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Modern lifestyles in an increasing number of human societies include consuming an excess of 

saturated fats and refined sugars as well as enjoying microbiologically aseptic environments. The 

current worldwide epidemics of obesity (650 million adults) and type-2 diabetes (T2D; 422 million 

adults) are probably the price that part of humanity is paying for such opulence and safety. Informed 

changes in dietary habits together with the introduction of new healthy and tasty foodstuffs may 

help to improve human wellbeing.   

This thesis will explore the changes that take place in both the intestinal microbiota and the host 

organism (rats) after dietary supplementation with an iminosugar (D-fagomine) and ω-3 

polyunsaturated fatty acids (ω-3 PUFAs): eicosapentaenoic acid (EPA) and docosahexaenoic acid 

(DHA) with the aim of evaluating the influence of these compounds on gut bacterial populations and 

defining their possible role in the prevention of fat-induced T2D.  

In mammals, the intestines are colonized by trillions of microorganisms that have co-evolved with the 

host. This microbiota encodes a consortium of genes from bacteria that exceeds by far the number of 

genes in the human genome. It is becoming evident that gut microbiota contributes significantly to 

host homeostasis. Maintaining the appropriate distribution of microbial populations (eubiosis) is 

emerging as an attractive approach to avoiding ectopic fat accumulation and insulin resistance (IR), 

with the aim of averting the progression of diabetes. As intestinal microbiota is strongly influenced by 

environmental agents (e.g. food, probiotics), we thought that it might be possible to minimize the 

dysbiosis (unbalanced microbiota) associated to ageing or high-fat diets by supplementing the diet 

with a combination of functional food components of different nature probably acting at different 

levels. 

The very first metabolic alteration eventually leading to T2D is IR a reduced capacity to internalize 

glucose from the bloodstream as result of insensitivity to insulin. An excess of dietary fat and 

subsequent body fat accumulation results in the generation of pro-inflammatory cytokines and 

chemokines and a state of low-grade inflammation and impairment of insulin signaling. Systemic 

inflammation, IR, and obesity have been linked to gut dysbiosis. Some recent research is even 

suggesting that gut dysbiosis is the first cause of fat-induced low-grade inflammation. 

This thesis is based on previous results by our group showing that the iminosugar D-fagomine induces 

changes in the composition of gut microbiota probably by inhibiting the adhesion of some types of 
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bacteria to the intestinal mucosa and on the well-known anti-inflammatory activity of ω-3 PUFAs 

(EPA/DHA 1:1). 

This thesis is intended to contribute to curbing the current growing incidence of diabetes by 

generating new knowledge to understand the interactions between gut microbiota and host, and by 

suggesting novel dietary approaches. 



 

SUMMARY 
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Modern lifestyles in an increasing number of human societies include consuming an excess of 

saturated fats and refined sugars as well as enjoying microbiologically aseptic environments. 

Maintaining the appropriate distribution of gut microbial populations (eubiosis) is emerging as an 

attractive approach to prevent ectopic fat accumulation and insulin resistance (IR), and to avert the 

progression of diabetes. Functional food components are those that help maintain the normal bodily 

functions beyond providing energy or building blocks. They may bring about physiological health 

benefits for both healthy subjects following a healthy lifestyle and people belonging to risk groups 

such as obese or pre-diabetic populations. D-Fagomine is an iminosugar originally present in 

buckwheat with the capacity for selectively inhibiting bacterial adhesion to the intestinal mucosa. ω-3 

Polyunsaturated fatty acids (PUFAs) reduce blood pressure as well as levels of insulin, triacylglycerols, 

cholesterol and total lipids. Iminosugars and ω-3 PUFAs may be used as functional food ingredients 

or dietary supplements to maintain a healthy status over time and to reduce risk factors for diabetes. 

 

This thesis focuses on the effects of buckwheat D-fagomine, fish ω-3 PUFAs (EPA/DHA 1:1) and their 

combination on the gut microbiota and related metabolic variables in the host both in healthy rats 

and a rat model of fat-induced pre-diabetes.  

 

In the first part of this thesis we explored the effects of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on 

rats given a standard diet as a model for healthy subjects. We found that D-fagomine had the 

capacity for promoting microbial functional diversity by increasing the Bacteroidetes/Firmicutes ratio 

and for mitigating the age-related reduction in populations of the putatively beneficial 

Lactobacilliales and Bifidobacteriales. Also, the populations of the genus Prevotella remained stable 

over time in animals supplemented with D-fagomine, independently of ω-3 PUFAs supplementation. 

The combination between D-fagomine and ω-3 PUFAs provided the functional benefits of each 

supplement. Notably, it helped stabilize populations of Prevotella in the rat intestinal tract while 

reducing weight gain and providing the anti-inflammatory and cardiovascular benefits of ω-3 PUFAs. 

 

In the second part we explored the effects of the same supplements on rats with fat-induced pre-

diabetes as a model for people at risk of suffering from diabetes and cardiovascular diseases. We 

found that D-fagomine delayed the development of a fat-induced pre-diabetic state by reducing low-

grade inflammation. We suggest that the anti-inflammatory effect of D-fagomine may be linked to a 

reduction in fat-induced overpopulation of minor gut bacterial groups such as Enterobacteriales. The 
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combined supplements counteracted the high-fat induced incipient IR, and liver inflammation, while 

increasing the cecal content, the Bacteroidetes/Firmicutes ratio as well as the populations of 

putatively beneficial Bifidobacteriales and Lactobacilliales. The functional effects of the combination 

between D-fagomine and EPA/DHA 1:1 against the gut dysbiosis and the very early metabolic 

alterations induced by a high-fat westernized diet were mainly those of D-fagomine complemented 

by the anti-inflammatory action of ω-3 PUFAs. 

 

The results of this thesis point clearly towards a functional role for D-fagomine in the maintenance of 

the intestinal health by preserving diversity and mitigating the age-related reduction of some 

beneficial bacteria and also in the prevention of risk factors for diet-induced pre-diabetes reinforced 

by the action of ω-3 PUFAs by complementary mechanisms. 

 



 

1 INTRODUCTION 
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There is increasing and convincing evidence that part of the beneficial effects of dietary components 

such as soluble fiber (indigestible polysaccharides), polyphenols and PUFAs are connected with the 

maintenance of a balanced gut microbiota (eubiosis) while dysbiosis (unbalanced microbiota) would 

be in the root of alterations and diseases (e.g. obesity, T2D) associated with bad dietary habits 

(Portune, Benitez-Paez, Del Pulgar, Cerrudo, & Sanz, 2017). 

1.1 GUT MICROBIOTA 

The human gut microbiota consists of a wide variety of bacteria, viruses and fungi that live in the 

intestine. The human gut microbiota is formed by 10
14

 bacteria, more than 10 times the number of 

eukaryotic cells in a healthy person (Backhed, Ley, Sonnenburg, Peterson, & Gordon, 2005). Bacteria 

colonize human body from birth, probably already in the uterus (Walker, Clemente, Peter, & Loos, 

2017), and persist until death. These bacteria and their products interact with the host in many ways, 

influencing gut homeostasis and health outcomes. The preservation of microbial diversity and 

balance is fundamental for host health (Nicholson et al., 2012). 

1.1.1 COMPOSITION OF GUT MICROBIOTA 

The human gut microbiota mainly consists of 9 bacterial phyla with over 1,000 species, and more 

than 15,000 strains. A healthy gut microbiota is predominantly constituted by the phyla Firmicutes 

(≈ 60% of the gut microbiota) and Bacteroidetes (≈ 40%) in both humans and rodents (Ley et al., 

2005). Bacteroidales is the major order among Bacteroidetes while Clostridiales is the major order 

among Firmicutes. Other quantitatively minor yet important subgroups of the gut microbiota are the 

orders Enterobacteriales, Lactobacilliales, and Bifidobacteriales, which belong to the phyla 

Proteobacteria, Firmicutes and Actinobacteria, respectively (Figure 1). Bacteroides and Prevotella are 

the major genera among Bacteroidales order. Both are well-known as dietary fiber fermenters and 

they play an important role in the production of short-chain fatty acids (SCFAs).  

Enterobacteriales order is composed of non-pathogenic and opportunistic bacteria such as 

Escherichia coli, which coexist inside the healthy host as commensal (neither beneficial nor 

pathogenic) bacteria that may cause enteric diseases and extra-intestinal infections in 

immunocompromised hosts or when the normal gastrointestinal barriers are breached (Kaper, 

Nataro, & Mobley, 2004). 

Lactobacilliales and Bifidobacteriales are known to confer health benefits on the host, including 

resistance to infection, amelioration of allergic symptoms and protection against inflammatory 



30 
 

processes (Roberfroid et al., 2010). Lactobacillus acidophilus is one of the major species of its genus 

found in the human gut, and together with Lactobacillus plantarum, it contributes to the 

maintenance of the normal barrier function of the intestinal epithelium (Gareau, Sherman, & Walker, 

2010). 

 

Figure 1. Main taxonomic composition of human gut microbiota 

 

1.1.2 FUNCTIONS OF GUT MICROBIOTA IN THE HOST 

The human intestinal microbiota plays a key role in several metabolic, nutritional, physiological, and 

immunological processes. The main functions of the intestinal microbiota are: i) nutrient acquisition; 

providing a range of essential nutrients for the host ii) contribution to immune system development, 

maturation and modulation, and iii) maintenance the epithelial barrier; protecting from colonization 

by exogenous pathogens. 

1.1.2.1 Nutritional contribution  

One of the most important functions of the gut microbiota is the optimization of energy harvesting. 

The gut microbiota makes an important contribution to the host metabolism by providing enzymes 
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that are not encoded by the host genome for the breakdown of non-digestible carbohydrates, which 

include large polysaccharides, such as resistant starch, cellulose, hemicellulose, pectin and some 

oligosaccharides that escape digestion (Cummings & Macfarlane, 1991). This functionality results in 

the recovery of energy and absorbable substrates for the host and supplies energy and nutrients for 

bacterial growth and proliferation. Thus, intestinal microbiota maximizes caloric availability of 

nutrients ingested by i) extracting additional calories from indigestible carbohydrates in the large 

intestine, in particular polysaccharides, and ii) modulating intestinal epithelium absorption capacity 

(Cummings & Macfarlane, 1991).   

The capacity of the gut microbiota to process different carbohydrates as well as other 

macronutrients, such as lipids and proteins may, at least in part, explain how it may contribute to the 

development of obesity and other metabolic disorders.  

1.1.2.2 Immune system modulation 

Another important function of gut microbiota is to activate the immune system. The Paneth cells are 

one of the main cell types in the intestine epithelium that combat pathogens by signalling to the 

immune system though specific receptors (pattern recognition receptors; PRR), such as toll-like 

receptors (TLRs). TLRs recognize and bind to specific molecules associated with bacteria (microbe-

associate molecular patterns; MAMPs), such as peptidoglycan, lipopolysaccharide (LPS) or lipid A, 

leading to the stimulation of a host immune response and the release of protective cytokines and 

white blood cells. The result is a tolerance response to commensal bacteria and an inflammatory 

response to pathogenic organisms (Salzman, Underwood, & Bevins, 2007).  

1.1.2.3 Maintenance of the epithelial barrier 

Gut microbiota also plays a central role in protecting the host from enteric bacterial infection by 

contributing to the maintenance and integrity of the normal barrier function through the 

maintenance of cell-cell junctions. 

The host intestinal cells have attachment sites that can be recognized by both beneficial and 

pathogenic bacteria. Non-pathogenic bacteria, such as Bifidobacterium compete for these 

attachment sites in the brush border formed by intestinal epithelial cells, preventing the attachment 

and subsequent entry of pathogenic bacteria, such as some E. coli strains (Cani et al., 2009). The 

balance between the populations of beneficial, pathogenic and commensal bacteria is essential to 

maintain the normal gut barrier function through the maintenance of cell-cell junctions (Figure 2). 
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Modifications in the distribution and localization of tight junction proteins (mainly zonula occludens-1 

(ZO-1) and occludin) are associated with changes in gut permeability, which results in increased 

plasma LPS levels (metabolic endotoxemia). This is a possible mechanism by which gut bacteria can 

initiate inflammatory processes leading to obesity and IR. Conversely, an improved gut barrier 

strongly correlated with reduced plasma LPS levels and low-grade inflammation (Cani & Delzenne, 

2011). 

 

Figure 2. Gut barrier function 

 

Another way of antimicrobial protection provided by microbiota-host interactions are lactic acid 

production by Lactobacillus sp., because the lactic acid may increase the antimicrobial activity of host 

lysozyme by disrupting the gram-negative bacterial outer membrane (Alakomi et al., 2000).  
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1.1.3 MECHANISMS OF INTERACTION BETWEEN GUT MICROBIOTA AND HOST 

The mechanisms by which gut microbiota interact with the host organism are still unclear. It has been 

suggested that SCFAs, LPS, angiopoietin-like protein 4 (ANGPTL4), and bile acids can be possible 

mediators of the host response (Janssen & Kersten, 2017). These molecules are direct or indirect 

products of gut microbiota that can be either protective or harmful, depending on their 

concentration and on the metabolic status of the host.  

1.1.3.1 Short-chain fatty acids  

SCFAs are fatty acids (FAs) with less than 6 carbon atoms. SCFAs are the main metabolites produced 

by the gut microbiota during the fermentation of non-digestible polysaccharides. Acetate, propionate 

and butyrate are the major SCFAs produced by bacteria. The highest levels of SCFAs are found in the 

proximal colon, where they are used locally by colonocytes or transported across the gut epithelium 

into the bloodstream. The capacity of SCFAs to modulate biological responses in the host are exerted 

by two mechanisms: i) regulation of gene expression by inhibiting histone deacetylases (HDACs) and 

ii) activation of G-protein-coupled receptors (GPCRs) (Tan et al., 2014).  

Apart from being a major energy source for colonocytes, SCFAs in the gut have various physiological 

functions including: i) anti-inflammatory effect by modulating immune cell chemotaxis, reactive 

oxygen species (ROS) release and cytokine release, ii) antimicrobial activity by disrupting osmotic and 

pH balance and nutrient uptake and iii) preservation of gut integrity by maintaining mucosal 

homeostasis. SCFAs can fortify the epithelial barrier by affecting the mucus layer, epithelial cell 

survival, as well as tight junction proteins (Tan et al., 2014).  

1.1.3.2 Lipopolysaccharide 

LPS is a large molecule consisting of a lipid (lipid A) covalently linked to the O-antigen (a repetitive 

glycan polymer) through a core polysaccharide. LPS is the major component of the outer membrane 

of gram-negative bacteria. Bacterial LPS from intestinal microbiota could be a potential causal link 

between disruptions in the gut microbiota and obesity-related IR and adipose tissue (AT) 

inflammation (Cani et al., 2007). LPS is continuously produced by gram-negative bacteria in the gut 

and can be translocated into intestinal capillaries triggering the secretion of pro-inflammatory 

cytokines when it binds to the complex TLR4 at the surface of innate immune cells (Caesar, Tremaroli, 

Kovatcheva-Datchary, Cani, & Backhed, 2015; Cani et al., 2007; Cani et al., 2008). 

https://en.wikipedia.org/wiki/Glycan
https://en.wikipedia.org/wiki/Polymer
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1.1.3.3 Angiopoietin-like protein 4 

ANGPTL4 is a glycoprotein expressed in mice mainly in AT (followed by liver, kidney, muscle and 

intestine), and in humans mainly in liver. ANGPTL4 plays an important role in lipid metabolism by 

inhibiting the activity of the enzyme lipoprotein lipase and consequently the hydrolysis of circulating 

triglycerides. ANGPTL4 is a potential link between the gut microbiota and fat storage. Specific 

bacterial species, such as Bacteroides thetaiotaomicron, and SCFAs have the capacity to induce 

ANGPTL4 expression (Backhed et al., 2004; Backhed, Manchester, Semenkovich, & Gordon, 2007). 

1.1.3.4 Bile Acids 

Bile acids are steroid acids synthesized in the liver and then secreted into the small intestine. In the 

intestine, bile acids play an important role in the emulsification and absorption of dietary lipids as 

well as in restricting bacterial proliferation and overgrowth. Bacterial enzymes modify primary bile 

acids through deconjugation, dehydrogenation, dehydroxylation, and sulfation reactions to produce 

secondary bile acids, which are reabsorbed and returned to the liver for further processing. They also 

are known as important signalling molecules through the G protein-coupled bile acid receptor 1 

(TGR5). Through TGR5, bile acids can influence a variety of biological processes as bile acid 

metabolism, intestinal hormone secretion, inflammation and lipid and glucose metabolism (Swann et 

al., 2011). 

1.1.4 HOST CONDITIONS RELATED TO GUT MICROBIOTA DYSBIOSIS 

Dysbiosis can lead to the development of a variety of alterations and diseases in the host including 

inflammatory bowel disease, colon cancer, irritable bowel syndrome, non-alcoholic fatty liver 

disease, asthma, atopy, hypertension, obesity and T2D, … (Nicholson et al., 2012). 

1.1.4.1 Obesity 

The ability to store energy would be a beneficial adaptation for ancient humans who had irregular 

access to food. However, nowadays, in developed societies where food is readily available, this 

benefit can become a problem. 

Total energy intake refers to all energy consumed as food and drink that can be metabolized inside 

the organism. Energy density is defined as the amount of available dietary energy per unit of weight 

of foodstuff (expressed in kcal/g or kJ/g). Fat provides the highest energy per unit weight (9 kcal/g), 

and carbohydrate and protein the lowest (4 kcal/g). Fiber also contributes to energy density because 

it provides little energy and contributes to weight. Water accounts for most of the variability in 
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energy density because it provides weight but not energy. Therefore foods high in water and/or fiber 

are low-energy-dense. As fat provides the greatest amount of energy per gram, high-fat foods are 

high-energy-dense (Perez-Escamilla et al., 2012). 

Body mass index (BMI) is an indicator of weight-for-height used to classify overweight and obesity in 

human adults. BMI is defined as a body weight in kilograms divided by the square of height in meters 

(kg/m
2
). According to categories established by the World Health Organization (WHO) overweight 

adults have a BMI ≥ 25, class I obese have a BMI ≥ 30, class II ≥ 35 and class III ≥ 40 (WHO, 2000). 

Obesity is defined as a condition of abnormal or excessive fat accumulation as a consequence of an 

energy imbalance that may be a threat to general health. Obesity is developed when energy intake 

exceeds energy expenditure over time. There are many complex and diverse factors that give rise to 

a positive energy balance. Nowadays physical activity has decreased due to the sedentary nature of 

many forms of work, modes of transportation, and urbanization. Moreover, dietary habits tend to 

shift towards an increased intake of energy-dense foods that are high in fat, salt and refined sugars, 

and low in vitamins, minerals and other micronutrients (WHO, 2000). 

As mentioned before, gut microbiota is one of the factors that collaborate in the host energy intake. 

Obese and lean individuals have different proportions of bacteria subgroups in their gut microbiota, 

with differences in their ability to extract energy from host diet and to deposit that energy in fat 

(Turnbaugh & Gordon, 2009; Turnbaugh et al., 2006). Although much research is being focussed on 

the relationship between body weight and gut bacterial composition there is little information at 

levels below phyla. Body weight appears to be related to the Bacteroidetes/Firmicutes ratio as low 

Bacteroidetes/Firmicutes ratio has been associated with the obese phenotype in the host (Canfora, 

Jocken, & Blaak, 2015; Ley, Turnbaugh, Klein, & Gordon, 2006). At the order level, an increase in the 

population of Enterobacteriales has been connected to diet-induced obesity (de la Serre et al., 2010). 

At the genus level, the populations of Prevotella are high in non-industrialized populations whose 

diets include high levels of dietary fiber, while Bacteroides is more prevalent in Western populations 

who consume high-protein, low-fiber diets (Chen et al., 2017). 

Obesity has been associated with many chronic diseases such as T2D, cardiovascular disease and 

cancer. As the prevention of T2D is one of the main goals of this thesis diabetes is described in more 

detail in the following section. 
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1.1.4.2  Diabetes 

Diabetes is a chronic, metabolic disease characterized by elevated levels of blood glucose. The 

maintenance of blood glucose levels within a very narrow range (70-100 mg/dL in both humans and 

rodents) is carried out by the opposing and balanced actions of pancreatic hormones insulin and 

glucagon produced in the islets of Langerhans. Insulin is a hormone produced by the β-pancreatic 

cells that signals the internalization of glucose into the hepatocytes, adipocytes and skeletal muscle 

cells where it is converted into energy via glycogenesis or lipogenesis. In contrast, glucagon is a 

hormone produced by α-pancreatic cells that signal the glucose release from the hepatocytes, 

adipocytes and skeletal muscle cells via glycogenolysis into the blood stream. Glucagon increases 

blood glucose levels while insulin decreases them. Between meals, when blood glucose levels are 

low, glucagon is released from α-pancreatic cells to promote hepatic glycogenolysis and increases 

blood glucose levels (Figure 3). In contrast, after a meal, insulin secretion from β-pancreatic cells, 

stimulated by elevated exogenous glucose levels, triggers glucose uptake into insulin-dependent 

muscle and AT as well as to promote glycogenesis (glucose storage as glycogen into the cells) in the 

liver (Berkowitz, 2007).  

 

Figure 3. Glucose homeostasis 
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Diabetes mellitus refers to a heterogeneous group of chronic, catabolic and endocrine diseases 

characterized by hyperglycemia (Melmed, Polonsky, Larsen, & Kronenberg, 2017). Hyperglycemia has 

both short-term and long-term complications (Berkowitz, 2007; Melmed et al., 2017). When glucose 

cannot be internalized into the cells, it remains in the blood and then is excreted. Inefficient use of 

glucose can lead to weight disbalance and excessive appetite (polyphagia). Elevated blood glucose 

levels can predispose to recurrent infections because glucose may fuel bacterial growth as well as 

impair white blood cell function. Hyperglycemia renders blood hyperosmotic causing polydipsia 

(increased thirst) and polyuria (increased urine volume) due to the presence of glucose in the 

glomerular filtrate. Moreover, the loss of total body potassium from excessive urination and from 

catabolism of muscle protein (alternative energy source) produces a state of fatigue. Vision changes 

due to modifications in the water content within the eye lens are also caused by hyperglycemia. 

Chronic hyperglycemia is a risk factor for peripheral vascular disease, coronary artery disease and 

stroke. Hyperglycemia fosters the development and progression of cardiovascular disease by 

mechanisms that include derangements in the vessel wall through promotion of vascular 

inflammation and endothelial cell dysfunction; abnormalities in blood cells; and factors affecting 

homeostasis. These mechanisms likely contribute to increased plaque burden and plaque instability 

(Thiruvoipati, Kielhorn, & Armstrong, 2015). 

The WHO estimates the global prevalence of diabetes in 422 million adults in 2014 (8.5% of adults). 

The greatest number of people with diabetes is found in the segment between 40 and 59 years of 

age, and 80% of them live in low and middle income countries. In 2016, an estimated 1.6 million 

deaths were directly caused by diabetes (WHO, 2016). 

Diabetes is classified into 4 general categories depending on its etiology:  

-  Type-1 diabetes (T1D) (previously known as juvenile or insulin-dependent diabetes) results 

from the autoimmune progressive destruction of insulin-producing β-pancreatic cells by CD4+ and 

CD8+ T lymphocytes and macrophages infiltrating the islets of Langerhans (Foulis, McGill, & 

Farquharson, 1991). As a result, the pancreas cannot produce insulin and glycemia increases without 

control. T1D has a major genetic component and it is influenced by environmental factors. Patients 

with T1D constitute 5-10% of all people with diabetes. This type of diabetes can affect people of any 

age, but usually occurs in children or young adults (WHO, 2016).  
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-  T2D is defined by the National Diabetes Data Group and the WHO as carbohydrate 

intolerance characterized by IR, relative insulin deficiency, excessive hepatic glucose production and 

hyperglycemia (Brashers, 2006).  

-  Gestational diabetes mellitus (GDM) occurs when the action of insulin is blocked by the 

hormones progesterone and cortisol produced by the placenta. Women experiencing IR and 

hyperglycemia during pregnancy have higher risk of developing T2D 5-10 years after pregnancy 

eventhough the alterations usually disappear after birth. GDM is basically addressed by controlling 

blood glucose, normally by dietary restriction of carbohydrate intake and moderate exercise 

(Kampmann et al., 2015). 

-  Other types of diabetes include monogenic diabetes syndromes such as neonatal diabetes 

and maturity-onset diabetes of the young (MODY), diseases of the exocrine pancreas (such as cystic 

fibrosis and pancreatitis), and chemically-induced diabetes by agents such as glucocorticoid, human 

immunodeficiency viruse (HIV) antiretroviral treatment, or immunosupressants after organ 

transplantation. 

Type-2 diabetes 

T2D is the most common type of diabetes worldwide and gut microbiota seems to be intimately 

linked to it. In T2D, the β-pancreatic cells produce insufficient amounts of insulin or its target tissues 

are unable to respond to its signal (IR), leading to hyperglycemia. It usually occurs in adults, but is 

increasingly observed in children and adolescents. In 2002, an estimated 18.2 million people in the 

United States (6.3% of the total population) were living with diabetes, of which approximately 17.2 

million (95% of all cases) had T2D (WHO, 2016).  

T2D is a multifactorial disease resulting from a combination of environmental and genetic risk factors. 

The risk factors for developing T2D include lifestyles such as sedentary behaviour, poor physical 

activity and a westernized diet with fat and refined sugars that can triggers to obesity (Melmed et al., 

2017). The significance of T2D lies primarily in numerous associated troublesome symptoms and 

serious short- and long-term complications. Because of the very gradual way in which hyperglycemia 

develops over time, many patients can sustain extended periods of hyperglycemia without 

experiencing a loss of a sense of well-being.  
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Most of the T2D signs and symptoms are similar to those of other diabetes types. As mentioned 

before, classic symptoms of hyperglycemia include inappropriate levels of polydipsia, polyuria, 

fatigue, subtle losses of visual acuity and recurrent infections (Berkowitz, 2007). However, while T1D 

results in body weight loss, T2D has been connected to obesity. The link between obesity and T2D is 

the capacity of AT to trigger IR, which is a fundamental aspect of the etiology of T2D. Adipocytes in 

the AT have an endocrine function with wide-reaching effects on other organs. Particularly AT plays a 

major regulatory role in energy balance and glucose homeostasis by releasing a wide variety of 

molecules including hormones such as leptin, cytokines and substrates such as FAs (Kahn & Flier, 

2000).  

Five stages in the progression to T2D have been proposed, each one characterized by changes in 

several metabolic parameters and β-pancreatic cell function (Weir & Bonner-Weir, 2004). T2D is 

preceded by IR, a reduced capacity to internalize glucose from the bloodstream as consequence of 

insensitivity to insulin that may result from obesity, physical inactivity and/or genetic predisposition. 

To maintain normal glucose levels under IR, the pancreas responds by releasing more insulin by an 

increasing β-pancreatic cell mass. This phase is called compensation stage or stage 1. If IR proceeds 

further into diabetes, there is a drop in insulin secretion, with subsequent increased fasting plasma 

glucose (89-130 mg/dL) and impaired glucose tolerance (IGT; high glucose levels over a period of 2 h 

after ingestion) as a consequence of a loss and dedifferentiation of β-pancreatic cells. This phase is 

called adaptation stage or stage 2. Stage 3 is an unstable period of early decompensation in which 

glucose levels can rise rapidly to 130 mg/dL. Stage 4 is characterized by a stable decompensation 

with severe β-pancreatic cell dedifferentiation. Finally, stage 5 is characterized by even more severe 

decompensation representing a profound reduction in β-pancreatic cell mass and total dependence 

on insulin administration for survival. In stage 5 glucose levels are around 350 mg/dL (Weir & Bonner-

Weir, 2004). 

Physiopathology of insulin resistance 

T2D develops from IR affecting to different tissues and organs, as AT, liver and muscle. The insulin 

receptor (IRe), is located in the membrane of hepatocytes, skeletal muscle and adipocytes, as well as 

other types of cells, such as neurons. Binding of insulin to IRe leads to a cascade of intracellular 

signalling events that regulate glucose uptake and metabolism. Activation of IRe leads to its auto-

phosphorylation on tyrosine residues and phosphorylation of its substrate insulin receptor substrate 
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1 (IRS-1) on tyrosine residues. This initiates two major signalling cascades: i) the mitogen-activated 

protein kinase (MAPK) pathway that includes activation of extracellular-signal-regulated kinase (ERK) 

proteins leading to gene expression, protein translation, and cell growth, and ii) the 

phosphatidylinositol 3 kinase (PI3K) pathway that includes activation of protein kinase B (AKT) leading 

to translocation of glucose transporter 4 (GLUT4) vesicles from their intracellular pool to the cell 

membrane, where they allow uptake of glucose into the cell (Figure 4).  

 

Figure 4. Regulation of glucose uptake by PI3K pathway 

 

IR can be attributed to impaired insulin signalling and decreased insulin-stimulated glucose transport 

by agents acting at different steps in this pathway. As a consequence, GLUT4 is not translocated and 

glucose cannot be internalized into the cell.  

There are three main mechanisms that explain the pathogenesis of IR in different organs: ectopic 

lipid accumulation, endoplasmic reticulum stress, and systemic inflammation (Samuel & Shulman, 

2012).  
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- Ectopic Lipid Accumulation 

Ectopic lipid accumulation is the displacement of lipid storage from the AT into other organs and 

tissues. Lipid droplets or adiposomes are considered the intracellular sites of synthesis and lipolysis of 

lipids. They possess a large number of enzymes that regulate the entry and exit of lipid species. 

Adipose triglyceride lipase (ATGL) is a lipase that catalyses the hydrolysis of triglycerides (TAGs) into 

diacylglycerols (DAGs). Intracellular lipid intermediates (DAGs and ceramides) are lipids that can 

activate protein kinase C (PKC) proteins. PKC proteins regulate numerous cellular responses including 

gene expression, protein secretion, cell proliferation, and the inflammatory response. The activation 

of PKC by DAGs or ceramides in muscle and liver leads to a phosphorylation of a serine residue, 

instead of tyrosine, of the IRe and IRS (Figure 5). Loss of PI3K activation from increased IRS serine 

phosphorylation by PKC reduces insulin-stimulated IRe and IRS tyrosine phosphorylation and leads to 

reduced translocation of GLUT4 to the cell membrane (Samuel & Shulman, 2012). 

 

Figure 5. Ectopic lipid accumulation mechanism of insulin resistance 

 

- Endoplasmic Reticulum Stress 

When IR first develops, the increased requirements for insulin production could overwhelm the 

capacity of the endoplasmic reticulum (ER) to process and secrete insulin. The unfolded protein 
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response (UPR) is initiated with the accumulation of unfolded proteins in the ER lumen. The capacity 

of the UPR to cause insulin resistance may ultimately depend on whether UPR activation alters the 

balance of lipogenesis and lipid export to promote lipid accumulation. UPR regulates lipogenesis, lipid 

droplet formation, and lipid storage. Thus, activation of the UPR may primarily alter cellular lipid 

balance and, via lipid intermediates accumulation can alter insulin signalling (Samuel & Shulman, 

2012). 

- Systemic Inflammation 

Despite the multiplicity of intracellular pathways that mediate the inflammatory responses, the 

explanation for the development of IR under inflammatory states often converges on the activation 

of Jun-N-terminal kinase 1 (JNK1) (Figure 6). The defect in insulin signalling can be attributed to 

serine, instead of tyrosine, phosphorylation of IRS, by activation of JNK1, providing a possible 

mechanistic link between inflammation and IR (Samuel & Shulman, 2012). 

 

Figure 6. Systemic inflammation mechanism of insulin resistance 

 

T2D and IR have been linked to shifts in the populations of gut microbiota. In humans, T2D is 

associated with higher levels of Lactobacillus spp. compared with non-diabetics.  Lactobacillus spp. 

correlated positively with fasting glucose and glycated hemoglobin levels, while Clostridium spp. 
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correlated negatively with fasting glucose and plasma insulin and triglycerides (Blandino et al., 2016). 

As the modulation of the gut microbiota by dietary compounds is another main goal of this thesis; a 

more detailed explanation about modifications of the gut microbiota will be developed in the 

following section.  

1.1.5 CHANGES IN GUT MICROBIOTA 

Extrinsic factors such as age and diet continually influence the diversity and function of the gut 

microbiota with diverse implications for the host’s health. 

1.1.5.1 Age 

The microbial populations in the human gut changes over time and these changes can influence 

health. The most dramatic changes in the composition of the intestinal microbiota take place in 

childhood (Favier, Vaughan, De Vos, & Akkermans, 2002). After this, only relatively small changes 

take place and a child has an adult-like microbiota by approximately two years of age. During adult 

life, the composition of the intestinal microbiota is relatively stable (Faith et al., 2013), however 

short-term disturbances can rapidly induce changes with possible effects on the host organism (David 

et al., 2014).  

In humans, age-related differences in gut microbiota composition include an increase in the total 

number of facultative anaerobes, mainly Enterobacteriales (Hopkins & Macfarlane, 2002; Hopkins, 

Sharp, & Macfarlane, 2001; Woodmansey, McMurdo, Macfarlane, & Macfarlane, 2004), as well as a 

reduction in the populations of species belonging to the phylum Bacteroidetes (Mariat et al., 2009). 

Also the decline in the numbers of health-promoting Lactobacillus and Bifidobacterium is one of the 

most marked changes in the elderly gut (Hopkins & Macfarlane, 2002; Hopkins et al., 2001; 

Woodmansey et al., 2004). These changes, together with an overall reduction in microbial diversity as 

well as changes in digestive physiology such as intestinal transit time, may result an increased 

susceptibility to disease in the old age (Biagi et al., 2010). 

1.1.5.2 Diet 

There is mounting evidence of the role played by diet in modulating the composition and metabolic 

activity of the gut microbiota. Alterations in diet have been demonstrated to rapidly modify gut 

microbial composition (David et al., 2014; Hildebrandt et al., 2009). 
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Carbohydrates are the principal source of carbon and energy for colonic bacteria. Many of the health 

benefits ascribed to fiber are a consequence of their fermentation by the gut microbiota and the 

metabolites that are produced. Carbohydrates are fermented to organic acids, such as SCFAs which 

are the major end-products of carbohydrate fermentation that provide energy for other bacteria and 

peripheral tissues (Flint, Scott, Duncan, Louis, & Forano, 2012).  

Dietary fat also influences the composition and metabolic activity of the gut microbiota (Hildebrandt 

et al., 2009). Bacteroidetes levels increase either by fat or carbohydrate restricted diets so that diets 

rich in fruits, vegetables and fibres are associated with a high diversity of gut microbiota. At the 

genus level, high intake of fat and protein is associated with increased levels of Bacteroides, whereas 

high fiber intake is associated with increased levels of Prevotella (De Filippo et al., 2010; Ley et al., 

2006; Wu et al., 2011). 

There is much interest in developing new preventive and therapeutic tools for manipulating the 

composition of the gut microbiota to benefit the host health. There are several nutritional strategies 

to avert dysbiosis or to restore a normobiotic/eubiotic state disrupted by age or diet. These 

strategies include the administration of probiotics (putatively beneficial microorganisms) and 

prebiotics (ingredients that promote the growth/activity of beneficial microorganisms) (Roberfroid et 

al., 2010). Other bioactive food compounds, such as iminocyclitols and ω-3 PUFAs may have the 

capacity to preserve gut microbial diversity through different mechanisms and finally promote 

health.  

1.2 BIOACTIVE COMPOUNDS 

Bioactive compounds are essential and non-essential compounds, such as vitamins or polyphenols, 

which are present as natural constituents in food and can provide health benefits in animals or 

humans that consume them. They exhibit different effects such as antioxidant activity, inhibition or 

activation of enzymes, regulation of gene expression and modulation of gut microbiota (Biesalski et 

al., 2009).  

1.2.1  IMINOCYCLITOLS 

1.2.1.1 Chemical structure, natural sources and synthesis 

Iminocyclitols, also referred to as iminosugars or azasugars, are small monocyclic or bicyclic 

polyhydroxylated alkaloids (nitrogenated natural organic compounds, with biological activities at low 
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doses). They may be considered saccharide analogues in which the ring oxygen has been replaced by 

nitrogen (Watson, Fleet, Asano, Molyneux, & Nash, 2001). Iminocyclitols are present in many species 

of plants and bacteria. The first natural iminocyclitol discovered was nojirimycin (NJ), which was 

isolated from the bacterium Streptomyces nojiriensis (Inouye, Tsuruoka, & Nida, 1966). D-Fagomine 

was the first iminocyclitol isolated from a plant, buckwheat (Fagopyrum esculentum) (Koyama & 

Sakamura, 1974). Iminocyclitols may be obtained by extraction from plants or microorganisms, 

chemical synthesis and enzymochemical synthesis (Amézqueta & Torres, 2016).  

1.2.1.2 Activity, functions and applications 

As other secondary metabolites, iminocyclitols help plants in their defence against certain 

microorganisms and predators, particularly insects (Asano, 2003; Lou, Zou, Yan, & Gui, 2011). The 

biological activities of iminocyclitols, when ingested, are due to their structural analogy to sugars 

(Watson et al., 2001). One of the biological activities of iminocyclitols is the inhibition of intestinal 

glycosidases such as intestinal brush border disaccharidases (Asano et al., 1995). Glycosidases are 

enzymes that catalyse the hydrolysis of the glycosidic bonds in complex carbohydates and 

glycoconjugates. They are involved in a wide range of important biological processes, such as 

intestinal digestion, posttranslational processing of the sugar chain of glycoproteins, quality-control 

systems in the ER and the lysosomal catabolism of glycoconjugates (Asano, 2003). The inhibition of 

glycosidases may have profound effects on carbohydrate catabolism in the intestines, maturation, 

transport, and secretion of glycoproteins, and can alter cell-cell or cell-virus recognition processes. 

Another biological activity of iminocyclitols seems to be their interaction with gut microbiota (Gómez 

et al., 2012). 

The applications of iminocyclitols range from inhibiting intestinal brush border disaccharidases to 

modifying the glycosylation of eukaryotic cells, the metabolism of carbohydrates and 

glycoconjugates, the carbohydrate-dependent properties of glycoproteins and the carbohydrate-

mediated interaction of host cells with infective agents (Winchester, 2009). Thus, iminosugars could 

play a role in the prevention of disorders such as obesity, diabetes, metabolic syndrome, immune 

response imbalances, cancer, autoimmune diseases, transplant rejection or lysosomal storage 

diseases (such as Gaucher's disease) (Butters, Dwek, & Platt, 2005; Gómez et al., 2012). 
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1.2.1.3 D-Fagomine 

Chemical Structure 

D-Fagomine, (2R, 3R, 4R)-2-hydroxymethylpiperidine-3,4-diol (1,2-dideoxynojirimycin), is a 

polyhydroxylated piperidine (saturated six-atom ring formed by five carbon atoms and a nitrogen). 

The spatial configurations of the hydroxyl groups in D-fagomine are coincident with those of other 

simple sugars (Figure 7). D-Fagomine presents the same spatial configurations of D-glucose and 

D-mannose on carbons 3, 4, 5 and 6. 

 

Figure 7. Chemical structures of a) D-fagomine, b) D-glucose and c) D-manose 

Natural Sources and Synthesis 

D-Fagomine was first isolated from seeds of buckwheat (Fagopyrum esculentum Moench, 

Polygonaceae) (Koyama & Sakamura, 1974) and later found in other plant sources such as mulberry 

(Morus Alba, Moraceae) leaves (Asano et al., 2001) and gogi (Lycium chinense, Solanaceae) roots 

(Asano et al., 1997).  

Buckwheat flour is used to prepare a variety of foodstuffs including noodles (Japanese soba, Korean 

makguksu and Italian pizzoccheri), groats (Polish kasha), pancakes (French crêpes from Bretagne, 

Slavic blinis and North American ployes), boiled flour (Italian polenta, and Slovenian and Croatian 

zganci), fried dough (Spanish farinetes de fajol from Catalonia), beer, cookies or bread. D-Fagomine is 

stable during boiling, baking, frying and fermentation. The estimated total intake of D-fagomine 

resulting from a diet that includes such foodstuffs would be between 3 and 17 mg per day 

(Amézqueta et al., 2013). 

D-Fagomine can be stereoselectively formed by chemo-enzymatic synthesis in three steps using 

fructose-6-phosphate aldolase (FSA) from Escherichia coli as biocatalyst (Castillo et al., 2006). This 

method was used by Bioglane SLNE for the generation of the sample used in this thesis. 
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Activity  

As D-fagomine is an intestinal glycosidase inhibitor, it has the potential to modulate postprandial 

blood glucose concentration after oral administration of either sucrose or starch to rats (Gómez et 

al., 2012). Recent observations have uncovered a second possible activity of D-fagomine and maybe 

other iminocyclitols as well: the selective inhibition of bacterial adhesion to the intestinal mucosa. 

Studies in vitro have shown that D-fagomine selectively agglutinates fimbriated Enterobacteriales, 

such as Escherichia coli, and Salmonella enterica serovar Typhimurium and consequently it inhibits 

the adhesion of these bacteria to pig intestinal mucosa (Gómez et al., 2012). This activity may modify 

the composition of the gut microbiota. The first evidence supporting this hypothesis was the 

observation that D-fagomine reduced diet-induced weight gain while counteracting the diet induced 

increase in the populations of gut Enterobacteriales (Ramos-Romero et al., 2014). 

1.2.2 POLYUNSATURATED FATTY ACIDS 

1.2.2.1 Chemical structure, natural sources and synthesis 

FAs are carboxylic acids with a long aliphatic chain (Figure 8).  

 

Figure 8. Chemical structure of a fatty acid  

 

Naturally occurring FAs can be classified into three categories based on the number of double bonds 

present in their backbone (Figure 9): saturated FAs (SFAs, no double bonds), monounsaturated FAs 

(MUFAs, a single double bond), and polyunsaturated FAs (PUFAs, more than one double bond).  
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Figure 9. Classification of fatty acids 

 

FAs can be further classified by their carbon chain length and the position of the first double bond 

from the terminal methyl group (ω-3 PUFAs or ω-6 PUFAs).  

Linoleic acid (LA; ω-6 PUFA with 18-carbon chain and 2 unsaturations) and α-linolenic acid (ALA; ω-3 

PUFA also with 18-carbon chain and 2 unsaturations) are the precursor molecules from which the 

rest of fatty acids belonging to the ω-6 or ω-3 PUFAs can be synthesized through a series of 

elongation and desaturation reactions (Figure 10). All the reactions are catalysed by an enzymatic 

system consisting in fatty acyl-CoA synthetases, Δ-6 and Δ-5 desaturases and elongases. These two 

fatty acid families share these enzymes and they compete for them, thus the levels of LA and ALA  

can influence the metabolic outcome of each other (for a review on the actions of ω-6 and ω-3 

PUFAs see (Calder, 2013; Innes & Calder, 2018; Wiktorowska-Owczarek, Berezinska, & Nowak, 

2015)).  

LA and ALA are the two essential FAs for humans because the body is incapable of synthesizing them 

as a result of the limitation of the enzyme responsible for inserting cis double bonds. ω-6 PUFAs are 

found in crop seeds and vegetable oils, including canola, soybean, corn, and sunflower oils. ω-3 

PUFAs are less abundant in food sources, and mainly found in marine algae and phytoplankton, fish 

and, to a lesser extent in plant seeds and oils (Calder & Yaqoob, 2009; Saini & Keum, 2018). 



49 
 

 

Figure 10. Metabolism of the essential linoleic and α-linolenic fatty acids to longer chain fatty acids. 
This figure shows the common enzymes required for these conversions 

 

1.2.2.2 Activity, functions and applications 

PUFAs are cell-membrane components. The presence of unsaturated fatty acids with numerous 

double bonds on cell membranes cause chain bending that forms free spaces and affects their 

physical properties: fluidity and elasticity (Stubbs & Smith, 1984). 

To avoid chronic diseases and maintain good health, a balanced intake of ω-6 and ω-3 PUFAs is 

necessary because these two types of PUFAs have different and complementary effects on bodily 

metabolic functions. ω-3 PUFAs possess anti-inflammatory activity, predominantly through the 

displacement of lipid intermediates from the ω-6 pathway to the ω-3 pathway by competing for the 

same enzymes. Arachidonic acid (ARA) is a ω-6 PUFA precursor of prostaglandins (PG) and 

thromboxanes (TX) series 2 (PGE2, PGI2, TXA2) and leukotrienes (LT) series 4 (LTB4, LTC4, LTD4) with 

pro-inflammatory potential and the ability to induce platelet aggregation and vasoconstriction. The 

metabolism of ω-3 PUFAs generate series 3 PG and TX (PGE3, PGI3, TXA3) and series 5 LT (LTB5, 
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LTC5, LTD5); this group of ω-3 eicosanoids shows anti-inflammatory and antiplatelet properties 

(Figure 11). One of the most common pharmacological approaches to treat inflammation is to inhibit 

the biosynthesis of ω-6 eicosanoids. Therefore, ALA consumption and its derivatives EPA and DHA 

may be a good strategy to preclude the elongation of ω-6 fatty acids to yield ARA and its derivatives 

(for a review summarizing the metabolism of ω-6 and ω-3  PUFAs see (Naughton, Mathai, Hryciw, & 

McAinch, 2016; Wiktorowska-Owczarek et al., 2015)). ω-3 PUFAs exert a lowering effect on the 

synthesis of pro-inflammatory compounds while fueling the synthesis of cytokines with anti-

inflammatory lipid mediators. 

 

Figure 11. Eicosanoids derived from arachidonic, eicosapentaenoic and docosahexaenoic acids 

 

1.2.2.3 EPA and DHA 

Chemical Structure 

EPA (20:5) and DHA (22:6) are ALA derived ω-3 PUFAs. They are carboxylic acids with 20 and 22 

carbon atoms and, 5 and 6 double bonds respectively (Figure 12), with their first double bond 

between carbons 3 and 4 from the terminal methyl group. 

 

Figure 12. Chemical structures of a) eicosapentaenoic acid (EPA; 20:5) b) docosahexaenoic acid 

(DHA; 22:6) 
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Natural Sources and Synthesis 

EPA and DHA are considered as almost essential PUFAs because their biosynthesis from ALA is too 

low to meet the needs of the organism under some circumstances such as disease or developmental 

problems. Therefore, they must be supplied with the diet. EPA and DHA are ω-3 PUFAs principally 

found in algae, marine food products and they are particularly concentrated in seafood and fish oil. 

Seafood is the richest food source of EPA and DHA. Other types of fish such as salmons, sardines, 

tunas, and halibuts contain EPA (15-19% of total FAs) and DHA (30% of total FAs) in slightly lower 

amounts. Numerous national and international health organizations recommend regular 

consumption at least 250-500 mg/day of EPA and DHA (Calder & Yaqoob, 2009). There also are small 

quantities of DHA in eggs, and EPA and DHA in milk. 

Activity 

EPA plays an important role in inflammation. The ω-6/ω-3 ratio in phospholipids determines the 

balance between prostaglandins of the 2 and 3 series derived from ARA and EPA, respectively 

(Figure 11). Eicosanoids of the 2 series promote inflammation and platelet aggregation, and they 

activate the immune response while series 3 prostaglandins tend to attenuate these effects. Thus, 

the inflammatory responses are modulated through the levels of ARA and EPA; when the proportions 

are favourable for ω-3 PUFAs, the response to inflammatory agents is weaker (Calder, 2006, 2013). 

Apart from favouring the synthesis of anti-inflammatory mediators, DHA is an important cell-

membrane component. Membrane rafts are especially rich in DHA, which provides proper fluidity, 

and proper functioning of membrane receptors, ion channels and transporting proteins. DHA is 

present in high proportions in brain tissue and retina (up to 50% and 60-80% membrane 

phospholipids, respectively) (Feller & Gawrisch, 2005; SanGiovanni & Chew, 2005). 

EPA and DHA are associated with cardiovascular health as they reduce the triglyceride levels in 

plasma and normalize blood pressure through reducing the levels of TXA2, a strong vasoconstrictor. 

They also exert anti-thrombotic effect by reducing the platelet tendency towards adhesion and 

aggregation (for reviews, see (Calder, 2004; McEwen, Morel-Kopp, Chen, Tofler, & Ward, 2013)). 

 



 

 

 



 

2 OBJECTIVES  
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The main objective of this thesis is to advance in understanding the interactions between gut 

microbiota and host metabolism, with the final aim of finding novel dietary approaches effective at 

preventing the current growing incidence of diabetes and obesity. This thesis focuses on the effects 

of buckwheat D-fagomine, fish ω-3 PUFAs (EPA/DHA 1:1) and their combination on the gut 

microbiota and related host metabolic variables in both healthy rats and a rat model of fat-induced 

pre-diabetes. This global objective can be split into the following specific goals: 

In healthy animals: 

- To elucidate the effect of D-fagomine on the gut microbiota in healthy rats with time.  

- To explore the possible complementary or additive effects of D-fagomine and ω-3 PUFAs 

(EPA/DHA 1:1) on the gut microbiota in healthy rats with time.  

- To explore the possible complementary or additive effects of D-fagomine and ω-3 PUFAs 

(EPA/DHA 1:1) on risk factors for type-2 diabetes in healthy rats with time. 

In animals with pre-diabetes: 

- To assess the possible use of D-fagomine as a functional food component using a rat model 

of fat-induced pre-diabetes. 

- To explore possible molecular mechanisms behind the action of D-fagomine in a rat model 

of fat-induced pre-diabetes. 

- To explore the possible complementary or additive effects of D-fagomine and ω-3 PUFAs 

(EPA/DHA 1:1) on gut microbiota and related metabolic variables in a rat model of fat-

induced pre-diabetes. 



 

  



 

3 RESULTS  
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The results of this thesis have been published or submitted for publication by way of the following 

scientific papers: 

PAPER 1: Eubiotic effect of buckwheat D-fagomine in healthy rats 

PAPER 2: The influence of combined buckwheat D-fagomine and fish omega-3 PUFAs on beneficial 

gut bacteria in rats 

PAPER 3: Functional effects of the buckwheat iminosugar D-fagomine on rats with diet-induced pre-

diabetes 

PAPER 4: Effects of combined buckwheat D-fagomine and fish omega-3 PUFAs on the gut microbiota 

and risk factors for diabetes in Sprague Dawley rats fed a high-fat diet 
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A B S T R A C T

Diversity and balance of gut microorganisms is fundamental for health throughout life. The aim of this study is to
explore the possible eubiotic effect of the buckwheat iminosugar D-fagomine (0.096% w/w in standard feed) in
growing healthy Wistar Kyoto rats. Feed and energy intake, residual energy in feces, and body weight gain were
independent of D-fagomine supplementation throughout the intervention (24weeks). The populations of sig-
nificant bacterial subgroups and species were determined in fecal and cecal DNA by quantitative real-time PCR. D-
Fagomine increased the Bacteroidetes:Firmicutes ratio and partially counteracted the loss of Lactobacilliales and
Bifidobacteriales over time. The supplementation reduced the levels of excreted short-chain fatty acids (SCFAs) as
determined by gas chromatography. This paper provides preliminary evidence that D-fagomine has the capacity to
promote microbial functional diversity by increasing the Bacteroidetes:Firmicutes ratio and to mitigate the age-
related reduction in populations of the putatively beneficial Lactobacilliales and Bifidobacteriales.

1. Introduction

Human gut microbiota is formed of some 1014 bacteria: more than
10 times the number of eukaryotic cells in a healthy person. It mainly
consists of 9 bacterial phyla encompassing over 1000 species, and more
than 15,000 strains. Most of these bacteria belong to the two most
abundant phyla in the gut: Bacteroidetes (40% of the gut microbiota)
and Firmicutes (60%) (Ley et al., 2005). Their main biological function
in the host is the optimization of energy harvesting through the de-
gradation of indigestible biopolymers (e.g. polysaccharides) in the large
intestine, and their conversion into smaller species that can be inter-
nalized and used as building blocks for lyposynthesis (Thomas,
Hehemann, Rebuffet, Czjzek, & Michel, 2011). Bacteroidales is the
major order among Bacteroidetes while Clostridiales is the major order
among Firmicutes. Other quantitatively minor yet important subgroups
of the gut microbiota are the orders: Lactobacillales, Bifidobacteriales
and Enterobacteriales, which belong to the phyla Firmicutes, Actino-
bacteria and Proteobacteria, respectively. Lactobacillales and Bifido-
bacteriales may confer health benefits on their host, including re-
sistance to infection, amelioration of allergic symptoms and protection
against inflammatory processes (Roberfroid et al., 2010). Lactobacillus
acidophilus is one of the major species of its genus found in the gut, and
together with Lactobacillus plantarum, it contributes to the maintenance

of the normal barrier function of the intestinal epithelium (Gareau,
Sherman, & Walker, 2010). Enterobacteriales is composed of non-pa-
thogenic and opportunistic bacteria such as Escherichia coli, a faculta-
tive anaerobic microorganism. Most E. coli strains can coexist inside a
healthy host; but they may cause enteric diseases and extra-intestinal
infections in immunocompromised hosts or when the normal gastro-
intestinal barriers are breached (Kaper, Nataro, & Mobley, 2004).

Microbiota products can be either protective or harmful, depending
on their concentration and on the metabolic status of the host. These
products include lipopolysaccharides (LPS: a component of the bac-
terial cell wall), angiopoietin-like protein 4 (a protein involved in lipid
metabolism), bile acids and short-chain fatty acids (SCFAs) (Janssen &
Kersten, 2017). SCFAs are the end products of the fermentation of
dietary fiber by anaerobic intestinal bacteria (den Besten et al., 2013;
Tan et al., 2014). Bacteroidetes and Actinobacteria are known to pro-
duce acetate and propionate; whereas butyrate is mainly generated by
bacterial groups in the Firmicutes phylum (e.g. Clostridiales) (Mackie &
White, 2012).

SCFAs are building blocks for de novo lyposynthesis as well as
mediators of biological responses in the host. They interact with sig-
naling pathways through activities such as inhibition of histone dea-
cetylases (HDACs) and activation of G-protein-coupled receptors
(GPCRs) (Tan et al., 2014).
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The preservation of microbial diversity and balance is fundamental
for host health (Nicholson et al., 2012). Many factors can produce dis-
ruptions in gut microbiota and lead to dysbiosis, which consequently
increases the susceptibility of the host to contract diseases (Iebba et al.,
2016). Physiological changes in the gastrointestinal tract, modifications
in lifestyle, and functional alterations of the host immune system over
time ultimately affect the bacterial ecosystem (Biagi et al., 2010). In
humans, age-related differences in gut microbiota composition include
an increase in the total number of facultative anaerobes, mainly En-
terobacteriales; and a reduction in the populations of species belonging
to the phylum Bacteroidetes, as well as of the health-promoting Lacto-
bacillales and Bifidobacteriales (Woodmansey, 2007). E. coli and other
opportunistic bacteria tightly adhere to mucosal surfaces (Svanborg,
Agace, Hedges, Lindstedt, & Svensson, 1994) and may prevent gut co-
lonization by the more loosely bound species belonging to the Lactoba-
cillales and Bifidobacteriales orders.

Nutritional strategies to avert dysbiosis or to restore a normobiotic/
eubiotic state include the administration of probiotics (putatively
beneficial microorganisms) and prebiotics (ingredients that promote
the growth/activity of beneficial microorganisms) (Roberfroid et al.,
2010). Other food components may have the capacity to preserve gut
microbial diversity through different mechanisms; together with pro-
biotics and prebiotics these may generally be called eubiotics. Imino-
cyclitols, also called iminosugars, are carbohydrate analogues with a
nitrogen atom in place of the endocyclic oxygen. D-Fagomine (1,2-di-
deoxynojirimycin) is a six-ring iminocyclitol first isolated from seeds of
buckwheat (Fagopyrum esculentum) and also present in other plant
sources such as mulberry (Morus alba) leaves, and gogi (Lycium chi-
nense) roots (Amézqueta et al., 2012). D-Fagomine is partially absorbed
and then rapidly (8 h) excreted in urine. It is partially metabolized into
methyl-D-fagomine (about 10% in urine and 3% in feces) (Amezqueta
et al., 2017). D-Fagomine inhibits intestinal disaccharidases in vitro,
reduces the post-prandial blood glucose concentration in healthy rats
and inhibits the adhesion of E. coli and Salmonella enterica serovar Ty-
phimurium to pig intestinal mucosa (Gómez et al., 2012). D-Fagomine
also maintains the glycemic status in pre-diabetic animals (Molinar-
Toribio et al., 2015), it reduces fat-induced weigh gain (Ramos-Romero
et al., 2014) and there is preliminary evidence that it may elicit these
effects through an action on gut microbiota, particularly on En-
terobacteriales (Ramos-Romero et al., 2014).

To evaluate the possible use of D-fagomine as a functional food
component for the maintenance of balanced gut microbiota, here we
explore the changes it induces in the populations of major microbial phyla
and selected putatively beneficial minor orders in healthy rats over time.

2. Materials and methods

2.1. Animals

A total of 18 male Wistar-Kyoto rats from Envigo (Indianapolis, IN,
USA), aged 8–9weeks, were used. All animal handling was carried out in
the morning, to minimize the effects of circadian rhythms. All the proce-
dures strictly adhered to the European Union guidelines for the care and
management of laboratory animals (directive 2010/63/EU) under license
from the regional Catalan authorities (reference no. DAAM7921), and
were approved by the Spanish CSIC Subcommittee of Bioethical Issues.

2.2. Experimental design and sample collection

The rats were housed under controlled conditions of humidity
(60%), and temperature (22 ± 2 °C) with a 12 h light-12 h dark cycle.
To reduce the variation in microbiota between rats, the animals were
accommodated in their cages (n=3 per cage) for 4 weeks before the
nutritional intervention. Then, they were randomly divided into 2
groups (n= 9/group): control group (STD), fed a standard diet of 2014
Teklad Global 14% Protein chow from Envigo; and a group fed the

standard diet supplemented with 0.96 g D-fagomine/kg feed (> 98%
from Bioglane SLNE, Barcelona, Spain) per kg feed (FG). The compo-
sition of the diets is provided in Table 1. The proportion of D-fagomine
in the feed (2mg/g carbohydrates) was defined in accordance with the
results of previous studies in vitro (Gómez et al., 2012) and in vivo
(Ramos-Romero et al., 2014). The mean daily dose of D-fagomine was
3.9 mg per 100 g body weight, calculated from a mean feed consump-
tion of 4.1 g feed per day per 100 g body weight. The animals were fed
ad libitum with free access to water (Ribes, Barcelona, Spain).

Feed consumption was monitored daily and body weight was mea-
sured three times per week throughout the experiment. Energy intake
was calculated as estimates of metabolizable energy, based on the
Atwater factors, assigning: 4 kcal/g protein, 9 kcal/g fat, and 4 kcal/g
available carbohydrate.

Fecal samples were collected by abdominal massage after weeks 0, 1,
3, 9 and 24. The energy content in the feces collected after week 20 was
determined by differential scanning calorimetry (25–600 °C in an O2 at-
mosphere, 10 °C/min) by means of a TGA/SDTA851e thermogravimetric
analyzer (Mettler-Toledo, Columbus, OH) with integrated SDTA signal.

After 24 weeks of supplementation, the rats were fasted overnight
and anesthetized intraperitoneally with ketamine from Merial
Laboratorios (Barcelona, Spain) and xylacine from Quimica
Farmaceutica (Barcelona, Spain) (80 and 10mg/kg body weight, re-
spectively). The cecal content was collected, weighed and immediately
frozen in liquid N2. All the samples were stored at –80 °C until analysis.

2.3. Measurement of microbial populations

The relative populations of selected bacterial phyla, orders and
species were estimated in fecal and cecal DNA by quantitative real-time
PCR (qRT-PCR). Total DNA was extracted from both feces and cecal
content using a QIAamp® DNA Stool Mini Kit from QIAGEN (Hilden,
Germany) and quantified using a Nanodrop 8000 Spectrophotometer
(ThermoScientific, Waltham, MA, USA). All DNA samples were diluted
to 20 ng/µL. The qRT-PCR experiments were carried out using a
LightCycler® 480 II (Roche, Basel, Switzerland) in 96-well plates. Each
qRT-PCR well was run in triplicate and contained DNA (2 µL) and a
master mix (18 µL) consisting of 2X SYBR (10 µL), the corresponding
forward and reverse primer (1 µL each), and water (6 µL). All the re-
actions were paralleled by a non-template control (water) and a posi-
tive control (Table 2) from DSMZ (Braunschweig, Germany). Water was
purified using a Milli-Q system (Millipore Corporation, Billerica, MA,
USA). The qRT-PCR cycling conditions were as follows: 10 s at 95 °C,
then 45 cycles of 5 s at 95 °C, 30 s at the primer-specific annealing
temperature (Table 2), and 30 s at 72 °C (extension). Following ampli-
fication, to determine the specificity of the qRT-PCR, melting curve
analysis was carried out by heating for 2 s at 95 °C, then cooling for 30 s

Table 1
Composition of the experimental diets.

Standard a Standard plus D-fagomine

Composition (g/kg)
Protein 143.00 143.00
L-cystine 3.00 3.00
Available carbohydrate 480.00 480.00
Crude fiber 41.00 41.00
Fat 40.00 40.00
Mineral 28.37 28.37
Vitamins 1.20 1.20
Ash 47.00 47.00
Choline bitartrate 1.00 1.00
D-Fagomine b – 0.96
Total energy (ks °C/g) c 704.3 627.0

a Teklad Global 14% protein rodent maintenance diet (2014) from Harlan.
b
D-Fagomine (Batch: FG1008E) from Bioglane (Barcelona, Spain).

c Integrated SDTA signal proportional to energy in diets.
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at 60 °C, and a temperature gradient from 30 °C to 95 °C at a rate of
0.11 °C/s, with five fluorescence recordings per °C.

The relative DNA abundances for the different sequences were cal-
culated from the second derivative maximum of their respective am-
plification curves (Cp, calculated in triplicate) by considering Cp values
to be proportional to the dual logarithm of the inverse of the specific
DNA concentration, following the equation: [DNAa]/[DNAb] = 2Cpb-Cpa

(Pfaffl, 2001). Total bacteria was normalized as 16S rRNA gene copies
per mg of wet feces (copies/mg).

2.4. Short-chain fatty acids

SCFAs were analyzed in feces after 12weeks of supplementation and
in the cecal content at the end of the study, by gas chromatography using
a previously described method (Schwiertz et al., 2009) with some
modifications. Briefly, the feces were freeze-dried and weighed (∼50mg
dry matter) and a solution (1.5mL) containing the internal standard 2-
ethylbutiric acid (6.67mg/L) and oxalic acid (2.97 g/L) in acetonitrile/
water 3:7 was added. Then, SCFAs were extracted for 10min using a
rotating mixer. The suspension was centrifuged (5min, 12,880g) in a
5810R centrifuge (Eppendorf, Hamburg, Germany) and the supernatant
passed through a 0.45 µm nylon filter. An aliquot of the supernatant
(0.7mL) was diluted to 1mL with acetonitrile/water 3:7. SCFAs were
analyzed using a Trace2000 gas chromatograph coupled to a flame io-
nization detector (ThermoFinnigan, Waltham, MA, USA) equipped with a
Innowax 30m×530 µm × 1µm capillary column (Agilent, Sta Clara,
CA, USA). Chrom-Card software was used for data processing. This
method has shown good selectivity for six different SCFAs (acetic acid,
propionic acid, butyric acid, isobutyric acid, valeric acid and isovaleric
acid), sensitivity, linearity in the working concentration range (acetic
and butyric acids 3–750 ppm; propionic acid 1–250 ppm; isobutyric acid
0.3–75 ppm; isovaleric and valeric acids 0.2–40 ppm) and accuracy
(trueness and precision). To check the method trueness and precision, a
recovery study at three concentration levels and on three different days
was performed. Precision (RSD < 15%) and recovery (>70%) were
adequate and intra-day reproducible.

2.5. Statistical analysis

The results are expressed as mean values with their standard errors

(SEM). Normal distribution and heterogeneity of data were evaluated by
Shapiro-Wilk test and F-tests, respectively. Intra-group statistical sig-
nificance throughout the study was determined by repeated-measures
ANOVA. Statistical significance between groups was determined by
Student’s t-test. Differences were considered significant when P < 0.05.
All data calculations and statistical analysis were performed using Graph
Pad Prism 5 (Graph Pad Software, Inc., San Diego, CA, USA).

3. Results

3.1. Body weight, and feed and energy intakes

Body weight was similar in the STD and FG groups, both before and
after the nutritional intervention (Table 3). There were no differences
between groups in either water, feed or energy intakes throughout the
experiment (Table 3); nor were there in the energy excreted in feces at
the end of the study (Table 3).

Table 2
Quantitative real-time PCR primers and conditions.

Target bacteria Annealing temperature (°C) Sequences (5′-3′) Positive controla Reference

Total Bacteria 65 F: ACT CCT ACG GGA GGC AGC AGT b Hartman et al. (2009)
R: ATT ACC GCG GCT GCT GGC

Bacteroidetes 62 F: ACG CTA GCT ACA GGC TTA A Bacteroides fragilis Abdallah Ismail et al. (2011)
R: ACG CTA CTT GGC TGG TTC A

Firmicutes 52 F: CTG ATG GAG CAA CGC CGC GT Ruminococcus productus Haakensen, Dobson, Deneer, & Ziola (2008)
R: ACA CYT AGY ACT CAT CGT TT

Bacteroidales 61 F: GGT GTC GGC TTA AGT GCC AT Bacteroides fragilis Hartman et al. (2009)
R: CGG AYG TAA GGG CCG TGC

Clostridiales 60 F: CGG TAC CTG ACT AAG AAG C Ruminococcus productus Hartman et al. (2009)
R: AGT TTY ATT CTT GCG AAC G

Lactobacilliales 60 F: AGC AGT AGG GAA TCT TCC A Lactobacillus acidophylus Walter et al. (2001)
R: CAC CGC TAC ACA TGG AG

Bifidobacteriales 55 F: CTC CTG GAA ACG GGT GG Bifidobacterium longum Queipo-Ortuno et al. (2013)
R: GGT GTT CTT CCC GAT ATC TAC A

Enterobacteriales 60 F: ATG GCT GTC GTC AGC TCG T Escherichia coli M15 Hartman et al. (2009)
R: CCT ACT TCT TTT GCA ACC CAC T

Lactobacillus acidophylus 64 F: AGC TGA ACC AAC AGA TTC AC Lactobacillus acidophylus Walter et al. (2001)
R: ACT ACC AGG GTA TCT AAT CC

Lactobacillus plantarum 55 F: GCC GCC TAA GGT GGG ACA GAT Lactobacillus plantarum Walter et al. (2001)
R: TTA CCT AAC GGT AAA TGC GA

Escherichia coli 61 F: GTT AAT ACC TTT GCT CAT TGA Escherichia coli M15 Malinen, Kassinen, Rinttila, & Palva (2003)
R: ACC AGG GTA TCT AAT CCT GTT

a All strains of positive controls were from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ).
b Positive control for total bacteria was the same as that for each individual reaction.

Table 3
Body weight, feed and energy intake, and energy in feces of rats supplemented
(or not) with D-fagomine for 24 weeks.

STDa FGb

Mean SEM Mean SEM

Initial body weight (g) 224.9 3.9 237.8 4.1
Final body weight (g) 416.4 12.9 435.7 11.15
Water intake (mL/day/100 g body weight) 7.4 0.2 7.3 0.2
Feed intake (g/day/100 g body weight) 4.8 0.7 4.1 0.3
Energy intakec (kcal/day/100 g body weight) 14.3 0.2 14.6 0.2
Excreted energyd 306.6 19.5 253.6 21.7

a STD (Control group): rats fed a standard diet (2014 Teklad Global 14%
Protein chow from Envigo).
b FG (D-Fagomine group): rats fed the standard diet supplemented with

0.96 g D-fagomine/kg feed.
c Estimated as metabolizable energy based on Atwater factors, which assign:

4 kcal/g to protein, 9 kcal/g to fat, and 4 kcal/g to available carbohydrates.
d Integrated STD signal (ks °C/g) proportional to energy in feces from week 20.
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3.2. Major microbiota phyla and orders

The relative proportions of the two predominant bacterial phyla:
Bacteroidetes and Firmicutes, and orders within these phyla:
Bacteroidales and Clostridiales in the gut microbiome, were evaluated
at time 0 and after 1, 3, 9 and 24weeks of supplementation in feces, and
also at the end of the study (24 weeks) in cecal content (Fig. 1).

Intragroup variations in the percentages of Bacteroidetes and
Firmicutes over the entire experiment were not significant; while sup-
plementation with D-fagomine clearly increased the populations of
Bacteroidetes in feces, already after one week of supplementation, ex-
cept at week 3 (Fig. 1A). This effect was also detected in the cecal
content at the end of the study (Fig. 1A, B). The populations of Bac-
teroidales (the main order within Bacteroidetes) presented a similar

pattern (Fig. 1D). No significant differences were observed in the po-
pulations of Firmicutes or its major order, Clostridiales, throughout the
study (Fig. 1B, E).

3.3. Minor microbiota orders and species

The relative proportions of the orders Lactobacillales,
Bifidobacteriales, and Enterobacteriales, as well as L. acidophilus, L.
plantarum, and E. coli in the gut microbiota, were evaluated at time 0
and after 1, 3, 9 and 24weeks of supplementation in feces, and at the
end of the study (24 weeks) in cecal content (Fig. 2).

The relative populations of Lactobacillales at the end of the study
(week 24) were significantly lower (P < 0.001) than those at time 0 in
the STD group (Fig. 2A). D-Fagomine partially counteracted this age-

A) D)

B) E)

C)

0 wk 1 wk 3 wk 9 wk 24 wk CC
0

20

40

60

80

100

120

***

***

******

FECAL

B
a
c
te

ro
id

e
te

s
/ 
T

o
ta

l 
b

a
c
te

ri
a
 (

%
)

0 wk 1 wk 3 wk 9 wk 24 wk CC
0

20

40

60

80

100

120

**

**

***

*

FECAL

B
a

c
te

ro
id

a
le

s
 /

 T
o

ta
l 

b
a

c
te

ri
a

 (
%

)

0 wk 1 wk 3 wk 9 wk 24 wk CC
0

20

40

60

80

100

120

FECAL

**

F
ir

m
ic

u
te

s
 /
 T

o
ta

l 
b

a
c
te

ri
a
 (

%
)

0 wk 1 wk 3 wk 9 wk 24 wk CC
0

20

40

60

80

100

120

FECAL

C
lo

s
tr

id
ia

le
s

 /
 T

o
ta

l 
b

a
c

te
ri

a
 (

%
)

0 wk 1 wk 3 wk 9 wk 24 wk CC
0.0

0.1

0.2

0.3

0.4

FECAL

*

*
*

B
a

c
te

ro
id

e
te

s
/F

ir
m

ic
u

te
s

Fig. 1. Bacteroidetes (A), Firmicutes (B), Bacteroidetes:Firmicutes ratio (C) Bacteroidales (D) and Clostridiales (E) in fecal samples from rats fed a standard diet (STD,
empty bars), or supplemented with D-fagomine (FG, striped bars) at different times, and in cecal content (CC) at the end of the study. Data are presented as means
with their standard error. Comparisons were made using Student’s t-test. *P < 0.05. **P < 0.01. ***P < 0.001.
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related loss as after 24 weeks the population of Lactobacilliales in the
supplemented group was significantly (P < 0.01) greater than that in
the STD group (Fig. 2A). The same effect was detected for L. acidophilus
(Fig. 2D). There were no differences between the groups in the per-
centage of L. plantarum (Fig. 2E).

The relative populations of Bifidobacteriales also significantly de-
creased (P < 0.05) over time in the feces of animals in the STD group
(Fig. 2B); at the end of the experiment (week 24) the population was
almost undetectable. Supplementation with D-fagomine also had an

effect on these proportions of Bifidobacteria over time. Already after
9 weeks of intervention, the population of Bifidobacteriales was sig-
nificantly higher (P < 0.05) in the supplemented group than in the
STD group; and at the end of the study (week 24), the differences be-
tween the groups were still significant (P < 0.05).

The populations of Enterobacteriales and E. coli in the STD and FG
groups were similar throughout the study except after week 9 of sup-
plementation when a significant (P < 0.05) increase was recorded for
Enterobacteriales in the FG group (Fig. 2C). At the end of the study, the
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Fig. 2. Lactobacillales (A), Bifidobacteriales (B), Enterobacteriales (C), Lactobacillus acidophilus (D), Lactobacillus plantarum (E) and E. coli (F) in fecal samples from
rats fed a standard diet (STD, empty bars), or supplemented with D-fagomine (FG, striped bars) at different times, and in cecal content (CC) at the end of the study.
Data are presented as means with their standard error. Comparisons were made using Student’s t-test or repeated-measures ANOVA. *P < 0.05 vs STD. **P < 0.01 vs
STD; &P < 0.05 vs wk 0. &&&P < 0.001 vs wk 0.
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group supplemented with D-fagomine presented higher amounts of
Enterobacteriales (P < 0.05) and E. coli (P < 0.01) in the cecal con-
tent (Fig. 2C, F).

3.4. Short-chain fatty acids

The concentrations of SCFAs were measured in feces after week 12
of the study and in the cecal content at the end (24 weeks) (Table 4).

D-Fagomine significantly (P < 0.05) reduced the concentration of
acetic and isobutyric acids, and also the total content of SCFAs in feces
(Table 4). There were no differences between groups in any SCFA de-
termined in the cecal content (Table 4).

4. Discussion

The present study focuses on the effect of D-fagomine on gut mi-
crobiota of healthy WKY rats over a period of 24 weeks (from age
8–9 weeks to 32–33weeks). The intragroup differences in the popula-
tions of Bacteroidetes, Firmicutes and their respective major orders,
Bacteroidales and Clostridiales, were not significant. This result roughly
agrees with a previous report of fecal microbiota variation in healthy
Sprage-Dawley rats over a period of two years (Flemer et al., 2017). In
that study, the populations of the two phyla and the Bacter-
oidetes:Firmicutes ratio showed a non-significant tendency to increase
during the first year (Flemer et al., 2017). Now we have shown here
that the feces of WKY rats supplemented with D-fagomine contains
significantly higher populations of Bacteroidetes and Bacteroidales than
those of rats given the STD diet, already after one weak and over the
entire experiment, with the exception of Bacteroidetes at week 3
(Fig. 1A, D). As the level of functional diversity in the gut microbiome
has been linked to the relative abundance of Bacteroidetes (Turnbaugh
et al., 2009), D-fagomine may contribute to the maintenance of in-
testinal health in ageing rats by preserving diversity.

We have also recorded some intergroup differences in fecal SCFAs.
The total SCFA content in the group supplemented with D-fagomine
showed a tendency to be lower than in the STD group; this difference
was only significant in the cases of acetate and isobutyrate (Table 4).
This reduction in excreted SCFAs might be related to the increase in the
Bacteroidetes:Firmicutes ratio (Fig. 1C), in agreement with studies that
associate a reduced Bacteroidetes:Firmicutes ratio in obese vs lean mice
with increased concentrations of acetate and butyrate (Turnbaugh
et al., 2006) or acetate and propionate (Murphy et al., 2010). In hu-
mans, the transfer of intestinal microbiota from lean donors can

improve insulin sensitivity of patients suffering from metabolic syn-
drome, while increasing the populations of butyrate-producing bacteria
and reducing fecal SCFAs (acetate and butyrate) (Vrieze et al., 2012).
This apparent contradiction may be explained by considering the host/
microbiome ecosystem as a whole, in which the capacity to absorb
bacterial metabolites by the host plays a determinant role and the fecal
concentration of these metabolites may not be directly related to their
generation rate. Fecal SCFAs may still be markers of the host’s meta-
bolic status. Hence, lower levels of excreted SCFAs together with higher
Bacteroidetes:Firmicutes ratios are consistently associated in the lit-
erature with a lean healthy phenotype, compared to metabolically al-
tered phenotypes (Canfora, Jocken, & Blaak, 2015).

The action of D-fagomine is also evident in the case of the putatively
beneficial Lactobacillales and Bifidobacteriales, particularly
Lactobacillus acidophilus (Fig. 2A, B, D). The fecal populations of these
bacteria steadily and significantly decreased from week 3 until the end
of the study in non-supplemented animals. There is little information in
the literature about changes in the populations of putatively beneficial
bacteria in healthy rats over time. In Wistar rats, Lactobacilliales show a
slight tendency to increase during the first year of life, while species of
the Bifidobacterium genus are detected only in the second year (Flemer
et al., 2017). In humans, the populations of Bifidobacteriales remain
relatively stable during adulthood and decrease considerably in old age
(Arboleya, Watkins, Stanton, & Ross, 2016). This decline has been as-
sociated with the development of intestinal disorders, including diar-
rhea, irritable bowel syndrome, and inflammatory bowel disease
(Gareau et al., 2010). In the present study, the supplemented group
presented significantly higher populations of Lactobacilliales and Bifi-
dobacteriales than those in the STD group at the end of the intervention
(animals of 32–33weeks of age). D-Fagomine might counteract the loss
of beneficial bacteria by inhibiting the adhesion of opportunistic species
such as E. coli, as previously reported (Gómez et al., 2012).

The feces of the Wistar-Kyoto rats in this study did not contain
elevated percentages of Enterobacteriales, whether they were supple-
mented with D-fagomine or not. In the supplemented group, a sig-
nificant increase of Enterobacteriales, and particularly E. coli, was re-
corded after 9 weeks of intervention (Fig. 2C, F). Yet these levels (up to
0.2%) fall within the normal range for healthy individuals and they are
much lower than those triggered by an obesogenic diet (4%) (Ramos-
Romero et al., 2014). The population of Bifidobacteriales also increased
significantly at the same time point (Fig. 2B). At this particular time in
the experiment, a singular event may have occurred. The combination
of the standard diet and D-fagomine may have induced changes in the
intestinal ecosystem when the rats were 17–18weeks old. As com-
mented before in the case of SCFAs, the increase in excreted En-
terobacteriales and E. coli does not necessarily imply an increase of
these populations in contact with the intestinal wall. In fact, the op-
posite might be the case in the supplemented group. The results at week
9 suggest that D-fagomine was eliminating Enterobacteriales and E. coli
while favoring colonization by Bifidobacteriales. This assertion is sup-
ported by previous results which show that D-fagomine inhibits the
adhesion of E. coli, but not of Bifidobacteria, to the intestinal mucosa
(Gómez et al., 2012) and it reduces the populations of enterobacteria
triggered by an obesogenic diet (Ramos-Romero et al., 2014). This
explanation is also consistent with the recorded increased populations
of E. coli in cecum content at the end of the study (Fig. 2F).

5. Conclusions

This paper provides preliminary evidence that the iminosugar D-
fagomine has the capacity to promote diversity in gut microbiota and to
mitigate the age-related reduction in the populations of some putatively
beneficial bacteria in healthy rats. D-Fagomine increased the
Bacteroidetes:Firmicutes ratio, reduced the loss of Lactobacilliales and
Bifidobacteriales with aging and reduced the levels of excreted SCFAs.
A comprehensive metagenomic study should shed more light on the

Table 4
Short-chain fatty acids determined in feces from rats supplemented (or not)
with D-fagomine for 12 weeks and at the end of the study (24weeks) in cecal
content.

FECES CECAL CONTENT

STDa FGb STDa FGb

Mean SEM Mean SEM Mean SEM Mean SEM

Acetic acid 310.94 61.1 142.07* 25.7 96.12 5.3 88.07 6.0
Propionic acid 27.42 6.2 16.70 2.7 25.41 2.0 19.95 1.3
Isobutyric acid 1.25 0.2 0.45* 0.1 3.66 0.3 3.00 0.1
Butyric acid 17.58 3.3 10.62 2.0 15.28 1.9 10.59 0.9
Isovaleric acid 1.00 0.3 0.44 0.1 3.92 0.3 3.02 0.2
Valeric acid 0.69 0.1 0.64 0.1 3.00 0.3 2.32 0.2
TOTAL SCFA 356.86 66.1 170.92* 28.5 136.71 10.8 125.77 7.2

Comparisons were made using Student’s t-test.
* P < 0.05 vs STD group.
a STD (Control group): rats fed a standard diet (2014 Teklad Global 14%

Protein chow from Envigo).
b FG (D-Fagomine group): rats fed the standard diet supplemented with

0.96 g D-fagomine/kg feed.
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changes in gut microbiota induced by iminosugars such as D-fagomine
and their functionality. D-Fagomine may have a eubiotic effect on the
composition of intestinal microbiota that may be complementary to
that of probiotics and prebiotics.
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ABSTRACT 

Some functional food components may help maintain homeostasis by promoting balanced gut 

microbiota. Here, we explore the possible complementary effects of D-fagomine and ω-3 PUFAs 

(EPA/DHA 1:1) on putatively beneficial gut bacterial strains. Male Sprague Dawley rats were 

supplemented with D-fagomine, ω-3 PUFAs, or both, for 23 weeks. Bacterial subgroups were 

evaluated in fecal DNA by qRT-PCR and short-chain fatty acids were determined by gas 

chromatography. We found that the populations of the genus Prevotella remained stable over time in 

animals supplemented with D-fagomine, independently of ω-3 PUFA supplementation. D-Fagomine 

supplementation also maintained the relative populations of Bifidobacteriales, while ω-3 PUFAs 

mainly affected Lactobacilliales. ω-3 PUFAs reduced the amount of acetic acid in feces. Animals 

supplemented with D-fagomine gained less weight and tended to accumulate less fat than controls 

and rats given only ω-3 PUFAs. The plasma levels of pro-inflammatory ARA-derived metabolites, 

triglycerides and cholesterol were lower in groups supplemented with ω-3 PUFAs. The D-fagomine 

and ω-3 PUFAs combination provided the functional benefits of each supplement. Notably, it helped 

stabilize populations of Prevotella in the rat intestinal tract while reducing weight gain and providing 

the anti-inflammatory and cardiovascular benefits of ω-3 PUFAs. 

KEYWORDS: Weight; Prevotella; lactobacillus; bifidobacteria; D-fagomine; ω-3 PUFAs.
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INTRODUCTION 

There is convincing evidence that dietary 

components such as soluble fiber, polyphenols 

and polyunsaturated fatty acids (PUFAs) are 

associated with functional effects that protect 

against metabolic disorders and cardiovascular 

diseases (Alkhatib et al., 2017). It is also 

becoming increasingly evident that some of 

these effects are mediated by changes in gut 

microbiota (Portune, Benitez-Paez, Del Pulgar, 

Cerrudo, & Sanz, 2017). Diet has been shown to 

influence microbiota in both animal models and 

humans (De Filippo et al., 2010; Hildebrandt et 

al., 2009; Turnbaugh et al., 2009). Although the 

gut microbiota is relatively stable in healthy 

adults (Faith et al., 2013), short-term 

disturbances can rapidly change its composition 

(David et al., 2014; Wu et al., 2011) with 

possible effects on the host organism. 

D-Fagomine (1,2-dideoxynojirimycin) is a six-

ring iminocyclitol: a carbohydrate analog with a 

nitrogen atom in place of the endocyclic 

oxygen. D-Fagomine was first isolated from 

seeds of buckwheat (Fagopyrum esculentum) 

and it is also present in other plant parts such 

as mulberry (Morus alba) leaves and gogi 

(Lycium chinense) roots (Amézqueta et al., 

2012; Koyama & Sakamura, 1974). The 

functional effects of D-fagomine include a 

reduction of post-prandial blood glucose 

concentration, achieved through the inhibition 

of intestinal disaccharidases (Gómez et al., 

2012); and reductions in high-fat-diet-induced 

weight gain, low-grade inflammation and 

impaired glucose tolerance, probably all 

achieved by counteracting adverse changes in 

gut microbiota (Ramos-Romero et al., 2018; 

Ramos-Romero et al., 2014). Moreover, 

D-fagomine promotes the diversity of gut 

microbiota by increasing populations of 

Bacteroidetes in healthy rats while mitigating 

the age-related reduction in the populations of 

putatively beneficial Lactobacillus and 

Bifidobacterium bacteria (Hereu, Ramos-

Romero, García-González, Amézqueta, & 

Torres, 2018). 

Eicosapentaenoic acid (EPA, 20:5, n-3) and 

docosahexaenoic acid (DHA, 22:6, n-3) are the 

major ω-3 PUFAs of marine origin. EPA and 

DHA are essential dietary components that 

reduce risk factors (plasma cholesterol and 

triglycerides, oxidative stress, and blood 

pressure) for cardiovascular diseases (Poudyal, 

Panchal, Diwan, & Brown, 2011), and other 

pathologies that involve inflammation (Calder, 

2006). ω-3 PUFAs are believed to exert their 

anti-inflammatory effects by competing with 

arachidonic acid (ARA) metabolism and 

fostering the synthesis of anti-inflammatory 

mediators such as resolvins (Calder, 2006). 

However, the effects of ω-3 PUFAs on gut 

microbiota are poorly documented (Costantini 
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& Molinari, 2017). It has been reported that 

EPA and DHA significantly increase the 

populations of Firmicutes (Lactobacillus taxa) 

and Bifidobacteria in mice fed a high-fat diet 

(Mujico, Baccan, Gheorghe, Diaz, & Marcos, 

2013; Robertson et al., 2017). In contrast, we 

found that the mixture EPA/DHA 1:1 reduced 

the population of Lactobacilliales in Wistar 

Kyoto (WKY) rats fed a standard diet (Ramos-

Romero et al., 2017). As buckwheat D-fagomine 

and ω-3 PUFAs have different effects on 

Lactobacillus and Bifidobacterium, we decided 

to test whether their combination had any 

additive or complementary effects. We 

previously reported that a combination of 

EPA/DHA 1:1 and proanthocyanidins can be 

instrumental in promoting balanced gut 

microbiota (Ramos-Romero et al., 2017). In this 

paper, we now also focus on the populations of 

Prevotella, because this genus has been directly 

associated with improved glucose metabolism 

in humans (Kovatcheva-Datchary et al., 2015), 

which is ultimately one of our main interests. 

We measured different variables in test animals 

(fat accumulation, weight gain, lipid profile and 

inflammation markers) that are pertinent to the 

known effects of D-fagomine and ω-3 PUFAs. 

Other studies have examined the effects of 

supplements on animal models subjected to 

more or less severe dietary challenges such as 

high-fat or high-sugar loads. As functional food 

components are primarily supposed to 

maintain the normal functions of the body, 

here we chose to test the effects on normal 

rats fed a standard diet. 

MATERIALS AND METHODS 

Animals and diets 

Male Sprague Dawley (SD) rats (n = 36) from 

Envigo (Indianapolis, IN, USA), aged 10-11 

weeks were housed (n = 3 per cage) under 

controlled conditions of humidity (60%), and 

temperature (22 ± 2 °C) with a 12 h light-12 h 

dark cycle. Prior to the nutritional intervention, 

the animals were fed a standard diet (2014 

Teklad Global 14% Protein Diet from Envigo) ad 

libitum with free access to water (Ribes, 

Barcelona, Spain) for two weeks. Then they 

were divided into 4 groups (n = 9 per group): 

the control (CTL) group fed only the standard 

diet; a group supplemented with D-fagomine 

(FG); a group supplemented with ω-3 PUFAs 

(EPA/DHA 1:1) (ω-3); and a group 

supplemented with both D-fagomine and ω-3 

PUFAs (FG + ω-3). D-Fagomine (> 98%) 

manufactured by Bioglane SLNE (Barcelona, 

Spain) was generously provided by Taihua 

Shouyue (HK) International Co. Ltd (Hong Kong, 

China). It was included in the feed at a 

proportion of 0.96 g/kg feed as defined in 

previous studies (Gómez et al., 2012; Ramos-

Romero et al., 2018). The mixture EPA/DHA 1:1 

was obtained by mixing the appropriate 
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quantities of the commercial fish oils AFAMPES 

121 EPA (AFAMSA, Vigo, Spain) and EnerZona 

Omega 3 RX (Milan, Italy). These ω-3 PUFAs 

were administered by oral gavage using a 

gastric probe once a week at a dose of 0.8 mL 

oil per kg of body weight. The dose and 

EPA/DHA proportions used were those 

reported previously (Molinar-Toribio et al., 

2015). To compensate for the stress of probing 

and the excess calories from the fish oil in 

groups ω-3 and FG + ω-3, the animals in groups 

CTL and FG were administered soy bean oil at 

the same dose and at the same time.  

All the procedures carried out strictly adhered 

to European Union Directive 2010/63/EU for 

the care and management of laboratory 

animals, and were licensed by the regional 

Catalan authorities (reference no. DAAM7921), 

as approved by the Spanish CSIC Subcommittee 

of Bioethical Issues. 

Data and sample collection  

Feed consumption was monitored daily and 

body weight was measured weekly throughout 

the experiment. Based on feed intake, the 

mean daily dose of D-fagomine was 4.5 mg/100 

g body weight. Energy intake was calculated as 

estimates of metabolizable energy based on 

the Atwater factors: 4 kcal/g protein, 9 kcal/g 

fat, and 4 kcal/g available carbohydrate.  

After week 21 of the experiment, fecal samples 

were collected by abdominal massage and 

blood samples were collected from the 

saphenous vein after overnight fasting. Plasma 

was separated by centrifugation and stored at 

−80 °C until analysis.  

At the end of the experiment (week 23), rats 

were fasted overnight and anaesthetized 

intraperitoneally with ketamine and xylazine 

(80 and 10 mg/kg body weight, respectively). 

Blood was collected by cardiac puncture, then 

plasma was immediately obtained by 

centrifugation and stored at −80 °C until 

analysis. Perigonadal fat was collected, weighed 

and immediately frozen in liquid N2. All the 

samples were stored at −80 °C until analysis. 

Glycemic status 

An oral glucose tolerance test (OGTT) was 

performed at week 18 on fasted animals. A 

solution of glucose (1 g/kg body weight) was 

administered by oral gavage before the test, 

and blood glucose concentration was measured 

15, 30, 45, 60, 90 and 120 min after the glucose 

intake. Blood glucose concentration was 

measured by the enzyme electrode method, 

using an Ascensia ELITE XL blood glucose meter 

(Bayer Consumer Care, Basel, Switzerland). 

Fasting blood glucose and plasma insulin levels 

were also measured after week 21, in fasted 

animals. Plasma insulin levels were measured 
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using the rat/mouse insulin ELISA kit from 

Millipore Corporation (Billerica, MA, USA).  

Plasma lipid profile 

Plasma triglycerides, total cholesterol, 

HDL-cholesterol and LDL-cholesterol were 

measured using a spectrophotometric method 

and the corresponding kits from Spinreact 

(Girona, Spain) as described elsewhere (Bucolo 

& David, 1973; Méndez et al., 2013).  

Plasma lipid mediators of inflammation 

Lipid mediators from the metabolism of ARA 

were determined in plasma by liquid 

chromatography coupled to tandem mass 

spectrometry (LC-MS/MS) using a method 

modified from Dasilva et al. (Dasilva et al., 

2014). Erythrocyte-free plasma samples (90 µL) 

were thawed, diluted in the presence of BHT, 

and spiked with the internal standard (12 

hydroxyeicosatetraenoic acid-d8, 12HETE-d8, 

Cayman Chemicals, Ann Arbor, MI, USA). Then, 

the samples were centrifuged (800 g, 10 min), 

and the lipids in the supernatants were purified 

by solid-phase extraction (SPE). The LC-MS/MS 

analyzer consisted of an Agilent 1260 Series 

chromatograph (Agilent) coupled to a dual-

pressure linear ion-trap mass spectrometer LTQ 

Velos Pro (Thermo Fisher, Rockford, IL, USA) 

operated in negative ESI mode. A C18-

Symmetry 150 x 2.1 mm inner diameter, 

3.5 µm column (Waters, Milford, MA, USA) with 

a C18 4 x 2 mm guard cartridge (Phenomenex, 

Torrance, CA, USA) were used in the separation 

step. Samples (10 µL) were eluted with a binary 

system consisting of 0.02% aqueous formic acid 

[A] and 0.02% formic acid in methanol [B] 

under gradient conditions of: 0 min, 60% B; 2 

min, 60% B; 12 min, 80% B; 13 min, 80% B; 23 

min, 100% B; 25 min, 100% B; and 30 min, 60% 

B, at a flow rate of 0.2 mL/min. 

Fecal microbial populations 

The relative populations of selected bacterial 

phyla, orders and genera were estimated in 

fecal DNA by quantitative real-time polymerase 

chain reaction (qRT-PCR). DNA was extracted 

from feces using a QIAamp® DNA Stool Mini Kit 

from QIAGEN (Hilden, Germany) and its 

concentration was quantified using a Nanodrop 

8000 Spectrophotometer (ThermoScientific, 

Waltham, MA, USA). qRT-PCR experiments 

were carried out in triplicate using a 

LightCycler® 480 II (Roche, Basel, Switzerland). 

Each qRT-PCR well contained DNA (2 µL of a 20 

ng/µL solution) and a master mix (18 µL) made 

of 2X SYBR (10 µL), the corresponding forward 

and reverse primer (1 µL each), and water (6 

µL). All the reactions were paralleled by analysis 

of both a non-template control (Milli Q water) 

and a positive control (Table 1) from DSMZ 

(Braunschweig, Germany). The qRT-PCR cycling 

conditions were: 10 s at 95 °C, then 45 cycles of 

5 s at 95 °C, 30 s at the primer-specific 
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annealing temperature (Table 1), and 30 s at 72 

°C (extension). The specificity of the qRT-PCR 

reactions was assessed by melting curve 

analysis which consisted of heating to 95 °C and 

maintaining this temperature for 2 s, then 

cooling to 65 °C and maintaining this 

temperature for 15 s, and running a 

temperature gradient from 65 °C to 95 °C at a 

rate of 0.11 °C/s, with five fluorescence 

recordings per °C. The relative DNA abundances 

for each bacterial subgroup were calculated 

from the second derivative maximum of their 

respective amplification curves (Cp, calculated 

in triplicate) by considering Cp values to be 

proportional to the dual logarithm of the 

inverse of the specific DNA concentration, 

following the equation: [DNAa]/[DNAb] = 2
Cpb-Cpa 

(Pfaffl, 2001). Amounts of total bacteria were 

normalized as 16S rRNA gene copies per mg of 

wet feces (copies/mg). 

 Fecal short-chain fatty acids 

Short-chain fatty acids (SCFAs) were analyzed in 

fecal samples after 21 weeks of 

supplementation by gas chromatography using 

a previously described method (Schwiertz et al., 

2009) with some modifications. Briefly, the 

freeze-dried feces were weighed (~50 mg dry 

matter) and a solution (1.5 mL) containing the 

internal standard 2-ethylbutyric acid (6.67 

mg/L) and oxalic acid (2.97 g/L) in 

acetonitrile/water 3:7 was added. Then, SCFAs 

were extracted for 10 min using a rotating 

mixer. The suspension was centrifuged (5 min, 

12,880 g) in a 5810R centrifuge (Eppendorf, 

Hamburg, Germany) and the supernatant 

filtered through a 0.45 µm nylon filter. Then an 

aliquot of the supernatant (0.7 mL) was diluted 

with acetonitrile/water 3:7 to a final volume of 

1 mL. SCFAs were analyzed using a Trace2000 

gas chromatograph coupled to a flame 

ionization detector (ThermoFinnigan, Waltham, 

MA, USA) equipped with an Innowax 30 m × 

530 µm × 1 µm capillary column (Agilent, Santa 

Clara, CA, USA). Chrom-Card software was used 

for data processing. Helium was used as carrier 

gas with a linear velocity of 5 mL/min. GC oven 

temperature was programmed as follows: 80 °C 

(hold 1 min) to 120 °C at 15 °C/min (hold 4 min) 

to 130 °C at 5 °C/min (hold 4 min) to 235 °C at 

8 °C/min (hold 4 min). FID detection was 

performed at a base temperature of 240°C. 

Calibration curves were prepared using seven 

matrix-matched standards covering the 

working concentration range. The precision 

(RSD < 15%) and recovery (> 70%) of the 

method were adequate and inter- and intra-day 

reproducible.  

Statistical analysis 

All data manipulation and statistical analysis 

was performed using GraphPad Prism 5 

(GraphPad Software, San Diego, CA, USA). The 

results are expressed as means with their 
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standard errors (SEM). The normal distribution 

and heterogeneity of the data were evaluated, 

and statistical significance was determined by 

one-way ANOVA with each group as variable 

and the Tukey multiple-comparisons test, two-

way ANOVA for repeated measures of body 

weight and glycemic response or Student’s 

t-test to compare the populations of gut 

microbiota of CTL group at week 21 vs week 0. 

Differences were considered significant when 

P < 0.05 and were considered to indicate a 

tendency when 0.05 ≤ P ≤ 0.1.  

 

Table 1.- Quantitative real-time PCR primers and conditions 

Target bacteria 
Annealing 

temperature (°C) 
Sequences (5’-3’) 

Positive Control 
DNA 

Reference 

Total Bacteria 65 F: ACT CCT ACG GGA GGC AGC AGT (a) (Hartman et al., 2009) 

  

R: ATT ACC GCG GCT GCT GGC   

 Bacteroidetes 62 F: ACG CTA GCT ACA GGC TTA A Bacteroides fragilis (Abdallah Ismail et al., 

2011) 
  

R: ACG CTA CTT GGC TGG TTC A 
 

Firmicutes 52 F: CTG ATG GAG CAA CGC CGC GT  Ruminococcus productus (Haakensen, Dobson, 

Deneer, & Ziola, 2008) 
  

R: ACA CYT AGY ACT CAT CGT TT  
 

Lactobacillales 60 F: AGC AGT AGG GAA TCT TCC A Lactobacillus acidophylus (Walter et al., 2001) 

  
R: CAC CGC TAC ACA TGG AG 

  
Bifidobacteriales 55 F: CTC CTG GAA ACG GGT GG Bifidobacterium longum (Queipo-Ortuno et al., 

2013) 
  

R: GGT GTT CTT CCC GAT ATC TAC A 
 

Bacteroides 60 F: GGT TCT GAG AGG AGG TCC C Bacteroides fragilis (Schwiertz et al., 2009) 

  R: GCT GCC TCC CGT AGG AGT   

Prevotella 60 F: CAG CAG CCG CGG TAA TA Prevotella copri (Schwiertz et al., 2009) 

  R: GGC ATC CAT CGT TTA CCG T   
a
 The positive control DNA used for the evaluation of  Total Bacteria for each subgroup was the one 

selected as positive control for that subgroup. 
 

RESULTS 

Feed and energy intake and body weight 

Feed and energy intake were similar for all the 

groups throughout the experiment (Table 2). In 

contrast, the animals in the FG and FG + ω-3 

groups gained less weight than those in the CTL 

and ω-3 groups (Figure 1A). At the end of the 

study (23 weeks) the animals supplemented 

with D-fagomine had significantly (P < 0.05) 

lower body weight than the controls or those 

supplement with only EPA/DHA 1:1 (Table 2). 
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Similarly, animals supplemented with 

D-fagomine showed a tendency (P = 0.06 FG vs 

CTL; P = 0.1 FG + ω-3 vs CTL) to store lower 

perigonadal fat than those not supplemented 

or supplemented only with ω-3 PUFAs (Figure 1

B).

Figure 1.- Body weight gain (A) and perigonadal fat (B) of the different groups (CTL, FG, ω-3 and FG + 

ω-3) of Sprague Dawley rats fed a standard diet for 23 weeks. The data represent means with their 

standard errors. Comparisons were performed using two-way ANOVA for repeated measures (A), or 

one-way ANOVA followed by Tukey's post-hoc test (B). *P < 0.05 FG vs CTL group; δP < 0.05 FG + ω-3 

vs CTL group.   
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Table 2.- Feed and energy intake, body weight, and plasma variables of rats supplemented with 

D-fagomine and/or ω-3 PUFAs for 23 weeks. 

 CTL
 

FG ω-3
 

FG + ω-3 

 Mean
 

SEM Mean
 

SEM Mean
 

SEM Mean
 

SEM 

Feed intake 

(g/day/100 g body weight) 
4.6 0.5 4.8 0.4 4.6 0.5 4.9 0.4 

Energy intake 
δ 

(kcal/day/100 g body weight) 
13.3  1.4 13.8   1.2 13.4  1.3 14.1 1.3 

Initial body weight (g) 373 7 360 3 363 7 360 7 

Final body weight (g) 540
 

16 493*
 

5 523
 

13 497*
 

11 

Fasting glucose 
&

 (mg/dL) 65 2 62 1 67 2 63 2 

Fasting insulin 
&

 (ng/mL) 0.56 0.10 0.34 0.03 0.65† 0.07 0.43 0.06 

Triglycerides (mmol/L) 0.69 0.02 0.61* 0.02 0.56***† 0.01 0.53*** 0.02 

Cholesterol (mmol/L) 3.61 0.04 3.30** 0.03 3.23*** 0.08 3.24*** 0.06 

HDL/LDL  2.82 0.08 2.13*** 0.06 2.34*** 0.03 2.11***φ 0.04 

δ
 Energy intake is estimated as metabolizable energy based on Atwater factors: 4 kcal/g protein, 9 

kcal/g fat, and 4 kcal/g available carbohydrates. 

& 
Samples from week 21. 

Data are presented as means with their standard errors of the mean; n = 9 per group. Comparisons 

were conducted using one-way ANOVA and Tukey’s multiple comparisons test. 
*
P < 0.05, 

**
P < 0.01, 

***
P < 0.001 vs CTL; 

†
P < 0.05 vs FG; 

φ
 P < 0.05 vs ω-3 

Glycemic Status  

The areas under the curve from the OGTT 

performed at week 18 were statistically similar 

for all groups (Supplementary material, Figure 

1). Fasting blood glucose and plasma insulin 

concentrations were measured after week 21 

of the intervention. The levels of fasting glucose 

were statistically similar in all the groups and 

below 80 mg/dL (Table 2). The animals 

supplemented with D-fagomine showed a 

tendency (P = 0.1) towards lower fasting blood 

insulin concentrations than non-supplemented 

rats or those supplemented only with ω-3 

PUFAs. The difference was statistically 

significant (P < 0.05) between the FG and ω-3 

groups (Table 2). 

Plasma lipid profile 

The levels of total triglycerides, cholesterol and 

both HDL and LDL were measured in plasma 
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after 23 weeks of the intervention (Table 2). 

The concentrations of plasma triglycerides, 

cholesterol and the HDL/LDL ratio were 

significantly (P < 0.05) lower in the three 

supplemented groups than the control values.  

Plasma lipid mediators of inflammation 

The levels of ARA-derived pro-inflammatory 

eicosanoids were measured by LC-MS/MS in 

plasma samples collected at the end of the 

study (Figure 2). The plasma concentrations of 

11HETE and 20HETE (Figure 2B, E) were 

significantly (P < 0.05) reduced in the two 

groups supplemented with ω-3 PUFAs with 

respect to the control group. The concentration 

of 12HETE (Figure 2C) was significantly 

(P < 0.05) lower in the three supplemented 

groups than the control values and the 

concentration of 5HETE and 15HETE (Figure 2A, 

D) were significantly (P < 0.05) reduced in the 

FG+ω-3 group compared to the FG group. 

 

 

Figure 2.- Lipid mediators from ARA: 5HETE (A), 11HETE (B), 12HETE (C), 15HETE (D) and 20HETE (E) 

in plasma, at the end of the study of the different groups (CTL, FG, ω-3 and FG + ω-3) of Sprague 

Dawley rats fed a standard diet for 23 weeks. Data are presented as means with their standard error. 

Comparisons were conducted using one-way ANOVA and Tukey’s multiple comparisons test. 

*P < 0.05, **P < 0.01, ***P < 0.001 vs CTL; †P < 0.05 vs FG. 
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Bacterial subgroups of gut microbiota 

The proportions of the major bacterial phyla 

(Bacteroidetes and Firmicutes, Figure 3A, B), 

selected genera (Prevotella and Bacteroides, 

Figure 3D, E) and putatively beneficial orders 

(Lactobacilliales and Bifidobacteriales, Figure 

3G, H) were estimated in fecal DNA at the end 

of the study. In the CTL group, the proportion 

of Bacteroidetes significantly (P < 0.05) 

decreased and the proportion of Firmicutes 

significantly (P < 0.01) increased after 21 

weeks. The percentages of Bacteroidetes and 

Firmicutes were similar in all the groups except 

for a tendency (P = 0.1) for the population of 

Bacteroidetes to increase in the FG group at 

week 21.  

Significant differences in the relative 

populations of the genera Prevotella and 

Bacteroides were detected when comparing 

the control group at different times and 

between groups at the end of the study (Figure 

3D, E). The populations of both genera 

significantly decreased in the control group 

after 21 weeks. The proportion of Prevotella 

was significantly (P < 0.05) higher in animals 

supplemented with D-fagomine (FG and FG + 

ω-3 groups) than in the other groups (Figure 

3D). The percentage of Bacteroides was higher 

(P < 0.05) in animals supplemented with the 

combination of D-fagomine and ω-3 PUFAs; 

while neither single supplementation 

significantly modified the proportions of this 

genus on its own (Figure 3E).  

The percentage of Lactobacillales was 

significantly (P < 0.05) higher in the ω-3 group 

than in the FG group at the end of the 

intervention (Figure 3G), while the population 

of Bifidobacteriales was significantly (P < 0.05) 

higher in the FG group than in the ω-3 group 

(Figure 3H).  
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Figure 3.- Bacteroidetes (A), Firmicutes (B), Bacteroidetes/Firmicutes ratio (C), Prevotella (D), 

Bacteroides (E), Prevotella/Bacteroides ratio (F), Lactobacillales (G) and Bifidobacteriales (H) in fecal 

samples at the beginning of the study (week 0) and after 21 weeks, of the different groups (CTL, FG, 

ω-3 and FG + ω-3) of Sprague Dawley rats fed a standard diet. Data are presented as means with 

their standard error. Comparisons were made using Student’s t-test or one-way ANOVA followed by 

Tukey's post-hoc test. &P < 0.05, &&P < 0.01 vs CTL week 0; *P < 0.05 vs CTL; †P < 0.05 vs FG. 
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Short-chain fatty acids 

SCFAs were determined in feces at week 21 

(Table 3). ω-3 PUFA supplementation (ω-3 and 

FG + ω-3 groups) reduced the fecal acetate 

content with respect to the control groups 

(P < 0.001). The concentration of isobutyric acid 

was significantly (P < 0.001) lower in the three 

supplemented groups than the control values.

Table 3.- Short-chain fatty acids in feces after 21 weeks. 

 CTL
 

FG  ω-3
 

FG + ω-3 

 Mean
 

SEM Mean
 

SEM Mean
 

SEM Mean
 

SEM 

Acetic acid 115
 

13 125
 

14 23*** 6 19*** 4 

Propionic acid 13.5 0.9 15.7 3.6 9.2 1.6 10 2 

Isobutyric acid 2.7
 

0.2 0.9*** 0.1 0.9*** 0.2 0.9*** 0.1 

Butyric acid 17 2 27 9 12 3 16 3 

Isovaleric acid 1.8 0.2 1.3 0.3 1.2 0.3 1.2 0.1 

Valeric acid 1.4 0.1 1.7 0.5 1.3 0.3 1.6 0.2 

Total SCFAs 152
 

9 158
 

19 48*** 11 49*** 7 

     

Data are presented as means with their standard errors of the mean; n = 9 per group. Short-chain 

fatty acids (SCFAs) are given as millimoles per kilogram of feces. Comparisons were conducted using 

one-way ANOVA and Tukey’s multiple comparisons test. 
***

P < 0.001 vs CTL. 

DISCUSSION 

The present study focuses on the effect of the 

combination of D-fagomine and ω-3 PUFAs 

(EPA/DHA 1:1) on gut microbiota of SD rats fed 

a standard diet. Our goal was to assess the 

capacity of these supplements to maintain a 

healthy status over time. Measuring and 

discussing biologically significant effects of food 

components in normal rats (or humans) is a 

particularly difficult task because the metabolic 

changes experienced by adequately fed animals 

are small. In the present study, the animals in 

all the groups were normoweight with normal 

growth curves (Figure 1A) and presented 

normal values of fasting blood glucose (Table 2) 

throughout the whole experimental 

intervention (≈ 5 months). Some statistically 

significant changes were recorded that may 

offer clues as to the putative protective effects 

of the supplementations and their combination. 

A weekly single dose of EPA/DHA (1:1) did not 

modify weight gain compared to the CTL group 

(SD rats) (Figure 1A), in agreement with our 

previous observations (Molinar-Toribio et al., 

2015) in SHROB rats, which are a cross between 
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an SD male and a WKY female rat (Koletsky, 

1975). Another study by our group showed that 

intensive daily supplementation with EPA/DHA 

(1:1) slightly increased both weight gain and 

perigonadal fat in female WKY rats compared 

to the group supplemented with the same dose 

of soybean oil (Ramos-Romero et al., 2017). 

These results highlight the differences between 

rat strains and doses in terms of response to 

putatively obesogenic components (Marques et 

al., 2016). D-Fagomine consistently reduced 

weight gain in the present study, as in previous 

reports. We have now shown here that this 

iminosugar reduced body weight gain by 15% 

over the 5 months of the intervention, when 

administered either alone or together with ω-3 

PUFAs. These results are in line with previous 

studies which proved that D-fagomine was 

capable of reducing body weight gain in both 

SD and WKY rats fed energy-dense diets 

(Molinar-Toribio et al., 2015; Ramos-Romero et 

al., 2018; Ramos-Romero et al., 2014). 

Therefore, D-fagomine appears to be effective 

at reducing body weight gain in both SD and 

WKY rats fed either a standard or an 

obesogenic diet. The supplemented animals 

also showed reduced levels of plasma 

triglycerides and total cholesterol at the end of 

the intervention (Table 2). This reduction of 

plasma triglycerides as a result of D-fagomine 

supplementation agrees with our previous 

observations in rats fed an obesogenic diet 

(Molinar-Toribio et al., 2015). The reduction in 

the plasma concentration of triglycerides and 

cholesterol  resulting from ω-3 PUFA 

supplementation also agrees with previous 

studies where this treatment reduced the levels 

of total plasmatic fatty acids in healthy rats 

(Méndez et al., 2013). The effects of ω-3 PUFAs 

on the lipid profile seem to be related to the 

upregulation of the expression of genes 

encoding proteins involved in fatty acid 

oxidation and downregulation of genes 

encoding proteins necessary for lipid synthesis 

(Lombardo & Chicco, 2006).  

We also report here a moderate effect of 

D-fagomine in lowering fasting blood insulin 

concentration, which is only significantly 

evident when comparing the FG and the ω-3 

groups (Table 2). This observation is consistent 

with the outcome of previous studies with SD 

rats fed a high-fat, high-sucrose diet (Molinar-

Toribio et al., 2015; Ramos-Romero et al., 

2014).  

Inflammatory status is another variable that 

may be influenced by dietary habits and ageing. 

The anti-inflammatory effect of EPA and DHA in 

both humans and animal models of disease is 

well documented (Calder, 2006). We show here 

that EPA/DHA 1:1 reduces the levels of several 

ARA-derived pro-inflammatory lipid mediators 

(Figure 2). This reduction is explained by the 

displacement of the pro-inflammatory ω-6 
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pathway towards the ω-3 pathway, as both 

metabolic pathways share several oxygenases 

(cyclooxygenase and lipoxygenases) (Calder, 

2006). D-Fagomine also reduced the levels of 

pro-inflammatory mediators (11HETE and 

12HETE). In this latter case, the action may be 

ascribed to a eubiotic effect of the iminosugar 

on gut microbiota, as we have previously 

suggested (Ramos-Romero et al., 2018). The 

combination of supplements resulted in a 

significant reduction in the levels of all the 

mediators tested (Figure 2). 

As it is becoming increasingly evident that fat 

accumulation, glycemia, low-grade 

inflammation and gut microbiota are all 

interconnected (Cani et al., 2007; Schwiertz et 

al., 2009; Turnbaugh & Gordon, 2009; 

Turnbaugh et al., 2006), we examined the 

changes in relevant bacterial groups 

experienced by our experimental animals. The 

population of Bacteroidetes, the main gut 

microbiota phylum, was seen to reduce 

significantly over time in the control animals 

and there was a trend (P = 0.1) for D-fagomine 

to counteract this change (Figure 3A). This is 

consistent with the reduction in weight gain in 

the D-fagomine-supplemented animals, as the 

lean phenotype has been associated with 

increased populations of Bacteroidetes in 

rodents and humans (Turnbaugh & Gordon, 

2009; Turnbaugh et al., 2006). We next 

examined the genera Prevotella and 

Bacteroides, which are subgroups of 

Bacteroidetes. In humans, diets that are high in 

complex carbohydrates and dietary fiber have 

been associated with dominance of the genus 

Prevotella; whereas high fat/protein diets have 

been connected with higher levels of the genus 

Bacteroides (De Filippo et al., 2010; Wu et al., 

2011). Human subjects with a high 

Prevotella/Bacteroides ratio appear to lose 

more body fat when on diets that are high in 

fiber than subjects with a low 

Prevotella/Bacteroides ratio (Hjorth et al., 

2018). In agreement with this, the consumption 

of barley kernel-based bread resulted in both 

improved glucose metabolism and increased 

populations of Prevotella, particularly P. copri 

(Kovatcheva-Datchary et al., 2015). Those same 

authors also offered evidence of a cause and 

effect relationship between Prevotella and 

glucose metabolism efficiency in the host, as 

germ-free mice transplanted with microbiota 

from responders had improved glucose 

tolerance and showed increased populations of 

Prevotella, compared to mice given microbiota 

from non-responders (Kovatcheva-Datchary et 

al., 2015). Here, we report that the populations 

of Prevotella dropped significantly in SD rats 

over the 21-week period of the intervention 

(Figure 3D) in both the CTL and ω-3 groups. 

Meanwhile, theses populations remained 

stable in animals supplemented with 
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D-fagomine, independently of ω-3 PUFA 

supplementation (Figure 3D). Those animals 

(the FG and FG + ω-3 groups) had the lowest 

body weight gain. As the proportion of 

Prevotella in gut microbiota is directly related 

to the intake of dietary fiber and to improved 

glucose tolerance (Kovatcheva-Datchary et al., 

2015), we suggest that D-fagomine exerts a 

fiber-like action which affects microbiota-

related fat accumulation and weight gain. Both 

ω-3 PUFAs and D-fagomine appear to induce a 

slight increase of Bacteroides which was 

statistically significant in the case of the double 

supplementation (the FG + ω-3 group) (Figure 

3E). The group supplemented only with 

D-fagomine presented a Prevotella to 

Bacteroides ratio that was significantly higher 

than those of the other groups (Figure 3F). 

Meanwhile, in the FG + ω-3 group, the 

Prevotella/Bacteroides ratio was not statistically 

different from that in the CTL group; this is 

probably because of the additive effect of 

D-fagomine and ω-3 PUFAs on the populations 

of Bacteroides (Figure 3E). The physiological 

significance of the observation that D-fagomine 

and ω-3 PUFAs may induce an increase in the 

populations of Bacteroides is something to be 

examined in future studies.  

A reduction in the populations of some 

putatively beneficial bacteria such as 

Lactobacilli and Bifidobacteria is a risk factor for 

the development of many intestinal conditions, 

including diarrhea, obesity, irritable bowel 

syndrome and inflammatory bowel disease 

(Gareau, Sherman, & Walker, 2010). Numbers 

of bacterial species of the genera 

Bifidobacterium and Lactobacillus are 

negatively correlated with adiposity, microbe-

derived inflammation and obesity (Cani et al., 

2007; Million et al., 2012). Our results show 

that D-fagomine tended to promote the growth 

of Bifidobacteria, while ω-3 PUFAs tended to 

increase the populations of Lactobacilli (Figure 

3G, H). These differences were statistically 

significant when the two individually 

supplemented groups were compared. The 

results for individual supplementation are in 

agreement with previous reports by us and 

others. For instance, ω-3 PUFAs increased the 

populations of Lactobacilliales and 

Bifidobacteriales while reducing ω-6 PUFA-

induced inflammation in mice (Ghosh et al., 

2013); and D-fagomine partially counteracted 

the loss of these two groups in WKY rats over 

time (Hereu et al., 2018). We show here that 

combined supplementation with D-fagomine 

and EPA/DHA may contribute to host 

homeostasis by maintaining the relative 

populations of putatively beneficial 

Bifidobacteriales and Lactobacilliales at levels 

similar to those of the CTL group. 



89 
  

We also observed differences in fecal SCFAs, 

which are products of bacterial fermentation. 

The two groups supplemented with ω-3 PUFAs 

presented significantly lower concentrations of 

acetate (P < 0.001) (Table 3). It has been 

reported that acetate may counteract obesity-

induced low-grade inflammation by 

upregulating anti-inflammatory regulatory T 

cells and by reducing the production of 

cytokines and chemokines (Kobayashi et al., 

2017; Smith et al., 2013; Soliman, Combs, & 

Rosenberger, 2013). As fecal acetate content 

was lower in EPA/DHA-supplemented animals, 

our results seem to imply that this variable 

does not contribute to the possible effect of 

ω-3 PUFAs on host homeostasis. A more careful 

examination of the literature may lead to the 

opposite conclusion, as it has been shown that 

low levels of acetate in feces are inversely 

correlated with intestinal absorption (Vogt & 

Wolever, 2003); therefore, they may be an 

indication of higher bioavailability. In fact, high 

fecal acetate has been associated with gut 

dysbiosis, obesity and hypertension (de la 

Cuesta-Zuluaga et al., 2018). Similarly, lower 

levels of excreted SCFAs together with higher 

Bacteroidetes/Firmicutes ratios have 

consistently been associated with the lean 

healthy phenotype, compared to metabolically 

altered phenotypes (Canfora, Jocken, & Blaak, 

2015). Thus, the anti-inflammatory action of 

ω-3 PUFAs may in part be mediated by an 

increase in acetate absorption in the intestinal 

tract. As we did not record any significant 

intergroup differences in the populations of 

Firmicutes, which are supposed to include the 

main SCFA-producing gut microorganisms, we 

suggest that minor species may be affected by 

ω-3 PUFAs, independently of the action of 

D-fagomine. This is another point worth 

exploring in future studies.  

CONCLUSIONS 

This paper presents the first evidence that 

bacteria of the genus Prevotella, which are 

associated with functional effects on glucose 

metabolism, may mediate the microbiota-

related effects of D-fagomine on host 

homeostasis. D-Fagomine also helped to 

stabilize the populations of Bacteroidetes and 

Bifidobacteriales, while ω-3 PUFAs (EPA/DHA 

1:1) tended to stabilize the populations of 

Lactobacilliales in SD rats fed a standard diet. 

The two supplements show complementary 

effects which result in stabilization of putatively 

beneficial gut bacteria, and reductions of both 

weight gain and pro-inflammatory mediators.  
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Figure SM1. Glycemic response of the different groups (CTL, FG, ω-3 and FG + ω-3) of Sprague Dawley 

rats fed a standard diet for 18 weeks. Curves of OGTT after ingestion of a single dose of glucose 

(1 g/kg body weight). The data represent means with their standard errors. Comparisons were 

conducted using two-way ANOVA and Tukey's post-hoc test.  
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Functional Effects of the Buckwheat Iminosugar d-Fagomine
on Rats with Diet-Induced Prediabetes

Sara Ramos-Romero,* Mercè Hereu, Lidia Atienza, Josefina Casas, Núria Taltavull,

Marta Romeu, Susana Amézqueta, Gabriel Dasilva, Isabel Medina, and Josep L. Torres

Scope: The goals of this work are to test if d-fagomine, an iminosugar that

reduces body weight gain, can delay the appearance of a fat-induced

prediabetic state in a rat model and to explore possible mechanisms behind

its functional action.

Methods and results: Wistar Kyoto rats were fed a high-fat diet supplemented

with d-fagomine (or not, for comparison) or a standard diet (controls) for

24 weeks. The variables measured were fasting blood glucose and insulin

levels; glucose tolerance; diacylglycerols as intracellular mediators of insulin

resistance in adipose tissue (AT), liver, and muscle; inflammation markers

(plasma IL-6 and leptin, and liver and AT histology markers); eicosanoids from

arachidonic acid as lipid mediators of inflammation; and the populations of

Bacteroidetes, Firmicutes, Enterobacteriales, and Bifidobacteriales in feces. It

was found that d-fagomine reduces fat-induced impaired glucose tolerance,

inflammation markers, and mediators (hepatic microgranulomas and lobular

inflammation, plasma IL-6, prostaglandin E2, and leukotriene B4) while

attenuating the changes in the populations of Enterobacteriales and

Bifidobacteriales.

Conclusion: d-Fagomine delays the development of a fat-induced prediabetic

state in rats by reducing low-grade inflammation. We suggest that the

anti-inflammatory effect of d-fagomine may be linked to a reduction in

fat-induced overpopulation of minor gut bacteria.

1. Introduction

TheWorldHealth Organization estimated that 422million adults
suffered from diabetes in 2014 and 1.5 million deaths could be
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directly attributed to this pathology in
just one year (2012). Most of the pop-
ulation suffering from diabetes is af-
fected by type 2 diabetes (T2D). T2D
is preceded by insulin resistance (IR):
a reduced capacity to internalize glu-
cose from the bloodstream as a result
of insensitivity to insulin that may re-
sult from genetic predisposition, phys-
ical inactivity, and/or obesity in both
rats and humans.[1] IR brings about an
increase in pancreatic insulin secretion
from a greater number or size of pan-
creatic β-cells, which compensates the
low insulin sensitivity. Then, if IR pro-
ceeds further into diabetes, a drop in in-
sulin secretion follows, with subsequent
increased fasting glucose levels and im-
paired glucose tolerance (IGT; high glu-
cose levels 2 h after ingestion) as a con-
sequence of a loss and dedifferentiation
of pancreatic β-cells.[1] Threemainmech-
anisms have been proposed to explain
the pathogenesis of IR in different or-
gans: endoplasmic reticulum stress with
the activation of the unfolded protein re-
sponse, ectopic lipid accumulation with
impairment of intracellular signaling

patterns by particular lipid mediators, and systemic
inflammation.[2] More recently, systemic inflammation, IR,
and obesity have been linked to shifts in the populations of gut
microbiota (gut “dysbiosis”).[3]
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The major bacterial phyla in distal gut microbiota are Bac-
teroidetes and Firmicutes. A reduction in the ratio between these
two phyla has been related to weight gain by the host.[4,5] Also,
an increase in the population of Enterobacteriales has been as-
sociated with diet-induced obesity.[6] A common antecedent that
may link dysbiosis, obesity, and IR is the induction of plas-
matic endotoxemia,[7] which may trigger low-grade inflamma-
tion and/or changes in energy harvest capacity.[8,9] Other mi-
nor gut bacterial subgroups such as Lactobacillus and Bifi-
dobacterium may help to maintain host homeostasis.[10] Specifi-
cally, high levels of Bifidobacterium reduce diet-induced IR and
inflammation.[11,12]

d-Fagomine (1,2-dideoxynojirimycin) is an iminosugar: a car-
bohydrate analog that includes an endocyclic nitrogen instead of
oxygen.[13] d-Fagomine is naturally present in buckwheat (Fagopy-
rum esculentumMoench, Polygonaceae) and can be found in sev-
eral buckwheat-based foodstuffs such as noodles, pancakes, fried
dough, beer, cookies, and bread.[14] d-Fagomine lowers postpran-
dial blood glucose in sucrose/starch loading tests[15] and it re-
duces elevated plasma insulin concentrations induced by a high-
fat high-sucrose diet in the short term (9 weeks).[16]

This study examines the long-term functional effect of d-
fagomine on a fat-induced prediabetic state and explores possible
molecular mechanisms behind its action.

2. Experimental Section

2.1. Animals

A total of 27 male Wistar Kyoto (WKY) rats from Envigo (Indi-
anapolis, IN,USA), aged 8–9weekswere used. All the procedures
strictly adhered to the European Union guidelines for the care
and management of laboratory animals, and were under license
from the Catalan authorities (reference no. DAAM7921), as ap-
proved by the Spanish CSIC Subcommittee of Bioethical Issues.

2.2. Experimental Design: Data and Sample Collection

The rats were kept under controlled conditions of humidity
(60%), and temperature (22 ± 2 °C) with a 12 h light–12 h dark
cycle. They were randomly divided into three dietary groups
(n = 9 per group): the standard (STD) group, fed an STD diet
(2014 Teklad Global 14% Protein) from Envigo; the high-fat (HF)
group fed an HF diet (TD.08811 45% kcal Fat) from Envigo;
and the group fed the HF diet supplemented with 0.96 g of
d-fagomine (>98% from Bioglane SLNE; Barcelona, Spain)
per kg of feed (HF+FG group). The dose of d-fagomine cor-
responded to that used in postprandial sucrose/starch loading
tests (2 mg g−1 sucrose).[15] All the groups were fed ad libitum
with free access to water.
Feed consumption was monitored daily and body weight was

measured weekly throughout the experiment. Energy intake was
calculated as estimates of metabolizable energy based on the At-
water factors, assigning 4 kcal g−1 protein, 9 kcal g−1 fat, and
4 kcal g−1 available carbohydrate.
Fecal samples were collected by abdominal massage at weeks

9, 20, and 24. The energy content of the feces from week 20 was

determined by differential scanning calorimetry (25–600 °C in an
O2 atmosphere, 10 °C min−1) by means of a thermogravimetric
analyzer TGA/SDTA 851e (Mettler Toledo; Columbus, OH,USA)
with an integrated SDTA signal.
At weeks 10 and 16, blood samples were collected from the

saphenous vein after overnight fasting, and plasmawas separated
by centrifugation and stored at −80 °C until analysis.
At the end of the experiment, the rats were fasted overnight and

anesthetized intraperitoneally with ketamine and xylazine (80
and 10 mg per kg body weight, respectively). Blood was collected
by cardiac puncture, then plasma was immediately obtained by
centrifugation and stored at −80 °C until analysis. Perigonadal
adipose tissue (AT), liver, and quadriceps (muscular tissue) were
removed, weighed, and cut into small pieces. One part of the liver
was fixed in 10% formalin for histological analysis. The rest of
the liver as well as the muscle and AT samples were washed with
0.9%NaCl solution and stored at−80 °C for diacylglycerol (DAG)
analysis.

2.3. Plasma Lipid Profile

Plasma total cholesterol, HDL-cholesterol, LDL-cholesterol, and
triglycerides were measured using a spectrophotometric method
and the corresponding kits from Spinreact (Girona, Spain) as de-
scribed by Bucolo et al.[17,18]

2.4. Plasma Insulin, Glucose, and Oral Glucose Tolerance test

Plasma insulin levels were measured using MILLIPLEX xMAP
multiplex technology on a Luminex xMAP instrument (Milli-
pore, Austin, TX, USA) at weeks 10 and 16. MILLIPLEX Ana-
lyst 5.1 (VigeneTech, Carlisle, PA, USA) software was used for
data analysis. The standard curve was generated in the range 69–
50 000 pg mL−1.
At weeks 13 and 21, an oral glucose tolerance test (OGTT) was

performed on fasted animals. A solution of glucose (1 g per kg
body weight) was administered to the rats by oral gavage. Blood
glucose concentration was measured by the enzyme electrode
method using an Ascensia ELITE XL blood glucose meter (Bayer
Consumer Care AG; Basel, Switzerland) before the experiment
and 15, 30, 45, 60, 90, and 120 min after glucose intake. Fast-
ing glucose concentration was measured by the same method at
weeks 10 and 16.

2.5. Diacylglycerols in Perigonadal Adipose Tissue, Liver, and
Muscle

Frozen samples were weighted and sonicated (SFX150 Sonifier;
Emerson Industrial Automation, St. Louis, MO, USA) until to-
tal homogenization. DAG extracts were prepared and analyzed
using the method described by Simbari et al.[19] with some mod-
ifications. The mixtures were fortified with an internal standard
(1,3–17:0 D5 DG, Avanti Polar Lipids Inc., Alabaster, AL, USA;
200 pmol) and incubated overnight at 48 °C. After solvent evap-
oration, the samples were suspended in methanol, centrifuged
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(9390 g, 3 min), and the supernatants were loaded into an Ac-
quity UPLC system connected to an LCT Premier orthogonal
accelerated time-of-flight mass spectrometer (Waters, Milford,
MA, USA), which was operated in positive ESI mode (LC-TOF-
MS). Full-scan spectra from 50 to 1500 Da were acquired, and
individual spectra were summed to produce data points of 0.2 s
each. Mass accuracy and precision were maintained by using an
independent reference spray (leucine enkephalin) via the Lock-
Spray interference. A C8 Acquity UPLC-bridged ethylene hybrid
100× 2.1 mm inner diameter, 1.7µm column (Waters) was used
in the separation step. The samples (8 µL) were eluted with a
binary system consisting of 0.2% v/v formic acid, 2 mm ammo-
nium formate in water [A] and in methanol [B] at 30 °C under
linear gradient conditions: 0 min, 80% B; 3 min, 90% B; 6 min,
90% B; 15 min, 99% B; 18 min, 99% B; 20 min, 80% B; and
22 min, 80% B. The flow rate was 0.3 mL min−1. Quantification
was carried out using the extracted ion chromatogram of each
compound, across 50 mDa windows. The linear range was deter-
mined by injecting mixtures of internal standards. DGA content
was calculated as DAG 16:0, 16:0 equivalents.

2.6. Liver and Adipose Tissue Histology

Fixed liver and AT were dehydrated in alcohol and embedded
in paraffin (Panreac Quimica SLU; Barcelona, Spain), then cut
into 3 µm thick slices, using a steel knife mounted in a micro-
tome (HM 355S Rotary Microtome; Thermo Fisher Scientific,
Waltham, MA, USA). Sections were stained with hematoxylin
(hematoxylin solutionmodified in accordancewithGill III formi-
croscopy; Merck KGaA, Darmstadt, Germany)/eosin (Pharmacy
Service of Puerta del MarHospital, Cádiz, Spain) then viewed un-
der a light microscope (NIKON Eclipse 80i; NIKON Corporation,
Minato, Japan). Variables were graded following the method de-
scribed by Taltavull et al.[20] using observation of the entire field
of the tissue preparations. Liver: steatosis, 0 (<5%), 1 (5–33%), 2
(33–66%), or 3 (>66%); steatosis localization, 0 (absence), 1 (peri-
portal), and 2 (non-zonal); lobular inflammation with lympho-
plasmacytic inflammatory infiltration, 0 (absence), 1 (1–2 foci),
2 (2–4 foci), or 3 (>4 foci); and the presence of microgranulo-
mas, 0 (absence) or 1 (presence). AT: adipocyte hypertrophy, 0 (ab-
sence) or 1 (presence); macrophages 0 (absence) or 1 (presence);
mast cells, 0 (absence) or 1 (presence); and adipose tissue inflam-
mation with lymphoplasmacytic inflammatory infiltration, 0 (ab-
sence) or 1 (presence).

2.7. Biomarkers and Lipid Mediators of Inflammation in Plasma

Plasma IL-6 and leptin levels were measured using MILLIPLEX
xMAP multiplex technology (Millipore) on a Luminex xMAP
instrument.
Plasma lipopolysaccharides (LPS) concentration was esti-

mated by reaction with Limulus amoebocyte extract: LAL kit end
point-QCL1000 (Cambrex BioScience,Walkersville,MD). Plasma
samples collected at the end of the study under sterile conditions
were diluted 70-fold and heated for 20 cycles of 10 min at 68 °C
and 10min at 4 °C each. An internal control for LPS recovery was
included.

Lipid mediators derived from arachidonic acid (ARA), eicos-
apentaenoic acid (EPA), and docosahexaenoic acid (DHA) were
determined in plasma using a method modified from Dasilva
et al.[21] Briefly, plasma samples (90 µL) were diluted in cold
0.05% butylated hydroxytoluene (BHT) in methanol/water (3:7)
(1 mL) and spiked with the internal standard (12HETE-d8, Cay-
man Chemicals; Ann Arbor, MI, USA). Then, the samples were
centrifuged (Avanti J25, BeckmanCoulter; Brea, CA,USA) (800 g,
10 min) at 4 °C. The supernatants were purified by solid-phase
extraction.
The LC-MS/MS analyzer used was an Agilent 1260 Series (Ag-

ilent; Palo Alto, CA, USA) chromatograph coupled to an LTQ Ve-
los Pro dual-pressure linear ion trapmass spectrometer (Thermo
Fisher; Rockford, IL, USA) operated in negative ESI mode. A
C18-Symmetry 150 × 2.1 mm inner diameter, 3.5 µm column
(Waters) was used with a C18 4 × 2 mm guard cartridge (Phe-
nomenex; Torrance, CA, USA) in the separation step. Samples
(10 µL) were eluted with a binary system of 0.02% formic acid in
water [A] and in methanol [B]. The gradient was: 1 min, 60% B;
2 min, 60% B; 12 min, 80% B; 13 min, 80% B; 23 min, 100%
B; 25 min, 100% B; and 30 min, 60% B. The flow rate was
0.2 mL min−1. LC-MS/MS details are provided in Table S1, Sup-
porting Information.

2.8. Fecal Microbiota

The levels of total bacteria and Bacteroidetes, Firmicutes, Enter-
obacteriales, Bifidobacteria, and Lactobacilliales were estimated
from fecal DNA by quantitative real-time PCR (qRT-PCR). DNA
was extracted from the feces using QIAamp DNA Stool Mini Kit
fromQiagen (Hilden, Germany) and its concentration was quan-
tified using a Nanodrop 8000 Spectrophotometer (Thermo Sci-
entific; Waltham, MA, USA). All DNA samples were diluted to
20 ng µL−1. The qRT-PCR experiments were carried out using a
LightCycler 480 II (Roche; Basel, Switzerland).
Each qRT-PCR well was run in triplicate and contained a to-

tal of 20 µL: 18 µL of Master Mix (10 µL of 2X SYBR, 1 µL of
each [ forward and reverse] corresponding primer, and 6 µL of
water) and 2 µL of DNA sample. All reactions were paralleled by
analysis of a nontemplate control (water) and a positive control.
The primers and annealing temperatures are detailed in Table S2,
Supporting Information.
The qRT-PCR cycling conditionswere: 10 s at 95 °C, then 45 cy-

cles of 5 s at 95 °C, 30 s at primer-specific annealing temperature
(Table S2, Supporting Information), and 30 s at 72 °C (extension).
Following amplification, to determine the specificity of the qRT-
PCR, melting curve analysis was carried out by treatment for 2 s
at 95 °C, 15 s at 65 °C, and then continuous increase of temper-
ature up to 95 °C (0.11 °C s−1), with five fluorescence recordings
per degree Celsius. The relative DNA abundances for the differ-
ent genes were calculated from the second derivative maximum
of their respective amplification curves (Cp, calculated in tripli-
cate) by considering Cp values to be proportional to the dual loga-
rithm of the inverse of the specific DNA concentration, according
to the equation: [DNAa]/[DNAb] = 2Cpb-Cpa.[22] Total bacteria was
normalized as 16S rRNA gene copies per mg of wet feces (copies
per mg).
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Table 1.Mean feed and energy intakes, energy excreted in feces and final body weight of WKY rats fed the experimental diets for 24 weeks.

STD HF HF+FG

Mean SEM Mean SEM Mean SEM

Feed intake [g per day per 100 g body weight] 4.8 0.7 3.0* 0.7 2.9* 0.5

Energy intakea) [kcal per day per 100 g body weight] 14.3 0.2 17.5* 0.2 19.0* 0.2

Energy in feces [ks °C g−1]b) 327.0 17.6 381.6 29.5 426.9* 18.4

Body weight at week 24 [g)] 416.4 12.9 537.9*** 15.1 499.9** † 15.7

*P < 0.05; **P < 0.01; ***P < 0.001 vs STD group; †P = 0.06 vs HF group; a)Estimated as metabolizable energy based on the Atwater factors: 4 kcal g−1 protein, 9 kcal g−1

fat, and 4 kcal g−1 available carbohydrate; b)Integrated SDTA signal proportional to energy in feces from week 20.

2.9. Statistical Analysis

All data manipulation, statistical analysis, and figure construc-
tion were performed using GraphPad Prism 5 (GraphPad
Software, Inc., San Diego, CA, USA). The results of the quan-
titative measurements are expressed as mean values with their
standard errors (SEM). Normal distributions and the heterogene-
ity of data were evaluated and their statistical significance was
determined by one- or two-way ANOVA, and Tukey’s multiple
comparison test was used for mean comparisons. The results
from qualitative measurements (histology) are expressed in
frequencies (percentage of animals that present the variable, or
do not) and their statistical significance was determined using
contingency tables and χ 2 statistics. Differences were considered
significant when P < 0.05 and were considered to indicate a
tendency when 0.05 < P < 0.1.

3. Results

3.1. Feed Intake, Body Weight, and Lipid Profile

Feed/energy intake and body weight were monitored throughout
the study (Table 1; Figure S1, Supporting Information). Rats fed
the two high-energy-dense diets (HF and HF+FG) consumed
significantly less feed (P< 0.05) andmore energy (P< 0.05) than
those in the STD group (Table 1). Based on feed intake, the mean
daily dose of d-fagomine was 2.9 mg per 100 g body weight. As
observed in previous studies, d-fagomine supplementation did
not modify feed intake.[16] The energy excreted, proportional to
the SDTA signal obtained by thermal analysis, was similar in both
the STD andHF groups and significantly higher (P< 0.05) in ani-
mals fedHF and d-fagomine. This result may be explained by the
inhibitory activity of d-fagomine on intestinal disaccharidases,[15]

which would result in the excretion of some undigested
sucrose.
Body weight was similar in all the groups at the beginning

(236.1 g, SEM 3.2). After 7 weeks, body weight in the HF group
(374.3 g, SEM10.0) was significantly higher (P< 0.05) than in the
STD group (320.3 g, SEM 9.1); while the body weight increase in
the HF+FG group only reached statistical difference (P < 0.05)
with respect to the STD group 5 weeks later: after 12 weeks of diet
(Figure S1, Supporting Information). At the end of the study, the
HF group gained 29% more weight than those given the STD
diet (537.9 g, SEM 15.1 vs 416.4 g, SEM 12.9 STD group) while

animals supplemented with d-fagomine showed a tendency to
gain less weight (20%: 499.9 g, SEM 15.7, P = 0.06 vs the HF
group) (Table 1). The plasma lipid profile presented values within
normal ranges with some differences between groups (Table S3,
Supporting Information).

3.2. Glycemic Status

Fasting plasma glucose and insulin were measured at weeks 10,
16, and at the end of the study (Figure 1). Fasting glucose lev-
els in the HF group were higher (P < 0.001) than those in the
STD group (Figure 1A) already from week 10. d-Fagomine sup-
plementation reduced this increase fromweek 16 to levels similar
to those in the STD group (P < 0.05 vs the HF group at week 21;
Figure 1A). Fasting glucose levels were below 80 mg dL−1 in all
the groups at all times. Fasting plasma insulin was higher in both
groups fed the HF diet at weeks 10 and 16 (P < 0.05; Figure 1B).
At the end of the study (week 24), insulin levels in the HF group
dropped significantly (P < 0.05) while the group supplemented
with d-fagomine still presented significantly higher insulin con-
centrations (P < 0.01; Figure 1B).
The OGTT was performed twice during the study, after 13 and

21weeks (Figure 2). In the first test, the levels of postprandial glu-
cose in the HF group were significantly (P < 0.001) higher than
those in the other two groups (STD and HF+FG) 30, 45, and
60 min after administration, with levels of �140 mg dL−1 (Fig-
ure 2A). The area under the curve (AUC) corresponding to the
HF group was significantly greater (P < 0.001) than that for the
STD and HF+FG groups, which presented no significant differ-
ences. By the end of the study (week 21, Figure 2B), plasma glu-
cose concentrations in the group supplemented with d-fagomine
were still lower than those in the HF group, but only significantly
lower (P < 0.05) 30 min after glucose intake. The AUC for the
HF+FG and STD groups were not significantly different.

3.3. Biomarkers and Lipid Mediators of Inflammation in Plasma

Plasma concentration of IL-6 after 10 and 16 weeks of interven-
tion was higher in animals fed HF diets (P < 0.05) than in ani-
mals fed the STD diet (Table 2). d-Fagomine showed a tendency
(P = 0.07) to reduce the levels of plasma IL-6 at week 16. The
plasma leptin concentration was higher in both groups fed HF
diets (P < 0.01) than in the STD group.
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Figure 1. Plasma levels of A) fasting glucose and B) insulin in WKY rats
fed standard (STD), high-fat (HF), and high-fat supplemented with d-
fagomine (HF+FG) diets at weeks 10, 16, and 21 or 24. Concentrations
are represented as means with their standard errors. Comparisons were
performed using one-way ANOVA and Tukey’s tests. *P< 0.05, **P< 0.01
and ***P < 0.001 vs STD group, δP < 0.05 vs HF group.

LPS concentration increased significantly in HF+FG group
(Table 2) compared to the STD group.
The levels of ARA-derived pro-inflammatory eicosanoids as

well as eicosanoids and docosanoids derived fromEPA andDHA,
respectively, were measured by LC-MS/MS in plasma samples
collected at the end of the study (Table 2). The plasma concen-
tration of prostaglandin E2 (PGE2) significantly increased in the
HF group (P < 0.05) compared to the STD group. The levels of
pro-inflammatory PGE2 and leukotriene B4 (LTB4) were similar
in the STD and HF+FG groups. No differences were detected in
the levels of other eicosanoids or docosanoids (Table 2).

3.4. Diacylglycerols in Perigonadal Adipose Tissue,
Liver, and Muscle

IR-related intracellular signaling lipid mediators DAGs were
measured in perigonadal AT, liver, and muscle by LC-TOF-MS
from the samples taken at the end of the study (Figure 3). There
was no increase in the amounts of total DAGs or in some of the
relevant structures, namely DAG 34:1 (putatively 1-palmitoyl-2-
oleoyl-sn-glycerol), DAG 36:2 (putatively 1-stearoyl-2-linoleoyl-sn-

glycerol), and DAG 38:4 (putatively 1-stearoyl-2-arachidonoyl-sn-
glycerol) in the HF group compared to the STD one. The lev-
els of total DAGs in AT as well as of DAG 34:1 in AT and DAG
38:4 in AT and muscle were even significantly lower in the HF
group. d-Fagomine supplementation did not induce any signifi-
cant change in the levels of DAGs with respect to the HF group.

3.5. Liver and Adipose Tissue Histology

Steatosis, lobular inflammation, and microgranulomas were
determined in liver by histology (Figure 4). Neither high-fat diet
induced steatosis to any significant extent. The inflammation
and microgranulomas of animals fed HF were significantly
higher (P < 0.001) than those of the STD and HF+FG groups
(Figure 4D). The livers sections obtained from animals in the
HF group showed lobular inflammation with lymphoplas-
macytic inflammatory infiltration around the blood vessels
(e.g., Figure 4B). In contrast, such infiltration was scarce and
smaller in extent in sections from livers pertaining to the group
supplemented with d-fagomine (e.g., Figure 4C).
Adipocytes were larger in the AT of animals fed the HF diets

than the STD group (Figure S2A,B,D, Supporting Information);
while no differences were detected between the HF and HF+FG
groups (Figure S2B,C, Supporting Information). AT inflamma-
tion was not detected in any of the groups (Figure S2G, Support-
ing Information).

3.6. Subpopulations of Gut Microbiota

The relative proportions of several bacterial groups of the gut
microbiota were evaluated at weeks 9 and 24 (Figure 5). The
Bacteroidetes:Firmicutes ratio (Figure 5F) was significantly
reduced (P < 0.01) in both high-fat diet groups and the presence
of d-fagomine in the diet made no difference. The proportion
of Enterobacteriales (Figure 5C,G) significantly (P < 0.05)
increased in the HF group with respect to the STD group. The
increase observed in the group supplemented with d-fagomine
was not significant. The relative populations of Bifidobacteriales
decreased as the animals grew older (P < 0.01 vs STD week 9;
Figure 5D,H) and some differences were detected between the
groups. The HF diet significantly reduced the population of Bifi-
dobacteriales already at week 9 (P < 0.05) independently of sup-
plementation while d-fagomine showed a tendency to counteract
the age- and diet-related losses of Bifidobacteriales that was only
significant (P < 0.05) at the end of the intervention (week 24).

4. Discussion

The present study examines the long-term functional effects of
d-fagomine on the preservation of glucose/insulin homeostasis
and explores possible mechanisms of action for them in a rat
model of diet-induced prediabetes. The prediabetic state was in-
duced in male Wistar Kyoto rats by feeding them an HF diet and
the effects of d-fagominewere observed over a period of 24weeks.
In agreement with preceding short-term studies (5 and 9 weeks)
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Figure 2. Time-course and area under curve (AUC) of plasma glucose concentration after administration of a single dose of glucose (1 g per kg body
weight) to WKY rats fed a standard (STD), high-fat (HF), or high-fat supplemented with d-fagomine (HF+FG) diet at weeks A) 13 and B) 21. Values are
means with their standard errors. Comparisons were performed using one-way ANOVA and Tukey’s tests or two-way ANOVA. **P< 0.01 and ***P< 0.001
vs STD group, δP < 0.05, δδP < 0.01 and δδδP < 0.001 vs HF group.

Table 2. Plasma biomarkers and lipid mediators of inflammation.

STD HF HF + FG

Mean SEM Mean SEM Mean SEM

IL-6 [pg mL−1] Week 10 47.3 19.6 193.9* 26.6 176.2 59.3

Week 16 44.4 24.4 215.4** 47.4 149.6* † 20.8

Leptin [pg mL−1] Week 24 2444.8 303.7 8511.0** 1389.8 7984.3** 1490.7

LPS [EU mL−1] Week 24 2.4 0.4 4.9 2.1 8.00*** 0.9

Eicosanoids from ARA (ppb)

PGE2 Week 24 14.4 1.7 23.3* 2.1 18.4 3.4

LTB4 Week 24 3.5 0.7 4.4 0.7 2.7δ 0.3

11HETE Week 24 8.2 1.1 10.2 1.4 7.8 1.1

Eicosanoids from EPA (ppb)

12HpEPE Week 24 14606.6 8327.7 3845.3 469.2 5034.2 956.1

12HEPE Week 24 38.5 1.9 41.8 4.0 39.8 2.2

5HEPE Week 24 4.4 0.1 4.5 0.1 4.3 0.0

Docosanoids from DHA (ppb)

17HDoHE Week 24 16.8 2.7 17.2 1.3 14.2 1.3

11HDoHE Week 24 14.8 0.0 14.9 0.0 14.8 0.0

4HDoHE Week 24 11.5 0.6 12.6 0.7 10.7 0.5

*P < 0.05; **P < 0.01; ***P < 0.001 vs STD group; δP < 0.05 vs HF group; †P = 0.07 vs HF group. HDoHE, hydroxydocosahexaenoic acid; HEPE, hydroxyeicosapentaenoic

acid, HETE, hydroxyeicosatetraenoic acid; HpEPE, hydroperoxyeicosapentaenoic acid.
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Figure 3. Levels of DAG A,E,I) 34:1, B,F,J) 36:2, C,G,K) 38:4, and D,H,L) total DAGs in WKY rats fed a standard (STD), high-fat (HF), or high-fat
supplemented with d-fagomine (HF+FG) diet for 24 weeks. Values are means with their standard errors. Comparisons were performed using one-way
ANOVA and Tukey’s tests. *P < 0.05, **P < 0.01, ***P < 0.001 vs STD group.

in Sprague-Dawley rats,[16,23] d-fagomine partially counteracted
the body weight gain induced by the HF diet in the long term
(Figure S1, Supporting Information). Plasma insulin levels also
increased in animals fed the HF diet after 10 weeks of interven-
tion (Figure 1). High plasma insulin levels define the first of the
five stages of diabetes proposed by Weir and Bonner-Weir for
both rats and humans.[1] This compensation stage is character-
ized by increased overall rates of insulin secretion, via a greater
number or size of pancreatic β-cells, in response to the loss of in-
sulin sensitivity in tissues. d-Fagomine, which had shown a ten-
dency to reduce insulin levels in the short term,[16,23] did not have
an influence on insulin levels after 10 weeks of our intervention
(Figure 1B).
Later on, at the end of the study, the levels of fasting insulin in

the HF group (without supplementation) dropped significantly
(Figure 1B), while fasting glucose levels were still moderately
high (Figure 1A). This situation is compatible with the second

stage in the diabetes progression, which is characterized by a loss
of β-cell mass and disruption of pancreatic function.[1] Animals
supplemented with d-fagomine did not seem to reach this sec-
ond prediabetic stage, as their insulin levels remained high (Fig-
ure 1B) and their fasting glucose levels were similar to those of
the STD group (Figure 1A). The second prediabetic state is also
compatible with the IGT recorded in rats fed the HF diet, which
already showed the classic plateau-like prediabetic curve after just
13 weeks. d-Fagomine counteracted this fat-induced IGT pattern
as the supplemented rats removed glucose from their blood at a
normal rate (Figure 2A,B). By the end of the study (21 weeks),
the AUC for the HF+FG and STD groups were still not signifi-
cantly different. The evidence presented here, together with our
previous observations of the short-term reduction in the early in-
crease of fasting insulin concentration,[16,23] shows that rats sup-
plemented with d-fagomine always seem to be one step behind
in the development of diet-induced prediabetes.
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Figure 4. Liver histological cuts (20X) stained with hematoxylin–eosin from WKY rats fed a A) standard (STD), B) high-fat (HF), or C) high-fat supple-
mented with d-fagomine (HF+FG) diet for 24 weeks, and D) the histology summary. The STD cut (A) shows normal liver anatomy. The HF cut (B)
shows lobular inflammation with lymphoplasmacytic inflammatory infiltration (arrows) around blood vessels (red). The HF+FG cut (C) shows slight
inflammatory infiltration around a centrilobular vein (red). D) Values are in frequencies (percentage of animals that present the variable, or do not).
Comparisons were performed using χ2 statistics. ***P < 0.001 vs STD group; δδδP < 0.001 vs HF+FG group.

We next considered through what mechanism or mecha-
nisms d-fagomine exerts this functional metabolic effect. As
d-fagomine reduced IGTmore dramatically than it reduced body
weight gain, we hypothesized that it may delay the development
of diabetes in Wistar Kyoto rats by a mechanism that is not
directly dependent on lipid accumulation. The results from our
DAG analysis and histological study support this explanation. IR
has been linked to ectopic fat through the action of DAGs, which
are intermediates of lipid metabolism with the capacity to impair
intracellular insulin signaling in both liver and muscle.[2] It has
been proposed that DAGs interrupt the translocation of the glu-
cose transporter GLUT4 to the plasma membrane by modifying
the phosphorylation pattern of the intracellular insulin receptor
substrate (IRS) after attaching to protein kinase C.[24] We eval-
uated total DAGs and the levels of selected molecular species in
these two organs as well as in AT (Figure 3). As there is no infor-
mation to date as to what particular DAG species might impair
insulin signaling, particular DAGs were chosen on the basis of
their selective interaction with the cellular PKC–Ca2

+ signaling
network.[25] Systemic IR in our model does not seem to be trig-
gered by DAG-mediated impairment of insulin signaling, as the
levels of total and selected DAGs in AT, liver, and muscle did not
increase in either of the groups fed the high-fat diet (Figure 3); in
fact, DAG levels were even lower in some instances. The liver his-
tology supported the hypothesis that direct lipid-mediated loss of

insulin sensitivity was probably not a triggering factor of the early
prediabetic stage in our model, as significant steatosis was not
detected (Figure 4D). In contrast, strong lymphocyte infiltration
indicated inflammation around the blood vessels (Figure 4B)
which was greatly attenuated in animals supplemented with
d-fagomine (Figure 4C). Lobular inflammation and numbers of
microgranulomas were significantly higher in theHF group than
in the STD group, while these levels in animals supplemented
with d-fagomine were no different from those in the STD group
(Figure 4D). The histology did not detect any sign of inflamma-
tion in AT and d-fagomine did not have any observable effect of
fat-induced adipocyte hypertrophy (Figure S3, Supporting Infor-
mation). All these results suggest that d-fagomine has a func-
tional effect on HF diet-induced low-grade systemic inflamma-
tion that is independent of lipid accumulation. This hypothesis
is supported by our additional measurements of the systemic in-
flammatorymarker IL-6 and its related eicosanoid PGE2, a strong
pro-inflammatory secondary metabolite from the oxidation of
ARA catalyzed by cyclooxygenase-2 (COX-2)[26] which induces
the production of IL-6 via macrophages.[27] The levels of IL-6 and
PGE2 were significantly higher in the HF group than in the STD
group and were significantly reduced in the HF+FG group (Ta-
ble 2). Also, the levels of LTB4, another pro-inflammatory ARA-
derived metabolite, were significantly lower in the supplemented
group compared to the HF group (Table 2). The fact that no
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Figure 5. Excreted intestinal bacteria measured by qRT-PCR and expressed as percentages of total bacteria in fecal samples fromWKY rats fed a standard
(STD), high-fat (HF), or high-fat supplemented with d-fagomine (HF + FG) diet, after 9 and 24 weeks of nutritional intervention. Values are means with
their standard errors. Comparisons were performed using one-way ANOVA and Tukey’s tests or two-way ANOVA. *P < 0.05, **P < 0.01 vs STD group;
$$P < 0.01 vs STD group week 9.

differences were detected in the levels of putatively anti-
inflammatory EPA- and DHA-derived eicosanoids and
docosanoids (Table 2) suggests that d-fagomine exerts its
functional effect when inflammation first occurs and not by
activating anti-inflammatory pathways.
We next turned to how d-fagomine counteracts fat-induced

low-grade inflammation. Gut microbiota may be the answer,
or at least part of the answer. Gut dysbiosis is known to induce
endotoxemia and low-grade inflammation in the host[3] through

disruption of the intestinal barrier properties and release of pro-
inflammatory molecules, such as LPS, into the bloodstream.[28]

Chronic subclinical inflammation has been associated with
insulin insensitivity[29] and suggested as a link between gut
dysbiosis and early IR.[7,11,28] We have already suggested that the
effect of d-fagomine on body weight gain and glycemic status
may be related to a reduction in the overgrowth of gut Enter-
obacteriales induced by a high-energy-dense diet in the short
term (up to 5 weeks).[23] The results presented here show that

Mol. Nutr. Food Res. 2018, 1800373 C© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1800373 (9 of 11)



www.advancedsciencenews.com www.mnf-journal.com

this explanation may hold in the long term, as the population of
Enterobacteriales in the STD and HF+FG groups experienced
no significant changes throughout this study (Figure 5C,G).
Moreover, d-fagomine also showed a tendency to counteract the
reduction in Bifidobacterium induced by the HF diet and age
(HF and STD groups at week 24, Figure 5D,H). The action of
d-fagomine on Bifidobacterium may be connected to its capacity
to eliminate Enterobacteriales, as the populations of these
subgroups appear to be inversely related.[30] The hypothesis
that d-fagomine exerts its anti-inflammatory and anti-diabetic
action by balancing the populations of Enterobacteria and
Bifidobacteria is backed by previous observations by others that
link Enterobacteria to endotoxemia[6] and Bifidobacteria to a
reduced impact of fat on diet-induced diabetes.[11] Bifidobacteria
have also been inversely associated with obesity and age.[31]

We also evaluated variations in the populations of Bac-
teroidetes and Firmicutes: the main two bacterial phyla in
the intestinal tract (Figure 5B,F). A reduction in the Bac-
teroidetes:Firmicutes ratio has been related to a shift from
lean to fat phenotypes in both rats and humans.[9,32] Low lev-
els of fasting-induced adipose factor (Fiaf) and phosphorylated
AMP-activated protein kinase (AMPK) may be responsible for
the lipid accumulation effect associated with changes in gut
microbiota.[33] We show here that an HF diet can reduce the Bac-
teroidetes:Firmicutes ratio concomitantly with a significant gain
in body weight (Figure 5B,F; Figure S1, Supporting Informa-
tion) while d-fagomine does not appear to modify this change
(Figure 5B,F). This observation confirms that the moderate ef-
fect of d-fagomine on weight gain might be associated with the
contribution fromminor components of gutmicrobiota (e.g., En-
terobacteriales) rather than with changes in the main phyla.
The observation that the effects of d-fagomine on fat-induced

changes in Enterobacteriales and Bifidobacteriales were mod-
erate compared to the more dramatic effects on glucose tol-
erance and inflammation suggests that other microorganisms
may be involved. We have also recorded an increase of plasma
LPS in the d-fagomine supplemented group (Table 2). Although
LPS are usually associated with the stimulation of the inflam-
matory response, there is evidence that different LPS produced
by different bacteria could either stimulate or actively inhibit
inflammation.[34] A more thorough examination of the composi-
tion of gut microbiota, the gut barrier function, blood LPS com-
position, and the role of other mediators (e.g., biliary acids) in
animals fed HF diets supplemented, or not, with d-fagomine
would be the next step to take along this line of enquiry. Thus,
d-fagomine may help to shed more light on the complex rela-
tionships between gut microbiota and metabolic alterations.
Themean daily dose of d-fagomine (29mg per kg body weight)

consumed by the rats in this study would translate to 4.6 mg per
kg body weight in humans by following the conversion proposed
by Reagan-Shaw et al.[35] This dose could be reached by supple-
menting the diet rather than relying on the d-fagomine content
in buckwheat-based foodstuffs.[14]

In summary, a very early effect of d-fagomine against fat-
induced systemic low-grade inflammation would explain why an-
imals fed d-fagomine are always one step behind in the progres-
sion of prediabetes: first against the loss of insulin sensitivity,
then against loss of β-cellmass and disruption of pancreatic func-
tion. This effect may be attributed, at least in part, to a tendency

to counteract the changes induced by a high-fat diet in the popu-
lations of gut bacterial subgroups such as Enterobacteriales and
Bifidobacteriales.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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SUPPLEMENTARY MATERIAL (SM) INCLUDED IN THE DIGITAL VERSION OF PAPER 3 

Table SM1. LC-MS/MS experimental details 

Compound 
Retention 
Time (min) 

MS/MS parameters 

Collision energy (eV) Quantification transition (m/z) 

PGE2 9.09 20 351→315 

LTB4 13.79 27 335→195 

11HETE 22.09 30 319→167 

12HpEPE 17.80 25 333→315 

12HEPE 18.72 27 317→179 

5HEPE 20.47 25 317→255 

17HDoHE 21.94 27 343→245 

11HDoHE 23.20 27 343→149 

4HDoHE 23.64 27 343→281 

 

The identification of the lipid mediators was done with the help of the full ion product spectra 

recorded in the range from 90 to 400 m/z units. To corroborate the identification and to quantify the 

analytes, the most intense and selective MS/MS transitions, obtained after direct infusion of 

individual standard solutions (5 μg/mL, 20 μL/min), were chosen. The linear dynamic range was 

determined with standards for each compound. 
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Table SM2. qRT-PCR primers and conditions 

Target bacteria Positive control 
Annealing 

temperature (°C) 
Sequence (5’-3’) Reference 

Total Bacteria 
a 65 F: ACT CCT ACG GGA GGC AGC AGT 

(Hartman et al., 2009) 

   
R: ATT ACC GCG GCT GCT GGC 

Bacteroidetes Bacteroides fragilis 62 F: ACG CTA GCT ACA GGC TTA A 
(Abdallah Ismail et al., 

2011) 

   
R: ACG CTA CTT GGC TGG TTC A 

Firmicutes Lactobacillus brevis 52 F: AGA GTT TGA TCC TGG CTC 
(Haakensen, Dobson, 

Deneer, & Ziola, 2008) 

   
R: ATT ACC GCG GCT GCT GG 

Enterobacteriales Escherichia coli M15 60 F: ATG GCT GTC GTC AGC TCG T 

(Hartman et al., 2009) 

   
R: CCT ACT TCT TTT GCA ACC CAC T 

Bifidobacteriales Bifidobacterium longum 55 F: CTC CTG GAA ACG GGT GG 
(Queipo-Ortuno et al., 

2013) 

   
R: GGT GTT CTT CCC GAT ATC TAC A 

a
 Positive control of total bacteria was the strain with which the result was rated. 
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Table SM3. Plasma lipid profile (mg/dL) in WKY rats after 24 weeks of intervention. 

 
STD HF HF+FG 

 
Mean SEM Mean SEM Mean SEM 

Cholesterol 135.2 3.7 139.4 5.1 150.4* 3.4 

HDL-cholesterol 48.7 1.1 47.3 1.3 50.3 1.2 

LDL-cholesterol 23.2 1.6 24.1 1.3 29.4*δ 1.1 

Triglycerides  63.1 5.6 92.4** 7.1 116.4* 16.4 

 
*
 P < 0.05, 

**
 P < 0.01 vs STD group, 

δ
 P < 0.05 vs HF group 
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Figure SM1. Body weight of rats fed a standard (STD, ○), high-fat (HF, ■), or high-fat supplemented 

with D-fagomine (HF+FG, □) diet for 24 weeks. Data are presented as means with their standard 

errors. Comparisons were performed using the two-way ANOVA test. *P < 0.05 HF vs STD group, φ 

P < 0.05 HF+FG vs STD group.  
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Figure SM2. Adipose tissue histological cuts (20X) stained with hematoxylin-eosin from WKY rats fed a 

A) standard (STD), B) high-fat (HF), or C) high-fat supplemented with D-fagomine (HF+FG) diet for 24 

weeks and D) histology summary. Values are in frequencies (percentage of animals that present or 

not the variable). Comparisons were performed using χ
2
 statistics.  

*
 P < 0.05 and 

***
 P < 0.001 vs STD 

group; 
δ
 P < 0.05 vs HF+FG group. 
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ABSTRACT 

Food bioactive compounds are potential tools that can be used to prevent changes in gut microbiota 

associated with Western diets high in saturated fat and refined sugars. The aim of this study is to 

explore the possible additive effects of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on gut microbiota, 

and related risk factors, during early stages in the development of fat-induced pre-diabetes. Male 

Sprague Dawley (SD) rats were fed a standard diet (control), or a high-fat (HF) diet supplemented 

with D-fagomine, ω-3 PUFAs (EPA/DHA 1:1), a combination of both, or neither, for 24 weeks. The 

animals not receiving ω-3 PUFAs were given an equivalent dose of soy bean oil. The main variables 

measured were weight gain, visceral fat, fasting glucose and glucose tolerance, plasma insulin and 

leptin, liver inflammation, fecal and cecal short-chain fatty acids (SCFAs) and urine F2t-isoprostanes. 

Gut bacterial subgroups were estimated in fecal and cecal DNA by qRT-PCR. We found that the 

animals supplemented with both D-fagomine and ω-3 PUFAs tended to gain less weight and to 

accumulate less fat than those in the non-supplemented HF group and those given only ω-3 PUFAs. 

Thus, the combined supplements counteracted the high-fat-induced incipient IR, as well as liver 

inflammation, while increasing the cecal SCFA content, the Bacteroidetes/Firmicutes ratio and the 

gut populations of both Bifidobacteriales and Lactobacilliales. The functional effects of the 
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combination of D-fagomine and EPA/DHA 1:1 against gut dysbiosis and the very early metabolic 

alterations induced by a high-fat Westernized diet are mainly those of D-fagomine complemented by 

the anti-inflammatory action of ω-3 PUFAs. 

INTRODUCTION 

There is mounting evidence that diet affects 

homeostasis by modulating the composition of 

gut microbiota in both rodents and humans 

(Hildebrandt et al., 2009; Portune, Benitez-

Paez, Del Pulgar, Cerrudo, & Sanz, 2017; 

Turnbaugh et al., 2009). Early insulin resistance 

(IR) and impaired glucose tolerance (IGT), the 

first manifestations of diet-induced metabolic 

disorders that can lead to type 2 diabetes (Weir 

& Bonner-Weir, 2004), might be triggered by 

intestinal barrier alterations induced by 

unbalanced microbiota (dysbiosis) (Janssen & 

Kersten, 2017). Dietary changes can rapidly 

modify gut microbial composition (David et al., 

2014; Hildebrandt et al., 2009). Fat- or 

carbohydrate-restricted diets increase the 

populations of the order Bacteroidetes while 

reducing body weight (Ley, Turnbaugh, Klein, & 

Gordon, 2006). At the genus level, a high intake 

of fat and protein is associated with increased 

levels of Bacteroides; whereas a high fiber 

intake is associated with increased levels of 

Prevotella (De Filippo et al., 2010; Wu et al., 

2011). The mechanisms by which gut 

microbiota interact with host physiology are 

increasingly being revealed. 

Lipopolysaccharides (LPS: a component of the 

bacterial cell wall), short-chain fatty acids 

(SCFAs: end products of the fermentation of 

dietary fiber) and bile acids are possible 

mediators linking gut bacteria to IR and adipose 

tissue function (Janssen & Kersten, 2017). Food 

components such as prebiotic fiber may 

prevent changes in gut microbiota associated 

with obesity and metabolic disorders (Portune 

et al., 2017). 

D-Fagomine (1,2-dideoxynojirimycin) is an 

iminosugar: a carbohydrate analog with a 

nitrogen atom in place of the endocyclic oxygen 

that was first isolated from seeds of buckwheat 

(Fagopyrum esculentum) (Koyama & Sakamura, 

1974). D-Fagomine lowers post-prandial blood 

glucose in sucrose/starch loading tests in 

healthy rats through the inhibition of intestinal 

disaccharidases (Gómez et al., 2012) and it 

reduces weight gain, low-grade inflammation 

and IGT in rats fed a high-fat diet (Ramos-

Romero et al., 2018; Ramos-Romero et al., 

2014). D-Fagomine also promotes diversity in 

gut microbiota by increasing the populations of 

Bacteroidetes in healthy rats, while also 

mitigating the age-related reduction in the 

populations of the putatively beneficial bacteria 

Lactobacillus and Bifidobacterium (Hereu, 

Ramos-Romero, García-González, Amézqueta, 
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& Torres, 2018) and it helps to stabilize the 

populations of Prevotella in the intestinal tract 

of healthy rats while reducing weight gain 

independently of ω-3 PUFA supplementation 

(Hereu, sent). 

Eicosapentaenoic acid (EPA, 20:5, n-3) and 

docosahexaenoic acid (DHA, 22:6, n-3) are the 

major ω-3 PUFAs in fish oil. EPA and DHA 

reduce risk factors (elevated plasma cholesterol 

and triglycerides, oxidative stress (OS), and high 

blood pressure) for cardiovascular diseases 

(Poudyal, Panchal, Diwan, & Brown, 2011), and 

other pathologies that involve inflammation 

(Calder, 2006). The possible contribution of 

changes in gut microbiota to the anti-

inflammatory activity of ω-3 PUFAs is poorly 

documented. It has been shown that EPA and 

DHA increase the populations of putatively 

beneficial gut Lactobacillus and Bifidobacteria 

in mice fed a high-fat diet (Mujico, Baccan, 

Gheorghe, Diaz, & Marcos, 2013; Robertson et 

al., 2017). When combined with 

proanthocyanidins or D-fagomine, EPA/DHA 1:1 

helps to stabilize the populations of 

Bifidobacteriales and Lactobacilliales in healthy 

rats (Ramos-Romero et al., 2017)(Hereu, sent). 

The aim of this study is to explore the possible 

complementary or additive effects of 

D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on 

gut microbiota and risk factors for diabetes 

during early stages in the development of fat-

induced pre-diabetes in rats.  

MATERIALS AND METHODS 

Animals, experimental design and sample 

collection 

Male Sprague Dawley (SD) rats from Envigo 

(Indianapolis, IN, USA), aged 8-9 weeks were 

used. As we wanted to detect early effects of 

the supplementations, SD rats were preferred 

over other strains, such as Wistar rats, because 

they take longer to develop IGT (Marques et al., 

2016). The rats (n = 45) were housed (n = 3 per 

cage) under controlled conditions of humidity 

(60%), and temperature (22 ± 2 °C) with a 12 h 

light-12 h dark cycle. They were randomly 

divided into 5 groups (n = 9 per group): the 

control group (STD), fed a standard diet (2014 

Teklad Global 14% Protein Diet from Envigo); 

the high-fat group (HF), fed only a high-fat diet 

(TD.08811 45% kcal fat diet from Envigo) with 

no supplementation; a group fed the high-fat 

diet supplemented with D-fagomine (Envigo 

custom designed, manufactured by Mucedola 

srl; Settimo Milanese, Italy) (HF+FG); a group 

fed the high-fat diet supplemented with ω-3 

PUFAs (HF+ω-3); and a group fed the high-fat 

diet supplemented with both D-fagomine and 

ω-3 PUFAs (HF+FG+ω-3 group). D-Fagomine 

(> 98%) manufactured by Bioglane SLNE 

(Barcelona, Spain) was generously provided by 
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Taihua Shouyue (HK) International Co. Ltd 

(Hong Kong, China). It was included in the feed 

at a proportion of 0.96 g/kg feed, as in previous 

studies (Gómez et al., 2012; Ramos-Romero et 

al., 2018). ω-3 PUFAs (EPA/DHA 1:1) were 

obtained by mixing the appropriate quantities 

of the commercial fish oils AFAMPES 121 EPA 

(AFAMSA, Vigo, Spain) and EnerZona Omega 3 

RX (Milan, Italy). ω-3 PUFAs were administered 

by oral gavage using a gastric probe once a 

week at a dose of 0.8 mL oil per kg of body 

weight. The dose and EPA/DHA proportions 

used were previously determined (Molinar-

Toribio et al., 2015). To compensate for the 

stress of probing and the excess of calories 

from fish oil in the HF+ω-3 and HF+FG+ω-3 

groups, the animals in the groups STD, HF and 

HF+FG were administered p.o. soybean oil at 

the same dose at the same time. All the groups 

were fed ad libitum with free access to water. 

Feed consumption was monitored daily and 

body weight was measured weekly throughout 

the experiment. Energy intake was calculated 

as estimates of metabolizable energy based on 

the Atwater factors, assigning 4 kcal/g protein, 

9 kcal/g fat, and 4 kcal/g available 

carbohydrate. 

After overnight fasting, blood samples were 

collected from the saphenous vein after weeks 

9, 14 and 23 of the experiment. Plasma was 

separated by centrifugation and stored at −80 

°C until analysis. After week 21, urine was 

collected by placing the rats in metabolic cages; 

while after week 23, fecal samples were 

collected by abdominal massage.  

At the end of the experiment (week 24), the 

rats were fasted overnight and anesthetized 

intraperitoneally with ketamine and xylazine 

(80 and 10 mg per kg of body weight, 

respectively). Perigonadal fat, liver and cecum 

were removed, weighed and stored at −80 °C. 

One portion of the liver was fixed in 4% 

formalin for histological analysis. 

All the procedures strictly adhered to the 

European Union guidelines for the care and 

management of laboratory animals, and were 

licensed by the regional Catalan authorities 

(reference no. DAAM7921), as approved by the 

Spanish CSIC Subcommittee of Bioethical 

Issues. 

Glycemic status 

Fasting blood glucose and plasma insulin levels 

were measured after weeks 9, 14 and 23 in 

fasted animals. Blood glucose concentration 

was measured by the enzyme electrode 

method, using an Ascensia ELITE XL blood 

glucose meter (Bayer Consumer Care; Basel, 

Switzerland). Plasma insulin levels were 

measured using the rat/mouse insulin ELISA kit 

from Millipore Corporation (Billerica, MA, USA). 

The HOMA (Homeostatic Assessment Model) 



 

125 

 

index was calculated as fasting insulin (µU/mL) 

× fasting glucose (mmol/L) / 22.5 (Matthews et 

al., 1985). Insulin units (IU) were calculated 

using the conversion 1 IU = 0.0347 mg insulin.  

The oral glucose tolerance test (OGTT) was 

performed after week 20 on fasted animals. A 

solution of glucose (1 g/kg body weight) was 

administered by oral gavage, and blood glucose 

concentration was measured 15, 30, 45, 60, 90 

and 120 min after glucose intake by the enzyme 

electrode method.  

Plasma leptin levels were measured using 

MILLIPLEX xMAP multiplex technology on a 

Luminex xMAP instrument (Millipore, Austin, 

TX, USA) after week 23. MILLIPLEX Analyst 5.1 

(VigeneTech; Carlisle, PA, USA) software was 

used for data analysis. 

Isoprostanes in urine 

F2t-isoprostanes (F2t-IsoPs) were determined in 

urine samples by LC/ESI-MS/MS following a 

previously reported procedure (Molinar-Toribio 

et al., 2015) with some modifications. Urine 

samples (500 µL) were acidified, 

β-glucuronidase (90 U/mL) (Sigma; Saint Louis, 

MO, USA) was added, and the mixtures were 

incubated for 2 h at 37 °C. After the addition of 

the internal standard [
2
H4]15-F2t-IsoP (Cayman; 

Ann Arbor, MO, USA) (100 µL, 10 µg/L), 

F2t-IsoPs were purified by SPE in a C18 Sep-Pak 

cartridge (Waters, Mildford, MA, USA). F2t-IsoPs 

were analyzed using an Agilent 1260 

chromatograph fitted with a Mediterranea Sea 

18 column (10 cm x 2.1 mm id., 2.2 µm particle 

size) (Teknokroma; Barcelona, Spain) coupled 

to a 4000 QTRAP mass spectrometer (Applied 

Biosystems; Foster City, CA, USA). The 

instrument was operated in the negative ion 

mode with a Turbo V source to obtain MS/MS 

data. Separation was achieved with a binary 

system consisting of 0.1% aqueous formic acid 

[A] and formic acid in acetonitrile [B], at 40 °C, 

with an increasing linear gradient (v/v) of [B]: 0 

min, 10% B; 7 min, 50% B; 7.1 min, 100% B; 8 

min, 100% B; 8.1 min, 10% B; and 10 min, 10% 

B, at a flow rate of 700 µL/min. F2t-IsoPs were 

detected by MS/MS multiple reaction 

monitoring. Calibration curves were prepared 

using seven matrix-matched standards covering 

the working concentration range. The LOQ was 

0.4 µg/L for 15-F2t-IsoP and 2 µg/L for 

5-F2t-IsoP. The results were expressed as 

nanograms per milligram of creatinine, to 

correct for urine dilution. Creatinine levels in 

urine were determined via a colorimetric 

method using a commercial kit (Creatinine-J, 

Spinreact; Girona, Spain) by measuring 

absorbance at 492 nm. 

Subpopulations of gut microbiota  

The relative populations of selected bacterial 

phyla, orders and genera were estimated in 

fecal and cecal DNA by quantitative real-time 
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polymerase chain reaction (qRT-PCR). DNA was 

extracted from fecal and cecal samples using a 

QIAamp® DNA Stool Mini Kit from QIAGEN 

(Hilden, Germany). Its concentration was 

quantified using a Nanodrop 8000 

Spectrophotometer (ThermoScientific; 

Waltham, MA, USA) and all DNA samples were 

diluted to 20 ng/µL. The qRT-PCR experiments 

were carried out using a LightCycler® 480 II 

(Roche, Basel, Switzerland) in triplicate. Each 

qRT-PCR well contained a total of 20 µL: DNA (2 

µL) and a master mix (18 µL) made of 2X SYBR 

(10 µL), the corresponding forward and reverse 

primer (1 µL each), and water (6 µL) purified 

using a Milli-Q system (Millipore Corporation; 

Billerica, MA, USA). All the reactions were 

paralleled by analysis of a non-template control 

(water) and a positive control (Supplementary 

Material, Table 1) from DSMZ (Braunschweig, 

Germany). The qRT-PCR cycling conditions 

were: 10 s at 95 °C, then 45 cycles of 5 s at 95 

°C, 30 s at the primer-specific annealing 

temperature (Supplementary Material, Table 

1), and 30 s at 72 °C (extension). The specificity 

of the qRT-PCR reactions was assessed by 

melting curve analysis which consisted of 

heating to 95 °C and maintaining this 

temperature for 2 s, then cooling to 65 °C and 

maintaining this temperature for 15 s, and 

running a temperature gradient from 65 °C to 

95 °C at a rate of 0.11 °C/s, with five 

fluorescence recordings per °C. The relative 

DNA abundances for each bacterial subgroup 

were calculated from the second derivative 

maximum of their respective amplification 

curves (Cp, calculated in triplicate) by 

considering Cp values to be proportional to the 

dual logarithm of the inverse of the specific 

DNA concentration, following the equation: 

[DNAa]/[DNAb] = 2
Cpb-Cpa

 (Pfaffl, 2001). Amounts 

of total bacteria were normalized as 16S rRNA 

gene copies per mg of wet feces (copies/mg).  

Short-chain fatty acids 

SCFAs were analyzed in feces and in cecal 

content by gas chromatography using a 

previously described method (Schwiertz et al., 

2009) with some modifications. Briefly, the 

samples were freeze-dried and weighed (~50 

mg dry matter) and a solution (1.5 mL) 

containing the internal standard 2-ethylbutiric 

acid (6.67 mg/L) and oxalic acid (2.97 g/L) in 

acetonitrile/water 3:7 was added. Then, SCFAs 

were extracted for 10 min using a rotating 

mixer. The suspension was centrifuged (5 min, 

12,880 g) in a 5810R centrifuge (Eppendorf; 

Hamburg, Germany) and the supernatant 

passed through a 0.45 µm nylon filter. An 

aliquot of the supernatant (0.7 mL) was diluted 

to 1 mL with acetonitrile/water 3:7. SCFAs were 

analyzed using a Trace2000 gas chromatograph 

coupled to a flame ionization detector 

(ThermoFinnigan; Waltham, MA, USA) 

equipped with an Innowax 30 m × 530 µm × 1 
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µm capillary column (Agilent; Santa Clara, CA, 

USA). Chrom-Card software was used for data 

processing. Helium was used as the carrier gas 

with a linear velocity of 5 mL/min. GC oven 

temperature was programmed as follows: 80 °C 

(hold 1 min) to 120 °C at 15 °C/min (hold 4 min) 

to 130 °C at 5 °C/min (hold 4 min) to 235 °C at 

8 °C/min (hold 4 min). FID detection was 

performed at a base temperature of 240 °C. 

Calibration curves were prepared using seven 

matrix-matched standards covering the 

working concentration range. The precision 

(RSD < 15%) and recovery (> 70%) of the 

method were adequate and both inter- and 

intra-day reproducible. 

Liver histology 

Fixed livers were dehydrated in alcohol and 

embedded in paraffin (Panreac Quimica SLU; 

Barcelona, Spain), then cut into 3 µm-thick 

slices, using a steel knife mounted in a 

microtome (HM 355S Rotary Microtome, 

Thermo Fisher Scientific; Waltham, MA, USA). 

Sections were stained with hematoxylin 

(hematoxylin solution modified in accordance 

with Gill III for microscopy, Merck KGaA; 

Darmstadt, Germany)/eosin (Pharmacy Service 

of Puerta del Mar Hospital; Cadiz, Spain) then 

viewed under a light microscope (NIKON Eclipse 

80i, NIKON Corporation; Minato, Japan). 

Variables were graded following the method 

described by Taltavull et al. (Taltavull et al., 

2014) using observation of the entire field of 

the tissue preparations: steatosis, 0 (absence) 

or 1 (presence); and lobular inflammation, 0 

(absence), 1 (1–2 foci), 2 (2–4 foci), or 3 

(>4 foci).  

Statistical analysis 

All data manipulation and statistical analysis 

was performed using GraphPad Prism 5 

(GraphPad Software; San Diego, CA, USA). The 

results are expressed as means with their 

standard errors (SEM). The normal distributions 

and heterogeneity of the data were evaluated, 

and statistical significance was determined by 

one-way ANOVA and the Tukey multiple-

comparisons test or by two-way ANOVA. 

Differences were considered significant when 

P ≤ 0.05 and were considered to indicate a 

tendency when 0.05 < P ≤ 0.1. 

RESULTS 

Feed and energy intakes, body weight, 

perigonadal fat, plasma leptin and urine 

F2t-isoprostanes 

All the rats fed the high-fat diet consumed less 

feed but more energy than those in the STD 

group (Table 1), whether they are 

supplemented with D-fagomine and/or ω-3 

PUFAs or not. 



 

128 

 

At the beginning of the study, the mean body 

weight was 323.9 ± 6.3 g (Supplementary 

Material, Figure 1A, B). At the end of the study 

(after 24 weeks) all the rats fed the high-fat diet 

showed a tendency (P = 0.07) to gain more 

weight than the STD group (Table 1). The 

groups supplemented D-fagomine (HF+FG and 

HF+FG+ω-3) tended (P = 0.1 and P = 0.08, 

respectively) to gain less weight than those in 

the HF group (Table 1). This tendency was only 

evident after week 22 for the single 

supplementation with D-fagomine; while the 

body weight of the group supplemented with 

both D-fagomine and ω-3 PUFAs tended to be 

lower from the beginning of the experiment 

and it seemed to drift towards higher values at 

the end (Supplementary Material, Figure 1B). 

The HF group and the rats supplemented only 

with ω-3 PUFAs showed significantly higher 

(P < 0.05) perigonadal fat deposition than the 

STD group; while the groups supplemented 

with D-fagomine presented a level of 

perigonadal fat similar to the STD group (Figure 

1B). 

Plasma leptin concentration (Figure 1C) was 

higher (P < 0.01) in all 4 HF groups than in the 

STD group; but both D-fagomine and ω-3 PUFAs 

partially prevented this effect. 

The animals fed the high-fat diet supplemented 

with ω-3 PUFAs had significantly (P < 0.05) 

lower concentrations of total urine F2t-IsoPs 

(5-F2t-IsoP plus 15-F2t-IsoP: markers of systemic 

OS) after 21 weeks, than rats in the STD group 

(Figure 1D). The levels of F2t-IsoPs were similar 

among the supplemented groups.
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Figure 1.- Final body weight (A), perigonadal fat (B), plasma leptin (C) and urine F2t-IsoPs (D) of SD rats 

fed a standard (STD), high-fat (HF), high-fat supplemented with D-fagomine (HF+FG), high-fat 

supplemented with EPA/DHA (1:1) (HF+ω-3) or high-fat supplemented with both D-fagomine and 

EPA/DHA (1:1) (HF+FG+ω-3) diet for 24 weeks (A-C) or 21 weeks (D). Data are presented as means 

with their standard errors. Comparisons were performed using one-way ANOVA followed by Tukey's 

post-hoc test. * P < 0.05, ** P < 0.01 vs STD. 
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Table 1.- Feed and energy intakes, and final body weight gain, of SD rats fed a high-fat diet 

supplemented, or not, with D-fagomine, ω-3 PUFAs or a combination of both, for 24 weeks. 

 STD
 

HF
 

HF+FG HF+ω-3
 

HF+FG+ω-3 

 Mean
 

SEM Mean SEM Mean
 

SEM Mean
 

SEM Mean
 

SEM 

Feed intake 

(g/day/100 g 

body weight) 

4.6
 

0.5 3.3***
 

0.1 3.0***
 

0.1 3.2***
 

0.1 3.4***
 

0.1 

Energy intake
£ 

(kcal/day/100 g 

body weight) 

13.3  1.4 15.3***
 

0.5 15.0***
 

0.1 15.7***
 

0.5 16.1***
 

0.1 

Body weight gain 

(%) 
67.3 4.1 78.9

β 
4.6 74.2

α 
2.2 76.4 5.7 71.5

φ 
3.3 

£ Energy intake is estimated as metabolizable energy based on Atwater factors, which assign 4 kcal/g 

protein, 9 kcal/g fat, and 4 kcal/g available carbohydrates. 

Data are presented as means with their standard errors; n = 9 per group. Comparisons were 

conducted using one-way ANOVA and Tukey’s multiple comparisons test. β P = 0.07, *** P < 0.001 vs 

STD; and α P = 0.1, φ P = 0.08 vs HF. 

Glycemic status 

Plasma fasting glucose and insulin were 

measured after weeks 9, 14 (Supplementary 

Material, Figure 2) and 23 (Figure 2) of the 

study. Fasting glucose levels were below 80 

mg/dL in all the groups at all times. Fasting 

glucose levels in the 4 HF groups were higher 

(P < 0.05) than those in the STD group after 14 

weeks of intervention; while plasma insulin was 

significantly elevated already after week 9 

(Supplementary Material, Figure 2) and 

remained so up to the end of the study (Figure 

2). The group supplemented only with 

D-fagomine presented insulin levels similar to 

the STD group already after week 9 

(Supplementary Material, Figure 2). At the end 

of the study (week 23), only the HF group 

presented significantly higher insulin 

concentrations than those of STD group (Figure 

2B).  

HOMA-IR is an indicator of IR that accounts for 

the levels of fasting plasma glucose and insulin 

levels. HOMA-IR increased in all the HF groups 

(P < 0.05 vs STD group) except in the group 

supplemented with D-fagomine, as early as 

week 9 and for the entire experiment 

(Supplementary Material, Figure 2). At the end 

of the study (week 23), the animals 
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supplemented with D-fagomine (HF+FG and 

HF+FG+ω-3) presented a HOMA-IR similar to 

those in the STD group (Figure 2D).  

The OGTT was performed at week 20, near the 

end of the experiment (Supplementary 

Material, Figure 3). Although there were no 

significant differences in the area under the 

curve between groups, a close examination to 

the response curves clearly reveals that the 

combination of D-fagomine and ω-3 PUFAs 

generated a glucose response similar to that in 

the control animals (Supplementary Material, 

Figure 3C). The postprandial blood glucose 

concentration 60 min after glucose load was 

statistically similar in the doubly supplemented 

rats (HF+FG+ω-3 group) and those in the STD 

group, while being higher in the HF+ω-3 group 

(Figure 2C).  

 

 

Figure 2.- Plasma levels of fasting glucose (A) and insulin (B), postprandial glucose 60 min after 

glucose intake (C) and calculated HOMA-IR (D) in SD rats fed a standard (STD), high-fat (HF), high-fat 
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supplemented with D-fagomine (HF+FG), high-fat supplemented with EPA/DHA (1:1) (HF+ω-3) or 

high-fat supplemented with both D-fagomine and EPA/DHA (1:1) (HF+FG+ω-3) diet after 20 weeks (C) 

or 23 weeks (A, B, D). Data are presented as means with their standard errors. Comparisons were 

performed using one-way ANOVA followed by Tukey's post-hoc test. * P < 0.05, ** P < 0.01 vs STD. 

Subpopulations of gut microbiota  

The proportions of the major bacterial phyla 

(Bacteroidetes and Firmicutes), selected orders 

(Lactobacilliales, Bifidobacteriales and 

Enterobacteriales) and genera (Prevotella and 

Bacteroides) were estimated in fecal and cecal 

DNA (Figures 3 and 4, respectively) at the end 

of the study (week 23-24).  

In fecal samples, the proportion of 

Bacteroidetes (Figure 3A) significantly (P < 0.01) 

decreased and the proportion of Firmicutes 

(Figure 3B) significantly (P < 0.001) increased in 

rats from groups HF and HF+ω-3, with respect 

to the STD group. The proportion of 

Bacteroidetes and Firmicutes in animals 

supplemented with D-fagomine (the HF+FG and 

HF+FG+ω-3 groups) was similar to that in 

animals in the STD group. The percentage of 

Lactobacilliales (Figure 3D) was significantly  

 

(P < 0.05) higher in the HF+FG group than in all 

other groups; while the population of 

Bifidobacteriales (Figure 3E) was significantly (P 

< 0.05) higher in both groups supplemented 

with D-fagomine (HF+FG and HF+FG+ω-3) 

compared to the other groups. The proportion 

of Enterobacteriales (Figure 3F) was 

significantly (P < 0.05) higher in the HF group 

with respect to the STD group, and all the 

supplementations partially reversed this 

change. Significant differences between groups 

in the relative populations of the genera 

Prevotella and Bacteroides were detected. The 

proportions of Prevotella (Figure 3G) and 

Bacteroides (Figure 3H) were significantly 

(P < 0.05) lower in all 4 HF groups with respect 

to the STD group. The supplementation with 

D-fagomine (the HF+FG and HF+FG+ω-3 groups) 

partially counteracted the reduction in the 

relative populations of Prevotella and 

Bacteroides (Figure 3G, H). 
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Figure 3.- Relative gut microbial populations in fecal samples from SD rats fed a standard (STD), high-

fat (HF), high-fat supplemented with D-fagomine (HF+FG), high-fat supplemented with EPA/DHA (1:1) 

(HF+ω-3) or high-fat supplemented with both D-fagomine and EPA/DHA (1:1) (HF+FG+ω-3) diet after 

23 weeks. Bacteroidetes (A), Firmicutes (B), Bacteroidetes/Firmicutes ratio (C), Lactobacilliales (D), 

Bifidobacteriales (E), Enterobacteriales (F), Prevotella (G) and Bacteroides (H). Data are presented as 

means with their standard error. Comparisons were made using one-way ANOVA followed by Tukey's 
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post-hoc test. * P < 0.05, ** P < 0.01, *** P < 0.001 vs STD; 
&
 P < 0.05,

 &&
 P < 0.01 vs HF; 

δ
 P < 0.05 vs 

HF+FG; and 
†
 P < 0.05, 

††
 P < 0.01, 

†††
 P < 0.001 vs HF+ω-3. 

In cecal samples, the proportion of 

Bacteroidetes significantly (P < 0.01) increased 

in the group of animals supplemented with 

both D-fagomine and ω-3 PUFAs, with respect 

to all the other groups (Figure 4A). The 

proportion of Firmicutes significantly (P < 0.05) 

increased in all the HF groups with respect to 

the STD group, except in the group 

supplemented with both D-fagomine and ω-3 

PUFAs (Figure 4B). The highest 

Bacteroidetes/Firmicutes ratio resulted from 

the combined supplementation (the 

HF+FG+ω-3 group, Figure 4C). The percentage 

of Lactobacilliales (Figure 4D) was significantly 

(P < 0.01) higher in the HF+FG group than in the 

HF and HF+ω-3 groups; while the population of 

Bifidobacteriales (Figure 4E) in both 

D fagomine-supplemented groups was not 

significantly different from that in the STD 

group. The proportion Bacteroides was 

significantly (P < 0.05) higher in animals 

supplemented with both D-fagomine and ω-3 

PUFAs than in the other groups, except for the 

group supplemented only with D-fagomine. 

Animals in the 4 HF groups had significantly 

lower (P < 0.001) cecum content than those in 

the STD group. The group supplemented with 

both D-fagomine and EPA/DHA 1:1 had 

significantly higher (P < 0.01) cecum content 

than the HF group, and it was similar in the STD 

group (Figure 4I).  



 

135 

 

 

Figure 4.- Relative gut microbial populations in cecal samples of SD rats fed a standard (STD), high-fat 

(HF), high-fat supplemented with D-fagomine (HF+FG), high-fat supplemented with EPA/DHA (1:1) 

(HF+ω-3) or high-fat supplemented with both D-fagomine and EPA/DHA (1:1) (HF+FG+ω-3) diet after 

24 weeks. Bacteroidetes (A), Firmicutes (B), Bacteroidetes/Firmicutes ratio (C), Lactobacilliales (D), 

Bifidobacteriales (E), Enterobacteriales (F), Prevotella (G) and Bacteroides (H). Cecum weight (I). Data 

are presented as means with their standard error. Comparisons were made using one-way ANOVA 
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followed by Tukey's post-hoc test. * P < 0.05, ** P < 0.01, *** P < 0.001 vs STD; 
&&

 P < 0.01, 

&&&
 P < 0.001 vs HF; 

δδ
 P < 0.01 vs HF+FG; and 

†
 P < 0.05, 

††
 P < 0.01, 

†††
 P < 0.001 vs HF+ω-3. 

Short-chain fatty acids 

SCFAs were determined in feces (Table 2) and 

in the cecal content (Table 3) at the end of the 

study (week 23-24). 

In fecal samples, the concentrations of all 

SCFAs were lower in the 4 HF groups than in 

the STD group. The major SCFA (acetic acid) 

was significantly reduced (P < 0.05) in all HF 

groups except the group supplemented only 

with D-fagomine.  

In cecal samples, the concentration of acetic 

acid was significantly reduced (P < 0 .001) in all 

4 HF groups; while the concentration of butyric 

acid was significantly higher (P < 0.01) in all 

these groups than in the STD group. The levels 

of isobutyric acid were significantly reduced 

(P < 0.05) in the HF group without 

supplementation and the group supplemented 

only with ω-3, but not in the 2 D-fagomine 

supplemented groups. The concentration of 

isovaleric acid was significantly higher (P < 0.05) 

in the HF+FG group than in the HF group; while 

levels of valeric acid were higher (P < 0.001) in 

all the supplemented groups (HF+FG, HF+ω-3 

and HF+FG+ω-3) than in the STD group. 

 

 

Table 2.- Fecal short-chain fatty acids (SCFAs) after week 23 of the study.  

 STD HF HF+FG HF+ω-3 HF+FG+ω-3 

 Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

Acetic acid 115.2 12.8 77.2** 2,6 90.7 10.9 84.9* 5.9 79.8** 3.9 

Propionic acid 13.4 0.9 5.7*** 0.5 8.6* 1.6 4.7*** 0.9 4.0*** 0.8 

Isobutyric acid 2.7 0.2 1.0*** 0.2 1.4*** 0.2 1.3*** 0.3 1.6** 0.7 

Butyric acid 17.3 2.4 8.5** 1.1 6.9*** 1.6 7.2*** 1.2 6.4*** 1.7 

Isovaleric acid 1.7 0.2 0.6*** 0.1 0.9* 0.2 0.4*** 0.3 0.5*** 0.3 

Valeric acid 1.4 0.1 0.8** 0.0 0.9* 0.1 0.6*** 0.3 0.6*** 0.3 

TOTAL SCFAs 151.9 9.3 93.9** 3.2 109.7 13.8 99.4* 2.1 93.0** 1.7 

Data are presented as means with their standard errors; n = 9 per group. SCFA amounts are given in 

millimoles per kilogram feces. Comparisons were conducted using one-way ANOVA and Tukey’s 

multiple comparisons test. * P < 0.05, ** P < 0.01, *** P < 0.001 vs STD. 
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Table 3.- Cecal short-chain fatty acids (SCFAs) at the end of the study (24 weeks). 

 STD HF HF+FG HF+ω-3 HF+FG+ω-3 

 Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

Acetic acid 159.9
 

18.5 75.5***
 

9.2 84.3***
 

10.0 88.6***
 

10.4 74.5***
 

7.7 

Propionic acid 32.4 3.7 25.5 2.6 32.4 3.2 32.4 4.2 34.0 5.4 

Isobutyric acid 3.7
 

0.3 2.1*
 

0.1 3.4
 

0.3 2.6*
 

0.2 3.5
 

0.4 

Butyric acid 11.8
 

1.0 24.7**
 

2.0 24.7**
 

2.6 33.0***
 

2.8 27.1***
 

3.4 

Isovaleric acid 3.2
 

0.3 1.9
 

0.2 3.6
& 

0.4 2.7
 

0.4 3.2
 

0.6 

Valeric acid 1.9
 

0.3 3.4
 

0.2 4.6***
 

0.4 4.7***
 

0.4 4.4***
 

0.4 

TOTAL SCFAs 213.1
 

23.5 133.3*
 

12.7 153.2
 

14.1 164.2
 

17.1 146.8
 

16.3 

Data are presented as means with their standard errors; n = 9 per group. SCFA amounts are given in 

millimoles per kilogram cecum. Comparisons were conducted using one-way ANOVA and Tukey’s 

multiple comparisons test. * P < 0.05, ** P < 0.01, *** P < 0.001 vs STD; and 
& 

P < 0.05 vs HF. 

 

Figure 5.- Liver histology. Estimation of variables in SD rats fed a standard (STD), high-fat (HF), high-

fat supplemented with D-fagomine (HF+FG), high-fat supplemented with EPA/DHA (1:1) (HF+ω-3) or 

high-fat supplemented with both D-fagomine and EPA/DHA (1:1) (HF+FG+ω-3) diet at the end of the 

study (week 24). Steatosis (A) and lobular inflammation (B). Scores are presented as means with their 

standard error. Comparisons were made using one-way ANOVA followed by Tukey's post-hoc test. 

* P < 0.05, ** P < 0.01, *** P < 0.001 vs STD; and 
&
 P < 0.05 vs HF. 
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Liver histology 

Steatosis and lobular inflammation were 

determined by histology (Figure 5). The livers of 

animals supplemented with D-fagomine 

presented higher (P < 0.05) steatosis than those 

from the STD group (Figure 5A) and the livers 

from animals supplemented with both 

D-fagomine and ω-3 PUFAs presented higher 

(P < 0.05) steatosis than those from rats in the 

HF and HF+ω-3 groups. Lobular inflammation of 

animals in the HF and HF+FG groups was higher 

(P < 0.05) than for those in the STD group 

(Figure 5B). 

DISCUSSION 

The present study examines the effects of the 

combination of D-fagomine and ω-3 PUFAs 

(EPA/DHA 1:1) on SD rats at a very early stage 

in the development of fat-induced pre-

diabetes. SD rats aged 8-9 weeks and fed a 

high-fat diet tended (P = 0.07) to gain more 

weight than those fed a standard diet over a 

period of 24 weeks (Table 1) and they also 

developed incipient IR as assessed by HOMA-IR 

(Figure 2D). These metabolic effects are less 

evident than those we reported for Wistar 

Kyoto (WKY) rats, which significantly (P < 0.001) 

gained more weight when fed a high-fat diet 

over the same period of time (Ramos-Romero 

et al., 2018). WKY rats presented IGT with 

blood glucose levels around 150 mg/dL, already 

at week 13 of the intervention (Ramos-Romero 

et al., 2018); while here, blood glucose 

concentration in SD rats fed a high-fat diet was 

lower than 120 mg/dL even at week 20 

(Supplementary Material, Figure 3). These 

observations coincide with the results 

published by other authors showing that: i) 

even though SD rats gain more weight than 

Wistar rats, the differences between the STD 

group and the 4 HF groups are lower in SD rats; 

and ii) SD rats fed a high-fat diet develop IGT 

later than Wistar rats do (Marques et al., 2016). 

Therefore, differences in weight gain and 

effects on glucose metabolism are harder to 

detect in SD rats than in Wistar or WKY rats. 

This has to be taken into consideration when 

interpreting the results of the present study. 

In apparent contradiction with our previous 

observations with WKY rats (Ramos-Romero et 

al., 2018), D-fagomine did not reduce the 

weight gain induced by a high-fat diet (Table 1 

and Supplementary Material, Figure 1A) when 

administered alone; while it tended to reduce 

perigonadal fat (Figure 1B). The 

supplementation with EPA/DHA 1:1 had no 

effect on this induced body weight gain or 

perigonadal fat, when administered alone 

(Table 1 and Supplementary Material, Figure 

1B). Surprisingly, combined D-fagomine and ω-3 

PUFAs showed a tendency (P = 0.08) to reduce 

body weight (Table 1 and Supplementary 
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Material, Figure 1A, B). The pro- and anti-

inflammatory effects of the different agents in 

this experimental set-up may provide an 

explanation for these apparently surprising 

results. High-fat diets induce a state of 

systemic low-grade inflammation, probably 

initiated by toxic bacterial components 

such as LPS which leak from an altered 

intestinal barrier (Sanmiguel, Gupta, & 

Mayer, 2015). We previously showed that 

D-fagomine counteracted fat-induced 

weight gain while lowering the levels of 

inflammatory markers in plasma and liver 

and we postulated that these effects might be 

attained by re-balancing the intestinal 

microbiota (Ramos-Romero et al., 2018). One 

possible explanation for the lack of effect of 

D-fagomine on SD rats fed a high-fat diet 

reported here is that the animals not 

supplemented with ω-3 PUFAs (STD, HF and 

HF+FG groups) were administered an 

equivalent dose of soybean oil to compensate 

for both the stress of probing and the excess of 

calories. Soybean oil, which is rich in the ω-6 

PUFA linoleic acid (LA), might have 

counteracted the putative microbiota-related 

anti-inflammatory effect of D-fagomine. LA may 

increase the levels of inflammatory 

prostaglandins and cytokines by entering the 

ARA metabolic pathway (for a review see 

(Naughton, Mathai, Hryciw, & McAinch, 2016)). 

This will not happen in the case of ω-3 PUFA 

supplementation, as EPA and DHA are 

converted into less inflammatory and even anti-

inflammatory metabolites (for a review on the 

actions of ω-6 and ω-3 PUFAs see (Innes & 

Calder, 2018)). Therefore, the anti-

inflammatory-related weight-lowering effect of 

D-fagomine would be reinforced instead of 

counteracted by the accompanying lipid 

(EPA/DHA in the HF+FG+ω-3 group). These 

events would occur downstream of the fat-

induced microbial-triggered toxicity and they 

are consistent with the liver histology results 

obtained. All the groups presented some 

lobular inflammation (Figure 5) which was 

significantly higher in the HF and HF+FG groups 

(P < 0.05 and 0.01 vs STD, respectively). LA may 

have contributed to liver inflammation in the 

HF+FG group while EPA/DHA 1:1 might have 

partially counteracted the pro-inflammatory 

effect of the saturated fats in the diet. The 

levels of visceral adiposity in the experimental 

groups corresponded to the levels of leptin, 

except in the HF+ω-3 group (Figure 1C). The 

anorexigenic hormone leptin is mainly secreted 

by adipocytes and it is directly related to 

adipose tissue mass (Considine et al., 1996).  

The high-fat diet promoted a statistically 

significant elevation in plasma insulin levels 

(P < 0.01) (Figure 2B) and HOMA-IR (P < 0.05) 

(Figure 2D), which are consistent with a 
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physiological compensation for reduced insulin 

sensitivity: the very first stage in the 

progression to diabetes (Weir & Bonner-Weir, 

2004). SD rats fed the high-fat diet showed only 

an incipient tendency to develop IGT, 

evidenced by the postprandial levels of plasma 

glucose 60 min after the glucose load in the 

OGTT (Figure 2C). The combination of 

D-fagomine and EPA/DHA 1:1 was the most 

effective supplementation against diet-induced 

IR and IGT as evidenced by the observations 

that HOMA-IR and the 60 min postprandial 

glucose levels in the HF+FG+ω-3 group were 

statistically similar to the values in the STD 

group (Figure 2C, D and Supplementary 

Material, Figure 3C). When the supplements 

were administered separately, only D-fagomine 

showed a capacity to counteract the increase of 

HOMA-IR (Figure 2D).  

In agreement with our results with WKY rats 

(Ramos-Romero et al., 2018), fat accumulation 

and IR did not increase systemic OS as assessed 

by the levels of urine F2t-IsoPs (Figure 1D). This 

result is also consistent with the observation 

that the generation of mitochondrial ROS 

occurs later than IR as a consequence of 

hyperglycemia, as observed in skeletal muscle 

of mice fed a high-fat high-sucrose diet 

(Bonnard et al., 2008).  

As there is mounting evidence that alterations 

in gut microbiota (dysbiosis) and intestinal 

barrier dysfunction may be the first steps 

leading to dietary fat-induced chronic systemic 

low-grade inflammation, visceral fat 

accumulation and IR (Duan et al., 2018), we 

checked the effects of D-fagomine, ω-3 PUFAs 

and their combination on relevant bacterial 

subgroups. At the phyla level, D-fagomine 

counteracted the high-fat diet-induced changes 

in the excreted populations of Bacteroidetes 

and in both excreted and cecal populations of 

Firmicutes (Figures 3A, B and 4B). These results 

confirm our previous observations in WKY rats 

(Ramos-Romero et al., 2018) and they agree 

with an association between a high 

Bacteroidetes/Firmicutes ratio and the lean 

phenotype in both rodents and humans 

(Turnbaugh & Gordon, 2009; Turnbaugh et al., 

2006). ω-3 PUFAs did not affect the excreted 

populations of Bacteroidetes and Firmicutes, 

either when administered alone or when 

combined with D-fagomine (Figure 3A, B, C). 

The combination of both supplements resulted 

in the highest Bacteroidetes/Firmicutes ratio in 

the cecum (Figure 4A, B, C). 

We next evaluated the changes in the 

populations of the putatively beneficial 

Lactobacilliales, Bifidobacteriales and the 

putatively harmful Enterobacteriales. 

D-Fagomine promoted the growth of 

Lactobacilliales and Bifidobacteriales (Figure 3D 

and 3E, respectively) in agreement with our 
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previous study in rats fed a standard diet 

(Hereu et al., 2018). Bifidobacteria have been 

shown to protect gut barrier function by 

preserving mucosal permeability and 

preventing translocation of pathogenic 

enterobacteria, such as E. coli (Caplan et al., 

1999). As bacterial toxicity may be the main 

cause of fat-induced low-grade inflammation, 

D-fagomine might be exerting an anti-

inflammatory action by fostering gut 

colonization with bifidobacteria. D-Fagomine 

may also contribute a direct action against 

putatively harmful enterobacteria as it is 

capable of inhibiting adhesion of E. coli to the 

intestinal mucosa (Gómez et al., 2012). The 

exclusion of enterobacteria from the intestinal 

wall would explain the tendency for D-fagomine 

to increase the population of this subgroup in 

the cecal content (Figure 4F). Neither the 

excess of fat nor the supplementation with ω-3 

PUFAs had any significant effect on lactobacilli 

or bifidobacteria.  

It is known that part of the beneficial health 

effects of a well-balanced gut microbiota is 

mediated by SCFAs, which are products of 

microbial fermentation of dietary fiber (den 

Besten et al., 2013). The total excreted SCFAs 

were lower in all the HF groups than in the STD 

group. This may be due to the fact that 

cellulose is almost the only source of fiber in 

the high-fat diet, which has been proved to 

yield amounts of SCFAs as low as those 

generated by fiber-free diets (den Besten et al., 

2013). High-fiber low-fat diets are known to 

generate large amounts of fecal SCFAs (mainly 

acetic acid) compared to fiber-poor diets 

(Filippo et al., 2010). D-Fagomine partially 

counteracted the decrease of acetic acid and 

total SCFAs in rats fed the high-fat diet (Table 

2). This effect could be explained by D-fagomine 

promoting the growth of SCFA-producing 

bacteria. We recently reported that D-fagomine 

stabilizes the populations of the genus 

Prevotella in the intestinal tract of SD rats fed a 

standard diet while reducing weight gain 

(Hereu, sent). In the present study, D-fagomine 

showed some capacity to counteract the high-

fat-induced reduction in the populations of 

Prevotella (Figure 3G). As bacteria from this 

genus are capable of fermenting complex 

polysaccharides from the diet in a process that 

is mechanistically linked to functional effects on 

glucose metabolism (Kovatcheva-Datchary et 

al., 2015), we hypothesize that D-fagomine 

might collaborate with dietary fiber in 

promoting the growth of beneficial bacteria. 

This effect is necessarily weak in the present 

case because the high-fat diet is low in 

fermentable fiber. The weight of the cecum is 

another indication of gut microbial activity, as 

rats supplemented with dietary fiber have been 

reported to have both cecal content and cecal 

tissue increased already after just two weeks of 
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intervention (Dalby, Ross, Walker, & Morgan, 

2017; Jakobsdottir, Xu, Molin, Ahrne, & Nyman, 

2013). Here, the cecal content in the HF group 

was significantly reduced with respect to the 

STD group while the cecal weight in the 2 

groups supplemented with D-fagomine was 

similar to that in the STD group. The present 

results with bacterial populations and their 

fermentation products provide evidence that 

D-fagomine may contribute to the prevention 

of metabolic alterations by promoting balanced 

gut microbiota, whether it is combined with 

ω-3 PUFAs or not. The combination of 

supplements might be more effective than the 

individual supplementations in some cases (e.g. 

the Bacteroidetes/Firmicutes ratio and cecal 

content). 

The main limitation of this study is that even 

though SD rats are appropriate for the 

detection of the early metabolic effects 

resulting from a high-fat diet, the differences 

between the treated groups and the controls 

are too small to reach statistical significance. 

Despite this limitation, the picture that 

emerges from this study, together with our 

previous reports, clearly points towards a 

functional role for D-fagomine in the prevention 

of risk factors for diet-induced pre-diabetes 

which is reinforced by the action of ω-3 PUFAs 

via complementary mechanisms. 

In conclusion, the very early metabolic 

alterations induced by a Westernized high-fat 

diet in SD rats may be reduced by the 

combined action of D-fagomine and ω-3 PUFAs. 

The functional effects of the combination are 

mainly those of D-fagomine complemented by 

those of EPA/DHA 1:1, which may be attributed 

to its anti-inflammatory activity (See Table 4 for 

a summary). The combined supplements 

counteract high-fat-induced weigh gain, 

visceral fat, incipient IR, and liver inflammation; 

while increasing the cecal content, the 

Bacteroidetes/Firmicutes ratio and the gut 

populations of both Bifidobacteriales and 

Lactobacilliales

. 
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Table 4.- Qualitative summary of the main effects of diet and supplementations in SD rats compared 

to rats fed a standard diet. 

 
Fasting 

Glucose 

Fasting 

Insulin  

HOMA-

IR 

60 min 

Postprandial 

Glucose  

Weight 

gain 
B/F 

£
 ratio Bifidobacteriales 

HF ↑ ↑ ↑ ↑ ↑
 β

 ≈ ≈ 

HF+FG ↑ ≈ ≈ ≈ ≈ 
α
 ≈ ↑ 

HF+ω-3 ↑ ≈ ↑ ↑ ≈ ≈ ≈ 

HF+FG+ω-3 ≈ ≈ ≈ ≈ ≈
 φ 

 ↑ ↑ 

£
 Bacteroidetes/Firmicutes; 

β
 P = 0.07 vs STD; 

α 
P = 0.1 vs HF; and 

φ 
P = 0.08 vs HF  
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SUPPLEMENTARY MATERIAL (SM) INCLUDED IN THE DIGITAL VERSION OF PAPER 4 

Table SM1.- Quantitative real-time PCR primers and conditions 

Target bacteria 
Annealing 

temperature 
(°C) 

Sequences (5’-3’) Positive Control Reference 

Total Bacteria 65 F: ACT CCT ACG GGA GGC AGC AGT (a) (Hartman et al., 2009) 

  

R: ATT ACC GCG GCT GCT GGC     

Bacteroidetes 62 F: ACG CTA GCT ACA GGC TTA A Bacteroides fragilis (Abdallah Ismail et al., 2011) 

  
R: ACG CTA CTT GGC TGG TTC A 

  
Firmicutes 52 F: CTG ATG GAG CAA CGC CGC GT  Ruminococcus productus (Haakensen, Dobson, Deneer, & Ziola, 

2008) 
  

R: ACA CYT AGY ACT CAT CGT TT  
 

Lactobacillales 60 F: AGC AGT AGG GAA TCT TCC A Lactobacillus acidophylus (Walter et al., 2001) 

  R: CAC CGC TAC ACA TGG AG   

Bifidobacteriales 55 F: CTC CTG GAA ACG GGT GG Bifidobacterium longum (Queipo-Ortuno et al., 2013) 

  R: GGT GTT CTT CCC GAT ATC TAC A   

Enterobacteriales 60 F: ATG GCT GTC GTC AGC TCG T Escherichia coli M15 (Hartman et al., 2009) 

  R: CCT ACT TCT TTT GCA ACC CAC T   

Prevotella 60 F: CAG CAG CCG CGG TAA TA Prevotella copri (Schwiertz et al., 2009) 

  R: GGC ATC CAT CGT TTA CCG T   

Bacteroides 60 F: GGT TCT GAG AGG AGG TCC C Bacteroides fragilis (Schwiertz et al., 2009) 

  R: GCT GCC TCC CGT AGG AGT   
a
 Positive control of Total Bacteria was the same as those the result was rated with. 
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Figure SM1.- Body weight (A, B) of SD rats fed a standard (STD), high-fat (HF), high-fat supplemented 

with D-fagomine (HF+FG), high-fat supplemented with EPA/DHA (1:1) (HF+ω-3) or high-fat 

supplemented with both D-fagomine and EPA/DHA (1:1) (HF+FG+ω-3) diet for 24 weeks. Data are 

presented as means with their standard errors.  
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Figure SM2.- Plasma levels of fasting glucose (A and D), insulin (B and E) and calculated HOMA-IR (C 

and F) in SD rats fed a standard (STD), high-fat (HF), high-fat supplemented with D-fagomine (HF+FG), 

high-fat supplemented with EPA/DHA (1:1) (HF+ω-3) or high-fat supplemented with both D-fagomine 

and EPA/DHA (1:1) (HF+FG+ω-3) diet, after weeks 9 (A, B and C) and 14 (D, E and F). Data are 

presented as means with their standard errors. Comparisons were performed using one-way ANOVA 

followed by Tukey's post-hoc test. * P < 0.05, ** P < 0.01 and *** P < 0.001 vs STD. 
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Figure SM3.- Glycemic response (OGTT curves) in SD rats fed a standard (STD), high-fat (HF), or high-

fat supplemented with D-fagomine (HF+FG) diet (A); STD, HF or high-fat supplemented with EPA/DHA 

(1:1) (HF+ω-3) diet (B); and STD, HF or high-fat supplemented with D-fagomine and EPA/DHA (1:1) 

(HF+FG+ω-3) diet (C) after ingestion of a single dose of glucose (1 g/kg body weight) at week 20 of 

the intervention. Data are presented as means with their standard errors.
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This thesis consisted of exploring the effects of D-fagomine, ω-3 PUFAs (EPA/DHA 1:1) and their 

combination on i) rats given a standard diet (PAPERS 1 and 2) and ii) rat models of fat-induced pre-

diabetes (PAPERS 3 and 4). The thesis is based on previous post-graduate work by the candidate 

included as Annex (PAPERS A1 and A2). Paper A1 explored the efficiency of the combination between 

ω-3 PUFAs (EPA/DHA 1:1) and polyphenols (grape seed extract, GSE) in Wistar Kyoto (WKY) rats fed a 

standard diet. The results show that the combination maintained the standard proportions of 

Lactobacillus, Bifidobacterium and SCFAs, while also providing the cardiovascular benefits of ω-3 

PUFAs. The rat model of pre-diabetes used in PAPER 3 of the main body of this thesis was defined in 

PAPER A2. The paper compared the pre-diabetic state generated in WKY rats by an excess of either 

fat or sucrose (glucose + fructose). The results show that saturated fat triggered IR and IGT before 

sucrose did. The mechanisms involved in both cases were different. Fat triggered low-grade 

inflammation probably originated in gut dysbiosis while fructose stimulated liver steatosis and the 

biosynthesis of putatively toxic lipid mediators (DAGs). As our research group is interested in the 

relationship between gut microbiota and IR/IGT through low-grade inflammation, fat was preferred 

over sucrose for the definition of a rat model of pre-diabetes. 

The thesis then focused on the activity of D-fagomine, a new possible dietary supplement using the 

high-fat model defined in PAPER A2 and explored the activity of its combination with ω-3 PUFAs. The 

results reported in PAPERS 1 and 3 were generated by an intervention with WKY rats fed a standard 

diet or a high-fat diet supplemented (or not) with D-fagomine (0.096% w/w in the feed) for 24 weeks.  

The results reported in PAPERS 2 and 4 were generated with Sprague Dawley (SD) rats fed a standard 

diet or a high-fat diet supplemented (or not) with D-fagomine (0.096% w/w in the feed), ω-3 PUFAs 

EPA/DHA (1:1) (0.8 mL/kg body weight administed weekly by oral gavage) or a combination of both 

supplementations for 24 weeks. The reason for using SD rats instead of WKY rats in PAPERS 2 and 4 is 

that SD rats develop IR/IGT later than WKY rats, therefore it was considered that they might provide a 

better model for the detection of very early events in the development of pre-diabetes.  
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To facilitate the reader’s understanding of this summary, the abbreviations used for the experimental 

groups are given in the following table: 

Group by diet and supplementation Abbreviation  

Standard diet STD or CTL (PAPER 2) 

Standard diet + D-fagomine FG 

Standard diet + ω-3 PUFAs ω-3 

Standard diet + D-fagomine + ω-3 PUFAs FG + ω-3 

High-fat diet HF 

High-fat diet + D-fagomine HF + FG 

High-fat diet + ω-3 PUFAs HF + ω-3 

High-fat diet + D-fagomine + ω-3 PUFAs HF + FG + ω-3 
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The main results of this thesis are summarized below: 

4.1 Effects of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on feed and energy intakes, and body 

weight  

The standard diet supplemented with D-fagomine did not modify the feed or energy intakes (PAPERS 

1 and 2). WKY rats fed the standard diet showed the same body weight gain whether supplemented 

with D-fagomine or not (PAPER 1) while SD rats fed a standard diet supplemented with D-fagomine 

(FG and FG + ω-3 groups) gained less weight than those non-supplemented with the iminosugar (CTL 

and ω-3 groups) after 21 weeks of intervention (PAPER 2). Accordingly, these animals supplemented 

with D-fagomine showed a tendency to store less perigonadal fat than those non-supplemented or 

supplemented with only ω-3 PUFAs (PAPER 2).  

Rats fed the high-fat diet consumed less feed but more energy than those fed the standard diet 

(PAPERS 3 and 4). The supplementations with D-fagomine and/or ω-3 PUFAs did not modify intakes 

with respect to the non-supplemented controls (PAPERS 1-4). 

WKY rats fed a high-fat diet gained more weight than those given the standard diet while animals 

supplemented with D-fagomine showed a tendency (P = 0.06) to gain less weight than those in the HF 

group (PAPER 3). SD rats fed a high-fat diet showed a tendency (P = 0.07) to gain more weight than 

those fed the standard diet (PAPER 4). The HF groups supplemented D-fagomine (HF + FG and HF + 

FG + ω-3) tended (P = 0.1 and P = 0.08, respectively) to gain less weight than those in the HF group 

(PAPER 4).   

Unlike ω-3 PUFAs, D-fagomine appears to help to reduce body weight gain under an obesogenic diet 

(PAPERS 3 and 4). The results are more evident in WKY rats because even though SD rats reach higher 

body weight than WKY rats, the differences between the groups given standard and high-fat diets are 

lower in SD rats. 

4.2 Effect of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on gut microbiota 

Major microbiota phyla: In WKY rats, D-fagomine clearly increased the populations of Bacteroidetes 

in feces over the whole experiment when administered together with the standard diet. This effect 

was also detected in the cecal content at the end of the intervention (PAPER 1). No such an effect 

was detected in rats given a high-fat diet (PAPER 3). 
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In SD rats fed a high-fat diet, the Bacteroidetes/Firmicutes ratio in animals supplemented with 

D-fagomine (HF + FG and HF + FG + ω-3 groups) was similar to that in animals fed the standard diet. 

The highest Bacteroidetes/Firmicutes ratio resulted from the combined supplementation (HF + FG + 

ω-3 group) (PAPER 4).   

Minor microbiota orders: The relative populations of Bifidobacteriales and Lactobacilliales decreased 

as the animals grew older (PAPERS 1 and 2) or with the high-fat diet (PAPERS 3 and 4), while the 

proportion of Enterobacteriales significantly increased with the high-fat diet (PAPERS 3 and 4). 

D-Fagomine partially counteracted the age- and diet-related losses of Bifidobacteriales in all cases 

(PAPERS 1, 2, 3 and 4) whether in the presence of ω-3 PUFAs or not. ω-3 PUFAs had an effect mainly 

on Lactobacilliales in healthy rats given a standard diet (PAPER 2).  

Genera: The populations of both Prevotella and Bacteroides significantly decreased with time (PAPER 

2) and also in animals fed a high-fat diet (PAPER 4). The supplementation with D-fagomine 

significantly increased the proportion of Prevotella in animals fed a standard diet (PAPER 2) and 

partially counteracted the reduction of this genus in rats fed a high-fat diet (PAPER 4).  

4.3 Effect of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on short-chain fatty acids  

In WKY rats fed a standard diet, D-fagomine significantly reduced the concentration of excreted acetic 

and isobutyric acids, and also the total content of excreted SCFAs (PAPER 1). In SD rats fed a standard 

diet, the supplementation with ω-3 PUFAs reduced SCFA content, particularly the concentration of 

acetic acid, with respect to the other groups (PAPER 2).  

The concentrations of all SCFAs were lower in rats fed a high-fat diet than in rats fed the standard 

diet (PAPER 4). The major SCFA (acetic acid) was significantly reduced in all groups fed the HF diet 

except the group supplemented with D-fagomine (PAPER 4).  

4.4 Effect of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on the glycemic status 

In WKY rats, plasma fasting glucose levels in the HF group were higher than those in the STD group 

(PAPER 3). D-Fagomine reduced this increase to levels similar to those in the STD group. Plasma 

fasting insulin was higher in both groups fed the high-fat diet. At the end of the study, insulin levels in 

the HF group dropped significantly while the group supplemented with D-fagomine still presented 

significantly higher insulin concentrations than the STD group. The oral glucose tolerance test (OGTT) 

was performed twice during the study. In the first test, the levels of postprandial glucose in the HF 



 

159 

 

group were significantly higher than those in the other two groups (STD and HF + FG) 30, 45, and 60 

min after administration, with levels higher than 140 mg/dL. By the end of the study, plasma glucose 

concentrations in the group supplemented with D-fagomine were still lower than those in the HF 

group, but only significantly lower 30 min after glucose load.  

The levels of fasting glucose in SD rats were similar in all supplemented groups and below 80 mg/dL 

(PAPER 4). At the end of the study, the animals given a high-fat diet presented a Homeostatic Model 

Assessment for Insulin Resistance (HOMA-IR) value higher than those fed the standard diet while the 

animals supplemented with D-fagomine (HF + FG and HF + FG + ω-3 groups) presented HOMA-IR 

values similar to those in the STD group.   

D-Fagomine had lowering effects on IR and IGT in rats. These metabolic effects were more evident in 

WKY than in SD rats. ω-3 PUFAs did not counteract the changes induced by the high-fat diet. 

4.5 Effect of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on biomarkers and lipid mediators of 

inflammation  

In SD rats fed a STD diet, plasma concentration of the ARA-derived lipid mediators 

hydroxyeicosatetraenoic acids (HETEs) were significantly reduced in the groups supplemented with 

ω-3 PUFAs with respect to the control group (PAPER 2). D-Fagomine by itself only reduced 12HETE. 

In WKY rats fed a high-fat diet, the plasma concentration of IL-6 was higher than in animals fed the 

standard diet (PAPER 3). The plasma concentration of PGE2 significantly increased in the HF group 

compared to the STD group. The levels of pro-inflammatory PGE2 and LTB4 were similar between the 

STD and HF+FG groups (PAPER 3).  

4.6 Effect of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on liver tissue 

The liver sections obtained from WKY rats fed a high-fat diet showed lobular inflammation with 

lymphoplasmacytic inflammatory infiltration around the blood vessels. In contrast, such infiltration 

was scarce and smaller in sections from livers pertaining to the group supplemented with D-fagomine 

(PAPER 3).  

In SD rats, the livers of animals fed a high-fat diet supplemented or not with D-fagomine (together 

with soybean oil) presented higher lobular inflammation than those fed the STD diet. The animals 
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supplemented with ω-3 PUFAs (HF + ω-3 and HF + FG + ω-3 groups) did not present significant 

lobular inflammation (PAPER 4).  

4.7 General view of the results 

Taken together (PAPERS 1, 2, 3 and 4) the effects on microbiota and variables associated to metabolic 

alterations detected in both WKY and SD rats under either standard or obesogenic diets may be 

assigned to the iminosugar D-fagomine with some contribution of ω-3 PUFAs via their anti-

inflammatory activity.  



 

 

5 GENERAL DISCUSSION 
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This thesis focuses on the effects of D-fagomine alone or in combination with ω-3 PUFAs (EPA/DHA 

1:1) on gut microbiota and related risk factors for diabetes with the goal of assessing the capacity of 

these supplements to maintain a healthy status over time under standard or obesogenic diets.  

Functional food components are supposed to preserve bodily functions. They may provide health 

benefits for healthy subjects following a healthy lifestyle as well as for people belonging to risk 

groups such as obese or pre-diabetic populations. The first part of this thesis explored the effects of 

D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on rats given a standard diet as a model for healthy 

subjects (PAPERS 1 and 2). The second part explored the effects of the same supplements on rats 

with fat-induced pre-diabetes as models for people at risk of suffering from diabetes and 

cardiovascular diseases (PAPERS 3 and 4). Significant changes and tendencies recorded in this thesis 

may give us clues to the putative beneficial effects of D-fagomine alone or in combination with ω-3 

PUFAs. 

5.1 Effect of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on beneficial gut bacteria over time in rats 

given a standard diet 

The composition and activity of the gut microbiota evolves throughout life, from birth to old age and 

their diversity and balance is fundamental for host health (Nicholson et al., 2012). In humans, age-

related differences in gut microbiota composition include an increase in the total number of 

facultative anaerobe bacteria, mainly Enterobacteriales; and a reduction in the populations of species 

belonging to the phylum Bacteroidetes, such as Prevotella, as well as of the health-promoting 

Lactobacillales and Bifidobacteriales (Woodmansey, 2007). A decline in the populations of some 

putatively beneficial bacteria such as Lactobacillius and Bifidobacterium is a risk factor for the 

development of many intestinal disorders, including diarrhea, irritable bowel syndrome and 

inflammatory bowel disease (Gareau et al., 2010). Moreover, bacterial species from these orders are 

negatively correlated with adiposity, systemic inflammation and obesity (Cani et al., 2007). The 

reduction in numbers and species of many beneficial bacteria, such as Bifidobacterium, as well as 

shifts in the dominant bacterial species can help to understand the decreased functionality of the 

microbiota in elderly people. 

One of the goals of this thesis is elucidate the effect of D-fagomine on the gut microbiota in healthy 

rats over time. Our first results indicate that D-fagomine increased the populations of excreted 

Bacteroidetes, Bifidobacteriales and Lactobacilliales in rats fed a standard diet over a period of 24 
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weeks (PAPER 1). Then, we corroborated that the populations of Bacteroidetes and Prevotella 

remained stable in rats supplemented with D-fagomine, while they dropped significantly over time in 

rats not supplemented with the iminosugar (PAPER 2). We also tested whether its combination with 

ω-3 PUFAs (EPA/DHA 1:1) had any additive or complementary effect and our findings indicate that 

the combination may contribute the host homeostasis by maintaining the relative populations of 

Bifidobacteriales and Lactobacilliales at levels similar to those of the control group (PAPER 2).  

D-Fagomine, alone or in combination with ω-3 PUFAs (EPA/DHA 1:1) might contribute to the 

maintenance of the intestinal health by preserving diversity and mitigating the age-related reduction 

of some beneficial bacteria. Therefore, the combination between D-fagomine and ω-3 PUFAs 

(EPA/DHA 1:1) may have an eubiotic effect on the composition of intestinal microbiota that may be 

complementary to that of prebiotics and probiotics.   

5.2 Effect of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on gut microbiota in relation to body weight 

gain in rats given standard or obesogenic diets 

As there is mounting evidence that dysbiosis, fat accumulation, glycaemia and weight gain are 

connected (Schwiertz et al., 2009; Turnbaugh & Gordon, 2009; Turnbaugh et al., 2006) we checked 

the effects of D-fagomine, ω-3 PUFAs (EPA/DHA 1:1) and their combination on relevant bacterial 

subgroups. The lean phenotype and the level of functional diversity in the gut microbiome have been 

associated with increased populations of Bacteroidetes in rodents and humans (Turnbaugh & 

Gordon, 2009; Turnbaugh et al., 2009; Turnbaugh et al., 2006). Our results indicate that rats 

supplemented with D-fagomine presented higher Bacteroidetes/Firmicutes ratio than those not 

supplemented with the iminosugar (PAPERS 1 and 4). This is in agreement with the observation that 

D-fagomine was effective at reducing body weight gain in rats under either standard or obesogenic 

diets (PAPERS 2, 3 and 4). EPA/DHA 1:1 did not significantly affect body weight gain and did not 

modify the Bacteroidetes/Firmicutes ratio (PAPERS 2 and 4).  

The proportion of the genus Prevotella in gut is directly related to the intake of complex 

carbohydrates and dietary fiber and to improved glucose tolerance (Kovatcheva-Datchary et al., 

2015). Human subjects with high Prevotella/Bacteroides ratio appear to be more susceptible to lose 

body fat on diets high in fiber than subjects with a low Prevotella/Bacteroides ratio (Hjorth et al., 

2018). D-Fagomine also presented a capacity to stabilize the populations of bacteria of the genus 

Prevotella (PAPERS 2 and 4). The iminosugar helped to maintain the populations of Prevotella in the 
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intestinal tract of rats fed a standard diet while reducing weight gain (PAPER 2), and partially 

counteracted the high-fat induced reduction of Prevotella (PAPER 4). ω-3 PUFAs did not have any 

effect on the populations of Prevotella (PAPER 4). 

It is known that part of the beneficial health effects of a well-balanced gut microbiota is mediated by 

SCFAs, which are products of microbial fermentation of dietary fiber (den Besten et al., 2013). High-

fiber low-fat diets are known to generate high amounts of fecal SCFAs (mainly acetic acid) compared 

to poor-fiber diets (Filippo et al., 2010). D-Fagomine partially counteracted the decrease of acetic acid 

and total SCFAs in rats fed the high-fat diet (PAPER 4). This effect could be explained by a growth-

promoting activity of D-fagomine on SCFA-producing bacteria. We hypothesize that D-fagomine might 

collaborate with dietary fiber in promoting the growth of beneficial bacteria. This effect is necessarily 

weak in animals fed the high-fat diet, which is low in fermentable fiber (PAPER 4). D-Fagomine 

reduced the fecal concentration of acetic acid in rats fed the STD diet (PAPER 1), and ω-3 PUFAs 

EPA/DHA 1:1 also reduced the levels of this acid (PAPER 2). We hypothesize that the reduction in 

fecal SCFAs may actually reflect an increase in acetate absorption in the intestinal tract as it has been 

shown that low levels of acetate in feces are inversely correlated with intestinal absorption (Vogt & 

Wolever, 2003). This would explain, at least in part, the reduction in pro-inflammatory mediators in 

the EPA/DHA 1:1 supplemented animals (PAPER 2) 

Taken together these results are suggesting that D-fagomine might exert a fiber-like action affecting 

microbiota-related fat accumulation and weight gain. ω-3 PUFAs do not significantly affect these 

variables while they may contribute an anti-inflammatory effect through SCFA producing bacteria.  

5.3 Effect of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on fat-induced low-grade inflammation and 

insulin resistance and its possible relationship with gut dysbiosis 

As the prevention of diet-induced type-2 diabetes is a pivotal goal of the research project in which 

this thesis is integrated, PAPERS 3 and 4 consisted of exploring the effect of D-fagomine and ω-3 

PUFAs (EPA/DHA 1:1) on a rat model of fat-induced pre-diabetes.  

A pre-diabetic state was induced to WKY rats (PAPER 3) or SD rats (PAPER 4) by a HF diet over a 

period of 24 weeks. Despite all of the information available on the induction of IR and IGT by fat in rat 

models, the molecular mechanisms behind this action are still largely unknown. First, we observed 

that SD rats fed a standard diet reach higher body weight than WKY rats while, when fed a high-fat 

diet, the weight gain of SD rats is lower than that of WKY rats, probably because at the same age SD 
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rats weigh more than WKY ones. Second, fat induced IR and IGT appear sooner in WKY rats than in SD 

rats. IR is manifested by elevated plasma insulin levels defined as the first of the five stages of 

diabetes proposed by Weir and Bonner-Weir for both rats and humans (Weir & Bonner-Weir, 2004). 

This compensation stage is characterized by increased overall rates of insulin secretion in response to 

the loss of insulin sensitivity in tissues. The second stage in the diabetes progression is characterized 

by a loss of β-pancreatic cell mass and disruption of pancreatic function and consequently the levels 

of fasting insulin drops, while fasting glucose levels are still moderately high (Weir & Bonner-Weir, 

2004). The second pre-diabetic state is compatible with the IGT recorded in WKY rats fed the HF diet, 

which already showed the classic plateau-like pre-diabetic curve (PAPER 3). In contrast, SD rats fed 

the HF diet showed only an incipient tendency to develop IGT evidenced by the postprandial levels of 

plasma glucose 60 min after glucose load in the OGTT while presenting significantly high fasting 

plasma insulin and HOMA-IR (PAPER 4). This elevated plasma insulin concentration while glucose 

tolerance is still unaltered characterizes the first step in the development of diabetes (Weir & 

Bonner-Weir, 2004). The differences between rat strains described here coincide with the results of 

other authors showing that i) even though SD rats  gain more weight than Wistar rats, the differences 

between the groups given standard and high-fat diets are lower in SD rats and ii) SD rats fed a high-

fat diet develop IGT later than Wistar rats do (Marques et al., 2016). Therefore, differences in weight 

gain and effects on glucose metabolism are harder to detect in SD rats than in WKY rats. This has to 

be taken into consideration when assessing the efficacies of the supplementation evaluated in the 

present thesis. 

WKY rats fed a high-fat diet supplemented with D-fagomine did not seem to reach the second pre-

diabetic stage, as their insulin levels remained high while presenting fasting glucose levels  similar to 

those in animals  fed the standard diet and  showing reduced IGT compared to high-fat fed rats 

(stage 1) (PAPER 3). In SD rats D-fagomine was effective at delaying stage 1 as plasma insulin and 

HOMA-IR remained statistically similar to the values in the control group (PAPER 4). Its combination 

with EPA/DHA 1:1 was, at least, as effective as the single supplementation. The postprandial glucose 

levels 60 min after glucose load in the OGTT in the HF + FG + ω-3 group presented values in similar to 

those in the STD group (PAPER 4). The evidence presented here (PAPERS 3 and 4), together with 

other previous observations in our group (Molinar-Toribio et al., 2015; Ramos-Romero et al., 2014) 

shows that rats supplemented with D-fagomine always seem to be one step behind in the 

development of diet-induced pre-diabetes.  
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We also explored possible mechanisms by which D-fagomine might exert this functional effect. Three 

mechanisms have been proposed to explain the pathogenesis of IR in different organs: ectopic lipid 

accumulation, endoplasmic reticulum stress and systemic inflammation (Samuel & Shulman, 2012). 

The first mechanism has been linked to the action of diacylglycerols (DAGs), which are intermediates 

of lipid metabolism with the capacity to interrupt the translocation of the glucose transporter GLUT4 

to the cell membrane (Samuel & Shulman, 2012) (See Figure 4 in the Introduction). IR in our WKY 

model does not seem to be triggered by DAG-mediated impairment of insulin signaling, as the levels 

of DAGs in adipose tissue, liver, and muscle were not higher in high-fat fed animals (PAPER 3). Also, 

liver histology supported the hypothesis that the lipid-mediated loss of insulin sensitivity was not a 

triggering factor of the pre-diabetic stage, as significant steatosis was not detected (PAPER 3). In 

contrast, high-fat fed WKY rats presented strong lymphocyte infiltration indicating inflammation 

around the blood vessels in the liver and they also presented elevated levels of pro-inflammatory 

interleukin-6 (IL-6) and PGE2. Thus, all these results suggest that IR in our WKY model is probably 

triggered by systemic low-grade inflammation.  

We then asked how D-fagomine may counteract fat-induced low-grade inflammation. There is 

mounting evidence that dysbiosis and intestinal barrier dysfunction may be the first steps leading to 

dietary fat-induced chronic systemic low-grade inflammation and IR (Duan et al., 2018). An excess of 

gram-negative bacteria such as E. coli and other Enterobacteriales is known to induce endotoxemia 

and low-grade inflammation in the host through disruption of the intestinal barrier properties and 

release of pro-inflammatory molecules, such as LPS, into the bloodstream (Cani et al., 2009). In 

contrast, Bifidobacterium species have been shown to protect the gut barrier function by preserving 

mucosal permeability and preventing translocation of pathogenic Enterobacteriales, such as E. coli 

(Caplan et al., 1999). As bacterial toxicity may be the main cause of fat-induced low-grade 

inflammation, we hypothesized that D-fagomine might exert its anti-inflammatory action by balancing 

the populations of these two related mucosa-associated orders and fostering gut colonization with 

Bifidobacterium species.  

Our results show that D-fagomine consistently increased the populations of excreted 

Bifidobacteriales rats under either standard or obesogenic diets (PAPERS 1, 2, 3 and 4). D-Fagomine 

reduced the excreted populations of potentially harmful Enterobacteriales in pre-diabetic high-fat 

fed rats (PAPERS 3 and 4). Bifidobacterium spp. have been shown to protect the gut barrier function 

by preserving mucosal permeability and preventing translocation of pathogenic Enterobacteriales, 
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such as E. coli (Caplan et al., 1999). As bacterial activation of the host’s immune system may be the 

main cause fat-induced low-grade inflammation, D-fagomine might be exerting an anti-inflammatory 

action by fostering gut colonization with Bifidobacterium species. D-Fagomine might be contributing 

to the activity of Bifidobacteriales against putatively harmful Enterobacteriales by reducing their 

capacity to colonize the intestine. This hypothesis is supported by a previous study, which shows that 

D-fagomine inhibits the adhesion of E. coli, but not of Bifidobacterium species to the intestinal 

mucosa (Gómez et al., 2012). Fimbriated strains such most members of Enterobacteriales express 

mannose-specific lectins in the tip of their fimbriae that bind to membrane carbohydrates. As 

D-fagomine is structurally similar to lectin-binding sugars such as mannose, it may be hampering 

bacterial adhesion by blocking lectins. 

In conclusion, D-fagomine delays the progression of pre-diabetes. This activity could be explained by 

its action balancing the populations of Bifidobacteriales and Enterobacteriales and consequently 

improving the gut barrier function, reducing the translocation of bacteria and endotoxins that are 

capable of inducing systemic inflammation and IR. 

5.4 Influence of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on inflammation markers 

As IR is probably triggered by systemic low-grade inflammation in our models, we explored the 

contribution of D-fagomine and the well-known anti-inflammatory compounds ω-3 PUFAs (EPA/DHA 

1:1) to reducing systemic inflammation. The inflammatory status is another variable that may be 

influenced by age and dietary habits. Inflammation is part of the normal host response to infection 

and injury. However, excessive or inappropriate inflammation contributes to a range of acute and 

chronic diseases and is characterized by the production of inflammatory cytokines, ARA-derived 

eicosanoids and other inflammatory agents such as ROS. Our results show that D-fagomine reduced 

the levels of some pro-inflammatory secondary metabolites from the oxidation of ARA (HETEs) in rats 

fed a standard diet (PAPER 2) as well as, the levels of other systemic inflammatory markers such as 

IL-6 and its related eicosanoid PGE2 in rats fed a high-fat diet (PAPER 3). These results, together with 

the fact that no differences were detected in the levels on anti-inflammatory EPA and DHA-derived 

eicosanoids and docosanoids (PAPER 3), is suggesting that D-fagomine exerted its functional effect 

early in the progression of low-grade inflammation by precluding the formation of pro-inflammatory 

signals rather than by activating anti-inflammatory pathways. This preventative anti-inflammatory 

effect of D-fagomine may be connected to its balancing effect of gut microbiota. The possible 

implication of D-fagomine in the physiological pathways connecting microbiota, low-grade 
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inflammation and IR should be further explored in future research. The role of EPA and DHA as anti-

inflammatory agents may be complementary to that of D-fagomine as they have been shown to be 

effective on already declared inflammatory processes. EPA and DHA compete with the pro-

inflammatory ARA for common oxygenases with the result of favouring the synthesis of anti-

inflammatory lipid mediators such as resolvins (Calder, 2013) (for a review on the actions of ω-6 and 

ω-3 PUFAs see (Innes & Calder, 2018)) (Figures 10 and 11 in the Introduction). In agreement with this 

we found lower levels of ARA-derived pro-inflammatory lipid mediators in rats fed a standard diet 

and supplemented with EPA/DHA 1:1 while D-fagomine did not show any effect on most of the lipid 

intermediates tested (PAPER 2).  

The complementary or additive effect of the two supplementations on low-grade inflammation was 

evidenced in the last manuscript of this thesis (PAPER 4). In contrast with the results on high-fat fed 

WKY rats, we observed that D-fagomine did not have any effect on the body weight of high-fat fed SD 

rats when administered alone while it showed a tendency to reduce body weight when combined 

D-fagomine and ω-3 PUFAs. One possible explanation for the lack of effect of D-fagomine on high-fat 

fed SD rats is that the animals not supplemented with ω-3 PUFAs (STD, HF and HF+FG groups) were 

administered an equivalent dose of soy bean oil to compensate for both the stress of probing and the 

excess of calories. Soy bean oil, which is rich in linoleic acid (LA) might have counteracted the 

putative microbiota-related anti-inflammatory effect of D-fagomine. LA is a ω-6 PUFA that may 

increase the levels of inflammatory prostaglandins and cytokines by entering the ARA metabolic 

pathway (for a review see (Naughton et al., 2016) (Figures 10 and 11 in the Introduction). This will 

not happen in the case of ω-3 PUFA supplementation as EPA and DHA are converted into less 

inflammatory and even anti-inflammatory metabolites. Therefore, the anti-inflammatory effect of 

D-fagomine would be reinforced by the ω-3 PUFAs (EPA/DHA 1:1) in the doubly supplemented group. 

These events would occur downstream the fat-induced microbial-triggered toxicity. 

 

The results of this thesis together with our previous reports point clearly towards a functional role for 

D-fagomine in the maintenance of the intestinal health by preserving gut microbial diversity and 

mitigating the age-related reduction of some beneficial bacteria as well as in the prevention of risk 

factors for diet-induced pre-diabetes reinforced by the action of ω-3 PUFAs by complementary 

mechanisms. 



 

 

 

 

 

 



 

 

6 CONCLUSIONS 
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In healthy animals: 

- D-Fagomine stabilized the population of Bacteroidetes, reduced the loss of Lactobacilliales 

and Bifidobacteriales, and Prevotella with time and reduced the levels of some excreted 

SCFAs in rats given a standard diet. ω-3 PUFAs did not present a clear effect on gut 

microbiota on rats under the same conditions. 

 

- D-Fagomine reduced weight gain when administered either alone or together with ω-3 

PUFAs (EPA/DHA 1:1) in SD rats given a standard diet. This effect was not detected in WKY 

rats. 

 

- The combination between D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) reduced the levels of 

plasma ARA-derived pro-inflammatory lipid mediators (HETEs) in rats given a standard diet. 

 

- D-Fagomine and ω-3 PUFAs (EPA/DHA 1:1) showed complementary effects in rats given a 

standard diet: reduction of weight gain, stabilization of putatively beneficial gut bacteria, 

and reduction of pro-inflammatory mediators. 

In animals with pre-diabetes: 

- D-Fagomine counteracted IGT and maintained the levels of plasma insulin in high-fat fed 

rats.  

 

- D-Fagomine counteracted fat-induced systemic low-grade inflammation in rats as monitored 

by liver histology (lymphocyte infiltration, lobular inflammation) and by measuring plasma 

ARA-derived mediators of inflammation, notably PGE2 and LTB4. 

 

- D-Fagomine showed a tendency to counteract the changes induced by a high-fat diet in the 

populations of gut Bifidobacteriales and Enterobacteriales in rats.  

 

- D-Fagomine showed a tendency to reduce weight gain either alone or together with ω-3 

PUFAs (EPA/DHA 1:1) in rats given a high-fat diet. 
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- The combination between D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) counteracted incipient 

IR, and liver lobular inflammation in rats given a high-fat diet.  

 

- The combination between D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) increased the cecal 

content, the Bacteroidetes/Firmicutes ratio as well as the populations of gut 

Bifidobacteriales and Lactobacilliales in rats given a high-fat diet. 

 

The general picture resulting from this thesis is that the functional effects of D-fagomine and ω-3 

PUFAs (EPA/DHA 1:1) on rats fed either standard or high-fat diets consist mainly on delaying low-

grade inflammation and its consequences, notably insulin resistance. D-Fagomine may exert its anti-

inflammatory activity at a very early stage by maintaining a well-balanced gut microbiota. EPA/DHA 

1:1 may contribute its competition with pro-inflammatory ARA for common enzymes in their 

metabolic pathways as well as an effect on some beneficial bacteria. 
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A B S T R A C T

ω-3 Polyunsaturated fatty acids (PUFAs) reduce risk factors for cardiovascular diseases (CVD) and other
pathologies that involve low-grade inflammation. They have recently been shown to exert complementary
functional effects with proanthocyanidins. As the reduction of health-promoting gut bacteria such as lactobacilli
and bifidobacteria has been linked to a number of alterations in the host, the aim of this study was to determine
whether PUFAs and proanthocyanidins also cooperate in maintaining well-balanced microbiota. To this end, rats
were supplemented for 6 months with eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) 1:1 (16.6 g/kg
feed); proanthocyanidin-rich grape seed extract (GSE, 0.8 g/kg feed); or both. Plasma adiponectin, cholesterol,
and urine nitrites were measured. Gut bacterial subgroups were evaluated in fecal DNA by qRT-PCR. Short-chain
fatty acids (SCFAs) were determined in feces by gas chromatography. Body and adipose tissue weights were
found to be higher in the animals given ω-3 PUFAs, while their energy intake was lower. Plasma cholesterol was
lower in ω-3 PUFA supplemented groups, while adiponectin and urine nitrites were higher. ω-3 PUFAs reduced
the population of Lactobacillales and L. acidophilus after 6 months of supplementation. GSE significantly reduced
L. plantarum and B. longum. The combination of ω-3 PUFAs and GSE maintained the health-promoting bacteria at
levels similar to those of the control group. Acetic acid was increased by the ω-3 PUFA individual
supplementation, while the combination with GSE kept this value similar to the control value. In conclusion,
while individual supplementations with ω-3 PUFAs or GSE modify the populations of Lactobacillus,
Bifidobacterium and microbial products (SCFAs), their combination maintains the standard proportions of
these bacterial subgroups and their function while also providing the cardiovascular benefits of ω-3 PUFAs.

1. Introduction

ω-3 Polyunsaturated fatty acids (ω-3 PUFAs) and polyphenols are
bioactive compounds present in common foodstuffs (Quideau, Deffieux,
Douat-Casassus, & Pouysegu, 2011; Tapiero, Ba, Couvreur, & Tew,
2002). Eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic
acid (DHA, 22:6, n-3) are the major ω-3 PUFAs of marine origin.
Different ω-3 PUFAs may have different effects, many of them related to
the prevention of cardiovascular diseases (CVD). We recently showed
that mixtures of EPA and DHA at different proportions have different

effects on CVD risk factors in rats: EPA/DHA 1:1 and 2:1 decrease
inflammation, while oxidative stress is more effectively reduced by a
1:2 mixture in obese hypertense rats (Molinar-Toribio et al., 2015). The
1:1 mixture was the most effective at reducing protein carbonylation
(Méndez et al., 2013) and CVD risk markers (Lluís et al., 2013) in rats
fed a standard diet. The molecular mechanism through which ω-3
PUFAs exert their preventive effects include shift of lipids from the ω-6
to the ω-3 metabolic pathway and the modulation of genes associated
with both lipid catabolism and anabolism (Poudyal, Panchal,
Diwan, & Brown, 2011). Consequently, ω-3 PUFAs help maintain the

http://dx.doi.org/10.1016/j.foodres.2017.04.024
Received 20 February 2017; Received in revised form 6 April 2017; Accepted 23 April 2017

⁎ Corresponding author at: Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain.

1 Present address: Department of Biochemistry, Faculty of Natural Sciences, Exact and Technology, University of Panama, Panama City, Panama

E-mail addresses: sara.ramos@iqac.csic.es (S. Ramos-Romero), merce.hereu@iqac.csic.es (M. Hereu), eice7@hotmail.com (E. Molinar-Toribio),
m.pilar.almajano@upc.edu (M.P. Almajano), luciamendez@iim.csic.es (L. Méndez), medina@iim.csic.es (I. Medina), nuria.taltavull@urv.cat (N. Taltavull),
marta.romeu@urv.cat (M. Romeu), mariarosa.nogues@urv.cat (M.R. Nogués), joseplluis.torres@iqac.csic.es (J.L. Torres).

Food Research International 97 (2017) 364–371

Available online 25 April 20170963-9969/ © 2017 Elsevier Ltd. All rights reserved.

MARK



normal levels of systemic biomarkers of CVD, such as plasma cholester-
ol and triglycerides, oxidative stress, and blood pressure (Poudyal et al.,
2011). Despite hypertension and other CVD risk factors having been
linked to gut dysbiosis (Yang et al., 2015) and the possibility that they
may be averted by probiotics (Miremadi, Sherkat, & Stojanouska,
2016), the effect of ω-3 PUFAs on gut microbiota has hardly been
studied. Studies of the effects of ω-3 PUFAs on microbiota have mainly
focused on the major bacterial phyla Bacteroidetes and Firmicutes. ω-3
PUFAs from flaxseed seem to decrease the proportion of Bacteroidetes
(Liu, Hougen, Vollmer, & Hiebert, 2012), and those from fish oil lower
the population of Firmicutes (Yu, Zhu, Pan, Shen, Shan, & Das, 2014). A
reduction in the Bacteroidetes/Firmicutes ratio has been linked to
weight gain and other metabolic conditions, such as insulin resistance,
in part by the synthesis of short-chain fatty acids (SCFAs) (Canfora,
Jocken, & Blaak, 2015): end products of the fermentation of indigestible
dietary components of the host diet.

Polyphenols are a family of phytochemicals and are widespread in
plant foods; they have a common structure including at least two
phenol groups (Bravo, 1998; Quideau et al., 2011). Dietary polyphenols
and their metabolites exert a beneficial effect through a combination of
mechanisms that may include the reduction of inflammation and
oxidative stress (Pan, Lai, & Ho, 2010; Salvadó, Casanova, Fernández-
Iglesias, Arola, & Bladé, 2015), as well as inhibition of intestinal
glycosidases and of glucose transporters that reduce postprandial
glycaemia (Williamson, 2013). Moreover, polyphenols can modulate
the intestinal microbial composition and modify the metabolic activity
of gut bacteria in humans (Duda-Chodak, 2012). Proanthocyanidins are
oligomeric and polymeric flavan-3-ols composed mainly of (epi)cate-
chin and its gallic acid esters. (−)-epicatechin and (+)-catechin from
tea and cocoa protect commensal anaerobes and probiotics such as
Bifidobacterium spp. and Lactobacillus spp., and they also inhibit
potential pathogenic bacteria in humans (Lee, Jenner, Low, & Lee,
2006). Similarly, flavan-3-ols from grape products reduce the growth
of Clostridium spp., while increasing the populations of other subgroups
such as Lactobacillus, in rats (Dolara et al., 2005). This effect on
Lactobacillus as well as on other groups such as Bifidobacterium has
also been reported in humans after daily intake of red wine for one
month (Queipo-Ortuño et al., 2012).

It has recently been shown that ω-3 PUFAs and proanthocyanidins
exert collaborative functional effects such as a reduction of plasma
insulin, leptin, and perigonadal fat accumulation in obese rats (Ramos-
Romero et al., 2016), and decrease C-reactive protein concentration in
rats with hypercholesterolemia (Sekhon-Loodu et al., 2014). As altera-
tions in these variables have been associated with a reduction in health-
promoting gut bacteria such as lactobacilli and bifidobacteria
(Arboleya, Watkins, Stanton, & Ross, 2016; Cani et al., 2007;
Guardamagna et al., 2014), we decided to study whether ω-3 PUFAs
and proanthocyanidins also cooperate in maintaining the levels of
putatively beneficial gut bacteria. Thus, the aim of this study is to
explore the possible complementary function of a combination of
dietary ω-3 PUFAs (EPA/DHA 1:1) and proanthocyanidins in a grape
seed extract (GSE) on the proportions of health-promoting bacteria in
rats.

2. Materials and methods

2.1. Animals

A total of twenty-eight female Wistar-Kyoto rats from Charles River
Laboratories (Wilmington, MA, USA), aged 8–10 weeks, were used.
Female rats were chosen for consistency with our previous studies of ω-
3 PUFAs (Lluís et al., 2013; Molinar-Toribio et al., 2015; Ramos-
Romero et al., 2016; Taltavull et al., 2014). All animal handling was
carried out in the morning to minimize the effects of circadian rhythms.
All the procedures strictly adhered to the European Union guidelines
(EU Directive 2010/63/EU) for the care and management of laboratory

animals, and were approved by the CSIC Subcommittee for Bioethical
Issues (reference no. CEEA-12-007).

2.2. Experimental design

The rats were housed two to three per cage under controlled
conditions of humidity (60%), and temperature (22 °C ± 2 °C) with a
12 h light-12 h dark cycle. The rats were randomly divided into 4
dietary groups (n = 7/group): STD, the control group; ω-3, a group
supplemented with EPA/DHA 1:1 (16.6 g/kg feed); GSE, a group
supplemented with 0.84 g GSE/kg feed; and ω-3 + GSE, a group
supplemented with both EPA/DHA 1:1 and GSE. The experimental
diets were pelletized in-house by lyophilization from frozen emulsions.
To prevent oxidation and contamination by fungi, the dry pellets were
vacuum-packed and stored at 4 °C until use. To ensure that all the diets
were isocaloric, appropriate amounts of soybean oil was added to the
feed preparations that were not supplemented with ω-3 PUFAs. To
guarantee a proper mixture of the different components and an
adequate consistency of the final pellet, soybean lecithin and porcine
gelatin were added. The feed compositions are shown in Table 1.
Following the reported conversion of animal doses into human equiva-
lent doses (Reagan-Shaw, Nihal, & Ahmad, 2008), the ω-3 PUFA
supplementation was equivalent to 0.15 mL ω-3 PUFAs/kg human
and day; and GSE supplementation was equivalent to 6.7–9.5 mg
GSE/kg human and day. The standard diet Global 2014 was from
Harlan Teklad Inc. (Indianapolis, IN, USA). Porcine gelatin type A 240/
60 was from Juncà (Girona, Spain). Soybean lecithin Topcithin 50™ was
from Cargill (Barcelona, Spain). EPA/DHA 1:1 was obtained by mixing
appropriate quantities of the commercial fish oils AFAMPES 121 EPA
(A.F.A.M.S.A., Vigo, Spain), EnerZona Omega 3 RX (Milan, Italy) and
Oligen liquid DHA 80% (IFIGEN-EQUIP 98, S.L., Barcelona, Spain). The
EPA/DHA 1:1 ratio was chosen on the basis of previous results (Méndez
et al., 2013; Molinar-Toribio et al., 2015). Soybean oil, obtained from
unrefined organic soya beans (first cold pressing), was from Clearspring
Ltd. (London, UK). The GSE Grajfnol® was from JF-Natural Products
(Tianjin, China). The GSE consisting of fine Grajfnol® powder contains
98% grape seed (poly)phenols with the following composition: total
proanthocyanidins (UV), ≥95%; oligomeric proanthocyanidins,
≥60%; procyanidin dimer B2 (HPLC), ≥1.8%; ash, −1.5%; weight
loss on drying, −5.0%. All the groups had free access to water and
feed.

2.3. Data and sample collection

Body weight and feed intake were measured after 0, 6, 12, 18 and

Table 1

Composition of experimental diets.

Ingredients (g) STD ω-3 GSE ω-3 + GSE

Floura 1000.0 1000.0 1000.0 1000.0
tert-butylhydroquinone 0.08 0.08 0.08 0.08
Porcine gelatin 25.0 25.0 25.0 25.0
Soybean lecithin 6.0 6.0 6.0 6.0
Soybean oil 17.4 – 17.4 –

ω-3 PUFAsb – 17.4 – 17.4
Grajfnol® – – 0.88 0.88
Protein (% by weight) 16.4 16.4 16.4 16.4
Carbohydrate (% by weight) 46.6 46.6 46.5 46.5
Fat (% by weight) 6.2 6.2 6.2 6.2
Energy from protein (%) 21.3 21.3 21.3 21.3
Energy from carbohydrate (%) 60.5 60.5 60.5 60.5
Energy from fat (%) 18.2 18.2 18.2 18.2
Total energy density (kcal/g)c 3.1 3.1 3.1 3.1

a Standard flour (Teklad Global 2014).
b The amount of EPA/DHA was 25 mg/kg body weight.
c Energy density is estimated as metabolizable energy based on the Atwater factors,

assigning 4 kcal/g to protein, 9 kcal/g to fat, and 4 kcal/g to available carbohydrate.
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24 weeks of the experiment. Feed intake per kg of body weight and day
was estimated by dividing the total intake per cage by the total weight
of the animals in that cage and the number of days. Energy intake was
calculated as estimates of metabolizable energy based on the Atwater
factors, assigning 4 kcal/g protein, 9 kcal/g fat, and 4 kcal/g available
carbohydrate.

For urine collection, during weeks 14–16 of the experiment, the rats
were randomized and placed in metabolic cages and deprived of food
for 18 h and all the urine produced during that period was collected.
Fecal samples were collected by abdominal massage at week 23 at the
same time in the morning.

At the end of the experiment, the rats were fasted overnight and
anesthetized intraperitoneally with ketamine and xylacine (80 and
10 mg/kg body weight, respectively). Blood was collected by cardiac
puncture and stored at −80 °C until analysis. Perigonadal adipose
tissue samples were washed with 0.9% NaCl solution, dried and
weighed.

2.4. CVD-related markers in plasma and urine

Systolic and diastolic blood pressures were measured after week 24
of the experiment. The rats were restrained in a rat pocket and
maintained at 32 °C. Systolic and diastolic blood pressure were
measured by the tail-cuff method, using a non-invasive automatic
blood pressure analyzer (Panlab; Barcelona, Spain) as described
(Bunag, 1973). To obtain stable responses and to reduce variability
associated with circadian rhythms, the operations were performed in a
quiet place and always at the same time in the morning. Data are
presented as the mean of four measurements.

Plasma total cholesterol, HDL-cholesterol (HDLc), LDL-cholesterol
(LDLc), and triglycerides were measured using a spectrophotometric
method and the corresponding kits from Spinreact (Girona, Spain) as
described by Bucolo et al (Bucolo & David, 1973; Méndez et al., 2013).
Plasma adiponectin was measured using the ELISA kit from Millipore
(Billerica, MA, USA).

The stable end product of NO, NO2
−, was quantified in urine by a

modification of the Griess reaction. Briefly, the urine was lyophilized
from frozen samples and concentrated 5-fold. The concentrates (50 μL)
were mixed with sulfanilamide 1% in 1.2 N HCl (60 μL) and 0.3%
aqueous N-(1-naphthyl)ethylene-diamine dihydrochloride 0.3% (60 μL)
for 10 min at room temperature. Absorbance was measured spectro-
photometrically at 550 nm. The concentration of NO2

− was calculated
using a calibration curve made using NaNO2.

2.5. Fecal microbial subgroups

The levels of total bacteria, the Bacteroidetes and Firmicutes phyla,
the Lactobacillales and Bifidobacteriales orders, and the Lactobacillus

plantarum, Lactobacillus acidophilus and Bifidobacterium longum species
were determined in fecal DNA by quantitative real-time polymerase
chain reaction (qRT-PCR).

Total DNA was extracted from feces using the QIAamp® DNA Stool
Mini Kit from QIAGEN (Hilden, Germany). The DNA concentration was
quantified using a Nanodrop 8000 Spectrophotometer
(ThermoScientific, Waltham, MA, USA). All DNA samples were diluted
to 20 ng/μL.

qRT-PCR cycling conditions were as follows: 5 s at 95 °C; then
45 cycles of: 5 s at 95 °C, 30 s at the primer-specific annealing
temperature (Table 2), and 30 s at 72 °C (extension).

Following amplification, to determine the specificity of the qRT-PCR
reactions, melting curve analysis was carried out by treatment for 2 s at
95 °C and for 15 s at 65 °C, followed by a temperature gradient up to
95 °C at a rate of 0.11 °C/s, with five fluorescence recordings per °C.
The relative DNA abundances for the different genes were calculated
from the second derivative maximum of their respective amplification
curves (Cp, calculated in triplicate), considering Cp values to be

proportional to the dual logarithm of the inverse of the specific DNA
concentration, following the equation: [DNAa]/[DNAb] = 2Cpb-Cpa

(Pfaffl, 2001). Total bacteria were normalized as 16S rDNA gene copies
per mg of wet feces (copies/mg).

2.6. Short-chain fatty acids in feces

SCFAs (acetic acid, propionic acid, butyric acid and pentanoic acid)
were analyzed by gas chromatography in feces after week 23 using the
method proposed by Schwiertz (Schwiertz et al., 2010) with some
modifications. Briefly, fecal samples were freeze-dried and weighed
(~50 mg dry matter with 10−4 g precision). A solution of oxalic acid
(0.1 M) and the internal standard, caproic acid (0.1 mM), in acetoni-
trile/water 3:7, was added to each sample (0.025 mL/mg dry feces).
Then, SCFAs were extracted using a horizontal shaker (30 min, 4 °C)
and the suspension was centrifuged (15 min, 16,000 g, 4 °C). The
supernatant was passed through a nylon filter (0.45 μm) into a GC vial.
SCFAs were analyzed using a Shimazdu (Kyoto, Japan) gas chromato-
graph (GC2025) with an automatic injector (AOC20i) at 240 °C, with a
flame ionization detector (Shimazdu 2025) at 240 °C, equipped with an
HP-Innowax capillary column (Agilent, Santa Clara, CA, USA)
(30 m × 0.25 mm i.d. × 0.25 μm f.d.). The injection volume was
1 μL, the carrier gas was helium at a flow of 1 mL/min and the mode
of injection was splitless. The oven temperature program was 50 °C
(3 min) then slope 8 °C/min to 180 °C (0 min) and slope 50 °C/min to
200 °C (5 min). Other conditions were: gas helium flow, 30 mL/min;
hydrogen flow, 40 mL/min; and airflow 400 mL/min.

2.7. Statistical analysis

The results are expressed as mean values with their standard errors
(SEM). After verifying the variance equality and the normal distribu-
tion, statistical significance was determined by ANOVA for repeated
measures of body weight or one-way ANOVA with each group as
variable, and Tukey's multiple comparison test was used for mean
comparisons. Differences were considered significant when P < 0.05.
All data manipulation and statistical analysis was performed using
Graph Pad Prism 5 (Graph Pad Software, Inc., San Diego, CA, USA).

3. Results

3.1. Feed/energy intakes, body weight and perigonadal adipose tissue

The rats fed the ω-3 PUFAs enriched diets (ω-3 and ω-3 + GSE
groups) had consumed significantly (P < 0.05) less feed and energy
than the STD group after 24 weeks (Supplementary material Table S1).

Body weight was similar for all groups at the beginning of the
experiment (144.0 g, SEM 2.6). After 24 weeks of the diets, the animals
supplemented with ω-3 PUFAs had significantly higher (P < 0.05)
body weights (ω-3 275.7 g, SEM 9.0 g; ω-3 + GSE 275.6 g, SEM 8.1)
than the other groups (STD 254.4 g, SEM 5.4; and GSE 262.1 g, SEM
4.5) (Fig. 1a). Similarly, perigonadal fat was significantly higher in
animals supplemented with ω-3 PUFAs (P < 0.01) than in non-
supplemented and GSE-supplemented rats (Fig. 1b).

3.2. Risk factors of CVD

Blood pressure and plasma total cholesterol, HDLc, LDLc, triglycer-
ides and adiponectin were measured after 24 weeks of supplementation
(Table 3). Systolic and diastolic blood pressures were similar between
the groups at the end of the study. Plasma cholesterol was significantly
(P < 0.01) lower in animals supplemented with ω-3 PUFAs (ω-3 and
ω-3 + GSE groups) than in the other two groups (STD and GSE). All the
groups presented similar concentrations of plasma HDLc and triglycer-
ides. Plasma LDLc levels presented some differences (Table 3), but they
were all below 1.28 mmol/L, which may be considered a reference
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value (Ihedioha, Noel-Uneke, & Ihedioha, 2013). Plasma adiponectin
was higher in the groups supplemented with ω-3 PUFAs than in the STD
group; while this difference was significant only for animals supple-
mented with both ω-3 PUFAs and GSE.

Urine nitrites were similar between the groups and slightly higher
(P = 0.123) in animals fed ω-3 PUFAs compared to those in the STD
group (Table 3).

3.3. Proportions of fecal bacterial populations

The proportions of the major bacterial phyla (Fig. 2), and selected
probiotics (Fig. 3) were determined in fecal DNA. The percentages of
Bacteroidetes and Firmicutes were similar in the groups supplemented
with ω-3 PUFAs and/or GSE (Fig. 2a, b).

The population of Lactobacillales was significantly (P < 0.01)
lower in the ω-3 group than in the STD group; while supplementation
with proanthocyanidins (GSE and ω-3 + GSE groups) did not modify
the proportion of lactobacilli (Fig. 3a). The percentage of Bifidobacter-
iales was similar in all the groups (Fig. 3d). The proportion of L.

acidophilus was lower (P < 0.001 vs STD) in animals supplemented
with ω-3 PUFAs, independently of the presence of proanthocyanidins
(Fig. 3b). The proportions of L. plantarum (Fig. 3c) and B. longum

(Fig. 3e) were lower (P < 0.05 vs STD) in animals supplemented with
GSE; while the combination of GSE with ω-3 PUFAs did not affect the
levels of these populations.

Table 2

qRT-PCR primers and conditions.

Target bacteria Annealing temp. (°C) Sequence (5′-3′) Positive control Ref.

Total bacteria 65 F: ACT CCT ACG GGA GGC AGC AGT a (Hartman et al., 2009)
R: ATT ACC GCG GCT GCT GGC

Bacteroidetes 62 F: ACG CTA GCT ACA GGC TTA A Bacteroides fragilis (Ismail et al., 2011)
R: ACG CTA CTT GGC TGG TTC A

Firmicutes 52 F: CTG ATG GAG CAA CGC CGC GT Lactobacillus brevis (Haakensen, Dobson, Deneer, & Ziola, 2008)
R: ACA CYT AGY ACT CAT CGT TT (Muhling, Woolven-Allen, Murrell, & Joint, 2008)

Lactobacillales 60 F: AGC AGT AGG GAA TCT TCC A Lactobacillus acidophilus (Walter et al., 2001)
R: CAC CGC TAC ACA TGG AG

L. acidophillus 64 F: AGC TGA ACC AAC AGA TTC AC Lactobacillus acidophillus (Walter et al., 2001)
R: ACT ACC AGG GTA TCT AAT CC

L. plantarum 55 F: GCC GCC TAA GGT GGG ACA GAT Lactobacillus plantarum (Walter et al., 2001)
R: TTA CCT AAC GGT AAA TGC GA

Bifidobacteriales 55 F: CTC CTG GAA ACG GGT GG Bifidobacterium longum (Queipo-Ortuno et al., 2013)
R: GGT GTT CTT CCC GAT ATC TAC A

B. longum 50 F: GTT CCC GAC GGT CGT AGA G Bifidobacterium longum (R. F. Wang, Cao, & Cerniglia, 1996)
R: GTG AGT TCC CGG CAT AAT CC

a Positive control of Total Bacteria was the same as those the result was rated with.

Fig. 1. Body weight (a) and perigonadal fat (b) of rats fed the different diets for 24 weeks: STD, ○; ω-3, ▲; GSE, ▼; ω-3 + GSE, ♦. The curves corresponding to the ω-3 and ω-3 + GSE
groups are superimposed. The data represent means with their standard errors. Comparisons were performed using two-way ANOVA for repeated measures (a) or one-way ANOVA
followed by Tukey's post-hoc test (b). Means with different letters differ, P < 0.05.

Table 3

CDV risk factors in rats supplemented with ω-3 PUFAs and/or GSE for 24 weeks.

STD ω-3 GSE ω-3 + GSE

Mean SEM Mean SEM Mean SEM Mean SEM

Systolic pressure
(mmHg)

123.5 4.0 123.2 2.4 114.8 3.6 117.2 3.1

Diastolic pressure
(mmHg)

84.0 4.0 96.2 7.0 94.6 7.4 91.3 2.1

Plasma cholesterol
(mmol/L)

4.7a 0.2 3.8bc 0.1 4.4ab 0.1 3.5c 0.2

Plasma HDLc
(mmol/L)

1.5 0.1 1.6 0.1 1.5 0.1 1.5 0.1

Plasma LDLc (mmol/
L)

0.4a 0.1 0.4a 0.0 0.7b 0.0 0.6c 0.0

Plasma triglycerides
(mmol/L)

1.7 0.1 1.7 0.1 1.9 0.1 1.6 0.1

Plasma adiponectin
(μg/mL)

21.7a 2.9 30.0ab 2.1 22.0a 2.8 32.1bc 1.5

Urine nitrites (ng/
mL)

1.3 0.3 2.5 0.9 1.5 0.1 2.1 0.2

Means with different letters differ, P < 0.05. Comparisons were performed using one-
way ANOVA and Tukey's post-hoc tests.
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Fig. 2. Bacteroidetes (a) and Firmicutes (b) in fecal samples from rats fed the different
diets (STD, ω-3, GSE, or ω-3 + GSE) for 23 weeks. The data represent means with their
standard errors. Comparisons were performed using one-way ANOVA followed by Tukey's
post-hoc test.

Fig. 3. Lactobacillales (a), Lactobacillus acidophilus (b), Lactobacillus plantarum (c), Bifidobacteriales (d), and Bifidobacterium longum (e) in fecal samples from rats fed the different diets
(STD, ω-3, GSE or ω-3 + GSE) for 23 weeks. The data represent means with their standard errors. Comparisons were performed using one-way ANOVA followed by Tukey's post-hoc test.
Means with different letters differ, P < 0.05.

Table 4

Short-chain fatty acids determined in feces from rats supplemented with ω-3 PUFAs and/
or GSE for 23 weeks.

STD ω-3 GSE ω-3 + GSE

Mean SEM Mean SEM Mean SEM Mean SEM

Acetic acid 5.54a 1.26 9.10b 1.36 6.03a 1.62 4.48a 1.89
Propionic acid 1.18 0.43 1.47 0.54 1.11 0.51 1.24 0.63
Butyric acid 0.26 0.07 0.31 0.11 0.30 0.14 0.24 0.14
Valeric acid 0.15ab 0.07 0.21a 0.08 0.09b 0.05 0.10b 0.02

SCFA content is expressed as mmol of caproic acid equivalents/g dry feces. Means with
different letters differ, P < 0.05. Comparisons were performed using one-way ANOVA
and Tukey's post-hoc tests.
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3.4. Short-chain fatty acids

SCFAs were determined in feces from rats supplemented for
23 weeks (Table 4). The animals supplemented only with ω-3 PUFAs
showed increased SCFA content with respect to the other groups; with
the concentration of acetic acid being significantly higher (P < 0.05).
The valeric acid concentration was significantly (P < 0.05) lower in
the groups supplemented with GSE.

4. Discussion

The present study focuses on the effect of the combination of ω-3
PUFAs (EPA/DHA 1:1) and proanthocyanidins (mostly oligomers con-
sisting of 2 to 4 (−)-epicatechin units in GSE) on gut health-promoting
commensal bacteria, and the possible influence of their combination on
the functional effects of ω-3 PUFAs on CVD risk factors. The 1:1
proportion of ω-3 PUFAs was chosen on the basis of previous results
with healthy and rats affected by CVD (Lluís et al., 2013; Méndez et al.,
2013; Molinar-Toribio et al., 2015). In the present study, we show that
GSE may enhance the effects of ω-3 PUFAs on CVD risk factors. The
reduction in plasma cholesterol by ω-3 PUFAs agrees with previous
studies where fish oil supplementation decreased total plasmatic fatty
acids in healthy rats (Méndez et al., 2013). Plasma cholesterol is
inversely related to adiponectin levels, as reverse cholesterol transport
is accelerated by adiponectin through increasing high-density lipopro-
tein assembly in the liver (Matsuura et al., 2007). Here, we show that
plasma adiponectin increased in animals fed ω-3 PUFAs, and increased
even further when GSE was added to the supplementation (Table 3).
Plasma adiponectin levels are related to the endothelial vasodilation
response (Ouchi et al., 2003), probably because adiponectin stimulates
the production of NO (Z. V. Wang & Scherer, 2008), which partially
agrees with our results from urine nitrites (ω-3 groups show nonsigni-
ficant higher values than the STD group).

Besides CVD risk factors, the first observable effects of ω-3 PUFAs
were changes in feed intake and body weight, independently of GSE
supplementation. Our results for feed intake corroborate the satiety
effect induced by ω-3 PUFAs, previously reported by other authors
(Parra et al., 2008). Despite the fact that ω-3 PUFAs reduced feed
intake, they increased body weight gain in our animals (Fig. 1), an
effect also detected in normoweight women who consume ω-3 PUFAs
(Iso et al., 2001). The body weight increase induced by ω-3 PUFA
intake in normoweight individuals could be related to a post-prandial
increase of the chylomicron response (Griffo et al., 2014) and to a faster
gastric emptying of fat, associated with modified patterns of cholecys-
tokinin and GLP-1 release (Robertson et al., 2002). Moreover, ω-3
PUFAs may promote fat accumulation through the stimulation of
adipocyte growth and differentiation via expression of peroxisome
proliferator-activated receptor γ (PPARγ) (Chambrier et al., 2002).
The weight gain observed in lean animals supplemented with ω-3
PUFAs is in apparent contradiction with the observations of other
authors who report the anti-obesogenic effect of ω-3 PUFAs in obese
individuals (Buckley &Howe, 2010; Lorente-Cebrián et al., 2013). This
anti-obesogenic effect of ω-3 PUFAs seems to be related to a reduction
in obesity-associated low-grade inflammation (Calder, 2013; Flock,
Rogers, Prabhu, & Kris-Etherton, 2013). This state has been linked to
metabolic endotoxemia, commonly derived from gut dysbiosis, in turn
typically induced by an energy-dense diet (Kaliannan, Wang, Li,
Kim, & Kang, 2015). The anti-obesogenic effect of ω-3 PUFAs may only
be evident within a pro-inflammatory environment and not in normo-
weight individuals with well-balanced microbiota. Fat gain induced by
ω-3 PUFAs in lean rats may be viewed as a beneficial contribution to
the physiological role of adipose tissue as a fuel reservoir that keeps fat
from being deposited in organs.

A reduction in the populations of probiotic bacteria is a risk factor
for the development of many intestinal conditions, including diarrhea,
obesity, irritable bowel syndrome, inflammatory bowel disease, and

even tumors (Gareau, Sherman, &Walker, 2010; Guarner &Malagelada,
2003). Our results show that ω-3 PUFAs and proanthocyanidins
induced changes in the proportions of several subgroups and species
of probiotics (Fig. 3). The reduction of Lactobacillales induced by ω-3
PUFAs is in agreement with the fact that polyunsaturated fatty acids
reduce the adherence of most probiotic lactobacilli (Kankaanpaa, Yang,
Kallio, Isolauri, & Salminen, 2004). Specifically, the incorporation of a
given PUFA into bacterial fatty acids is clearly observed when
lactobacilli are cultured in broth supplemented with that particular
fatty acid, and these changes seem to influence microbial adhesion to
intestinal surfaces (Kankaanpaa et al., 2004). Proanthocyanidins in GSE
counteracted this reduction in Lactobacillales, possibly by promoting
the growth of lactobacilli as observed in rats given tea and wine
phenolics (Dolara et al., 2005; Lee et al., 2006). The effects of
polyphenols on the adhesion and viability of probiotics are complex,
and depend on the chemical structure of the phenolic compound and on
the membrane composition (proteins, enzymes and lipids) of any
particular species (Bustos et al., 2012; Parkar, Stevenson, & Skinner,
2008; Parkar, Trower, & Stevenson, 2013). These pleiotropic effects can
modify cell permeability and finally result in the loss of protons, other
ions, and macromolecules (Bustos et al., 2012). Specifically, epicate-
chin and other proanthocyanidin monomers inhibit the growth of
Lactobacillus rhamnosus (Parkar et al., 2008) and the adhesion of both
Lactobacillus plantarum and Lactobacillus acidophillus to enterocytes
(Bustos et al., 2012) in vitro. This inhibitory effect on some Lactoba-
cillus species is in agreement with our results, which show a reduction
in the populations of Lactobacillus plantarum and Bifidobacterium longum

as result of GSE supplementation. Combined supplementation with ω-3
PUFAs and GSE also counteracted the effect of ω-3 PUFAs on the
excreted concentration of acetic acid, an SCFA product of bacterial
metabolism. Acetic acid contributes to lipogensis via acetyl-CoA and
regulates levels of plasma cholesterol (Fushimi et al., 2006), in
agreement with the present results on body weight gain (Fig. 1) and
cholesterolemia (Table 3). Higher concentrations of SCFAs in feces have
been observed in overweight and obese rats and humans (Byrne,
Chambers, Morrison, & Frost, 2015; Canfora et al., 2015; Schwiertz
et al., 2010).

5. Conclusions

In conclusion, supplementation of rats with ω-3 PUFAs increases
their weight gain and perigonadal fat, reduces the populations of
several probiotics and increases the levels of acetic acid, a product of
bacterial metabolism. Combined supplementation of ω-3 PUFAs and
proanthocyanidins from grape seed counteracts the effects of the ω-3
PUFAs on health-promoting lactobacillus and bifidobacterium, and on
acetic acid, while maintaining their beneficial effects on cholesterole-
mia.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.foodres.2017.04.024.
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SUPPLEMENTARY MATERIAL (SM) INCLUDED IN THE DIGITAL VERSION OF THE PAPER A1 

Table SM1. Feed and energy intakes, and CDV risk factors in rats supplemented with ω-3 PUFAs 

and/or GSE for 24 weeks.  

 STD ω-3 GSE ω-3 + GSE 

 Mean SEM Mean SEM Mean SEM Mean SEM 

Feed intake  

(g/kg bw/day) 
59.4

a
 2.6 41.4

b
 4.5 56.4

a
 4.2 40.0

b
 3.6 

Energy intake
1
  

(kcal/kg bw/day) 
184.0

a
 8.1 128.4

b
 14.1 174.8

a
 13.0 123.9

b
 11.1 

1
 Energy intake is estimated as metabolizable energy based on Atwater factors, which assign 4 kcal/g 

to protein, 9 kcal/g to fat, and 4 kcal/g to available carbohydrates.  

Means with different letters differ, P<0.05. Comparisons were performed using one-way ANOVA and 

Tukey’s post-hoc test.   
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Ramos-Romero S, Hereu M, Atienza L, Casas J, Jáuregui O,
Amézqueta S, Dasilva G, Medina I, Nogués MR, Romeu M,
Torres JL. Mechanistically different effects of fat and sugar on
insulin resistance, hypertension, and gut microbiota in rats. Am J
Physiol Endocrinol Metab 314: E552–E563, 2018. First published
January 2, 2018; doi:10.1152/ajpendo.00323.2017.—Insulin resis-
tance (IR) and impaired glucose tolerance (IGT) are the first mani-
festations of diet-induced metabolic alterations leading to Type 2
diabetes, while hypertension is the deadliest risk factor of cardiovas-
cular disease. The roles of dietary fat and fructose in the development
of IR, IGT, and hypertension are controversial. We tested the long-
term effects of an excess of fat or sucrose (fructose/glucose) on
healthy male Wistar-Kyoto (WKY) rats. Fat affects IR and IGT earlier
than fructose through low-grade systemic inflammation evidenced by
liver inflammatory infiltration, increased levels of plasma IL-6, PGE2,
and reduced levels of protective short-chain fatty acids without trig-
gering hypertension. Increased populations of gut Enterobacteriales
and Escherichia coli may contribute to systemic inflammation through
the generation of lipopolysaccharides. Unlike fat, fructose induces
increased levels of diacylglycerols (lipid mediators of IR) in the liver,
urine F2-isoprostanes (markers of systemic oxidative stress), and uric
acid, and triggers hypertension. Elevated populations of Enterobacte-
riales and E. coli were only detected in rats given an excess of fructose
at the end of the study. Dietary fat and fructose trigger IR and IGT in
clearly differentiated ways in WKY rats: early low-grade inflamma-
tion and late direct lipid toxicity, respectively; gut microbiota plays a
role mainly in fat-induced IR, and hypertension is independent of
inflammation-mediated IR. The results provide evidence that suggests
that the combination of fat and sugar is potentially more harmful than
fat or sugar alone when taken in excess.

diabetes; hypertension; microbiota; obesity

INTRODUCTION

Obesity and Type 2 diabetes together with hypertension
and hypercholesterolemia are the main risk factors of car-

diovascular disease (CVD), the leading cause of death
worldwide. An unhealthy lifestyle, the combination of a
poor diet with physical inactivity, is the single greatest
contributor to the appearance of all these warning signs
(36). Obesity, insulin resistance (IR, first revealed by high
fasting insulinemia), and impaired glucose tolerance (IGT)
appear to be the first manifestations of the so-called meta-
bolic syndrome (12), and hypertension is probably the
deadliest CVD triggering factor (16).

The relationships between fat accumulation, IR, and hyper-
tension are still unclear in both humans and animal models.
Whereas most diet-induced rodent models of obesity and/or
hypertension include insulin resistance, they show significant
differences. Rats fed a high-fat diet become overweight, but
rarely do they develop hypertension unless their diet is sup-
plemented with salt (1, 39). Those fed a high-fructose or
high-sucrose (50% fructose) diet may become hypertensive
while remaining normal weight (10, 40, 49). There is a wide
consensus that ectopic lipid accumulation in key organs, such
as liver and muscle, leads to IR, but how particular lipids
contribute to systemic IR and the relevance of their location are
active areas of research (44). Visceral adipose tissue (AT) has
been associated with low-grade inflammation and the meta-
bolic complications of obesity, mainly because it releases free
fatty acids and proinflammatory adipokines into the portal vein
for direct transport to the liver (9, 14). Meanwhile, particular
lipids, such as diacylglycerols (DAGs) and ceramides, may
impair insulin signaling in the liver and muscle independently
of inflammation by altering the phosphorylation pattern of the
insulin receptor substrate: a key protein in the intracellular
insulin signaling pathway (13, 44). DAGs may be formed from
triacylglycerides (TAGs) by lipolysis or via de novo synthesis
of TAGs from free fatty acids (13).

The relationship between IR and hypertension is also a
controversial issue. Whereas it has been proposed that IR is the
main upstream event leading to hypertension (49), other evi-
dence suggests that different factors may increase blood pres-
sure more decisively than IR (27).
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As it is becoming evident that diet-induced changes in
populations of gut microbiota play a role in the development of
obesity and related disorders (42), the study of the crosstalk
between the host organism and its associated microbiota is
emerging as an active area of research. Specifically, gut mi-
crobiota has been shown to trigger IR through the action of
proinflammatory products of bacterial metabolism (3).

To substantiate preventive dietary strategies against meta-
bolic alterations, it is important to characterize early predisease
events and to define molecular and physiological markers that
are suitable for evaluating nutritional or behavioral interven-
tions. As the molecular mechanisms linking lipid accumula-
tion, IR, and hypertension are still largely unknown, we com-
pared two animal models of diet-induced metabolic changes:
Wistar-Kyoto (WKY) rats fed a high-fat (HF) or high-sucrose
(HS) diet. Both models develop incipient IR and/or IGT, while
only the HS-fed rats become hypertensive. This article focuses
on the differential mechanisms associated with dietary fat and
sugar (fructose) as triggering factors of IR, IGT, and hyper-
tension, and it examines the possible role played by gut
microbiota in these effects.

MATERIALS AND METHODS

Animals. A total of 27 male WKY rats (Envigo, Indianapolis, IN),
aged 8–9 wk, was used. All animal manipulation was carried out in
the morning to minimize the effects of circadian rhythms. All the
procedures strictly adhered to the European Union guidelines for the
care and management of laboratory animals (directive 2010/63/UE)
under license from the regional Catalan authorities (reference no.
DAAM7921) and were approved by the Spanish Consejo Superior de
Investigaciones Científicas Subcommittee of Bioethical Issues.

Experimental design and sample collection. The rats were housed
(n � 3 per cage) under controlled conditions of humidity (60%) and
temperature (22 � 2°C), with a 12:12-h light-dark cycle. They were
randomly divided into three dietary groups (n � 9 per group): the
standard (STD) group, fed a standard diet (2014 Teklad global 14%
protein diet from Envigo) and mineral water (Ribes, Girona, Spain);
the HF group, fed an HF diet (TD 08811 45% kcal fat diet, from
Envigo) and mineral water; and the HS group, fed the standard diet
and 35% (wt/vol) sucrose solution in mineral water as the only source
of liquid intake. The diets were chosen with the aim of mimicking real
nutritional conditions in humans who consume a moderate excess of
fat or sugar (glucose � fructose). All of the animals were fed ad
libitum with free access to water or sucrose solution.

Fecal samples were collected by abdominal massage at the start of
the experiment (time 0) and after weeks 1, 3, 9, 12, 20, and 24. The
energy content of the feces from week 20 was determined by differ-
ential scanning calorimetry using a TGA/SDTA851e thermobalance
(Mettler Toledo, Columbus, OH) with an integrated SDTA signal.
After weeks 10 and 16, blood samples were collected from the
saphenous vein after overnight fasting. After week 23, the rats were
placed in metabolic cages for urine collection. After week 24, they
were fasted overnight and anesthetized intraperitoneally with ket-
amine (Merial Laboratorios, Barcelona, Spain) and xylazine (Química
Farmacéutica, Barcelona, Spain) at doses of 80 and 10 mg/kg body wt,
respectively. Blood was collected by cardiac puncture, and plasma
was immediately obtained by centrifugation. Perigonadal fat, quadri-
ceps muscle, and liver samples were collected, washed with 0.9%
NaCl solution, weighed, and immediately frozen in liquid N2. All the
samples were stored at �80°C until analysis.

Biometric measurements. Feed and drink intake, as well as body
weight, were measured weekly. Feed and drink intake per day as a
function of body weight were estimated by dividing the total intake
per cage by the weight of the animals in that cage and the number of

days, and then they were averaged over the total number of cages in
a group. Fat and fructose intake was calculated from the experimental
measurements, and the composition of the feed and drink: fat, 0.04 g/g
standard feed (groups STD and HS) and 0.23 g/g HF feed (HF group);
and fructose, 0.175 g/ml water (HS group) and 0.17 g/g HF feed (HF
group). Energy intake was calculated as estimates of metabolizable
energy based on the Atwater factors, assigning 4 kcal/g protein, 9
kcal/g fat, and 4 kcal/g available carbohydrate.

Systolic and diastolic blood pressure was measured at 0 min and
after weeks 4, 9, 15, and 22 by the tail-cuff method, using a nonin-
vasive automatic blood pressure analyzer (Harvard Apparatus, Holli-
ston, MA).

Measurement of uric acid. Total urine uric acid was determined by
a spectrophotometric method using a uricase/peroxidase kit from
BioSystems (Barcelona, Spain) by measuring the absorbance at 520
nm on a SpectraMax M5 spectrophotometer (Molecular Devices,
Sunnyvale, CA). Creatinine levels in urine were determined by a
colorimetric method using a commercial kit (C-cromatest Linear
Chemicals, Montgat, Spain) by measuring absorbance at 510 nm.

Glycemic status. Fasting blood glucose and plasma insulin levels
were measured after weeks 10 and 16 on fasted animals. Blood
glucose concentration was measured by the enzyme electrode method,
using an Ascensia ELITE XL blood glucose meter (Bayer Consumer
Care, Basel, Switzerland); plasma insulin levels were measured using
Milliplex xMAP multiplex technology on a Luminex xMAP instru-
ment (Millipore, Austin, TX). The standard curve was generated for
the range 69–50,000 pg/ml, using a five-parameter logistic curve fit.
Homeostasis model assessment for insulin resistance (HOMA-IR)
was calculated according to the formula HOMA-IR � fasting blood
glucose in mmol/l � fasting plasma insulin in �U/ml � 405 (31).
Insulin units (IU) were calculated using the conversion 1 IU � 0.0347
mg insulin. Oral glucose tolerance tests (OGTT) were performed after
weeks 13 and 21 on fasted animals. A solution of glucose (1 g/kg body
wt) was administered by oral gavage before the tests, and blood
glucose concentration was measured 15, 30, 45, 60, 90 and 120 min
after glucose intake.

Histology of the liver. Fixed livers were dehydrated in alcohol and
embedded in paraffin, then cut into 3-�m-thick slices, using an HM
355S Rotary Microtome (Thermo Fisher Scientific, Waltham, MA).
Sections were stained with hematoxylin (hematoxylin solution mod-
ified according to Gill III for microscopy; Merck, Darmstadt, Ger-
many) mixed with eosin (Pharmacy Service of Puerta del Mar Hos-
pital, Cádiz, Spain). The tissue sections were viewed under a Nikon
Eclipse 80i light microscope (Nikon, Minato, Japan). Four variables
were graded (0-3) following the method described by Taltavull et al.
(48): steatosis, steatosis localization, lobular inflammation with lym-
phoplasmacytic inflammatory infiltration, lobular inflammation with
lymphoplasmacytic inflammatory infiltration, and the presence of
microgranulomas.

Measurement of diacylglycerols. Frozen samples of liver, muscle,
and AT were weighed and sonicated (SFX150 Sonifier; Emerson
Industrial Automation, St. Louis, MO) until total homogenization.
Diacylglycerol (DAG) extracts were prepared in the presence of BHT
(butylated hydroxytoluene, 0.01%) and analyzed using a reported
method (46) with some modifications. The mixtures were fortified
with an internal standard (1,3–17:0 D5 DG, 200 pmol; Avanti Polar
Lipids, Alabaster, AL) and incubated overnight at 48°C. After solvent
evaporation, the samples were suspended in methanol, centrifuged
(9,390 g, 3 min), and the supernatants loaded into an Acquity UPLC
system connected to an LCT Premier orthogonal accelerated time-of-
flight mass spectrometer (Waters, Milford, MA), operated in positive
ESI mode. Full-scan spectra from 50 to 1,500 Da were acquired, and
individual spectra were summed to produce data points of 0.2 s each.
Mass accuracy and precision were maintained by using an indepen-
dent reference spray (leucine enkephalin) via the LockSpray interfer-
ence. A C8 Acquity UPLC-bridged ethylene hybrid 100 � 2.1 mm
inner diameter, 1.7 �m column (Waters) was used in the separation
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step. The samples (8 �l) were eluted with a binary system consisting
of 0.2% (vol/vol) formic acid, 2 mM ammonium formate in water [A]
and in methanol [B] under linear gradient conditions: 0 min, 80% B;
3 min, 90% B; 6 min, 90% B; 15 min, 99% B; 18 min, 99% B; 20 min,
80% B; and 22 min, 80% B, at 30°C. The flow rate was 0.3 ml/min.
Quantification was carried out using the extracted ion chromatogram
of each compound, using 50-mDa windows.

Subpopulations of gut microbiota. The levels of total bacteria and
Bacteroidetes, Firmicutes, Enterobacteriales, and Escherichia coli
were estimated from fecal DNA by quantitative real-time PCR (qRT-
PCR). DNA was extracted from feces using QIAamp DNA stool mini
kit from Qiagen (Hilden, Germany) and quantified using a Nanodrop
8000 Spectrophotometer (ThermoScientific, Waltham, MA). DNA
samples were diluted to 20 ng/�l, and qRT-PCR was carried out on a
LightCycler 480 II (Roche, Basel, Switzerland) in triplicate. The
samples contained DNA (2 �l) and a master mix (18 �l) made of 2�
SYBR (10 �l), the corresponding forward and reverse primer (1 �l
each), and water (6 �l). All reactions were paralleled by analysis of a
nontemplate control (water) and a positive control. The primers and
annealing temperatures are detailed in Table 1. Total bacteria were
normalized as 16S rRNA gene copies per milligram of wet feces
(copies/mg).

Measurement of short-chain fatty acids. Short-chain fatty acids
(SCFAs) in feces were analyzed after week 12 by gas chromatography
using a reported method (45), with some modifications. SCFAs were
extracted from freeze-dried feces (~50 mg) with a mixture consisting
of acetonitrile-water 3:7 (1 ml) and the internal standard 2-ethylbu-
tyric acid (0.1 ml, 100 mg/l) and 0.1 M oxalic acid (0.5 ml), both in
the same solvent, for 10 min using a horizontal shaker. Finally, the
suspension was centrifuged (12,880 g, 5 min) in a 5810R centrifuge
(Eppendorf, Hamburg, Germany), and the supernatant passed through
a 0.45-�m nylon filter. Aliquots (0.7 ml) were diluted to 1 ml with
acetonitrile-water 3:7, and the SCFAs were analyzed using a
Trace2000 gas chromatograph (ThermoFinnigan, Waltham, MA) cou-
pled to a flame ionization detector equipped with an Innowax 30
m � 530 �m � 1 �m capillary column (Agilent, Santa Clara, CA).
The method showed good selectivity (for acetic acid, propionic acid,
butyric acid, isobutyric acid, valeric acid, and isovaleric acid), sensi-
tivity, linearity, and accuracy (trueness and precision). To check the
method trueness and precision, a recovery study at three concentra-
tions was performed on three different days. Precision (RSD 	15%)
and recovery (
70%) were adequate, as was intraday reproducible.

Biomarkers and lipid mediators of inflammation. Plasma LPS
concentration was estimated by reaction with Limulus amoebocyte
extract: LAL kit end point-QCL1000 (Cambrex BioScience, Walk-
ersville, MD). Plasma samples collected at the end of the study under
sterile conditions were diluted 70-fold and heated for 20 cycles of 10
min at 68°C and 10 min at 4°C each. An internal control for LPS
recovery was included.

Levels of plasma IL-6 were measured using Milliplex xMAP
multiplex technology. Liver function was ascertained by measuring

the activities of alanine transaminase (AST) and aspartate transami-
nase (ALT) in plasma by a spectrophometric method using kits from
Spinreact (Sant Esteve de Bas, Spain), and it is expressed as the
AST/ALT ratio.

Lipid mediators from the metabolism of arachidonic acid (ARA),
eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were
determined in plasma by liquid chromatography coupled to tandem
mass spectrometry (LC-MS/MS) using a method modified from
Dasilva et al. (6). Erythrocyte-free plasma samples (90 �l) were
thawed, diluted in the presence of BHT, and spiked with the internal
standard 12HETE-d8 (Cayman Chemicals, Ann Arbor, MI). Then, the
samples were centrifuged (800 g, 10 min), and the lipids in the
supernatants were purified by solid-phase extraction (SPE). The LC-
MS/MS analyzer consisted of an Agilent 1260 Series chromatograph
(Agilent) coupled to a dual-pressure linear ion trap mass spectrometer
LTQ Velos Pro (Thermo Fisher, Rockford, IL) operated in negative
ESI mode. A C18-Symmetry 150 � 2.1 mm inner diameter, 3.5 �m
column (Waters) with a C18 4 � 2 mm guard cartridge (Phenomenex,
Torrance, CA) were used in the separation step. Samples (10 �l) were
eluted with a binary system consisting of 0.02% aqueous formic acid
[A] and 0.02% formic acid in methanol [B] under gradient conditions
of 0 min, 60% B; 2 min, 60% B; 12 min, 80% B; 13 min, 80% B; 23
min, 100% B; 25 min, 100% B; and 30 min, 60% B, at a flow rate of
0.2 ml/min.

Measurement of isoprostanes. F2-isoprostanes (F2-IsoPs) were de-
termined in urine samples by LC/ESI-MS/MS following a previously
reported procedure (35) with modifications. Urine samples (500 �l)
were acidified, �-glucuronidase (90 U/ml) (Sigma, Saint Louis, MO)
was added, and the mixtures were incubated for 2 h at 37°C. After the
addition of the internal standard [2H4]15-F2t-IsoP (Cayman, Ann
Arbor, MO) (100 �l, 10 �g/l), F2-IsoPs were purified by SPE.
F2-IsoPs were analyzed using an Agilent 1260 chromatograph fitted
with a Mediterranea Sea 18 column (10 cm � 2.1 mm ID, 2.2-�m
particle size) (Teknokroma, Barcelona, Spain) coupled to a 4000
QTRAP mass spectrometer (Applied Biosystems, Foster City, CA).
The instrument was operated in the negative ion mode with a Turbo
V source to obtain MS/MS data. Separation was achieved with a
binary system consisting of 0.1% aqueous formic acid [A] and formic
acid in acetonitrile [B], at 40°C, with an increasing linear gradient
(vol/vol) of [B]: 0 min, 10% B; 7 min, 50% B; 7.1 min, 100% B; 8
min, 100% B; 8.1 min, 10% B; and 10 min, 10% B, at a flow rate of
700 �l/min. F2-IsoPs were detected by MS/MS multiple reaction
monitoring. Calibration curves were prepared using seven matrix-
matched standards covering the working concentration range. The
LOQ was 0.4 �g/l for 15-F2t-IsoP and 2 �g/l for 5-F2t-IsoP. The
results were expressed as nanograms per milligram of creatinine, to
correct for urine dilution.

Statistical analysis. All data manipulation and statistical analysis
were performed using GraphPad Prism 5 (GraphPad Software, San
Diego, CA). The results are expressed as means � SE. Normal
distribution and heterogeneity of data were evaluated, and statistical

Table 1. Quantitative RT-PCR primers and conditions

Target Bacteria Positive Control Annealing Temperature, °C Sequence (5=-3=) Reference

Total Bacteria # 65 F: ACT CCT ACG GGA GGC AGC AGT (18)
R: ATT ACC GCG GCT GCT GGC

Bacteroidetes Bacteroides fragilis 62 F: ACG CTA GCT ACA GGC TTA A (22)
R: ACG CTA CTT GGC TGG TTC A

Firmicutes Lactobacillus brevis 52 F: AGA GTT TGA TCC TGG CTC (17)
R: ATT ACC GCG GCT GCT GG (37)

Enterobacteriales E. coli M15 60 F: ATG GCT GTC GTC AGC TCG T (18)
R: CCT ACT TCT TTT GCA ACC CAC T

Escherichia coli E. coli M15 61 F: GTT AAT ACC TTT GCT CAT TGA (29)
R: ACC AGG GTA TCT AAT CCT GTT

R, reverse; F, forward. #Positive control of total bacteria was the strain with which the result was rated.
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significance was determined by two-way ANOVA for repeated mea-
surements or one-way ANOVA, and the Tukey multiple-comparisons
test was used for mean comparison. Differences were considered
significant when P 	 0.05.

RESULTS

Feed and drink intakes and energy balance. Feed intake was
lower in animals fed the HF diet than in those in the STD
group, and even lower in animals given the HS diet (Table 2).
Drink intake was higher in animals in the HS group than in
those from the other two groups. Energy intake was higher in

both the HF and HS groups than in the STD group. Residual
energy in feces was similar in the STD and HF groups, and
lower in the HS group (P 	 0.05 vs. HF). The HF animals
consumed significantly (P 	 0.001) more fat than the other two
groups throughout the experiment (Fig. 1A), while HS rats
consumed significantly (P 	 0.001) more fructose (Fig. 1B)
per 100 g of body weight than rats in the other groups. As the
only source of carbohydrate in the HF diet was sucrose
(equimolar fructose and glucose), the rats in this group con-
sumed as much glucose as fructose.

Weight gain and lipid accumulation. Body weight was
similar in all of the groups at the beginning (235.9 g, SE 3.6),
and no differences were observed between the STD and HS
groups during the whole experiment (Fig. 1C). After 6 wk, the
HF group had significantly (P 	 0.001) increased body weight
(352.0 g, SE 10.8) compared with the STD (305.9 g, SE 7.3)
and HS (292.4 g, 9.1) groups, and the differences in weight
gain increased until the end of the study (STD: 416.4 g, SE
12.9; HF: 544.3 g, SE 15.5, after week 24). Perigonadal AT
weight was significantly (P 	 0.001) higher in the HF group
than in the other two groups (Fig. 1E).

Blood pressure and urine uric acid. Systolic and diastolic
blood pressures (Fig. 1D) were similar in the STD and HF
groups throughout the experiment. After 23 wk of intervention,
systolic blood pressure was significantly higher (P 	 0.001) in
animals given the HS diet than in those given the STD or HF
diet. Diastolic blood pressure was higher (P 	 0.05 vs. STD)
in HS-fed animals from week 9 to week 23. Animals fed HS

Table 2. Feed, drink, and energy intakes of rats fed different
diets for 24 wk, and residual excreted energy in feces after
20 wk of intervention

STD HF HS

Mean SE Mean SE Mean SE

Feed intake,
g·day�1·100 g body wt�1 5.4 0.3 4.1* 0.3 2.7*† 0.2

Drink intake,
ml·day�1·100 g body wt�1 7.2 0.3 5.5 0.3 10.7*† 0.3

Total energy intake,
kcal·day�1100 g body wt�1 15.5 0.8 19.5* 1.2 22.8* 0.8

Energy in fecesa 306.7 19.4 362.3 22.8 291.8† 17.3

Data are presented as means with their standard errors of the mean; n � 9
per group. Comparisons were performed using one-way ANOVA and Tukey’s
multiple-comparisons test. *P 	 0.05 vs. STD group; †P 	 0.05 vs. HF group.
aIntegrated STD signal (kcal·°C�1·g�1) proportional to energy.

Fig. 1. Fat intake (A), fructose intake (B), body weight
(C), blood pressure (D), adipose tissue weight (E), and
uric acid in urine (F) of rats (n � 9 per group) fed the
standard (STD), high-fat (HF), or high-sucrose (HS)
diet for 24 wk. Data are presented as means � SE.
Comparisons were conducted using two-way ANOVA
(A–D) or one-way ANOVA (E and F) and Tukey’s
multiple-comparisons test. *P 	 0.05, **P 	 0.01, and
***P 	 0.001 vs. STD group; ���P 	 0.001 and �P 	
0.05 vs. HF group.
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presented a significantly (P 	 0.001) higher concentration of
uric acid in urine at week 23 than those of the STD and HF
groups (Fig. 1F).

Glycemic status. Fasting blood glucose and plasma insulin
concentration were measured after weeks 10 and 16 of the
intervention (Table 3). HOMA-IR is used as an indicator of IR.
At both times, both fasting glucose and insulin, as well as
HOMA-IR, were significantly higher in the HF group than in
the STD group. After 16 wk of intervention, the plasma insulin
concentration and HOMA-IR in the HS group were not differ-
ent from the values in either the STD or the HF group (Table
3). The OGTT was performed twice during the study, after
weeks 13 and 21 (Fig. 2). The increase of the area under the
curve (AUC) is an indicator of IGT. After 13 wk, the levels of
postprandial glucose in the HF group were higher than those in
the other groups (STD and HS), 30 and 60 min after adminis-

tration (Fig. 2). The AUC corresponding to the HF group was
significantly higher (P 	 0.001) than that in the STD group. By
the end of the study (week 21), the plasma glucose levels in
groups HF and HS were similar and significantly higher than
those of the STD group at all the time points (Fig. 2).

Liver histology, total liver triacylglycerols, and biochemical
measurement of liver function. An excess of dietary fat trig-
gered lobular inflammation and microgranulomas, while an
excess of fructose did not (Fig. 3A). The livers of animals fed
the HF diet showed lobular inflammation with lymphoplasma-
cytic inflammatory infiltration around the blood vessels (e.g.,
Fig. 3C). Conversely, an excess of fructose induced significant
and highly localized steatosis (Fig. 3A, D), while an excess of
dietary fat did not (Fig. 3A, C). The levels of total triacylglyc-
erols (�mol/g liver) were STD: 46.8, SE 20.1; HF: 80.4, SE
19.7; and HS: 168.1, SE 92.6, with no significant differences
between the groups. No liver functional damage resulted from
any of the diets, as revealed by the similar AST/ALT ratio in
the three groups (STD: 6.7, SE 0.6; HF: 6.3, SE 0.8; and HS:
5.7, SE 1.2).

Diacylglycerols in tissues. The levels of saturated DAGs
38:0 and 40:0, and unsaturated DAGs 34:2, 34:3, 34:4, 36:5,
and 40:5, were lower in liver in the HF group than in the STD
and/or HS groups (Table 4). The levels of unsaturated DAGs
32:1, 32:2, 34:1, and 36:2 were higher in animals that con-
sumed an excess of fructose than in animals in the other two
groups, whereas the levels of DAG 42:12 were lower. The
levels of DAGs 36:4, 36:6, 38:1, and 38:6, were lower in both
HS and HF groups than in the STD group.

In muscle (Table 5), the levels of DAGs 34:3, 38:3, 38:4,
38:5, and 40:5 were lower in the HF group than in the STD
group, whereas the levels of DAG 36:1 were higher. The levels
of unsaturated DAG 32:1 were higher in the HS group than in

Table 3. Fasting plasma glucose and insulin concentration
and calculated HOMA-IR

STD HF HS

Mean SE Mean SE Mean SE

Week 10

Fasting glucose, mg/dl 65.4 1.4 75.7*** 2.0 64.8†† 2.7
Insulin, pg/ml 417.9 71.4 1737.0*** 137.6 584.5††† 105.8
HOMA-IR 1.9 0.3 9.3*** 0.7 2.7††† 0.5

Week 16

Fasting glucose, mg/dl 66.0 1.1 70.8* 1.4 59.3†† 3.0
Insulin, pg/ml 661.2 53.9 1654.8* 331.5 1090.1 203.6
HOMA-IR 3.1 0.2 8.4* 1.8 4.7 1.1

Data are presented as means � SE; n � 9 per group. Comparisons were
conducted using one-way ANOVA and Tukey’s multiple-comparisons
test.*P 	 0.05 and ***P 	 0.001 vs. STD group; ††P 	 0.01, †††P 	 0.001
vs. HF group.

Fig. 2. Glycemic response in rats (n � 9 per
group) fed the STD, HF, or HS diet. Curves
of OGTT after ingestion of a single dose of
glucose (1 g/kg body wt) after weeks 13 and
21 of intervention, and the corresponding
areas under the curve (AUC). Values are pre-
sented as means � SE. Comparisons were
conducted using two-way ANOVA (OGTT
curves) or one-way ANOVA (AUCs) and the
Tukey multiple-comparisons test. **P 	 0.01,
and ***P 	 0.001 vs. STD group; �P 	 0.05
and ��P 	 0.01 vs. HF group.
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the other two groups (STD and HF). The levels of DAG 34:1
were higher, and those of 36:4 were lower in both HS and
HF groups than in the STD group. In perigonadal AT (Table
6), only the levels of DAG 42:1 were higher in the HF group
than in the other two groups (STD and HS). The levels of
unsaturated DAGs 32:3, 36:1, 36:2, 38:2, and 40:3 were
lower in animals that consumed an excess of fructose than in
animals in the STD or HF groups. The levels of DAGs 34:1,
34:2, 34:3, 34:4, 36:3, 36:4, 36:5, 36:6, 38:3, 38:4, 38:5,
38:6, and 40:5 were lower in both HS and HF groups than
in the STD group.

Subpopulations of gut microbiota and microbial products.
The Bacteroidetes:Firmicutes ratio (Fig. 4A) was reduced in
HF animals and increased in HS animals compared with STD
animals. The proportion of Enterobacteriales and E. coli in
animals given the HF diet was already significantly increased
after weeks 1 and 3 and tended to decrease gradually afterward
(Fig. 4, B and C). An excess of fructose only increased the
populations of Enterobacteriales and E. coli at the end of the
study (Fig. 4, B and C).

The levels of acetic, propionic, and isobutyric acids, and

total SCFAs were lower in the feces of HF animals than in

those fed the STD or HS diet (Table 7).

The HF animals showed a nonsignificant tendency (P � 0.1

vs. STD group) toward increased plasma concentration of LPS

at the end of the study (Fig. 5A). The HS animals did not show

any increase in plasma LPS.

Markers and lipid mediators of inflammation. The animals

fed the HF diet showed increased plasma concentrations of

IL-6 and PGE2 (EPA metabolite) compared with the STD

group at the end of the study (Fig. 5, B and C). The concen-

trations of ARA, EPA, and DHA were higher in the HS group

than in the STD and HF groups (Fig. 5, D–F). No differences

were detected in the concentration of LTB4 (leukotriene B4) or

12HEPE (12-hydroxyeicosapentaenoic acid), ARA, and EPA

metabolites, respectively (Fig. 5, G and H). The concentration

of the DHA metabolite 17HDoHE (17-hydroxy docosa-

hexaenoic acid) was lower in animals fed the HS diet than in

those fed the HF diet (Fig. 5I).

Fig. 3. Liver histology. Estimation of variables (A) and cuts stained with hematoxylin and eosin. Rats fed the STD diet present normal liver (B; �20), rats fed
the HF diet present inflammatory infiltration within the portal triad without steatosis (C; �20), and rats fed the HS diet present steatosis without inflammatory
infiltration (D; �20). Scores are presented as means � SE. Comparisons were conducted using one-way ANOVA and Tukey’s test. *P 	 0.05, **P 	 0.01,
and ***P 	 0.001 vs. STD group; ��P 	 0.01 and ���P 	 0.001 vs. HF group.
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Isoprostanes as markers of oxidative stress. The animals fed
HS showed increased concentrations of 5-F2t-IsoP and 15-F2t-
IsoP (P 	 0.05) compared with the STD and HF groups after
23 wk of intervention (Fig. 6, A and B).

DISCUSSION

The present study explores some molecular factors behind
the differential action of an excess of dietary fat or fructose on
normal rats and examines the role that gut microbiota may play
in these processes. A prediabetic state was induced to WKY
rats by HF or HS1 diets over a period of 24 wk. Despite all of
the information available on the induction of IR and IGT by fat
and fructose in rat models, the molecular mechanisms behind
this action are still largely unknown. In our models, fat induced
a prediabetic state faster than fructose, as evidenced by the
results of fasting blood glucose, plasma insulin concentration,
HOMA-IR (Table 3), and the OGTT (Fig. 2). Only the animals
in the HF group presented both IR (HOMA-IR) and IGT
(OGTT). The rats that consumed an excess of sugar showed a
tendency toward elevated plasma insulin and significant IGT
only at the end of the study (Table 3 and Fig. 2). The
differences in timing between the metabolic response to fat and

fructose prompted us to explore the changes induced in some
molecular factors known to be mechanistically related to the
development of IR and IGT. As low-grade inflammation may
trigger IR, we measured inflammation markers in the two
models. Unlike the rats in the HS group, the livers of HF-fed
animals clearly presented inflammatory infiltrations within the
portal space (Fig. 3). This is a sign of systemic inflammation
that was confirmed by the plasma levels of IL-6 and PGE2 (Fig.
5, B and C). IL-6 and other inflammatory markers are elevated
in obesity-induced low-grade inflammation-related IR (11, 25);
ARA-derived cyclooxygenase (COX)-mediated proinflamma-
tory factor PGE2 is the predominant prostaglandin in white AT,
where it regulates adipose functions (26). PGE2 also inhibits
pancreatic �-cell function and insulin secretion (43), which is
an effect characteristic of intermediate stages of diabetes,
beyond the initial increase in insulin secretion (IR, compensa-
tion stage) (50). Conversely, potentially anti-inflammatory
EPA and DHA were elevated in animals given an excess of
fructose (Fig. 5, E and F). EPA and DHA are considered to
protect against inflammation mainly because they compete
with ARA for the same metabolizing enzymes and also be-
cause they generate protectins and resolvins as metabolites (7,
30). So, the HF animals presented systemic inflammation,
while the HS diet not only did not trigger early systemic
inflammation, but also may have favored anti-inflammatory
pathways.

The observation of a nonsignificant trend (P � 0.1) toward
elevated plasma LPS concentrations (Fig. 5A) suggested that
microbe-derived endotoxemia might contribute to the low-
grade inflammation in HF-fed animals. LPS is a component of
the wall of Gram-negative bacteria present in Bacteroidetes

1 In our high-sucrose model, insulin resistance and probably hypertension
are more likely to be triggered by the excess of fructose than by glucose, as
glucose can be metabolized and/or stored as glycogen in different organs (e.g.,
brain, liver, and muscle), and it is carefully controlled by insulin everywhere,
while fructose is almost entirely processed, mainly in the liver, and escapes
metabolic control by insulin (18).

Table 5. Muscle diacylglycerols by LC-MS

STD HF HS

DAGs Mean SE Mean SE Mean SE

32:0 30.8 5.5 29.3 4.1 37.2 5.0
34:0 47.1 14.6 41.2 10.7 47.4 15.5
36:0 10.7 10.4 24.2 8.6 26.3 12.0
38:0 3.8 1.5 2.5 0.9 4.1 1.8
40:0 1.1 0.4 1.2 0.3 1.4 0.3
42:0 0.4 0.2 0.5 0.2 0.7 0.2
32:1 5.9 0.8 9.0 1.5 10.7* 0.8
32:2 1.3 0.3 1.6 0.4 1.9 0.3
34:1 29.3 4.2 52.2* 8.5 54.4* 3.0
34:2 19.2 3.7 12.3 2.3 16.4 1.6
34:3 4.6 0.9 2.4* 0.4 3.4 0.4
36:1 4.0 0.7 8.5* 1.8 4.9 0.5
36:2 15.5 2.9 33.8 8.3 30.9 3.2
36:3 18.9 4.4 13.2 3.2 12.4 2.1
36:4 11.5 2.1 4.6** 0.5 4.9** 0.5
36:5 0.0 0.0 0.0 0.0 0.2*†† 0.1
38:1 0.2 0.1 0.3 0.1 0.2 0.1
38:2 0.7 0.3 0.6 0.1 0.8 0.2
38:3 1.7 0.5 0.6* 0.1 0.8 0.2
38:4 10.7 1.7 5.2** 0.5 7.3 1.0
38:5 4.2 0.6 2.7* 0.3 3.2 0.3
38:6 3.5 0.5 2.4 0.5 2.4 0.5
40:5 1.3 0.4 0.1** 0.1 0.6 0.2
42:1 0.1 0.1 0.2 0.1 0.5 0.1

Data are presented as with their standard errors of the mean; n � 9 per group.
DAGs are given in nanomoles per gram tissue. DAG amounts are expressed as
DAG 16:0, 16:0 equivalents. Comparisons were conducted using one-way
ANOVA and Tukey’s tests. *P 	 0.05, **P 	 0.01, and ††P 	 0.01 vs. HF.

Table 4. Liver diacylglycerols by LC-MS

STD HF HS

DAGs Mean SE Mean SE Mean SE

32:0 2332 504 2256 447 5224 2063
34:0 7661 1676 8044 1469 17320 8406
36:0 5598 1213 6116 1124 12040 5659
38:0 296.3 53.3 139.1* 24.9 208.9 32.7
40:0 32.5 5.0 14.3** 14.3 22.0 3.3
32:1 64.3 6.8 69.2 12.7 242.6*† 72.1
32:2 15.1 1.5 14.8 2.4 43.6*† 12.5
34:1 405.7 43.0 540.4 100.1 1499.0*† 427.2
34:2 328.8 39.1 139.6 26.6 414.6† 111.1
34:3 88.0 10.7 27.0* 6.0 101.7† 26.7
34:4 17.4 2.3 2.1* 1.4 18.1† 6.5
36:1 85.6 10.1 111.4 19.3 131.0 31.9
36:2 321.4 35.0 576.4 117.5 1296.0* 380.6
36:3 711.1 86.3 398.9 78.5 681.0 182.1
36:4 381.7 48.8 102.1*** 18.7 203.0** 34.4
36:5 50.5 6.3 8.3*** 2.6 29.6 8.5
36:6 12.2 2.6 0.0*** 0.0 1.7** 1.7
38:1 6.3 1.6 0.0*** 0.0 1.6* 1.1
38:2 12.2 1.5 9.7 2.4 17.8 4.7
38:3 18.5 5.1 17.6 4.5 21.0 5.2
38:4 436.5 54.8 325.4 44.2 367.5 41.2
38:5 220.1 25.2 131.8 23.0 170.2 35.3
38:6 227.7 27.3 57.8*** 10.3 66.7*** 10.5
40:5 171.8 27.1 90.6* 17.9 112.9 16.7
42:5 141.9 22.2 80.6 17.4 80.4 10.2

42:12 12.3 1.8 10.1 1.6 3.5**† 1.3

Data are presented as means with their standard errors of the mean; n � 9
per group. DAGs are given in nanomoles per gram tissue. DAG amounts are
expressed as DAG 16:0, 16:0 equivalents. Comparisons were conducted using
one-way ANOVA and Tukey’s multiple-comparisons test. *P 	 0.05, **P 	
0.01 and ***P 	 0.001 vs. STD group; †P 	 0.05 vs. HF group.
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and Enterobacteriales but not in Firmicutes. As the population
of Bacteroidetes clearly decreased in HF animals with respect
to STD rats (Fig. 4A), the increase in LPS and proinflammatory
mediators detected in the plasma of HF animals (Fig. 5, A–C)
might originate from Enterobacteriales (Fig. 4B), particularly
its major member E. coli (Fig. 4C). This agrees with observa-
tions by other authors (8, 15). Additional research should
confirm or refute this suggestion. In addition to LPS, other
mediators proposed as the link between gut bacteria and
metabolic alterations are bile acids, angiopoietin-like protein 4,
and SCFAs: products of microbial fermentation of dietary fiber
(23). SCFAs acetate and butyrate generated by Firmicutes may
contribute to body fat gain through de novo lipogenesis (2).
Together with propionate, these SCFAs exhibit a protective
effect against inflammation and IR (2). In apparent contradic-
tion, the animals that presented the lowest Bacteroidetes-to-
Firmicutes ratio and gained most weight (HF group) generated
the lowest amounts of total SCFAs (Table 7). This may be due
to the composition of the diet. Whereas the standard diet (fed
to the STD and HS groups) contains wheat middlings, ground
wheat, and ground corn, the only source of fiber in the HF diet
is cellulose (50 g/kg). The lower diversity in the source of fiber
may be the cause of the reduced production of protective
SCFAs.

As DAGs may induce IR independently of inflammation, we
measured their levels in liver, muscle, and AT. We did not
detect any significant increase in the DAG profile in the livers
of rats fed a HF diet (Table 4), in agreement with the absence

of steatosis (Fig. 3C). The only DAGs with elevated levels in
the HF group were the monounsaturated 34:1 (muscle), 36:1
(muscle), and 42:1 (AT). As lipid-induced IR occurs earlier in
liver than in muscle (28), we concluded that direct impairment
of insulin signaling by lipid metabolites would not explain the
observed early fat-induced systemic IGT. In contrast, the
animals given an excess of fructose presented steatosis around
the blood vessels (Fig. 3D) and clearly elevated DAGs in the
liver (Table 4), without gaining more weight or accumulating
more perigonadal AT than those given the STD diet (Fig. 1, C

Table 6. Adipose tissue diacylglycerols by LC-MS

STD HF HS

DAGs Mean SE Mean SE Mean SE

32:0 217.3 30.4 143.4 41.6 137.1 28.6
34:0 50.1 6.2 63.2 21.7 21.1 4.2
38:0 1.0 0.2 0.7 0.3 0.4 0.1
40:0 0.4 0.1 0.3 0.1 0.2 0.1
42:0 0.0 0.0 0.9 0.4 0.0 0.0
32:1 258.3 54.6 281.9 89.9 210.0 48.4
32:2 207.8 44.5 122.3 50.9 70.8 18.4
32:3 26.8 6.9 10.7 5.0 4.2* 1.1
34:1 880.9 106.0 471.6* 112.7 457.8* 81.0
34:2 1338.0 164.7 400.6*** 127.2 436.9*** 85.7
34:3 1337.0 153.3 449.2*** 125.3 404.2*** 83.3
34:4 41.7 10.3 6.2*** 3.1 4.3*** 1.1
36:1 93.8 11.5 213.3 74.7 39.9† 8.6
36:2 874.1 103.3 560.4 139.0 465.2* 83.4
36:3 1337.0 153.2 449.2*** 125.3 404.2*** 83.3
36:4 41.8 3.1 8.5*** 2.0 7.3*** 1.0
36:5 120.1 20.0 9.2*** 4.3 4.8*** 1.6
36:6 2.7 0.6 0.1*** 0.1 0.0*** 0.0
38:1 4.5 1.2 2.5 2.1 0.5 0.4
38:2 38.4 5.7 18.2 8.9 11.1* 3.0
38:3 77.7 11.1 13.2*** 6.5 9.3*** 2.5
38:4 55.7 7.3 6.9*** 2.5 3.2*** 0.5
38:5 63.1 9.8 11.9*** 4.3 8.5*** 1.8
38:6 2.5 0.3 0.4*** 0.1 0.3*** 0.0
40:3 0.3 0.1 0.2 0.1 0.0** 0.0
40:5 2.6 0.4 0.1*** 0.1 0.0*** 0.0
42:1 0.2 0.1 1.0* 0.3 0.2† 0.0

Data are presented as with their standard errors of the mean; n � 9 per
group. Comparisons were conducted using one-way ANOVA and Tukey’s
tests. *P 	 0.05, **P 	 0.01, and ***P 	 0.001 vs. STD group; †P 	 0.05
vs. HF. DAGs are given in nanomoles per gram tissue. DAG amounts are
expressed as DAG 16:0, 16:0 equivalents.

Fig. 4. Excreted intestinal bacteria measured by quantitative RT-PCR and
expressed as percentages of total bacteria in fecal samples from rats (n � 9 per
group) fed a STD, HF, or HS for 24 wk of nutritional intervention. A:
Bacteroidetes/Firmicutes ratio. B: Enterobacteriales. C: Escherichia coli. Re-
sults are presented as means � SEs. Comparisons were conducted using
one-way ANOVA and Tukey’s multiple-comparisons test. *P 	 0.05, **P 	
0.01, and ***P 	 0.001 vs. STD group; �P 	 0.05, ��P 	 0.01, and ���P 	
0.001 vs. HF group.
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and E). The levels of total triglycerides were also elevated in
the HS group, although the differences were not statistically
significant, probably due to the fact that the steatosis was
highly localized. These observations are consistent with he-
patic de novo lipogenesis from fructose (20). It is becoming
evident that different DAGs have a very different impact on
cellular signaling (13). While there is no information so far as

to what particular DAG species might impair insulin signaling,
it has been reported that cellular signaling proteins and recep-
tors such as the human transfer receptor potential C3 (TRPC3)
are differentially activated by different DAGs and that DAG
36:2 (1-stearoyl-2-linoleoyl-sn-glycerol) is one of the active
species (21, 38). The amounts of DAGs 36:2 and 34:1 (puta-
tively 1-palmitoyl-2-oleoyl-sn-glycerol) were dramatically in-
creased (three- to four-fold) in the livers of HS-fed rats (Table
4), which suggests that DAG 36:2 may play a role in late
fructose-induced tendency to IR. DAG 34:1, which does not
activate the TRCP3 calcium channel (38), may or may not play
a role in our model. In muscle, DAG content is much lower
than in the liver, and only the levels of DAG 32:1 were slightly
elevated in the muscular tissue of animals given the HS diet
and those of DAG 34:1 in both the HF and HS groups (Table
5). As expected, perigonadal AT presented the highest levels of
DAGs in all groups (Table 6). None of the significant differ-
ences detected corresponded to any increase in DAG levels in
the HF or HS group. The overall examination of DAG varia-
tions in liver, muscle, and AT showed that the only likely
contribution of these lipid metabolites to IR or IGT takes place
in the liver of HS-fed rats and that DAGs may not play a
significant role in the development of IR or IGT in rats fed an
HF diet.

Table 7. Short-chain fatty acids in feces after 12 weeks

STD HF HS

SCFA Mean SE Mean SE Mean SE

Acetic acid 310.9 61.1 149.5* 17.6 265.5 45.6
Propionic acid 27.4 6.2 3.1** 0.6 28.0†† 5.7
Isobutyric acid 1.3 0.2 0.2*** 0.0 1.1††† 0.1
Butyric acid 17.6 3.3 6.2 1.6 23.1† 5.8
Isovaleric acid 1.0 0.3 0.4 0.1 1.0 0.2
Valeric acid 0.7 0.1 0.4 0.1 1.1† 0.2
Total SCFAs 356.9 66.1 159.4* 19.1 287.2 55.3

Data are presented as means with their standard errors of the mean; n �
9 per group. Short-chain fatty acids (SCFAs) amounts are given in milli-
moles per kilogram feces. Comparisons were conducted using one-way
ANOVA and Tukey’s multiple-comparisons test. *P 	 0.05, **P 	 0.01
and ***P 	 0.001 vs. STD group; †P 	 0.05, ††P 	 0.01, and †††P 	 0.001
vs. HF group.

Fig. 5. Plasma biomarkers of inflammation from rats (n � 9 per group) fed a STD, HF, or HS for 24 wk of nutritional intervention. A: lipopolysaccharide. B:
IL-6 (determined after 10 wk of intervention). C: PGE2. D: arachidonic acid (ARA). E: eicosapentaenoic acid (EPA). F: docosahexaenoic acid (DHA). F: LTB4.
H: 12HEPE. I: 17HDoHE. Results are presented as means � SE. Comparisons were conducted using one-way ANOVA and Tukey’s multiple-comparisons test.
*P 	 0.05 and **P 	 0.01 vs. STD group; �P 	 0.05 vs. HF group.
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The levels of urine F2-IsoPs, which are products of free
radical-mediated in vivo oxidation of ARA (33) different from
COX-derived oxidized prostaglandins, such as PGE2, were
only elevated in animals given an excess of fructose at the end
of the study (Fig. 6), consistently with increased levels of ARA
(Fig. 5D). This implies that an excess of dietary fat did not
trigger significant low-grade inflammation-mediated systemic
oxidative stress (OS), which may be attributed to the action of
the excess of fructose. In agreement with this observation,
increased generation of superoxide radical has been detected in
the kidneys of high-fructose-fed rats (40). The results also
indicate that IR per se does not trigger systemic OS, as the
animals given an excess of fat developed IR and IGT for the
duration of the entire experiment (Table 3, Fig. 2) while
showing IsoP levels similar to those in the STD group (Fig. 6).
In contrast with our results, other authors have linked fructose-
induced OS to inflammation and hyperinsulinemia (4, 40).
Those experiments were performed on Sprague-Dawley rats
using shorter intervention times (3–12 wk). In our experiment
(WKY rats), if the inflammatory response was associated with
OS in an early compensatory stage (stimulation of insulin
secretion) (50), it was no longer evident after 24 wk of
intervention.

In the present study, only the HS diet induced hypertension,
which was statistically significant after 9 wk (diastolic pres-
sure) and 22 wk (systolic pressure) (Fig. 1D). As rats in this
group consumed significantly more sugar and water than those
given the STD or HF diets, the hypertensive effect may be
explained, at least in part, by water movement from tissues into
the intravascular space caused by elevated levels of blood
glucose (41) together with hyperhydration. The high amounts
of fructose available in the liver of rats given the HS diet may
also have caused elevated blood pressure via the formation of
uric acid (32), which is biosynthesized through the degradation
of AMP to inosine monophosphate following a fall in intracel-
lular phosphate that originates in the rapid and uncontrolled
phosphorylation of fructose (24). This explanation is supported
by our observation that the HS group shows significantly
higher levels of urine uric acid than the STD and HF groups
(Fig. 1F). Late mild IR (Table 3) and IGT (Fig. 2) may also
contribute to the elevated blood pressure in the HS group, as
described in previous studies (49). It should be noted that only
hepatic IR (HS group) would in any case bring about hyper-
tension, as the animals showing early IR (HF group, Table 3)
were normotensive (Fig. 1D). The observation that the popu-
lations of Enterobacteriales and particularly E. coli only in-
creased in the feces of animals in the HS group (Fig. 4, B and

C) when IGT became significantly high (week 21, Fig. 2)

suggests a relationship between gut bacteria and late fructose-

related metabolic alterations. In this case though, the diet is less

likely to induce late changes in the intestine; therefore, the

increase in bacterial populations may be a consequence of the

systemic action of the diet rather than a cause of it. It has been

reported that intestinal uric acid in end-stage renal disease

(ESRD) patients increases the populations of bacteria that are

able to catabolize uric acid into urea and eventually ammonia

(51). As part of the uric acid is excreted through the gut in both

humans and rats (19, 47), we hypothesize that uric acid

generated by high-fructose-fed rats (Fig. 1F) may contribute to

the increase in the populations of gut Enterobacteriales (Fig.

4B), which are microorganisms known to use urease to metab-

olize urea (5, 34). To test this hypothesis, it may be worth

monitoring changes in the gut populations of microorganisms

known to metabolize uric acid into urea. The late increase in

Enterobacteriales might trigger further inflammation.

Concluding remarks. This paper examines two rat models of

prediabetes with clearly differentiated mechanisms that can be

used to test the effects of drugs and food ingredients. As the

effects induced are mild, the models are particularly suited for

testing functional food ingredients. A high-fat diet induced

obesity and fast IR and IGT via low-grade inflammation in

WKY rats. In contrast, a high-sucrose (fructose � glucose) diet

induced IGT later than the HF diet, by processes triggered by

de novo liposynthesis from fructose, probably mediated by

active DAGs in the liver. Neither low-grade inflammation (HF

group) nor localized steatosis (HS group) severely affected

liver function, as assessed by measuring the AST/ALT ratio.

Hypertension in HS-fed rats may be due to causes other than

systemic IR that include an excess of water/glucose intake and

the generation of uric acid from fructose. The development of

IR coincides with increased populations of E. coli in the

intestinal tract that may contribute to low-grade inflammation

in HF-fed animals or may be a consequence of the metabolic

alterations of an excess of fructose in HS-fed animals. The

results show that fat and sugar trigger metabolic alterations by

largely independent mechanisms and underscore the poten-

tially harmful effect of the excessive intake of both of these

nutrients together.
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Fig. 6. Isoprostanes in urine from rats (n � 9 per group) fed
a STD, HF, and HS for 24 wk of nutritional intervention. A:
5F2t. B: 15F2t. Results are presented as means � SE. Com-
parisons were conducted using one-way ANOVA and
Tukey’s multiple-comparisons test. *P 	 0.05 vs. STD group;
�P 	 0.05 vs. HF group.
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ABSTRACT: D-Fagomine is an iminosugar found in buckwheat that is capable of inhibiting the adhesion of potentially
pathogenic bacteria to epithelial mucosa and reducing the postprandial blood glucose concentration. This paper evaluates the
excretion and metabolism of orally administered D-fagomine in rats and compares outcomes with the fate of 1-deoxynojirimycin.
D-Fagomine and 1-deoxynojirimycin show similar absorption and excretion kinetics. D-Fagomine is partly absorbed (41−84%,
dose of 2 mg/kg of body weight) and excreted in urine within 8 h, while the non-absorbed fraction is cleared in feces within 24 h.
D-Fagomine is partially methylated (about 10% in urine and 3% in feces). The concentration of D-fagomine in urine from 1 to 6 h
after administration is higher than 10 mg/L, the concentration that inhibits adhesion of Escherichia coli. Orally administered
D-fagomine is partially absorbed and then rapidly excreted in urine, where it reaches a concentration that may be protective
against urinary tract infections.

KEYWORDS: D-fagomine, 1-deoxynojirimycin, metabolism, Escherichia coli, urinary tract, mass spectrometry

■ INTRODUCTION

D-Fagomine and 1-deoxynojirimycin (DNJ) are polyhydroxy-
lated piperidines, also known as iminocyclitols, azasugars, or
iminosugars, that are synthesized by various plants and micro-
organisms as secondary metabolites.1,2 D-Fagomine and DNJ
can be found in foodstuffs, such as bread, pasta, and biscuits
made from buckwheat3 and tea, snacks, and biscuits made
from mulberry.4 Both of these iminocyclitols are glycosidase
inhibitors with the capacity to reduce the postprandial glycemic
response after oral administration of either sucrose or starch to
rats and humans.5−8 Because D-fagomine and DNJ reduce the
elevation of postprandial blood glucose, they can be used as
dietary supplements or functional food components to help
maintain short-term homeostasis of blood glucose levels.9

More recent observations have revealed that iminocyclitols may
modify the composition of the gut microbiota by inhibiting
bacterial adhesion to the intestinal mucosa.7 It has been sug-
gested that D-fagomine counteracts the short-term metabolic
alterations triggered by a high-energy-dense diet in rats,10 at
least in part through the reduction of a diet-induced excess of
gut Enterobacteriales.11 Thus, D-fagomine might also be admi-
nistered to prolong maintenance of metabolic homeostasis.
Absorption, distribution, metabolism, and excretion (ADME)

studies in animals and humans have been published of natu-
rally and non-naturally occurring bioactive iminocyclitols,
such as DNJ, N-methyl-DNJ, 1-deoxymannojirimycin (DMJ),
1,4-dideoxy-1,4-imino-D-arabinitol (DAB), N-hydroxyethyl-
DNJ (miglitol or glyset), and N-butyl-DNJ (miglustat or
zavesca).12−22 In rats, DNJ is poorly absorbed in a dose-
dependent manner, distributed in the intact form and rapidly
excreted in urine.15,16,18,23 The absorption and distribution of
D-fagomine alone has never been reported. When administered
as a minor component of an extract from mulberry twigs

(Ramulus Mori, Chinese medicine), the D-fagomine absorption
rate profile is similar to that of DNJ.21

Bioanalytical methods for iminocyclitols have recently been
reviewed.24 Pharmacokinetics is effectively evaluated using
radiolabeled derivatives. The technique is extremely sensitive
but would fail to identify any putative transformation as a result
of metabolism. More selective and safe hyphenated bioanalyt-
ical methods have also been developed. In particular, imino-
cyclitols are analyzed by hydrophilic interaction or cation-
exchange liquid chromatography coupled to different mass
spectrometry detectors [single quadrupole (Q), triple quadru-
pole (QqQ), quadrupole ion trap (QTrap), or time of flight
(TOF)].1,15−19,22

The aim of this paper is to evaluate D-fagomine metabolism
and excretion and compare the results with those for DNJ, an
iminocyclitol with putatively similar behavior.

■ MATERIALS AND METHODS

Reagents. A D-fagomine standard (assay of >95%) was provided by
Bioglane (Barcelona, Spain). DNJ (assay of >95%) was from Carbosynth
(Berkshire, U.K.). 2,5-Hydroxymethyl-3,4-dihydroxypyrrolidine
(DMDP), the internal standard, was purchased from IRL (Lower
Hutt, New Zealand). Lichrosolv-grade methanol, together with
analytical-grade acetic acid and ammonium hydroxide, was obtained
from Merck (Darmstadt, Germany). High-performance liquid
chromatography (HPLC)-grade water (Millipore type I water from
Merck) was used to prepare all of the aqueous solutions. Solid-phase
extraction (SPE) cartridges for sample purification were Spe-ed, strong
cation exchange (SCX) cartridges, 100 mg/mL from Applied Separations
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(Allentown, PA, U.S.A.). Nylon filters (0.45 μm) were obtained from
Scharlab (Sentmenat, Spain). Microvette CB 300 K2E dikalium
ethylenediaminetetraacetic acid (EDTA) tubes were from Sarstedt
(Nümbrecht, Germany); the gastric probe was from Harvard Apparatus
(Holliston, MA, U.S.A.); and 25 G needles were from Novico Med́ica
(Barcelona, Spain).
Animals, Diets, and In Vivo Tests. A total of 18, male, 8-week-

old, Sprague Dawley rats (Janvier, Le Genest-Saint-Isle, France) were
housed under controlled conditions of stable humidity (50 ± 10%)
and temperature (22 ± 2 °C) with a 12 h light−12 h dark cycle. To
minimize circadian rhythm effects, all rat handling was carried out in
the morning. After overnight fasting, the rats were divided into six
groups, which were given single doses of D-fagomine or DNJ,
administered as aqueous solutions (5 mL/kg of body weight) using a
gastric probe. Each group received 2.0, 10, or 100 mg/kg of
body weight of D-fagomine or DNJ. The rats were then placed in
metabolic cages to collect urine and feces at 1, 2, 4, 6, 8, and 24 h after
administration. Samples were kept at −80 °C until analysis. After that,
the rats were placed in standard cages and the remaining feces
were collected by abdominal massage 48 h after administration.
The handling of the animals was in full accordance with the European
Union guidelines for the care and management of laboratory
animals, and the pertinent permission was obtained from the Spanish
National Research Council (CSIC) Subcommittee for Bioethical
Issues (reference AGL2009-12 374-C03-03, CEEA-12-011, date of
approval March 4, 2013).
Extraction and SPE Cleanup. After thawing, aliquots (60 μL) of

urine were extracted with 70% aqueous methanol (5 mL) using an
orbital shaker (Intelli-mixer RM-2 device from Elmi, Riga, Latvia) for
20 min. Feces were cut longitudinally, and the analytes were extracted
from half of the sample also with 70% aqueous methanol (5 mL of
solvent/60 mg of feces) using the orbital shaker for 20 min. After
extraction, the suspensions were centrifuged in a 5810R centrifuge
from Eppendorf (Hamburg, Germany) for 3 min at 8000 rpm and
20 °C, filtered through a 0.45 μm nylon filter (Phenomenex, Torrance,
CA, U.S.A.), and the filtrates were diluted with water to a known
volume in a volumetric flask (10 mL in the case of urine and variable in
the case of feces). Cation-exchange SPE cartridges were conditioned
with HPLC-grade methanol (1 mL) and water (1 mL). Then, aliquots
from the previous step were loaded onto the cartridges. The aliquot
volumes were adjusted to equalize the response of the analysis (urine
samples, 2500, 500, and 50 μL from the groups administered the
2.0, 10, and 100 mg/kg of body weight doses, respectively; feces
samples, variable volumes depending upon the dilution after the
extraction step). SCX resin was then washed with water (4 mL) and
vacuum-dried. Next, the analytes were eluted with 2 M aqueous
NH4OH (500 μL). The eluates were spiked with a DMDP solution in
methanol (100 μL, 5 mg/L). The solution was evaporated to dryness
under a stream of N2 at 60 °C, and the residue was redissolved in
water (500 μL) and filtered through a 0.45 μm nylon filter.
HPLC/ESI−QqQ−MS Analysis. Chromatography was carried out

on an Acquity H class system (Waters, Milford, MA, U.S.A.) equipped
with a quaternary pump and fitted with a TSK-Gel CM2SW cation-
exchange column (25 cm × 4.6 mm inner diameter, 5 μm particle
size, Tosoh Bioscience, Tokyo, Japan). The injection volume was
5 μL; the column temperature was 25 °C; and the total analysis time
was 30 min. The target compounds were separated with a binary
system: 50 mM NH4CH3COO (pH 8.5)/methanol (4:1), under
isocratic conditions at a flow rate of 0.8 mL/min. Mass spectrometric
analysis of the column effluent was carried out on a tandem QqQ
Xevo-TQ-S spectrometer (Waters). The electrospray ionization−
tandem mass spectrometry (ESI−MS/MS) parameters were: positive
polarity, a capillary voltage of 3 kV, a desolvation temperature of
600 °C, a desolvation gas flow of 1000 L/h, 7 bar of nebulizer gas, a
cone voltage of 20−45 V depending upon the analyte, and a collision
energy of 20−30 V depending upon the analyte (Table 1). Analysis
was carried out in the multiple reaction monitoring (MRM) mode
using the following quantification transitions: 164 → 80 (DMDP and
DNJ), 148 → 86 (D-fagomine), 162 → 100 (monomethyl-D-fagomine),
176 → 114 (dimethyl-D-fagomine), 190 → 128 (trimethyl-D-fagomine),

178 → 94 (monomethyl-DNJ), 192 → 108 (dimethyl-DNJ), and
206 → 122 (trimethyl-DNJ). The retention times of the analytes were
4 min (DNJ), 5.5 min (DMDP), 7.5 min (monomethyl-D-fagomine),
9 min (D-fagomine), 10 min (dimethyl-D-fagomine), 10.5 min
(trimethyl-D-fagomine), and 3.7 (monomethyl-DNJ). To confirm the
identity of the metabolites, their exact masses were obtained using
high-resolution (HR) ESI−TOF−MS on a LCT Premier XE system
(Waters) after HR separation using a HPLC Acquity system (Waters)
fitted with a TSK-Gel CM2SW column.

Standard Solutions. Stock standard solutions of 5 mg/L were
prepared by dissolving D-fagomine, DNJ, or DMDP (1.00 mg) in
methanol (20 mL) and then diluting 1:9 in methanol. All solutions
were stored at −20 °C. To prepare the working standard solutions, the
corresponding aliquots of the D-fagomine or DNJ stock solutions were
mixed with the DMDP stock solution (100 μL). The solvent was
then evaporated to dryness under a stream of N2, and the residue
was dissolved in water (500 μL). These solutions were also stored at
−20 °C. The standard solutions were stable at this temperature for a
period of at least 6 months.

Validation of the Analytical Method. Because ESI techniques
often suffer from matrix effects, the linear MS responses of
D-fagomine/DMDP and DNJ/DMDP dissolved in water and matrix-
matched solutions were evaluated and the slopes were compared. To
prepare the matrix-matched solutions, urine and feces of rats that had
still not been administered the iminosugars were used. These samples
were subjected to the extraction and purification steps described in the
Extraction and SPE Cleanup subsection. In the case of urine, 2500 μL
of the extract (the aliquot that contains the highest amount of
interfering compounds) was passed through the cartridge. The eluate
obtained from the SCX resin was spiked with 100 μL of a DMDP
solution in methanol (5 mg/L) and with different volumes of a
D-fagomine + DNJ solution in methanol (5 mg/L of both compounds)
to prepare a calibration curve in the range of 4−83 mg of D-fagomine/L
of urine or kg of feces. Each solution was evaporated to dryness under
a stream of N2 at 60 °C, and the residue was redissolved in water
(500 μL) and then filtered through a 0.45 μm nylon filter. Calibration
curves were constructed by plotting AD‑fagomine or DNJ/ADMDP against the
D-fagomine or DNJ concentration for each solvent. Then, the signal
suppression/enhancement (SSE) was calculated according to eq 1.
A SSE value smaller than 100 means that the matrix causes signal
suppression, and a higher value means that the matrix causes signal
enhancement.25

= ×
‐SSE (%)

slope

slope
100matrix matched calibration curve

aqueous standards calibration curve (1)

In the assessment of linearity, calibration curves were plotted in the
range of 1.8−8300 and 8.3−8300 mg/L for D-fagomine and DNJ,
respectively. Calibration curves with 11 calibration standards each
were prepared across these ranges. All of the calibration standards were
prepared using matrix-matched solutions and were spiked with the
DMDP standard stock solution (100 μL, 5 mg/L). Linearity was
evaluated for every analytical run batch to compensate for ESI
variability. The concentration of the metabolites was expressed as DNJ
of D-fagomine equivalents as a result of the lack of commercial
standards.

A precision and trueness study was carried out with the different
matrices. The recovery study was performed by spiking the matrices

Table 1. Cone Voltages and Collision Energies Applied in
the ESI−MS/MS Analysis

cone voltage (V) collision energy (V)

DMDP 45 20

DNJ 45 20

D-fagomine 35 20

methyl-D-fagomine 20 30

dimethyl-D-fagomine 20 30

trimethyl-D-fagomine 35 30
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with D-fagomine at three different concentrations (67, 330, and
3300 mg/L in urine and 130, 670, and 6700 mg/kg in feces) in
triplicate in 3 different days. Three standard solutions of D-fagomine
were prepared in methanol (200, 1000, and 10000 mg/L), one for
each of the three spiking levels. In the case of urine, the solvent of an
aliquot (20 μL) of the corresponding standard was evaporated and the
residue containing D-fagomine was suspended in the matrix under
study (60 μL of urine). In the case of feces, a portion (60 mg) was
spiked with an aliquot (40 μL) of the corresponding standard.
The feces samples were processed 24 h after spiking, to ensure
complete evaporation of the solvent. Next, the samples were subjected
to the purification step. After elution, the eluates were spiked with the
DMDP standard stock solution (100 μL, 5 mg/L) to correct for ESI
variability. The solution was evaporated to dryness under a stream of
N2 at 60 °C, and the residue was redissolved in water (500 μL) and
filtered through a 0.45 μm nylon filter. In parallel, the calibration
curves were prepared using matrix-matched standards. Finally, the
samples and calibration standards were analyzed by liquid chromatog-
raphy−tandem mass spectrometry (LC−MS/MS). Recovery was
determined by comparing the AD‑fagomine/ADMDP signal obtained from
the spiked samples with the AD‑fagomine/ADMDP signal from the
calibration standards. Precision was evaluated by calculating the
relative standard deviations (RSDs) obtained in within and between
day recovery experiments. The limit of quantification (LOQ) was
established as the concentration at which a recovery value similar to
that of the trueness study was obtained with a RSD of <20% when
analyzing five spiked samples.

■ RESULTS AND DISCUSSION

Setup and Validation of the Analytical Method. The
analytical method was adapted for biological fluids from a
previously described procedure developed for the analysis of
plant sources (buckwheat and mulberry).1 Modifications were
introduced in the extraction step, and to improve selectivity and
sensibility, QqQ-MS was used instead of Q-MS. First, the MS
parameters, such as desolvation temperature, cone voltage, or

collision energy, were optimized to improve signal intensity for
the analytes under study. Then, selectivity, sensibility, and
linearity were checked by preparing the D-fagomine and DNJ
calibration curves using DMDP as an internal standard and two
solvents: water and the matrix resulting from control urine or
feces subjected to the extraction and SPE purification steps.
The calibration curves generated with the two matrices showed
significant signal suppression/enhancement (Table 2); there-
fore, the calibration standards used from that point on were
prepared using matrix-matched solutions. The assay response
(area of the D-fagomine or DNJ peak divided by the area of
the DMDP peak) to the D-fagomine or DNJ concentration was
linear (R2 > 0.99) in the ranges under study (1.8−8300 mg/L
and 8.3−8300 mg/L for D-fagomine and DNJ, respectively).
Within and between day precision and trueness were studied
using samples of urine and feces spiked with D-fagomine. In
the case of urine, the percentage recovery at the three
concentrations assayed (96%) was homogeneous (RSD of
12%), which demonstrated the precision and trueness of
the analytical procedure. The European Medicines Agency
(EMA)26 recommends a recovery value (trueness) in the range
of 85−115% and a RSD value (precision) of under 15% for
bioanalytical methods. In the case of feces, within day recovery
was 47% (RSD of 10%), outside the EMA suggested interval
(85−115%). Intraday recovery was 51% (RSD of 14%), which
demonstrated the validity of the method, despite the low
recovery. The results in this work are corrected for the recovery

Table 2. Signal Suppression and Enhancement Effect in
Matrix-Matched Solutions of Both Urine and Fecesa

D-fagomine/DMDP
signal versus
D-fagomine
concentration

DNJ/DMDP signal
versus DNJ
concentration

urine aqueous
standards

y = 0.58x − 0.4 y = 0.036x − 0.06

matrix-matched
standards

y = 0.099x − 0.3 y = 0.0018x − 0.005

SSE (%) 17% (signal
suppression)

5% (signal
suppression)

feces aqueous
standards

y = 0.103x + 0.1 y = 0.0025x − 0.027

matrix-matched
standards

y = 0.47x + 1 y = 0.010x − 0.08

SSE (%) 458% (signal
enhancement)

390% (signal
enhancement)

ay, relative abundance; x, concentration in mg/L or mg/kg; and SSE,
signal suppression/enhancement.

Table 3. Identification of D-Fagomine Metabolites by HPLC/HR-ESI−TOF−MSa

m/z retention time measured mass calculated mass formula ppm compound

148 11.7 148.0970 148.0974 C6H14NO3 −2.0 D-fagomine

162 9.4 162.1129 162.1130 C7H16NO3 −0.6 methyl-D-fagomine

176 12.7 176.1282 176.1287 C8H18NO3 −2.8 dimethyl-D-fagomine

190 13.3 190.1441 190.1443 C9H20NO3 −1.1 trimethyl-D-fagomine

aMeasurements made from a sample of urine collected 1 h after administration of D-fagomine (250 mg of D-fagomine/kg of body weight) during a
preliminary pilot study with Sprague Dawley rats.

Figure 1. Percentages of (a) D-fagomine and (b) DNJ, including their
methyl derivatives, excreted in feces and urine after oral administration
at three different doses.
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values. The LOQ values were 1.8 mg/L of urine or kg of feces
for D-fagomine and 8.3 mg/L of urine or kg of feces for DNJ.
DNJ shows a higher LOQ value because its ionization in the
MS detector was not as complete as that of D-fagomine.
The results of the validation study show that the new

methods met all of the requirements for a bioanalytical
process.26 The methods were selective; the response was linear
in the working range; precision and trueness fell within the
recommended range except for feces recovery; and the LOQ
was much lower than the D-fagomine and DNJ concentrations
found after the maximum excretion period. The methods were
successfully applied to the determination of D-fagomine,
DNJ, and their metabolites in the urine and feces of rats fed
D-fagomine or DNJ. The identity of the compounds was
confirmed by HPLC/HR-ESI−TOF−MS with samples gen-
erated in a previous separate experiment by administration of
250 mg of iminocyclitol/kg of body weight (Table 3).
Absorption and Excretion. The animals were adminis-

tered 2.0, 10, or 100 mg/kg of body weight of D-fagomine or
DNJ (positive control). The dose of 2.0 mg/kg of body weight

corresponded to the dose of D-fagomine that reduced the
postprandial blood glucose concentration (20% reduction of
the area under the curve between 0 and 120 min) after intake of
glucose or starch.7 At this active concentration, part of admini-
stered D-fagomine (0.2−0.4 mg) was absorbed and excreted in
urine within 8 h, while the rest was recovered in feces within
24 h (Figure 1a and Table 4). Absorption appears to be limited
as a result of saturation after a total amount of 3 mg of
D-fagomine has been absorbed (Table 4). The highest excre-
tion rate occurred in the period between 2 and 4 h in urine
(Figure 2 and Table 5) and in the period between 8 and 24 h in
feces (Table 6). D-Fagomine was not detected in feces collec-
ted by abdominal massage at 48 h after intake (Table 6).
Briefly, the absorbed portion of D-fagomine is cleared in urine

Table 5. D-Fagomine and DNJ Concentrations (mg/L) in Urine during Different Periods after Oral Administrationa

rat 0−1 h 1−2 h 2−4 h 4−6 h 6−8 h 8−24 h

D-fagomine (2.0 mg/kg of body weight) 1 88 100 − 72 47 ND

2 33 − 94 13 traces ND

3 68 − 47 ND 17 ND

DNJ (2.0 mg/kg of body weight) 4 160 − − − − 29

5 430 − − − 280 20

6 350 − − − 160 16

D-fagomine (10 mg/kg of body weight) 7 − 410 − 130 16 ND

8 620 − − 450 − ND

9 66 − − 65 180 ND

DNJ (10 mg/kg of body weight) 10 580 − 650 99 33 ND

11 180 − 230 42 ND ND

12 350 640 − 440 100 ND

D-fagomine (100 mg/kg of body weight) 13 − 660 380 220 48 <40

14 − 730 − 490 170 <40

15 − 2000 360 460 64 <40

DNJ (100 mg/kg of body weight) 16 − − 1100 − 570 <40

17 240 − 660 120 63 <40

18 230 1200 1300 400 90 <40

aND, not detected; −, collected at the next time point because the animal did not excrete urine during all collecting periods.

Figure 2. D-Fagomine concentration in urine after oral administration
of 2.0 mg/kg of body weight.

Table 6. D-Fagomine and DNJ Concentrations (mg/kg) in
Feces Excreted in the 8−24 h Period after Oral
Administrationa

rat 6−8 h 8−24 h 48 h

D-fagomine (2.0 mg/kg of body weight) 1 − 32 ND

2 ND 110 ND

3 ND 170 ND

DNJ (2.0 mg/kg of body weight) 4 ND ND ND

5 ND 71 ND

6 ND 34 ND

D-fagomine (10 mg/kg of body weight) 7 − 750 ND

8 − 450 ND

9 − 890 ND

DNJ (10 mg/kg of body weight) 10 ND 150 ND

11 ND 650 ND

12 − 340 ND

D-fagomine (100 mg/kg of body weight) 13 5000 14000 ND

14 4000 9200 ND

15 − 8500 ND

DNJ (100 mg/kg of body weight) 16 ND 11000 ND

17 ND 8100 ND

18 − 6300 ND
aND, not detected; −, collected at the next time point because the
animal did not excrete feces during all collecting periods.

Journal of Agricultural and Food Chemistry Article

DOI: 10.1021/acs.jafc.7b01026
J. Agric. Food Chem. 2017, 65, 4414−4420

4418



within 8 h, and the non-absorbed portion is cleared in feces
within 24 h after intake. The behavior of D-fagomine and DNJ
(positive control) was similar (Figure 1 and Tables 4−6), and
the absorption under our experimental conditions reached
saturation at a total absorbed amount of 3 mg. Because most
(around 90% at the three doses) of both of the ingested
iminocyclitols is excreted, whether in urine or feces, within the
first 24 h after oral administration, these compounds probably
do not accumulate in tissues, as already suggested by Nakagawa
et al.15

The results presented here for DNJ agree with two other
studies that also used a pure compound.15,18 Nakagawa et al.15

found that about 0.6 mg of DNJ (2%) was excreted in urine
within 24 h after a 110 mg/kg of body weight oral administra-
tion after fasting.15 Kim et al.18 reported that about 4 mg of
DNJ administered was excreted in urine within 24 h after a
30 mg/kg of body weight oral administration; the non-absorbed
fraction was excreted in feces within 48 h. When DNJ was
administered as a component of a plant extract, the excretion
profile was similar to that obtained here. Xiao et al. reported that
about 2.5 mg of DNJ in a mulberry root bark extract was
excreted in urine within the first 4 h.27 Our results show that
D-fagomine is absorbed as fast as DNJ.
Metabolism. It has been reported that DNJ (positive

control) is mainly excreted in the intact form.15,16,18,27

Nakagawa et al. did not detect any degradation products
(e.g., oxidized and alkylated products) in plasma and reported
that a small signal in the HPLC−MS single ion monitoring
chromatogram might correspond to an unidentified metabo-
lite.15 We found trace amounts of monomethyl-DNJ in urine
and several methyl derivatives of D-fagomine. A monomethy-
lated conjugate was present in urine (10%) and feces (3%), at
the three doses, within the period of 0−8 h (Figure 1a and
Table 4). We also detected trace levels of dimethyl-D-fagomine
and trimethyl-D-fagomine in urine, at the three doses, within
the period of 0−8 h. In a preliminary experiment with samples
obtained by administering a higher dose of D-fagomine
(250 mg/kg of body weight), signals compatible with
deoxygenated products were detected that were not found at
the lower concentrations used here. Metabolism of organic
compounds consists mainly of their conversion into more
hydrophilic species that can be readily excreted.28 Phase II
conjugation into glucuronides and sulfates are the most
common transformations. Iminocyclitols, such as D-fagomine
and DNJ, are already highly water-soluble, and they are rapidly
excreted without further modification. Methylation is a less
common phase II conjugation that reduces water solubility and
plays the physiological role of blocking biological activities by
modifying chemically active functions, such as those of amines
and hydroxyls.29 In the case of D-fagomine, because only a small
percentage is methylated, it is unlikely that methylation serves
the purpose of deactivation. Its structure may partially fit the
requirements for the enzymes involved in the modification of
other chemical species, most likely sugars. The presence of
methyl-D-fagomine in feces could be explained by biliary
excretion after modification in the liver. Alternatively, methyl-D-
fagomine may be generated by the gut microbiota because
some species of the phylum Actinobacteria are capable of
methylating the terminal units of oligosaccharides.30

The presence of intact D-fagomine in urine for several hours
after oral ingestion may have important implications for the
maintenance of a healthy status in the urinary tract. The concen-
tration of D-fagomine in contact with the tissues along the

urinary tract for the period of 1−6 h, in all of the rats tested at
any dose (Table 5 and Figure 2), was higher than the
concentration (10 mg/L) that inhibits adhesion (95%) of
Escherichia coli to the intestinal mucosa.7 Therefore, at the dose
that is active at lowering the postprandial glucose concentration
by 20% (2.0 mg/kg of body weight, the lowest dose tested),
D-fagomine may protect against urinary tract infections.
D-Fagomine may also protect the intestinal tract against
infections. We recently showed that D-fagomine, at a dose of
23 mg kg−1 of body weight day−1, reduced the increase in the
population of Enterobacteriales induced by a high-fat, high-
sucrose diet.11

To summarize, orally administered D-fagomine is rapidly
absorbed and excreted in urine within 8 h in rats. The non-
absorbed fraction is cleared in feces within 24 h. D-Fagomine is
partially methylated (about 10% in urine and 3% in feces).
The concentration of D-fagomine in urine at 1−6 h after oral
administration of 2.0 mg/kg of body weight is higher than
the concentration that inhibits (95%) the adhesion of E. coli
to epithelial surfaces. Therefore, D-fagomine may protect the
urinary tract against infections caused by Enterobacteriales at a
dose that is active at reducing the postprandial blood glucose
concentration.
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