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Abstract

In the last fewdecades, concurrent connectionprocessingneedshave increased,
and will continue to do so – both server-side and client-side. There has been
a big push in the industry towards solutions that improve the efficiency of all
the pieces involved in this task.

This Bachelor’s Thesis focuses in a foundational feature for many programs:
how to handlemore than one connection at the same time. It is an apparently
simple task –whether you ask a computer engineer or a computer user. How-
ever, it can be done in different ways, each of which has different efficiency
consequences.

This document will explore the main ways to be able to handle concurrent
connections in Linux computer systems. In addition, we will be experimen-
tally analysing the efficiency of themainmethods for accomplishingmultiple
concurrent connections: using different threads or using one of the three I/O
multiplexing tools (select, poll and epoll) provided by the Linux kernel.
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Resum

Al llarg de les últimes dècades, han anat augmentant les necessitats de pro-
cessar connexions concurrents, tant en servidor com en client. L’indústria ha
destinat recursos i esforços en solucions quemilloren la eficiència de totes les
parts involucrades en la tasca.

Aquest Treball Final de Grau es centra en una qüestió molt fonamental dels
programes d’avui en dia: com aconseguir fer més d’una connexió al mateix
moment. Una tasca aparentment senzilla –tant si preguntes a un enginyer
informàtic, com a un usuari– però que es pot fer de diferents maneres i amb
diferents conseqüències en termes d’eficiència.

Aquest document explora lesprincipalsmaneresde fer-ho, en sistemesLinux.
Amés, analitzaremexperimentalment l’eficiènciadelsprincipalsmètodesper
a aconseguir més d’una connexió a la vegada: utilitzant diferents fils, o util-
itzantunade les treseinesde I/Omultiplexing (select,poll iepoll)disponibles
en Linux.
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Resumen

En las ultimas décadas, han aumentado las necesidades de procesamiento
de conexión concurrentes – tanto en los servidores como en los clientes. La
industria ha destinado recursos y esfuerzos en soluciones quemejoran la efi-
ciencia de todas las partes involucradas en la tarea.

EsteTrabajoFinal deGrado se centra enunacuestión fundamental de lospro-
gramasde software actuales: comoconseguir hacer unamásdeuna conexión
simultánea. Es una tarea aparentemente sencilla –tanto si preguntas a un in-
geniero de software como a unusuario–, pero que se puede hacer demaneras
distintas y con diferentes consecuencias.

Este trabajo gira en torno al análisis experimental de la eficiencia de los cu-
atro métodos principales para conseguir más de una conexión simultánea
en Linux: usando distintos hilos o usando alguna de las herramientas de I/O
multiplexing (select, poll y epoll) disponibles en Linux.
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1 Introduction

1.1 Context andMotivation

In the last few decades, there has been a significant increase in Internet usage
– with all its consequences: there are 4 billion connected users world wide,
use of Internet bandwidth is increasing and more daily activities are moving
to the digitalworld. This translates to online services that have to handlemore
concurrent users than ever. It is expected that this trend will continue, with
evenmore connected devices in each household.

This hasmotivated a quest for performance engineering in the field. Big tech-
nological companies have spent significant resources into improving the ef-
ficiency of their systems for scalability and cost optimisation reasons. They
contributed back to the Computer Science community by sharing their find-
ings and solutions, both theoretically – by presenting the solutions in papers,
reports and conferences, and sometimes, even with open source contribu-
tions.

Back in the beginning of the century, once the Y2K1 bug had beenmostlymit-
igated and forgotten, it started appearing a similar concept, C10K, across tech
spheres. It is the problem of having a server handle 10 thousand concurrent
connections.

With the advent of Web 2.0, there was a lot of emphasis in building products,
technologies, frameworks and libraries that were web scale-ready. This basi-
cally meant having products that were able to scale horizontally infinitely.

Inaddition, during thepast fewyears, a varietyofnewprogramming languages
have become popular. They pretty much have in common that they are fo-
cused in performance, safety and developer productivity. This has been one
of the results of the quest for performance engineeringmentioned above. Go,
Swift, Kotlin, and Rust are good examples of that. Some of them have gone

1For context, the Y2K bug was related to storing years with two digits. For example, year
1999was represented as 99but, year 2000 as 00. This causedproblems in lots of software once
it overflowed: such as bad orderings, crashes due to not accepting new dates, etc.
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as far as offering new concurrency primitives, such as co-routines or green
threads to support building highly-concurrent services.

If this new concurrency primitives are displacing threads, at least user-facing
and inhigh-level programming languages, how I/Omultiplexing is beinghan-
dled?

Answering this question is oneof the reasons for this Bachelor’s thesis project.

This project focuses on the underlying implementation of I/Omultiplexing in
the Linux kernel. It is a foundational part of today’s programs, and something
that every developer (and user) takes for granted. Turns out that there are
different ways to achieve the same result: requesting and receiving data over
the network concurrently.

These different ways were not designed at the same time. The oldest one was
designed in the mid 80s. However, there are new approaches to this problem
appearing. Both in user space and in kernel space.

As an example of new approaches in user space, there is a research group,
called Project Loom[1], in the OpenJDK community investigating new con-
currency primitives for Java, fibers in this case. The effort is to be able to sup-
port running millions of fibers on a few kernel threads. They are going as far
as trying to work around calls that would block the underlying kernel-thread
(such as an I/O operation) so that it blocks a fiber but not the whole thread.
As an example of a new approach kernel side, it has been as recently as this
past year, by combining I/Omultiplexing with asynchronous I/O2.

Non-blocking I/O (NIO) is deeply related to I/Omultiplexing and it has been
touted as the way to get past C10K.

It turns out that it is used under a lot of software, frameworks and tools both
used to build scalable systems and for casual usages. It is the type of technol-
ogy that lots of programmers use without knowing it – and even sometimes,
even without understanding it because it is hidden under numerous abstrac-
tion layers. This project also explores this concepts, its usages and its perfor-

2Asynchronous I/O is outside the scope of this project. It is based on dispatching read or
write calls that return immediately and the program is actively notified when data has been
read or written.
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mance characteristics.

1.2 Objectives

The main aim of this Bachelor’s thesis is exploring the underpinnings of In-
put/Outputmultiplexing in Linux. As I/O is a large component of kernels and,
particularly, of the Linux kernel, wewill be focusing onnetwork I/O across the
project.

Themain theoretical objectives of this project are understanding:

• How Linux facilitates I/Omultiplexing

• The similarities and differences those different implementations have

• Which benefits NIO offers when compared to blocking I/O

As it is covered in the theoretical part (section 2), there are multiple ways to
achieve I/O in multiple connections at the same time. We will focus on the
threaded approach – based in blocking I/O. We will also study select, poll
and epoll for non-blocking I/O. In this thesis, all these differentmethodswill
be described and compared in terms of its features, limitations and perfor-
mance characteristics.

To understand the performance characteristics we will be benchmarking an
implementation for each approach and we will compare the results.

Wewill be focusingmainlyonbenchmarking the throughput it canbeachieved
using eachmethod. Wewill also consider the CPUusage implications of each
one.

So, there are twomain experimental objectives for this project:

• Buildingabenchmarking suite for eachdifferent I/Omultiplexingmethod

• Being able to experimentally determine performance characteristics of
each method and compare it with the theoretical performance charac-
teristics

9



1.3 Organisation

This thesis is divided in two parts:

• A theoretical part (section 2) that describes general Linux Input/Output
concepts, describes I/O multiplexing techniques and compares its fea-
tures and limitations

• An experimental part (section 3) that benchmarks the performance of
the described I/Omultiplexing techniques and reports the results

1.4 Project Timeline

The timeline of the project has been defined by setting a monthly goal and it
has been the following:

• Month 1 (Sept): Define general project structure and goals.

• Month 2 (Oct): Research the state of the art in Linux I/O, gather theo-
retical knowledge to continue the project to deepen the general project
definition fromMonth 1.

• Month3-4 (Nov-Dec): Define and implement experimental tests; gather
result data.

• Month4-5(Dec-Jan): Extract conclusions fromthe results andwrite the-
sis.
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2 Technical Background

2.1 Input/Ouput

Input/Output (I/O) is the communication between a computer system and
other devices. For example: reading/writing a file from disk, sending packets
through the network, etc.

It is one of the foundations of operating systems. There are multiple I/O sub-
systems in modern operating systems: storage, keyboards, network, pipes,
etcetera.

I/O in Linux is performed using the standard POSIX system calls for it: read
and write.

2.2 Linux Networking

”Everything is a file” is one of UNIX principles. And this also happens on the
networking side.

Like other UNIX-based kernels, Linux provides networking support through
Berkeley (BSD) Sockets. A socket is an abstract representation for the local
endpoint of the connection.

Sockets are used through the usual system calls to perform I/O operations
read(), write(), and some special ones that handle socket specific aspects,
such as socket(), to create one, or connect() to connect a local socket to a
remote socket, thus establishing a pipewhere data can be read from andwrit-
ten to.

BSD Sockets were first released in 1993 in the 4.2BSD Unix.

2.3 Blocking andNon-blocking Input/Output

Whenusing the standard systemcalls described above, operations block. This
means, for example, a call to read() waits until there is data to be read from
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the socket to continue the execution of the program.

Although this simplifies the structure of the program, this comes at a cost. In
this day and age programs usually make more than one concurrent connec-
tion to aweb service. How it is handled, if read()ingblocksuntil there is data?

There two different possibilities to handle concurrent connections, whichwill
explore into detail in the following sections:

• Threaded Input/Output

• Non-Blocking Input/Output

2.3.1 Threaded Input/Output

Threaded I/O still leverages blocking input/output operations, however, in a
way that allows multiple simultaneous connections.

The gist of it is using different threads, performing each blocking operation in
a different thread. Then, when an operation blocks, it just blocks the thread
that is executing the network connection, while the other threads continue
having a runnable state.

In addition, it is quite an efficient method, because most operating system
schedulers don’t consider IO-blocked threads for scheduling until the oper-
ation can be completed successfully. This means that no CPU time would be
wasted trying to execute the blocked thread.

However, one of the drawbacks of using a thread-pool for handling I/O oper-
ations is the scheduling andmemory overhead that each thread incurs.

Each created thread needs to allocate a stack space (around 2MB in Linux).
Even though the memory is not committed (used), virtual memory space is
consumed – and this can be a problem in 32-bit systems [2].

Thisparadigmis frequentlyused indifferentprogramming languagesandserver
components. For example, Erlang VM handles all disk I/O operations in a
pool of threads, so it does not block the rest of program execution. Apache
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HTTPserver alsouses amulti-threadmodel tobeable tohandlemultiple con-
current connections.

2.4 Non-Blocking Input/Output

Non-Blocking Input/Output (NIO) changes the standard flow of software: it
only allows issuing standard read() and write() operationswhen the kernel
is certain that there is data to be read or the file descriptor is in a status that
supports writing and it would not block.

InLinux, non-blocking I/O is supported for I/Ooperations in terminals, pipes,
FIFOs and sockets. It is not supported on files, because the kernel has an I/O
cache that guarantees that it will not block.

To use non-blocking sockets in Linux, the O_NONBLOCK flag must be set on
the socket’s file descriptor status flag when creating the connection. Then,
a read() or write() operation will only succeed if the kernel is certain that it
does not need to block to perform I/O. If, instead, the operation should block,
the kernelwill not perform it3 andwill return a EAGAINor EWOULDBLOCK, which
actually, are equivalent error codes.

There are threemain system calls in Linux that helpwhen using non-blocking
Input/Output, by providing a way to do I/O multiplexing: select, poll and
epoll.

Theydonot perform I/Odirectly, but they are apillar of efficient non-blocking
I/O, because they allow the program to poll for the status of their file descrip-
tors. It replaces the need to retry every I/O operation infinitely when a EAGAIN
error occurs.

It is worth noting that out of the three system calls, the first two are standard
in the POSIX specification. Thismeans that every POSIX-compliant operating
system has the said system calls available for developers.

3Thiscanhappen,mainly, in two instances. In aread() call, when the receiveddatabuffer
is empty and no new data has been received. When doing a write(), it could happen if at-
tempting to write an amount of data that would fill the sending buffer.

13



On the other hand, epoll is a Linux-specific system call. It is similar in de-
sign to kqueue, which is available on BSD-based operating systems, such as
FreeBSD or macOS.

It is said that Non-Blocking Input/Output is one of the ways to handle higher
concurrency numbers, because no system resources are spentwaiting for I/O.
Instead of waiting, time is spent processing other data that it is ready.

2.4.1 select

The select() function arrived with the implementation of Berkeley sockets
in BSD4.2 in 1983. select is a systemcall that provides I/Omultiplexing facil-
ities to programmers. This system call was available on the 1.0 version of the
Linux Kernel.

According to its documentation, select “allows a program to monitor multi-
ple file descriptors, waiting until one or more of the file descriptors become
”ready” for some class of I/O operation” [3].

It is defined in the following way:

int select(int nfds,
fd_set *readfds,
fd_set *writefds,
fd_set *errorfds,
struct timeval *timeout

);

There are three types of states that can bemonitored with select:

• A file descriptor is readable

• A file descriptor is writeable

• A file descriptor has an exceptional condition: out-of-band data is re-
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ceived4 or “a state change occurs on a pseudoterminal slave connected
to a master that is in packet mode” [5]

When select() is used in a non-blocking way, the function returns the total
number of file descriptors that are ready to be read, written and checked for
exceptions. This means that select() can be used for busy-waiting on such
file descriptors.

select() is not limited to handling non-blocking I/O, as it can be config-
ured to block.5 However, it allows programmers to use the function in a non-
blocking manner (passing a value of 0 for the timeout argument).

select has one big limitation: in a single call, it can just keep track of a fixed
number of file descriptors. This number is a constant defined at kernel com-
pile time – it is not possible6 to change this value in runtime. In Linux it is
hardcoded to 1024.

2.4.2 poll

poll() is used in a similar way as select(). It is also used to perform I/O
multiplexing. The function first appeared in the 2.2 version of the Linux Ker-
nel, released in early 1996.

It is defined in the following way:

int poll(struct pollfd *fds, nfds_t nfds, int timeout);
4Out-of-band data is a feature of streaming sockets that allow notification that there is

high-priority data without having to read all the data received before[4].
5The developer can decide whether the select() call blocks or not. If it is configured to

return immediately, it will not block, but the program needs to be busy-waiting. This has the
advantage of optimising for lower latency at the expense of higher CPU usage. Instead, if the
programmer decides to use select() in a blocking way, it will be slightly more inefficient
(there is an overhead with blocking and resuming threads at the kernel level, due to context
switches) but it will not waste CPU time performing the busy-waiting in user-space.

6More than impossible, it is designed to be difficult to workaround and change that num-
ber. Should it be changed, it would need a re-definition inside glibc. However, it is probably
better to use poll or epoll instead of trying to hack select into accepting more values.
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If we compare the definition of pollwith the select one, we can see that it is
very similar.

In this case, instead of separating file descriptors into sets based on the opera-
tion statewewant to handle, just a set of pollfd is needed. This data structure
contains the file descriptor and the events we want to ”acknowledge”.

Compared to select, poll does not limit the number of file descriptors that
it can track and is able to track more fine-grained events, including:

• Data can be read7 (Events: POLLIN and POLLRDNORM)

• Out-of-band data can be read (Events: POLLRDBAND and POLLPRI)

• Peer has shutdown their socket (Event: POLLRDHUP)

• Data can be written8 (Events: POLLOUT and POLLWRNORM)

• Out-of-band data can be written (Event: POLLWRBAND)

• An error has occurred (Events: POLLERR)

• A hangup9 has occurred (Event: POLLHUP)

• File descriptor is not open (Events: POLLNVAL)

poll() can also be used in a blocking or non-blocking way. The latter, also
allows the programmer to perform busy-waiting for the specified events for
the given file descriptors.

2.4.3 epoll

epoll is a collectionof systemcalls (epoll_create,epoll_ctl, andepoll_wait)
appeared in the version 2.6 of the Linux kernel, released in late 2003.

7Not including out-of-band data.
8Not including out-of-band data.
9Ahangup is an statewhere there the file descriptor is valid but ”a device has been discon-

nected, or a pipe or FIFO has been closed by the last process that had it open for writing.”[6].
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epoll provides amoremodern foundation that provides I/Omultiplexing fa-
cilities. It was designed to be more scalable, particularly, in terms of file de-
scriptors to watch.

It has two main differences when compared to the previous two I/O multi-
plexing methods:

• It provides a more efficient way to track lots of file descriptors

• It provides edge-triggered or level-triggered notifications.

This API introduces two new concepts. File descriptor events can be edge-
triggered or level-triggered. An event is edge-triggered when it does not keep
status, once the event has been emitted.

Let’s look at an example. With level-triggering, even if nonewdata is received,
the file descriptor will be returned as being readable until data is fully con-
sumed. Instead,whenwesetupepollwithedge-triggering semantics tomon-
itor that a file descriptor can be read, there is a different behaviour. Once
epoll_wait() has returned once that the file descriptor can be read, it will
not return the same status until new data comes in.

select and poll are only level-triggered.

Edge-triggering requires more care when programming (and some kind of
state machine), as it can produce a deadlock when one side misses one event
or there is more data that can be written or read with a single system call.
Then, one side would be waiting for more data to arrive (instead of sending
data back) and the other side would be waiting for data from the other side.

There is a limitation on the maximum number of file descriptors that a single
instance of epoll can track. This limitation, however, is not static and hard-
coded as select is. It basically depends on the available systemmemory, but
it is much larger than select. There is also a maximum number of epoll in-
stances that can be created system-wide.

When it is just used in an level-triggeredmode (like selector poll), theman-
ual describes it as: ”epoll is simply a faster poll, and can be used wherever
the latter is used since it shares the same semantics.”[7].
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We can see all the epoll-related system call definitions below:

int epoll_create(int size);

int epoll_ctl(
int epfd,
int op,
int fd,
struct epoll_event *event

);

int epoll_wait(
int epfd,
struct epoll_event *events,
int maxevents,
int timeout

);

When using epollwe notice that we first need to use epoll_create() to cre-
ate a file descriptor.

This file descriptor represents the poller that will be used to perform further
calls. Once it is created, we need to register the file descriptors that wewant to
trackwith thefile descriptor providedby epoll_create(). We register the file
descriptor we want to watch using epoll_ctl(), passing the events we want
to keep track of. Finally, to check if any file descriptor has triggered any event,
we use the epoll_wait() in a similar way to how select and poll behave.

epoll supports reporting a subset of the events that poll report.

• Data can be read10 (Event: EPOLLIN)

• Out-of-band data can be read (Event: EPOLLPRI)

• Peer has shutdown their socket (Event: EPOLLRDHUP)
10Not including out-of-band data.
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• Data can be written11 (Event: EPOLLOUT)

• An error has occurred (Events: EPOLLERR)

• A hangup has occurred (Event: EPOLLHUP)

It is worth noting that when using epoll_wait(), we do not need to pass the
list of file descriptors to the kernel each time. This is due to the stateful nature
of epoll. It is the main conceptual difference in usage from the other two.

We can see from the definition above that epoll is completely different from
select() and poll(). The others are stateless on the kernel side, where the
program needs to pass the list of file descriptors each time it wants to poll for
new events.

11Not including out-of-band data.
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3 BenchmarkingI/OMultiplexingImplementations

This Bachelor’s thesis focuses on comparing the throughput of four different
ways of achieving I/Omultiplexing: using a threadedapproach, using select,
poll and epoll. As it has been mentioned previously in section 1.2, we will
be only focusing in networking I/O.

3.1 Benchmark Components &Architecture

The tests have twomain components:

• A simple server

• A client

The server is the simplest component in the test suite. It is implemented using
the Go language. It is a simple non-blocking TCP server that uses language-
specific paradigms so it is performant and scalable.

The point of this project is not to test the performance of the server imple-
mentation and we want a server that is performant so it does not become a
bottleneck on our tests.

The server immediately accepts a connection from the client and replies the
same response to every request, after waiting for a specified time.

The client is where the benchmark is performed. It is written in C++ and it
contains a benchmark implementation of everymethodwe are testing. It logs
information12 regarding when a request has beenmade, a response has been

12The logging operation has been designed in such a way that imposes the least overhead
possible in the application. It uses a circular buffer to temporally store tracing information
and it is persisted to disk periodically, asynchronously, using a background thread. This
should not have any impact in network I/O. However, there is a small impact on raw through-
put, as some CPU cycles are being spent storing and writing tracing information instead of
processing requests. It is worth noting, also, that this overhead should be more or less con-
stant with the concurrent connection value, irrespectively of the other variables.
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received and the CPU time consumed for each test run. All this data is aggre-
gated and analysed later.

3.1.1 Client

As it has beenmentioned above, the client has been implemented in C++, be-
cause it allows abstracting the differences in every test while allowing code
reuse and because it is easy to access the system calls we are using in the tests
without much performance hit. As we can see in fig. 1, an abstraction for the
test runner has been designed, and every benchmark has the specific imple-
mentation for its multiplexing method.

Test Runners - Class Diagram

TestExecutor

void execute()
void run()

ThreadedExecutor

void run()

PollExecutor

void run()

SelectExecutor

void run()

EpollExecutor

void run()

Figure 1: Class Diagram of the implementation of the test runners

In addition, there are numerous operations that are done in each test. For ex-
ample, for creating a new socket and connecting it to the remote server, send-
ing a request to the server, reading a response back or emitting tracing data.

Each operation has been implemented so that it can be used independently
of the test it is running. This means that every test is executing the same code
for the operations above. Because every test executed the same shared code,
we have results that can be better compared between them. If there were a
small inefficiency in an operation, it should have the same effects in all the
tests, thus, it would still allow relative comparison between all.

As it has been mentioned previously, a log is created for every test. Each log
is stored in a CSV format and contains a record of every socket that has been
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opened and closed, every request issued, every response received, every con-
nection failure13 and used user and kernel CPU time during the test run14.

The information contained in a trace is aggregated with all the other informa-
tion for further analysis.

Test runs that use select, poll and epoll run using a single thread and per-
form busy-polling. threaded tests, instead, use blocking I/O and a thread per
connection.

3.1.2 Protocol

We defined a simple protocol for our tests. It is request-response text-based
protocol where eachmessage ends with the new line delimiter (\n).

Each request contains information regarding the test and the expected be-
haviour of the server. Namely, it contains the number of seconds we want
the server to wait until returning the response. In the example below, we can
see how a request for a delay=500mswould be represented in the wire.

500\n

The server always returns the same fixed-size response, to all clients and all
requests. In our case, it is a 12 byte response with a fixed content:

Lorem Ipsum\n
13There were no connection failures in the tests, however the implementation accounted

for it. In our tests, a connection failure is considered when connect() fails and when there is
an error in write() or read() operations.

14This CPU time information is obtained directly from the kernel using
getrusage(RUSAGE_SELF). It is a system call that allows the calling program to get us-
age information from itself. It supports retrieving information such as CPU times, memory
usage, page faults, IPCmessages, etc.
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3.2 Methodology

We focus on analysing the request/response throughput of every I/O multi-
plexing method we are testing.

To do so, the tests have beenmodelled with three different variables: number
of concurrent connections, response delay and connection reuse.

We assume the request/response throughput will increase linearly with the
number of concurrent connections, until the server cannot keep up with the
load, the network is saturated or the underlying I/O implementation is pres-
sured.

A responsedelay is injected inevery test so thatwecancomparewhathappens
when there is a delay. We will be using 5ms, 50ms and 500ms as delay values.

We also compare what happens with a connection-per-request model15 ver-
sus a persistent connection model16. In both scenarios, the client does not
send a second request until the response from the previous request has been
received.

In the connection reuse scenario, a test will look like:

1. A socket is created and a connection opened

2. A request is sent

3. A response is received

4. Repeat 1-3 until test is finished

5. Close socket

Instead, when not reusing connections, the test will look similarly to:

15This reproduces the HTTP/1.0 connectionmodel. Each time a request is sent, a connec-
tion to the server is opened. After the response is received, the connection is closed.

16This reproduces HTTP/1.1 and newer versions (also used in multiple protocols). A con-
nection is opened for sending a request and is not closed until the session finished. This
means that the same connection is reused for multiple requests which results in increased
throughput and lower latency [8]. It is usually known as persistent connections or keep alive.
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1. A socket is created and a connection opened

2. A request is sent

3. A response is received

4. The socket in 1 is closed

5. Repeat 1-4 until test is finished

Each test run takes aminute to complete. Tests have been runmultiple times
on a 3 vCPU17 servers18 using an internal network between the machine that
hosted the server and the one that hosted the test.

3.3 Results

More than 11GB of tracing information has been recorded for the analysis in
section 3.3 across more than 1.700 test runs for this Bachelor’s thesis.

Results of the analysis will be presented in three sections:

• Throughput: Analysing the impact eachmethod has in throughput. We
measure it through the total amount of successful Requests per Minute
(RPM).

• ConnectionReuse: Wewill be analysing the difference between reusing
connections and using a new connection for each request in terms of
throughput

• CPUUsage: Analysing the CPU usage in seconds of eachmethod.
17vCPU is a share of the underlying physical CPU from cloud servers. Usually, a vCPU is a

core or a thread of a core.
18Servers were hosted in DigitalOcean.
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3.3.1 Throughput

We will be analysing throughput results separately by delay (5ms, 50ms and
500ms).
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(a) RPM Throughput of tests with delay=500ms and no con-
nection reuse
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(b) RPM Throughput of tests with delay=500ms and connec-
tion reuse

Figure 2: Comparing RPM throughput observed with delay=500ms, with log-
arithmic scale for RPM

When we look at the request throughput at 500ms delay in fig. 2, we can see
that RPMnumbers are increasing linearly. And eachmethod does so – theR2

value for the regression line of every method is almost 1.

It is interesting to notice here that all methods perform similarly – both when
not reusing connections and also when reusing them. This has an easy expla-
nation: the delay is so large that small inefficiencies do not show.
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(a) RPMThroughput of testswith delay=50ms andno connec-
tion reuse
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(b) RPM Throughput of tests with delay=50ms and connec-
tion reuse

Figure 3: Comparing RPM throughput observed with delay=50ms, with loga-
rithmic scale for RPM

When looking at delay=50ms data in fig. 3, we start seeing some differences
between eachmethod both when using connection reuse and not.

We start seeing more absolute throughput with connection reuse compared
to when not reusing connections. We will analyse in detail this effect in sec-
tion 3.3.2.

As we can see in fig. 4, it is interesting to notice how frequently poll offers
more throughput than select, despite not showing a significant throughput
advantage.
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(a) Histogram of distribution between poll and select.
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zooming on (-20000, 20000).

Figure 4: Histogram of distribution of the difference between poll RPM and
select RPM in all runs with delay=50ms. A negative value indicates that poll
was slower than select. A positive one, that pollwas faster.

We can see that in almost every benchmark, the poll implementation had
more throughput than select.

It is worth noting that select and poll have a similar implementation in the
Linux kernel [5]. That explains why there is not a significant variance of the
throughput results.

Historically, pollhadanadvantage toselecton sparse sets of filedescriptors
–when therewere fewfiledescriptorsmonitoredbut someof themhadbigfile
descriptor numbers. In Linux 2.6 (late 2003), there were some optimisations
introduced to close that gap.

Benchmarks run with delay=5ms should be the ones that start showing differ-
ent performance characteristics between I/O multiplexing methods, as seen
in fig. 5. This can be explained by the fact that there is going to be a bigger
amount of requests (there is less latency) and this increase in number of re-
quests translates into an increase in the number of I/O operations.
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(a) RPM Throughput of tests with delay=5ms and no connec-
tion reuse
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(b) RPMThroughput of tests with delay=5ms and connection
reuse

Figure 5: Comparing RPM throughput observed with delay=5ms, with loga-
rithmic scale for RPM.

First of all, it is not surprising that in a non-pipelining request model19, less
delay is correlated with a higher throughput, that was the expected behaviour
and the one seen in the tests.

We can see that behaviour when using a low amount of concurrent connec-
tions is quite similar to what we have seen in the other two experiments.

However, it is noticeable a different behaviour for the threadedwhen there is
a delay of 5ms. An explanation for that could probably lie in the fact that there
is much more thread contention. This was not such an issue in the previous
situations because the delay was greater and threads were able to stay longer

19A pipelining requestmodel is one where the client continuously issues requests, without
first waiting to the server to send its response.
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in awaiting state.

We can start noticing larger deviations between poll and epoll20 once we
use a bigger amount of concurrent connections. We will see the difference in
performance looking at 10.000 and 20.000 concurrent connections.

Unfortunately, it is not possible to test select()withmore than 1024 connec-
tions (as it has beendescribed in section 2.4.1). Also, it isworthnoting that the
threaded approach could not be tested with such amount of concurrent con-
nections because it needs a thread per each connection and thread creation
is limited by the kernel.

It is there where epoll starts showing an edge, as we can see in fig. 6.

20We cannot compare them to select, because as it has been described in the theoretical
section 2.4.1, it is limited to tracking 1024 file descriptors – so in this case we are limited to
tracking 1024 concurrent connections.
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Figure 6: RPM comparison of epoll and poll when tracking a high number
of connections and reusing connections with a test duration of 120s.

Even if we are just comparing relative performance between epoll and poll,
it is interesting tonote thebehaviourof the test, here20.000connectionsachieve
worser throughput than 10.000 connections. This can be explained by many
factors. One of them is that we are using tests with a limited time, and there
is an associated overhead of opening the connections – this means that it is
a fixed cost for the benchmark, thus increasing the test run time should offer
better throughput.

In addition, it is worth mentioning that being able to reliably send the maxi-
mum possible amount of packets over thousands network connection from a
single host is not an easy feat: there are limits around the maximum number
of connections per destination IP and destination port; there is an overhead
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by using TCP to send and receive packets (both in terms of added space from
headers and increase in packets throughput from sending ACKs). For those
reasons it is difficult to focus in absolute throughput with this test setup.

It is also important to note that when not using a connection reusemodel and
tracking a large number of connections, the comparison between epoll and
poll can be amixed bag. This is explained by the fact that we need to add and
remove each socket that we are using to epoll, and that requires 2 different
system calls per each socket. At a high number of concurrent connections,
this additional overhead in multiple syscalls starts to show.

3.3.2 Connection Reuse

After analysing throughput data from both tests with connection reuse and
tests that use create a new connection for every request, we can see in fig. 7
that using connection reuse can offer greater throughput across every tested
delay point.
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Figure 7: Graph showing throughput difference between tests that reuse con-
nections from those that do not, across all tests performed, with logarithmic
scale for RPM.
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Aswe can see, in this case that the increase in throughput is observed in every
I/Omultiplexing method tested.

This phenomenon can be explained by the fact that there is an associated
overhead in the creation of a socket – not just in the creation of the associ-
ated file descriptor (this is quite inexpensive), but, every time a new socket
connection is opened the kernel has to perform the 3-way TCP handshake21

[10].

Also, there is another source for potential delays (and, thus, throughput de-
creases). Theservermayprocessandaccept theconnection requestwith some
delay. When doing the operation potentially hundreds of thousands times,
even if it takes a small time, delay adds up significantly22.

3.3.3 CPUusage

To analyse CPU usage of the I/Omultiplexingmethods, we will be focusing in
total CPU time and a bit on kernel CPU time.

User CPU time is the CPU time that CPU cores have been executing the ex-
ecutable code. Kernel CPU time is the CPU time that CPU cores have been
executing Kernel code associated with system calls required by our process
[11]. We define total CPU time asUser CPU time + Kernel CPU time.

Itmustbe taken intoaccount thatselect,pollandepollperformbusypolling,
so that it is a bit complicated to compare them to the threadedmethod (espe-
cially when delay figures are higher)23. They are doing busy polling because
it optimises for lower latency and thus, it provides an increase in throughput.

21TCP 3-way handshake is such an overhead that there is a proposal of new protocol,
QUIC[9], in draft status, that offers similar features as TCP, implemented in user-space on
top of UDP, that are able to achieve 1-way handshake for establishing connections or, even,
without handshake.

22Take for example, an accept operation that takes 0.1ms, in some test runs, there were on
the order of 105 connections, so that translates into a delay of 10s. That is 10% of the runtime
of a single benchmark.

23It is worth noting that select, poll and epoll can also be used using a blocking ap-
proach, where the busy polling is performed by the Kernel rather than on user space.
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Unfortunately, the threaded approach can only work in a blocking way.
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(a) Total used CPU seconds per request with delay=500ms
and no connection reuse
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Figure 8: Comparing total used CPU seconds per request observed with de-
lay=500ms, with logarithmic scale for seconds
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Figure 9: Comparing total used CPU seconds per request observed with de-
lay=50ms, with logarithmic scale for seconds
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Figure 10: Comparing total used CPU seconds per request observed with de-
lay=5ms, with logarithmic scale for seconds

Results are presented in fig. 8, fig. 9 and fig. 10. Firstly, we can notice that
frequently select is the method that uses most total CPU time per request
performed, especially with higher delays.

threaded is a special case, because, as we mentioned previously, operations
block, so no CPU time is spent on waiting. This is the reason why it has the
lowest CPU usage per request.

Test without connection reusing do use more CPU time per request, com-
pared to those that do employ connection reuse. This is largely explained by
the added overhead, for similar reasons as the ones stated in section 3.3.2.

When testing at high concurrent connections, with connection reuse, it seems
like epoll is consistently more efficient than poll and select. This makes
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sensebecauseaswedescribedpreviously, there shouldbe lessoverheadwhen
calling epoll_wait compared to the other two systemcalls, aswedonot need
to pass around the list of file descriptors and events we want to be notified of
each time.

epoll has an expected CPU usage curve, especially when we also look at the
kernel CPU time used – as we can see in fig. 11. epoll kernel CPU usage stays
constant until around 100 concurrent connections. Thismakes sense because
there is the penalty of having to create the epoll file descriptor – that is a fixed
cost, and does not depend on the number of file descriptors will be tracking.
After that, just n system calls have to bee issued, one per connection.

The interesting behaviour is after 100 concurrent connections. Kernel CPU
time starts to rise, and seems to grow linearly. This could be explained by one
of the following reasons:

• epoll_wait is slower when is tracking more file descriptors

• There is anon-negligibleamountof addedoverheadwhencreatingmore
sockets or doing more concurrent operations

It is worth noticing, however, that select, poll and epoll tend to have simi-
lar CPU performance characteristics and it does not seem like we can extract
more interesting conclusions. A more in-depth analysis (probably dedicated
kernel profilers) should be done to be able to determine if this behaviour is
explained by one of the reasons above, or a combination of them.

When looking at threaded, also in fig. 11, we can see that the lower the delay,
the higher the CPUusage per request. It ismostly due to the additional thread
context switching overhead. It has a different curve to the rest of themethods
because kernel time increaseswith the number of concurrent connections, as
there is more context switching between threads.
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Figure 11: Comparing total kernel CPU time observed with delay=50ms and
connection reuse.

3.3.4 Method Analysis

After analysing the data, we can extract the following conclusions regarding
the methods, as guidelines to use when selecting which multiplexing facility
we want to use:

• Threaded I/Omultiplexing can be useful with a small-to-mediumnum-
ber of concurrent connections. Thehigher limit remains limitedbyCPU
usage,OS limitations and context switches. It is easy to reasonabout be-
cause it uses the same paradigms.
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• select and poll are quite interchangeable. First one is only useful for a
small number of concurrent connections (1024) and the latter one can
scale to higher numbers. They are also useful because they are portable
– they work on every POSIX-compliant operating system.

• If portability is not a concern, or a large number of concurrent connec-
tions need to be tracked, epoll is themost efficient solution for tracking
multiple connections.

• Code used to handle I/Omultiplexing with select, poll and epoll (at
least level-triggered) is quite similar – and follows the same structure,
so it should be easy to migrate between all of them to overcome each
issues.

• If greater efficiency when handling a large amount of concurrency is
necessary, it is recommended to design the program in a way that is
possible to abstract away the use of differentmultiplexing facilities, this
shouldhelp, for example, touseepoll inLinux-basedsystemsandkqueue
in BSD-based ones.
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4 Conclusions

The main objectives of this Bachelor’s thesis were understanding I/O mul-
tiplexing facilities, its differences and similarities and which benefits Non-
Blocking I/O provides. Also, another objective was developing a benchmark-
ing suite for all themethodsmentioned in the report. All the objectives set for
this project have been achieved.

Across the tests, we have been able to see the advantages of reusing connec-
tions, as it highly increases the throughput and reduces the relativeCPUusage
per request. This is something to take into account when designing protocols
and networking systems.

4.1 FutureWork

Thereare some interesting tests and lines ofwork thatwerenot pursued in this
Bachelor’s project due to size and time constraints, but that could be pursued.

• Comparing the same tests with another two variables: request payload
size and response payload size, to see if and how affect the results.

• Comparing the same tests with mixing highly active connections with
some quiet ones

• Comparing the same tests in BSD systems to compare epoll to kqueue
[12], which are similar in nature andfirst onewas inspired by the former
one.

• Test Asynchronous Input/Output (AIO) system facilities and compare
them with the ones tested in this project. Coincidentally, in the later
stages of this project, a new kernel API (IOCB_CMD_POLL) was released
that allows polling for events using the AIO subsystem. This allows for
greater performance, because it canmapa circular buffer of the event in
theprocess address space,whichhighly reduces thenumberof required
system calls – and thus the number of context switches.
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• Test AIO/NIO implementations abstracted by 3rd-party libraries, such
as libevent, libuv or Boost.Asio.

• Compare the tradeoffs between performance and program complex-
ity,maintainability and developer productivity that eachmethod offers.
Not every facility is easy to reason about, some of them even have hid-
den complexity. It is important to understand the implications of each
method not only in performance but also if it makes developers more
productive or less, if cause more or less bugs, etc.

• In the recent years, there has been a lot of research in the area of net-
working completely done in user-space (thus bypassing the kernel en-
tirely), suchasMegaPipe [13]. Itwouldbeworthcomparing the through-
put andperformance characteristics between in-kernel networking and
off-kernel networking.
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5 Annex

5.1 Running the test

Source code for both the server and the client has been provided with this
Bachelor’s thesis. In this section wewill describe how to set up and run a test.

Both components of the test include aDockerfile so that they canbe runeas-
ily without needing any kind of dependency (other than Docker itself). How-
ever, it is worth noting that using this setup for the tests will probably incur in
some added overhead fromDocker itself.

5.1.1 Running the server

To run any test, we first need the server up and running.

It can be executed easily by just typing:

$ go run server/server.go

It is worth noting, that the server will be listening for connections on port TCP
7777, so it will need to be free before running this program.

5.1.2 Running a test

Thetest client is prepared to runeither all the tests or a subset of tests. It allows
configuration of delay times and number of concurrent connections through
command line flags.

We can see the full list of command line flags below:

• -ip: The IP address the client will use in benchmarks

• -port: The port the client will use in benchmarks
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• -testWaitSeconds: The cool-down period in seconds between each
test

• -delays: The comma-separated list of delays in milliseconds that will
be tested

• -connections: The comma-separated list of connections that will be
tested

• -threaded: Run the threaded test

• -select: Run the select test

• -poll: Run the poll test

• -epoll: Run the epoll test

• -all: Run all tests

An example execution of a test that will all tests with 5 and 10 concurrent con-
nections, with 50ms of delay to localhost would be invoked using:

$ ./code -connections 5,10 -delays 50 -ip 127.0.0.1

The trace information will be stored in /tmp.
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