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Abstract: The morphogenesis of a virus is one of the most important steps in its life cycle, since
a well-formed structure is vital to survive in hostile environments and to infect hosts. Viral self-
assembly resembles a nucleation process where individual proteins stochastically form aggregates
driven by a favourable free-energy of binding. The kinetics of the process is strongly regulated by
the existence of a free-energy barrier between the viral constituents in solution and the fully-formed
virus, in analogy with a first-order phase transition. In this work a coarse-grained model of viral
assembly units is implemented in a Brownian Dynamics simulation and used to characterize viral
nucleation kinetics. From simulations we evaluate the steady-state rate of capsid formation and
reconstruct the free-energy landscape of the process, from which the critical capsid size and the
nucleation barrier are obtained. Finally, a brief comparison of the simulations results with the
predictions of classical nucleation theory (CNT) is discussed.

I. INTRODUCTION

Viruses are biological entities with no metabolism,
constituted by a protein shell (or capsid) filled with
genetic material (DNA or RNA). In its life cycle, a
virus travels through hostile environments to find new
host cells and deliver genetic material, used by the
cell to create new copies of the viral constituents that
self-assemble into a new virus. Viruses have the essential
ability to self-assemble from its constituents into a
wide, but defined, variety of nanometer-sized structures.
The most common viral arquitecture has icosahedral
symmetry, and can be classified by a discrete sequence
of triangulation numbers T = 1,3,4,7,... The Caspar and
Klug model [1] describes the way to construct a spher-
ical viral shell with icosahedrical symmetry using two
morphological units: hexamers and pentamers. These
units are aggregates of 6 or 5 proteins respectively, that
constitute the main capsid building blocks.

The self-assembly of a virus is a fundamental step
in its life cycle since it is where the hollow protein
structure, or capsid, that protects the genetic material
inside, is constituted. Hence, to understand this process,
and the key parameters that rule it, is of great interest
from both a fundamental and a practical point of view,
since its characterisation can be used, for example, to
stablish possible targets for the development of vaccines.

In recent years there have been some in witro ex-
periments of the assembly of empty viral capsids [3]
showing a series of features suggesting nucleation as the
underlying mechanism: a strong concentration depen-
dence; the lack of stable intermediates (i.e., partially
formed capsids); and the existence of hysteresis in the
conditions under which self-assembly and disassembly
take place. All these experimental findings can be
attributed to the presence of an energetic barrier be-
tween fully-formed capsids and its subunits in solution
in analogy with a classical first-order phase transition.
From a physical point of view, viral self-assembly is a
spontaneous process that can be understood in terms of

a favourable binding free-energy between subunits, due
to hydrophobic interactions, that is able to overcome
the entropic penalty of removing the subunits from the
solution when the capsid is formed and the energetic
penalty due to the fraction of subunits in the rim of a
partially formed shell [2]. This energetic competition
is responsible for the existence of a free-energy barrier
and the activated kinetics characterized by a lag time
before completed capsids are made. This has indeed
been observed in experiments [3].

In this work, we will study the self-assembly kinetics
of T = 3 empty viral capsids by using simulations of a
coarse-grained model. From the simulations we are able
to reconstruct the free-energy landscape of the nucleation
process, obtaining the critical size, the free-energy barrier
height and the steady-state rate of capsid formation, all
as a function of subunits concentration. We compare the
simulation results with the predictions from CNT applied
to this particular 2 - dimensional case.

II. METHODS
A. CNT for viral assembly

Here we summarize the main ideas and key expressions
of CNT applied to describe the assembly of empty viral
capsids [4].

The free-energy of formation of a partial capsid of n
subunits (see Fig. la) equals [4]

AG(n) =nAp+~1, (1)

where the first term is the bulk energy driving the as-
sembly and the second term represents the energetic
cost of the interface. In the previous expression, Ay =
—kpTlin(c/c*) is the difference of chemical potentials be-
tween a subunit in the capsid and in the solution, where
¢ is the subunit concentration and c¢* is the critical con-
centration (discussed later). The second term of Eq.(1)
implements the energetic cost of having an incomplete
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capsid, where + is the line tension (i.e., the energetic cost
per unit lenght) and [ is the total contour of the bound-
ary (see Fig. la). Taking a quasi-continuum aproxima-
tion we can calculate [ for a spherical shell of fixed radius
R, and rewrite Eq.(1) as [4]

AG(n) = nd+ay/nlg —n), (2)

being ¢ the total number of subunits in the complete cap-
sid, equal to 107"+ 2 = 32 for a T = 3 icosahedrical shell
[5], and a = 4wR~v/q. The barrier height and the criti-
cal size (i.e., the size of a partially formed capsid where
the barrier has a maximum value) can be calculated by
imposing the condition JAG /én = 0, yielding

AG* = AG(n*) = %(\/A;ﬂ T2+ Ap)  (3)

for the barrier heigth, and

VN =) (4)

for the critical size. Considering the process as a reac-
tion cascade where only one subunit can be incorporated
into the partial capsid at a time, one can describe the
kinetics of viral assembly in terms of a master equation
from which the steady-state rate of assembly can be cal-
culated, obtaining [2]

J = cf*Ze AE/RT (5)

In the previous expression, ¢ is the subunit concentra-
tion, 8* the rate of attachment of subunits to the critical
capsid and

3/4

is the so-called Zeldovich factor.

Figure 1: a) Representation of a partially formed capsid of
radius R in the continuum aproximation, showing the rim of
lenght I. b) Graphic representation of two capsomers, modeled
as spheres, and its characterizing positional and orientational

parameters, ($2;,0:5,75;).
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B. Coarse-Grained Model

For this study a low-resolution model of the cap-
sid building blocks, which has proved to be successful
to mimic capsid assembly [6], has been used. In this
particular coarse-grained model capsomers (i.e., hexam-
ers and pentamers) are modeled as spheres of different
size, and constitute the fundamental assembly subunits.
Their interactions are described by a phenomenological
anisotropic pair potential, built by three main ingredi-
ents. The first one is a standard Lennard-Jones poten-
tial accounting for short-range repulsion and mid-range
attraction between subunits due to steric and hidropho-
bic effects. The second one is a bending contribution,
which implements a preferred angle for subunit interac-
tions by introducing an energetic penalty for angles that
differ from the preferred one. This term will define the
size of the shell and prevent the formation of compact
clusters instead of hollow structures. The last ingredient
is a torsion contribution, which introduces an additional
energetic penalty keeping the subunits from assembling
into non-closed surfaces of different concavity. The total
potential is given by:

N Vi, ri; < 2700,

V(rij, @4, Q;) = (7)
Vi VangVier 1ij > 2750,

where r;; = 2_1/60ij is the distance at which the

Lennard-Jones potencial vanishes. This potential has the
form of

O',, 12 O'>> 6
ViLa(rij) = &ij (w) —2(”)
Ty Tij

being ¢;; the binding energy between capsomers and o
the equilibrium distance between subunits. The bending
factor is implemented by the following expression:

; (8)

Vang(;'\ij, ﬁi, ﬁj) = 6_(9”_V)2/2“26_(9ji—u)2/2a2 . (9)

Here v controls the preferred angle and a implements a
local bending stiffness. Finally, the torsion is modeled
by:

‘/tor(ﬁhﬁj) _ e—kt(l—cosf)/2 (10)

where k; is the torsion constant and £ is the angle be-
tween two planes constructed with the unitary vector
that links the position of the two interacting structures,
(i,7), and its respective orientation vectors (ﬁ“ ;) (see

Fig. 1b).

C. Brownian Dynamics Simulations
The coarse-grained model described in the previous
section has been implemented in a Brownian Dynamics
simulation. Solvent presence has implicitly been taken
into account through effective frictional plus random
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forces exerted on each of the particles, representing
random collisions of the subunits with the solvent.
Given the typical size of the protein subunits, on
the order of a few nanometers, inertial effects can be
neglected, leading to the overdamping regime. The
resulting Langevin equation has been integrated with a
standard stochastic Euler algorithm. We have worked
using reduced units, taking €,; = e9 = 1, T* = kT /e,
the diffusion coefficient D =1 and oy, = 0 =1 (i.e., the
equilibrium distance for hexamer-hexamer interaction
is taken as unit lengh). Based on [6], we chose the
torsion and preferred angle parameters to be k; = 1.5
and v = 1.9. A reduced temperature T = 0.1 was
selected, since self-assembly is assured to happen into a
stable icosahedrical T' = 3 structure, as previous studies
indicate [5]. The Lennard-Jones potential is truncated at
a distance of 50 for the sake of computational efficiency.
All simulations have been performed with only one type
of subunit (hexamers) and a total of Nj = 300.

In order to study the concentration dependence of the
assembly, simulations were performed in the range of
[0.007—0.1] 0=3. At high concentrations the formation of
the capsid was not controlled by nucleation, so we focused
on small concentrations. 100 repetitions were launched
for every concentration in the interval [0.007 —0.013] 03
in steps of 0.001073. Every simulation starts from a
random configuration of positions and orientations. The
cluster-size distribution is then analyzed every 1000 steps
using a Stillinger criterion with 4 = 1.20 (i.e., if two sub-
units are closer than ry = 1.20 they are considered to be
part of the same cluster), until the first complete capsid
with n = 32 subunits is formed. Fig. 2 shows a snapshot
of the initial configuration and a complete capsid.
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Figure 2: Snapshots showing the initial configuration and the
formation of a complete capsid of n = 32 subunits.

D. Data analysis
1. Kinetic Analysis

A mean first-passage time (MFPT) analysis [7] was im-
plemented to obtain kinetic information of the nucleation
process. For this, the size of the largest cluster is tracked
and saved every 1000 steps. The time where the size n
has been reached for the first time, ¢.*79(n), is stored for
each simulation and averaged over all repetitions, yield-
ing the MEPT, 7j4,4(n) = 3;t1%79 (1) /100. The resulting
MFPTs were fitted onto the error function [7]

larg
[1+erf(Zv/m(n—n"))]

Ty

(11)

Tlarg(n) =

Treball de Fi de Grau

in order to obtain relevant kinetic parameters of the nu-
cleation process (see Fig. 3). In particular, the steady-
state nucleation rate is J* = 1/75""9V, n* is the critical
cluster size and Z is the Zeldovich factor.

Tlarg(steps X 107)

Figure 3: Sigmoidal curve of the MFPT for the nucleation
process obtained in the simulation for the concentration ¢ =
0.008 2. Once the energetic barrier has been overcome the
system reaches a time-independent rate of nucleation, given
by the inverse of the MFPT plateau value multiplied by the
volume of the system. The inflection point indicates the crit-
ical cluster size n*.

2. Reconstruction of the Free-Energy Landscape

Along with the kinetic information one can perform a
different type of analysis to obtain the free-energy land-
scape of the nucleation process [8]. For this we construct
a histogram of the cluster-size distribution by count-
ing the number of times a certain size of the cluster
has been the largest over all performed simulations for
a given concentration value. By normalizing the his-
togram one obtains a steady-state probability distribu-
tion of sizes Py, (n). Using this distribution and the
MFPT, 7y4r4(n), one can reconstruct the free-energy bar-
rier as [8]

PGy ) = o) +in (105) - [ s
BEY
where
= n — Tiarg(D) — Tiarg(n)
B(n) - IDlSatTg / larg Tlmﬂg(b)
(13)

b is an absorbing boundary condition set to n = 32 (this
is, once the largest cluster has reached this size the simu-
lation stops) and n; = 3 represents the minimum usable
size, since n = 1 can’t be generally used as P}, (1) = 0
for most of the processes. Both integrals (12),(13) are
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calculated by discretizing them into sumatorys, given the
discrete nature of our computational data. From the free-
energy of the “largest” cluster one can obtain the free-
energy of any cluster as [9]:

BAG(n) = BAG)arg(n) + InN), (14)

Fig. 4 shows an example of the resulting free-energy
landscape.

Fit —— Theoretical

BAG

Figure 4: Free-energy landscape reconstructed from the sim-
ulations with ¢ = 0.008 3 (red circles). The red line repre-
sents the CN'T theoretical prediction and the blue line is a fit
to Eq.(2) plus a constant (see section IV).

III. RESULTS
1. Critical concentration

Several simulations were launched to obtain the so-
called critical concentration ¢*, which is one of the main
ingredients of CNT. Since Ay = —kpTin(c/c*), at the
critical concentration Ay = 0, and the critical size be-
comes n*(Ap = 0) = ¢/2, as we can see from Eq.(4).
Thus, at ¢* a half-size cluster has 50% chance of dissas-
sembling and 50% chance of becoming a full-size cap-
sid. To determine ¢* another type of simulations were
performed. In these simulations a half-size cluster was
placed at the start of the simulations surrounded by
Njp — 16 randomly located particles, keeping all other pa-
rameters unchanged. A hundred repetitions were run at
each concentration for 2- 107 timesteps, until finding the
concentration at which 50% of the simulations ended in
a full cluster and 50% in a disgregated state. The value
found was ¢* = 0.001325 =+ 0.000025 (o=3).

2. Kinetic and Thermodynamic results

The simulations results are summarized in Figs. 5 and
6. The top graphic in Fig. 5 shows the critical clus-
ter size obtained for different concentrations. It seems
that the system has reached a concentration indepen-
dent value in the region where simulations were launched.
This could account for a possible magic number structure
corresponding to a quarter of the full capsid. The bottom
graphic in Fig. 5 corresponds to the steady-state nucle-
ation rate as a function of capsid concentration. Fig. 6
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Figure 5: Critical cluster size (top) and steady-state nucle-
ation rate (bottom) obtained from the BD simulations as a
function of subunit concentration. The critical size has been
estimated by fitting the sigmoidal curve (red) as well as di-
rectly from the barrier reconstruction (blue). The red curve
shows the CNT prediction from Eq.(4) using the values for a
and ¢* obtained from the fit to Eq.(2) with ¢ = 0.008 ¢ . The
blue curve shows the theoretical CNT prediction discussed in
section IV.
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Figure 6: Barrier height as a function of capsid concentration,
estimated from the free-energy landscape reconstruction. The
analitical curves show the CNT prediction from Eq.(3) using
the values for a and ¢* obtained from: the fit to Eq.(2) with
¢ =0.008072 (blue); the theoretical estimation (red).
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shows the barrier height obtained from the free-energy
landscape reconstruction.

IV. DISCUSSION

At the highest concentrations, ¢ = (0.012,0.013),
the process is no longer activated, as signaled by a
non-sigmoidal MFPT. In that case, the formation rate
is evaluated as 1/(7(32)V). As expected: the nucleation
rate exponentially drops when capsid concentration de-
creases, following the Arrhenius-like behaviour predicted
by CNT in Eq.(5); and lower concentration values have
higher energy barriers. The study has not pursued
higher concentration values since the phase transition
would no longer be regulated by nucleation, progres-
sively entering into a spinodal process. The qualitative
behaviour of the self-assembly observed in the simu-
lations is clearly the one expected in a nucleation process.

To stablish the quantitative comparison with CNT
we performed a 3-parameter fit (a,c*,S) to Eq.(2) with
the simulations results from ¢ = 0.008073. Here S
represents an additive term accounting for a possible
shift between CNT and the computational estimation.
Fig 4 shows that the fit is excellent whit a = 0.37,
c* = 0.001023073 and S = —23. To establish a
theoretical comparison for a, we geometrically estimated
its value by considering a partial capsid cut along its
“zig-zag” direction [10], obtaining age, = 0.45. This
represents a 17% discrepancy with respect to the one
resulting from the fit. A 23% discrepancy between the
critical concentrations is also found. We can use the
fitted parameters to compare the barrier height and the
critical size obtained from simulations with the ones
predicted by CNT for ¢ = 0.0080 3, by evaluating Eqgs.
(3) and (4), respectively, using (a,c*,S)su. Fig.5 shows
the critical size comparison, reflecting a partial failure
of CNT both quantitatively and qualitatively. This

could be accounting for a local magic number regarding
viral structure that has not been taken into account in
the classical theory. Fig. 6 shows the barrier height
comparison, where, in the case of the fitted parameters,
a close behaviour is observed.

This discrepancy (a,c*, S)theo = (0.45,0.001325,0) #
(0.37,0.001023, —23) = (a,c*,S) i could suggest either
an oversimplification of the continuum theoretical de-
scription and its consequent failure to provide a precise
quantification of the main parameters controlling the evo-
lution of the system, or the possible existence of under-
lying mechanisms that have not been taken into account
in CNT. These two options do not necessarily exclude
each other. The successful fit to CNT suggests that
the main physical ingredients regulating nucleation have
been taken into account, but the value of the parameters
involved is different.

V. CONCLUSION

In this work a coarse-grained model was used to study
the kinetics of viral self-assembly. The steady-state nu-
cleation rate as well as the critical capsid size and their
concentration dependence were obtained. Besides kinetic
information, the free-energy landscape of the nucleation
process was reconstructed in order to estimate the
free-energy barrier height. A quantitative comparison
with CNT yields a large numerical discrepancy between
predicted values and those obtained in the fit.

Although the CNT description seems qualitatively cor-
rect, the origin of the quantification failure stays open,
and further inquiries will have to be done in future stud-
ies.
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