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Abstract: The Higgs mechanism, at the origin of particle masses in the Standard Model, may
be a quantum phenomenon. As we show, it can be triggered by quantum loops events though
the classical potential has no mass scale (scale invariant). This is opposed to the Standard Model
approach, where a negative mass is included in the potential. In this work, not only we make a
qualitative study, but pursue some quantitative calculus by retrieving the value of the Higgs mass.
Finally, we discuss new physics which this new formalism can attempt to address.

I. INTRODUCTION

The Higgs mechanism is used in the Standard Model
(SM) to explain the origin of the mass of fermions and
gauge bosons. Without this mechanism, bosons and
fermions would be massless because of SM symmetry,
which is in contradiction with measurements.

In the Higgs mechanism, a scalar field φ is introduced,
interacting with bosons and fermions in a gauge-invariant
way. The key ingredient of this mechanism is that φ
acquires a non-zero vacuum expectation value (VEV),
v = 〈0|φ|0〉. In turn, the spontaneous symmetry breaking
(SSB) occurs.

At the VEV, the interactions of fermions and bosons
with φ originates their mass. Moreover, the radial exci-
tation of φ = v + h represents the Higgs particle.

The Higgs mechanism well describes the data but the
SSB is only parameterized in the SM. To trig a non-zero
VEV, the potential is ad-hoc tuned

V0(φ) =
1

2
µ2φ2 +

λ

4
φ4 . (1)

Here, µ is the mass of the particle, and λ is a dimension-
less coupling constant. In the case of µ2 > 0, no SSB
appears, since the minimum of the potential will be at
φ = v = 0. However, when µ2 < 0 (imaginary mass
particle), then SSB occurs, and a non-zero VEV arises.

The SM approach to induce the SSB is highly unpleas-
ant if we want a fundamental understanding of the elec-
troweak scale.The Higgs mass by itself turns out to be as
free-parameter, m2

H = V ′′(v)/2 = vλ.
In 1973, S. Coleman and E. Weinberg (CW) showed [1]

that the SSB can still occur through radiative corrections
for µ = 0 . In the CW mechanism, the model has one less
parameter and is classically scale invariant. Moreover,
the Higgs mass is directly predicted. In this work, we
will review these earlier works.

First of all, in section II we introduce the tool of the ef-
fective potential, which is necessary to study the ground
state of a QFT beyond tree level. In section III we will
apply this formalism to the simple model of a real scalar
field. In sections IV and IVA, we add a gauge interac-
tion in the model and perform a more general and phe-
nomenological study.

II. PATH INTEGRAL AND EFFECTIVE
POTENTIAL

The analysis of the SSB from S. Coleman and E. Wein-
berg relies on the use of the effective potential, whose
minima determines the vacua of the theory. For sim-
plicity in this section only one real scalar field, φ, will be
considered, but the extension to a more complicated case
is straightforward.

First, we define [2] the generating functional W (J)

eiW (J) =

∫
Dφ exp

[
i

∫
d4x(L+ J(x)φ(x))

]
, (2)

where J(x) is an external source. W (J) is analog to
the partition function in statistical mechanics. Instead
of integrating over all thermal fluctuations, we integrate
over all possible quantum fluctuations of the φ field.

The derivative of W (J),

∂W (J)

∂J(x)
=

∫
Dφ exp

[
i
∫
d4x(L+ J(x)φ(x))

]
φ∫

Dφ exp
[
i
∫
d4x(L+ J(x)φ(x))

] ≡ φc(x) , (3)

corresponds to the VEV of φ(x) in the presence of the
external source J(x), namely 〈0|φ(x)|0〉J .

Now, the function Γ(φ) = W (J) −
∫
d4xJ(x)φ(x) is

interesting since it satisfies:

∂Γ(φ)

∂φ

∣∣∣
φc

=
∂W (J)

∂φ

∣∣∣
φc
−
∫
d4y

∂J(y)

∂φ

∣∣∣
φc
φc(y)−J(x)

= −J(x)

where ∂W (J)
∂φc

=
∫
d4y ∂J(y)∂φc

∂W (J)
∂J(y) ≡

∫
d4y ∂J(y)∂φc

φc(y)

from using eq. (3). In the case where J(x) is zero, φc(x)
is a minimum of Γ(φ) and also corresponds from eq. (3)
to the true VEV of the theory. If φc is a non-zero field,
then the symmetry is spontaneously broken. Now, for
translational invariance, the Γ(φc) extreme, φc(x) = φc,
is also a space-time constant field and Γ(φ) for homoge-
neous field is the so-called effective potential

Veff(φc) = −Γ(φc)

V4
, with V4 =

∫
d4xVeff(φc) . (4)

The minimum of the effective potential is still φc. Ac-
tually, Γ(φ) is the so-called effective action, which corre-
sponds in the classic limit to the classic action.
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A. Effective potential for a real scalar field

Here we work out the general formula for Veff(φc) in
the case of a real scalar field. This can be easily extended
to extra scalar fields, such as complex scalar and gauge
fields, which we will study in next sections. We consider
the following Lagrangian

L(φ) =
1

2
(∂µφ)2 − V0(φ) , (5)

where V0(φ) is the classical (initial) potential.
Let’s develop the exponent on the r.h.s of eq. (2)

around the stationary point φc, up to second order [4],

eiW (J) = exp

[
i

∫
d4x (L[φc] + Jφc)

]
×
∫
Dφ exp

[
i

2

∫
d4x i∆−1(φc, 0)φ(x)2

]
, (6)

where

i∆−1(φc, x− y) ≡ ∂2L
∂φ(x)∂φ(y)

(7)

is the inverse of the propagator in configuration space.
The functional integral in eq. (6) corresponds to V4 gaus-
sian integrals. Then, its value is (i∆−1(φc, 0))−V4/2.

Using Γ(φc) = W (J)−
∫
d4 xJφc and eq. (4), we get

Veff(φc) = V0(φc)−
i

2
log
(
i∆−1(φc, 0)

)
(8)

and in the momentum representation

Veff(φc)=V0(φc)−
i

2

∫
d4p

(2π)4
log
(
i∆̃−1(φc, p)

)
. (9)

Note that the effective potential is different from the clas-
sic potential. Therefore, its minimum can also vary with
respect to the classical case. In next sections, we study
several examples for the classical potential.

III. EFFECTIVE POTENTIAL FOR Φ4 THEORY

Here we calculate Veff(φc) in eq. (9) for the following
tree-level (classical) potential in eq. (5)

V0(φ) =
µ2

2
φ2 +

λ

4
φ4 . (10)

where µ and λ stand for the bare couplings.
From eq. (10), ∆−1(φc, x− y) in eq. (7) is given by

i∆−1(φc, x− y) = −
(
∂µ∂

µ +m(φc)
2
)
δ(x− y)

where m(φc)
2 = µ2 + 3λφ2c plays the role of the (Klein-

Gordon) effective mass of a scalar particle. The corre-
sponding Fourier transform, ∂µ = ipµ, is

i∆̃−1(φc, p) = p2 −m(φc)
2 . (11)

Now, the expression of Veff in eq. (9) reads as

Veff(φc) = V0(φc)−
i

2

∫
d4p

(2π)4
log(p2 −m(φc)

2) (12)

However, this integral is divergent in R4 and has to be
regularized. We use dimensional regularization to care
for divergences: we analytically extend the number of
dimensions to D (having in mind that, after performing
the integral, we will need D → 4). To ensure the correct
dimensions of the integral above, the integration measure
d4p/(2π)4 has to be replaced by dDp/(2π)DM4−D and

Veff = V0(φc)−
iM4−D

2

∫
dDk

(2π)D
log(k2 −m(φc)

2)

= V0(φc)−
1

2

M4

(4π)D/2
Γ

(
−D

2

)(
M2

m(φc)2

)−D/2
.

See in appendix A) for complete calculation. This ex-
pression is divergent because of the term Γ(−D/2) '
1/(4−D)−γ/2+3/4. It is useful to substitute D = 4−2ε
and expand in terms of ε

Veff(φc) = V0(φc)−
1

4

m(φc)
4

(4π)2

(
1

ε̂
− log

m(φc)
2

M2

)
(13)

where 1/ε̂ = 1/ε − γ + log 4π + 3/2. Note that the di-
vergence term is proportional to m(φc)

4 = (3λφ2c + µ2)2,
namely has the form of a constant, quadratic term, and
quartic term of φc. Indeed, it corresponds to the renor-
malization of the bare parameters µ2 and λ (and cosmo-
logical constant) of the original potential in eq. (10), i.e.
µ2 → µ2 + δµ2 and λ → λ + δλ. Then, only we need to
shift V0(φc)→ V0(φc) + Vc.t(φc) in Veff(φc), where [5]

Vc.t(φc)=
δµ2

2
φ2c +

δλ
4
φ4c =

1

2

(
δµ2

δ
1/2
λ

+
δ
1/2
λ

2
φ2c

)2

=δm(φc).

Here, a φc-independent term has been dropped out corre-
sponding to an overall shift of the potential. Now, by us-
ing the MS subtraction, i.e. δm(φc) = m(φc)

4/(4π)2/(4ε̂),
the renormalized potential reads then as

Veff(φc) =
µ2

2
φ2c +

λ

4
φ4c +

1

4

m(φc)
4

(4π)2
log

m(φc)
2

M2
. (14)

Now, we focus on the case of µ = 0. We want to prove
that even for µ = 0 SSB occurs at one-loop (namely
a non-vanishing minimum) in contrast to the SM Higgs
mechanism where a non-vanishing VEV arises setting
µ2 < 0 in eq. (10). For µ = 0, the effective potential
can be concisely written into

Veff(φc) =
λ

4
φ4c

[
1 +

9λ

(4π)2
log

3λφ2c
M2

]
(15)

We can easily check that the minimum of the one-loop
potential is at a non-zero value, φc = v:

v2 =
M2

3λ
exp

(
− (4π)2

9λ
− 1

2

)

Treball de Fi de Grau 2 Barcelona, June 2019



CW Spontaneous Symmetry Breaking Antoni Bertólez Martínez

whereas the minimum of the original potential in eq. (10)
for µ = 0 is at φc = 0. This is not a trivial application of
the Coleman-Weinberg SSB. More specifically, the loga-
rithm from the one-loop potential gives negative values
for small values of the field corresponding to a maximum
at the origin and opens up the possibility that sponta-
neous symmetry breaking has already occurred.

Note that the new minimum is at a value where

λ log
3λv2

M2
= −16

9
π2 +O(λ) .

is large, namely the minimum is far outside the range for
which the one-loop approximation is valid, since higher
orders will bring higher powers of log φ2c/M

2 even for
small couplings. The problem in this example is that we
must balance terms of order λ and log φ2c/M

2 to find a
minimum, resulting in a large logarithm. Even though
we did not accomplish a spontaneous symmetry breaking
for the simple interacting scalar model in eq. (10), the
apparatus developed here may serve to show that the
phenomena occur in slightly more advanced models.

As will be shown in the next section, if one considers
a theory just slightly more complicated, with an extra
coupling, it might be another story.

Before leaving this section let’s discuss the delicate role
of the mass scale M , appearing at one-loop level. In pre-
vious calculation, the MS scheme was used but in princi-
ple the λ subtraction could be done by different scheme.
At the classical level, λ can be determined by measuring
∂4V0(φc)/∂

4φc. We can use this definition to the effective
potential, namely

λ(M̃) =
1

6

∂4Veff(φc)

∂4φc

∣∣∣
M̃

=λ+
9λ2

(4π)2

(
log

3λM̃2

M2
+

25

6

)
.(16)

At the quantum level, we are forced to define λ at a
non-vanishing scale, because the fourth derivative is ill-
defined at the origin from the logarithm arising from
quantum level. This is the key point of the CW mech-
anism. An intrinsic scale is introduced by loops even
though the classical theory is scale invariant. From
eq. (16), the running couplings at two different scales
are related by

λ(M̃) = λ(M)

[
1 +

9λ(M)

(4π)2
log

M̃2

M2

]
(17)

In terms of λ(M), Veff(φc) reads as

Veff(φc) =
λ(M)

4
φ4c

[
1 +

9λ(M)

(4π)2

(
log

φ2c
M2
− 25

6

)]
.

Veff(φc) is totally invariant if we rewrite it in terms of λ
at a different scale. The change of the scale M would be
compensated by a change of λ(M̃) from eq. (17). The
choice of the renormalization scale M is therefore to-
tally arbitrary but non-vanishing, and will not affect the

physics of the theory. Interestingly, eq. (17) can be writ-
ten as

e−1/βλ(M)M = e−1/βλ(M̃)M̃ = M̂ (18)

where β = 9/(4π)2 and M̂ is the intrinsic scale of quan-
tum the theory, the RGE independent mass scale of
the theory. Then, the minimum is simplified at v2 =
M̂2 exp(11/3).

IV. EFFECTIVE POTENTIAL FOR MASSIVE
SCALAR QED

Now our goal is to build the effective potential for the
following Lagrangian

L = −1

4
(Fµν)2+(Dµφ)†Dµφ−µ2φφ†− λ

4
(φφ†)2, (19)

where Dµ = ∂µ + ig Zµ, with g the gauge self-coupling.
With respect to the last section, we need to calculate
∆−1(φc, x, y) in eq. (9) for either the two reals compo-
nents of φ and the physical ones of Zµ. First, we shift
the fields [6]

φ = φc +
σ + iπ√

2
, φ† = φc +

σ − iπ√
2

, Zµ = Zµ

where σ, π are two real scalar fields. Zµ is unshifted be-
cause of Lorentz invariance, Z(c)

µ = 0. The ∆−1(φc, x−y)
contributions in eq. (7) for σ and π fields is then [7].

i∆−1σ (φc, x− y) =
∂2L

∂σ(x)∂σ(y)
= (−∂2 −m2

σ)δ(~x− ~y)

i∆−1φ (φc, x− y) =
∂2L

∂π(x)∂π(y)
= (−∂2 −m2

π)δ(~x− ~y)

where m2
σ = µ2 + 3λφ2c/2 and m2

π = µ2 + λφ2c/2.
The ∆−1(φc, x, y) contributions to Zµ needs some care.

Because of gauge invariance, not all the Zµ components
are physical. The Zµ quadratic part from eq. (19) reads

LZ =
1

2
Zµ
[
gµν(∂2 + g2φ2c)− ∂µ∂ν

]
Zν (20)

which has rank zero. For Zµ, because of m2
Z = 2g2φ2c ,

only the transverse components are physical [8]. Let’s
define the transverse and longitudinal components of the
electromagnetic field through

ZµT = (PT )µνZ
ν ZµL = (PL)µνZ

ν

where (PT )µν = gµν − ∂µ∂ν
∂2 and (PL)µν = ∂µ∂ν

∂2 are pro-
jection operators, i.e. P 2

T = PT , P 2
L = PL, PTPL =

PLPT = 0. Note, PT has rank three and PL rank one.
This is easily seen in terms of the PL,T (p) Fourier trans-
form. In the rest frame, PT (p) = Diag(0, 1, 1, 1) and
PL(p) = Diag(1, 0, 0, 0). Now, eq. (20) reads as

LZ =
1

2
Zµ
[
(∂2 +m2

Z)(PT )µν +m2
Z(PL)µν

]
Zν ,

=
1

2
ZTµ

[
∂2 +m2

Z

]
ZµT +

m2
Z

2
ZLµZ

µ
L .
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i∆−1ZT,L(φc, x− y) for ZT and ZL are respectively

∂2LZ
∂Z2

T

= (∂2 +m2
Z)δ(~x− ~y) ,

∂2L
∂Z2

L

= m2
Zδ(~x− ~y)

where T = 1, 2, 3. After the Fourier transform, the
Veff(φc) in eq. (9) reads

Veff(φc) = V0(φc)−
i

2

∫
d4p

(2π)4
(
log(p2 −m2

σ) + log(p2 −m2
π)
)

− i
2

∫
d4p

(2π)4

(
3∑

T=1

log(−p2 +m2
Z) + logm2

Z

)
The integrals are similar to the ones of the last section
(the one ∝ logm2

Z shifts Veff(φc) by a constant). Thus,

Veff(φc) = µ2φ2c +
λ

4
φ4c +

1

4

m4
σ

(4π)2
log

m2
σ

M2
+

+
1

4

m4
π

(4π)2
log

m2
π

M2
+

3

4

m4
Z

(4π)2
log

m2
Z

M2

Any real scalar field gives the same contribution as in the
previous section, whereas ZT counts for three.

Now, we focus on the case of µ = 0

Veff(φc) =
1

4
φ4c

[
λ +

3g4

4π2
log

2g2φ2c
M2

(21)

+
λ2

64π2

(
9 log

3λφ2c
2M2

+ log
λφ2c
2M2

))]
As we show later, to find the minimum of the potential
it is enough to work in the approximation λ <∼ g4. Then,
we can neglect in eq. (21) the λ2 terms with respect to
the λ and g4 ones.

Veff(φc) =
1

4
φ4c

[
λ+

3g4

4π2
log

2g2φ2c
M2

]
(22)

By studying the zeros of the derivative

∂Veff
∂φc

= φ3c

[
λ+

3g4

8π2

(
1 + 2 log

2g2φ2c
M2

)]
= 0 . (23)

we find that the minimum is at φc = v:

v2 =
M2

2g2
exp

{
−4π2λ

3g4
− 1

2

}
.

This is yet another example of dimensional transmuta-
tion. The classical theory with µ2 = 0 is scale invari-
ant, because there is no mass parameter in the theory.
The scaleM was introduced as the renormalization scale,
while λ and g2 are physical measured at scale M . The
theory, however, turns out to develop a mass scale φc = v
at the minimum of the potential exponentially suppressed
relative to the renormalization scale. Loop corrections
trig a non-zero minimum. The minimum condition can
be also written as

∂Veff
∂φc

= 0→ λ(M) = − 3g4

8π2

(
1 + 2 log

2g2v2

M2

)
(24)
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-0.5

0.0

0.5

1.0

1.5

ϕc[GeV]

V
e

ff
(ϕ

c
)[

1
0

6
G

e
V
]

FIG. 1: The CW potential in eq.(24) setting v = 246 GeV.
SSB occurs with a non-zero mass term.

To reduce large log corrections and make the one-loop
calculation reliable, we set the renormalization scale at
M = v. By using the experiment inputs v = 246 GeV
and mZ = 91 GeV and setting g2 = m2

Z/v
2 = 0.14, we

get, at the scale M = v, λ(v) = 1.1 × 10−3, which is
perturbative and well in the range of our approximation,
i.e. λ <∼ g4 = 2× 10−2.

Rewriting Veff(φc) in eq. (22) in terms of λ from
eq. (24), we obtain an expression of Veff(φc) manifestly
independent of the renormalization scale

Veff(φc) = −3g4φ4c
32π2

(
1− 2 log

φ2c
v2

)
.

Which has a maximum at φc = 0, whereas a minimum
at φc = v, as we can see in Fig. 1.

Now we can predict the Higgs boson mass by CW po-
tential. The Higgs mass is the value of the curvature of
the effective potential around the minimum,

m2
H =

1

2

∂2Veff
∂φ2c

∣∣∣∣
φc=v

=
3g4 v2

4π2
≡ 3

16π2

m4
Z

v2
(25)

As we have earlier mentioned, this value does not de-
pend on the value we picked for M , since its dependency
vanishes compensated by the λ(M) factor at (24). Nu-
merically, we obtain

mH = 9.5 GeV

We have achieved a minimum in the perturbative regions
thanks to the introduction of the g coupling. However,
this mH value does not agree with the experimental one.
More complicated models are needed, by extending the
Higgs sector (with extra λ self-couplings) or the gauge
sectors (with much heavier bosons (see eq. (25))).
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a/c=0.165
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FIG. 2: Different shapes of the potential in eq.(26) depending
on the value of a.

A. Studies of the CW potential

Now we are interested in studying some features of the
CW potential for µ2 ≥ 0, but still disregarding the terms
proportional to λ2. To this purpose, it is useful to regard
the potential as function of x = 2g2φ2c/M

2

V̂ (x) =
V (x)

M4
= ax+ bx2 + cx2 log x (26)

where a = µ2/2g2M2, b = λ/2(2g2)2 and c = 3/64π2. In
our analysis, we apply b ' c and vary a, namely µ. We
can check in Fig. 2 that two different regimes appear.
For a/c >∼ 0.135, the potential has a minimum at x =
0 (no dynamical generation of mass happens). In this

case, the µ2 term is much larger than λ, so that the
quantum corrections can’t balance the µ2. However, for
a/c <∼ 0.135, a new minimum appears at a non-zero value.
Being an absolute minimum, it would be the ground state
of theory and would explain the dynamical generation of
mass. In this case, the µ2 term is comparable to λ and,
thus, quantum corrections can account for the SSB.

V. CONCLUSIONS AND PERSPECTIVES

In this paper we studied several examples of dimen-
sional transmutation, and the following dynamical gen-
eration of the Higgs mass. In order to do so, we used
the basics of QFT and renormalization group, and mas-
tered the computation of effective potentials for different
lagrangians. We have been able to explain how SSB can
appear due only to radiative corrections (with the ab-
sence of a negative mass term which is a typical strategy
in the Higgs SM). Finally, we also have obtained a quan-
titative value for the Higgs mass which is far away from
the measured value, due to the simplicity of the model.
More complicated models are needed: either extending
the Higgs sector (with extra λ self-couplings) or the gauge
sectors (with much heavier bosons -see eq. (25)-). This is
far away from the present work. However, it has proven
that this methodology can be used in research to try and
explain the measured mass of the Higgs.
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Appendix A: Effective potential integral

Here, we explicitly calculate the following integral

∫
dDk

(2π)D
log(k2 −m) =

d

dα

∫
dDk

(2π)D
1

(k2 −m2)α

∣∣∣∣
α=0

This integral has two reals branching points, k = ±m.
We integrate over the Euclidean space (Wick rotation),
i.e. kE = (ik0,~k) to move the poles to the imaginary axis

d

dα

∫
i dDkE
(2π)D

(−1)α

(k2E +m2)α

∣∣∣∣
α=0

=

=

∫
dΩD−1

d

dα

∫
i dkE
(2π)D

(−1)αkD−1E

(k2E +m2)α

∣∣∣∣
α=0

=

= − i
2

1

(4π)D/2
Γ

(
−D

2

)(
m2
)D/2

where dDkE = dΩD−1k
D−1
E dkE are spherical coordinates

in the D.
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