
Machine Learning with the backpropagation algorithm

Author: Aleix Espuña Fontcuberta.
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.∗

Advisor: LLúıs Garrido Beltrán

Abstract: The goal of this project was to develop with Python a classifier capable to separate
two different classes (binary classifier). To do this, we implemented a neural network that uses
gradient descent with the backpropagation algorithm to learn in a supervised training process. We
first trained the net and studied its behavior with a binary classification problem that we created,
generating our own training examples with the acceptance-rejection algorithm. We realized that
the net was returning the conditional probability for each example to belong to one of the classes.
After that, we focused on two different real classification problems, both obtained from available
online machine learning data sets.

I. INTRODUCTION

Classifying a set of examples according to the classes
they belong to is a problem that can be commonly found
in physics or in other disciplines. It is often necessary to
classify a set of physical measurements where each one
can correspond to a signal we want to analyze or to a
noisy background we want to discard. For example, if we
are studying the trajectory of a subatomic particle such
as the Higgs boson, we must first know if the positions we
are measuring correspond to the Higgs boson or to any
other particles which are also running in our accelerator
(background). In general, an example i to classify can
be described as a vector ~xi, whose values are the features
of that example. A set of examples {~x1, ~x2, ...~xm} that
belong to one class, lets say class 0, can be distributed
according to a distribution function ρ0(~x). The problem
is that in many complex classification tasks, the distribu-
tion functions of the different classes are very complicated
and unknown. There are efficient methods for classify-
ing examples if the analytical distribution functions of
the different classes are known, but this is not the case
we consider here. When the distribution functions are
unknown, Machine Learning techniques can be used to
develop a function that learns to classify the examples. In
our project, we focused on binary classification tasks. We
used a neural network that learns in a supervised train-
ing process called gradient descent, where the gradient
is calculated with an algorithm named backpropagation
[1]. The training is called supervised because every time
the net receives a training example, it also receives its
solution, which is the class number where the example
belongs to (0 or 1). First, explanation about what is a
neural network and how the backpropagation algorithm
works will be provided. Afterwards, we will show how
we used a method called acceptance-rejection to gener-
ate training data and build a very instructive classifica-
tion problem. With it, we will understand which is the

∗ tfgac@ub.edu

ideal function that our net tries to reach during the train-
ing process of this problem. Finally, we will study two
different real classification problems obtained from online
ML data sets, exhibiting the neural network training and
performance in each one.

A. Neural networks with the sigmoid function

To understand what is a neural network, it is conve-
nient to take a look at Fig.(1). Each circle represents
a neuron, which has an intrinsic parameter that is com-
monly called the bias b. The connection between two
neurons also has an intrinsic parameter, the weight w.
The last parameter is the activation a, which represents
the information that one neuron sends to the others lo-
cated at the next layer. When a single neuron in a
layer receives M activations from the previous layer of
M neurons, a new variable z is created by computing

z = (
∑M
i=1 aiwi) + b. Finally, the sigmoid function is

applied to the z variable, generating σ(z) = 1
1+exp(−z) ,

which becomes a new activation that is redirected to all
the next layer neurons.

FIG. 1. Example of a binary neural network with four layers.

From now on, we will use the same notation that [1]
uses to refer to all parameters found in a layer. Activa-
tions al and bisases bl will be vectors. The superscript l
will indicate the layer they belong to. To give you just
one example from Fig.(1), the first hidden layer has four
neurons and therefore the biases form a vector b2 of size
4. Each neuron in the first hidden layer computes the



Machine Learning with the backpropagation algorithm Aleix Espuña Fontcuberta

sigmoid function and generates an activation, so the first
hidden layer creates the activations vector a2, also of size
4. Weights are more complicated because they will be
represented as matrices. A matrix wl will contain the
weights of all connections between the l and l− 1 layers.
In Fig.(1), the value w2

ij of the 4x2 matrix w2 corresponds
to the weight between the i neuron of the second layer
and the j neuron of the first layer. With this new vector
notation, the result al that a layer l redirects is a vector
al = σ(zl) with zl = wlal−1 + bl. Note that wlal−1 is the
product of a matrix for a vector, returning a vector. Note
as well that the expression σ(zl) means that the sigmoid
function is being applied to each of the zl components,
returning a vector too.

The process for calculating the neural net output given
an ~xi example starts at the input layer. This input layer
does not do any computation, it just sends the example to
the next layer, which means ~xi = a1. Then, the described
products and sigmoid functions are computed layer by
layer until reaching the net output aL, where L means
the last layer. In Fig.(1), aL = a4 is a vector of size 1, or
in other words, a single value. That’s why we call the net
in Fig.(1) a binary neural network, because it returns a
number between 0 and 1 that will be used for binary clas-
sification tasks. In this context, learning means trying to
achieve a neural network function aL(~x) that minimizes
an error defined as E = 1

2N

∑
x(y(~x) − aL(~x))2. Where

the sum goes through a group of N examples ~x whose
solutions y(~x) ∈ {0, 1} are known. This examples are
called training examples and all together form what we
call a training set. It will be useful to rewrite the error in
the form E = 1

N

∑
xEx, where Ex = 1

2 (y(~x)− aL(~x))2.

II. THE BACKPROPAGATION ALGORITHM

A. About gradient descent

Gradient descent consists in changing the neural net’s
weights and biases towards the opposite direction of the
E function’s gradient in order to reach the minimum of
the error E. Even though there are different methods
to compute gradient descent, we will focus on the fast
approach that Eq.(1) describes, which also appears in
[2].

∆wlij{n} = −η ∂Ex
∂wlij

+ α∆wlij{n− 1} (1)

∆bli{n} = −η ∂Ex
∂bli

+ α∆bli{n− 1}

Please notice that the update that a weight or bias re-
ceives in a step {n} depends on the update it received in
the previous step {n − 1}. The most difficult task is to
calculate the gradient. Even a very small neural network
can easily have hundreds of weights and biases, which
means that hundreds of partial derivatives will have to

be calculated. This task is carried out with the back-
propagation algorithm.

B. The backpropagation equations

The reader can also study the same equations in fur-
ther detail in chapter 2 of [1]. The backpropagation equa-
tions are written in terms of a new variable δl. This new
variable is defined as a vector δl ≡ ∂E

∂zl
, which means that

δlj ≡ ∂E
∂zlj

.

δL = ∇aE � σ′(zl) (2)

δl = ((wl+1)T δl+1)� σ′(zl) (3)

∂E

∂blj
= δlj (4)

∂E

∂wljk
= al−1k δlj (5)

It’s easy to understand why this four equations are called
backpropagation equations. The delta parameter is first
calculated in the last layer with Eq.(2), where the Had-
damart product � appears. Then, Eq.(3) lets us to re-
cursively calculate the delta variables in the previous lay-
ers. Finally, the gradients are calculated with Eq.(4) and
Eq.(5).

III. UNDERSTANDING THE NEURAL
NETWORK OUTPUT

We wanted to start with a simple binary classification
problem. It was based on classifying 2D random points
generated according to two simple distribution functions
defined by us. In order to generate data for this problem,
we considered that we could use a well known algorithm
called the acceptance-rejection algorithm, listed in [3].
We first defined the functions ρ1(x1, x2) = 2

log(2)
x1

x2+1

and ρ0(x1, x2) = 9x21x
2
2 , both normalized in the coor-

dinates domain x1, x2 ∈ [0, 1]. After that, we used the
algorithm to generate 104 2D points, 50% of them dis-
tributed according to ρ0 and the other 50% according to
ρ1. We wrote the coordinates of this points and the class
where each one belonged to in a file called training file.
We also used the same algorithm to create an additional
file, called test file, with the same characteristics. The
reason why we created this test file is that you can train
very well the net with your training data and yet obtain
poor results when trying to classify new examples that
your net didn’t see during the training. Checking that
both the training file error and the test file error are de-
creasing during the training lets you to control that your

Treball de Fi de Grau 2 Barcelona, June 2013



Machine Learning with the backpropagation algorithm Aleix Espuña Fontcuberta

net is performing well on the training file and on new
information as well. In this problem, the error function
E that we described in the introduction can be approxi-
mated in an integral form considering a continuous case
of two probability densities. Once it is done, a functional
analysis on the new error can be performed, shown in [2],
finding the analytical function aL∗ (x1, x2) that minimizes
the error E.

aL∗ (x1, x2) =
α1ρ1(x1, x2)

α1ρ1(x1, x2) + α0ρ0(x1, x2)
(6)

The alpha variables of Eq.(6) are the proportion of points
belonging to each distribution. In this case, we have men-
tioned that α0 = α1 = 1

2 . The reader now can realize
that Eq.(6) is indeed the Bayes’ Theorem applied to our
particular problem, it is a conditional probability. More
exactly, it is the probability for a point to belong to dis-
tribution 1 if we know that it has fallen in a differential
region centered at ~x = (x1, x2). We can refer to the
function aL∗ (x1, x2) in Eq.(6) as P (1 | ~x).

The structure of the neural network that we created
with Python to compute this training corresponds to the
structure that Fig.(1) shows, which means we used two
hidden layers of 4 neurons each one. We took a learning
rate η = 0.1 and a momentum rate α = 0.5. We iter-
ated the training file 10000 times, updating the weights
and biases according to Eq.(1) after reading each train-
ing example. After each training file iteration, we wrote
the training file error, the test file error and the neural
network weights and biases in three different files. By
plotting the training file errors, we checked that the net
was indeed trying to reach a minimum error in the train-
ing file, see Fig.(2). The reason we also saved the test file
errors is to control a phenomenon called overlearning. It
occurs when the error calculated in the test file starts to
indefinitely grow after each training file iteration, mean-
ing that too many iterations have been made and that
the net is not generalizing, it is not classifying well new
information.

FIG. 2. Sows the evolution of the training and test errors
after each training file iteration. The training error is clearly
being minimized but overlearning occurs in the test file after
iteration 472, which gives the minimum test error. A local
minimum is also observed in the test file error plot, located
before iteration 200.

After the iterations, we searched the iteration that was
giving the lowest error in the test file and chose the cor-
responding neural net weights and biases as the best pa-
rameters. With them, we evaluated the neural network at

each point of the test file. Fig.(3) shows that indeed the
neural network output function that we obtained is quite
similar to the one that Eq.(6) predicted. The main dif-
ference can be observed in the separation curve of prob-
ability 0.5 that each plot shows. The reason why both
curves are not the same is because our neural network
is not big enough. The bigger the number of layers and
neurons of a neural network is, the bigger the similarity
between both figures should be.

FIG. 3. Comparison between the analytical function P (1 | ~x)
and the neural net function aL(x1, x2), both evaluated at the
test file points.

So until now we still haven’t classified anything, as at
the moment we only have a function closer to the con-
ditional probability P (1 | ~x) for each point. In order to
do the classification task, a threshold C must be chosen
such that if aL(~x) > C the point will be classified as 1,
or classified as 0 if aL(~x) < C. Knowing that, we defined
the efficiency of a threshold value C as the number of
correct classifications made in the test file with it. With
this definition, the theoretical optimal threshold C for
the function P (1 | ~x) is the intuitive value C = 1

2 . In our

case, with the trained function aL(~x), we found that the
best threshold for the test file was C∗ ≈ 0.505, with an
efficiency of about 74%, as Fig.(4) shows.

FIG. 4. Classification of the test file points with the final func-
tion aL(x1, x2) for 100 different thresholds. The results agree
with theory, as the maximum efficiency of 74% is obtained
with a threshold value very close to 0.5.

There is one last thing worth to mention about the

Treball de Fi de Grau 3 Barcelona, June 2013



Machine Learning with the backpropagation algorithm Aleix Espuña Fontcuberta

theoretical optimal threshold, which can also be found
in [2]. If the training file proportions α0, α1 are not the
same than the test file proportions α′0, α′1, then the con-
ditional probability of the training file points given by
Eq.(6) is not the same than the conditional probability
of the test file points, which now is given by the func-

tion Ptest(1 | ~x) =
α′

1ρ1(x1,x2)
α′

1ρ1(x1,x2)+α′
0ρ0(x1,x2)

. When that

happens, the new optimal threshold is β = 1

1+
α0α

′
1

α′
0α1

.

IV. THE MAGIC GAMMA PROJECT

The Magic Gamma is the first real classification prob-
lem we focused on. The data set was obtained from
an online ML repository, the reader can find the web
page link in [4]. The Magic Gamma was a project in
which collaborated more than 20 universities from all
over the world. You can visit [5] to obtain more infor-
mation about the physics and the telescopes involved in
the research. MAGIC means Major Atmospheric Gamma
Imaging Cherenkov. The goal of the project was to study
high energy gamma rays entering the atmosphere. Ac-
cording to [5], when one of this gamma rays enters the
atmosphere, it produces a shower of relativistic charged
particles, which are mainly electrons and positrons. Af-
ter that, the charged particles radiate, emitting in a
cone a special radiation called Cherenkov radiation. This
Cherenkov radiation is finally detected by the telescopes,
forming an elliptical image on a camera plane. Infor-
mation about the initial gamma rays can be obtained
by studying the ellipses formed by the Cherenkov radi-
ation. The main problem is that many other much fre-
quent cosmic rays like protons or light ionized atoms can
also produce hadronic showers and the Cherenkov radia-
tion. Consequently, it is necessary to distinguish the el-
lipses generated by the interesting gamma rays from the
ellipses generated by some hadrons (background). We
can teach our neural network to do that by using the
available data that [3] provides. This training data was
generated in a very sophisticated Monte Carlo simula-
tion that we will not explain here, full details are found
in [6]. What matters to us is that the repository pro-
vides us a file of 19020 lines with 11 columns. Each line
contains 10 different characteristics of the image of a par-
ticular ellipse and its solution (gamma or hadron). This
10 attributes are described in [4], they are the length
of the major and minor axis of the ellipse, the sum of
the pixels of the observed image, etc. In order to ob-
tain better results, it is advisable to normalize the values
of each column to numbers between 0 and 1. By do-
ing that, the neural network does not receive data which
has big fluctuations. If c1i is the value found in line i
of the first column, we normalized that value by doing

c1i =
c1i−min(c

1)
max(c1)−min(c1) , where max(c1) is the maximum

value found in c1 and min(c1) is the minimum one. Fi-
nally, we divided the data file in two files, the training

file and the test file, and proceeded like in the previ-
ous problem. The structure of the hidden layers (4x4)
and the learning rates where the not changed (η = 0.1,
α = 0.5). The proportions of the training and the test
files were almost the same (α1 = 0.6479, α′1 = 0.6487),
giving a theoretical optimal threshold β = 0.4990. The
empirical results were an efficiency of 87% for a threshold
C∗ ≈ 0.447, see Fig.(5) and Fig.(6).

FIG. 5. The evolution of the error in both files is similar,
it shows that at the beginning the net is learning to classify
training data and new information as well. The lowest error
in the test file was found in iteration 2564.

FIG. 6. The efficiency in the test file for 200 different thresh-
olds. The threshold 0.447 gives a maximum efficiency of about
87%.

V. THE IONOSPHERE DATA SET

This data set has also been downloaded and under-
stood from [4]. The data was collected by the Space
Physics Group of The Johns Hopkins University Applied
Physics Laboratory. The goal was to study the iono-
sphere in the range of 100 to 500 km altitude. To do
that, they used a radar and signal processing techniques.
A good summary of the project can be found in [7]. The
main idea is that the ionosphere contains free electrons,
which can be targeted by multi-pulse waves emitted by
a radar. From the study of the back-scattered signals
that return from the ionosphere, physical properties of
this layer can be derived, like the velocity of the free
electrons. In this project, machine learning was needed
because sometimes some of the received signals are not
suitable for studying the ionosphere. This can happen for
different reasons, for example because the signal hasn’t

Treball de Fi de Grau 4 Barcelona, June 2013



Machine Learning with the backpropagation algorithm Aleix Espuña Fontcuberta

interacted with the ionosphere or because it has suf-
fered several interferences or reflections, which result in
phase cancellations and absorptions. When that hap-
pens, the signal must be discarded from the set of obser-
vations because information about the ionosphere can’t
be extracted from it. Before the appearance of ML, this
demanding classification task required human interven-
tion, which created the training data that we have used.
The ionosphere data set consists of the signal descrip-
tion of 351 returned pulses, each one labeled with the
letter ”g” or ”b”, meaning good for studying the iono-
sphere or bad for it. Each received pulse is described by
seventeen time sampled measures of its intensity C(t):
{C(t), C(t + T ), C(t + 2T ), ...C(t + 16T )}. Where T is
the period of the pulse and t is an instant of time. Each
training example ~xi describes a pulse and therefore con-
tains this 17 intensities. However, it is mentioned in [7]
that C(t) is a complex number, which means that the
final size of a training example ~xi will be 17*2=34, as
we can only store real values in the neural network. To
start the training process, once again we split the data in
two files, the training file and the test file. This time the
class 1 proportions were α1 = 0.625 and α′1 = 0.657, giv-
ing an expected optimal threshold β = 0.465. We used
the same learning parameters and the same structure of
hidden layers. We found C∗ ≈ 0.384, far from β but with
an excellent efficiency of 90%, it is showed in Fig.(8).

FIG. 7. The training file error of the ionosphere data evolves
as expected and the test file error suffers overlearning quite
early, which is something typical of small sized training files.

VI. CONCLUSION

We have been able to minimize the training error in
three different cases, clearly observing that gradient de-
scent works and obtaining high efficiencies in the last two

projects. We have learnt that when solving ML prob-
lems under unknown and complicated distributions ρ0
and ρ1, one can not achieve with a small net the ideal
output function described by Eq.(6). Moreover, we have
also seen that an insufficient amount of training data is
another important factor that leads to early overlearn-
ings and results distant from the theoretical ones. When
solving ML problems under these conditions, one must
choose the empirical threshold that gives the best effi-
ciency in the test file, without being worried if it’s equal
to the theoretical one or not. The real important thing
that must be controlled during a training process is the

FIG. 8. Classification of radar returns is a problem designed
for neural networks, with this simple net of two small hidden
layers the efficiency is about 90%.

error of the training and the test files, ensuring that the
net is learning to classify the training file and also new
information contained in a separate file, the test file.

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Llúıs Garrido
Beltrán for introducing me to the fascinating field of ma-
chine learning. His constant advice and supervision gave
me a priceless insight into the basics of machine learning.
I would also like to show gratitude to my family for their
constant support and guidance since I started the physics
degree.

[1] M. A. Nielsen, Neural Networks and Deep Learning (De-
termination Press, 2015).

[2] L. Garrido and V. Gaitan, International Journal of Neural
Systems 02, 221–228 (1991).

[3] R. D. Peng, “6.3 rejection sampling,” in Advanced Statis-
tical Computing .

[4] D. Dua and C. Graff, “UCI machine learning
repository,” (2017), find the Magic Gamma in:
https://archive.ics.uci.edu/ml/datasets/magic+

gamma+telescope. Find the ionosphere in: https:

//archive.ics.uci.edu/ml/datasets/ionosphere.
[5] “Cherenkov telescopes: Detection of air showers,”

Find it in https://magic.mpp.mpg.de/newcomers/

cherenkov-telescopes/air-showers/.
[6] D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and

T. Thouw, (1998).
[7] V. G. Sigillito, S. P. Wing, L. V. Hutton, and K. B. Baker,

Johns Hopkins APL Tech. Dig 10, 262 (1989).

Treball de Fi de Grau 5 Barcelona, June 2013


