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Abstract

The origin of the algebraic topology opened a new way to study the geometric properties
through some algebraic invariants. Over the years, mathematicians have been capable of devel-
oping different bridges between these two areas. The final goal of this text is to go in depth
into one of these connections: the de Rham cohomology. Likewise, we study the main result of
this theory: the de Rham theorem. In this text, we obtain this result as a consequence of a more
general theorem on sheaf theory. The de Rham theorem plays an essential role in the area of
differential geometry where it has many implications. In the final part of this text, we explain a
significant application in Lie group theory.

Resumen

El nacimiento de la topología algebraica abrió una nueva manera de estudiar las propiedades
geométricas a partir de invariantes algebraicos. Con el curso de los años, los matemáticos han
sido capaces de alzar diferentes puentes de conexión entre estas dos áreas. El objetivo último
de este texto es adentrarnos en una de estas conexiones: la cohomología de de Rham. A su
vez, estudiamos el resultado principal de esta teoría: el teorema de de Rham. En este texto,
obtenemos este resultado como consequéncia de un teorema más general sobre teoría de haces.
El teorema de de Rham juega un papel fundamental en el ámbito de la geometría diferencial.
Entre las diferentes aplicaciones de esta teoría, en la parte final de este texto explicamos una
aplición importante en la teoría de los grupos de Lie.
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Content

1 Sheaf Theory 4

1.1 The Sheaf Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The Presheaf Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Relation Between Sheaves and Presheaves . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 The Sheafification Morphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Exact Sequences of Sheaves and Presheaves . . . . . . . . . . . . . . . . . . 10

2 Sheaf Cohomology Theories 15

2.1 Existence of Sheaf Cohomology Theories . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Homomorphisms Between Sheaf Cohomology Theories . . . . . . . . . . . . . . . 19

3 The De Rham Theorem 23

3.1 The Singular Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The Stokes’ Theorem and the de Rham Cohomology . . . . . . . . . . . . . . . . . 30

4 An Application of the De Rham Theorem in the Lie Group Theory 37

4.1 Lie Groups and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Integration over a Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 The Exponential Map and the Adjoint Representation . . . . . . . . . . . . . . . . . 43

4.2.1 The Exponential Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 The Adjoint Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Lie Group Structure over the Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . 48

i



CONTENT

Preface

Over the past two centuries, mathematicians have developed wondrous theories that enable
us to peer ever more deeply into the invisible world of abstract concepts and their interrelation-
ships. In this era, new areas in geometry have sprouted, amongst them topology, differential
geometry, and algebraic geometry (as we know it today). However, there were considerable dif-
ficulties to fully grasp the new-coming ideas. Namely, the notions were assembled from layer
upon layer of the abstract structure producing complex architectures.

In this context, category theory blossomed with the observation that many properties of
mathematical systems could be unified and simplified by a presentation with diagrams. Light-
ing up a way to systematically probing the logical structures, Samuel Eilenberg and Saunders
Mac Lane introduced the concepts of categories, functors, and natural transformations in their
study of algebraic topology (1942–45). Eventually, the concept of category has been increasingly
employed in all branches of mathematics, especially in studies where the relationship between
different branches is of importance.

The category theory arose hand in hand with the fundamental group, which was its main
inspiration. Indeed, the first homotopy group was also the incentive for several functorial ways
of the category of topological spaces. These functors associate to each spaces an algebraic object
like a group or a vector space, so that homeomorphic spaces have isomorphic objects. Among
them, the reader may be familiar with some types of homologies and cohomologies. To make
an overall idea, one can perceive that most of these functors somehow measure the existence
of “holes” in different dimensions. In this sense, the de Rham theory of differential forms has
notorious importance, since it plays a central role in differential geometry.

The de Rham cohomology is based on differential forms on a smooth manifold using the
exterior derivative as a boundary operator (Chapter 3). Against this background, a smooth form
is called closed if the differential cancels it. A form contained in the image of the differential is
called exact. In this way, all exact forms are closed. In some sense, this cohomology comes up
to answer the question of which conditions make closed forms be exact, defining the de Rham
cohomology groups as the quotient of closed forms modulo exact forms. In other words, the de
Rham groups are a way of understanding a manifold’s global topology via the tangent bundle.

Although the de Rham theorem is usually set today using cohomology, it was not the way
that Georges de Rham proved the theorem in 1930. The reason is that in those days, the concepts
of cohomology, homology, and manifolds had not been defined yet. Oddly enough, reading the
paper where he wrote his famous theorem, one can figure out that the de Rham cohomology
groups practically stared him in the face. Without too much strife, he could have gone ahead
and made the definition, but this probably seemed pointless to him at the time. Instead of using
cohomologies, he proved this theorem regarding homology and the integration of differential
forms over smooth chains. Apparently, the first modern statement and proof of the De Rham
theorem in terms of cohomology was in mimeographed notes of lectures by H. Cartan in 1947.

The principal result of this text is the de Rham theorem (3.4). With this in mind, we shed
light onto the sheaf theory. Defining the sheaf cohomology, we prove a fantastic but simple
uniqueness theorem for homomorphisms of sheaf cohomology theories (2.5). We are going
to exhibit both the de Rham cohomology and the differential singular cohomology as special
cases of sheaf cohomology theories. We also prove that the natural homomorphism between
the de Rham and differentiable singular theories is an isomorphism. As an added result to this
approach, we shall also prove the existence of canonical isomorphism of the continuous singular
category to those mentioned above. From these isomorphisms, we conclude that the de Rham
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cohomology is a topological invariant of a differential manifold.

Knowing which closed forms are exact, brings us important consequences that make this
theorem so significant in the differential geometry. For instance, Stokes’ theorem implies that if
a form is exact, then the integral of it over any compact submanifold without boundary is zero.
Another simple consequence is that a smooth 1-form is conservative if, and only if, it is exact.
From that, if we combine de Rham theory with Hodge theory, we can find many applications in
Quantum Mechanics, too. There is also an interesting application on the Lie group theory that
we are going to study in this text.

Lie group theory is named after the Norwegian mathematician Sophus Lie, who was the
first person to define this smooth groups. These groups endow smooth manifolds with a group
structure in a smart way. In the nineteenth century, Lie tried to simplify problems in partial
differential equations using symmetries expressed in the form of group actions. His essential
idea was inspired by how the algebraist Evariste Galois had invented group theory and used it
to analyze polynomial equations. However, Lie could not have conceived the global objects that
we now call Lie groups, for the simple reason that global topological notions such as a manifold
(or even topological spaces!) had not yet been formulated. What Lie studied was essentially
a local-coordinate version of Lie groups, now called local Lie groups. Despite the limitations
imposed by the era in which he lived, he was able to lay much of the groundwork for the current
understanding of Lie groups.

The result on Lie group theory that we prove at the end of this text is that the only spheres
which admit a Lie group structure are S0, S1 and S3. Since S0 is constituted by only two points,
it has obvious differential and group structures. Regarding the circumference, S1, one can figure
out that this has a group structure induced by complex numbers with the product operation. If
someone thinks about the sphere S3, one will realize that similar phenomenon happens as in S1,
using the quaternions. This sequence ends at that point, due to octonions not having a group
structure. The amazing fact is that there was not any way to make up a Lie group structure over
the other spheres.

We would want to conclude this introduction with a quick scan of the text that is about to
start reading. The core material to prove the de Rham theorem and the proof itself is contained
in Chapters 1, 2 and 3, where our approach is mainly based on the proof given by Warner in
[1]. To the ideas inspired by this reference, we have added the basic notions of the category
theory. The category theory has an essential role in the sheaf theory, since sheaf and presheaf
can be defined in a general way using categories and functors. Besides, the cohomology has a
particular point of view as a functor application. In this way, the theory of categories does not
only simplify the organization and comprehension of the text but also makes possible a more
detailed study of the same. We include some illustrative examples to have a better appreciation
of the definitions.

Chapter 1 is about the sheaf theory where no previous knowledge of this theory is assumed.
It starts with the definition of sheaves and setting the sheaf homomorphisms following by a
definition of presheaves and their homomorphisms. By doing so, we have defined the category
of sheaves and the category of presheaves. We end this chapter with the construction of the
sheafification morphism and exact sequence of sheaves.

Chapter 2 go into the sheaf cohomology theories. We define sheaf cohomology theories and
the morphisms, developing a category. It continues defining resolutions of a sheaf which are
useful tools that draw a path to build a cohomology theory based on a sheaf. Finally, we proof
such an incredible theorem that says that any two sheaf cohomology theories on a manifold are
uniquely isomorphic (2.6).

In Chapter 3 we define the cohomologies that are involved in the de Rham theorem namely
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the de Rham cohomology and the differential singular cohomology. We also define the contin-
uous singular cohomology. We study how to integrate forms over singular simplices, and we
prove the Stokes’ theorem. We finish it proving that the de Rham homomorphism is, indeed, an
isomorphism.

At the second part of this text, we show the application of the de Rham theorem seen above.
We have mixed ideas from [1] and [2], giving an exhaustive and pedagogical result. We define
the general way to integrate functions over a manifold. In this Chapter, there is a significant
component of Lie groups Theory. Lie groups, Lie algebras, the exponential map and the adjoint
representation are defined in it. Finally, we prove that the only spheres which admit a Lie group
structure are S0, S1 and S3 (4.21).

The images were taken from Warner [1] and Lee [3].
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Chapter 1

Sheaf Theory

In this chapter, we develop fundamental properties of sheaves and presheaves. The principal
goal in the first section is to define sheaves. In this context where we have differential manifolds,
there are two ways to define the category of sheaves. While the second path is the usual way to
define sheaves in any context, the first one is going to be more illustrative. Finally, we are going
to see that these two definitions are equivalent.

Simplifying notation, M is going to be taken as a differential manifold despite that in many
results we only need M as a second countable, Hausdorff and paracompact topological space.
Also, if we do not say the opposite, K will be a Principal Ideal Domain. We assume that the
reader knows elementary concepts of smooth manifolds.

1.1 The Sheaf Category

Definition 1.1. Let S be a topological space and let π : S → M be a map. We say that S with π is a
Sheaf of K-modules over M if:

a) π is a local homeomorphism of S onto M.

b) For each m ∈ M the set π−1(m) is a k-module.

c) The k-module operations in π−1(m) are continuous with the topology of S.

Generally, we use only S to denote the Sheaf, without mention the application π neither the topology
space M.

The map π is called the projection; and the K-module Sm = π−1(m) is called stalk over m,
where m ∈ M. We have defined objects of the category of sheaves. Now we have to establish
morphisms. A sheaf mapping is a continuous map ψ : S → S′ such that π′ ◦ ψ = π, where S

and S′ are sheaves over M with projections π and π′ respectively. It is straightforward that
these morphisms map stalks into stalks, and they are local homeomorphism since π is. A sheaf
mapping ψ which its restriction on each stalk is a K-module homomorphism is called a sheaf
homomorphism. A sheaf homomorphism which has an inverse that is also a sheaf homomor-
phism is a sheaf isomorphism. It is trivial to see that these morphisms fulfill the properties in the
category definition. Therefore, we have defined the category of sheaves.

The most straightforward example of a sheaf over M is that of a so-called constant sheaf
G = M× G, where G is a K-module with the discrete topology and G is given by the product
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1.1 The Sheaf Category

topology. Here the projection is simply π(m, g) = m. Despite the simplicity of the constant
sheaf, it is incredibly useful.

A less trivial example in the sheaf of germs of C∞ functions on M. Let m ∈ M and let f and g
functions defined on open sets containing m are said to have the same germ at m if they agree
on some neighborhood of m. These introduces an equivalent relation on C∞ functions defined
on neighborhoods of m. Namely, two functions being equivalent if, and only if, they have the
same germ. The equivalent classes are called germs, and we denote the set of germs at m by F̃m.
Note that F̃m is a real vector space. Let

C∞(M) =
⋃

m∈M
F̃m . (1.1)

We define the projection π : C∞ → M in the obvious fashion so that f ∈ F̃π(f).

We want to fix a topology in C∞(M) such that π was a homeomorphism, in this way we use
open subsets of M to define the topology. Let U ⊂ M be an open subset. We associate each C∞

function f on U to the set ⋃
m∈U

fm = C∞(M), (1.2)

where fm is the germ of f at m. The collection of these sets forms a basis for a topology on
C∞(M) which makes C∞(M) into a sheaf of real vector spaces.

Definition 1.2. Let S be a sheaf and let U ⊂ M an open subset. A continuous map f : U → S such
that π ◦ f = id is called a section of S over U.

Figure 1.1: A section of a sheaf

Observe that sections are open maps because π is a local homeomorphism. We denote by
Γ(S, U) the set of sections of S over U. If we take U = M we call Γ(S, U) the set of global sections
or only the set of sections which will simply be denoted by Γ(S). We will see that this set is a
k-module induced by the structure of each Sm.

A special subset of sections is the 0-sections. The 0-section is the section f which maps each
m ∈ M into 0m ∈ Sm, where 0m is the zero element of the K-module Sm.

We lay down the operations in Γ(S, U) to give it a K-module structure. Let f , g ∈ Γ(S, U),
and let k ∈ K. We define the sum of f and g to be

( f + g)(m) = f (m) + g(m), ∀m ∈ M (1.3)

and we define the product of f and k to be

(k f )(m) = k
(

f (m)
)
, ∀m ∈ M. (1.4)
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1.2 The Presheaf Category

It is easy to check that f + g and k f are sections of S over U. Therefore, Γ(S, U) with these
operations is a K-module. Observe that any element in Γ(S, U) can be composed with a sheaf
homomorphism ψ : S → S′ giving an element of Γ(S′, U). It is straightforward that Γ(ψ) :
Γ(S, U) → Γ(S′, U), defined by the composition of sections with ψ mentioned above, is a k-
module homomorphism with the operations ψ( f + g) = ψ( f ) + ψ(g) and ψ(k f ) = kψ( f ) for
any f , g ∈ Γ(S, U) and k ∈ K. We have that Γ(ψ ◦ ϕ) = Γ(ψ) ◦ Γ(ϕ) and Γ(IdS) = IdΓ(S,U). In
other words, for any U open subset of M, we can see Γ(., U) as a functor from the category of
sheaves to the category of K-modules.

Definition 1.3. Let S be a sheaf. An open set R ⊂ S such that Rm = R ∩ Sm is a submodule of Sm for
each m ∈ M is a subsheaf of S. It is clear that subsheaves of sheaves are again sheaves with the natural
topology and the restriction of the projection.

Let ψ : S → S′ be a sheaf homomorphism. The kernel of ψ is the subset of S mapped into
the 0-section of S′ by ψ, i.e., an U ⊂ S open set is a subset of the kernel of ψ if there exists a
0-section f0 in Γ(S′, U) such that,

U M

S′.

π

ψ|U
f0

The kernel of ψ is, indeed, a subsheaf of S. The subset im(ψ) = ψ(S) ⊂ S′ is a subsheaf which
we call the image subsheaf.

Let R be a subsheaf of S. For each m ∈ M, we denote by Zm the quotient of modules Sm/Rm,
and we take

Z =
⋃

m∈M
Zm. (1.5)

Let τ : S → Z be the natural projection which associates to each element of Sm its coset in
Zm = Sm/Rm for each m ∈ M. We give Z the quotient topology by the function τ, i.e., a set
U ⊂ Z is an open subset if, and only if τ−1(U) is open in S. Therefore, the natural projection
πZ : Z → M which maps each element of Zm to m is a local homeomorphism, being Z a sheaf
over M. Z is called the quotient sheaf of S module R. By that construction, we have that τ : S→ Z

is a sheaf homomorphism. Z.

Let ψ : S→ R be a sheaf homomorphism. Then, we have the usual isomorphism defined by
the natural map S/ker(ψ)→ im(ψ) given by (s + (ker(ψ)|Sm)) 7→ ψ(s) for s ∈ Sm.

1.2 The Presheaf Category

We have already presented sheaves. As we have mentioned, two different ways could be
used to define sheaves. Now we are going to proceed with the second one. For this propose we
need a few previous notions. We will start introducing the category of open subsets of a topological
space, which will be used to define a presheaf.

Definition 1.4. Let X be a topological space. We denote by τX the category such that:

a) Ob(τX)={U ⊂ X| open subset of X} is the set of objects.

b) Mor(τX)={ρU,V ∈ Hom(V, U)|V ⊂ U and ρU,V(x) = x, ∀x ∈ U} is the set of morphisms, just the
usual inclusions.
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1.2 The Presheaf Category

It is straightforward that τX is a category because if V ⊂ U ⊂ W are open subsets we have
that the composition is associative, ρW,U ◦ ρU,V = ρW,V , and ρU,U = IdU . We call τX the category of
open subsets of X.

We are ready to define the presheaf category. Let us start defining the objects and then we
will determine morphisms.

Definition 1.5. Let X be a topological space, τX the category of open subsets of X and C another category.
Then, a presheaf on the category C is a contravariant functor from τX to C

F : τX → C

U 7→ F(U)
(1.6)

Let F and G be presheaves on the category C. We have to define morphisms in order to
have the Category of presheaves on the category C. We define a presheaf homomorphism of F to G as a
natural transformation η of the functors in order to have a category. A natural transformation η

from F to G is a family of morphisms satisfying two conditions:

a) The natural transformation associates to every object U of τX a morphism ηU : F(U)→ G(U)

between objects of C.

b) The morphism ηU defined above must be such that for every morphism ρU,V ∈ Mor(τX) we
have that the following diagram commutes

F(V) F(U)

G(V) G(U).

F(ρU,V)

ηV ηU

G(ρU,V)

Here we are going to talk only about presheaves on the category of K-modules. Therefore,
we can simplify the notation by taking a presheaf P = {SU ; ρU,V} consisting of a K-module SU
for each open subset U ⊂ M and a K-module homomorphism ρU,V for each inclusion U ⊂ V of
open subsets in M, such that ρU,U = Id|U , and such that whenever V ⊂ U ⊂ W, the following
diagram commutes:

SW SV

SU .

ρV,W

ρU,W ρU,V

Let P = {SU ; ρU,V} and P′ = {S′U ; ρ′U,V} be presheaves over M. Therefore, by a presheaf ho-
momorphism between P and P′ we mean a collection {ψU} of K-module homomorphisms
ψU : SU → S′U such that

ρ′U,V ◦ ψV = ψU ◦ ρU,V . (1.7)

Now, we can see an example of a presheaf related with the sheaf of germs of C∞ functions
on M, which we saw above. For each U open set in M, let F(U) be the set of C∞ functions
over U. F(U) is a real vector space with the operations induced by the structure of R. For each
U ⊂ V open subsets, we can consider the morphism ρU,V which restricts into U the functions
over V. Therefore, we have the presheaf {F(U); ρU,V}.

At this moment, we can give the second definition of sheaves. We can consider sheaves on
any category C, not necessarily the K-modules one. After this definition, we will see that both
definitions of sheaves are equivalent in the context where we are.
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1.3 Relation Between Sheaves and Presheaves

Definition 1.6. Let F be a presheaf on X. We say that F is a sheaf if whenever the open set U ⊂ X is
expressed as a union ∪α∈IUα of open sets in X, the following two conditions are satisfied:

(C1) Locality: whenever s, t ∈ F(U) are such that F(ρUα ,U)(s) = F(ρUα ,U)(t) for all α ∈ I then s = t.

(C2) Gluing: whenever there are elements sα ∈ F(Uα) for each α ∈ I such that, for each β ∈ I, there
is a sβ ∈ F(Uβ) that F(ρUα∩Uβ ,Uα)(sα) = F(ρUα∩Uβ ,Uβ

)(sβ), then there exists s ∈ F(U) such that
sα = F(ρUα ,U)(s).

It is the usual way to define sheaves. To do not get confused, we will say that a presheaf
fulfilling the properties C1 and C2 is a complete presheaf. Note that the set of complete presheaves
is a subset of the presheaf category, it is easy to see that this subset forms a category itself.

The presheaf, {F(U); ρU,V}, saw above is an example of a complete presheaf. Note that,
whenever f1 and f2 are C∞ functions over U1 and U2, open sets in M, respectively where
U1 ∩U2 6= ∅. If we have that f1|U1∩U2 = f2|U1∩U2 , there exists a unique function f over U1 ∪U2
such that f |U1 = f1 and f |U2 = f2. Using the existence of f one can prove that {F(U); ρU,V}
fulfills C2, and using the uniqueness of f one can prove that {F(U); ρU,V} fulfills C1. That
example can give an idea to understand properties C1 and C2.

Now, we give a similar example to the last one. Taken an open set U ⊂ M, we consider the
set of differential k-forms on U which we have to denote by Ek(U). Note that this is a real vector
space. Let ρU,V be the map which restricts a k-form on V to a k-form on U. Yielding the presheaf

{Ek(U); ρU,V}. (1.8)

Observe that this presheaf fulfills the properties (C1) and (C2), so it is a complete presheaf. We
will use this presheaf when we talk about the de Rham Cohomology.

1.3 Relation Between Sheaves and Presheaves

In this section, we are going to see that definitions given above are equivalent. From now
on, all sheaves and presheaves are going to be taken in the category of modules, and it is going
not to be necessary to specify the category. We start showing that every sheaf given by the first
definition leads canonically to a presheaf.

1.3.1 The Sheafification Morphism

Given a sheaf S over M we define the function ρU,V : Γ(S, V) → Γ(S, U), where V ⊂ U ⊂ M
are open subsets, as the map which carries the sections of S over V to its restrictions into U.
Associating with each open set U in M the K-module Γ(S, U) and the morphisms ρU,V , where
V ⊂ U, we have a presheaf {Γ(S, U); ρU,V}. In other words, Γ is a contravariant functor, and,
thus, a presheaf.

Conversely, we shall now show that each presheaf canonically determines a sheaf. This
process is called sheafification. In practice, many sheaves will in this way arise naturally from
presheaves. The best example to keep in mind during the following construction is the presheaf
{F(U); ρU,V}; its associated sheaf will be the sheaf of germs of C∞ functions on M.

Let P = {SU ; ρU,V} be a presheaf of K-modules on M. Let m ∈ M, and let S∗m be the disjoint
union of each of the modules SU for which m ∈ U. If we set f ∈ SU equivalent to g ∈ SV if,
and only if there is a neighbourhood W of m whith W ⊂ U ∩V such that ρW,U( f ) = ρW,V(g), we
obtain an equivalence relation on S∗m. We take Sm as the set of cosets of elements of S∗m, which
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1.3 Relation Between Sheaves and Presheaves

will be the stalk of the associated sheaf over m. If m ∈ U, let ρm,U : SU → Sm be the natural
projection, which assigns to each element of SU its equivalence class. This projection is called
the sheafification homomorphism.

Now, we want to give a K-module structure to Sm. In order to do that, let f ∈ SU and g ∈ SV
where m ∈ U ∩V and let s1 = ρm,U( f ) and s2 = ρm,U(g) be their equivalence classes. There exists
a neighborhood W ⊂ U ∩V of m because U and V are open subsets. Define addition in Sm by
setting

s1 + s2 = ρp,W(ρW,U( f ) + ρW,V(g)), (1.9)

and define multiplication by k ∈ K by setting

ks1 = ρp,U(k f ). (1.10)

It is easy to check that these operations are well-defined and give Sm the structure wanted
and the maps ρp,U are all homomorphisms. Sm is known as the direct limit of the sheafification
homomorphism of the modules SU for U containing m. Now let

S =
⋃

m∈M
Sm, (1.11)

and let π : S→ M be the obvious projection such that π(Sm) = m.

The next step is to topologize S by taking for a basis of the topology the collection of subsets
of S of the form

O f = {ρp,U( f )|p ∈ U} (1.12)

for the various f ∈ SU and all open sets U ⊂ M. We want to see that this collection forms, in-
deed, a basis for a topology on S. If s ∈ O f ∩Og, say ρp,U( f ) = ρp,V(g), then there is a neighbour-
hood W of p with W ⊂ U ∩V for which ρW,U( f ) = ρW,V(g). Setting O = {ρp,W(ρW,U( f ))|p ∈W},
we have that s ∈ O ⊂ O f ∩Og is an open subset.

Observe that π is a local homeomorphism because it is a homeomorphism on each O f . So
the last thing we have to check is that addition and multiplication defined above are continuous.
Consider first multiplication by k ∈ K. Let s ∈ S, and let O be an open neighbourhood of ks.
We set s = ρp,U( f ). Let V be a neighbourhood of p contained in π(Ok f ∩O). Then OρV,U( f ) is an
open neighbourhood of s which maps, under multiplication by k, into the open neighbourhood
OρV,U(k f ) ⊂ O of ks. Hence we have the continuity for the multiplication by k. Finally, we show
that the addition is also continuous. We define S ◦ S consisting in all the pairs (s1, s2) ∈ S× S

such that π(s1) = π(s2). Let O f be an open neighbourhood of s1 − s2 = ρp,U( f ), and let
s1 = ρp,V(g) and s2 = ρp,W(h), with p ∈ U, p ∈ V, p ∈ W and f ∈ SU , g ∈ SV , h ∈ SW . Then
there exists an open neighbourhood D of p with D ⊂ U ∩V ∩W such that

ρD,U( f ) = ρD,V(g)− ρD,W(h). (1.13)

It follows that, the open neighbourhood OρD,V(g) ×OρD,W (h) ∩ (S ◦ S) of (s1, s2) maps into O f .
Thus the addition is continuous, being S a sheaf over M with the projection π. We write the
sheaf obtained from the presheaf P as β(P).

We have seen that the construction of presheaves from sheaves is, actually, a covariant functor
which we write as α. We want to see the same thing for the construction of sheaves from
presheaves. We have to check how it transforms the homomorphisms. Let P = {SU ; ρU,V}
and P′ = {S′U ; ρ′U,V} be two presheaves on M and let {ϕU} be a presheaf homomorphism. We
associate to this homomorphism a sheaf homomorphism ϕ : β(P)→ β(P′) such that

ρ′p,U ◦ ϕU = ϕ ◦ ρp,U (1.14)
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1.3 Relation Between Sheaves and Presheaves

for each open set U ⊂ M and each p ∈ U. Moreover, in going in either direction, from homo-
morphisms of sheaves to homomorphisms of presheaves, or vice versa, the composition of two
homomorphisms induces the composition of the corresponding homomorphisms. Therefore, β

is a covariant functor between the category of presheaves and the category of sheaves.

Once seen this, we can also think the sheafification homomorphism, ρp,U , as a contravariant
functor between the category of open subsets and the category of modules. The way we have
constructed ρp,U makes it straightforward that ρp,U seeing as a functor is a complete presheaf.

Having a sheaf S, if we take β
(
α(S)

)
we obtain a sheaf which is canonically isomorphic to S.

Indeed, let ξ ∈ β(α(S)) be the germ at p of some section f of S over an open set U containing p,
f ∈ Γ(S, U); that is, ξ = ρp,U( f ). Then, we can consider the map

ξ = ρp,U( f ) 7→ f (p), (1.15)

which determines a well-defined map β ◦ α : S→ S, which is, in turn, a sheaf isomorphism.

Generally, we do not have an isomorphism between a presheaf P = {SU ; ρU,V} and α(β(P)).
For example, let P = {SU ; ρU,V} where SU is the principal ideal domain K for each U ⊂ M
open subset, and the restrictions ρU,V for U ( V are zero K-module. Then the presheaf β

(
α(S)

)
assigns to each open set U in M the zero K-module.

To have the isomorphism the presheaf has to be complete. Let define a presheaf homo-
morphism from P to α

(
β(P)

)
as follows. For each open subset U ⊂ M and each f ∈ SU we

define:

ΨU, f : U → β(P)

p 7→ ρp,U( f ),
(1.16)

which is a section of β(P) over U, so ΨU, f ∈ Γ
(

β(P), U
)
. We can see Ψ as a presheaf homomor-

phism consisting of the collection {ΨU}, where U ⊂ M is an open subset.

ΨU :SU → Γ
(

β(P), U
)

f 7→ ΨU, f .
(1.17)

To prove that this presheaf homomorphism is an isomorphism, we need to see that each of
the homomorphisms ΨU are isomorphisms. First we prove the injectivity, if f ∈ SU maps to
the 0-section, then there exists a cover {Uα}α∈I of U such that ρUα ,U( f ) = ρUα ,U(0). Therefore,
f = 0 ∈ SU for (C1).

To prove surjectivity, let c be a section of β(P) over U. For each p ∈ U, there is a neighbour-
hood Up of p and an element fp ∈ SUp such that

ρq,Up( fp) = c(q) (1.18)

for all q ∈ Up, due to the construction of β(P). It follows from (C1) that, for each p and q in U,

ρUp∩Uq ,Up( fp) = ρUp∩Uq ,Uq( fq). (1.19)

Thus, according to (C2), there exists f ∈ SU such that fp = ρUp∩U , U( fp) for each p ∈ U. It
follows that ΨU, f is identity to the section c.

1.3.2 Exact Sequences of Sheaves and Presheaves

Definition 1.7. An sequence of sheaves and homomorphisms

. . .
fi−→ Si

fi+1−−→ Si+1
fi+2−−→ Si+2

fi+3−−→ . . . (1.20)

is an exact sequence if ker( fi+1) = im( fi) for each i.

10



1.3 Relation Between Sheaves and Presheaves

Observe that this definition is equivalent to say that for each m ∈ M the induce sequence of
homomorphisms of the stalks over m, namely,

. . .
f̃i−→ (Si)m

f̃i+1−−→ (Si+1)m
f̃i+2−−→ (Si+2)m

f̃i+3−−→ . . . (1.21)

is exact, where f̃i is the restriction fi|Sm . Observe that this is a sequence of K-modules, we have
taken the classical definition of exact sequence in K-modules that are similar to the exactness
for the sequence of sheaves.

Observe that if we have S a sheaf, R a subsheaf of S and Z the quotient sheaf S/R, then the
natural exact sequence of homomorphisms

0→ R→ S→ Z→ 0 (1.22)

is exact, where 0 denotes the constant sheaf over M whose stalk over each point is the trivial
K-module consisting of only one point. Exact sequences of this form, consisting of only five
terms with the first and last being the 0 sheaf, are called short exact sequence.

At this point, we want to define tensor products of sheaves. The faster way to do that is
to consider first tensor products of presheaves due to they are collections of K-modules and
homomorphisms of K-modules. Let P = {SU ; ρU,V} and P′ = {S′U ; ρ′U,V} be two presheaves on
M. Then, their tensor product is the presheaf

P⊗ P′ = {SU ⊗ S′U ; ρU,V ⊗ ρ′U,V}. (1.23)

We can also define tensor products of presheaf homomorphisms. Let {ϕU} : P → Q and
{ϕ′U} : P′ → Q′ be presheaf homomorphisms, where Q and Q′ are presheaves. Then, their
tensor product {ϕU} ⊗ {ϕ′U} is the collection of homomorphisms {ϕU ⊗ ϕ′U} between P⊗ P′

and Q⊗Q′, that is itself a presheaf homomorphism.

If S and T are sheaves of K-modules over M, we define their tensor product as

S⊗ T = β
(
α(S)⊗ α(T)

)
. (1.24)

Note that this makes sense because α(S) and α(T) are presheaves. We define now tensor prod-
ucts of sheave homomorphisms, let ϕ : S → T and φ : S′ → T′ be sheaf homomorphisms,
where S′ and T′ are sheaves over M, and let {ϕU} : α(S) → α(T) and {φU} : α(S′) → α(T′) be
the corresponding homomorphisms on the presheaves of sections. Then, we define the tensor
product ϕ⊗ φ to be the sheaf homomorphism of S⊗ S′ into T⊗ T′ associated with the presheaf
homomorphism

{ϕU} ⊗ {φU} : α(S)⊗ α(S′)→ α(T)⊗ α(T). (1.25)

There is another way to define the tensor product of sheaves, but it is canonically isomorphic
with the seen above. To define the tensor product in this second way, we identify the stalks of
the tensor product of two sheaves with the tensor product of the stalks of the sheaves, note that
they are K-modules

(S⊗ T)m = Sm ⊗ Tm. (1.26)

We define tensor products of two sheaf homomorphisms identifying the sheaf homomorphisms
by its restrictions over the stalks in this sense:

(ϕ⊗ φ)|(S⊗S′)m = ϕ|Sm ⊗ φ|S′m . (1.27)

Indeed, we could proceed in this way, but it would involve a considerable duplication of previ-
ous work, because we should have to prove that S⊗ T = ∪(S⊗ T)m is, in fact, a sheaf and that
ϕ⊗ φ = ∪(ϕ⊗ φ)|(S⊗S′)m is a sheaf homomorphism.

11



1.3 Relation Between Sheaves and Presheaves

Besides that, with the last identifications, the constant sheaf K = M× K has the property

S⊗K ∼= S. (1.28)

We will use this when we talk about cohomology.

Lemma 1.8. Let B be a K-module, and let

0→ A′
g−→ A

f−→ A”→ 0 (1.29)

be a short exact sequence of K-modules. Then the induced sequence

A′ ⊗ B
g⊗IdB−−−→ A⊗ B

f⊗IdB−−−→ A”⊗ B→ 0 (1.30)

is exact, but A′ ⊗ B
g⊗IdB−−−→ A⊗ B is not necessarily injective. If we have that either A” or B is torsion-

free, then the full sequence

0→ A′ ⊗ B
g⊗IdB−−−→ A⊗ B

f⊗IdB−−−→ A”⊗ B→ 0 (1.31)

is exact.

Remember that a K-module X is torsion-free if there is no a ∈ X \ {0} for which there exists
a non-zero element k ∈ K such that kx = 0. We say that a sheaf S is torsion-free if each stalk of S
is a torsion-free K-module. Due to the equivalence between exact sequences of sheaves and the
exact sequences of K-modules of their stalks, we have the analogous lemma on sheaves.

Lemma 1.9. Let T be a sheaf over M and let

0→ S′ → S→ S”→ 0 (1.32)

be a short exact sequence of sheaves over M. Then the induce sequence

S′ ⊗ T → S⊗ T → S”⊗ T → 0 (1.33)

is exact, but S′ ⊗ T → S⊗ T is not necessarily injective. If we have that either S” or T is torsion-free,
then the full sequence

0→ S′ ⊗ T → S⊗ T → S”⊗ T → 0 (1.34)

is exact.

Definition 1.10. A sheaf S over M is said to be fine if for each locally finite open cover {Ui}i∈I of M
there exists, for each i ∈ I, an endomorphism li of S such that:

a) supp
(
li
)
⊂ Ui

b) ∑
i

li = id.

Here, by supp
(
li
)

we mean the support of li, i.e., the closure of the set of points in M for
which li|Sm is not equal to zero. Also observe that b) makes sense because li(s) ∈ π−1(π(s)

)
for

each i and each s ∈ S. We call {li}i∈I a partition of unity subordinate to the cover {Ui}i∈I . Observe
that if S and T are sheaves over M with S fine, then S⊗T is itself a fine sheaf. Indeed, if {li}i∈I is
a partition of unity fo S subordinate to the cover {Ui}i∈I of M, then {li ⊗ Id|T}i∈I is a partition
of unity for S⊗ T.

12
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Theorem 1.11. Let
0→ S′ → S→ S”→ 0 (1.35)

be a short exact sequence of sheaves over M. Then, it gives rise to an exact sequence

0→ Γ(S′)→ Γ(S)→ Γ(S”). (1.36)

However, Γ(S)→ Γ(S”) is not necessarily surjective. If we have that S′ is fine, then the full sequence

0→ Γ(S′)→ Γ(S)→ Γ(S”)→ 0 (1.37)

is exact.

Before seeing the definition, we see an example of the previous short exact sequence where
Γ(S)→ Γ(S”) is not surjective. First of all, note that exactness of (1.35) is a purely local property,
whereas exactness of (1.36) is a global property. Let M be connected and let p1 and p2 be distinct
points on M. Let Sp1, p2 be the “skyscrape” sheaf over M whose stalk is the zero K-module over
each point except over p1 and p2. Observe that the topology on Sp1, p2 is uniquely determined
by the requirement that Sp1, p2 be a sheaf. let K be the constant sheaf with stalk K. There is an
obvious homomorphism of K onto Sp1, p2 , namely, the homomorphism is zero on all stalks of
K except on those over p1 and p2 where it is the identity map. However, the associated map
Γ(K)→ Γ(Sp1, p2) can not be surjective for Γ(K) ∼= K, whereas Γ(Sp1, p2)

∼= K⊕ K.

Proof. Let φ : S′ → S be a surjective sheaf homomorphism, this induces a homomorphism from
the sections of S′ into the sections of S. Let f ∈ Γ(S) be a global section. Due to φ is surjective, for
each m ∈ M there exist an s ∈ S′ such that φ(s) = f (m). Let g : M → S′ be a homomorphism
such that g(m) = s, therefore φ ◦ g = f . First, we see that g is continuous let U ⊂ S′ be an
open set, an let s be in U. We have that f

(
g−1(U)

)
= φ

(
g
(

g−1(U)
))

= φ(U), as φ is a local
homeomorphism we can take V a neighbourhood of s in U such that φ is an homeomorphism
over this open. we have that g−1(V) = f−1(φ(V)) is an open subset. Thus, g is continuous.
Now we want to see that g is a section of S′. π ◦ g = π′ ◦ φ ◦ g = π′ ◦ f = Id|M, where the last
equality is because of f is a section. Therefore, Γ(φ) is surjective.

Let φ : S′ → S and ϕ : S → S” be sheaf homomorphisms such that ker(φ)=im(ϕ). We have
that Γ(φ) ◦ Γ(ϕ) = 0 due to φ ◦ ϕ = 0 so ker

(
Γ(φ)

)
⊃ im

(
Γ(ϕ)

)
. We want to see the inverse

inclusion. Taken f a section of S such that φ( f ) = 0, we have that for each m ∈ M there exists an
s′ ∈ S′ such that ϕ(s′) = f (m). We define the homomorphism g : M → S′ mapping g(m) = s′,
we can see similarly as before that g is a section. Therefore ker(φ)=im(ϕ), and we have the
exactness of the sheaf sequence (1.35).

Let now S be a sheaf, and let ϕ : S → S” be a surjective sheaf homomorphism with fine
kernel R. Now, let t be a global section of S”. We must construct a section s of S such that
ϕ ◦ s = t. By the continuity of ϕ and t, and by the fact that π and π” are local homeomorphisms
there exists a covering {Ui}i∈I of M by open sets and, for each i, a section si of S over Ui such
that

ϕ ◦ si = ti|Ui . (1.38)

Since M is paracompact, we can assume that the cover {Ui}i∈I can be taken as a locally finite
open cover. The difference

sij = si − sj (1.39)

is a section of R over Ui ∩Uj, and on Ui ∩Uj ∩Uk the differences satisfy

sij + sjk = sik. (1.40)
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1.3 Relation Between Sheaves and Presheaves

Let {li}i∈I be a partition of unity for R subordinate of the cover {Ui}i∈I of M. Consider the
section li ◦ sij of R over Ui ∩Uj. Since the support of lj lies in Uj, we can extend the section lj ◦ sij
to be a continuous section of R over Ui by defining it to be zero on points of Ui \ (Uj ∩Ui). Let

s′i = ∑
j

lj ◦ sij. (1.41)

Then s′i is the section of R over Ui, and the difference

s′i − s′j = ∑
k

lk ◦ sik −∑
k

lk ◦ sjk = ∑
k

lk ◦ sij = sij = si − sj (1.42)

over Ui ∩Uj. Thus
sj − s′j = si − s′i (1.43)

on Ui ∩Uj. It follows that if we set s(m) = (si − s′i)(m) for each m ∈ Ui, then s is a well-defined
global section of S such that ϕ ◦ s = t. The proof concludes observing that the image of a fine
sheaf by a sheaf homomorphism is a fine sheaf itself. �

Theorem 1.12. Let
0→ S′ → S→ S”→ 0 (1.44)

be a short exact sequence of sheaves over M, and let T be a sheaf over M. If either T or S′ is fine and
either of both is torsion-free then the full sequence

0→ Γ(S′ ⊗ T)→ Γ(S⊗ T)→ Γ(S”⊗ T)→ 0 (1.45)

is exact.
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Chapter 2

Sheaf Cohomology Theories

In homology theories context, one sees that these can be studied as covariant functors be-
tween the category of topological spaces (or the category of sheaves) and an algebraic category.
In the case of cohomology theories, these can be studied as contravariant functors between the
same categories than homology theories. Moreover, in many cases, cohomology theories are
dual constructions of homology theories, but this fact does not make cohomology ones less
interesting. Also, there are many homological algebra results which are used in homology the-
ories and can be used in the same sense of cohomology theories. In our case, we are going to
study cohomology theories as functors between the category of sheaves over M and the category
of modules.

In this chapter, we assume that the reader is familiarised with some concepts of homological
algebra. We are going to use some lemmas that one shall know to follow the reading. Particular
importance receives snake lemma. Also, basic notions in homotopy and singular homology can
help to a better understanding of this chapter.

Definition 2.1. A sheaf cohomology theory H for M with coefficients in sheaves of K-modules over M
consists of

a) a K-module Hq(M, S) for each sheaf S and for each integer q,

b) a homomorphism Hq(M, S)→ Hq(M, S′) for each sheaf homomorphism S→ S′ and for each integer
q where S and S′ are a sheaves over M,

c) a homomorphism Hq(M, S”)→ Hq+1(M, S′) for each short exact sequence 0→ S′ → S→ S”→ 0
of sheaf over M and for each integer q.

Such that properties (I)-(VI) hold:

(I) Hq(M, S) = 0 for q < 0, and there is an isomorphism H0(M, S) ∼= Γ(S) such that for each
homomorphism S→ S′ the diagram

H0(M, S) Γ(S)

H0(M, S′) Γ(S′)

∼=

∼=

commutes.

(II) Hq(M, S) = 0 for all q > 0 if S is a fine sheaf.
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(III) If 0→ S′ → S→ S”→ 0 is exact, then the following sequence is exact:

· · · → Hq(M, S′)→ Hq(M, S)→ Hq(M, S”)→ Hq+1(M, S′)→ . . . (2.1)

(IV) The identity sheaf homomorphism id : S→ S induces the identity homomorphism id : Hq(M, S)→
Hq(M, S).

(V) If the diagram

S S′

S”

commutes, then for each q so does the diagram

Hq(M, S) Hq(M, S′)

Hq(M, S”) .

(VI) For each homomorphism of short exact sequences of sheaves

0 S′ S S” 0

0 T′ T T” 0

the following diagram commutes:

Hq(M, S”) Hq+1(M, S′)

Hq(M,T”) Hq+1(M,T′).

The module Hq(M, S) is called the qth cohomology module of M with coefficients in the sheaf S

relative to the cohomology theory H.

2.1 Existence of Sheaf Cohomology Theories

Here, we are going to define an important concept which can be used to give rise some
cohomology theories: fine torsion-free resolution of a sheaf. When we talk about de Rham Coho-
mology and singular Cohomology, our first goal will be to find a fine torsion-free resolution of
a constant sheaf. This tool is not only useful in cohomology theories, but also in many algebraic
constructions because it allows studying properties of an algebra concept taking care of other
simpler elements.

Definition 2.2. An exact sequence of sheaves

0→ A
f 0

−→ C0 f 1

−→ C1 f 2

−→ C2 f 3

−→ . . . (2.2)

is called a resolution of the sheaf A. The resolution is called fine (respectively torsion-free) if each of the
sheaves Ci is fine (respectively torsion-free).
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With each resolution of A and each sheaf S we can associate a cochain complex

· · · → 0→ Γ(C0 ⊗ S)→ Γ(C1 ⊗ S)→ Γ(C2 ⊗ S)→ Γ(C3 ⊗ S)→ . . . (2.3)

which we shall denote by Γ(C∗ ⊗ S). For each q > 0 the module of the q-cochains is Γ(Cq ⊗ S),
whereas for q < 0 the module of q-cochains is the zero module. Observe that this cochain
complex does not contain the module Γ(A ⊗ S). The homomorphisms in the sequence (2.3)

are those induced by the homomorphisms Cq ⊗ S
f q+1⊗Id|S−−−−−−→ Cq+1 ⊗ S. Note that the homomor-

phisms f q ⊗ Id|S together with the sheaves Cq ⊗ S make a cochain complex of sheaves due to
( f q+1 ⊗ Id|S) ◦ ( f q ⊗ Id|S) = ( f q+1 ◦ f q)⊗ Id|S = 0. Therefore, the last composition of maps
implies that in

· · · → 0→ C0 ⊗ S→ C1 ⊗ S→ C2 ⊗ S→ C3 ⊗ S→ . . . (2.4)

the image of each homomorphism is contained in the kernel of the next, and this in turn implies
that 2.3 is indeed a cochain complex.

A homomorphism S → S′ when tensored with the indentity homomorphism of the sheaf
Cq, yields a homomorphism Cq ⊗ S → Cq ⊗ S′. This, in turn, induces a homomorphism of the
corresponding cochain complexes and, in this way, it determines a cochain map Γ(C∗ ⊗ S) →
Γ(C∗ ⊗ S′).

We shall now show that each fine torsion-free resolution of the constant sheaf K = M× K
canonically determines a cohomology theory for M with coefficients in sheaves of K-modules
over M. Notice that we have not to see the existence of such resolution, we will see that when
we talk about the de Rham cohomology and the singular cohomology. By the moment, we
assume that a fine torsion-free resolution exists.

In order to obtain a cohomology theory, first of all, we set Hq(M, S) = Hq(Γ(C∗ ⊗ S)) =

ker(Γ( f q ⊗ Id|S))/im(Γ( f q+1⊗ Id|S)) for each q ∈ Z. Keep in mind how the functor Γ acts over
homomorphisms. Also, for each homomorphism S→ S′ and each q we associate the homomor-
phism Hq(M, S) → Hq(M, S′) induced, according to homological algebra, by the cochain map
Γ(C∗ ⊗ S)→ Γ(C∗ ⊗ S′). In addition, each short exact sequence of sheaves

0→ S′ → S→ S′′ → 0 (2.5)

induces, in view that Cq is a fine torsion-free sheaf for each q, the short exact sequence

0→ Γ(C∗ ⊗ S′)→ Γ(C∗ ⊗ S)→ Γ(C∗ ⊗ S′′)→ 0 (2.6)

with which there is associated a homomorphism Hq(Γ(C∗ ⊗ S′′)) → Hq+1(Γ(C∗ ⊗ S′)) via the
snake lemma. This is the homomorphism Hq(M, S′′)→ Hq+1(M, S′) that we associate with the
short exact sequence 0 → S′ → S → S′′ → 0 and the integer q in the definition of cohomology
theories.

Theorem 2.3. Let K be the constant sheaf M× K and let

0→ K→ C0 → C1 → C2 → . . . (2.7)

be a fine torsion-free resolution of K. Then, the modules Hq(M, S) and the morphisms Hq(M, S) →
Hq(M, S′) and Hq(M, S′′) → Hq+1(M, S′) obtained as above, determine a cohomology theory for M
with coefficients in sheaves of K-modules over M.

Proof. Note that the axioms (III), (IV), (V) and (VI) for the definition of cohomology theory
holds immediately using homological algebra. We need to see that these fulfill the properties
(I) and (II). We start with the (II).
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Now let Iq be the kernel of Cq → Cq+1. Then it follows the next commutative diagram where
row sequences and diagonal sequences are exact

0 0 0 0

I0 I2

0 K C0 C1 C2 . . .

0 I1 I3

0 0 0 0

Therefore, due to Cq is a torsion-free sheaf it is Iq because it could be seen as a subsheaf of Cq.
It follows that for any sheaf S the sequence

0→ Iq ⊗ S→ Cq ⊗ S→ Iq+1 ⊗ S→ 0 (2.8)

is exact. Moreover, we obtain the exact sequence

0→ Γ(Iq ⊗ S)→ Γ(Cq ⊗ S)→ Γ(Iq+1 ⊗ S) (2.9)

The homomorphism Γ(Cq ⊗ S)
γq+1−−→ Γ(Cq+1 ⊗ S) is the composition Γ(Cq ⊗ S) → Γ(Iq ⊗ S) →

Γ(Cq+1 ⊗ S). We obtein from the large diagram that the homomorphism Γ(Iq ⊗ S)→ Γ(Cq ⊗ S)

is an injection. Then, ker(γ) is the submodule Γ(Iq ⊗ S) of Γ(Cq ⊗ S) for each q > 0. Thus,

Hq(M, S) = Hq(Γ(C∗ ⊗ S)) ∼= Γ(Iq ⊗ S)/Im(γq). (2.10)

Now, if S happens to be a fine sheaf, the full sequence

0→ Γ(Iq ⊗ S)→ Γ(Cq ⊗ S)→ Γ(Iq+1 ⊗ S)→ 0 (2.11)

is exact, and we have that

Hq(M, S) ∼= Γ(Iq ⊗ S)/Im(γq) = 0 for q > 0. (2.12)

Thus axiom (II) is satisfied.

To see that axiom (I) is fulfilled, note that we have that Hq(M, S) = 0 for q < 0 due to the
chain is right-bounded by zero from q = 0. For q = 0 the isomorphism K→ I0 ⊂ C0 induces an
isomorphism

S ∼= K⊗ S
∼=−→ I0 ⊗ S ⊂ C0 ⊗ S (2.13)

for any sheaf S. Therefore, we have the isomorphism

Γ(S)
∼=−→ Γ(K⊗ S)

∼=−→ Γ(I0 ⊗ S) (2.14)

which clearly satisfies

H0(M, S) Γ(S)

H0(M, S′) Γ(S′)

∼=

∼=

for each homomorphism S→ S′. Thus axiom (I) is satisfied. �
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2.2 Homomorphisms Between Sheaf Cohomology Theories

2.2 Homomorphisms Between Sheaf Cohomology Theories

Now, we will define homomorphisms between cohomology theories. With that, we will have
the category of sheaf cohomology theories on M with coefficients in sheaves of K-modules over
M. Note that, due to cohomology theories could be studied as contravariant functors, these
homomorphisms have to be natural transformations, with a few more properties, in order to
have a new category. In other words, natural transformations provide a way of transforming
one functor into another while respecting the internal structure of categories involved. Hence, a
natural transformation can be considered to be a “morphism of functors”. Indeed, this intuition
can be formalized to define the so-called functor categories.

Definition 2.4. Let H and H̃ be two sheaf cohomology theories on M with coefficients in sheaves of
K-modules over M. A homomorphism of the cohomology theory H to the theory H̃ is a collection of
K-module homomorphisms

Hq(M, S)→ H̃q(M, S) (2.15)

for each sheaf S and for each integer q, such that the following conditions hold:

(I) for q = 0, the diagram

H0(M, S) Γ(S)

H̃0(M, S′) Γ(S′)

∼=

∼=

commutes.

(II) For each homomorphism S→ T and each integer q the diagram

Hq(M, S) Hq(M,T)

H̃q(M, S) H̃q(M,T).

commutes.

(III) For each short exact sequence of sheaves 0 → S′ → S → S” → 0 the following diagram commute
for each q integer:

Hq(M, S”) Hq+1(M, S′)

H̃q(M, S”) H̃q+1(M, S′)

An isomorphism of cohomology theories is a homomorphism of cohomology theories in which
each of the K-module homomorphism Hq(M, S)→ H̃q(M, S) is an isomorphism.

We need to introduce the notion of sheaf of germs of discontinuous sections of S to prove the
next theorem. Let S be a sheaf over M. By a discontinuous section of S over the open subset
U ⊂ M we mean any map f : U → S, not necessarily continuous, such that π ◦ f = Id. The
set of discontinuous sections of S has a K-module structure built exactly as we constructed the
K-module structure over the continuous sections of S. Therefore, we can assign to each open
subset U ⊂ M the K-module of all the discontinuous sections of S over U hence we have a
presheaf where the restriction maps are the trivial ones.

We call to the associated sheaf S0 of the previous presheaf the sheaf of germs of discontinuous
sections of S. The most important property of S0 is that, whenever M were a differential manifold,
it would be a fine sheaf (actually it would be enough that M were paracompact, Hausdorff and
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2.2 Homomorphisms Between Sheaf Cohomology Theories

fulfill the second axiom of countability). Then, it is an incredibly useful sheaf, because each
sheaf could be canonically associated with another being fine. For let {Ui} be a locally finite
open cover of M. Choose a refinement {Vi} such that Vi ⊂ Ui for each i, we can do this
due to the properties of M mentioned above. Then, associate with each point in M a set Vi
containing the point, and then for each i define a function ϕi on M to have the value 1 at all
points associated with Vi and to have the value 0 elsewhere. Therefore, supp(ϕi) ⊂ Ui and
∑ ϕi = Id. Now, we want endomorphisms of the presheaf of discontinuous sections of S. We
associate with each ϕi a homomorphism l̃i such that

l̃i(s)(m) = ϕi(m)s(m), (2.16)

for each discontinuous section s of S over an open subset U ⊂ M and each m ∈ U. Note that we
can do this since we do not need ϕ to be continuous. The presheaf endomorphisms l̃i induce
endomorphisms li of the sheaf S0. It is straightforward that {li} forms a partition of unity over
S0 subordinated to the locally finite cover {Ui} of M. Thus S0 is fine.

Finally, observe that there is a natural injection of S into S0, due to each element of the stalk
Sm is the value at m of a continuous section f of S defined on some neighbourhood of m. So,
we map f (m) to the germ of f at m in S0. Let S be the quotient sheaf S0/S, then for each sheaf
S we have constructed a short exact sequence

0→ S→ S0 → S→ 0 (2.17)

in which the middle sheaf is fine.

Theorem 2.5. Let H and H̃ be cohomology theories on M with coefficients in sheaves of K-modules over
M. Then there exists a unique homomorphism of H to H̃.

Proof. It is more useful to prove first the uniqueness and then the existence. Suppose that we
have a homomorphism of H to H̃, and let S be a sheaf. Applying the homomorphism to the
short exact sequence (2.17), we have the commutative diagram for q = 1

Γ(S0) Γ(S) H1(M, S) 0

Γ(S0) Γ(S) H̃1(M, S) 0,
Id Id (2.18)

and for each q > 1 we have a commutative diagram

0 Hq−1(M, S) Hq(M, S) 0

0 H̃q−1(M, S) H̃q(M, S) 0.

(2.19)

Recall that S0 is a fine sheaf, so H̃q(M, S0) = 0 for each q ≥ 1. Note that the rows of the previous
diagrams are exact. Now uniqueness of the homomorphism follows for q = 0 from the axiom
(I) for the definition (2.4); follows for q = 1 from the diagram (2.18) and follows inductively for
q > 1 from the diagrams (2.19).

At this point, we see the existence of a homomorphism between the two cohomology the-
ories. We define the homomorphism for q = 0 by the axiom (I) for the definition (2.4), and
it follows immediately that the property (III) for the definition (2.4) is satisfied for q = 0. We
define the homomorphism (I) in the definition (2.4) by (2.18) for q = 1, and inductively for q > 1
by (2.19). To prove that this indeed defines a homomorphism of H to H̃, it remains to show that
def 2.4(III) holds for q > 0 and that the property (II) of the definition (2.49 holds for all q.
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2.2 Homomorphisms Between Sheaf Cohomology Theories

Let S → T be a sheaf homomorphism where T is a sheaf over M. We use two copies of the
diagram (2.18) to make the following diagram

Γ(S0) Γ(S) H1(M, S) 0

Γ(T0) Γ(T) H1(M,T) 0

Γ(S0) Γ(S) H̃1(M, S) 0

Γ(T0) Γ(T) H̃1(M,T) 0

(2.20)

In the lattice, commutative follows straightforwardly from the commutativity of the two left
faces.

We can build an analogous diagram of the previous one (2.20) from the (2.19) diagrams.
With these diagrams we have that the axiom (II) of the definition (2.4) holds.

We want to see that (III) in the definition (2.4) holds. Suppose that we have a short exact
sequence

0→ R→ S→ T → 0 (2.21)

where S, R and T are sheaves. Let R0 and S0 be the sheaves of germs of discontinuous sections of
R and S respectively, keep in mind that these are fine. Having the injection R→ S we can map R

into S0 by the composition R→ S→ S0 which is injective. Let P and R be the quotient sheaves
S0/R and R0/R respectively. Then, there are uniquely determined homomorphisms T → P and
R → P. The first one holds due to the injection S ↪→ S0 and the isomorphism S ∼= T/R. We
get the homomorphism R → P from the injection R ↪→ S0. Therefore the following diagram
commutes, in which the rows are exact:

0 R S T 0

0 R S0 P 0

0 R R0 R 0

Id

Id
(2.22)

It follows from cohomology axioms that there are commutative diagrams

0 Γ(R) Γ(S) Γ(T) H1(M,R) . . .

0 Γ(R) Γ(S0) Γ(P) H1(M,R) 0

0 Γ(R) Γ(R0) Γ(R) H1(M,R) 0

Id Id
ϕ1 F1

Id
ϕ2 F2

Id

(2.23)

and, for q > 0,

. . . Hq(M, S) Hq(M,T) Hq+1(M,R) . . .

0 Hq(M,P) Hq+1(M,R) 0

0 Hq(M,R) Hq+1(M,R) 0

Id
∼=

∼=
∼= Id

(2.24)
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2.2 Homomorphisms Between Sheaf Cohomology Theories

In both diagrams rows are exact. Therefore, from the diagram (2.23) follows that the homomor-
phism H0(M,T)→ H1(M,R) is the composition

H0(M,T)
∼=−→ Γ(T)→ Γ(P) π̃−→ Γ(P)/Im(ϕ1)

∼=←− Γ(R)/Im(ϕ2)
∼=−→ H1(M,R), (2.25)

where π̃ is the projection into the quotient sheaf. The second isomorphism is obtained from
the commutativity of the diagram and the third isomorphism holds from the exactness of the
exact sequence 0 → ker(Γ(R)) → Γ(R) → H1(M,R) → 0. We see with more detail the second
isomorphism: let p be an element of Since F1 and F2 are surjectives, there exists an element
r ∈ Γ(R) such that F2(r) = F1(p). We can consider that r = r + a, where r ∈ Γ(R) and a ∈ ϕ(R0)

since the third row is exact. Therefore F2(r + a) = F2(r). Given γ : Γ(R) → Γ(P), the map
in the diagram, we take the element p− γ(r) ∈ Γ(P) which is mapped into F1(p− γ(r)) = 0
because of the diagram commutes. So, there exists an s ∈ Γ(S0) such that ϕ1(s) = p− γ(r) and
p− ϕ(s) = γ(r + a). Here holds the surjectivity. The injectivity can be proved in an analogous
way. Finally, the isomophism hols due to Γ(P)/Im(ϕ1) ∼= Γ(P)/Ker(F1) ∼= Γ(R)/Im(F2) ∼=
Γ(R)/Im(ϕ2).

It follows from (2.24) that for each q > 0 the homomorphism Hq(M,T)→ Hq+1(M,R) is the
composition

Hq(M,T)→ Hq(M,P)
∼=←− Hq(M,R)

∼=−→ Hq+1(M,R), (2.26)

which holds directly from the diagram.

From (2.25) we obtain the diagram

H0(M,T) Γ(T) Γ(P)/Im(ϕ1) Γ(R)/Im(ϕ2 H1(M,R)

H̃0(M,T) Γ(T) Γ(P)/Im(ϕ1) Γ(R)/Im(ϕ2) H̃1(M,R)

∼=

Id Id

∼=
∼=

Id
∼=

∼=
∼=

(2.27)

in which the first and last squares commute by the definitions of the K-module homomorphisms
H0(M,T) → H̃0(M,T) and H1(M,R) → H̃1(M,R), and the middle two squares trivially com-
mutes. Thus the property (III) in the definition (2.4) is proved for q = 0. From (2.26) and the
corresponding sequence for the H̃ theory we obtain the diagrams

Hq(M,T) Hq(M,P) Hq(M,R) Hq+1(M,R)

H̃q(M,T) H̃q(M,P) H̃q(M,R) H̃q+1(M,R)

∼=
∼=

∼=
∼=

(2.28)

in which the first two squares commutes by the axiom (III) for the definition (2.4), and the last
square commutes by definition of the homomorphism Hq+1(M,R) → H̃q+1(M,R). Thus (III)
follows for q > 0, and the proof of the Theorem is complete. �

Corollary 2.6. Any two cohomology theories on M with coefficients in sheaves of K-modules over M are
uniquely isomorphic.

Proof. We have a unique homomorphism between H and H̃. By the Theorem, there must also
exist a homomorphism H̃ → H. Their composition H → H̃ → H, must be unique. But we have

another endomorphism H Id−→ H, so they have to be the same. �

This incredible Theorem says that the cohomology depends only on the topology of the
space but not on the others structures space has, as the differentiable one.
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Chapter 3

The De Rham Theorem

Having told about cohomology theories, now we are ready to study two of them, singular
cohomology and de Rham cohomology. Even though we have seen that they are isomorphic,
we will give an explicit isomorphism between them. Furthermore, we can define two different
kinds of singular cohomologies: continuous and differential one. We call singular cohomology
the continuous one only, we will use singular differential cohomology for the differential one.

In this chapter, we also define integration of forms over simpleces, which is necessary to
build the de Rham cohomology. One can notice that there is no way to define integration of a
function in a coordinate-independent way on a smooth manifold. Differential forms turn out
to have just the right properties to defining integrals intrinsically. On the other hand, we are
going to prove a version of Stokes’ theorem with forms and simplices. It is a generalisation of
the fundamental theorem of calculus, as well as of the three great classical theorems of vector
analysis: Green’s theorem for vector fields in the plane; the divergence theorem for vector fields
in the space; and (the classical version of) Stokes’ theorem for surface integrals in R.

3.1 The Singular Cohomology

Giving a view about what is to come, singular cohomology is essentially a contravariant
version of singular homology. It does not give us more new information about topological
spaces, but information is organized differently, which is much more appropriate for some
applications. Indeed, there is a way of adjoining two cocycles of degree p and q to form a
composite cocycle of degree p + q, making singular cohomology into an algebra structure. The
application defined in this way is called the cup product, but we are not going to study it in this
text.

From now on, we are going to take K = R; it is not strictly necessary for singular cohomol-
ogy, where we only need K to be an arbitrary Principal Ideal Domain. We also need to introduce
a couple of concepts. For each p ≥ 1 we take the set

∆p =

{
(a1, . . . , ap) ∈ Rp |

p

∑
i=1

ai ≤ 1 and each ai ≥ 0

}
. (3.1)

We call ∆p as standard p-simplex in Rp, taking the point 0 for ∆0.

A continuous singular p-simplex σ in U, where U ⊂ M is an open subset, is a continuous
map σ : ∆p → U. Usual, we are going to call them as a singular p-simplex in U. We define
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3.1 The Singular Cohomology

Figure 3.1: Standard p-simplices for p = 0, 1, 2 and 3

differential singular p-simplex σ in U as singular p-simplex in U which can be extended to be a C∞

(differential) map of a neighbourhood of ∆p in Rp into U. We can study both in the same way
except for a few particular cases, so we are going to treat them equally and, should we need
any explicit details, will be mentioned.

Figure 3.2: Singular 3-simplex

We shall let Sp(U) denote the free abelian group generated by the singular p-simplices in U.
Elements of Sp(U) are formal linear combinations with integer coefficients:

c =
n

∑
i=0

λiσi where σi are p-simplex in U and λi ∈N . (3.2)

Now we shall define a homomorphism Sp(U) → Sp−1(U) which reflects the properties of
an oriented boundary algebraically. Since Sp(U) is a free abelian group on the set of singular
p-simplices σ : ∆p → U, it suffices to define a homomrphism on all singular p-simplices σ

and then extend by linearity into Sp(U). A moment’s thought suggests that boundary operator
should be determined somehow by restricting σ to the "faces" of standard simplex and then
summing with appropriate signs to handle the issue of orientation. In order to get this right, we
define what should be understood by faces of a simplex. For each p ≥ 0 we define the collecion
of maps Kp

i : ∆p → ∆p+1 for 0 ≤ i ≤ p + 1 as follows

for p = 0, K0
0(0) = 1 and k0

1(0) = 0;

for p ≥ 1,


Kp

0 (a1, . . . , ap) =

(
1−

p

∑
i=1

ai, a1, . . . , ap

)
Kp

i (a1, . . . , ap) = (a1, . . . , ai−1, 0, ai, . . . , ap), 1 ≤ i ≤ p + 1.

If σ is a p-simplex in M with p ≥ 1, we difine its ith face, 0 ≤ i ≤ p, to be the (p− 1)-simplex

σi = σ ◦ Kp−1
i (3.3)

and, finally, we define the boundary operator as the homomorpism Sp(U)→ Sp−1(U) such that

∂σ =
p

∑
i=0

(−1)iσi. (3.4)
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3.1 The Singular Cohomology

Observe that this map is well defined, that is ∂σ ∈ Sp−1(U). At this point one can notice that it
is better to write ∂p but, usually, there is no confusion written out ∂.

Figure 3.3: The boundary operator

We claim that ∂ ◦ ∂ = 0. To proof it, we see ∂ ◦ ∂(σ) = 0 for any p-symplex σ, and by linearity
it holds for any p-chain. Let us calculate compositions Kp+1

i ◦ Kp
j . For p = 0 we have four cases

i = j = 0 0 7→ K1
0
(
K0

0(0)
)
= (1, 0)

i = 1, j = 0 0 7→ K1
1
(
K0

0(0)
)
= (0, 0)

i = 0, j = 1 0 7→ K1
0
(
K0

1(0)
)
= (0, 1)

i = j = 1 0 7→ K1
1
(
K0

1(0)
)
= (0, 1)

For p ≥ 1,

1 ≤ i < j (a1, . . . , ap) 7→ (a1, . . . , ai−1, 0, ai, . . . , aj−1, aj, 0, . . . , ap)

1 ≤ i = j (a1, . . . , ap) 7→ (a1, . . . , ai−1, 0, 0, ai, . . . , ap)

0 = i < j (a1, . . . , ap) 7→
(

1−
p

∑
i=1

ai, a1, . . . , aj−1, 0, aj, . . . , ap

)

0 = i = j (a1, . . . , ap) 7→
(

0, 1−
p

∑
i=1

ai, a1, . . . , ap

)
.

Thinking for a moment, one can note that in all these cases we have Kp+1
i ◦ Kp

j = Kp+1
j+1 ◦ Kp

i .

Therefore, ∂
(
∂(σ)

)
= ∑j(−1)j ∑i(−1)iσ ◦ Kp−1

i ◦ Kp−2
j = ∑j(−1)j ∑i(−1)iσ ◦ Kp−1

j+1 ◦ Kp−2
i = 0.

So, ∂ ◦ ∂ = 0.

Let Sp(U, K) be the K-module Hom(Sp(U), K). Note that an element f in Sp(U, K) is just a
function which assigns to each singular p-simplex in U an element of K. Such an f is called a
singular p-cochain on U. Scalar multiplication and addiction in these modules are defined by

(k f )(σ) = k( f (σ))

( f + g)(σ) = f (σ) + g(σ),
(3.5)

and extened into homomorphisms of Sp(U) by linearity.

If V ⊂ U ⊂ M are open subsets, we can define restriction maps setting

ρV,U : Sp(U, K)→ Sp(V, K) (3.6)

which are homomorphisms that assign each element in f ∈ Sp(U, K) with its restriction into
singular p-simplices which lie in V. Then, we have presheaves on M called the presheaves of
singular p-cochains

{Sp(U, K); ρV,U} (3.7)
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3.1 The Singular Cohomology

for each p ∈ N. Observe that these presheaves do not fulfil (C1) but (C2) for p ≥ 1. Here we
make a distintion to denote presheaves of differential singular p-cochains by {Sp

∞(U, K); ρV,U}.
As we have seen, there are sheaves associated by the sheafification homomorphism to these
presheaves that we write as Sp(M, K) and we call the sheaves of germs of singular p-cochains.

As in the case of Sp(U), for each p ≥ 0 we can define a coboundary homomorphism in
Sp(U, K)

d : Sp(U, K)→ Sp+1(U, K) (3.8)

defined d( f ) for each f ∈ Sp(U, K) by

d f (σ) = f (∂σ) (3.9)

for each σ a p + 1-simplex on U, and extend linearly. Neither we write indices dp in this ho-
momorphism due to there is not any confusion. Property ∂ ◦ ∂ = 0 implies that d ◦ d = 0.
Futhermore, the fact that d commutes with restrictions ρU,V yields d as a presheaf homomor-
phism

{Sp(U, K); ρV,U}
d−→ {Sp+1(U, K); ρV,U}. (3.10)

Using this two properties, d makes

· · · → 0→ S0(U, K) d−→ S1(U, K) d−→ S2(U, K) d−→ S3(U, K) d−→ . . . (3.11)

into a cochain complex denoted by S∗(U, K).

Coboundary presheaf homomorphisms give rise to sheaf homomorphisms between sheaves
of germs of singular p-cochains, d is retained to denote it:

Sp(M, K) d−→ Sp+1(M, K). (3.12)

Therefore, we have a cochain complex of sheaves similar to the previous one. We can also add a
left-term to this complex. One can note that S0(M, K) is simple the sheaf of germs of functions
on M with values in K. In this way we can inject canonically the constant sheaf K = K ⊗ M
into S0(M, K) by sending k ∈ Km to the germ at m of the functions on M with constant value k.
Thus, we can write this extended sequence

0→ K→ S0(M, K)→ S1(M, K)→ S2(M, K)→ S3(M, K)→ . . . (3.13)

Also, an analogous sequence can be written in same way replacing Sp(M, K) by S
p
∞(M, K). In

both, we have a fine torsion-free resolution of the constant sheaf K. That the sheaves Sp(M, K)
are torsion-free holds trivially due to K = R (same happens when K is a principal ideal domain).
A partition of unity in Sp(M, K) for each locally finite open cover of M can be found to see
sheaves Sp(M, K) are fine. Let {Ui} be a locally finite open cover of M and take a partition of
unity {ϕi} in M subordinate to this cover, in which the functions take values 0 or 1 only. For
each U ⊂ M open subset and each p ≥ 0 we define the endomorphisms of presheaves l̃i in
Sp(U, K) wich act for each f ∈ Sp(U, K) and σ p-simplex by setting

l̃i( f )(σ) = ϕi(σ(0)) f (σ), (3.14)

and we extend l̃i linearly. As we have said these are endomorphisms of presheaves due to
l̃,i commutes trivially with the restrictions maps. Let li : Sp(M, K) → Sp(M, K) be the en-
domorphism of sheaves associated with the previous endomorphism of presheves. It follows
straightforward that supp(li) ⊂ Ui and that ∑ li = Id, so we have a partition of unity. Now we
want to see that the sequence is exact. Observe that im(d) ⊂ Ker(d) due to d ◦ d = 0, so we only
need to see the other inclusion. As we are looking for this property in the sheaves Sp(M, K) note
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that we can prove this over Sp(U, K) with U a "sufficiently small" open subset of M and, by the
sheafification homomorphism, this holds for the sheaves Sp(M, K). Here we shall make use a
property of the differential manifolds (or topological manifolds in general). It suffices to prove
this for an open set of Rn, where n is the dimension of the manifold, and using pull-backs of
the chart morphisms we can induce it for M. We take U as the open unit ball in Rn, and we
want to prove that: if d f = 0 for f ∈ Sp(M, K), there exists a g ∈ Sp−1(M, K) such that dg = f .
It follows if we can find a homotopy operator for each p ≥ 0

hp : Sp(U, K)→ Sp−1(U, K) (3.15)

such that
d ◦ hp + hp+1 ◦ d = Id, (3.16)

therefore, if d f = 0 we have that d ◦ hp( f ) = d ◦ hp( f ) + hp−1 ◦ d( f ) = f and we can take
g = hp( f ). We can define hp acting into f ∈ Sp(U, K) as follows

hp( f )(σ) = f
(
h̃p(σ)

)
, (3.17)

for each σ ∈ Sp(U). Hence, we only need to define functions h̃p : Sp−1(U)→ Sp(U). Note that,
if it is defined in the way that Id = ∂ ◦ h̃p+1 + h̃p ◦ ∂ then (3.16) holds due to the definition of
coboundary operators. At this point, there are different paths to define h̃p for p-simplex and
for p-diferential simplex. We are only going to see this construction for p-differential simplex
because we can use the same functions to prove the case of p-simplex, but we shall not use
opposite affirmation. First, let ϕ be the real-valued C∞ function on the real line:

f (t) =

{
e−1/t For t > 0

0 For t ≤ 0
and ϕ(t) =

f (t)
f (t) + f (1− t)

the most important property of this function is that it takes values between 0 and 1, and has
value 1 for t ≥ 1 and the value 0 for t ≤ 0.

We define the functions h̃p as h̃p(σ)(0) = 0 and for (a1, . . . , ap) 6= (0, . . . , 0) by

h̃1(σ)(a1) =a1σ(0),

h̃p(σ)(a1, . . . , ap) =ϕ

(
p

∑
i=1

ai

)
σ

(
a2

∑ ai
, . . . ,

an

∑ ai

)
.

(3.18)

Geometrically, h̃p(σ) is the cone in U obtained by joining σ radially to the origin:

Figure 3.4: Geometry representation of h̃2

If σ is a differentiable p-simplex then h̃p(σ) is defined on Rp+1. Moreover, h̃p(σ) are differ-
ential homomorphisms on Rp+1, the points where problems arise are those for which ∑ ai = 0.
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But, since the homomorphism ϕ(t) and all of its derivatives vanish faster than any polyno-
mial in t as t → 0, and since σ and each of its derivative is bounded on Rp−1, it follows that
all derivatives of h̃p(σ) of all orders exist and are continuous, and are zero in points where
∑ ai = 0. These functions fulfill the properties that we wanted. Finally, observe also that h̃p(σ)

is continuous for each σ p-simplex, therefore we can use it to prove the case of p-simplex.

h̃p extends to a homomorphism Sp−1(U) → Sp(U). It follows from the definition of bound-
ary operator ∂ that

id = ∂ ◦ h̃p+1 + h̃p ◦ ∂ (3.19)

on Sp(U) for p ≥ 1. The case in which p = 1 turns out that

σ =
(
h̃2(σ)

)2 −
(
h̃2(σ)

)1
+
(
h̃2(σ)

)0
+ h̃1(σ

0)− h̃1(σ
1), (3.20)

which is easy to prove. Other cases are left for the reader.

Figure 3.5: Details of application of h̃p over a 1-simplex

These complete the proof that the sequence is fine torsion-free resolution of the constant
sheaf K. Then, we have cohomology theories for continuous and the differential cases that we
set

Hq(M, S) =Hq(Γ(S∗(M, K)⊗ S)),

Hq
∞(M, S) =Hq(Γ(S∗∞(M, K)⊗ S)).

These theories are uniquely isomorphic.

Let G be a K-module. Let Sp(U, G) be the K-module consisting of functions which assign to
each singular p-simplex in U an element of G. We may replace K by G and K by the constant
sheaf G = G × M in the construction that we have done. Our next goal is to see that classical
singular cohomology groups of M with coefficients in K-module G are canonically isomorphic with
sheaf cohomology modules Hq(M,G). Remember that classical singular cohomology groups of M
are dual of classical singular homology groups of M that are defined in continuous and differential
cases by:

Hq
∆(M; G) =Hq(S∗(M, G)

)
,

Hq
∆∞(M; G) =Hq(S∗∞(M, G)

)
,

(3.21)

where Hq(S∗(M, G)
)

and Hq(S∗∞(M, G)
)

are the q cohomology module of the

· · · → 0→ S0(M, G)
d−→ S1(M, G)

d−→ S2(M, G)
d−→ S3(M, G)

d−→ . . . , (3.22)

and
· · · → 0→ S0

∞(M, G)
d−→ S1

∞(M, G)
d−→ S2

∞(M, G)
d−→ S3

∞(M, G)
d−→ . . . (3.23)

respectively. We shall show that classical cohomology groups are canonically isomorphic to the
cohomology modules Hq(M,G). In order to do that, we see first a proposition.
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3.1 The Singular Cohomology

Proposition 3.1. Let {SU ; ρU,V} be a presheaf on M satisfying the property (C2) and let S be the
associated sheaf of germs. Let

(SM)0 = {s ∈ SM | ρp,M(s) = 0 ∀p ∈ M}. (3.24)

Then the sequence
0→ (SM)0 → SM

γ−→ Γ(S)→ 0 (3.25)

is exact. Where γ is the homomorphism which sends s ∈ S to the global section m 7→ ρm,M(s)

Proof. Exactness of the sequence at SM is the result of the definition of (SM)0. Thus, we need
only to prove that γ is surjective. Let t ∈ Γ(S) be a global section. Then, there exists a locally
finite open cover {Uα} of M, and there are elements sα ∈ SUα such that

γ(sα) = t|Uα . (3.26)

Let {Vα} be a refinement such that Vα ⊂ Uα. Let Im be the collection of all those indices α

for which m ∈ Vα, note that Im is finite. Choose a neighborhood Wm of m such that

(a) Wm ∩Vβ = φ if β 6∈ Im,

(b) Wm ⊂
⋃

α∈Im Uα,

(c) ρWm ,Uα(sα) = ρWm ,U
α′
(sα′) if α, α′ ∈ Im.

Let sm ∈ SWm be the common image of the elements in (c). For all n and m in M we take
p ∈Wm ∩Wn. Then, it follows form (a) that Ip ⊂ Im ∩ In. So let α ∈ Ip, and according to (c),

sm = ρWm ,Uα(sα) and sn = ρWn ,Uα(sα), (3.27)

so that
ρWm∩Wn ,Wm(sm) = ρWm∩Wn ,Uα(sα) = ρWm∩Wn ,Wn(sn). (3.28)

which proves
ρWm∩Wn ,Wm(sm) = ρWm∩Wn ,Wn(sn). (3.29)

Therefore by the property (C2), there exists an element s ∈ SM such that

ρWm ,M(s) = sm. (3.30)

and it follows that γ(s) = t. �

In the case of singular presheaves, we have that

0→ S∗0(M, G)→ S∗(M, G)→ Γ
(
S∗(M, G)

)
→ 0 (3.31)

is a short exact sequence of cochain complexes. Thus, if we prove that

Hp((S∗0(M, G)
)
= 0 for all q, (3.32)

it follows from the long exact sequence associated with the previous one that there are canonical
isomorphisms

Hq(S∗(M, G)
) ∼=Hq(Γ(S∗(M, G)

))
,

Hq(S∗∞(M, G)
) ∼=Hq(Γ(S∗∞(M, G)

))
.

(3.33)
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3.2 The Stokes’ Theorem and the de Rham Cohomology

To proof (3.32), observe that this is trivialy for q < 0. Module S0
0(M, G) is also zero, since

the presheaf {S0(U, G); ρU,V} is complete. Thus H0(S∗0(M, G)) = 0. To see that for q ≥ 1
we use “U -small” singular p-simpleces. Remember that, to define these simplices we have to take
U = {Ui} an arbitrary open cover of M. So U -small singular p-simplices are those whose ranges
lie in elements of U , therefore we can define singular cochain with values in G defined only on
U -small singular p-simplices Sp

U (M, G) moreover, we have the cochain complex S∗U (M, G).

With these definitions, we have that Hq(S∗U (M, G)) ∼= Hq(S∗(M, G)), this proof is as identity
as in the case of homology groups. There is, also, a restriction homomorphism jU : Sp(M, G)→
Sp
U (M, G) which yield a surjective cochain map

jU : S∗(M, G)→ S∗U (M, G). (3.34)

The kernel of the homomorphism jU forms a cochain complex K∗U such that the sequence of
cochain complexes

0→ K∗U → S∗(M, G)→ S∗U (M, G)→ 0 (3.35)

is exact. Hence Hq(K∗U ) = 0 for all q, due to we have Hq(S∗U (M, G)) ∼= Hq(S∗(M, G)). So,
let q ≥ 1, and let f be a cocycle in Sq

0(M, G), that is, d f = 0. Then, by the definition of
Sq

0(M, G), there exists an open cover U of M consisting of sufficiently small open sets so that
g ∈ Kq−1

U ⊂ Sq−1
0 (M, G) and dg = f . An, therefore, Hq(S∗0(M, G)

)
⊂ Hq(K∗U ) = 0.

3.2 The Stokes’ Theorem and the de Rham Cohomology

A smooth n-form ω is called closed if the differential cancels it dω. Alternatively, a n-form
ω is called exact if there exists an (n− 1)-form η such that dη = ω. In this way, all the exact
forms are, in turn, closed. In some sense, de Rham cohomology groups make this dependence
quantitative, since they are defining as the set of exact forms module close forms. In other
words, these groups formalize the question of which close forms are exact. The final answer is
given by the de Rham theorem where it is said that the existence of closed forms is connected
with topological properties of the manifold.

In this section, we are going to define de Rham cohomology and specify the homomorphism
between de Rham cohomology and singular one. In order to do that, we need to set some
concepts that we shall use after. Among them, we start defining the integration of p-forms over
differentiable singular p-chains in n-dimensional manifolds. In the next Chapter, we will define
a more general way to integrate functions over manifolds.

We start defining integration of k-forms in Rn. Let x1. . . . , xn denote the conical coordinate
system on Rn. Let ω be an n-form on an open set D ⊂ Rn. Then there is a unique determined
function f on D such that ω = f dxi1 ∧ · · · ∧ dxin . Let A ⊂ D. We define∫

A
ω =

∫
A

f dxi1 . . . dxin ,

provided that the latter exists.

Here we need to recall the change of variables theorem. Let φ be an diffeomorphism of
a bonded open set D in Rn with a bonded ope set φ(D). Let Jφ denote the determinant of
Jacobian matrix of φ, let f be a bounded continuous function on φ(D), and let A be a subset of
D with a Jordan content. Then ∫

φ(A)
f =

∫
A

f ◦ φ|Jφ|.
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3.2 The Stokes’ Theorem and the de Rham Cohomology

Using this theorem to integration of forms we obtain∫
φ(A)

ω =
∫

A
±δφ(ω),

the sing ± depends on the orientation of the map, but here we do not need to define orientations
since the integrals are over simplices. We will talk deeply about orientations in the next Chapter.
Therefore, we define integral of the n-form ω over a p-simplex σ by∫

σ
ω =

∫
∆p

δσ(ω).

We extend these integrals linearly to chains, so that if c = ∑ aiσi, then∫
c

ω = ∑ ai

∫
σi

ω.

Let us continues with the construction of the de Rham cohomology. Here we use the presheaf
that we saw in charter 1

{Ek(U); ρU,V}, (3.36)

where Ek(U) is the set of differential k-forms on U, being U an open subset in M. Remember,
that this presheaf fulfils the properties (C1) and (C2), so it is a complete presheaf.

Now, we want to build a sequence using this R-modules. To do that, we consider exterior
differential. Note that exterior differential is a presheaf homomorphism since it commutes with
ρU,V

{Ek
U ; ρU,V}

d−→ {Ek+1
U ; ρU,V}. (3.37)

To continue with an analogous argument as in singular cohomology, we shall set the sheaves
associated with the previous presheaves. We denote these sheaves by ξ p(M), and we shall retain
the symbol d for sheaf homomorphisms induced by the exterior differential. The constant sheaf
R = R×M can be naturally injected into ξ0(M) by mapping a ∈ Rm to the germ at m of the
function with constant value a. Thus we have the sequence

0→ R→ ξ0(M)
d−→ ξ1(M)

d−→ ξ2(M)
d−→ ξ3(M)

d−→ . . . (3.38)

We claim that this sequence is a fine torsion-free resolution. It is clear that this is torsion-free
due to R-modules are being taken, and R is a body. ξ p(M) is certainly a fine R-modul since a
partition of unity can be constructed as follows. If {Ui} is a locally finite open cover of M, let
{ϕi} be a partition of unity on M subordinate to this cover. We obtain endomorphisms l̃i of the
presheaves {Ek

U ; ρU,V} by setting

l̃i( f )(m) = (ϕi|U)(m) f (m), for f ∈ C∞. (3.39)

The associate sheaf endomorphisms li on the sheaf Ek
M form a partition of unity subordinate to

the cover {Ui} of M, and therefore ξ p(M) is a fine sheaf. To see that this sequence is exact we
use an analogous argument as in the case of the singular cohomology taken this lemma:

Lemma 3.2. (Poincaré lemma) Let B ⊂ Rn be the open unit ball. Then for each k ≥ 1 there is a linear
transformation hk : Ek(U)→ Ek−1(B) such that

hk+1 ◦ d + d ◦ hk = Id (3.40)
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3.2 The Stokes’ Theorem and the de Rham Cohomology

Proof. Let us begin with the Cartan formula which expresses the Lie derivative in terms of the
exterior differentiation and interior multiplication:

LX = i(X) ◦ d + d ◦ i(X). (3.41)

We shall applied the Cartan formula to the radial vector field

X =
p

∑
i=1

xi
∂

∂xi
(3.42)

on B, where xi are the canonical coordinates. We define hk a linear operator αk on Ek(B) by
setting

αk( f dxi1 ∧ · · · ∧ dxik )(p) =
(∫ 1

0
tk−1 f (tp)dt

)
dxi1 ∧ · · · ∧ dxik (p) (3.43)

and extending linearly to ll Ek(B). Let us show that

αk ◦ LX = Id on Ek(B) (3.44)

for that the k-form f dxi1 ∧ · · · ∧ dxik is applied to αk ◦ LX for any p ∈ B

αk ◦ LX( f dxi1 ∧ · · · ∧ dxik )(p) = αk

{(
k f + ∑ xi

∂ f
∂xi

)
dxi1 ∧ · · · ∧ dxik

}
(p)

=

{∫ 1

0
tk−1

(
k f (tp) + ∑ xi(tp)

∂ f
∂xi

∣∣
tp

)
dt
}

dxi1 ∧ · · · ∧ dxik

=

(∫ 1

0

d
dt
(
tk f (tp)

)
dt
)

dxi1 ∧ · · · ∧ dxik

= f dxi1 ∧ · · · ∧ dxik .
(3.45)

Where we have used that LX commutes with d for the first equality, and we have integrated by
parts for the third one. Therefore, we obtain

Id = αk ◦ i(X) ◦ d + αk ◦ d ◦ i(X) (3.46)

on Ek(B) extended linearly. Now we want to see that α commutes with d

αk ◦ d( f dxi1 ∧ · · · ∧ dxik )(p) = αk

{(
∑

∂ f
∂xi

)
dxi ∧ dxi1 ∧ · · · ∧ dxik (p)

}
=

(∫ 1

0
tk−1 ∑

∂ f
∂xi

∣∣
tpdt

)
dxi ∧ dxi1 ∧ · · · ∧ dxik

= d
(∫ 1

0
tk−2 f (tp)dt

)
dxi ∧ dxi1 ∧ · · · ∧ dxik

= d ◦ αk−1( f dxi1 ∧ · · · ∧ dxik ).

(3.47)

And this expression is extended to Ek(B) linearly. Thus we have that

Id = αk ◦ i(X) ◦ d + d ◦ αk−1 ◦ i(X) (3.48)

on Ek(U). Thus, the desire linear transformation hk is obtained by

hk = αk−1 ◦ i
(

∑ xi
∂

∂xi

)
(3.49)

�

32



3.2 The Stokes’ Theorem and the de Rham Cohomology

We have constructed a fine torsion-free resolution of the constant sheaf R. This resolution
gives rise to a cohomology theory over M with coefficients in sheaves of real vector spaces by
setting

Hq(M,T) = Hq(Γ(ξ∗(M)⊗ T)
)

(3.50)

for q ≥ 0, where T is a sheaf of the real vector space over M. Note that we use the same notation
that in the case of the singular cohomology, but there is not any confusion because they are
isomorphic.

Now, we shall define the classical de Rham cohomology. Let us consider the next cochain
complex

. . . 0→ E0(M)
d−→ E1(M)

d−→ E2(M)
d−→ E3(M)

d−→ . . . (3.51)

Then, we fix the real vector space Hq
deR(M) = ker(dq)/Im(dq−1) for q ≥ 0 and Hq

deR(M) = 0 for
q ≤ 0. These are the qph de Rham classical cohomology group of M. Futhermore, a p-form ω on M
is called closed if dω = 0. It is called exact if there exists a (p− 1)-form ω′such that ω = dω′.
Therefore, we have

Hq
deR(M) = { closed q-forms }/{ exact q-forms }. (3.52)

We want to see that classical de Rham cohomology is, actually, isomorphic to Hq(M,R),
where we take R being the constant sheaf R⊗M, then

Hq(M,R) = Hq(Γ(ξ∗(M)⊗R)
) ∼= Hq(Γ(ξ∗(M)

))
. (3.53)

Consider now the cochain complex Γ
(
ξ∗(M)

)
:

. . . 0→ Γ
(
ξ0(M)

)
→ Γ

(
ξ1(M)

)
→ Γ

(
ξ2(M)

)
→ . . . (3.54)

and the (3.51) one. Since we had that the presheaf {Ek
U ; ρU,V} is complete, it follows that the

natural homomorphisms
Ep(M)→ Γ

(
ξ p(M)

)
(3.55)

are isomorphisms. Due to these homomorphisms commute with d, they induce a cochain map
E∗ → Γ

(
ξ∗(M)

)
which is an isomorphism of cochain complexes. Thus there are canonical

isomorphisms
Hq(Γ(ξ∗(M)

)) ∼= Hq(E∗(M)
)
= Hq

de R(M). (3.56)

As we have seen, all cohomology theories are canonically isomorphic. Therefore classical
differential singular cohomology and classical de Rham one are isomorphic. We shall now
prove that the explicit homomorphism from de Rham cohomology to differentiable singular one
obtained from integration of forms over differentiable singular simplices yields the canonical
isomorphism.

For each p ∈ N, we define the homomorphism κp : Ep(M)→ Sp
∞(M) by setting

κp(ω)(σ) =
∫

σ
ω (3.57)

for each p-simplex σ in M and extended linearly. We want to see that this homomorphism
induces a homomorphism of cohomology theories κ∗p : Hp

deR(M) → Hp
∆∞(M) which is called de

Rham homomorphism. First, we shall prove Stokes theorem, which has to be used later.

Perhaps the single most important theorem in integration theory on manifolds is Stokes’
theorem. This is a generalisation of Fundamental Theorem of Calculus. Observe that in our
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3.2 The Stokes’ Theorem and the de Rham Cohomology

context Fundamental Theorem says that if F is a smooth function on the real line, and if σ is a
smooth 1-simplex in the real line, then ∫

∂σ
F =

∫
σ

dF.

We shall present the Stokes’ theorem in terms of integration of forms over chains.

Theorem 3.3. (Stokes’ theorem). Let c be a smooth p-chain in M and let ω be a (p − 1)-form on a
neighbourhood of the image of c. Then ∫

∂c
ω =

∫
c

dω (3.58)

Proof. We will prove it only for simplices, as it juts extends by linearity to chains. Let σ be a sin-
gular differentiable p-simplex. Then, by commutativity of pullbacks and differential operators,
we get

∫
σ

dω =
∫

∆p
δσ(dω) =

∫
∆p

d(δσ(ω)) =
p

∑
i=0

(−1)i
∫

∆p
δσi(ω) =

p

∑
i=0

(−1)i
∫

∆p
δkp−1

i ◦ δσ(ω).

(3.59)
We can use an induction argument in p. Case p = 1 holds because of the Fundamental Theorem
of Calculus since a 0-form is a function ω : M→ R.∫

∆1

d
dx

(ω ◦ σ)dx = ω
(
σ(1)

)
−ω

(
σ(0)

)
. (3.60)

Continued with the induction argument, let us assume that p ≥ 2. Then, using that the (p− 1)-
form δσ(ω) is taken in ∆p ⊂ Rp, it can be expressed as

δσ(ω) =
p

∑
j=1

aj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxp (3.61)

where x1, . . . , xp are canonical coordinate in Rp, circumflex over a term means that the term is
not to be omitted and the ai are C∞ on U ⊂ Rp a neighborhood of ∆p. Since integral a is linear
map, we may consider the special case in which δσ(ω) consists of a single term of the form
aj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxp. In this case, the left-hand side of (3.59) becomes

(−1)j−1
∫

∆p

∂aj

∂rj
dx1 ∧ · · · ∧ dxp. (3.62)

To evaluate the right-hand side of (3.59), we observe that for 1 ≤ i ≤ p,

δkp−1
i (rj) =


rj if 1 ≤ j ≤ i− 1

0 if j = i

rj−1 if i + 1 ≤ j ≤ p

and δkp−1
0 (rj) =

1−
p−1
∑

i=1
ri if j = 1

rj−1 if j 6= 1.
(3.63)

Applying these expressions to the right-hand term of (3.59), we obtain

p

∑
i=0

(−1)i
∫

∆p
δkp−1

i ◦ δσ(ω) =
p

∑
i=0

(−1)i
∫

∆p−1
δkp−1

i (aj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxp)

= (−1)j−1
∫

∆p−1
aj
(
1−

p−1

∑
i=1

xi , x1, . . . , xp−1
)
dx1 ∧ · · · ∧ dxp

+ (−1)j
∫

∆p−1
aj(x1, . . . , xj−1, 0, xj, . . . , xp−1)dx1 . . . dxp.

(3.64)

34



3.2 The Stokes’ Theorem and the de Rham Cohomology

We shall now apply a change of variables to the first term on the right-hand side of the previous
equation. Let ϕj be the diffeomorphism of Rp−1 defined by

ϕj(x1, . . . , xp−1) =



(x1, . . . , xp−1) if j = 1(
1−

p−1
∑

i=1
xi, x2, . . . , xp−1

)
if j = 2(

x2, . . . , xj−1, 1−
p−1
∑

i=1
xi, xj, . . . , xp−1

)
if 3 ≤ j ≤ p.

(3.65)

It is straightforward that ϕj is a difeomorphism in U with a neighbourhood of ∆p, ϕj
(
∆p) = ∆p

and det
(

ϕj
)
= 1, where J(ϕj) is the Jacobian matrix of ϕj for each 1 ≤ j ≤ p. Then, we have that

(−1)j−1
∫

∆p−1
aj
(
1−

p−1

∑
i=1

xi , x1, . . . , xp−1
)
dx1 ∧ · · · ∧ dxp

= (−1)j−1
∫

∆p−1
aj
(

x1, . . . , xj−1, 1−
p−1

∑
i=1

xi), xj, . . . , xp−1
)
dx1 ∧ · · · ∧ dxp−1.

(3.66)

Using (3.59), (3.62), (3.64) and (3.66) we see that the proof has been reduced to showing that

∫
∆p

∂aj

∂xj
dx1 . . . dxp =

∫
∆p−1

aj
(

x1, . . . , xj−1, 1−
p−1

∑
i=1

xi, xj, . . . , xp−1
)
dx1 ∧ · · · ∧ dxp−1

−
∫

∆p−1
aj(x1, . . . , xj−1, 0, xj . . . , xp−1)dx1 ∧ · · · ∧ dxp−1.

(3.67)

But this equation is simply the evaluation of the integral of ∂aj/∂xj over ∆p. Therefore, we can
use the hypothesis of induction. �

Now, we see that the homomorphism κp induces κ∗p. Observe that κp can be defined for
arbitrary open sets in M, and yield presheaf homomorphisms

{Ep(U); ρU,V}
κp−→ {Sp

∞(U); ρU,V}. (3.68)

Here, we want to see that this morphism commutes with coboundary operator dp : Ep(U) →
Ep+1(U)

κp(dω)(c) =
∫

c
(dω) =

∫
∂c

ω = κp(ω)(∂c) = dκp(ω)(c), (3.69)

where Stokes theorem has been used in the second equality and the definition of coboundary
homomorphism in the last one. So we have that κp induces a homomorphism which we call,
for simplicity, κp.

ξ p(M)
κp−→ S

p
∞(M). (3.70)

Also, this last κp induces, in turn, κ∗p.

Theorem 3.4. (The de Rham theorem) The de Rham homomorphism k∗p is the canonical isomorphism
between Hp

deR(M) and Hp
∆∞(M; R) for each p.

Proof. The homomorphism κp : ξ p(M)→ S
p
∞(M) form a commutative diagram:

0 R ξ0(M) ξ1(M) ξ2(M) ξ3(M) . . .

0 R S0
∞(M) S1

∞(M) S2
∞(M) S3

∞(M) . . . ,
Id κ0 κ0 κ2 κ3 (3.71)
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3.2 The Stokes’ Theorem and the de Rham Cohomology

this diagram shows that κ∗ is a homomorphism between two fine torsion-free resolutions of
the constant sheaf R = M ⊗ R. Therefore, for each sheaf J over M the homomorphism κ∗

induces a cochain map Γ
(
ξ∗(M)⊗ J

)
→ Γ

(
S∗∞(M)⊗ J

)
from which we obtain straightforward

a cohomology theories homomorphism Hp
deR(M, J)→ Hp

∆∞(M, J).

Consider now the following commutative diagram of cochain complexes in which rows are
exact:

0 E∗(M) Γ
(
ξ∗(M)

)
0

0
(
S∗∞(M)

)
0 S∗∞(M) Γ

(
S∗∞(M)

)
0,

k (3.72)

where the first row induces the isomorphisms Hp
deR(M) ∼= Hp

deR(M,R). The second row in-
duces the isomorphisms Hp

∆∞(M) ∼= Hp(M,R). And the last column induces isomorphisms on
cohomology theories as we have seen in the previous diagram. Thus from uniqueness of the iso-
morphism between sheaf cohomology theories, it follows that κ∗p is the canonical isomorphism
Hp

deR
∼= Hp

∆∞. �

Maybe, the complexity of the theorem (2.6) makes it difficult to understand which is the
essential point of the de Rham theorem. For this reason, the reader who is interested in going
depth into the theorem can read a direct proof which is in [2] (chapter V section 9). Also, we
think that it is in appealing to look into an other proof of the isomorphism between the singular
cohomology and the singular differential cohomology. This implication is also a consequence
of Whitney approximation theorem and, in this way, it is more comfortable to understand the
essential reason for the isomorphism. A proof for Whitney approximation theorem could be
found in the Lee bock [3].
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Chapter 4

An Application of the De Rham
Theorem in the Lie Group Theory

In the previous chapter, we have proved that there is an isomorphism between singular co-
homology and de Rham cohomology. Maybe the importance of the de Rham theorem could
be overshadowed for the previous (2.6), where we have proved that any two sheaf cohomology
theories for a topological manifold are isomorphic. It is true that this general theorem is amaz-
ing, but also the de Rham theorem is. Furthermore, there are other ways to prove this theorem
without using sheaf theory.

With the purpose of seeing the interest of the theorem, in this chapter, we wish to derive an
interesting consequence of de Rham theorem, namely, the only spheres which are Lie groups are
S0, S1 and S3. Here, we need to see some concept about Lie groups, in particular, this chapter
can be seen as an introduction to a rather small part of the theory of compact Lie groups.

4.1 Lie Groups and Integration

Lie groups are, without any doubt, the most crucial particular class of differentiable man-
ifolds. Lie groups are differentiable manifolds which are also groups and in which the group
operations are smooth. Well-known examples include the general linear group, the unitary
group, the orthogonal group and the spheres S0, S1 and S3.

Of central importance for Lie groups theory is the relationship between a Lie group and
its Lie algebra of left-invariant vector fields. Here we shall take advantage of this relationship
through the use of two of the more original maps around Lie groups: the exponential map and
the adjoint representation. Also, we are going to see some characteristics of integration over Lie
groups. For this purpose, we take in a more general way the definition of integration given in
Chapter 3.

Despite that we will define the principal concepts of the Lie group theory, we assume that
the reader has some knowledge about this theory and we will take some propositions as known.
Also, we assume that the reader has some knowledge about smooth fields and vector flows.

Definition 4.1. A Lie group G is a differentiable manifold which is also endowed with a group structure
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4.1 Lie Groups and Integration

such that the map µ is C∞.

µ : G× G → G

(σ, τ) 7→ στ−1
(4.1)

Lie groups received the name by the Norwegian mathematician Sophus Lie. One of the
principal ideas in this theory is to link the global object, the group, with its local version, which
has become known as its Lie algebra. Therefore, many properties of a Lie group are reflected
in properties of its Lie algebra. Furthermore, Lie algebras associated with Lie groups are finite
dimensional. Throughout this chapter, G and H will denote Lie groups, and we shall use e to
denote the identity element of a Lie group.

Definition 4.2. A Lie algebra g is a real vector space g together with a bilinear operator [., .] : g× g→ g,
called the bracket, such that for all x, y, z ∈ g,

(a) (anti-commutativity) [x, y] = −[y, x].

(b) (Jacobi identity)
[
[x, y], z

]
+
[
[y, z], x

]
+
[
[z, x], y

]
= 0.

We want to associate a Lie group with a Lie algebra using its group and differential structure.
For this purpose, for each σ ∈ G we define the diffeomorphisms lσ and rσ by

lσ(τ) = στ,

rσ(τ) = τσ
(4.2)

for all τ ∈ G. Which are called left translation by σ and right translation by σ respectively. A
vector field X, i.e, a section of the tangent bundles (not necessarily to assume that is C∞), is called
left-invariant if for each σ ∈ G, X is lσ-related, i.e.,

dlσ ◦ X = X ◦ lσ. (4.3)

The set of all left-invariant vector fields on Lie groups G and H will be denoted by g and h

respectively. The essential property is that left-invariant vector fields are smooth, and g forms
a Lie algebra under Lie bracket operation on vector fields. Here, by Lie bracket we denote the
map from g× g to g defined by [X, Y] = XY − YX for all X and Y in gl. Lie bracket is well
defined in this way due to [X, Y] is also left-invariant.

Note that if G is a Lie group and Xe ∈ TeG is a tangent vector in the tangent space of G at
the identity, then Xsigma = dlσ(Xe) is a tangent vector at σ ∈ G. Therefore, this defines a vector
field X on G which is left-invariant and such vector field X is uniquely determined by Xe. Then,
we have an isomorphism between g and TeG, consequently, dimg = dimG.

Similarly, if ω is a p-form on G then δlσω is another p-form. ω is said to be left-invariant if
δlσω = ω for all σ ∈ G. As it happened with vector fields, left-invariant forms can be seen to be
smooth and hence are in one to one correspondence with p-forms on the vector space TeG.

Remember that whenever we have a p-form ω on M and X1, . . . , Xp are vector fields on M,
ω(X1, . . . , Xp) makes sense, and it is the function whose value at m is

ω(X1, . . . , Xp)(m) = ωm(X1(m), . . . , Xp(m)). (4.4)

Furthermore, differential d acts over ω(X1, . . . , Xp) by

dω(X0, . . . , Xp) =
p

∑
i=0

(−1)iXiω(X0, . . . , X̂i, . . . , Xp)

+ ∑
i<j

ω([Xi, Xj], X0, . . . , X̃i, . . . , X̂j, . . . , Xp).
(4.5)
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4.1 Lie Groups and Integration

If ω is a left-invariant p-form and X1, . . . , Xp are left-invariant vector fields, then ω(X0, . . . , X̃i, . . . , Xp)

is a constant function and so Xiω(X0, . . . , X̃i, . . . , Xp) = 0. Therefore, in this case, the formula
for dω simplifies to

dω(X0, . . . , Xp) = ∑
i<j

ω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xp). (4.6)

A map ϕ : G → H is a (Lie group) homomorphism if ϕ is both C∞ and a group homomorphism
of the abstract groups. We call ϕ an isomorphism if, in addiction, ϕ is a diffeomorphism. An
isomorphism of a Lie group with itself is called an automorphism. If H = Aut(V) for some
vector space V, or if H = Gl(n, C) or Gl(n, R), then a homomorphism ϕ : G → H is called
a representation of the Lie group G. Therefore, the set of Lie groups forms a category with the
homomorphisms defined above. We call this category as Lie group category.

If g and h are Lie algebras, a map ψ : g → h is a Lie algebra homomorphism if it is linear and
preserves brackets. If, in addiction, ψ is 1 : 1 and onto, then ψ is an isomorphism. If h = End(V)

for some vector space V, or if h = gl(n, C) or gl(n, R), then a homomorphism ψ is called a
representation of the Lie algebra g. As in the case of Lie groups, the set of Lie algebras also forms
a category which we call Lie algebra category.

Let ϕ : G → H be a homomorphism. Then, since ϕ maps the identity of G to the identity
of H, the differential dϕ is a linear transformation of TeG into TeH. Using the natural identi-
fications of the tangent spaces at the identities with Lie algebras, this linear transformation of
g into h which we shall also denote by dϕ. It is easy to see that dϕ is, indeed, a Lie algebra
homomorphism. If ψ : G → H and ϕ : H → T are homomorphisms where G, H and T are Lie
groups. Then d(ϕ ◦ ψ) = d(ϕ) ◦ d(ψ), this is called the chain rule. In this way, we have defined a
covariant functor between the Lie group category and the Lie algebra category.

4.1.1 Integration over a Manifold

At this point, we want to talk about integration over Lie groups, remember that we have
already told about integration of p-forms over p-chains. We use a similar construction to define
integration over Lie groups. Let ω be an n-form on the open subset URn with compact support
and let x1, . . . , xn be the canonical coordinates of Rn. Note that ω extends to all Rn by 0 with
support in some cube. Now ω can be written

ω = f (x1, . . . , xn)dx1 ∧ · · · ∧ dxn (4.7)

for a smooth function f which is 0 outside some compact set. Suppose that W is another open
set in Rn and let ϕ : W → U be a diffeomorphism. Then, we have the n-form δϕ(ω) on W
where, by definition,

δϕ(ω) = ( f ◦ ϕ)d(x1 ◦ ϕ) ∧ · · · ∧ d(xn ◦ ϕ). (4.8)

Now

d(xi ◦ ϕ) =
n

∑
j=1

∂(xi ◦ ϕ)

∂xj
dxj =

n

∑
j=1

Ji,j(ϕ)dxj (4.9)
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4.1 Lie Groups and Integration

where Ji,j(ϕ) is the i, j entry of the Jacobian matrix of ϕ. Thus

d(x1 ◦ ϕ) ∧ · · · ∧ d(xn ◦ ϕ) =

(
∑

j
J1,j(ϕ)dxj

)
∧ · · · ∧

(
∑

j
Jn,j(ϕ)dxj

)
= ∑

s∈Gn

(
J1,s1(ϕ) · · · Jn,sn(ϕ)

)
dxs1 ∧ · · · ∧ dxsn

= ∑
s∈Gn

sgn(s)
(

J1,s1(ϕ) · · · Jn,sn(ϕ)
)
dx1 ∧ · · · ∧ dxn

= det(J(ϕ))dx1 ∧ · · · ∧ dxn,

(4.10)

where Gn is the symmetric group. Therefore δϕ(ω) = ( f ◦ ϕ) det
(

J(ϕ)
)
dx1 ∧ · · · ∧ dxn and so∫

δϕ(ω) =
∫

Rn
( f ◦ ϕ)(x1, . . . , xn) det

(
J(ϕ)

)
dx1 . . . dxn

= ±
∫

f (x1, . . . , xn) dx1 . . . dxn = ±
∫

ω,
(4.11)

where the integral defined in chapter 3. Observe, that the last equality holds due to standard
Riemann change of variables rule, where the sign is the sign of the det

(
J(ϕ)

)
. If U is not

connected, then we are assuming here the same sign on all components.

Figure 4.1: The integral of a form over a smooth cart

In order to define the integration over a connected differentiable manifold of dimension n,
we have to fix an orientation. We shall call M orientable if it is possible to choose in a consistent
way an orientation on Tm M∗ for each m ∈ M. More precisely, let O be the “0-section” of the
exterior n-bundle Λ∗n(M) =

⋃
m∈M Λn(Tm M∗); that is,

O = ∪m∈M{0 ∈ Λn(Tm M∗)}. (4.12)

Then, since each Λn(Tm M∗)−{0} has exactly two components, this follows easily that Λ∗n(M)−
O has at most two components. We say that M is orientable if Λ∗n(M)−O has two components;
and if M is orientable, an orientation on M is a choice of the one of the two components of
Λ∗n(M)−O. A non-connected manifold M is said to be orientable if each component of M is
orientable, and an orientation is a choice of orientation on each component. Let M be oriented,
and let v1, . . . , vn be a basis of Tm M with dual basis δ1, . . . , δn. We say that the ordered basis
v1, . . . , vn is oriented if δ1 ∧ · · · ∧ δn belongs to the orientation.

Proposition 4.3. Let M be a differential manifold of dimension n. Then if there is a nowhere-vanishing
n-form on M, then M is orientable.

Proof. Let ω be a nowhere-vanishing n-form on M, and let

Λ+ = ∪m∈M{aω(m)| a ∈ R, a > 0},
Λ− = ∪m∈M{aω(m)| a ∈ R, a < 0}.
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4.1 Lie Groups and Integration

Then Λ∗n(M)−O is the disjoint union of the two open subsets Λ+ and Λ−, so Λ∗n(M)−O is
disconnected, and M is orientable. �

Therefore we have that every Lie group G is orientable, for if ω1, . . . , ωn is a basis for the left
invariant 1-forms on G, then ω1 ∧ · · · ∧ωn is a global nowhere-vanishing n-form on G. One can
prove the other implication of the proposition easily, but we are not going to use it.

Let M and N be oriented n-dimensional manifolds, and let ϕ : M → N be a differential
map. We say that ϕ preserves orientations if the induced map δϕ : Λ∗n(N) → Λ∗n(M) maps the
component of Λ∗n(N) −O determining the orientation on N into the component Λ∗n(M) −O
determining the orientation on M. Hence, we can consider only charts which preserve orienta-
tions. Let ω be an n-form on M whose support is contained in the open set U where U is the
domain of a chart ϕ : U →W ⊂ Rn.

Then δϕ−1(ω) is an n-form on W ⊂ Rn. Thus we define∫
M

ω =
∫

Rn
δϕ−1(ω). (4.13)

To show that this is independent of the choice of ϕ, let ϕ̃ : Ũ → Rn be another such map
and let θ = ϕ̃ ◦ ϕ−1. Then, ϕ̃−1 ◦ θ = ϕ−1 so δϕ−1 = δθ ◦ δϕ̃−1. Thus∫

δϕ−1(ω) =
∫

δθ ◦ δϕ̃−1(ω) =
∫

δϕ̃−1(ω). (4.14)

which proves this independence.

Figure 4.2: Coordinate independence of the integral

Now let ω be an arbitrary n-form on M with a compact support K. Let be {Ui, ψi}i∈I
and atlas of M, such that K ⊂ U1 ∪ · · · ∪ Us due to K is compact. Let U = M − K, and let
f , f1, . . . , fs : M → R give a smooth partition of unity subordinate to the cover U, U1, . . . , Us of
M. we define the integral of ω over M by

∫
M

ω =
k

∑
i=1

∫
fiω. (4.15)

We must show that this is well defined, i.e., that this definition is independent of the cover and
the partition of unity chosen. Let V, V1, . . . , Vl and g, g1, . . . , gl be another such cover and another
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4.1 Lie Groups and Integration

such partition of unity respectively, with Vj associated with the oriented atlas {Vj, ϕj}j∈J . Since
g = 0 on K, it follows that ∑

j
gj = 1 there, so that

k

∑
i=1

∫
fiω =

k

∑
i=1

∫ l

∑
j=1

gj fiω = ∑
i,j

∫
gj fiω =

k

∑
i=1

fi

l

∑
j=1

∫
gjω =

l

∑
j=1

∫
gjω. (4.16)

Observed that if γ is a diffeomorphism of γ : M → N, then, for each ω a form over N with
compact support ∫

N
ω = ±

∫
M

δγ(ω) (4.17)

with “+” if and only if γ is orientation-preserving.

Let G be an n-dimensional Lie group. We have observed that G is orientable. We now fix
once and for all an orientation on G.

Consider the left invariant n-forms on G. Since such a form is uniquely determined by its
value at one point, and since the nth exterior power of an n-dimensional vector space is one-
dimensional, there is exactly a one -dimensional space of left invariant n-forms on G. Choose a
non-zero left invariant n-form ω consistent with the fixed orientation on G.

Since G is oriented, the integral of compactly supported n-forms in defined on G as so far.
We now define, with respect to ω, the integral of a compactly supported continuous function f
on G by setting ∫

G
f =

∫
G

f ω, (4.18)

which depends, of course, on the choice of the non-zero left-invariant n-form ω consistent with
the orientation on G. Bur since such forms are uniquely determined up to a positive constant
multiple, so is the integral (4.18). In the case of a compact group G, we can and always will fix
the choice of ω by requiring the normalization∫

G
ω = 1. (4.19)

Consider the diffeomorphism lσ for σ ∈ G. By the left-invariance of ω, we have∫
G

f =
∫

G
f ω =

∫
G

δlσ( f ω) =
∫

G
( f ◦ lσ)ω =

∫
G

f ◦ lσ. (4.20)

Therefore, the integral is left-invariant, and for all τ ∈ G we can write as∫
G

f (τσ) =
∫

G
f (σ). (4.21)

Now we ask to what extent the integral (4.18) is also right invariant. That is, when do we
have ∫

G
f =

∫
G

f ◦ rσ (4.22)

for each σ ∈ G? Note tha the form δrσ(ω) is still left invariance, since

δlτδrσ(ω) = δrσδlτ(ω) = δrσ(ω). (4.23)

Thus δrσ(ω) is some constant multiple of ω. Thus there is defined a function λ̃ of G into the
non-zero real numbers such that

δrσ(ω) = λ̃ω. (4.24)

It is easily checked that λ̃ is C∞. We let

λ(σ) = |λ̃(σ)|. (4.25)
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4.2 The Exponential Map and the Adjoint Representation

Observed that
λ(τσ) = λ(τ)λ(σ). (4.26)

As λ̃(σ) 6= 0 for each σ ∈ G, we have that λ is a Lie group homomorphism of G into the
multiplicative group of positive real numbers. λ is called the modular function. Now since foe
each σ ∈ G ∫

G
f ω =

∫
G
( f ◦ rσ)λ(σ)ω, (4.27)

it follows that the integral 4.18 is right invariant if and only if λ ≡ 1 on G. A Lie group G for
which λ ≡ 1 is called unimodular. We observe that each compact Lie group G is unimodular since
for each σ ∈ G

1 =
∫

G
ω = λ(σ)

∫
G

ω = λ(σ). (4.28)

Thus the integral on a compact Lie group is both left and right invariant.

4.2 The Exponential Map and the Adjoint Representation

Here we shall define the exponential map and the adjoint representation. The first is a map
which relates a Lie group with its Lie algebra. The second is a representation of a Lie group
that will be used in the central theorem to prove that the only spheres which are Lie groups are
S0, S1 and S3. Both have significant consequences in the Lie group theory because they allow
linking properties of Lie groups with its Lie algebras.

4.2.1 The Exponential Map

Before defining the exponential map, we enunciate a theorem that we will not prove. One
can find a proof in [1] (Chapter 3, point 27).

Theorem 4.4. Let G and H be Lie groups with Lie algebras g and h respectively and with G simply
connected. Let ψ : g → h be a homomorphism. Then there exists a unique homomorphism ϕ : G → H
such that dϕ = psi.

Let G be a Lie group, and let g be its Lie algebra. Let X ∈ g and let r be de canonical
coordinate on R. Then

β
d
dr
7→ βX (4.29)

is a homomorphism of the Lie algebra of R into g. Since the real lien is simply connected, there
exists, by the previous theorem, a unique homomorphism

expX : R→ G (4.30)

such that

d expX

(
β

d
dr

)
= βX. (4.31)

In other words, t 7→ expX(t) is the unique homomorphism from R to G whose tangent vector
at 0 is X(e). We define the exponential map by setting

exp :g→ G

X 7→ expX(1).
(4.32)

The reason for this terminology is that one can show that the exponential map for the general
linear group is given by exponentiation of matrices. Now we will prove three properties of the
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4.2 The Exponential Map and the Adjoint Representation

Figure 4.3: The exponential map

exponential map which we will use in the next section. There are also three more properties
that can be proved as a result of the three in the proposition, namely:

(a) exp
(
(t1 + t2)X

)
=
(
exp(t1X)

)(
exp(t2X)

)
for all t1, t2 ∈ R.

(b) exp(−tX) =
(
exp(X)

)−1 for each t ∈ R.

(c) The 1-parameter group of diffeomorphisms Xt associated with the left invariant vector field
X is gien by

Xt = rexpX(t). (4.33)

We will neither prove nor use these properties.

Proposition 4.5. Let X belong to the Lie algebra g of the Lie group G. Then

(a) exp(tX) = expX(t) for each t ∈ R.

(b) lσ ◦ expX is the unique integral curve of X which takes the value σ at 0.

(c) exp : g→ G is C∞ and d exp : T0g→ TeG is the indentity map (with the identifications g = TeG),
so exp gives a diffeomorphism of a neighbourhood of 0 in g onto a neighbourhood of e in G.

Proof. First of all, note that d/dr and d expX(d/dr) , which is X, are expX related, i.e.

d expX ◦ (d/dr) = d expX(d/dr) ◦ expX . (4.34)

This is true due to, for since expX is a homomorphism, lexpX(t) ◦ expX = expX ◦lt; hence

d expX

(
d
dr

)
(expX(t)) = dlexpX(t)d expX

(
d
dr

)
(0) = dlexpX(t)d expX

(
d
dr

∣∣∣
r=0

)
= d(lexpX(t) ◦ expX)

(
d
dr

∣∣∣
r=0

)
= d(expX ◦lt)

(
d
dr

∣∣∣
r=0

)
= d(expX)

(
d
dr

∣∣∣
r=t

)
.

(4.35)

Thus expX is an integral curve of X and is the unique one for which expX(0) = e. Since X is
left-invariant, lσ ◦ expX is also an integral curve of X and is the unique one taking the value σ

at 0. Thus part (b) is proved. Now, we define maps ϕ and ψ of R into G by setting

ϕ(t) = expX(st) and ψ(t) = expsX(t), (4.36)

where s ∈ R. We have observed that ψ is the unique integral curve of sX such that ψ(0) = e.
Now,

dϕ

(
d
dr

∣∣∣∣
t

)
= d expX

(
s

d
dr

∣∣∣∣
st

)
= sX|expX(st) . (4.37)
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Thus ϕ also is an integral curve of sX such that ϕ(0) = e. By the uniqueness of the integral
curves, ϕ = ψ. Thus

expsX(t) = expX(st), (4.38)

where s, t ∈ R and X ∈ g. Setting t = 1, we obtain part (a). Here, we define a vector field V on
G× g by setting

V(σ, X) =
(
X(σ), 0

)
∈ Tσ ⊕ TXg. (4.39)

Then V is a smooth vector field, and according to part (b), the integral curve of V through (σ, X)

is
t 7→ (σexp(tX), X), (4.40)

or in other words, the homomorphism of R into G⊕ g associated with the vector field V is given
by

V(σ,X)(t) =
(
σexp(tX), X

)
. (4.41)

In particular, V is complete, i.e., the domain of V(σ,X) is R foe each (σ, X) ∈ G ⊕ g. Hence

Figure 4.4: Vector field used to proof that the exponential map is smooth

V1 = π1 ◦ V is defined and smooth on all of G ⊕ g. Now let π : G ⊕ g → G be the projection.
Then

exp(X) = π ◦V1(e, X). (4.42)

Thus we have exhibited exp as the composition of C∞ mappings, so exp is C∞ That d exp :
T0g→ TeG is the identity map is immediate, for tX is a curve in g whose tangent vector at t = 0
is X, and by part (a), exp(tX) is a curve in G whose tangent vector at t = 0 is X(e). �

The next theorem is the main reason we have introduced the exponential map in this text.
This theorem allows to thing out the exponential map as a natural transformation between
the functor that maps Lie groups into their Lie algebras and the “identity” functor over Lie
groups. We will use this theorem to prove a significant result we will talk about the adjoint
representation.

Theorem 4.6. Let ϕ : H → G be a homomorphism. Then the following diagram is commutative:

H G

h g.

ϕ

exp exp

dϕ
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4.2 The Exponential Map and the Adjoint Representation

Proof. Let X ∈ h. Then t 7→ ϕ
(
exp(tX)

)
is a smooth curve in G whose tangent vector at 0 is

dϕ
(
X(e)

)
. This is also a homomorphism of R into G since ϕ is a homomorphism. But t 7→

exp t
(
dϕ(X)

)
is the unique homomorphism between R and G whose tangent at 0 is

(
dϕ(X)

)
(e).

Thus
ϕ
(
exp(tX)

)
= exp t(dϕ(X)

)
, (4.43)

whence
ϕ
(
exp(X)

)
= exp (dϕ(X)

)
. (4.44)

�

4.2.2 The Adjoint Representation

At this point, we are going to introduce the adjoint representation. This map is a result
of the action of a Lie group on a manifold. As later we will study some actions as that, first
we introduce the definition of this kind of actions. After that, we will talk about the adjoint
representation.

Definition 4.7. Let M be a manifold, and let G be a Lie group. A C∞ map µ : G×M→ M such that

µ(στ, m) = µ
(
σ, µ(τ, m)

)
, and µ(e, m) = m (4.45)

for all σ, τ ∈ G and m ∈ M is called an action of G on M on the left.

Note that if µ : G × M → M is an action of G on M on the left, then for a fixed σ ∈ G
the map m 7→ µ(σ, m) is a diffeomorphism of M we shall denote by µσ. Similarly, a c∞ map
µ : M× G → M such that

µ(m, στ) = µ
(
µ(m, σ), τ

)
, and µ(m, e) = m (4.46)

for all σ, τ ∈ G and m ∈ M is called an action of G on M on the right.

Actions are essential elements in the Lie group theory. To make an idea, whenever a Lie
group acts on a geometric object, such as a Riemannian or a symplectic manifold, this action
provides a measure of rigidity and yields a rich algebraic structure. The presence of continuous
symmetries expressed via a Lie group action on manifolds placed strong constraints on its
geometry and facilitated analysis on the manifold. Furthermore, linear actions of Lie groups
are especially relevant and are studied in representation theory.

Theorem 4.8. Let µ : G×M→ M be an action of G on M on the left. Assume that m0 ∈ M is a fixed
point, that is µσ(m0) = m0 for each σ ∈ G. Then, the map

ψ :G → Aut(Tm0 M)

σ 7→ dµσ|Tm0 M
(4.47)

is a representation of G.

Proof. ψ is a homomorphism for

ψ(στ) = dµστ |Tm0 M = d(µσ ◦ µτ)|Tm0 M = ψ(σ) ◦ ψ(τ). (4.48)

It remains only to prove that ψ is C∞. For this, it suffices to prove that ψ composed with
an arbitrary coordinate function on Aut(Tm0 M) is C∞. Now, one gets a coordinate system on
Aut(Tm0 M) by choosing a basis for Tm0 M and then by using this basis to identify Aut(Tm0 M)
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with non-singular matrices. One gets the matrix associated with an element of Aut(Tm0 M) by
applying this element to the basis of Tm0 M and then applying the dual basis. So it suffices to
prove that if v0 ∈ Tm0 M and if α ∈ (Tm0 M)∗,

σ 7→ α
(
dµσ(v0)

)
(4.49)

is a C∞ function on G. For (4.49), it is suffices to prove that

σ 7→ dµσ(v0) (4.50)

is a C∞ map of G into Tm0 M, or equivalently that (4.50) is a C∞ map of G into T(M), the tangent
bundle of M. But (4.50) is exactly the composition of C∞ maps

G → T(G)× T(M)→ T(G×M)
dµ−→ T(M) (4.51)

in which the first map sends σ into
(
(σ, 0), (m0, v0)

)
, the second map is the canonical diffeomor-

phism of T(G)× T(M) with T(G×M), and the third map is dµ. Thus ψ is C∞. �

A Lie group G acts on itself on the left inner automorphisms:

a : G× G → G, a(σ, τ) = στσ−1 = aσ(τ). (4.52)

Observe that the identity is a fixed point of this action. Hence, by the theorem, the map

σ 7→ daσ|TeG (4.53)

is a representation of G into Aut(g), using the identification TeG ∼= g. This is called the adjoint
representation and is denoted by

Ad : G → Aut(g). (4.54)

We let the differential of the adjoint representation be denoted by ad,

d(Ad) = ad, (4.55)

and we denote Ad(σ) by Adσ and ad(X) by adX . Thus, we can use the exponential map to relate
Ad with d(Ad) = ad:

G Aut(g)

g End(g).

Ad

exp exp

ad

Also applying the exponential map to the automorphism aσ of G, we obtain the commutative
diagram

G G

g g.

aσ

exp exp

Adσ

In other words,
exp
(
tAdsigma(X)

)
= σ

(
exp(tX)

)
σ−1. (4.56)

Proposition 4.9. Let G be a Lie group with Lie algebra g, and let X, Y ∈ g. Then

adXY = [X, Y]. (4.57)
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Proof. Using the property (b) on the proposition 4.5 of the exponential map, and fixing eg the
identity element in g, we have that

adXYeg =
(
de Ad(X)

)
(Y)eg =

d
dt

[
Adexp(tv)

]∣∣∣
t=0

(Y)

=
d
dt

[
Adexp(tv)(Y)

]∣∣∣
t=0

=
d
dt

[
degaexp(tv)(Y)

]∣∣∣
t=0

,
(4.58)

for each X, Y ∈ g, where v = X(e). Let φv be the unique integral curve of X with φv(0) = e.
Fixing σ ∈ G, we define

φv,σ :R→ G

t 7→ σ exp(tv),
(4.59)

which is the unique integral curve of X which takes the value σ at 0. Therefore,

adXYeg =
d
dt

[
degaexp(tv)(Y)

]∣∣∣
t=0

=
d
dt

[
deg(rexp(tv) ◦ lexp(tv))(Y)

]∣∣∣
t=0

=
d
dt

[
dexp(tv)rexp(tv)

(
Y exp(tv)

)]∣∣∣
t=0

=
d
dt
[
dφ−t

(
Y exp(tv)

)]∣∣
t=0

= lim
t→0

[
dφ−t(Yφt(e))−Ye

]
= [X, Y](e).

(4.60)

Using that X, Y and [X, Y] are left-invariant we prove the proposition. �

4.3 Lie Group Structure over the Spheres

In this section, if we do not say the opposite, we assume that G is a compact connected Lie
group.

Let µ : G ×M → M an action of G on M on the left. Then a p-form ω on M is said to be
µ-invariant if δµσ(ω) = ω for each σ ∈ G. Let E(M)µ be the set of µ-invariant forms on M.
Define

I : E(M)→ E(M) (4.61)

by

I(ω)(X1, . . . , Xp) =
∫

G
δµσ(ω)(X1, . . . , Xn)dσ =

∫
G

ω
(
dµσ(X1), . . . , dµσ(Xn)

)
dσ, (4.62)

where X1 . . . , Xp are vector fields over M. Then

δµτ(ω)(X1, . . . , Xp) = I(ω)(dµτ(X1), . . . , dµτ(Xn)

=
∫

G
ω
(
dµσdµτ(X1), . . . , dµσdµτ(Xn)

)
dσ

=
∫

G
ω
(
dµστ(X1), . . . , dµστ(Xn)

)
dσ

=
∫

G
ω
(
dµσ(X1), . . . , dµσ(Xn)

)
dσ = I(ω),

(4.63)

by the right-invariance of the integral, due to G is compact. Here we have used dσ to denote that
we are considering the integral as a function of σ in G Thus I(ω) ∈ E(M)µ for all ω ∈ E(M),
and therefore

I : E(M)→ E(M)µ. (4.64)

Suppose that ω ∈ E(M)µ. Then

I(ω)(X1, . . . , Xp) =
∫

G
δµσ(ω)(X1, . . . , Xn)dσ =

∫
G

ω(X1, . . . , Xn)dσ = ω(X1, . . . , Xn). (4.65)
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by the normalisation of the integral.

Let J : E(M)µ ↪→ E(M) be the inclusion. Then we have just shown that

I ◦ J = IdE(M)µ (4.66)

Lemma 4.10. The map I commute with the differential morphism d, i.e., dI = Id.

Proof. Using the shorthand notation Xσ = dµsigma(X), we have

d
(

Iω)
)
(X0, . . . , Xp) =

p

∑
i=0

(−1)iXi
(

I(ω)(X0, . . . , X̂i, . . . , Xp)

+ ∑
i<j

(−1)i+j I(ω)([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xp)

=
p

∑
i=0

(−1)iXi

∫
G

ω(Xσ
0 , . . . , X̂σ

i , . . . , Xσ
p)dσ

+ ∑
i<j

(−1)i+j
∫

G
ω([Xσ

i , Xσ
j ], Xσ

0 , . . . , X̂σ
i , . . . , X̂σ

j , . . . , Xσ
p)dσ

=
∫

G
dω(Xσ

0 , . . . , Xσ
p)

= I(dω)(X0, . . . , Xp).

(4.67)

�

Now G acts as a group of automorphisms on HdeR(M), which is the classical de Rham
cohomology. Let HdeR(M)µ denote the fixed point set of this action. We want to prove that
HdeR(M)µ is all HdeR(M) if G is connected. To prove this, we need a previous proposition.

Proposition 4.11. Let G be a connected Lie group (not necessarily compact), and let U be a neighborhood
of e. Then

G = ∪∞
n=1Un, (4.68)

where Un consists of all n-fold products of elements of U.

Proof. Let V be an open subset of U containing e such that V = V−1, where V−1 = {σ−1 ∈
G|σ ∈ V} For example, V = U ∩U−1 will do. Let

H = ∪∞
n=1Vn ⊂ ∪∞

n=1Un. (4.69)

Then H is an abstract subgroup of G and is an open subset of G since σ ∈ H implies σV ⊂ H.
Thus each coset mod H is open in G. Now, H is the complement in H of the union of all the
cosets mod H different from H itself. Therefore H is also a closed subset of G. Since G is
connected, and H is also non-empty, H must be all of G. This together with (4.69) prove the
proposition. �

To proof that if G is connected then Hp
deR(M) = Hp

deR(M)µ, we must prove that µσ w idM for
each σ ∈ G
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Proof. Let U be a be a neighborhood of e. Using the property (c) on the proposition 4.5, we can
take U such that there exists an open subset V in g where exp : V → U is a isomorphism. Then

σ ∈ G =
∞⋃

n=1

Un. (4.70)

Hence, there exists an n such that σ ∈ Un. Therefore, there exist a1, . . . , an pints in U such that
σ = a1 . . . an. As exp|V is an isomorphism, we take v1, . . . , vn in V such that exp(vi) = ai. Then,
the map

H :[0, 1]×M→ M

(t, m) 7→ µexp(tv1)...exp(tvn)(m)
(4.71)

is a a homotopy between µσ and idM. �

We define Ep(M)µ as the set of µ-invariant p-forms over M, which is a real vector space,
Ep(M)µ ⊂ Ep(M). As I commutes with the differential d, we can define a cochain complex of
real vector spaces where the spaces are subspaces of E∗(M).

0→ E0(M)µ d̃0
−→ E1(M)µ d̃1

−→ E2(M)µ d̃2
−→ E3(M)µ d̃3

−→ E4(M)µ d̃4
−→ . . . (4.72)

where d̃i is the restriction di|Ei(M)µ . Therefore, we can define the R-modules Hn(E(M)µ
)
=

ker(d̃n)/im(d̃n−1).

Theorem 4.12. The inclusion J : E(M)µ ↪→ E(M) induces an isomorphism

J∗ : H∗
(
E(M)µ

)
→ H∗deR(M)µ. (4.73)

Proof. We have J∗ I∗ = 1 since I ◦ J = id. Therefore, I∗ is onto and J∗ is an injection. We must
show that the image of J∗ is all of H∗deR(M)µ.

If α = [ω] ∈ H∗deR(M)µ then I(ω) represent the same class in H∗deR(M). Let σ ∈ G. Then
ω − δµσ(ω) = dη for some (p − 1)-form η depending on σ, since [ω] is invariant under G.
Therefore, for a smooth p-cycle c ∈ Sp(M), we have∫

c
ω−

∫
c

δµσ (ω) =
∫

c
dη =

∫
∂c

η = 0. (4.74)

Thus ∫
c

I(ω) =
∫

c

(∫
G

δµσ(ω)dσ

)
=
∫

G

(∫
c

δµσ(ω)

)
dσ

=
∫

G

(∫
c

ω

)
dσ =

(∫
c

ω

)(∫
G

1
)
=
∫

c
ω.

(4.75)

Hence
∫

c
(

I(ω) − ω
)

= 0 for every p-cycle c. In other words, the de Rham isomorphism
H∗
(
E(M)µ

)
→ H∗deR(M) ∼= H∗∆∞(M; R) kills

[
I(ω)− ω

]
. Therefore,

[
I(ω)

]
=
[
ω
]

in H∗deR(M).
�

Using this theorem, we have that H∗
(
E(G)µ

) ∼= H∗deR(G)µ. As G is a connected Lie group,
we have that H∗

(
E(G)µ

) ∼= H∗deR(G). If we fix µ as the left-translation and we set Lp
G the set of

left-invariant p-forms, we have the next corollary.
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4.3 Lie Group Structure over the Spheres

Corollary 4.13. Let G be a compact connected Lie group. Then Hp
deR(G) is isomorphic to Hp(L∗G),

where L∗G is the chain complex of forms ω on LG with differential given by

dω(X0, . . . , Xp) = ∑
i<j

ω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xp). (4.76)

We can do better than this by applying the theorem to the action a : G× G → G given by

(σ, τ) 7→ στσ−1 (4.77)

which we have use to define the adjoint representation. Then, the cohomology of G is given by
the a-invariant forms. However, this is the same as the space of left-invariant forms which are
also invariant under the conjugation. Therefore the adjoint representation acts over the forms
by

Adσ(ω)(X1, . . . , Xp) = ω
(

Adσ(X1), . . . , Adσ(Xp)
)
. (4.78)

Here, we need to make an observation. We call a p-form for a C∞ mapping of G into Λ∗p(G),
which is alternating. A C∞ mapping of G into Tr,s(G), is called a tensor field of type (r, s). We
mention one of them by a not necessary alternating form, either a tensor field or an alternating
form.

Theorem 4.14. Let G be a compact connected Lie group. Let ω be a not necessarily alternating on LG.
The adjoint action of G leaves ω invariant if, and only if, the following identity holds:

p

∑
i=1

ω(X1, . . . , Xi−1, [Y, Xi], Xi+1, . . . , Xp) = 0 (4.79)

for all Y, X1, . . . , Xp ∈ g.

Proof. We claim that Adσ(X) = X for each σ ∈ G with X ∈ g if, and only if, adY(X) = 0 for all
Y ∈ g. Note that the exponential map for Gl(n, R) is given by exponentiation of matrices:

exp(A) = eA (4.80)

Because, t 7→ etA is the unique 1-parameter group of Gl(n, R) whose tangent vector at 0 is A.
Remember that

eA = I + A +
A2

2
+

A3

3!
+

A4

4!
+

A5

5!
+ . . . (4.81)

As Ad
(
expX(t)

)
∈ Aut(g) and g is a vector space, is a Ad

(
expX(t)

)
is one.parameter group in

Gl(n, R) and therefore has the form Ad
(
expX(t)

)
= etA for some A ∈ End(n, R). Therefore,

adX = ad
(

dexpX

(
d
dr

))
=

(
d
dr

etA
)∣∣∣∣

t=0
= A (4.82)

Here, v ∈ Rn , where v is the coordinate vector of a vector field on g, then etAv = v + tAc +
(tA)2v/2 + . . . If v is fixed by the ad, then this is v and so

Av =

(
d
dr
(
adexpX(t)(v)

))∣∣∣∣
t=0

. (4.83)

Conversely, if Av = 0 then etAv = v and so v is fixed under G since the 1-parameter group
generate G. Therefore, ω is invariant if, and only if, adY(ω) = 0 for all Y ∈ g.

Let Y be a vector field in g, remember that expY is the unique integral curve of Y with tangent
Y. Then,

AdexpY(t)(ω)(X1, . . . , Xp) = ω
(

AdexpY(t)(X1), . . . , AdexpY(t)(Xp)
)
. (4.84)
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And so, putting Bt = Adexp−Y(t), we have

0 = ad(Y)
[
(ω)(X1, . . . , Xp)

]
= adexpY(t)

(
d
dt

)∣∣∣∣
t=0

ω(X1, . . . , Xp)

=
d
dt

AdexpY(t) (ω)(X1, . . . , Xp)
∣∣
t=0

=
d
dt
(
ω(BtX1, . . . , BtXp)

)∣∣
t=0

= lim
t→0

1
t
{

ω(BtX1, . . . , BtXp)−ω(X1, . . . , Xp)
}

= lim
t→0

1
t
{

ω(BtX1 − X1, . . . , BtXp) + . . .

+ ω(X1, BtX2 − X2, . . . , BtXp)

+ ω(X1, . . . , Xp−1, BtXp − Xp)
}

= ω

(
lim
t→0

1
t
(BtX1 − X1), . . . , lim

t→0

1
t
(BtXp)

)
+ ω

(
X1, lim

t→0

1
t
(BtX2 − X2), . . . , lim

t→0

1
t
(BtXp)

)
+ . . .

+ ω

(
X1, . . . , Xp−1, lim

t→0

1
t
(BtXp − Xp)

)
= ω

(
adY(X1), . . . , Xp

)
+ ω

(
X1, adY(X2(. . . , Xp

)
+ . . .

+ ω
(
X1, . . . , adY(Xp)

)
=

p

∑
i=1

ω(X1, . . . , Xi−1, [Y, Xi], Xi+1, . . . , Xp).

(4.85)

�

Proposition 4.15. Every Ad-invariant form on LG is closed.

Proof. Putting εi,i = 0, εi,j = (−1)j if i < j and εi,j = (−1)j+1 if i > j, we have

dω(X0, . . . , Xp) =
1
2 ∑

i 6=j
(−1)iεi,jω

(
[Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xp

)
=

1
2 ∑

i
(−1)i ∑

j
εi,jω

(
[Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xp

)
= 0,

(4.86)

since the inner sum is zero by the invariance formula of theorem 4.14. �

Using this proposition over L∗ Ad
G , i.e., the chain complex of forms ω on LG which are Ad-

invariant, we obtain
0→ L0 Ad

G
d−→ L1 Ad

G
d−→ L2 Ad

G
d−→ L3 Ad

G
d−→ . . . (4.87)

But, d(Lp Ad
G ) = 0 for each p ∈ N, because of the proposition. Therefore, Hp(L∗G)

Ad ∼=
Hp(L∗ Ad

G ) = ker(d)/img(d) = Lp Ad
G . Using the corollary 4.13, we obtain the next result.

Corollary 4.16. For a compact connected Lie group G, Hp
deR(G) is isomorphic to the vector space of

invariant alternating p-forms on LG.
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For the remainder of this section, we assume that G is a compact connected Lie group. Let
[LG, LG] denote the span of the elements of LG of the form [X, Y] for X, Y ∈ g.

Corollary 4.17.
[LG, LG] = LG if, and only if, H1(G; R) = 0. (4.88)

Proof. By the de Rham theorem we have that Hp(G; R) ∼= Hp
deR(G) for each p ∈N. If [LG, LG] 6=

LG, then there exists a nonzero 1-form ω vanishing on [LG, LG], and conversely. Such a form is
invariant since that just means that ω

(
[LG, LG]

)
= 0 for all X, Y ∈ g. �

Corollary 4.18.
H1(G; R) = 0 ⇒ H2(G; R) = 0. (4.89)

Proof. Let ω be an invariant 2-form on LG. Then

0 = dω(X, Y, Z) = −ω([X, Y], Z) + ω([X, Z], Y)−ω([Y, Z], X)

= −ω([X, Y], Z)−
(
ω([Z, X], Y) + ω(x, [Z, Y])

= −ω([X, Y], Z)

(4.90)

where we have use the Ad-invariance in the last equality. Since [LG, LG] = LG by corollary 4.17,
ω ≡ 0. �

Theorem 4.19. If H1(G; R) = 0 then the assignment η 7→ ω, where ω(X, Y, Z) = η
(
[X, Y], Z

)
is

a one-one correspondence from the space of invariant symmetric 2-forms η on LG to that of invariant
alternating 3-forms ω on LG.

Proof. Given a 3-form ω, define a 2-form ωZ on LG by ωZ(X, Y) = ω(X, Y, Z). We claim that
ωZ is closed. We compute

0 = dω(X0, X1, X2, Z)

= −ω
(
[X0, X1], X2, Z

)
+ ω

(
[X0, X2], X1, Z

)
−ω

(
[X1, X2], X0, Z

)
−ω

(
[X0, Z], X1, X2

)
+ ω

(
[X1, Z], X0, X2

)
−ω

(
[X2, Z], X0, X1

)
= ωZ(X0, X1, X2),

(4.91)

because the last three terms cancel by the invariance of ω. Since H2(G; R) = 0 by corollary 4.18,
we conclude that ωZ = dρZ for some 1-form ρZ. That is,

ω(X, Y, Z) = ωZ(X, Y) = dρZ(X, Y) = ρZ
(
[X, Y]

)
. (4.92)

Put η(S, T) = ρT(S). This is linear in T. Since [LG, LG] = LG, η(S, T) is also linear in S. For
σ ∈ G and X ∈ g, denote daσ(X) by Xσ, where aσ is the map of G which τ 7→ στσ−1. Then

η
(
[X, Y], Z

)
= ω(X, Y, Z) = ω(Xσ, Yσ, Zσ)

= η
(
[Xσ, Yσ], Zσ

)
= η

(
[X, Y]σ, Zσ

)
.

(4.93)

Since [LG, LG] = LG, it follows that η is invariant.

Now η decomposes uniquely as η = ηsym + ηskew, and both terms must be invariant by
the uniqueness of the decomposition. Since H2(G; R) = 0, we have that ηskew = 0. Thus η is
symmetric.

Conversely, if η is given and ω is defined by ω(X, Y, Z) = η
(
[X, Y], Z

)
then ω is invariant

by the same argument. By invariance of η we have η
(
[X, Y], Z

)
= −η

(
Y, [X, Z]

)
. Thus an

interchange of X and Y or of X and Z changes the sing of ω. It follows that ω is alternating. �
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We will see that there always exists a nontrivial Ad-invariant symmetric 2-form on LG, for G
compact. Let { , } be any inner product on g. Note that Adσ ∈ Aut(g) for all σ ∈ G We set

〈X, Y〉 =
∫

G
{Adσ(X), Adσ(Y)}dσ, (4.94)

where X, Y ∈ g, and we use dσ to denote that we are considering the integral as a function of σ

in G. It is immediate that 〈 . 〉 is again an inner product. Therefore

〈Adτ(X), Adτ(Y)〉 =
∫

G
{Adσ Adτ(X), Adσ Adτ(Y)}dσ

=
∫

G
{Adστ(X), Adστ(Y)}dσ =

∫
G
{Adσ(X), Adσ(Y)}dσ = 〈X, Y〉

(4.95)

Hence η defined by

η(X, Y) = 〈X, Y〉 =
∫

G
{Adσ(X), Adσ(Y)}dσ (4.96)

is a nontrivial Ad-invariant symmetric 2-form on LG. Consequently we have the following
result:

Corollary 4.20. If G is nontrivial and H1(G; R) = 0 then H3(G; R) 6= 0.

Corollary 4.21. The only spheres which are Lie group are S0, S1 and S3.
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