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Universitat de Barcelona

Zero sets of Gaussian analytic functions

Autor: Joan Morgó Homs
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Abstract
We study point processes given as zero sets of Gaussian analytic functions and prove that

these point processes show local repulsion. We define Gaussian analytic functions and introduce
its covariance kernel, which determines its probabilistic properties, and its first intensity which
can be computed using the Edelman-Kostlan formula.

Finally, we also study rigidness of some model examples -by computing the variance of the
counting random variable of the zeros of the GAF- and we compare it with the independence of
the Poisson point process -shown in an introductory section of this project- for the same model
cases.
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1 Introduction

Point processes are discrete sets of points randomly located, according to some probability law,
on some underlying space. They are used in different fields of science to describe many objects
representable as points. We first recall some properties of the best known point process, the Pois-
son process. Here the number of points falling in a given region is a random variable following
a Poisson law. Its other main characteristic is that these counting random variables are indepen-
dent if the corresponding regions are disjoint. The Poisson process has found many applications
since it was first published in the work Recherches sure la probabilité des jugements en matière
criminelle et en matière civile in 1837 by Siméon Denis Poisson.

In this memory we deal with a different point process, in which the independence of the
Poisson process is replaced by a local repulsion between points. This is natural in many physical
phenomena, for instance when modelling electrically charged particles. The point processes we
study are obtained as zero sets of the so-called Gaussian analytic functions, that is, of power
series with independent standard complex Gaussians. The underlying spaces we consider are
mainly the complex plane (planar case), the unit disk (hyperbolic case) and the Riemann sphere
(parabolic case).

The main focus of this work is to prove that the process constructed in this way is more
rigid than the Poisson process, in the sense that the fluctuations -the variance of the counting
functions- are of smaller order and that it shows the aforementioned repulsion. We shall see that
the main tool to achieve these goals is a good control of the covariance kernel of the Gaussian
analytic function.
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2 Poisson process

Point processes are used to describe different physical phenomena that can be modeled by ran-
dom discrete sets. The most widely known is the Poisson point process, which is a classical
model. Its main characteristic is independence between the number of points of disjoint measur-
able subsets.

Definition 2.1. We consider a random sequence S in a domain X (usually X = C,D,S2, . . . ).
Let A be a subset of X and let n(A) = #(A ∩ S) be the counting function associated to A and
S. S is a Poisson process if it satisfies:

1. n(A) follows a Poisson distribution. Denoting its mean by µ(A), the probability function
is:

P [n(A) = m] =
(µ(A))me−µ(A)

m!
, m = 0, 1, 2, ... (1)

2. If A ∩B = ∅, then n(A) and n(B) are independent random variables.

It is important to point out that the independence property (b) is not always natural, so the Poisson
process will not be a good model for all situations. For instance, if we are dealing with electrical
charged particles, knowing that there is one charge in a concrete position makes it more unlikely
that there is another charged particle in a neighbourhood of that position, due to Coulomb’s force.

Another example, in the opposite sense, could be the case in which our set of points repre-
sents people who have a contagious illness. Then, it is more likely to find another case near the
location of a known one.

Given a Poisson process with parameter µ(A) of the random variable n(A), it can be seen that
the parameter µ(A) defines a measure in the underlying space X .

Reciprocally, for every positive measure µ defined on X , there exists a Poisson process S such
that the random variable n(A) = #(A∩ S) follows a Poisson distribution with parameter µ(A).
For instance, if X = C, then we can take µ(A) = Area(A) and produce a Poisson random point
process for which the average number of points in A coincides with its area.

Sometimes it is useful to deal with the measure, L > 0, Lµ instead of µ and, for instance,
see what happens when L tends to infinity. The parameter L is called intensity of the process and
it represents the average number of points per unit area (with respect to µ).
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Examples: Let us see some standard Poisson processes. Later, using Gaussian analytic func-
tions, we will produce different processes having in average the same number of points, but with
other characteristics.

1. The planar case. Consider X = C and the invariant (under translations) measure

dνL = L
dm(z)

π
.

Here dm(z) represents the Lebesgue measure on the complex plane. We take the Poisson
process associated to the measure νL. Then, for a disk A = D(z, r), r > 0 z ∈ C, we have
νL(A) = E[nνL(A)] = Lr2 and the law of the random variable nνL(A) = nνL(D(z, r)),
we obtain:

P [nνL(D(z, r)) = m] = e−Lr
2 (Lr2)m

m!
; m = 0, 1, 2, ... (2)

In particular, we can compute the ”hole probability”, i.e., the probability that a disk of
centre z and radius r is empty:

P [nνL(D(z, r)) = 0] = e−Lr
2

. (3)

We are also able to give the variance of the random variable nνL(A), knowing that follows
the Poisson distribution:

Var[nνL(A)] = E[nνL(A)] = Lr2. (4)

In Chapter 3, we will compute the variance of the random variable associated to the zero
set of a Gaussian analytic function and we will compare it with these results.

2. The hyperbolic case. Here, we consider X = D and the following measure:

dνL(z) = L
dm(z)

π(1− |z|2)2
. (5)

The measure dν(z) = dm(z)
π(1−|z|2)2

is the volume measure for the hyperbolic metric in D. In
consequence dνL(z) is invariant by the automorphisms of the unit disk

ϕa,θ(z) = eiθ
z − a
1− āz

, a, z ∈ D, θ ∈ [0, 2π). (6)

A computation shows that for r ∈ (0, 1), a ∈ D,

Lν(D(a, r)) = Lν(D(0, r)) =
Lr2

1− r2
.
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In effect:

Lν(D(0, r)) =
L

π

∫
D(0,r)

dm(z)

(1− |z|2)2
=
L

π

∫ r

0

∫ 2π

0

ρdθdρ

(1− ρ2)2

= L

∫ r2

0

dt

(1− t)2
= L

(
1− 1

1− r2

)
=

Lr2

1− r2
.

As we did in the planar case, for a ∈ D and r > 0, the law of the random variable
nνL(D(a, r)) is given by:

P [nνL(D(a, r)) = m] = e
−Lr2
1−r2

(Lr2)m

m!(1− r2)m
; m = 0, 1, 2, ... (7)

In particular,

E[nνL(D(a, r))] =
Lr2

1− r2
.

Similar computation to the planar case gives

Var[nνL(D(a, r))] =
Lr2

1− r2
(8)

and the hole probability is

P [nνL(D(a, r)) = 0] = e
−Lr2
1−r2 ; a ∈ D r > 0.

3. The parabolic case. LetX = S2 be the unit sphere. We represent S2\{∞} on C using the
stereographic projection. In this case, the following measure is the area form associated to
the parabolic geometry:

dνL(z) =
Ldm(z)

π(1 + |z|2)2
. (9)

The measure dν(z) = dm(z)
π(1+|z|2)2

is the volume measure for the chordal metric on the Rie-
mann sphere and, in consequence, dνL is invariant under the rotations of S2, which in C
have the form

ϕa,θ(z) = eiθ
z + a

1 + āz
, a, z ∈ C, θ ∈ [0, 2π).

As in the hyperbolic case, considering a disk D(a, r), a ∈ C r > 0;

νL(D(a, r)) =
Lr2

1 + r2
.

Therefore:

P [nνL(D(a, r)) = m] = e
−Lr2
1+r2

(Lr2)m

m!(1 + r2)m
; m = 0, 1, 2, ... (10)
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In particular, the hole probability for the parabolic case is

P [nνL(D(a, r)) = 0] = e
−Lr2
1+r2

and the variance

Var[nνL(D(a, r)] =
Lr2

1 + r2
; a ∈ C, L > 0, r > 0.

Originally, the Boltzmann model gave sense to the concept of intensity L that we are using in this
project. Concretely, the inverse of the temperature T is proportional to the intensity L defined
above. That model gives us the distribution of molecules confined in a microscopic region in
a determinate energy state depending on temperature. Let n(E) be the random variable that
represents the number of molecules in a determinate energy state E, depending on temperature
T . Let KB be the Boltzmann’s constant and let n0 be the number of molecules in the ground
state (lowest energy state). Then we have:

n(E) = n0e
−E
KBT . (11)

From this perspective, letting L go to infinity, is equivalent to letting T tend to absolute zero,
something that is called transition to the liquid phase. In Figure 1 we can see the dependence
between the quotient n(E2)

n(E1)
and the temperature T.
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Figure 1: Boltzmann distribution([Wiki19]).

2.1 Zeros of random analytic functions.

A point process with local repulsion.

In this work we will deal with point processes given as zeros sets of random analytic func-
tions. We shall see that these processes are more ”rigid” than the Poisson process seen above (in
a sense to be made precise later) and that there is a local repulsion between points. Just to give
an idea why there is such local repulsion we consider the following simplified, informal setting:

Let’s consider X = C and a polynomial

p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0; a0, ..., an−1 ∈ C. (12)

The fundamental theorem of algebra allows us to write p(z) in the following form:

p(z) =
n∏
i=1

(z − zi); z1, . . . , zn ∈ C. (13)
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From this identity it is not difficult to see that the determinant of the transformation T : Cn → Cn

defined by T (z1, . . . , zn) = (an−1, . . . , a0) is the Vandermonde determinant:

det(T ) =
∏
i<j

|zi − zj|2. (14)

Hence, if the coefficients are chosen randomly uniformly in C then the roots of p(z) are dis-
tributed with density proportional to (

∏
i<j |zi−zj|2)dm(z). This shows local repulsion between

roots of the polynomial (near a zi the density is small). That is a fundamental difference with
respect to the Poisson process (Figure 2.).

Figure 2: Left picture is a Poisson point process and the right picture is a GAF point process.
Point processes with the same E(n(A)).

3 Gaussian Analytic Functions

As said before, our aim is to study point processes defined as zero sets of certain random analytic
functions. Here we will introduce such functions and some of their main properties.
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3.1 Complex Gaussians

Recall that a random variable X follows a standard real normal distribution (X ∼ NR(µ, σ),

where µ represents the mean of X and σ2 its variance) if its density function is:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 x ∈ R, (15)

Definition 3.1. A random complex variable Z follows a standard complex Gaussian (Z ∼
NC(0, 1)) if its density function (with respect to the Lebesgue measure on the complex plane) is:

fZ(z) =
1

π
e−|z|

2

z ∈ C. (16)

Remark. If Z ∼ NC(0, 1), then Re(Z), Im(Z) ∼ NR(0, 1√
2
). In fact, the reciprocal is also true

if X and Y are independent. Writing Z = Re(Z) + iIm(Z) = X + iY and denoting the density
function of X and Y by fX and fY respectively:

fZ(z) =
1

π
e−(x2+y2) =

(
1√
π
e−x

2

)(
1√
π
e−y

2

)
= fX(x)fY (y)

Thus, X = Re(Z) ∼ NR(0, 1
2
) and Y = Im(Z) ∼ NR(0, 1

2
).

Now, we state three properties of complex gaussians that we will use along this project.

Lemma 3.1.

(a) Let Z ∼ NC(0, 1). Then |Z|2 follows an exponential distribution of parameter 1, i.e., for
t ≥ 0

F (t) = P (|Z|2 ≤ t) = 1− e−t. (17)

(b) Let {an(ω)}n be a sequence of independent standard complex Gaussians (an(ω) ∼ NC(0, 1)).
Then:

lim sup
n→∞

n
√
|an(ω)| = 1 a.s. (18)

(c) If a and b are independent complex standard Gaussians, then E[ab̄] = 0.

Proof. (a). By definition, and using polar coordinates and the change of variables s = r2 we see
that the distribution function of |Z|2 is

F|Z|2(t) = P (|Z|2 ≤ t) =

∫
|z|2≤t

1

π
e−|z|

2

dm(z) =

∫
r2≤t

∫ 2π

0

1

π
e−r

2

rdθdr

= 2

∫
r2≤t

e−r
2

rdr =

∫ t

0

e−sds = [−e−s]t0 = 1− e−t.
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(b). First we shall use the Borel-Cantelli lemma to see that

P
(

lim sup
n→∞

n
√
|an(ω)| < 1

)
= 0.

By definition:

lim sup
n→∞

n
√
|an(ω)| < 1⇔ ∃ε > 0 ∃n0 ∈ N ∀n ≥ n0

n
√
|an(ω)| < 1− ε

⇔ ∃ε > 0 ∃n0 ∈ N ∀n ≥ n0
n
√
|an(ω)| < 1− ε

⇔ ∃ε > 0 ∃n0 ∈ N ∀n ≥ n0 |an(ω)| < (1− ε)n.

Let’s consider the sequence of events:

An = {ω : |an|2 < (1− ε)2n} n = 0, 1, 2, ...

and let
A = lim sup

n→∞
An =

⋂
n≥1

⋃
k≥n

Ak.

It is clear that
P
(

lim sup
n→∞

n
√
|an(ω)| < 1

)
= 0

is equivalent to P (A) = 0. We need to prove that
∑

n P (An) < +∞ to be able to apply the
Borel-Cantelli’s lemma. Here, by (a), P (An) = 1− e−(1−ε)2n , and using the Taylor’s approxima-
tion 1− e−t ≈ t for t ∼ 0, we obtain:∑

n

P (An) =
∑
n

1− e−(1−ε)2n ≈
∑
k

(1− ε)2n < +∞.

The proof that
P
(

lim sup
n→∞

n
√
|an(ω)| > 1

)
= 0

goes along the same lines.

(c). By definition, since the density function of a and b are fa(z) = 1
π
e−|z|

2 , fb(w) = 1
π
e−|w|

2;

E[ab̄] =

∫
C

∫
C
zw̄

1

π
e−|z|

2 1

π
e−|w|

2

dm(z)dm(w)

=

∫
C
z

1

π
e−|z|

2

dm(z)

∫
C
w̄

1

π
e−|w|

2

dm(w) = E[a]E[b̄] = 0. 2

Remark. From (a) we deduce, in particular, that P (|Z|2 > t) = e−t, t > 0, and E[|Z|2] = 1.
Indeed:

E[|Z|2] =

∫
C
|z|2 1

π
e−|z|

2

dm(z) =

∫ ∞
0

r2e−r
2

2rdr =

∫ ∞
0

te−tdt

= [−te−t]∞0 +

∫ ∞
0

e−tdt = [−e−t]∞0 = 1.
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3.2 Gaussian Analytic Functions

Here we define the functions that produce the point process we are interested in.

Definition 3.2. Let A ⊂ X and {en(z)}n be a sequence of the subspace of holomorphic func-
tions in A, denoted by Hol(A) such that

∑∞
n=0 |en(z)|2 converges uniformly on compact subsets

of A . Then a Gaussian Analytic Function (GAF) is a function of the form:

fω(z) =
∞∑
n=0

an(ω)en(z) z ∈ A, (19)

where an(ω) are independent standard complex Gaussians (an ∼ NC(0, 1), i.i.d.).

Remarks.

1. f ∈ Hol(A) with probability 1. It is not difficult to see that for each z ∈ A the series
in (19) converges almost surely. But it might happen that the exceptional set where the
series diverges depends on z in a way that fω(z) is not even a function. This can be ruled
out using a version of Kolmogorov’s inequality for Hilbert spaces (see [HKPV09, Lemma
2.2.3]).

2. As a random variable, f follows a normal distribution with mean 0. That is a direct con-
sequence from the fact that f is a lineal combination of mean zero Gaussians (an(ω) ∼
NC(0, 1)).

3. In many cases, the functions {en(z)}n are an orthonormal system in a given Hilbert space
of holomorphic functions H. Quite often, as we will see in the examples, these en(z)

are just normalizations of the monomials {zn}n≥0. Therefore, Lemma 2.1. (b) helps to
determine where the series (19) converges.

4. Let H be a Hilbert space with an orthonormal basis {en}n. The function defined by (17)

is not inH almost surely. Notice that

||f ||2 =< f, f >=
∑
n,m

anām < en, ēm >=
∑
n

|an|2.

To see that this is finite with probability 0, fix any ε > 0 and n0 ∈ N. Then, by the
independence of the coefficients an:

P (|an|2 < ε,∀n ≥ n0) =
∏
n≥n0

P (|an|2 < ε2) =
∏
n≥n0

(1− e−ε2) = 0.

From here on we shall introduce three model cases of GAF, but first it will be necessary to make
a brief overview of the gamma function and the Riemann zeta function.
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3.3 The gamma function.

The gamma function, represented by Γ, is defined, for y > 0, as

Γ(y) =

∫ ∞
0

xy−1e−xdx.

A well-known value of the gamma function at a non-integer argument is Γ(1
2
) =
√
π.

For our work, the most relevant properties of this function are:

1. Γ(1) = 1. This follows directly from the definition.

2. Γ(y + 1) = yΓ(y). This follows by integration by parts:

Γ(y + 1) =

∫ ∞
0

xye−xdx = [−xye−x]∞0 + y

∫ ∞
0

xy−1e−xdx = yΓ(y).

3. Γ(n+ 1) = n!, ∀n ∈ N. This is a consequence of the first two properties.

4. Consider the beta function, defined for a, b > 0 by

B(a, b) :=

∫ 1

0

xa−1(1− x)b−1dx.

Then: ∫ 1

0

xa−1(1− x)b−1dx = B(a, b) :=
Γ(a)Γ(b)

Γ(a+ b)
. (20)

See the proof on [Wc18]).

We will consider, for s > 1, the Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
.

Examples. Let us introduce three model cases of GAF.

1. The plane case. Let X = C and let L > 0. Consider the so-called Bargmann-Fock space
of weight L

HL =

{
f ∈ Hol(C) : ||f ||2HL =

L

π

∫
C
|f(z)|2 e−L|z|2 dm(z) < +∞

}
. (21)
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Thus is a Hilbert space, with inner product given by

< f, g >L=
L

π

∫
C
f(z)ḡ(z)e−L|z|

2

dm(z), f, g ∈ HL.

Lemma 3.2. The functions

en(z) =
Ln/2√
n!
zn, n ≥ 0, (22)

form an orthonormal basis.

Proof. Let us see first these functions are orthonormal. Taking polar coordinates:

< en, em >HL =
L

π

∫
C

Ln/2√
n!

Lm/2√
m!
znz̄me−L|z|

2

dm(z)

=
L

π

Ln/2√
n!

Lm/2√
m!

∫ 2π

0

∫ +∞

0

rn+m+1eiθ(n−m)e−Lr
2

drdθ. (23)

If n 6= m, ∫ 2π

0

eiθ(n−m)dθ =

[
eiθ(n−m)

i(n−m)

]θ=2π

θ=0

= 0.

Then:
< en, em >HL= 0 ∀n 6= m.

If n = m, from (23), we get

< en, en >HL =
L

π

∫ +∞

0

Ln

n!
r2ne−Lr

2

2πrdr =
2L

n!

∫ +∞

0

Lnr2n+1e−Lr
2

dr

=
1

n!

∫ +∞

0

tne−tdt =
Γ(n+ 1)

n!
= 1.

We used a change of variables t = Lr2 and the third property of gamma functions. 2

Remark. With this we see that the expression of a GAF in the plane is

fL(z) =
∞∑
n=0

an

√
Ln

n!
zn. (24)

As said before, we can compute the radius of convergence of a Gaussian analytic function
f ∈ HL in the plane seen on Remark above. Let us denote cn = Ln/2√

n!
(normalization

factor). Then,

f(z) =
∞∑
n=0

ancnz
n

and the convergence radius of the series is:

R =
1

lim supn→∞
n
√
|an(ω)|cn|

= lim sup
n→∞

2n

√
n!

Ln
= +∞.
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2. The hyperbolic case. Now, consider X = D and, for L > 1, the weighted Bergman space
defined by:

BL =

{
f ∈ Hol(D) : ||f ||2L =

L− 1

π

∫
D
|f(z)|2(1− |z|2)L−2dm(z) < +∞

}
. (25)

The constant L−1
π

is chosen so that∫
D

L− 1

π
(1− |z|2)L−2dm(z) = 1.

As before, the monomials are dense, and using the orthogonality of {zn}n we can compute
the normalization factor:

< zn, zn >BL =
L− 1

π

∫
D
|z|2n(1− |z|2)L−2dm(z)

=
L− 1

π

∫ 1

0

∫ 2π

0

r2n(1− r2)L−2ei(n−n)θrdθdr

= (L− 1)

∫ 1

0

r2n(1− r2)L−22rdr = (L− 1)

∫ 1

0

tn(1− t)L−2dt

= (L− 1)
Γ(n+ 1) Γ(L− 1)

Γ(n+ L)
=

Γ(n+ 1) Γ(L)

Γ(n+ L)
=

n! Γ(L)

Γ(n+ L)
.

Thus,

||zn||L =

√
Γ(n+ 1)Γ(L)

Γ(n+ L)
and en(z) =

√
Γ(L+ n)

Γ(n+ 1)Γ(L)
zn. (26)

The expression of the hyperbolic GAF is thus

fL(z) =
∞∑
n=1

an

(
Γ(L+ n)

n! Γ(L)

) 1
2

z. (27)

This sum can be analytically counted to L > 0, which we will assume from now on.

3. The parabolic case. Here, we deal withX = S2 and with the Hilbert space of polynomials
of degree at mostL ∈ N, denoted by PL[C], with the following norm, given by the invariant
measure on C:

PL =

{
p ∈ PL[C] : ||p||2L = (L+ 1)

∫
C

|p(z)|2

(1 + |z|2)L
dm(z)

π(1 + |z|2)2
< +∞

}
. (28)

In this case, as the previous examples, the orthonormal basis is:

en(z) =

√
Γ(L+ 1)

Γ(n+ 1)Γ(L− n+ 1)
zn =

(
L

n

) 1
2

zn, (29)

and therefore the general expression of the parabolic GAF is

fL(z) =
L∑
n=0

(
L

n

) 1
2

zn. (30)
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3.4 Covariance kernel

Since f is a mean zero Gaussian, its probabilistic properties are determined by its variance, or
more generally, its covariance kernel. It is a key concept to understand why point processes given
as zero sets of Gaussian analytic functions present a local repulsion.

Lemma 3.3. Let f be a GAF as in (19). Then:

K(z, w) := Cov(f(z), f(w)) =
∞∑
n=0

en(z)ēn(w).

Proof. Since E[f(z)] = 0, we have:

K(z, w) = Cov(f(z), f(w)) = E[f(z)f̄(w)] = E

[∑
n,m

anāmen(z)ēm(w)

]
=
∑
n,m

E[anām]en(z)ēm(w).

By Lemma 2.1. (a) and (c), we have:

E[anām] = δn,mE[|an|2] = δn,m;

and the result follows. 2

Examples. In many cases the covariance kernel can be computed explicitly.

1. The planar case. For a given intensity L > 0 and z, w ∈ C, and using (22):

KL(z, w) =
∞∑
n=0

en(z)ēn(w) =
∞∑
n=0

Ln/2√
n!
zn
Ln/2√
n!
w̄n =

∞∑
n=0

(Lzw̄)n

n!
= eLzw̄.

2. The hyperbolic case. Here we have; for L > 0 and z, w ∈ D, and using (26):

KL(z, w) =
∞∑
n=0

en(z)ēn(w) =
∞∑
n=0

√
Γ(L+ n)

Γ(n+ 1) Γ(L)
zn

√
Γ(L+ n)

Γ(n+ 1) Γ(L)
w̄n

=
∞∑
n=0

Γ(L+ n)

Γ(n+ 1) Γ(L)
(zw̄)n =

1

(1− zw̄)L
.
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3. The parabolic case. In this example, for every natural number L and z, w ∈ C, and using
(29):

KL(z, w) =
∞∑
n=0

en(z)ēn(w)

=
∞∑
n=0

√
Γ(L+ 1)

Γ(n+ 1)Γ(L− n+ 1)
zn

√
Γ(L+ 1)

Γ(n+ 1)Γ(L− n+ 1)
w̄n

=
∞∑
n=0

Γ(L+ 1)

Γ(n+ 1)Γ(L− n+ 1)
(zw̄)n = (1 + zw̄)L.

3.5 Zeros of Gaussian analytic functions

In this section we finally introduce the point process we study in this project. Let

Zf := {z ∈ Ω; f(z) = 0} = {λn}n

be the zero set of a given Gaussian analytic function f on Ω. We can introduce the discrete
measure:

µf =
∞∑
n=1

δλn . (31)

Here δλn is the Dirac delta on λn ∈ Ω. For a subset U ⊂ X , we have the counting function:

nf (U) =

∫
U

dµf = #(Z(f) ∩ U). (32)

A crucial feature of processes given as zero sets of holomorphic functions is that this empirical
measure µf can be computed using the Laplacian operator:

µf =
1

2π
∆ log |f | = 1

4π
∆ log |f |2. (33)

Definition 3.3. The first intensity of a GAF f is the distribution E[µf ] defined by:

< E[µf ], ϕ >= E[< µf , ϕ >], ϕ ∈ C∞c (Ω). (34)

Last equality can be rewritten in terms of integrals, that is:∫
Ω

ϕdE[µf ] = E

(∫
Ω

ϕdµf

)
, ϕ ∈ C∞c (Ω). (35)

A key property of Gaussians is that the first intensity can be obtained just by taking the expecta-
tion value of |f |2 in the expression (33), as we shall see next.
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3.5.1 The Edelman-Kostlan formula

Theorem 3.1. Let f be a GAF and µf its empirical measure. Then, the first intensity of f is
given by:

E[µf ] =
1

4π
∆ logE[|f |2] =

1

4π
∆ logK(z, z), (36)

where K(z, z) is the covariance kernel of f .

Proof. We indicate the proof for the case where K(z, z) has no zeros. For the general proof
see [HKPV09, Lemma 2.4.1]. By definition:

E[< µf , ϕ >] = E
[ ∫

Ω

ϕdµf

]
= E

[ ∫
Ω

ϕ
1

2π
∆ log |f(z)|

]
= E

[ ∫
Ω

1

2π
∆ϕ log |f(z)|

]
= E

[ ∫
Ω

1

2π
∆ϕ

(
log

|f(z)|√
K(z, z)

+ log
√
K(z, z)

)]
=

∫
Ω

1

2π
∆ϕ log

√
K(z, z) + E

[ ∫
Ω

1

2π
∆ϕ log

|f(z)|
K(z, z)

]
.

If we denote

ξ =
f(z)√
K(z, z)

,

then ξ ∼ NC(0, 1) and E(log |ξ|) is a constant independent of z. Then, using Fubini’s theorem:

E[< µf , ϕ >] =
1

2π

∫
Ω

ϕ∆ log
√
K(z, z) +

1

2π

∫
Ω

∆ϕE
[

log |ξ|
]

=
1

2π

∫
Ω

ϕ∆ log
√
K(z, z) +

1

2π

∫
Ω

ϕ∆E
[

log |ξ|
]

=
1

2π

∫
Ω

ϕ∆ log
√
K(z, z).

Finally we obtain:

E[< µf , ϕ >] =
1

2π

∫
Ω

ϕ∆ log
√
K(z, z).

From the defining identity

< E[µf ], ϕ >=

∫
Ω

ϕdE[µf ],

we get the result. 2

Examples. For the model cases, the first intensity can be computed explicitly.
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1. The plane case. Remember that KL(z, z) = eL|z|
2
, z ∈ C. Then:

E[µfL ] =
1

4π
∆L|z|2 = L

1

4π
4

∂

∂z∂z̄
(zz̄) =

L

π
dm(z).

Notice that this is the same measure we used to illustrate the Poisson process in Chapter 1.

2. The hyperbolic case. Here KL(z, z) = (1− |z|2)−L, z ∈ D. Then:

E[µfL ] =
1

4π
∆ log(1− |z|2)−L = L

1

4π
4

∂

∂z∂z̄
log

(
1

1− zz̄

)
=
L

π

1

(1− |z|2)2
dm(z) = Ldν(z).

3. The parabolic case. Here KL(z, z) = (1 + |z|2)L, z ∈ S2. Then:

E[µfL ] =
1

4π
∆ log(1 + |z|2)L = L

1

4π
4

∂

∂z∂z̄
log(1 + zz̄)

=
L

π

1

(1 + |z|2)2
dm(z) = Ldν(z).

Remark. The dν(z) appearing above in the hyperbolic case corresponds to the invariant
measure associated to the hyperbolic geometry and it is not the same as the one appearing
in the parabolic case, which corresponds to the invariant measure of the parabolic geome-
try. Context will help us to detect which invariant measure we refer.
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4 Variance. General formula.

This chapter is the main goal of the project. We are going to see some results that show that point
processes produced in this way are more rigid than the Poisson process seen at the beginning. A
way to measure this rigidness is to evaluate the variance of the counting random variables seen
at the beginning.

For an open region U ⊂ X , remember that

nL(U) = #(ZfL ∩ U) =

∫
U

1

4π
∆ log |fL|2.

Then, to see how fluctuates nL(U) we can compute its variance and after that, we will compare it
with the variances obtained in the Poisson processes associated to each standard example (Chap-
ter 1).

Theorem 4.1. Let U ⊆ X be an open region with C1 boundary. Let f be a GAF as in (19)
and let K(z, w) denote its covariance kernel. Then:

V ar[nL(U)] = − 1

4π2

∫
∂U

∫
∂U

1

1− I
∂

∂z̄

(
K(w, z)

K(z, z)

)
∂

∂w̄

(
K(z, w)

K(w,w)

)
dz̄dw̄, (37)

where

I(z, w) =
|K(z, w)|2

K(z, z)K(w,w)
.

Notice, once more, that this depends only on the covariance kernel.

Proof. By definition:
Var[nL(U)] = E[(nL(U)− E[nL(U)])2]. (38)

Using the Edelman-Kostlan formula:

nL(U)− E[nL(U)] =

∫
U

1

2π
∆ log |fL(z)| −

∫
U

1

4π
∆ logK(z, z)

=

∫
U

1

2π
∆ log

|fL(z)|√
K(z, z)

.

We shall use the following form of Green’s identity (a particular version of the Stokes theorem).
Let Ω be an open region and let U be open, bounded set such that Ū ⊆ Ω and with C1 boundary.
For f ∈ C2(Ω),

i

∫
∂U

∂f

∂z̄
(ξ)dξ̄ =

∫
U

∂2f

∂z∂z̄
(ξ)idξ ∧ dξ̄ = 2

∫
U

∂2f

∂z∂z̄
(ξ)dm(ξ)

=
1

2

∫
U

∆f(ξ)dm(ξ). (39)
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Using (39) we obtain:

nL(U)− E[nL(U)] =
i

π

∫
∂U

∂

∂z̄
log

|fL(z)|√
KL(z, z)

. (40)

Note that the expression above could have a singularity whenKL(z, z) = 0, but this happens with
probability 0 due to the fact that ZfL∩∂U = 0 a.s. Similarly to the proof of the Edelman-Kostlan
formula, we denote the normalized GAF by f̂L(z) = |fL(z)|√

KL(z,z)
∼ NC(0, 1). Then:

Var[nL(U)] = E

[∫
∂U

i

π

∂

∂z̄
log

|f(z)|√
KL(z, z)

∫
∂U

i

π

∂

∂w̄
log

|f(w)|√
KL(w,w)

]

= E

[∫
∂U

∫
∂U

(
i

2π

)2
∂

∂z̄
log |f̂L(z)|2 ∂

∂w̄
log |f̂L(w)|2

]
.

Since f̂L(z) and f̂L(w) follow a NC(0, 1), then the term(
i

2π

)2
∂

∂z̄
log |f̂L(z)|2 ∂

∂w̄
log |f̂L(w)|2

is integrable on ∂U . Thus, all needed conditions are fullfied so we can apply the Fubini’s theorem
twice. Therefore:

Var[nL(U)] =

∫
∂U

∫
∂U

E

[(
i

2π

)2
∂

∂z̄
log |f̂L(z)|2 ∂

∂w̄
log |f̂L(w)|2

]
.

Consecutively, we use the differentiation under the integral sign, which is the general form of the
Leibnitz rule (see on [Wik19]) and we get:

Var[nL(U)] =

∫
∂U

∫
∂U

(
i

π

)2
∂

∂z̄

∂

∂w̄
E[log |f̂L(z)| log |f̂L(w)|]. (41)

It is important to remark that the expectation in this integral depends only on the standard com-
plex Gaussian, and it is known.

Lemma 4.1. ([HKPV09, Lemma 3.5.2]) Let ξ and ν be complex Gaussians with E[ξν̄] = θ.
Then:

Cov(log |ξ|, log |ν|) =
1

4
Li2(|θ|2) =

1

4

∞∑
m=1

|θ|2m

m2
. (42)

The function Li2 is called the dilogarithm.

In our case, we have:

θ(z, w) = E[f̂(z)f̂(w)] =
K(z, w)√

K(z, z)
√
K(w,w)

. (43)
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For simplicity, we denote:
I(z, w) = |θ(z, w)|2. (44)

Since

Cov[log f̂L(z), log f̂L(w)] = E[log f̂L(z) log f̂L(w)]− E[log f̂L(z)]E[log f̂L(w)],

and this second term is constant,

∂

∂z̄

∂

∂w̄
E[log |f̂L(z)| log |f̂L(w)|] =

∂

∂z̄

∂

∂w̄
Cov[log |f̂L(z)| log |f̂L(w)|].

From (41) we obtain:

Var[nL(U)] = − 1

4π2

∫
∂U

∫
∂U

∂2

∂z̄∂w̄
Li2(I(z, w))dz̄dw̄. (45)

Now, we need to compute ∂2

∂z̄∂w̄
Li2(I(z, w)):

∂2

∂z̄∂w̄
Li2(I(z, w)) =

∂

∂z̄

( ∞∑
m=1

Im−1

m

)
∂I

∂w̄

=

( ∞∑
m=2

m− 1

m
Im−2

)
∂I

∂z̄

∂I

∂w̄
+

( ∞∑
m=1

Im−1

m

)
∂2I

∂z̄∂w̄

=

( ∞∑
n=0

n+ 1

n+ 2
In
)
∂I

∂z̄

∂I

∂w̄
+

( ∞∑
n=0

In

n+ 1

)
∂2I

∂z̄∂w̄
. (46)

Let us see next that
∂2I

∂z̄∂w̄
=

1

I

∂I

∂z̄

∂I

∂w̄
. (47)

In effect, from (43) and (44) we get:

∂I

∂z̄
=

∂

∂z̄

[
K(w, z)

K(z, z)

]
K(z, w)

K(w,w)

∂I

∂w̄
=

∂

∂w̄

[
K(z, w)

K(w,w)

]
K(w, z)

K(z, z)
.

Therefore:

∂I

∂z̄

∂I

∂w̄
=

∂

∂z̄

[
K(w, z)

K(z, z)

]
∂

∂w̄

[
K(z, w)

K(w,w)

]
K(z, w)K(w, z)

K(w,w)K(z, z)

=
∂2I

∂z̄∂w̄
I. (48)
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Applying (47) to the expression (46) we obtain:

∂2

∂z̄∂w̄
Li2(I(z, w)) =

( ∞∑
n=0

n+ 1

n+ 2
In
)
∂I

∂z̄

∂I

∂w̄
+

( ∞∑
n=0

In

n+ 1

)
1

I

∂I

∂z̄

∂I

∂w̄

=
1

I

∂I

∂z̄

∂I

∂w̄

( ∞∑
n=0

n+ 1

n+ 2
In+1 +

∞∑
n=0

1

n+ 1
In
)

=
1

I

∂I

∂z̄

∂I

∂w̄

( ∞∑
n=1

n

n+ 1
In +

∞∑
n=0

1

n+ 1
In
)

=
1

I

∂I

∂z̄

∂I

∂w̄

(
1 +

∞∑
n=1

In
)

=
1

I(1− I)

∂I

∂z̄

∂I

∂w̄
. (49)

From (45) we obtain:

V ar[nL(U)] = − 1

4π2

∫
∂U

∫
∂U

1

I(1− I)

∂I

∂z̄

∂I

∂w̄
dz̄dw̄. (50)

As we did in (48),

1

I

∂I

z̄

∂I

∂w
=

∂2I

∂z̄∂w̄
=

∂

∂z̄

(
K(w, z)

K(z, z)

)
∂

∂w̄

(
K(z, w)

K(w,w)

)
;

and the result follows. 2

4.1 Example: the plane case.

Now, we are able to apply the general formula (37) to the planar case. For simplicity, we can
consider U = D(a, r) to be a disc of radius r > 0. Due to invariance under translations of the
measure dν = dm(z)

π
, we can choose a = 0. Using that KL(z, w) = eLzw̄ we get:

I(z, w) =
K(z, w)K(w, z)

K(z, z)K(w,w)
=
eLzw̄eLwz̄

eLzz̄eLww̄
= eLz(w̄−z̄)eLw(z̄−w̄) = e−L|z−w|

2

. (51)

Computing the corresponding derivatives of the expression (37), taking the polar coordinates for
a given r > 0 and making the change of variables t = θ − φ, θ, φ ∈ (0, 2π); we obtain:

Var[nL(r)] =
L2r4

2π

∫ 2π

0

e−Lr
2|1−eit|2

1− e−Lr2|1−eit|2
|1− eit|2dt. (52)

The hyperbolic case, which is more difficult, will be discussed in detail in the next chapter. From
the last expression, and doing the change of variables x = 2Lr2(1− cos(t)):

Var[nL(r)] =

√
Lr2

2π

∫ 4Lr2

0

e−x

1− e−x

√
x√

1− x/(4Lr2)
dx. (53)
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Knowing that
e−x

1− e−x
=
∞∑
n=1

e−nx,

we obtain

Var[nL(r)] =

√
Lr2

2π

∞∑
n=1

∫ 4Lr2

0

e−nx
√
x√

1− x/(4Lr2)
dx. (54)

We want to stress that this is an exact expression of Var[nL(r)] given by a sum of positive terms,
actually a sum of integrals of positive functions. A lot of information can be extracted from such
objects.
For instance, let us see what happens when E[nL(r)] = Lr2 →∞:

In = (1 + o(1))

∫ ∞
0

e−nx
√
x dx = (1 + o(1))

1

n3/2

∫ ∞
0

e−y
√
y dy = (1 + o(1))

Γ(3/2)

n3/2
.

This is so because the singularity is integrable at 4Lr2. Replacing this result to (54):

Var[nL(r)] =

√
Lr2

2π

∞∑
n=1

Γ(3/2)

n3/2
(1 + o(1)) =

√
Lr2

2π
Γ(3/2)ζ(3/2)(1 + o(1))

=
1

2
√
π
ζ(3/2)

√
Lr2(1 + o(1)) ∼

√
Lr2.

Remember that in the Poisson processes the variance of nL(r) was exactly Lr2. Thus, we see
that point process associated to the zeros of a Gaussian analytic function in the complex plane is
more ”rigid”, in the sense that the variance is of lower order. This explains what we see in Figure
2, page 6.
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5 The hyperbolic case.

In this last chapter of the project we will study the variance of the random variable nL(U) for the
hyperbolic case. In particular, we will study the fluctuations of nL(D(z, r)) as the intensity L
tends to infinite. The main results follow from the following theorem, which is the specification
in this context of (37). Due to invariance under automorphisms seen on (6), the Var[nL(D(z, r)]

does not depend on where we take the centre z of that disk, so, from now on, we will use the
notation Var[nL(r)].

Theorem 5.1. Let f be an hyperbolic Gaussian analytic function of intensity L as in (27). Then,
for a disk U = D(z, r), z ∈ D, r ∈ (0, 1),

Var[nL(r)] =
L2r4

(1− r2)2

∫ π

−π

(1− r2)2L |1− eit|2

[|1− r2eit|2L − (1− r2)2L] |1− r2eit|2
dt

2π
. (55)

We can also rewrite the last expression in the following form:

Var[nL(r)] =
L2r4

(1− r2)2

∫ π

−π

(1− r2)2L 2(1− cos(t))

[|1− r2eit|2L − (1− r2)2L] |1− r2eit|2
dt

2π
. (56)

Notice that the integrand of this expression is a positive function, so we can use all the tools we
have to estimate such integrals.

Proof. Recall that for L > 0, the covariance kernel hyperbolic Gaussian analytic function of
intensity L takes the form:

KL(z, w) =
1

(1− zw̄)L
.

In this case, the elements appearing in the general formula seen in the previous chapter can be
computed explicitly. First:

I(z, w) =
K(z, w)K(w, z)

K(z, z)K(w,w)
=

(
(1− zz̄)(1− ww̄)

(1− zw̄)(1− wz̄)

)L
=

(
(1− |z|2)(1− |w|2)

|1− z̄w|2

)L
.

Therefore:

1

1− I
=

[(1− zw̄)(1− wz̄)]L

[(1− zw̄)(1− wz̄)]L − [(1− |z|2)(1− ww̄)]L
=

|1− z̄w|2L

|1− z̄w|2L − (1− |z|2)L(1− |w|2)L
.

From this, we deduce that:

∂I

∂z̄
=

(
1− |w|2

1− zw̄

)L
L

(
1− |z|2

1− wz̄

)L−1(−z(1− wz̄) + (1− |z|2)w

(1− wz̄)2

)
= L

(
1− |w|2

1− zw̄

)L(
1− |z|2

1− wz̄

)L−1
w − z

(1− wz̄)2



The hyperbolic case. 27

∂I

∂w̄
=

(
1− |z|2

1− wz̄

)L
L

(
1− |w|2

1− zw̄

)L−1(−w(1− zw̄) + (1− |w|2)z

(1− zw̄)2

)
= L

(
1− |z|2

1− wz̄

)L(
1− |w|2

1− zw̄

)L−1
z − w

(1− zw̄)2
.

Replacing the last three results to the general expression (37) we obtain:

Var[nL(U)] =− 1

4π2

∫
∂U

∫
∂U

(
(1− z̄w)2L

(1− |z|2)L(1− |w|2)L

)(
(1− z̄w)2L

(1− z̄w)2L − [(1− |z|2)(1− |w|2)]L

)
×

× L2

(
(1− |w|2)2L−1(1− |z|2)2L−1(z − w)2

|1− z̄w|2(2L+1)

)
dz̄dw̄.

Notice that
(1− |z|2)(1− |w|2)

|1− z̄w|2
= 1−

∣∣∣∣ z − w1− z̄w

∣∣∣∣2,
so the first term of the last expression has no singularities due to the invariance by automorphisms
of the unit disk, seen on Chapter 1. Thus, we take U = D(0, r) and polar coordinates; z = reiθ

and w = reiφ, r ∈ (0, 1) and θ, φ ∈ (0, 2π); we get:

Var[nL(r)] =

∫ 2π

0

∫ 2π

0

L2(1− r2)2(L−1)r2(eiθ − eiφ)

[(1− r2ei(θ−φ))L(1− r2ei(φ−θ))L − (1− r2)2L]
×

× (eiφ − eiθ)re−iθre−iφ

(1− r2ei(θ−φ))(1− r2ei(φ−θ))

dθ

2π

dφ

2π
.

Now, changing the variables t = θ − φ, we get finally:

Var[nL(r)] =
L2r4

(1− r2)2

∫ π

−π

(1− r2)2L |1− eit|2

[|1− r2eit|2L − (1− r2)2L] |1− r2eit|2
dt

2π

=
L2r4

(1− r2)2

∫ π

−π

(1− r2)2L 2(1− cos(t))

[|1− r2eit|2L − (1− r2)2L] |1− r2eit|2
dt

2π
. 2

For the case L = 1, the previous integral can be computed explicitly.

Theorem 5.2. For L = 1 and for any r ∈ (0, 1),

Var[n1(r)] =
r2

1− r4
.

Proof. Replacing L = 1 to the expression (55):

Var[n1(r)] = r4

∫ π

−π

1

|1− r2eit|2 − (1− r2)2

|1− eit|2

|1− r2eit|2
dt

2π
. (57)
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In order to use the Residue theorem take ξ = eit; we obtain:

Var[n1(r)] = r4

∫
|ξ|=1

1

|1− r2ξ|2 − (1− r2)2

|1− ξ|2

|1− r2ξ|2
dξ

ξ2πi
. (58)

Notice that ξ̄ = e−it = 1
ξ
. Then:

Var[n1(r)] = r4

∫
|ξ|=1

1

(1− r2ξ)(1− r2

ξ
)− (1− r2)2

(1− ξ)(1− 1
ξ
)

(1− r2ξ)(1− r2

ξ
)

dξ

ξ2πi

= r4

∫
|ξ|=1

1

2πi

1

(1− r2ξ)(1− r2

ξ
)− (1− r2)2

(1− ξ)(ξ − 1)

(1− r2ξ)(ξ − r2)

dξ

ξ

= r4

∫
|ξ|=1

1

2πi

1

(1− r2ξ)(ξ − r2)− (1− r2)2ξ

(1− ξ)(ξ − 1)

(1− r2ξ)(ξ − r2)
dξ.

In order to find the poles of the integrand, we factorize the denominator:

(1− r2ξ)(ξ − r2)− (1− r2)2ξ = −r2ξ2 − [(1− r2)2 − r4 − 1]ξ − r2

= −r2ξ2 + 2r2ξ + r2 = −r2(ξ − 1)2.

Replacing this result to the expression above we get:

Var[n1(r)] = r2

∫
|ξ|=1

1

2πi

1

(1− r2ξ)(ξ − r2)
dξ =

∫
|ξ|=1

1

2πi

1

( 1
r2
− ξ)(ξ − r2)

dξ.

Denote:
g(ξ) :=

1

( 1
r2
− ξ)(ξ − r2)

.

Notice that g(ξ) is an meromorphic function with simple poles at r2 and r−2. Since r ∈ (0, 1),
r−2 is not in the interior of the unit circle |ξ| = 1. Applying the residue theorem we obtain:

Var[n1(r)] = Res(g(ξ), r2) = lim
ξ→r2

1
1
r2
− ξ

=
r2

1− r4
. 2

Note that in principle, we could follow the same procedure for any L ∈ N. However, for general
L, we get in the denominator a polynomial of degree 2L, which in general we do not know how
to factorize.

We shall see next that Theorem 4.1 is still useful to study the asymptotic behaviour of Var[nL(r)]

as L→ +∞.

Theorem 5.3. For any r ∈ (0, 1) fixed, as L→ +∞,

Var[nL(r)] =
r

4
√
π

ζ(3/2)

1− r2

√
L (1 + o(1)).



The hyperbolic case. 29

Proof. Denote by IL the integral in (56), that is:

IL(r) =

∫ π

−π

(1− r2)2L 2(1− cos(t))

[|1− r2eit|2L − (1− r2)2L] |1− r2eit|2
dt

2π
.

We can simplify this integral dividing both the numerator and the denominator by (1− r2)2L:

IL(r) =

∫ π

−π

1( |1−r2eit|
1−r2

)2L − 1

2(1− cos(t))

|1− r2eit|2
dt. (59)

Notice that:

|1− r2eit|2 = 1 + r4 − 2r2 cos(t) = (1− r2)2 + 2r2(1− cos(t)).

Therefore:
|1− r2eit|2

(1− r2)2
= 1 +

2r2(1− cos(t))

(1− r2)2
.

Replacing the last two results to (59) we obtain:

IL(r) =

∫ π

−π

1[(
1 + 2r2(1−cos(t))

(1−r2)2

)L − 1
] 2(1− cos(t))

(1− r2)2 + 2r2(1− cos(t))
dt

=
2

r2

∫ π

0

1[(
1 + 2r2(1−cos(t))

(1−r2)2

)L − 1
] 2r2(1−cos(t))

(1−r2)2

1 + 2r2(1−cos(t))
(1−r2)2

dt. (60)

Now, we do the following change of variables:

x =
2r2(1− cos(t))

(1− r2)2
.

Thus, we have:

t = arccos
(

1− (1− r2)2

2r2
x
)
,

and

dt =
(1− r2)2

2r2

dx√
(1−r2)2

r2
x− (1−r2)4

4r4
x2

=
(1− r2)

2r
√
x

dx√
1− (1−r2)2

4r2
x
,

Going back to (60) we obtain:

IL(r) =
1− r2

r3

∫ 4r2

(1−r2)2

0

1

(1 + x)L − 1

√
x

1 + x

dx√
1− (1−r2)2

4r2
x
. (61)

Denote

JL(r) =

∫ 4r2

(1−r2)2

0

1

(1 + x)L − 1

√
x

1 + x

dx√
1− (1−r2)2

4r2
x
.
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For any x fixed the integrand tends to 0 as L goes to∞. As L grows, the main contribution to
the integral comes from the x near 0, where the term 1

(1+x)L−1
is ”big”. For those x we have

1√
1− (1−r2)2

4r2
x

∼ 1. Thus, we write:

JL(r) =

∫ 4r2

(1−r2)2

0

1

(1 + x)L − 1

√
x

1 + x
dx

{
1 +

∫ 4r2

(1−r2)2

0
1

(1+x)L−1

√
x

1+x

(
1√

1− (1−r2)2
4r2

x

− 1

)
dx

∫ 4r2

(1−r2)2

0
1

(1+x)L−1

√
x

1+x
dx

}
.

(62)
First we want to see that

lim
L→+∞

∫ 4r2

(1−r2)2

0
1

(1+x)L−1

√
x

1+x

(
1√

1− (1−r2)2
4r2

x

− 1

)
dx

∫ 4r2

(1−r2)2

0
1

(1+x)L−1

√
x

1+x
dx

= 0.

Take ε(L) ∈ (0, 1) such that limL→+∞ ε(L) = 0; the numerator of the last expression can be split
into two parts (denoted by J1L and J2L respectively). The first one is where x is small:

J1L =

∫ ε(L) 4r2

(1−r2)2

0

1

(1 + x)L − 1

√
x

1 + x

(
1√

1− (1−r2)2

4r2
x
− 1

)
dx. (63)

Define t = (1−r2)2

4r2
x. Then, by Taylor’s formula, for t ∈ (0, ε(L)),

1√
1− t

= 1 +
1

2
t+O(t2) ≤ 1 + t.

Thus:
1√

1− t
− 1 ≤ t ≤ ε(L).

Therefore, from (63), we obtain

J1L ≤ ε(L)

(∫ ε(L) 4r2

(1−r2)2

0

1

(1 + x)L − 1

√
x

1 + x
dx

)
,

and
lim

L→+∞

J1L∫ 4r2

(1−r2)2

0
1

(1+x)L−1

√
x

1+x
dx

= 0.

The second part of the integral is

J2L =

∫ 4r2

(1−r2)2

ε(L) 4r2

(1−r2)2

1

(1 + x)L − 1

√
x

1 + x

(
1√

1− (1−r2)2

4r2
x
− 1

)
dx. (64)
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Doing the change of variables proposed above, t = (1−r2)2

4r2
x, we get

J2L =
4r2

(1− r2)2

∫ 1

ε(L)

1

(1 + 4r2

(1−r2)2
t)L − 1

2r
1−r2
√
t

1 + 4r2

(1−r2)2
t

( 1√
1− t

− 1
)
dt.

We split the integral into two parts again. It is clear that the t near 1 are not a problem:

lim
L→+∞

∫ 1

1/2

1

(1 + 4r2

(1−r2)2
t)L − 1

2r
1−r2
√
t

1 + 4r2

(1−r2)2
t

( 1√
1− t

− 1
)
dt = 0.

On the other hand,∫ 1/2

ε(L)

1

(1 + 4r2

(1−r2)2
t)L − 1

2r
1−r2
√
t

1 + 4r2

(1−r2)2
t

( 1√
1− t

− 1
)
dt ≤

≤
∫ 1/2

ε(L)

1

(1 + 4r2

(1−r2)2
t)L − 1

2r
1−r2
√
t

1 + 4r2

(1−r2)2
t

1√
1− t

dt. (65)

Take

ε(L) =
(1− r2)2

4r2

1

log(L)
.

For L large enough, ε(L) ∈ (0, 1) and following the equation (65):

≤
∫ 1/2

ε(L)

1

(1 + 1
logL

)L − 1

1

1 + 1
logL

1√
1− 4r2

(1−r2)2
1

logL

dt

≤ 1

(1 + 1
logL

)
L

logL
logL − 1

1√
logL

1

1 + 1
logL

≤ lim
L→+∞

1

(1 + 1
logL

)logL L
logL − 1

≈ 1

e
L

logL

. (66)

We shall see later that ∫ 4r2

(1−r2)2

0

1

(1 + x)L − 1

√
x

1 + x
dx = O(L−3/2) (67)

and therefore
lim

L→+∞

J2L∫ 4r2

(1−r2)2

0
1

(1+x)L−1

√
x

1+x
dx

= 0. (68)

At this point, we have seen that the expression in (62) is:

JL(r) =

∫ 4r2

(1−r2)2

0

1

(1 + x)L − 1

√
x

1 + x
dx(1 + o(1)).
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Going back to (61), we have:

IL(r) =
1− r2

r3

∫ ∞
0

1

(1 + x)L − 1

√
x

1 + x
dx(1 + o(1))

=
1− r2

r3

∫ ∞
0

1

(1 + x)L
(

1− 1
(1+x)L

) √x
1 + x

dx(1 + o(1)). (69)

Making a new change of variables y = 1
1+x

we obtain:

IL(r) =
1− r2

r3

∫ 1

0

yL

1− yL

√
1− y
y

dy

y
(1 + o(1)) =

1− r2

r3

∫ 1

0

yL−3/2

1− yL
(1− y)1/2dy(1 + o(1))

=
1− r2

r3

∞∑
n=0

∫ 1

0

yLn+L−3/2(1− y)1/2dy(1 + o(1)). (70)

Using the second and the fourth property of the gamma function (see section 3.3), the non-integer
value Γ(1/2) =

√
π and the Riemann zeta function’s definition, we get:

IL(r) =
1− r2

r3

∞∑
n=0

Γ(Ln+ L− 1/2)Γ(3/2)

Γ(Ln+ L+ 1)
(1 + o(1))

=
(1− r2)

√
π

2r3

∞∑
n=0

Γ(Ln+ L− 1/2)

Γ(Ln+ L+ 1)
(1 + o(1)) =

(1− r2)
√
π

2r3

∞∑
n=0

1

(Ln+ L)3/2
(1 + o(1))

=
(1− r2)

√
π

2r3L3/2

∞∑
n=1

1

n3/2
(1 + o(1)) =

(1− r2)
√
π

2r3L3/2
ζ(3/2)(1 + o(1)). (71)

From (5), we can see:

Var[nL(r)] =
L2r4

2π(1− r2)2
IL(r).

Then, replacing (70) above we get the result. 2

Remarks.

1. Remember that in the Poisson processes, for the hyperbolic case,

Var(nL(r)) =
Lr2

1− r2
.

We can compare it to the result just obtained. In this case,

Var(nL(r)) = c

√
Lr

1− r2
+ o(
√
L).

We verify the same that happened to the planar case seen in the final of Chapter 3. Points
corresponding to a Poisson process are more dispersed than the corresponding to the zeros
of a hyperbolic Gaussian analytic function.
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2. We can also study the expression (56) from different points of view. For example, we can
fix the parameter L and see the behaviour of nL(r) when r → 1−. In this way, three dif-
ferent results are obtained depending on the value of L with r → 1−.

Theorem 5.4. [Buc13b, Proposition 7] Let f be the hyperbolic Gaussian analytic function as in
(27). Then:

(a) For each fixed L < 1/2,

Var[nL(r)] =
cL

(1− r)2−2L
(1 + o(1)), as r → 1−,

where

cL =
L2

4
√
π

Γ(1
2
− L)

Γ(1− L)
.

(b) For L = 1/2,

Var[n1/2(r)] =
1

8π

1

1− r
log

1

1− r
(1 + o(1)), as r → 1−.

(c) For each fixed L > 1/2,

Var[nL(r)] =
cL

1− r
(1 + o(1)), as r → 1−,

where

cL =
L2

2π

∫ ∞
0

1

(1 + x2)L − 1

x2

1 + x2
dx =

L2

8
√
π

∞∑
n=1

Γ(Ln− 1/2)

Γ(Ln+ 1)
.
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