{76}$ J. Albert, ${ }^{77}$ Sw. Banerjee, ${ }^{77}$ B. Bhuyan, ${ }^{77}$ K. Hamano, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ I. M. Nugent, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ P. F. Harrison, ${ }^{78}$ J. Ilic, ${ }^{78}$ T.E. Latham, ${ }^{78}$ G. B. Mohanty, ${ }^{78}$ M. Pappagallo, ${ }^{78,11}$ H. R. Band, ${ }^{79}$ X. Chen, ${ }^{79}$ S. Dasu, ${ }^{79}$ K. T. Flood, ${ }^{79}$ J. J. Hollar, ${ }^{79}$ P.E. Kutter, ${ }^{79}$ Y. Pan, ${ }^{79}$ M. Pierini, ${ }^{79}$ R. Prepost, ${ }^{79}$ S.L. Wu, ${ }^{79}$ and H. Neal ${ }^{80}$
(BABAR Collaboration)
${ }^{1}$ Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{14}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{15}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{16}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{17}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{18}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{19}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{20}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{21}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{22}$ Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
${ }^{23}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{24}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
${ }^{25}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{26}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{27}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{28}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{29}$ Harvard University, Cambridge, Massachusetts 02138, USA

${ }^{30}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{31}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{32}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{33}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{34}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{35}$ Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
${ }^{36}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, B.P. 34, F-91898 Orsay Cedex, France
${ }^{37}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{38}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{39}$ Queen Mary, University of London E1 4NS, United Kingdom
${ }^{40}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{41}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{42}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{43}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{44}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{45}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{46}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$
${ }^{47}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{48}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{49}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C $3 J 7$
${ }^{50}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{51}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{52}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{53}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{54}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{55}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{56}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{57}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
${ }^{58}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{59}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
${ }^{60}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{61}$ Prairie View A\&M University, Prairie View, Texas 77446, USA
${ }^{62}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{63}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{64}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{65}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
${ }^{66}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{67}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{68}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{69}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{70}$ State University of New York, Albany, New York 12222, USA
${ }^{71}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{72}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{73}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{74}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{75}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{76}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{77}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{78}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{79}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{80}$ Yale University, New Haven, Connecticut 06511, USA
(Received 1 August 2007; published 26 December 2007)

We present measurements of the branching fractions for the decays $B^{ \pm} \rightarrow a_{1}^{ \pm}(1260) \pi^{0}$ and $B^{ \pm} \rightarrow$ $a_{1}^{0}(1260) \pi^{ \pm}$from a data sample of $232 \times 10^{6} B \bar{B}$ pairs produced in $e^{+} e^{-}$annihilation through the $Y(4 S)$ resonance. We measure the branching fraction $\mathcal{B}\left(B^{ \pm} \rightarrow a_{1}^{ \pm}(1260) \pi^{0}\right) \times \mathcal{B}\left(a_{1}^{ \pm}(1260) \rightarrow \pi^{-} \pi^{+} \pi^{ \pm}\right)=$ $(13.2 \pm 2.7 \pm 2.1) \times 10^{-6}$ with a significance of 4.2σ, and the branching fraction $\mathcal{B}\left(B^{ \pm} \rightarrow\right.$ $\left.a_{1}^{0}(1260) \pi^{ \pm}\right) \times \mathcal{B}\left(a_{1}^{0}(1260) \rightarrow \pi^{-} \pi^{+} \pi^{0}\right)=(20.4 \pm 4.7 \pm 3.4) \times 10^{-6}$ with a significance of 3.8σ, where the first error quoted is statistical and the second is systematic.

The rare decays of B mesons to two-body final states with an $a_{1}(1260)$ and a $\pi^{ \pm}, \pi^{0}, K^{ \pm}$, or K_{S}^{0} are important processes for testing theoretical factorization model predictions for branching fractions, branching fraction ratios, and $C P$-violation parameters. The measurements can be combined with assumptions about $\mathrm{SU}(3)$ symmetries to form upper bounds on $\Delta \alpha=\left|\alpha-\alpha_{\text {eff }}\right|$, where α is the weak interaction phase $\alpha \equiv \arg \left[-V_{\mathrm{td}} V_{\mathrm{tb}}^{*} / V_{\mathrm{ud}} V_{\mathrm{ub}}^{*}\right]$ of the Unitarity Triangle [1] and $\alpha_{\text {eff }}$ is the measured phase. The difference $\Delta \alpha$ is a measurement of the poorly known strength of the penguin amplitudes in the decay and can be used to improve our understanding of the $C P$-violating mechanism.

The rare decays $B^{ \pm} \rightarrow a_{1}^{ \pm}(1260) \pi^{0}$ and $B^{ \pm} \rightarrow$ $a_{1}^{0}(1260) \pi^{ \pm}$are expected to be dominated by $b \rightarrow u \bar{u} d$ contributions. The branching fraction for $B^{0} \rightarrow a_{1}^{ \pm} \pi^{\mp}$ has been measured to be $(33.2 \pm 3.8 \pm 3.0) \times 10^{-6}$ [2], and this agrees well with the calculation of Bauer, Stech, and Wirbel [3] within the framework of naive factorization and assuming $\left|V_{\mathrm{ub}} / V_{\mathrm{cb}}\right|=0.08$. A more recent analysis using naive factorization and measured form factors predicts branching fractions in the range $(5-11) \times 10^{-6}$ and (4-9) $\times 10^{-6}$ for $B^{ \pm} \rightarrow a_{1}^{ \pm} \pi^{0}$ and $B^{ \pm} \rightarrow a_{1}^{0} \pi^{ \pm}$, respectively [4]. Previous measurements have placed 90% confidence level upper limits of 1.7×10^{-3} and 9×10^{-4} on the branching fractions for $B^{ \pm} \rightarrow a_{1}^{ \pm} \pi^{0}$ and $B^{ \pm} \rightarrow a_{1}^{0} \pi^{ \pm}$, respectively [5], and recently the $B A B A R$ collaboration reported the first measurements of the $C P$-violating asymmetries in the decay $B^{0} \rightarrow a_{1}^{ \pm} \pi^{\mp}$ [6].

We present measurements of the branching fractions for the two charmless B meson decays $B^{ \pm} \rightarrow a_{1}^{ \pm} \pi^{0}$ and $B^{ \pm} \rightarrow$ $a_{1}^{0} \pi^{ \pm}$where the final state contains one neutral and three charged pions. The $a_{1} \rightarrow 3 \pi$ decay proceeds mainly through the intermediate states $(\pi \pi)_{\rho} \pi$ and $(\pi \pi)_{\sigma} \pi$ [7]. We do not distinguish between the dominant P-wave $(\pi \pi)_{\rho}$ and the S-wave $(\pi \pi)_{\sigma}$ in the channel $\pi^{+} \pi^{-}$. Possible background contributions from $B \rightarrow a_{2}(1320) \pi$ are investigated. Charge conjugate modes are implied throughout this Letter.

The data were collected with the $B A B A R$ detector [8] at the PEP-II asymmetric $e^{+} e^{-}$collider. An integrated luminosity of $211 \mathrm{fb}^{-1}$, corresponding to $232 \times 10^{6} B \bar{B}$ pairs, was recorded at the $\mathrm{Y}(4 S)$ resonance ("on-resonance") at a center-of-mass (c.m.) energy $\sqrt{s}=10.58 \mathrm{GeV}$. An additional $20 \mathrm{fb}^{-1}$ were taken about 40 MeV below this energy ("off-resonance") for the study of the continuum background in which a charm or lighter quark pair is produced.

Charged particles are detected and their momenta measured by the combination of a silicon vertex tracker, consisting of five layers of double-sided silicon detectors, and a 40-layer central drift chamber, both operating in the 1.5T magnetic field of a solenoid. The tracking system covers 92% of the solid angle in the c.m. frame. Charged-particle
identification (PID) is provided by the average energy loss $(d E / d x)$ in the tracking devices and by an internally reflecting ring-imaging Cherenkov detector. A K / π separation of better than 4 standard deviations (σ) is achieved for momenta below $3 \mathrm{GeV} / c$, decreasing to 2.5σ at the highest momenta in the B decay final states.

The off-resonance data together with the Monte Carlo (MC) simulations of the signal decay modes, continuum, $B \bar{B}$ backgrounds, and detector response [9] are used to establish the event selection criteria and reconstruction efficiency. The MC signal events are simulated as B^{+} decays to $a_{1} \pi$ with $a_{1} \rightarrow \rho \pi$. The a_{1} and a_{2} line shapes are generated with EVTGEN [10], where we use mass and width parameters from Refs. [2,7].

Two photons with a minimum energy of 30 MeV (100 MeV for $B^{+} \rightarrow a_{1}^{0} \pi^{+}$) and an invariant mass of $120<m_{\gamma \gamma}<150 \mathrm{MeV} / c^{2}$ are used to reconstruct the π^{0}. The intermediate dipion states $\left(\pi^{+} \pi^{-}\right)$or $\left(\pi^{+} \pi^{0}\right)$ are required to have an invariant mass of $0.46<m_{\pi \pi}<$ $1.1 \mathrm{GeV} / c^{2}$. We impose PID requirements to cleanly identify the charged pions and to suppress contamination from $a_{1} K$. We require the invariant mass reconstructed for candidate $a_{1}^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}$and $a_{1}^{0} \rightarrow \pi^{-} \pi^{+} \pi^{0}$ decays to be $0.8<m_{a_{1}}<1.8 \mathrm{GeV} / c^{2}$.

A B meson candidate is characterized kinematically by the energy-substituted mass $m_{\mathrm{ES}}=$ $\sqrt{\left(s / 2+\mathbf{p}_{0} \cdot \mathbf{p}_{B}\right)^{2} / E_{0}^{2}-\mathbf{p}_{B}^{2}}$ and energy difference $\Delta E=$ $E_{B}^{*}-\sqrt{s} / 2$, where the subscripts 0 and B refer to the initial $\Upsilon(4 S)$ and to the B candidate in the lab frame, respectively, and the asterisk denotes the $\Upsilon(4 S)$ frame. The resolutions in m_{ES} and in ΔE are about $3.0 \mathrm{MeV} / c^{2}$ and 20 MeV , respectively. Candidates are required to have $5.25 \leq$ $m_{\mathrm{ES}} \leq 5.29 \mathrm{GeV} / c^{2}$ and $|\Delta E| \leq 0.2 \mathrm{GeV}$. To reduce fake B meson candidates we require a B vertex χ^{2} probability >0.01. The absolute value of the cosine of the angle between the direction of the π meson from $a_{1} \rightarrow \rho \pi$ with respect to the flight direction of the B in the a_{1} meson rest frame is required to be less than 0.85 to suppress misreconstructed candidates. The distribution of this variable is flat for signal and peaks near ± 1 for misreconstructed candidates.

To reject continuum background, we use the angle θ_{T} between the thrust axis of the B candidate's decay products and that of the rest of the tracks and neutral clusters in the event, calculated in the c.m. frame. The distribution of $\cos \theta_{T}$ is sharply peaked near ± 1 for combinations drawn from jetlike $q \bar{q}$ pairs and is nearly uniform for the isotropic B meson decays; we require $\left|\cos \theta_{T}\right|<0.65$.

The decay mode $B \rightarrow a_{2} \pi$ can also give background contributions. It is suppressed by using the angular variable \mathcal{A}, defined as the cosine of the angle between the normal to the plane of the 3π resonance and the flight direction of
the bachelor pion evaluated in the 3π resonance rest frame. Since the a_{1} and a_{2} have spins of 1 and 2 , respectively, the distributions of \mathcal{A} for these two resonances differ. We require $|\mathcal{A}|<0.6$, which reduces the a_{2} background by more than a factor of 2 in both decay channels.

After all the above selections, we have on average 1.20 and 1.56 candidates per event in events where there is at least one candidate, for $B^{+} \rightarrow a_{1}^{+} \pi^{0}$ and $B^{+} \rightarrow a_{1}^{0} \pi^{+}$, respectively, and we select the B candidate with the ($\pi \pi$) mass nearest to the nominal ρ mass [7]. From the simulation, we find that this algorithm selects the correctcombination candidate in $B^{+} \rightarrow a_{1}^{+} \pi^{0}$ and $B^{+} \rightarrow a_{1}^{0} \pi^{+}$ in 65% and 55% of events containing multiple candidates, respectively.

We use an unbinned maximum-likelihood fit using five variables to extract the background and signal yields of $B^{+} \rightarrow a_{1}^{+} \pi^{0}$ and $B^{+} \rightarrow a_{1}^{0} \pi^{+}$. We describe the B decay kinematics with the two variables ΔE and m_{ES}. We also include the invariant mass of the 3π system ($m_{a_{1}}$), the variable \mathcal{A} and a Fisher discriminant \mathcal{F}. This discriminant combines four variables: the angles with respect to the beam axis of the B momentum and B thrust axis in the c.m. frame, and the zeroth and second angular moments of the energy flow around the B thrust axis [2].

The extended likelihood function is

$$
\begin{equation*}
\mathcal{L}=\frac{1}{N!} \exp \left(-\sum_{j} n_{j}\right) \prod_{i=1}^{N}\left[\sum_{j} n_{j} \mathcal{P}_{j}\left(\vec{x}_{i} ; \vec{\alpha}_{j}\right)\right], \tag{1}
\end{equation*}
$$

where n_{j} is the yield of events for hypothesis j (signal, a_{2}, $B \bar{B}$ charmless, $B \bar{B}$ charm, or continuum) and N is the number of events in the sample. The probabilities \mathcal{P}_{j} are products of probability density functions (PDF) for each of the independent variables $\vec{x}_{i}=\left\{m_{\mathrm{ES}}, \Delta E, m_{a_{1}}, \mathcal{F}, \mathcal{A}\right\}$ evaluated for each event i. The $\vec{\alpha}_{j}$ are the parameters of the distributions in \vec{x}_{i}. By minimizing the quantity $-\ln \mathcal{L}$ in two separate fits, we determine the yields for $B^{+} \rightarrow$ $a_{1}^{+} \pi^{0}$ and $B^{+} \rightarrow a_{1}^{0} \pi^{+}$.

To take into account the relatively large number of misreconstructed signal events, the signal is separated into two components, representing the correctly reconstructed (true) and the self-cross-feed (SCF) candidates, with proportions fixed in the fit for each mode. SCF occurs when a track from an $a_{1}^{+} \pi^{0}$ or $a_{1}^{0} \pi^{+}$is exchanged with a track from the rest of the event. The fraction of SCF, determined from MC, is 35% and 44% for $B^{+} \rightarrow a_{1}^{+} \pi^{0}$ and $B^{+} \rightarrow a_{1}^{0} \pi^{+}$, respectively.

In addition to the a_{2}, there are three main categories of backgrounds: $B \bar{B}$ charmless, $B \bar{B}$ charm, and continuum. $B \bar{B}$ backgrounds are studied using MC simulations of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$decays, using a large sample equivalent to $\sim 0.8 \mathrm{ab}^{-1}$. There are $17 B \bar{B}$ charmless decays for $B^{+} \rightarrow$ $a_{1}^{+} \pi^{0}$ and 20 for $B^{+} \rightarrow a_{1}^{0} \pi^{+}$that contribute as background. Those decays with similar distributions are grouped to form 13 and 10 hypotheses, respectively, and
are included in the fit with a fixed yield as determined from MC. The total $B \bar{B}$ charmless yields are 368 ± 92 and 755 ± 164 for $B^{+} \rightarrow a_{1}^{+} \pi^{0}$ and $B^{+} \rightarrow a_{1}^{0} \pi^{+}$, respectively. These are dominated by $B \rightarrow \rho \rho, B \rightarrow a_{1} \rho$, and the other $B \rightarrow a_{1} \pi$ mode under study. The $B \bar{B}$ charm backgrounds are included as a single hypothesis, with the normalization of the $B \bar{B}$ charm yield as a free parameter. Continuum events come from light quark production. We establish the functional forms and parameter values of the PDFs for $B \bar{B}$ charm and $B \bar{B}$ charmless backgrounds from MC simulations. For continuum, we use off-resonance data for the Fisher, on-resonance data with $|\Delta E|>0.1 \mathrm{GeV}$ for m_{ES}, and on-resonance data with $5.25<m_{\mathrm{ES}}<5.27 \mathrm{GeV} / c^{2}$ for the other variables.

We model the distributions using appropriate functions. The \mathcal{A} distributions are modeled with polynomials. For the true signal component, the remaining distributions are fitted using modified Gaussians [11], and a relativistic Breit-Wigner line shape with a mass-dependent width [12], as necessary. The SCF component and the a_{2} have similar shapes to the true signal but have broader or more asymmetric distributions and shifted means. The $B \bar{B}$ backgrounds and continuum distributions are modeled with modified Gaussians, polynomials, nonparametric functions [13], and, for m_{ES}, a phase-space-motivated empirical function [14]. The PDF variables are assumed to be independent except for $B^{+} \rightarrow a_{1}^{0} \pi^{+}$, where a two-dimensional nonparametric PDF [13] in $m_{a_{1}}$ and ΔE accounts for observed correlations in the MC for both true signal events and SCF.
In the fit there are six free parameters: four yields (signal, continuum, a_{2}, and $B \bar{B}$ charm background), and two continuum background parameters (ΔE polynomial coefficient and $m_{\text {ES }}$ shape coefficient ξ [14]).

For $B^{+} \rightarrow a_{1}^{+} \pi^{0}$, there are 24608 events in the data sample. We measure the raw signal yield to be 459 ± 78 events with a reconstruction efficiency of $12.5 \% \pm 0.1 \%$, corrected for differences in tracking and neutral particle reconstruction between data and MC. The yield of the decay $B^{+} \rightarrow a_{2}^{+} \pi^{0}$ is 28 ± 65 events. For $B^{+} \rightarrow a_{1}^{0} \pi^{+}$, there are 33375 events in the data sample, and we measure the raw signal yield to be 382 ± 79 events with a corrected reconstruction efficiency of $7.2 \% \pm 0.1 \%$. The yield of the decay $B^{+} \rightarrow a_{2}^{0} \pi^{+}$is 107 ± 65 events.

We confirm our fitting procedure by generating and fitting MC samples containing signal and background populations using the yields as found from data. We identify a signal yield bias for $B^{+} \rightarrow a_{1}^{+} \pi^{0}$ and $B^{+} \rightarrow a_{1}^{0} \pi^{+}$of $16.8 \% \pm 0.1 \%$ and $10.9 \% \pm 0.1 \%$, respectively. We fit for the branching fractions taking into account the fitted signal yield, the yield bias, the corrected reconstruction efficiency, daughter branching fractions, and the number of produced B mesons, assuming equal production rates of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$pairs. The statistical significance is taken as the square root of the difference between the value of

FIG. 1 (color online). Projections of (a) ΔE, (b) m_{ES}, (c) $m_{a_{1}}$, and (d) \mathcal{F} for $B^{+} \rightarrow a_{1}^{+} \pi^{0}$. Points represent on-resonance data, dashed lines the signal, dotted lines the continuum, dash-dotted lines the $B \bar{B}$ charm background, the filled region the a_{2} background, and solid lines the full fit function. These plots are made with a requirement on the signal likelihood to enhance the signal, and thus do not show all events in the data sample.
$-2 \ln \mathcal{L}$ for zero signal and the value at its minimum. We measure the branching fraction $\mathcal{B}\left(B^{+} \rightarrow a_{1}^{+} \pi^{0}\right) \times$ $\mathcal{B}\left(a_{1}^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}\right)=(13.2 \pm 2.7) \times 10^{-6}$ with a statistical significance of 5.3σ and the branching fraction $\mathcal{B}\left(B^{+} \rightarrow a_{1}^{0} \pi^{+}\right) \times \mathcal{B}\left(a_{1}^{0} \rightarrow \pi^{-} \pi^{+} \pi^{0}\right)=(20.4 \pm 4.7) \times$ 10^{-6} with a statistical significance of 4.7σ, where the errors are statistical.

Figures 1 and 2 show the $\Delta E, m_{\mathrm{ES}}, m_{a_{1}}$, and \mathcal{F} projections for $B^{+} \rightarrow a_{1}^{+} \pi^{0}$ and $B^{+} \rightarrow a_{1}^{0} \pi^{+}$made by selecting events with a signal likelihood (computed without the variable shown in the figure) exceeding a threshold that optimizes the expected sensitivity.

The systematic errors are summarized in Table I. We determine the sensitivity to the parameters of the signal and background PDF components by varying these within their uncertainties. The effect of varying the mass and width of the a_{1} by the errors as reported in Ref. [2] is included in the PDF parameters' variation systematic. The uncertainty in the fit bias correction is taken as half of the fit bias correction. The effect of possible interference between a_{2} and a_{1} is estimated by adding the a_{2} and a_{1} amplitudes together with a varying phase difference and using half the maximum change in yield as an uncertainty. The uncertainty in SCF is investigated by varying the SCF fraction. We also perform a separate fit treating the SCF as an independent background component. The fitted branching fraction is compatible with the nominal fit within the

FIG. 2 (color online). Projections of (a) ΔE, (b) m_{ES}, (c) $m_{a_{1}}$, and (d) \mathcal{F} for $B^{+} \rightarrow a_{1}^{0} \pi^{+}$, using the same criteria and line styles as Fig. 1.
increased statistical uncertainty, but the statistical significance is reduced to 3.5σ and 3.0σ for $B^{+} \rightarrow a_{1}^{+} \pi^{0}$ and $B^{+} \rightarrow a_{1}^{0} \pi^{+}$, respectively. A systematic uncertainty of 1.6% is estimated for the difference in reconstruction efficiency in the decay modes through the dominant P-wave $(\pi \pi)_{\rho}$ and the S-wave $(\pi \pi)_{\sigma}$. An error is assigned for the uncertainty in the fixed charmless $B \bar{B}$ background yields and possible interference effects by varying the individual components by the reported error on the branching fractions [7]. The systematic errors for the flight direc-

TABLE I. Summary of systematic errors for the $a_{1}^{+} \pi^{0}$ and $a_{1}^{0} \pi^{+}$branching fraction measurements.

Systematic	$a_{1}^{+} \pi^{0}$	$a_{1}^{0} \pi^{+}$
PDF Parameter Variation	8.6%	8.8%
Fit Bias	8.4%	5.5%
$a_{1}-a_{2}$ Interference	6.6%	7.4%
SCF Variation	4.4%	8.2%
Tracking Efficiency	3.9%	3.9%
π^{0} Efficiency	3.0%	3.0%
Flight Direction Criteria	2.0%	2.0%
P-wave and S-wave Reconstruction	1.6%	\cdots
Charmless $B \bar{B}$ Background	1.4%	3.1%
Number of $B \bar{B}$ Pairs	1.1%	1.1%
$\cos \theta_{T}$ Selection Criteria	1.1%	1.8%
Track Multiplicity	1.0%	1.0%
$\rho \pi \pi, 4 \pi$ Cross Feed	0.9%	0.5%
$a_{1} K$ Cross Feed	\cdots	0.4%
Total	16%	16%

tion criteria, number of $B \bar{B}$ pairs, $\cos \theta_{T}$ selection criteria, track multiplicity, potential backgrounds from $\rho \pi \pi$ and 4π, and $a_{1} K$ cross feed are small. The total systematic error for both modes is 16%. The significance of the branching fractions, combining both statistical and systematic errors, is 4.2σ for $B^{+} \rightarrow a_{1}^{+} \pi^{0}$ and 3.8σ for $B^{+} \rightarrow$ $a_{1}^{0} \pi^{+}$.

In conclusion, we have measured the branching fractions $\mathcal{B}\left(B^{ \pm} \rightarrow a_{1}^{ \pm}(1260) \pi^{0}\right) \times \mathcal{B}\left(a_{1}^{ \pm}(1260) \rightarrow \pi^{-} \pi^{+} \pi^{ \pm}\right)=$ $(13.2 \pm 2.7 \pm 2.1) \times 10^{-6}$ and $\mathcal{B}\left(B^{ \pm} \rightarrow a_{1}^{0}(1260) \pi^{ \pm}\right) \times$ $\mathcal{B}\left(a_{1}^{0}(1260) \rightarrow \pi^{-} \pi^{+} \pi^{0}\right)=(20.4 \pm 4.7 \pm 3.4) \times 10^{-6}$. Neglecting isoscalar contributions to the two-pion state, we assume $\mathcal{B}\left(a_{1}^{ \pm}(1260) \rightarrow \pi^{-} \pi^{+} \pi^{ \pm}\right)$is equal to $\mathcal{B}\left(a_{1}^{ \pm}(1260) \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}\right)$ and $\mathcal{B}\left(a_{1}^{ \pm}(1260) \rightarrow(3 \pi)^{ \pm}\right)$is equal to 100% [7], resulting in $\mathcal{B}\left(B^{ \pm} \rightarrow a_{1}^{ \pm}(1260) \pi^{0}\right)=$ $(26.4 \pm 5.4 \pm 4.1) \times 10^{-6}$. We measure $\mathcal{B}\left(B^{ \pm} \rightarrow\right.$ $\left.a_{1}^{0}(1260) \pi^{ \pm}\right)=(20.4 \pm 4.7 \pm 3.4) \times 10^{-6}$, assuming $\mathcal{B}\left(a_{1}^{0}(1260) \rightarrow \pi^{-} \pi^{+} \pi^{0}\right)$ is equal to 100%. The first errors quoted are statistical and the second are systematic. The signals are seen with significances of 4.2σ and 3.8σ, respectively, and are in agreement with factorization model predictions [3].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions thank SLAC for its support and kind hospitality.

This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.
*Deceased
${ }^{\dagger}$ Also at Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
${ }^{\ddagger}$ Also at Università della Basilicata, Potenza, Italy.
${ }^{\text {§ Also }}$ at Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain.
"Also at IPPP, Physics Department, Durham University, Durham DH1 3LE, United Kingdom.
[1] B. Aubert et al. (BABAR Collaboration), arXiv:hep-ex/ 0703008.
[2] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 97, 051802 (2006).
[3] M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C 34, 103 (1987).
[4] V. Laporta, G. Nardulli, and T. N. Pham, Phys. Rev. D 74, 054035 (2006); arXiv:hep-ph/0602243v4 [Phys. Rev. D (to be published)].
[5] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[6] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 98, 181803 (2007).
[7] S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
[8] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[9] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[10] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[11] J. E. Gaiser et al., Phys. Rev. D 34, 711 (1986).
[12] T. A. Armstrong et al. (WA76 Collaboration), Z. Phys. C 48, 213 (1990).
[13] K. S. Cranmer, Comput. Phys. Commun. 136, 198 (2001).
[14] With $x \equiv m_{\mathrm{ES}} / E_{b}$ and ξ a parameter to be fit, $f(x) \propto$ $x \sqrt{1-x^{2}} \exp \left[-\xi\left(1-x^{2}\right)\right]$. See Ref. [5].

