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Abstract

Chemical source localization (CSL) by autonomous robots has been a topic of research
since the early 1990s and still today remains elusive beyond simple scenarios. It has nu-
merous potential applications, such as the localization of toxic emissions, malodors, gas
leaks and hazardous substances in general, without risking human lives. An intuitive CSL
approach is to mimic the known chemo-orientation behaviour of some flying insects, such
as moths and mosquitos, which effectively use odor plumes for mating and foraging. How-
ever, terrestrial robots are too slow to perform insect-like movements and the response time
and limit of detection (LOD) of current odor sensors for key compounds of biological rel-
evance for plume navigation is orders of magnitude higher than in biological chemorecep-
tors. Instead of using a slow terrestrial robot equipped with complex instrumentation, in
this thesis we address the CSL problem with a nano-drone, i.e. a miniaturized aerial robot,
equipped with a simple metal oxide semiconductor (MOX) sensor.

Improving key specifications of MOX sensors for this application is one of the core
parts of this thesis. Specifically, we introduce novel signal processing methods for es-
timating and optimizing the LOD, reducing the power consumption and improving the
response time. The LOD is a key figure of merit of an odor sensor but difficult to estimate
in non-linear devices (e.g. MOX sensors) or sensory systems with multivariate output (e.g.
sensor arrays or temperature-modulated MOX sensors). We propose a univariate LOD
optimization method based on linearized calibration models and a multivariate approach
based on orthogonal partial least squares (O-PLS). To improve the response time, we use
high-frequency features extracted from the MOX signal derivative, known as ’bouts’ and
optimize the algorithm for changing wind conditions and real-time operation. A novel
setup consisting on a 3D grid of MOX sensors is proposed for 3D feature selection and
real-time visualization of the gas distribution. Two map-based CSL strategies, one based
on the instantaneous response and the other one based on bouts, are finally evaluated using
the nano-drone in experiments performed in a large indoor environment (160 m2) where a
chemical source is placed in challenging positions.

The experimental results demonstrate that the proposed platform can be used to quickly
(< 3 min) build a rough gas distribution map (3D) of the environment and localize the main
chemical source within it with small errors. Future research lines in this field may focus on
improving the selectivity of MOX sensors and the self-location of nano-drones, to perform
fully autonomous exploration of complex environments.
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Keywords: Mobile Robotics Olfaction, Gas Sensors, MOX Sensors, Gas Source Lo-
calization, Gas Distribution Mapping, UAV, Nano Drone, Signal Processing, Limit of De-
tection, Low Power Consumption, Temperature-modulation.
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Chapter 1

Introduction

Many of the gases and volatile organic compounds (VOCs) present in indoor or outdoor
air have toxic or flammable properties that can potentially cause harm to people, environ-
mental damage and financial losses. Such gases may be released from different sources: as
exhaust gases from traffic or industry, chemical leaks, flue gases from fires, geochemically
active regions, domestic incidents, explosive compounds, foundries, agricultural plants,
refineries and petrochemical plants (Figure 1.1(a)), among others. In places such as com-
post facilities, landfill sites (Figure 1.1(b)) or waste water treatment plants, the emitted
gases are not only an environmental threat but can also be olfactory annoying to urban
communities located near the emission source [1].

(a) (b)

Figure 1.1: Examples of gas emitting sites. (a) Petrochemical plant1. (b) Landfill2.

Human’s ability to detect and find the source of most dangerous gases is limited be-
cause some gases are invisible and, in most cases, have poor olfactory warning properties
(i.e. odor thresholds) relative to their dangerous concentrations [2]. For example, methane
(CH4) is a colorless and odorless gas that easily forms underground leading to explosions

1

2

1

https://www.hpi-llc.com/industries-and-expertise/oil-gas-turbines/refinery-petrochemical-plant-services
https://www.hpi-llc.com/industries-and-expertise/oil-gas-turbines/refinery-petrochemical-plant-services
https://bosstek.com/odor-emissions-a-new-social-and-legal-dynamic
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and mine fires. Dreadful disasters, such as the one of the Courrières mine (France, 1906)
or the Benxihu Colliery (China, 1942) that caused the death of 1099 and 1549 miners,
respectively, motivated the development of artificial gas detection systems. The modern
era of electronic gas sensing started in the late 1920s with the invention of the catalytic
combustible gas sensor, to prevent explosions in fuel storage tanks [3]. Since then, many
electronic technologies have been developed to detect, quantify and analyze a wide array
of gases.

Gas sensors can be classified as in-situ or remote, according to whether they require
direct interaction with the gas to produce a measurement or not [4]. In-situ gas sensors,
also called point sensors, are based on the change of the properties of a material (e.g. con-
ductivity, resonant frequency, etc.) when a gas interacts with it. Common in-situ sensors
include semiconductor sensors, electrochemical sensors, combustible gas sensors, pho-
toionization detectors, infrared point sensors and ultrasonic sensors. On the other hand,
remote optical sensors such as tunable diode laser absorption spectroscopers (TDLAS) [5]
or optical gas imaging (OGI) cameras measure a fundamental physical property of the tar-
get molecule (infrared absorption) without directly interacting with the gas. This prevents
some failure mechanisms associated to in-situ gas sensors, such as poisoning and batch-
to-batch variation in responsivity. Optical gas analyzers can be very selective for chemical
species with unique absorption spectra (e.g. CO2) but are not able to detect gases that do
not absorb infrared energy (e.g. H2, O2 or N2). With a relatively high price, optical remote
instruments fill the gap between low-cost in-situ sensors with inferior performance and
expensive high-end laboratory equipment, such as the mass spectrometer (MS).

If the potential source of a gas leak is known or a small area needs to be protected
against a harmful gas, a fixed gas detection system might be an effective solution (Fig-
ure 1.2(a)). Portable gas detectors are commonly utilized in large areas where fixed sys-
tems are impractical or cost prohibitive, in search and rescue operations or in environments
where people are only present to perform specific tasks on a limited basis (Figure 1.2(b)).
A portable gas detector usually integrates one or more point-like sensors, a pump to bring
the sample to the sensors and the necessary conditioning electronics. Over the past decade,
some remote optical technologies (e.g. TDLAS) have evolved from specialized labora-
tory equipment to commercial portable devices, such as the remote methane leak detector
(RMLD) [6].

The idea of installing a portable gas detector in a remote controlled mobile robot was
first reported in 1984 [7], for the localization of gas leaks in nuclear plants minimizing hu-
man exposure to radiation. Similar scenarios were devised later for autonomous robots in
charge of firefighting, prospecting, demining, environmental monitoring, search and res-
cue, contraband interception and others [8–11]. Mobile robots are effective in replacing
humans dealing with simple but laborious repetitive tasks (e.g. routine patrols), can work
in hostile atmospheres (e.g. radioactive, oxygen-deficient, extreme temperatures) and nav-
igate through confined spaces that preclude human entry. This makes them suitable plat-
forms for Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) incident
response applications [12, 13].

3http://www.gassonic.com/products/gassonic_observer_i
4https://www.tech4g.com/gas-detection-becoming-mandatory-at-workplace

http://www.gassonic.com/products/gassonic_observer_i
https://www.tech4g.com/gas-detection-becoming-mandatory-at-workplace
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(a) (b)

Figure 1.2: (a) Ultrasonic detector used to detect gases escaping from pressurized leaks3; (b) Human
operator monitoring gases in a sewer tunnel using a PID4.

A mobile olfactory robot can perform a number of olfactory related tasks, including
chemical trail following (CTF), gas source localization (GSL) and gas distribution map-
ping (GDM) [14]. Chemical trails are odor markers that a mobile robot navigating an
environment can lay on the floor to find its way back to the starting point, to mark parts of
the environment which have been already explored or to communicate with other robots. A
chemical trail is relatively easy to detect by placing a gas sensor facing downwards in front
of the robot and attaching a fan to bring the chemicals closer to the sensor (Figure 1.3(a)).
Then, the robot follows a zig-zag trajectory to detect the edges of the trail [15, 16].

(a) (b) (c)

Figure 1.3: (a) Robot with one MOX sensor (1994) [17]; (b) Robot equipped with an electronic
nose and an anemometer (2009) [18]; (c) Terrestrial robot equipped with remote optical sensors for
monitoring methane leaks in industrial plants (2012) [19].

GSL is a much more challenging task that consists on searching for the point of release
of a gaseous substance, e.g., in applications such as gas leak detection or localization of
explosives. The first experiments using mobile robots for GSL were reported in the early
1990s [17, 20–23] and still nowadays is an open research problem. GSL robots typically
include several gas sensors to compute the chemical gradient and anemometers to deter-
mine the wind direction (Figure 1.3(b)). The main challenges are related to the chaotic
propagation of chemicals in turbulent fluid flows, the known limitations of in-situ gas sen-
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sors and the mobility constraints of mobile robots. Chemicals released in air are advected
downstream by wind, in the form of a plume. In most natural indoor and outdoor environ-
ments, air flow is in the turbulent regime [24]. Turbulence breaks the plume into patches
or eddies (Figure 1.4(a)). Consequently, the instantaneous concentration measured in the
centerline of a turbulent plume strongly fluctuates with time (Figure 1.4(b)). High con-
centration peaks are interspersed with "blanks" of zero or near-zero concentration, which
explains why simple orientation to a concentration gradient is unlikely to lead a robot
towards the source [21].

(a) (b)

Figure 1.4: (a) Image of a turbulent dye plume captured using planar laser-induced fluorescence
(PLIF) [25]; (b) Instantaneous concentration measured by a fast PID (330 Hz) in the centerline of a
turbulent plume (the trace is 15 s) [26].

To cope with the intermittent structure of turbulent plumes, researchers developed so-
phisticated navigation algorithms inspired by the excellent odor tracking behaviour of
some insects [27]. These algorithms were mostly demonstrated in simplified test envi-
ronments with controlled air streams, no obstacles, no chemical interferences and with the
robot placed relatively close to the gas source [28]. At this time, it is unclear whether these
bioinspired reactive behaviours have better performance than other approaches based on
statistical inference from cumulative readings [28–30]. According to Hernandez et al. [28],
the bioinspired reactive behaviors that researchers have implemented on mobile robots are
modelled too simple to cope with complex environments, gas sensors used are too slow
to resolve plume features in a milliseconds scale and mobile robots are not agile enough
for performing insect-like reactive movements. Later on, researchers investigated the use
of terrestrial robots equipped with optical remote sensors (Figure 1.3(c)) for gas leak de-
tection in complex environments, such as industrial facilities [19] and landfills and biogas
production sites [31].

GDM is the task of building a map of the gas distribution based on spatially and tempo-
rally distributed concentration measurements. A gas distribution map can highlight areas
in which high concentrations of a harmful gas are to be expected (Figure 1.5), providing a
means of addressing the GSL problem. Although fixed measurement stations are primar-
ily used for this purpose due to the social problems associated to industrial contamination
and dispersion of annoying odors, GDM is an ideal task for mobile robots because they
can provide higher spatial resolution than a network of fixed stations, at a much lower cost.
Mobile robots represent a trade-off between spatial and temporal resolution, since they can
measure in a spatially dense grid but they cannot measure at several times simultaneously.
A way to overcome this limitation is to use multiple mobile robots that collaboratively
explore the target area [9] or integrating the information provided by mobile robots with
data captured by fixed networks [32]. For instance, terrestrial robots have been used for
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mapping pollution in public areas [33] and methane emissions in landfill sites [28], among
other scenarios [34, 35].

Figure 1.5: Gas distribution map of an industrial site, built using measurements of an aerial vehicle
carrying a portable gas detector5.

Underground, underwater and aerial applications of gas-sensitive robots have been re-
ported too. Odor robots equipped with ground-penetrating probes (Figure 1.6(a)) have
been proposed for searching buried chemical sources, such as truffles, gas/fuel leaks from
buried pipes and storage facilities, land mines or victims of avalanches or earthquakes [36–
38]. Autonomous underwater vehicles (AUVs) have been used for monitoring natural wa-
ters [35, 39] (Figure 1.6(b)) or identification of seafloor structures such as fissures, bubble
plumes, exposed hydrates, carbonates, etc. [40, 41].

Unmanned aerial vehicles (UAVs), commonly known as drones (Figure 1.6(c)), equipped
with gas detection systems and/or sampling bags have been used for environmental mon-
itoring [35, 42–49], volcanic gas sampling [50–55], localization of fugitive emissions [56,
57], early fire detection [58,59], precision agriculture [60–62], landfill monitoring [63–65],
disaster response [66] and mine blasting [67], among others [68, 69].

(a) (b) (c)

Figure 1.6: (a) Ground-penetrating mobile robot, equipping a probe with a MOX gas sensor [37];
(b) Underwater vehicle equipped with a mass spectrometer for monitoring of natural waters [39];
(c) Unmanned aerial vehicle equipped with in-situ gas sensors and a sampling bag for pollution
monitoring in residential neighbourhoods6.

The growing civilian interest in UAVs for gas sensing applications is demonstrated by
the rapid emergence of companies selling air quality sampling units for UAVs or UAVs

5

6

http://scentroid.com/photo-gallery-4
http://scentroid.com/police-using-scentroid-dr1000-flying-lab-to-combat-smog
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with an integrated gas detector. Some examples are provided in Figure 1.7. Scentroid
DR1000 is an air quality sampling unit that can be attached to any UAV that can carry
a payload heavier than 3.5 kg (Figure 1.7(a)). The DR1000 can host up to five chemi-
cal sensors for real-time monitoring of pollutants such as particulate PM1-10, ethanol,
formaldehyde or ammonia. It can also include a sampling bag for sample collection in po-
tentially dangerous sites, such as chimneys or flares. This platform and similar ones have
been already used by police departments in some European countries for law enforce-
ment purposes; e.g. to detect illegal emissions from chimneys6 or to find illegal gardens of
cannabis7.

The GasFinder2, from Boreal Laser, is a custom TDLAS device to provide fixed-wing
UAVs with the ability to localize fugitive emissions of gases such as methane, carbon
dioxide, and ammonia, among others. The analyzer is installed in the body of the aircraft
and fibre optic cable carries the laser light from the analyzer to the transceiver (Tx/Rx)
placed on one of the UAV’s winglets (Figure 1.7(b)). The laser light emitted from the
Tx/Rx travels over the wingspan of the UAV and is reflected back by the retro-reflector,
forming an active measurement path. The detector within the Tx/Rx converts the received
laser light into an electrical signal which is carried back to the analyzer via coaxial cable. If
the UAV flies through a plume containing methane concentration above a preprogrammed
threshold, the remote controller will display an audible alarm so the UAV pilot can circle
around the potential fugitive gas emission to survey the leak further.

Other companies sell UAVs already equipped with optical remote sensors, mainly for
detection of methane. For example, the mdTector (Figure 1.7(c)), from Microdrones, con-
sists of a laser absorption spectrophotometer (Pergam Suisse AG, Switzerland) integrated
with a Microdrones md4-1000 UAV. Its purpose is to aid operators in the inspection of
methane gas infrastructure, natural gas line surveys, landfill emission monitoring, and
plant safety, among others. The HS-5000 (Hesai Ltd) is a similar system in which a TD-
LAS detector is mounted in a small UAV for autonomous natural gas inspection in high-
rise buildings. The M600 PRO OGI (Figure 1.7(d)), from Viper Systems, is a Matrice 600
UAV (DJI) equipped with an OGI camera (FLIR Systems) for aerial gas leak detection.

A potential limitation of UAVs for gas sensing tasks is the interaction between the air
flows produced by the propulsion system and the existing gas distribution. Rotorcrafts,
which are the most popular type of UAV due to its ability to hover, generate strong air
flows beneath the rotors (i.e. downwash) that strongly disturb the local gas distribution
near the drone and might have negative consequences for the utility of the gas sensor
data [70–72]. As can be seen in Figure 1.8, a smoke plume becomes more spread and less
concentrated after a drone flies above it. As a result, the on-board gas sensors register less
concentration than if the same measurements were taken with a hand-held detector [70].
Estimating the direction of the gas source becomes thus more challenging [71, 72]. UAVs
mounting remote optical technologies are not necessarily affected by this problem because

7https://www.trendhunter.com/trends/high-tech-aerial-drug-sniffing-dutch-\

police-canna-chopper-cannabis
8http://scentroid.com/scentroid-dr1000
9https://www.microdrones.com/en/integrated-systems/mdtector/mdtector1000ch4

10https://viper-drones.com/systems/dji-m600-pro-optical-gas-imaging-gas-leak-\

detection-system
11http://www.boreal-laser.com/products/uav-based-gas-detector

https://www.trendhunter.com/trends/high-tech-aerial-drug-sniffing-dutch-\police-canna-chopper-cannabis
https://www.trendhunter.com/trends/high-tech-aerial-drug-sniffing-dutch-\police-canna-chopper-cannabis
http://scentroid.com/scentroid-dr1000
https://www.microdrones.com/en/integrated-systems/mdtector/mdtector1000ch4
https://viper-drones.com/systems/dji-m600-pro-optical-gas-imaging-gas-leak-\detection-system
https://viper-drones.com/systems/dji-m600-pro-optical-gas-imaging-gas-leak-\detection-system
http://www.boreal-laser.com/products/uav-based-gas-detector


7

(a) (b)

(c) (d)

Figure 1.7: Commercial UAVs equipped with gas detectors. (a) Scentroid DR1000 air quality sam-
pling unit attached to a DJI S1000 octocopter8; (b) Boreal GasFinder2 laser detector mounted on
a Bramor ppX fixed-wing UAV (C-Astral Aerospace Ltd.)9(c) Microdrones mdTector for methane
infrastructure inspection10; (d) DJI M600 PRO with OGI camera for gas leak detection11;

the UAV does not need to be in the plume for measuring. Fixed-wing UAVs produce less
disturbance to the plume than rotorcrafts as they generate force behind the aircraft (i.e.
wake turbulence).

Figure 1.8: Smoke column (a) before, (b) during and (c) after a DJI M600 hexacopter flies over it
(Source: Unpublished results).

Thanks to recent advances in micro-technology, manufacturers of drones have been
able to develop miniaturized drones; with insect-sized aircrafts reportedly expected in the
future (Figure 1.9). A nano air vehicle (NAV) or nano-drone is extremely small, with a
wingspan lower than 15 cm, and weighs less than 50 g [73]. The tiny form-factor and
maneuverability of nano-drones allow remote sensing of hazardous environments inacces-
sible to bigger drones, can fly over areas being unobserved and the propellers introduce
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less disturbance to the surrounding gas distribution than larger drones. For example, a
nano-drone equipped with gas sensors could be used to search for victims and hazardous
gas leaks inside damaged buildings or pockets that form in the aftermath of an earthquake
or explosion. Compared to terrestrial robots, a nano-drone could navigate such environ-
ments (and many others) much faster, evading obstacles or large gaps and sampling the
space in 3D.

Figure 1.9: Classification of drones according to their approximate weight (and size). The graphic
shows the large diversity of drones in which the possible sizes spans seven orders of magnitude
(from [74]).

Two experimental works [72, 75] already explored the viability of nano-drones for
gas sensing tasks. Rossi et al. [72] performed preliminary indoor experiments using a
CrazyFlie 2.0 nano-drone equipped with a MOX sensor. Surprisingly, the authors found
that the air drawn down around the airframe strongly affected the sensor response, resulting
in useless signals. They evaluated several mechanical solutions to hold the sensor out of
the radius of turbulence, but the drone became uncontrollable because of inertia problems.
The adopted solution was to operate the drone in the so-called “butterfly” mode, in which
a human pilot lands the drone in the proximity of the source and halts the motors to take a
measurement. In this way, the sensor signals are not affected by the rotors but, at the same
time, the 3D sensing capabilities of the drone are not used, and the approach might not
scale well to large scenarios.

Fahad et al. [75] equipped the same nano-drone with a chemically sensitive field ef-
fect transistor (CS-FET) sensor for hydrogen (H2) detection. The test environment was a
chemical hood in which H2 was released from the upper part of the hood and the drone
ascended from the bottom of the hood to the area near the source (h = 60 cm), aided by
high tension strings. The sensor response increased as the drone approached the source,
reaching its maximum value after hovering (i.e., levitating) near the source for 40 s. The
drone was merely used as a proof-of-concept demonstration of the proprietary gas sensor
developed by the authors. The above works suggest that a nano-drone might be used for
gas source localization, however the experimental scenarios were extremely simple.

The main problems for performing large-scale experiments in complex environments
using nano-drones are related to the limited on-board resources and difficulty to control
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the platform due to inertia and stability issues. Taking as an example the CrazyFlie 2.0
(CF2) quadcopter, the tiny 240 mAh battery delivers power for up to 7 min of flight and
15 grams of payload, which means that only lightweight and power-efficient sensors can
be mounted on board. Self-localization and obstacle avoidance—required for autonomous
navigation—are hard to accomplish because laser scanners, for example, are too heavy
for the nano-drone payload. Autonomous navigation using RGB cameras is still imma-
ture for a real application [76]. The Global Positioning System (GPS) can be used for
localization outdoors where, however, nano-drones can often not be controlled stably due
to their low inertia and strong wind. Semi-autonomous navigation in indoor areas can be
achieved through motion capture systems (MOCAPs) [77] or radio frequency (RF)-based
systems [78]. Deploying an external localization system might not be possible in many
realistic scenarios (e.g., in a disaster situation) and the drone would have to navigate au-
tonomously or remotely controlled by an operator.

Gas sensing tasks using a nano-drone are also subject to additional constraints, as they
must be executed in the short time limited by the battery capacity and relying exclusively
on one or two in-situ gas sensors. It should be noted that most research on GSL and GDM
is based on terrestrial robots, which can run for hours, perform long measurements of
1–2 min at each sampling location and possibly use selective sensors (e.g., TDLAS, OGI
cameras, e-noses) and anemometers. Large drones can fly for 20–25 min and be equipped
with the same technology as terrestrial robots. Nano-drones are therefore subject to un-
precedented constraints because a stop-sense-go strategy would only allow for at most 10
measurements (of 30 s each), the limited number of sensors hinder rejecting chemical in-
terferences and the absence of anemometry prevents assessing the wind direction, which
is a key parameter for GSL. During its operation, the drone can also not fly too fast or the
relevant structures of the chemical plume may become blurredor shifted due to the slow
response time of the sensors [14].

1.1 Gas dispersion

To select appropriate sensors and algorithms for odor robots, it is of practical interest to
understand the dispersion dynamics of the target gas in the target environment. In this
section, we explain the basics mechanisms of gas dispersion and present the main gas
dispersion models that can be used in certain conditions to predict the spatial concentration
of a released gas.

1.1.1 Gas dispersion mechanisms

A chemical released in a fluid (e.g., air) disperses according to two mechanisms, diffu-
sion and advection. Molecular diffusion is the motion of gas particles due to temperature,
which explains the movement of particles from regions of high concentration to regions of
lower concentration. In the absence of external forces, diffusion would lead to a dynamic
equilibrium where the distribution of gas molecules in the environment is uniform. Ad-
vection is the movement of gas particles due to the motion of the fluid in which they are
suspended, usually creating a "plume" (Figure ??). Plumes that develop in slowly moving
viscous fluids (e.g., liquids) usually show a smooth laminar behavior, whereas plumes in
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fluids with high flow rate or low viscosity (e.g., gases) typically present turbulent charac-
teristics [79]. Turbulent plumes are characterized by unsteady aperiodic motion, random
spatial variations (3D) and intermittent temporal structure.

The thermodynamics of the gas being released and the characteristics of the gas source
also affect gas dispersion. Near the release point, the plume can be influenced by the ther-
modynamics of the gas (e.g., pressure, temperature, density, etc.). Substances which are
lighter than air (e.g., hydrogen and helium) and hot gases (e.g., those emitted during a fire)
generally show buoyant plumes near the release point. Alternatively, heavy gases, such as
propane or chlorine, and cold gases (e.g., Methane is liquefied at –162 ºC for transporta-
tion and storage) will generate downward plumes near the leak point. Gases with similar
density to air (e.g., ethanol or CO) will be neutrally buoyant, which means that they do
not have any intrinsic movement of either up or down. As the plume moves away from
the release point, the concentration of the gas decreases and its density becomes similar to
that of air. At this point, the plume becomes fully dominated by the air flow of the envi-
ronment. This is not the case for gases released at high velocity (e.g. due to punctures in
pipes, vent stacks or safety valves), since they will cause jets. The velocity inside a jet is
usually much higher than the wind speed, so that dispersion in this case is mostly affected
by the properties of the jet itself.

Dispersion mechanisms indoors (e.g., inside a building or a cave) are completely dif-
ferent than outdoors, due to boundary effects of the building walls, weak air flow regime,
thermal sources (e.g., hot equipment, radiators), forced ventilation systems, etc. In outdoor
scenarios, the wind speed is usually strong and its direction can be considered relatively
homogeneous across the experimental area for limited periods of time (Figure 1.48), yield-
ing relatively well-defined plumes. Indoor environments present as a defining characteris-
tic a lack of strong or persistent mean flow (Figure 1.48), except in corridors or areas with
forced ventilation (either by artificial means or through open windows). The low energy
turbulent mixing produces a chaotic patchy gas distribution of the released chemicals and
the gas concentration rapidly increases in case of a leak due to boundary effects of the
walls [80]. Local maxima in concentration have been observed at some distance to the
source if the source has been active for some time [81, 82]. In most natural indoor and
outdoor environments, air flow is in the turbulent regime [24].

1.1.2 Gas dispersion models

Gas dispersion models enable the prediction of gas concentrations (as a function of time)
at any location surrounding the gas release (up to several kilometres). They are normally
used by air quality management agencies to estimate outdoor air quality by predicting the
downwind concentration of hazardous gases emitted from industrial plants, vehicular traf-
fic or accidental chemical releases. Although several indoor dispersion models exist [83],
the literature in this field is relatively sparse compared to outdoor pollutant dispersion. In
this section we describe three popular gas dispersion models: the Gaussian plume model,
the filament/particle model and computational fluid dynamics models.
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(a) (b)

Figure 1.10: Air flow map of (a) outdoor environment; (b) indoor closed room. At each location,
the arrow’s length and orientation represent the average wind speed and direction, respectively, com-
puted over 30 s. The air speed varied within the following limits: (a) 0.3 to 1.8 m/s, (b) 0 to 0.08 m/s
(from [28]).

Assuming a steady homogeneous fluid flow and a continuous point-like source, the solu-
tion to the convection-diffusion equation is the Gaussian plume model (GPM) [84])

c(x,y,z) =
q

2πUσyσz
exp

(
− y2

2σy2

)
·
{

exp

(
− (z−H)2

2σz2

)
+ exp

(
− (z+H)2

2σz2

)}
(1.1)

where c is the average concentration (g/m2), x,y,z are the downwind, crosswind and
vertical distance from the source (m), respectively, q the release rate (g/s), H the height
(m) of plume centerline and U the average wind speed (m/s) along the plume centerline.
Equation 1.1 describes a model where the crosswind and vertical dispersion follow a Gaus-
sian distribution with standard devation σy and σz, respectively, and the source is located
at the origin of coordinates (Figure 1.11). The quantities σy and σz can be computed from
charts [85] based on the atmospheric stability class, the mean wind speed (U) and the
downwind distance (x). There is physical evidence that the model is valid in many outdoor
scenarios if the wind conditions are stable and spatially uniform, there are no obstacles and
measurements are averaged for at least 10 minutes [85–88]. GPMs are not adequate when
the wind speed is low or unsteady. There exist other formulations of the GPM [85, 89].

Farrell [90] developed a computationally-efficient plume model that not only accounts
for long-term plume characteristics but also for short-term features called filaments. The
plume is represented as a sequence of ’puffs’ [91] that are released sequentially by the

12
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Figure 1.11: Schematic diagram of a Gaussian plume12

source, and each puff is composed of multiple filaments (Figure 1.12). It is assumed that
filaments are dispersed by wind, so that the position pi(t) = (px, py, pz) of the i-th filament
at time t can be computed from its previous position pi(t − 1) and the wind vector. The
instantaneous concentration C (ng/m3) at location x = (x,y,z) and time t is the sum of the
concentrations contributed by the N filaments of the plume

C(x, t) =
N

∑
i=1

Q√
8π3R3

i (t)
exp

(
−‖x−pi(t)‖2

R2
i (t)

)
(1.2)

where Q is the release rate (ng/s) and Ri(t) the size (m2) of the i-th filament at time t.

Figure 1.12: Simulated odor plume using the filament-based model (from [90]). The arrows indicate
the wind direction.

Computational fluid dynamics (CFD) [92] dispersion models aim at numerically solv-
ing the analytically intractable Navier-Stokes (NS) equations [93] in 3 dimensions. These
equations are a set of nonlinear partial differential equations that model the pressure (p),
density (r), temperature (T ) and velocity of the fluid (vx, vy and vz) as a function of the spa-
tial coordinates (x, y, z) and the time (t). Given some initial conditions, the NS equations
could in theory predict the properties of the fluid (independent variables) at each point of
space and time (dependent variables), which would enable predicting the gas concentration
c(x,y,z, t).
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A direct numerical simulation (DNS), i.e. solving the whole range of spatial and tem-
poral scales of the turbulence, requires extremely high time resolution and fine three-
dimensional grids, which makes it computationally infeasible [94]. Two methods can be
employed to simplify the Navier–Stokes equations in such a way that small-scale fluc-
tuations do not have to be directly simulated: large eddy simulation (LES) and Reynolds
averaged Navier Stokes (RANS). LES filters out eddies smaller than a certain size and only
simulates the largest eddies. RANS considers all the scales of turbulence but only models
the time-averaged airflow in the environment, using turbulence models [95]. CFD results
strongly depend on the ability of the chosen turbulence model (there are hundreds of differ-
ent turbulent models) and the specified initial conditions to predict all physical phenomena
of the target environment. CFD simulations of gas releases inside buildings tend to be over
simplistic, due to difficult-to-model convective flows (e.g., heat conduction through the
building enclosure, heat from objects, solar radiation through the windows) and mechani-
cal movements (e.g., forced ventilation systems and occupant movement) [94].

CFD models have been developed for simulating dense gas dispersion events [96], at-
moshperic dispersion in urban areas [97] or gas dispersion in indoor scenarios [94,98,99].
GADEN [99] combines a CFD wind simulator and a filament-based dispersion model to
produce a 3D representation of gas dispersion in realistic indoor scenarios, e.g., including
walls and obstacles. An advantage over other CFD simulators is that multiple gas sources
and different chemical substances can be simulated simultaneously (Figure 1.13).

Figure 1.13: Snapshot of GADEN simulation13of an indoor environment with three simultaneous
gas sources with different molecular weights.

1.2 Gas source localization algorithms

GSL algorithms are usually classified according to the characteristics of the fluid in which
they are supposed to work: diffusion-dominated flow, strong turbulent flow or weak turbu-
lent flow [27]. GSL strategies in diffusion-dominated environments are usually gradient-
based, whereas GSL for turbulent flows can be divided into three groups [27]: reactive
plume tracking (bioinspired) algorithms, plume modelling algorithms and map-based ap-
proaches (Figure 1.14).

14https://www.youtube.com/watch?v=ZPGtk8KLtiE&t=139s

https://www.youtube.com/watch?v=ZPGtk8KLtiE&t=139s
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Figure 1.14: Gas source localization strategies. (a) Reactive plume tracking; (b) Plume modelling;
(c) Gas distribution mapping

When the fluid flow is dominated by viscosity, as in underground or underwater scenarios,
smooth chemical distributions with a single peak at the location of the gas source can be
found. In this case, simply following the concentration gradient is an effective method to
localize the gas source (Figure 1.15). A 2D chemical gradient can be computed using a
single sensor [20], two symetrically arranged sensors [21] or three sensors shaped in a tri-
angle [100]. In the single sensor case, acquisition of spatially separated measurements by
moving the robot between the sites of the reading is necessary [20,101]. This is also neces-
sary in the case of multiple sensors if the chemical field is weak or the separation between
the sensors small. Using multiple sensors is faster but requires matching the responses of
the different sensors and is more prone to sensor drift.

Global maximum

Local maximum

Starting point 2

Starting point 1

Figure 1.15: Gradient ascent method (2D). The color map represents the concentration. Depending
on the starting point the searcher might get trapped in local maxima (adapted from [102]).

Holland and Melhuish [101] derived gradient-based algorithms for robots with a single
sensor, based on the behaviour of the E.coli bacteria and the Planarian worm. These al-
gorithms implement a set of simple reactive rules that produce slowly zig-zag movements
towards the source. Russell et al. [103] proposed a modification of the Planarian algorithm,
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the so-called hex-path algorithm, which replaces the zig-zag pattern by an hexagonal tra-
jectory to increase the robustness of the algorithm. They demonstrated the algorithm in the
localization of an ethanol source buried in sand. Algorithms based on gradient ascent have
been also proposed for localization of underwater [41] and above-ground [20] sources.

Some atmospheric gas releases can be adequately described by a smooth Gaussian dis-
tribution when averaging measurements over temporal windows of about 10 minutes [85,
104]. Although a gradient-based method could theoretically be used to localize a source
in this scenario, the exploration becomes extremely slow. Ishida et al. [21] developed an
“odor compass”, composed of two MOX sensors, to compute the chemical gradient and
used the device to localize an ethanol gas source in a small wind tunnel (70 x 80 cm2).
Several hours were required to locate the source because the concentration gradient was
negligibly small. Sandini et al. [105] expanded the gradient-based algorithm to multiple
cooperating robots to increase the search speed.

1.2.2 Strong turbulent �uid �ow

If there is strong wind, gas molecules will be dispersed into the environment by turbulence
and simple orientation to a concentration gradient is unlikely to lead a robot towards the
source. In this case, the robot must use the intermittent chemosensory cues provided in the
gas plume to track it towards its origin.

Reactive plume tracking (bioinspired) algorithms

An immediate approach for developing a plume tracking strategy is to mimic the excellent
odor plume tracking capabilities of some animals. Insects, for example, use odor plumes
for mating, foraging or to detect the presence of a predator. Experimental observations
of the male moth tracking pheromone plumes in wind-tunnels have been used to decode
key plume tracking behaviors of these insects (Figure 1.16(a)). Contact with individual
filaments of the plume or ‘odor hits’, rather than concentration gradients, seem the most
likely features insects use to orient rapidly in turbulent plumes [87,106,107]. Upon contact
with the plume, the moth flies upwind upon and oscillates cross-wind to reacquire the
plume whenever it is lost [106, 108] (Figure 1.16(b)). Observed behavioral changes as the
moth approaches the pheromone source, such as decrease in flight speed, might indicate
the existence of a different chemical signature near the source [109].

Reactive plume tracking algorithms imitating the behavior of the silkworm moth, dung
beetle and e. coli bacteria, among others, have been implemented in mobile robot [27,111,
112]. These bioinspired implementations usually consist of three phases: plume finding,
plume tracking and source declaration [113].

Plume �nding In order to establish the initial contact with the plume, either the robot
passively waits at the start position until detecting the plume [23,114] or actively searches
the plume by moving obliquely upwind [115], randomly [115], cross-wind [17] or spiral-
ing [113]. It was found in simulation that cross-wind searching was more effective than

13https://phys.org/news/2016-05-scent-hawk-moths-best-fitting.html

https://phys.org/news/2016-05-scent-hawk-moths-best-fitting.html 
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(a) (b)

Figure 1.16: (a) Male moth (from15); (b) Male moth tracking a pheromone plume (adapted from
[110]).

oblique and random searching [115]. It was also found that sniffing (i.e. dragging air to the
sensors with a pump/fan) improves plume detection [116]. Because of the low probability
of odor encounter far from the source, active searching is necessary in large exploration
areas, especially if UAVs are used due to their limited flight time [70].

Contact with the plume is typically declared when the measured concentration (or
the sensor response) surpasses a predefined threshold [17, 113]. For example, Hayes et
al. [113] set this threshold at 4σ ( σ is the standard deviation of the sensor baseline mea-
sured in clean air) to minimize the false positive rate. Most bioinspired algorithms declare
that the plume is lost when the measured concentration falls behind the same threshold
determined for plume detection. Because a turbulent plume is intermittent and meanders,
using a fixed threshold to decide when the robot is “in the plume” and “not in the plume”
will produce many false detections/non-detections [117]. Additionally, the slow response
time of some gas sensing technologies may delay the detection of the plume (Figure 1.17),
making the robot lose the plume [117]. Changes in the background concentration as the
robot approaches the gas source may also hinder the application of a fixed threshold (which
is estimated in clean air conditions).

To make the plume detection more robust, some authors proposed adaptive thresh-
olds [117, 118] and hysteresis [37, 119]. Ishida et al. [117] defines that the robot enters
(resp. exists) the plume when the sensor response changes by more than 10-20% of a re-
cent local maximum (resp. minimum). Li et al. [118] defines a threshold that is computed
over the moving average of the signal. Purnamadjaja and Russell [37, 119] propose two
separate thresholds for defining ’in’ and ’out’ of the plume, although it is not specified
how these thresholds should be determined. Pashami et al. [120] presented a review of
methods to detect changes in MOX sensor signals due to a distant gas source.

Other authors [113,121] consider a turbulent gas plume as a sequence of packets rather
than a continuous trail (Figure 1.18). Hayes et al. [113] proposed the "surge spiral" al-
gorithm in which the robot triggers the “out the plume” behaviour when the frequency
of packet encounter falls behind a certain threshold. Schmuker et al. [121] recently pre-
sented a signal processing method to detect plume patches using features extracted from
the derivative of the MOX sensor signals (the so-called ’bouts’). The advantage of us-
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Figure 1.17: Threshold-based plume detection. The thick line shows the period of time when the
robot was actually in the plume, whereas the dotted line indicates when the robot is judged to be in
the plume according to the sensor response and the chosen threshold (dash-dot line) (from [117]).

Figure 1.18: Plume hits during one hour in a wind tunnel. The red circle indicates the location of
the gas source and the red arrow indicates the air flow direction (adapted from [113]).

ing the derivative instead of the raw response is that its dynamics are much faster and is
not affected by changes in the background concentration. It nonetheless requires proper
smoothing of the response and the derivative, and a bout amplitude threshold (which the
authors set at 3σ ) to discard low-amplitude bouts produced by noise (i.e. false positives).

Once the plume has been detected, straight [113], oblique [23] and
zig-zag upwind movements [22] can lead the robot towards the source (Figure 1.19(a)).
If the robot exits the plume, plume reacquisition strategies such as spiraling [122] (Fig-
ure 1.19(b)), zig-zag followed by spiraling [123] and casting [23] have been proposed in
the literature. Lochmatter et al. [124] found that algorithms based on upwind surge (surge-
cast or surge-spiral) were significantly faster than pure casting, in wind-tunnel experiments
using a terrestrial robot. Neumman et al. [70] found that surge-cast with straight upwind
movements outperformed zig-zag and gradient-based methods in simulation. They also
evaluated these three algorithms in real-world outdoor experiments using a micro-UAV
flying at constant height. Although the results do not clarify which algorithm works better,
they suggest that plume tracking using a UAV can be successful only under stable wind
flow.
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(a) (b)

Figure 1.19: Examples of reactive plume tracking strategies (from [29]).(a) Pure casting; (b) Upwind
surge combined with spiraling (for plume reacquisiton).

A reactive plume tracking algorithm needs a termination condition
to stop the search, i.e. declare when the source has been located. For simplicity, in most
works the source is declared (and the experiment finished) as soon as the robot gets within a
certain distance (typically 20-50 cm) of the true source location [17,29,70,125–127]. This
approach presents three drawbacks: (1) it requires knowledge about the true source loca-
tion, (2) in small-sized arenas, random walking searchers would often attain the boundaries
of the gas source, and (3) it is unknown what would be the final position of the robot if the
experiment was not stopped at that point.

A less common approach is to declare the source when the measured concentration
exceeds a predefined threshold [128,129]. This requires prior knowledge about the source
intensity, which is typically unknown. Alternative source declaration methods have been
proposed based on the relative variance of the response [130], mean and variability [122],
inter-hit distance [40,122,131], particle filter [70,118], divergence operator [132] or using
vision [128]

Reactive plume tracking algorithms have been demonstrated
mostly in simulation and simplified experimental scenarios in which the robots travel small
distances across a constant unidirectional airflow in an arena free of obstacles [110, 112,
124, 127] (Figure 1.20(a)). Plumes in such scenarios are relatively thin and well-defined,
extending uninterruptedly several meters downwind of the source. Bioinspired algorithms
are extremely inefficient in natural scenarios where the air speed is too weak (indoor sce-
narios) [23] or the wind direction is constantly shifting (outdoor scenarios) [70]. This was
demonstrated by ceasing the air flow in wind tunnel experiments [112] (Figure ??) or by
introducing sudden changes in wind direction outdoors [70].

The purpose of an odor compass is to determine the direction towards the odor source. Wei
et al. [133] recently developed a 2D odor compass using 3 naked MOX sensors shaped in a
triangle (Figure 1.21(a)). The direction of the odor is computed after 2.8 s of measurement
from the lag between matched features in the band-pass filtered sensor signals. A differ-
ence of Gaussians (DoG) band-pass filter is used to highlight areas of the signal where
the rate of change is maximum. Features with maximum or minimum DoG values are
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(a) (b) (c)

Figure 1.20: Evaluation of a reactive plume tracking algorithm (surge-cast) in a wind tunnel. (a)
Strong unidirectional air flow; (b-c) Absence of air flow. The red circle indicates the location of the
gas source. Adapted from [112].

matched using a scale-invariant feature transform (SIFT) algorithm. The direction of the
odor and the confidence in the estimated direction are represented in a wind rose diagram
(Figure 1.21(b)).

(a) (b)

Figure 1.21: (a) Odor compass made of 3 MOX sensors; (b) Wind rose representation of the output
of the system (the thick black line indicates the estimated source direction). From [133].

The device was used by a human operator to localize a gas source in small indoor
(4× 5 m2) and outdoor (6× 7 m2) scenarios by following the estimated odor direction.
In both cases, a fan was used to induce a moderate directional airflow in the environment
because the odor compass is not reliable when the wind speed is either too low or too high,
or the wind shifts direction. Success rates between 75% and 90% were achieved, with a
mean distance to the source of 0.2-0.5 m.

An alternative to reactive plume tracking is to use a mathematical model of the plume as a
heuristic to guide the search process. Plume modelling algorithms assume that the spatial
distribution of gas concentrations can be explained by an underlying mathematical model,
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such as Gaussian shaped plumes [84] or filament/particle models [90, 134, 135], among
others. Instead of reactively tracking the plume, the robot alternates periods of exploration
of the environment (i.e. collect measurements of concentration and wind) with periods
of exploitation (i.e. move towards the source). This adaptative behaviour, that involves
learning and spatial memory, can increase the speed and accuracy in gas source localization
when plumes are highly intermittent [136]. According to Lilienthal et al. [14], algorithms
that store information of previous encounters with a plume should in principle outperform
methods that discard such information.

Gaussian plume model. The Gaussian plume model (GPM) has been used by several
authors [126, 137–140] to localize a source in indoor environments with strong unidirec-
tional airflow. Ishida et al. [137] originally developed an algorithm to estimate the location
of a point source placed on the floor (i.e. H = 0), by fitting a GPM [89] with local mea-
surements of wind and concentration obtained by a terrestrial robot (i.e. x = 0). The gas
distribution at location (x,y) is obtained by substituting H = 0 and x = 0 into the equiva-
lent of Equation 1.1 in [89] and transforming the coordinate system to include the source
(xs,ys) as a parameter of the model (Figure 1.22). The gas distribution on the ground is
given by

c(x,y) =
q

2πKds
exp
(
− U

2K
(ds−∆x)

)
(1.3)

where K is the turbulent diffusion coefficient (cm2/s), ds is the Euclidean distance (m)
from (x,y) to (xs,ys), and ∆x is given by

∆x = (xs− x)cosθ +(ys− y)sinθ (1.4)

where θ is the angle from the x-axis to the upwind direction. The algorithm determines
xs and ys from Equation 1.3 using a gradient descent method and Kalman filtering, given
multiple measurements of c, x, y and U (collected by the robot at different locations).

Figure 1.22: Gaussian plume model with coordinate system used by Ishida et al. [137] in which the
source is not at the origin of coordinates.

A theoretical advantage of this model is that the source can be found without mov-
ing towards it. Its practical applicability is however limited because (i) values for K and
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q must be given a priori (e.g., K = 30 cm2/s and q = 200 cm3/min in [138, 139], (ii) the
environmental conditions are not usually as stable as it is assumed by the model and (iii)
the long time-averaging required to observe a Gaussian shaped plume might not be effi-
cient for rapid GSL using a single robot. Indeed, Sanchez et al. [140] recently used a GPM
approach in a small room of 15 m2 and 10 minutes were required to localize the source.
Marques et al. [126] found similar performance between this algorithm and a bio-inspired
algorithm (silkworm moth) across 20 tests in a ventilated indoor arena.

Farrell et al. [141] developed a probabilistic algorithm to
locate a gas source in an intermittent plume, assuming a particle model and constant,
uniform and known wind. The local density of filaments is used as a heuristic to move
towards the source, since the probability of filament encounter is higher near the source.
Using binary chemical detections and wind measurements, the robot recursively builds
a maximum likelihood map that indicates which regions are likely to contain the odor
source. At each time step, the robot is directed to areas that maximize the likelihood of
the detection of odor or the likelihood of finding the source. The source is declared when
the last three odor encounters are separated by less than 3-5 m. Pang and Farrell [142]
improved the efficiency of the algorithm by estimating the likelihood map using Bayesian
methods. The algorithm of Pang and Farrell was recently revised by Pomareda et al. [143]
to use quantitative concentration measurements instead of binary detections.In practice,
estimating the density of filaments in a certain region requires temporal averaging, which
makes this method similar to algorithms based on the Gaussian plume model.

In Infotaxis [144], the plume is represented by a set of detectable “particles” emitted
by the source at a constant rate and transported by a turbulent flow [134,135] (Figure 1.23).
Assuming that the probability of particle encounter as a function of distance to the source
is known, the algorithm builds a posterior probability map where the value of each cell
represents the probability of containing the source. A particle encounter is declared when
the measured concentration exceeds a certain threshold. At each time step, the searcher
measures the gas concentration for a certain period of time at the current location, counts
the number of particle ‘hits’ and updates the map. Then, it visits the cell that locally max-
imizes the expected rate of information acquisition. The intuitive idea is that particles
arrive at a higher rate close to the source, hence tracking the maximum rate of information
acquisition will guide the searcher to the source.

Figure 1.23: Typical infotactic trajectory. The black dots represent the odor detection events (from
[144]).
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Recently, Voges et al. [123] found slightly higher success rates of infotaxis when com-
pared to three bioinspired algorithms (93% versus 84-89%) in locating a pheromone source
in wind tunnel experiments. Recordings from the antenna of a moth mounted on a mo-
bile robot were used to avoid the long response time of MOX sensors. The authors claim
that cognitive searching (e.g., infotaxis) might be more appropriate than reactive plume
tracking when the robot’s starting location is far from the odor plume. The main practical
limitations of infotaxis are that it requires prior knowledge of the spatial probability of
odor hits, it assumes that the emission rate is constant and it is unclear how the binary
concentration threshold should be estimated.

Vuka et al. [145] proposed a GSL algorithm for moderate air flow environments (air
speed < 0.3 m/s) in which the goal is to build a map of the amplitudes of detected
’bouts’ [121]. The ’bouts’ are specific features extracted from the derivative of the sen-
sor response, which are supposedly caused by contact with gas patches. The underlying
assumptions of Vuka’s algorithm is that the bout amplitude increases with proximity to
the source and that cells in upwind direction from the current measurement point have a
similar bout amplitude (to avoid exploring those cells). The algorithm divides the search
area into cells of equal size and the robots visits each cell to measure the bout amplitude
and wind direction. After the map has been sufficiently explored, the cell with the highest
bout amplitude is declared as the source (Figure 1.24).

Figure 1.24: Mean bout amplitude map in an indoor corridor (wind was flowing towards the south-
east). The dark and light blue regions represent areas with low and high mean bout amplitude, re-
spectively. The red and yellow circles indicate the gas source and the final position of the robot,
respectively (from [145]).

Experiments were performed in a large ventilated indoor corridor (22 x 4 m2), with 8
successful trials out of 12 (67%). An experiment was declared successful if the cell with
the highest bout amplitude was the nearest one to the true source location, along the wind
direction. The average time required to find the source is not specified and it is unclear
how the source shall be declared when its true location is unknown.

According to Lilienthal et al. [14] and Ishida et al. [34], addressing the gas source trac-
ing problem in 3D is the next step to go for research in this field. Prior to the commer-
cial availability of low-cost UAVs, researchers demonstrated the advantages of measuring
the gas concentration in 3D either by manually moving a gas sensing probe to differ-
ent heights [111, 146, 147] (Figure 1.25a), using a terrestrial robot with an extendable
vane [148] (Figure 1.25b) or with sensors mounted at multiple heights [129, 149] (Fig-
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ure 1.25c), using a blimp tethered to a ground robot [150] (Figure 1.25d) or using a 3D
traversing system [151] (Figure 1.25e).

Figure 1.25: Early 3D gas sensing instruments. (a) Manual sensing probe [147]; (b) Terrestrial robot
with MOX sensors mounted on an extendable vane [148]; (c) Terrestrial robot with MOX sensors
mounted at different heights [129]; (d) Blimp tethered to a ground robot [150]; (e) 3D traversing arm
carrying a terrestrial robot [151]

;

Soares et al. [151] emulated an aerial robot using a 3-axis traversing system in a wind
tunnel. They compared the readings of a terrestrial robot (Figure 1.26(a)) and the pseudo-
aerial robot (Figure 1.26(b)), with the gas source placed slightly higher than the height
of the terrestrial robots. In general, the aerial robot sensed much more concentration than
terrestrial robots. As the aerial robot approaches the source, the fluctuations of the sensor
response increase, indicating proximity to the source. The opposite behavior was seen in
the terrestrial robot. Moving towards the source reduced both the average and the variance
of the measurements, because the vertical width of the plume of a point gas source is
minimal near the source. This highlights a clear advantage for those robots capable of
measuring at the same height of the source.

(a) (b)

Figure 1.26: Comparison of sensor readings of (a) terrestrial and (b) pseudo-aerial robots in a wind
tunnel (adapted from [151]).
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Osorio et al. [129] used a robot with three MOX sensors attached at different heights
to compare the performance of two bioinspired algorithms (surge-cast and cast) and a
gradient-based one, when data of the three sensors is fused versus using only data from
the bottom sensor. The data fusion consists in taking the maximum concentration of the
three sensors. Experiments in a large indoor corridor with weak air flow showed that using
data from the three sensors improved the success rate from 56% to 70%, due to a better
reacquisition of the plume when sampling at multiple heights.

Ishida et al. [150] used a small blimp with ten MOX sensors distributed around its sur-
face, which was tethered to a ground robot (a wrench was used to regulate the height of the
blimp). Experiments performed in a strongly ventilated indoor arena (5.7 x 3.5 m2) sug-
gest that the variability of the sensor signals is more useful for source localization than the
average response. Although a blimp is advantageous because it can fly with little distur-
bance to the surrounding gas distribution, its limited maneuverability hinder the practical
application to realistic indoor scenarios or environments with strong wind.

Luo et al. [71] developed the so-called
“flying odor compass”, which is a commercial quadrotor equipped with 3 MOX sensors
shaped in a triangle (inspired by the design of the 2D odor compass presented by Wei et
al. [133]). The proposed OSOI algorithm computes the odor direction (eodor) by fusing
the gas flow direction (eg) and the wind direction (ew). For computing eg, the raw sensor
signals (Figure 1.27(a)) are filtered with a wavelet transform modulus maxima method
(WTMM), i.e. a band-pass filter that identifies singularities in the variability of the sensor
signals (Figure 1.27(b)). The authors claim that singularities with a wavelet coefficient
higher than a threshold are produced by contact with odor patches, so those with a small
coefficient are filtered out. The time difference between the same event across the three
sensors is used to estimate eg.

(a) (b)

Figure 1.27: OSOI algorithm. (a) Raw sensor signals; (b) Wavelet transform of the three sensors,
with modulus lines colored by grouping. The red ellipse highlights the same modulus line detected
by different sensors. Adapted from [71].

The system was used to locate a source in a small indoor environment (4 x 3 m2) with
strong natural airflow, achieving a mean success rate of 95% (across 60 trials) and a mean
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time to reach the source slightly higher than 2 min. The sensitivity of the algorithm to the
threshold used to filter out small events is not specified.

3D odor compass. Ishida et al. [146] developed an odor compass made of 4 MOX
sensors and a small fan (to draw air towards the sensors), which are mounted on a platform
that can rotate in 3D. The odor direction is estimated from the delay of the sensor responses
sampled during 24 s of rotation of the sensor probe. The utility of the compass to locate
an elevated gas source was demonstrated in a extremely small indoor arena (≈ 2 m2) with
two air supply openings. The probe was manually moved in steps of 20 cm in the odor
direction provided by the device and 5-6 minutes were required to localize the source. The
low exploration efficiency (≈ 2.5 min/m2) might limit the applicability of this system to
larger scenarios.

Ishida et al. [147] improved its previous odor compass by developing a new one con-
sisting of a 3D ultrasonic anemometer surrounded by 6 MOX sensors. The direction to-
wards the gas source d = (dx,dy,dz) is determined by a linear combination of the upwind
vector v = (vx,vy,vz) and the gas concentration gradient g = (gx,gy,gz)

d = v+ kg (1.5)

where k is a constant. Equation 1.5 assumes that g always points towards the centre of
the plume (Figure 1.34(a)), which is a very strong assumption that may not be satisfied in
many realistic scenarios. Successful GSL experiments were carried out in the same indoor
scenario as before, using a measurement time of 2 minutes and a step size of 20 cm.

Figure 1.28: Computation of gas source direction d from the wind vector v and the concentration
gradient g (from [147]).

3D zig-zag. Russell et al. [148] developed a 3D version of the zig-zag algorithm pre-
viously presented by Ishida et al. [22]. A 3D raster scan is initially performed to find the
gas plume, which is modeled as having a circular cross-section (Figure 1.29). At each time
step, the robot estimates the plume shape by measuring the concentration in three points
of the boundary of the plume. The method was tested in a very small indoor scenario
(1 x 0.6 m2) with artificial ventilation and succeeded in 5/8 trials. No indication about
the exploration time was provided. The assumption of a circular plume with well-defined
boundaries might not hold in many real scenarios.

3D casting-2D surge. Eu et al. [152] adapted three bioinspired algorithms (zigzag-
surge, spiral-surge and spiral-zigzag-surge) to 3D by varying the tracker’s altitude during
the plume finding and re-acquisition stages. The plume height is initially determined by
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Figure 1.29: Schematic illustration of the 3D zig-zag algorithm (from [148]).

performing an oscillatory 3D movement and, then, a surge (upwind movement) at constant
height is performed (Figure 1.30).

Figure 1.30: 3D zigzag-2D surge algorithm. (a) Isometric view; (b) Front view of the zigzag cast;
(c) Top view of the zigzag cast (from [152]).

The authors experimentally validated the algorithms using a quadrotor equipped with
four MOX sensors below the propellers. Experimental results in a small indoor arena with
strong air flow show that spiral-zigzag-surge exhibits better overall performance as com-
pared to the other two algorithms. The starting position has a strong influence on the time
required to locate the source, which varied from 2 to 15 minutes.

Rutkowski et al. [153] developed a 3D algo-
rithm inspired by the upwind and counter-turning movements of moths tracking pheromone
plumes. The motion of the UAV is decomposed into the tangential and perpendicular com-
ponents to the wind vector. In the tangential direction, the UAV moves forward (i.e. up-
wind) or backward (i.e. downwind) based on binary chemical detections. In the perpen-
dicular plane, the turn rate is controlled by the derivative of concentration (i.e. COKK).
A decrease (resp. increase) in concentration increases (resp. decreases) the turn rate, and
if the concentration remains constant the turn rate is gradually decreased. The algorithm
was tested in a small simulation environment (0.6 x 1.5 m2) using a plume model and
constant uniform wind conditions. The results show that the tracker effectively reaches the
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source and wanders around it (Figure 1.31). Validation in a real scenario may be required
to confirm the utility of the proposed algorithm.

Figure 1.31: Representative flight track of the COKK algorithm. The gas source is at the origin of
coordinates (from [153]).

The approaches described so far rely on the existence of a chemical plume, which is cre-
ated in practice by forcing a strong airflow in the environment using fans. However, real
environments in which the robot should be used are not supposed to be modified, which
means that only poor assumptions about the airflow and the underlying functional form of
the gas dispersion could be made. The algorithms described in this section rely exclusively
on chemical sensors, i.e. they do not use anemometry, and do not make strong assumptions
about the gas distribution.

Reactive plume tracking algorithms require knowledge of the wind direction, which hin-
ders their application to environments with weak air flow (e.g., indoors). Lilienthal et
al. [154] adapted the silkworm moth algorithm [111] to environments with weak airflow
by replacing the upwind surge with a straight movement at a random direction. This direc-
tion is reset after getting close to an obstacle. After detecting a gas patch, the robot starts a
zigzag pattern oriented 65 degrees to the side at which the higher concentration was sensed
(Figure 1.32(a))

Experiments carried out in a large indoor environment seem to indicate that the robot
effectively wanders around the source location (Figure 1.32(b)), although the authors could
not demonstrate statistically that this method was superior to a random walk.
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(a) (b)

Figure 1.32: Adapted silkworm moth algorithm. (a) Motion pattern that is executed by the robot
in response to an odor detection; (b) Trajectories recorded in real experiments in a 15x5 m2 indoor
environment (from [154]).

A reverse Braitenberg vehicle (Figure 1.33(a)) reactively avoids local concentration max-
ima and tends to wander around low concentration areas [30]. From visual analysis of the
robot trajectories it is easy to determine regions with high concentrations, as the robot sim-
ply leaves them out (Figure 1.33(b)). This approach involves long exploration times and
might trap the robot in local maxima, however it might be convenient when the released
gas could damage the robot or the gas sensors.

(a) (b)

Figure 1.33: (a) Reverse Braitenberg robot and gas source; (b) Path of the robot during 3 hours in a
3.7 x 3 m2 arena. The gas source is placed in the middle of the room (from [30]).

Ferri et al. [122] proposed a bioinspired CSL method for weak air flow conditions, called
SPIRAL. The algorithm uses a proximity index (PI), defined as a linear combination of
the mean concentration (µ) and number of peaks (P) of the sensor signals during a mea-
surement window ∆T
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PI = Kµ µ +KpP (1.6)

where Kµ and Kp are the empirical weights for the mean and the peaks, respectively.
The robot follows a spiral trajectory, stopping at predefined points for 30 s to compute the
PI. If the current PI exceeds the last PI, a ‘hit’ is declared and the robot starts a new spiral;
otherwise, it continues in the current one (Figure 1.34(a)). This behaviour is supposed to
bring the robot closer to the source.

(a) (b)

Figure 1.34: SPIRAL algorithm. (a) Sketch of the navigation strategy (the green crosses represent
odor hits); (b) Experimental trial in an indoor room without artificially induced air flow (Adapted
from [122]).

SPIRAL was compared to a bioinspired (e. coli bacteria) and a random walk algorithm
in a small room with weak airflow (Figure 1.33(b)). The maximum initial distance from
the robot to the source was only 1.8 m. The mean time to reach the source (across 15
trials) was 6.5 min for SPIRAL, 7.5 min for the e. coli algorithm and 22.5 min for the
random walk. Despite SPIRAL seems to be the most efficient of the three algorithms, the
low exploration speed (1 m2/min) might not be adequate for larger environments.

Lilienthal et al. [81] observed that in a weakly ventilated corridor the maximum response
of a MOX sensor often corresponds to the approximate location of a gas source, if the sen-
sor readings are acquired in motion (Figure 1.35). Such a correlation was never observed
if the concentration measurements are collected with a stop-sense-go strategy. This be-
haviour, which was previously reported by Atema et al. [155] and confirmed by Farah and
Duckett [156], is attributed to the long recovery time of MOX sensors. If a MOX sensor
is exposed to two consecutive gas patches, the response to the second stimulus will occur
when the sensor has not yet recovered from the first exposure. The overall response to the
second patch will be higher than if the sensor was fully recovered from the first patch.
Since the local density of gas patches is maximized near the source, the encounter rate
with gas patches is higher if the robot is moving towards the source.
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Figure 1.35: Normalized sensor response along the exploration of an unventilated indoor corridor.
One MOX sensor is mounted on each side of the robot (from [157]).

This suggests a straightforward CSL method that consists on driving the robot along
a predefined path or in a random walk, collecting concentration measurements, and even-
tually declaring the source at the point of maximum concentration. This might only be
appropriate for small exploration areas or fast robots, provided the source is reachable by
the sensing unit. Rossi et al. [47] and Carrozo et al. [49] obtained a good estimate of source
location using the instantaneous response in outdoor experiments using a micro drone.

Gas concentration gridmaps

Instantaneous concentration measurements taken at different locations and times can be
integrated into a 2D or 3D statistical model (i.e. a map), representing the mean [82] (Fig-
ure 1.36(b)), the variance [18] (Figure 1.36(c)) or the maximum [158] of the concentration.
It has been shown that, under certain conditions, the cell with the highest value in each of
these maps can be used to estimate the source location. For example, the grid cell with
maximum value in a mean gas distribution map is a good approximation to the true loca-
tion of the gas source when the shape of the distribution is roughly circular with a strong
central peak [82]. The variance maps usually lead to more accurate source location esti-
mates than the mean maps in weakly ventilated indoor environments [18, 28].

To build a gas distribution map, the robot typically navigates the environment along a
rectangular sweeping path with predefined measurement points where it stops to sample
the gas concentration for a certain amount of time (typically 30 s) [18, 28, 159–161] (Fig-
ure 1.36(a)). Then, measurements are interpolated, for example using a Gaussian kernel to
smooth the maps. This method assumes that the environmental conditions and the activity
of the gas source are stable within the time frame of the mapping process, which might
be not always true due to the long time required to map a large area using a stop-sense-
go strategy. The map building process can be speed up by using multiple collaborative
robots [29, 113, 162–164] or by adaptive sampling strategies [165].

The suitability of gas concentration gridmaps map for GSL has been also demonstrated
with aerial robots.mNeumann et al. [165] found that the accuracy in the source location
estimated from a 2D gas distribution map might degrade in subsequent trials due to the
effect of the rotors on the local gas distribution [165]. Luo et al. [166] built a 3D gas
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(a) (b) (c)

Figure 1.36: Gas distribution mapping in an indoor corridor (14 x 2 m2). (a) Predefined trajectory
with sampling stops of 30 s. (b) Predictive mean map; (c) Predictive variance map (Adapted from
[28]).

distribution map in a large outdoor environment (10 x 16 m2) using a micro-UAV (800 g).
A predefined flight path consisting of two 2D rectangular sweepings at different heights
(0.3 and 1 m) was performed, without stopping at predefined locations for measuring. The
cell with maximum value of the resulting mean map coincided approximately with the
source location in the x-y plane (Figure 1.37(a)), but not in the z-axis (Figure 1.37(b)).
The short exploration time (9 min) for the large area being considered (160 m2) makes this
algorithm appropriate for large exploration areas.

(a) (b)

Figure 1.37: 3D gas concentration gridmap algorithm. (a) Top view (the flight path is depicted
as a white dashed line). The gas source is located at (x,y,z) = (8,6,0) m. (b) 3D view (adapted
from [166]).

To move the robot near the source, previous works considered using long-range sensors,
such as CCD cameras [167–172], TDLAS [4, 173] or OGI cameras [19, 174, 175]. Using
a CCD camera, odor source candidates can be detected from a long distance provided
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that: (i) candidates are identifiable from visual features and (ii) the algorithm has been
trained with multiple images of the odor source, taken from different perspectives. The
works using TDLAS devices and OGI cameras were focused in demonstrating the ability
of the instrument to detect a gas leak when the robot follows a pre-defined navigation path,
rather than designing autonomous GSL algorithms. Neumann et al. [56] used a micro-UAV
equipped with a TDLAS sensor to remotely detect a CH4 leak outdoors. The UAV and the
TDLAS were remotely controlled by a human operator that aimed the TDLAS towards the
known location of the gas source, which was detectable at 25 m.

1.3 Gas sensors used in mobile robots

The key requirements of a gas sensor for a mobile robot application are fast response time,
low detection limit, high power efficiency and low weight. The faster the robot can move,
the faster the gas sensor should be to avoid spatial averaging over large areas. The weight
and power consumption are critical in UAVs, due to the limited payload and available
energy. A low detection limit is especially important when the search area is large or when
the source is weak. In this section, we describe the gas sensors that have been used in
mobile robots, which are just a subset of the available gas sensing technologies (see a
comprehensive review by Nanto et al. [176]).

1.3.1 In-situ gas sensors

In-situ gas sensors are based on the change of the properties of a material (e.g., conduc-
tivity, resonant frequency, etc.) when a gas interacts with it. An electronic circuit inside
the sensor (i.e., the transducer) converts the variations of the physical property into an
electrical signal. These sensors are usually very simple and cheap, but they are usually not
selective (different gases may produce a similar response) and the response can show a
non-linear dependency with the concentration of the gas.

Metal oxide semiconductor (MOX)

MOX sensors are based on the property of certain semiconducting metal oxides of chang-
ing its electrical resistance upon exposure to gases at elevated working temperatures (typ-
ically in the range 150 to 500ªC). The sensing material (typically tin dioxide SnO2) is de-
posited over a substrate provided with electrodes, for readout of the electrical resistance.
The heater resistor is separated from the sensing layer and the electrodes by an electrical
insulating layer. A diagram is shown in Figure 1.38(a).

MOX sensors are highly sensitive to many VOCs (LOD ≈ 1 part-per-million), easy to
use, extremely cheap (≈ 10 eur) and can last for decades. The first robots were equipped
with metal oxide semiconductor (MOX) sensors due to the commercial availability, ease
of use and low cost. This technology has been traditionally criticized by the lack of se-
lectivity, cross-interferences, high-power consumption and slow response time. Whereas
the low selectivity is still the main limitation of this technology, improvements in power

15http://www.figarosensor.com/products/entry/tgs8100.html

http://www.figarosensor.com/products/entry/tgs8100.html
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Figure 1.38: (a) Diagram of the internal structure of a MOX sensor (Copyright 1998, IEEE); (b)
Photo of a MEMS MOX sensor14(Model: TGS8100, Figaro Engineering Inc).

consumption, size and response time are possible nowadays thanks to microelectrome-
chanical systems (MEMS) technology. MEMS sensors (e.g., Figure 1.38(b)) incorporate
a miniaturized sensing layer deposited over a micro hotplate, that leads to a smaller size
(few mm2) and increased power efficiency (15 mW). These features make them attractive
for mobile robots, especially for platforms with limited payload such as nano-drones.

The main components of an NDIR sensor are an IR lamp, a sample chamber, a narrow-
band optical filter and an IR detector (Figure 1.39(a)). It is called nondispersive because
the optical filter rejects all light except the wavelengths corresponding to the absorption
band of the target gas. The difference between the amount of light emitted by the IR lamp
and the light received by the detector is proportional to the concentration of the target
gas in the sample chamber (Figure 1.39(b)). Whereas CO2 can be selectively detected by
NDIR sensors due to its unique absorption spectrum at 4.26 µm, CH4 detection based on
CH vibration is cross-sensitive to many hydrocarbons, e.g., ethanol (C2H5OH). Watai et
al. [44] used NDIR technology on board of a UAV to measure atmospheric CO2 variations
at heights between 650 and 2000 m.

Optical Filter
Detector

Gas OutGas In

IR Lamp

(a) (b)

Figure 1.39: (a) NDIR working principle16; (b) NDIR CO2 sensor17(Model: C03-0961-000, RAE
Systems Inc).
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A PID uses an ultraviolet lamp (typically 10.6 eV) to ionize the input sample. The elec-
trical current produced by the ions reaching the detector provides an estimate of the gas
concentration (Figure 1.40(a)). PIDs are fast (typically 1 s response time), highly sensitive
(LOD of parts-per-billion) and are relatively unaffected by environmental factors such as
humidity or temperature. Because of this, hand-held instruments (Figure 1.40(b)) are com-
monly used in industrial sites and military applications for monitoring toxic VOCs. The
main problem of the instrument is the relatively high cost and the low specificity, since
they respond to every compound with ionization energy below the energy of the lamp.
PIDs have been sometimes used in mobile robots due to its fast response time and because
they are often factory-calibrated [143, 161, 177].

Detector inlet

Vapor exists the detector

UV Lamp

Amplifier

Negative electrode

Positive electrode

100.0 ppm

(a) (b)

Figure 1.40: (a) Working principle of a PID21); (b) Photo of a PID22(Model: miniRAE Lite, RAE
Systems).

An electronic nose or sensor array is a hardware system that combines multiple partially
selective sensors (e.g., MOX, EC, SAW, CPs), with different chemical properties, and an
appropriate pattern recognition algorithm [178,179] (Figure 1.41(a)). The selectivity of the
e-nose system is much higher than the selectivity of the individual sensors. Conventional
statistical methods, such as principal components analysis (PCA) or partial least squares
(PLS), and biologically inspired methodologies, such as artificial neural networks (ANN)
are commonly used for gas quantification or discrimination [180] (Figure 1.41(b)).
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https://www.co2meter.com/blogs/news/6010192-how-does-an-ndir-co2-sensor-work
https://www.gasdetectorshop.com/C03-0961-000-RAE-Carbon-dioxide-CO2-NDIR-Sensor-p/c03-0961-000.htm
https://www.gasdetectorshop.com/C03-0961-000-RAE-Carbon-dioxide-CO2-NDIR-Sensor-p/c03-0961-000.htm
https://www.envieq.com/pid-photoionization-detector
https://www.envieq.com/pid-minirae-lite
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Figure 1.41: Electronic-nose. (a) Hardware system composed of 8 MOX sensors18; (b) PCA of nine
compounds measured with an e-nose, showing the good discrimination capabilities of the system
(from [181].

The sensor array can be heterogeneous (i.e. contains different sensor technologies)
or homogeneous (i.e. sensors of the same technology are exclusively used). In this latter
case, the sensor units are selected from different models or they are operated in a different
manner, for example by changing the working temperature in MOX sensors.

Electronic noses have been used in robotic experiments to discriminate among multiple
gas sources for localization [126] and mapping [159, 182–188]

Current robots are starting to incorporate remote optical sensors, because they are se-
lective and provide a quick visualization of large areas that would require thousands of
measurements using point-like sensors. These instruments are based on the characteristic
molecular vibrational frequencies of certain chemical species when they are excited with
infrared (IR) light (Figure 1.42). The two main types of remote sensors used in mobile
robots are OGI cameras and TDLAS.

Figure 1.42: Absorption spectra for five gases in the mid-IR region of the spectrum (from [189].

18

http://pib.nic.in/newsite/PrintRelease.aspx?relid=123091
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Optical gas imaging (OGI)

Most gases are transparent to the naked eye (i.e. in the visible spectra), but there may be
IR wavelengths where they are opaque due to optical absorption (Figure 1.42). An OGI
camera (Figure 1.43(a)) is a thermal (IR) imaging camera that mounts a IR filter that
only allows to pass radiation corresponding to the absorption band of the target gas [190].
To the “eyes” of the detector, the gas will block the radiation coming from objects in
the background. In the recorded video stream, there will be a thermal contrast between
the gas leak and the background, that can be enhanced with image processing algorithms
(Figure 1.43(b)).

(a) (b)

Figure 1.43: (a) OGI camera19(Model: GX320, FLIR Systems Inc.); (b) Visualization of a gas leak
(colored in red) using an OGI camera20.)

Mid wave (MW) and long wave (LW) OGI cameras are tuned for the 3.3 and 10.5
µm wavelength, respectively. A MW camera is most responsive to hydrocarbons (e.g.,
CH4), thus it has a wide range of potential uses in the petrochemical industry. LW cameras
are responsive to sulphur hexafluoride (SF6), a gas commonly used as insulator in high
voltage equipment in the electrical distribution industry. The 10.5 µm wavelength band is
also suitable for the detection of leaks of refrigerant gases such as ammonia (NH3).

OGI cameras alone do not provide quantitative information about the gas, cannot de-
tect small leaks, are expensive (100k euro) [191] and they can only be used for a single
application. For example, a LW camera will not see CO or CO2 leaks. Manual adjustment
of the camera settings, such as thermal tuning or positioning might be necessary to improve
the visibility of a gas leak. Operating the camera in automatic mode is possible but it may
increase the chance of missing leaks, which restricts its application in autonomous mobile
robots. Nonetheless, OGI cameras have been mounted in terrestrial robots (Figure 1.3(c))
and UAVs (Figure 1.7(d)) to remotely detect gas leaks.

Tunable diode laser absorption (TDLAS)

TDLAS is the most common laser-based absorption technique for quantification of gas
mixtures [5]. A TDLAS instrument is basically composed of a tunable diode laser light

21https://www.flir.com/products/gf346
22http://www.seikey.com/page/133_FLIR+Gas+Detector+A6604

https://www.flir.com/products/gf346
http://www.seikey.com/page/133_FLIR+Gas+Detector+A6604
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source and a photodiode. The laser-center frequency is locked onto to the absorption line
of the target gas, a light beam is emitted towards the sample and the intensity of the re-
ceived radiation is measured (Figure 1.44(a)). The measured intensity can be related to the
integral of the concentration of the target gas across the light beam, using the Beer-Lambert
law [192].

10 ppm

8 m 2 m

100 ppm

CHReading: 4280 ppm·m

(a)

(b)

Figure 1.44: (a) Measurement principle of TDLAS. The device reports an integral concentration
measurement of 280 ppm · m with the infra-red beams traveling a 10 m path, in which a background
concentration level of 10 ppm and a CH4 patch of 200 ppm are present (10 ppm × 8 m + 100 ppm
× 2 m = 280 ppm · m) (from [56]). (b) Remote methane leak detector (RMLD), from Hermann
Sewerin GmbH23

TDLAS is a highly selective and sensitive technique (sub-ppm detection limits), fast
(response time < 1 s) and generally insensitive to cross-species interference. Over the
past decade, TDLAS has evolved from specialized laboratory equipment to commercial
portable devices, such as the remote methane leak detector (RMLD) [6] (Figure 1.44(b)).
Recently, several authors have explored the use of TDLAS-based devices for mapping and
localization of CH4 in industrial facilities and landfill sites using terrestrial robots [28, 31,
193] and UAVs [56]. Portable TDLAS detectors are expensive, too heavy for platforms
with limited payload and currently available only for detection of CH4.

The response of an in-situ gas sensor indicates how the properties of the sensing material
vary when a gas interacts with it. This variation is normally non-linear with the concentra-
tion of the gas and is affected by environmental factors such as humidity or temperature.
To convert the raw sensor response to absolute concentration units, a calibration curve

23

https://www.sewerin.com/cms/en/our-products/detailview/rmld-is.html
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must be obtained. A calibration curve models the relationship y = f (x) between the sen-
sor response y and the concentration x of the target gas. To obtain a calibration curve, the
sensor is exposed to N known concentrations that span the working range of the device.
Sensors that are not linear over the measurement range require a multi-point calibration
(i.e. N > 2) to elucidate the best non-linear model that fits the data. A calibration system
is composed of two stages: gas mixture generation and gas measurement.

Gas concentrations can be generated using static or dynamic systems [194]. In a static
system, a known amount of analyte (either in gaseous or liquid phase) is added to a known
volume of air in a container such as a plastic bag or a glass bottle. After some time, the
mixture inside the container reaches equilibrium and can be delivered to the sensor under
test. For a gaseous analyte, the concentration is the ratio between the volume of the analyte
and the volume of air. For a liquid analyte, the concentration formula involves the satu-
rated vapor pressure of the analyte and the temperature of the system, which must remain
constant for the equation to produce reliable results. Two major disadvantages of static
methods are that (1) the volume of the sample is limited by the volume of the container
and (2) the waiting time to reach equilibrium is unknown.

A dynamic generation system provides for continuous variation of mixture compo-
sition, including humidification. The basic components of dynamic systems are pressur-
ized air supply, mass flow controllers (MFCs) and the necessary tubing. The MFCs nor-
mally control three gas streams: a dry carrier gas, a humidified carrier gas and the test gas.
The blending process and the resulting composition are regulated by varying the gas flow
through the MFCs. The humidification of the gas mixture can be simply performed by the
evaporation method using a glass bubbler (Drechsler bottles) (Figure 1.45(a)). Humidifi-
cation is important in most sensing technologies because the baseline and sensitivity of the
sensor are dependent on the humidity content of the sample.

(a)

Dilution gas

Carrier gas

Temperature
control

Bubbler with 
liquid source

Gas
chamber

(b)

Figure 1.45: (a) Drechsler bottle24; (b) Vapor pressure generation system (adapted from Bronkhorst
brochure25).
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High purity gases such as O2, CO, N2 or CO2 are available in pressurized cylinders.
Generation of dynamic gas mixtures from a pressurized cylinder is a very convenient and
accurate method (concentration uncertainty of a CO bottle can be as low as±0.5% [195]).
However, gas cylinders are expensive and not available for every test gas. VOCs such as
ethanol, acetone, are usually found in liquid phase. The generation of test gas from liquid
analytes can be made by alternative methods, such as syringe injection, diffusion, evapo-
ration or permeation [196]. The most frequently used system for liquid analytes is evapo-
ration. An evaporation system is composed of a container for the liquid analyte over which
a small flow of a carrier gas is passed (Figure 1.45(a)). The resulting stream saturated with
vapor of the liquid analyte can be diluted using a second air stream before being injected
into the gas chamber (Figure 1.45(b)). By adjusting the temperature of the liquid and the
flow rate of the diluting gas, the generated concentrations can cover a wide calibration
range (e.g., 1- 10,000 ppm). The output concentration can be estimated analytically, from
the vapor pressure of the liquid, or empirically, using a calibrated reference device. Stable
concentrations can only be achieved if pressure, temperature and airflow within the liquid
container are actively controlled. Minor fluctuations of these parameters can produce large
deviations of the expected concentration. Permeation methods are preferred for preparing
low concentrations of liquid analytes, i.e. at ppm to ppb levels, due to the high accuracy of
the technique.

Gas measurement

The generated gas mixtures are delivered to the sensors under test, which are normally
enclosed inside an air-tight gas chamber, where concentrations, environmental conditions,
gas exposure times, airflow and, in general, all relevant constituents and interferences that
might affect the sensor response are known and controlled. The conditions within the gas
chamber (e.g., humidity, temperature or air flow) must be as similar as possible to the
conditions of the target scenario. The gas exposure time must be long enough to capture
the steady state values of the sensor response, which are then used to build a calibration
model.

A radically different approach, where the sensors are calibrated in an open sampling
system (i.e. without gas chamber), was proposed by Monroy et al. [197]. The sensors are
placed at 50 cm from an odor blender which emits different concentrations of the target
substance every 2 minutes. A PID is used as a reference device to measure the gas concen-
tration reaching the sensors. This method simplifies the calibration process and brings the
calibration conditions closer to the test conditions, by delivering the sample through turbu-
lent air flow instead of through a controlled delivery system. The main disadvantage is that
the calibration model has less predictive power than when it is obtained in a closed sam-
pling system. The best model reported by the authors yielded average relative prediction
errors between 20 and 30 %, depending on the sensor model.

34http://www.betterequipped.co.uk/dreschel-gas-wash-bottle-prd8263p-2296
35Liquid Delivery System with Vapour Control: https://www.bronkhorst.com/products/

vapour-flow

http://www.betterequipped.co.uk/dreschel-gas-wash-bottle-prd8263p-2296
https://www.bronkhorst.com/products/vapour-flow
https://www.bronkhorst.com/products/vapour-flow
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Bad calibration practices in the robotics literature

Sensor calibration is something not usually done in the field of mobile robot olfaction
(MRO) since calibration of gas sensors is time-consuming and requires expensive dedi-
cated equipment. The sensor signals are often uncalibrated [14, 167, 170, 186, 198], scaled
to unit range [154,159,199,200] or simply normalized by the baseline response [100,201].
Scaling and normalization are linear operations that cannot remove non-linearities of the
original signals. If GDM experiments are performed with uncalibrated sensors, the result-
ing gas distribution maps represent the sensor response instead of the absolute concen-
tration. Response maps are not easily interpretable due to the non-linear sensor response
and are sensor-dependent; i.e., two response maps obtained with different gas sensors may
show notable differences even if the underlying gas distribution is similar. Calibration is
also important in GSL algorithms that combine the response of multiple gas sensors, for
example to compute the chemical gradient [100, 201]. In the likely case that the different
sensors have different sensitivity curves, the resulting gradient will be incorrectly com-
puted.

Some authors assume a linear response within a certain concentration range [14, 202];
however, for most gas sensing technologies (e.g., MOX, gasFETs or thermoelectric sen-
sors) this is only true within a narrow range of concentrations (e.g., 0–10 ppm) often
exceeded by the typical concentrations obtained in real experiments. Other authors re-
sort to calibration curves previously reported in the literature and apply it to their sen-
sors [36, 158, 202]. Calibration functions are generally not transferable over long times or
across sensor units, due to sensor instability and batch-to-batch variation in sensor charac-
teristics, respectively. For a calibration transfer to be effective, at least some measurements
need to be taken [203]. An extreme case is found in the work of Kowadlo et al. [202], where
they used the calibration curve (and its parameters) from a paper presented 20 years be-
fore. In such a long time, the fabrication process of that sensor model might have changed
drastically and therefore the sensor response can be completely different.

Among those works that indicate that calibration was performed, there is often lack of
rigor in performing and describing the calibration procedure. In some cases, the calibration
procedure is not described at all [118, 146] or it is vaguely described [122, 129, 140, 163,
166,204,205]. For example, neither the concentration values nor the way in which the con-
centrations were generated are described in [122, 204]. Luo et al. [166] reported the cali-
bration concentrations but did not describe how they were generated. On top of that, they
represented the gas distribution maps in unknown units in the range [0,1]. Other authors
describe the calibration method but do not report the calibration standards [129,140,163].
In none of the above works the uncertainty of the concentrations or the instrumental signals
was reported.

The sensitivity of both the calibration method and the calibration curve to environmen-
tal parameters is often neglected in the literature. For example, calibration by the evapo-
ration method with apparently lack of control over the relevant environmental parameters
or without a reference device has been reported [205, 206]. It should be noted that the
calibration curve has a domain of validity closely tied to the set of conditions covered by
the calibration points. Departure from those conditions casts doubt on the validity of the
calibration curve. For example, a calibration curve obtained at 30 %r.h. might not repre-
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sent the sensor characteristics at 60 %r.h if the sensor is cross-sensitive to humidity (e.g.,
MOX sensors). In these cases, it is important to ensure that the calibration temperature and
humidity are as similar as possible to those of the target application. Nonetheless, Ferri et
al. [122] calibrated six MOX sensors simultaneously without measuring the humidity and
temperature within the gas chamber. Due to the high power dissipated by multiple heaters,
the conditions within the chamber may significantly vary with respect to the ambient con-
ditions in which the device was later on operated.

The LOD is defined as the “smallest measure that can be detected with reasonable cer-
tainty for a given analytical procedure”, by the International Union of Pure and Applied
Chemistry (IUPAC) [207]. The LOD is a fundamental characterization of a gas sensor
that allows to determine if a given reading is product of contact with the target gas or it
is due to background noise. The background noise of MOX sensors is produced by the
presence of other gases, changes in environmental conditions such as humidity or due to
the intrinsic stability of the sensing layer. This creates random fluctuations of the blank
sensor response (i.e. response without analyte) that overlap the distribution of responses
corresponding to low concentrations of the analyte (Figure 1.46).
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Figure 1.46: Schematic representation of the LOD in the signal domain. The blank response (blue
curve) and the response at the LOD (red curve) are assumed to be normal distributions N(y0,σ0) and
N(yD,σD), respectively. The rest of the symbols are explained in the text.

The LOD is fundamental in odor robots because it determines the maximum distance
at which the odor source can be detected, and is directly related to the threshold required
by most GSL algorithms to detect the chemical plume. The estimation of the LOD in
in-situ gas sensors is also relevant to applications outside mobile robotic olfaction, such
as biomedicine or environmental monitoring. In the biomedical field, MOX sensors have
been proposed to measure VOCs in expired breath, such as ammonia (NH3) and car-
bon monoxide (CO), which might be related to respiratory and gastrointestinal dysfunc-
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tion [208–210]. Trace concentrations of these VOCs higher than 1 ppm might indicate
renal failure [209] and asthma [210], respectively. Thus, only sensors with LOD below
this limit can be used for such applications.

Univariate LOD

When the sensor response is univariate, IUPAC derives the LOD in terms of statistical
hypothesis testing with default values for the probabilities of false positives (α) and false
negatives (β ) both equal to 0.05. Assuming that measurements corresponding to blank
samples and gas concentrations near the LOD are normally distributed with known vari-
ance (σ0 and σD, respectively), the decision limit (yC) and the detection limit (yD) in the
signal domain are given by

yC = y0 + z1−α σ0 (1.7)

yD = yC + z1−β σD (1.8)

where z1−α and z1−β are the critical values of the normal distribution for significance
level α and β , respectively (usually α = β = 0.05). In many practical applications the
true values σ0 and σD are unknown, so a Student t-distribution is used to approximate the
Gaussian curve. The critical values z1−α and z1−β are replaced by the one-sided t-critical
value t1−α,ν for the chosen confidence level (α) and degrees of freedom (ν). Similarly, the
true standard deviations σ0 and σD are replaced by the corresponding estimates s0 and sD,
respectively. Because sD corresponds to the (unknown) variability of the response at yD
(in fact, yD is what we are trying to estimate), sD is replaced by s0 (assuming homoscedas-
ticity). Finally, replacing the gross signal y by the net signal y− y0 and recalling that we
chose α = β , Equations 1.7 and 1.8 can be simplified to

yC = t1−α,ν σ0 (1.9)

yD = 2t1−α,ν σ0 (1.10)

When the number of samples is large, t1−α,ν → 1.65 and yC and yD can be approxi-
mated by 1.65σ0 and 3.3σ0, respectively. This means that, even for the simplest formulas,
at least the variability of the blanks needs to be determined. The LOD in the signal domain
can be converted to concentration units by application of the calibration curve. The IUPAC
only considers the linear calibration function

y = Ax (1.11)

where y is the net sensor response, A is the real (unknown) sensitivity and x is the con-
centration. The LOD in the signal domain (assuming many samples) is found by inserting
Equation 1.10 into Equation 1.11 and solving for x

xD =
3.3σ0

A
(1.12)
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To generate this simplified LOD formula, it is assumed that the response is linear
with concentration, and the residuals of the linear fit are homoscedastic and normally dis-
tributed. Direct application of the above formulas when any of this assumption is violated
may yield inconsistent LOD values. This is the case of MOX sensors because the response
is highly non-linear and heteroscedastic (variance tends to be higher at low concentra-
tions). Thus, reliable LOD estimation in MOX sensors is still an open problem.

Multivariate LOD

In some cases, the output of a sensing system is multivariate, i.e. each measurement con-
tains several variables. This kind of first-order data arises naturally in analytical instru-
ments such as the mass spectrometer or gas cromatography where a measurement is a
spectra instead of a scalar value. However, multivariate data can also result from but can
also happen in gas sensor arrays or temperature-modulated MOX sensors. The estima-
tion of the LOD in multivariate calibration is not standardized (see a recent review by
Olivieri [211]). The main issue is the lack of agreement between two competing methods:
(i) analytically, by propagating the errors of the calibration concentrations and measured
signals; (ii) empirically, by carrying out predictions on validation samples. The analyti-
cal method assumes that errors are independent and identically distributed (i.i.d.) and that
the response is a contribution of additive signal and random noise. These assumptions are
unrealistic in temperature-modulated MOX response patterns are highly non-linear and
correlated. Furthermore, the analytical method requires that the variance of the errors is
estimated a priori (e.g., from replicates), which is costly and sometimes impractical.

In the empirical approach, the prediction uncertainty is estimated through a univariate
“surrogate” variable computed on the calibration or (ideally) validation samples. The uni-
variate LOD formula (Equation 1.12) is then applied to the surrogate variable. Examples
of surrogate variables are the net analyte signal (NAS) [212], the predicted concentra-
tions [213] or the scores of the first PCA component [214]. Although the NAS approach is
supported by the IUPAC [215], there are different approaches to compute the NAS which
produce slightly different outcomes [216].

LOD in GSL algorithms

Most GSL algorithms require a detection threshold that is used to differentiate when a
given sensor reading is product of contact with the gas plume and when it is due to back-
ground noise. Bioinspired algorithms use such a threshold in the plume finding phase and
during plume tracking to detect when the plume has been lost. Algorithms based on ‘odor
hits’ or ‘odor events’ [113, 142, 144] require such a threshold to binarize the sensor re-
sponse. In the absence of the target gas (e.g., during gas finding), the threshold is exactly
the definition of the limit of decision (yC or xC) of the sensor. The lower is such value (or
equivalently the LOD) the longer the distance at which the source can be detected with a
low probability of false alarm (Figure 1.47).

The background concentration is normally low far from the source and increases with
proximity to the gas source (especially in indoor environments). Then, the detection thresh-
old estimated at the beginning of the exploration (when the gas concentration was probably
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Figure 1.47: Distance at which a gas leak can be detected for an instrument with LOD of (a) 5 ppm
and (b) 250 ppm. The values of 5 ppm and 250 ppm were chosen to be representative of a flame
ionization detector (FID) and a pellistor sensor, respectively (adapted from [217]).

negiligible) might be no longer valid for detecting the plume close to the source. Pomareda
et al. [143] found that the optimum threshold in Pang and Farrell’s algorithm [142], i.e. the
threshold that maximizes the mean probability at the true source location, increases with
the level of background interference (Figure 1.48).

(a) (b)

Figure 1.48: Dependency of the mean probability at source location with the concentration threshold
of Pang and Farrell’s algorithm [142]. (a) Low background level; (b) High background level. The
orange line shows the default equiprobable value ( 1

Nc
) assigned to every cell. (from [143]).

Assuming that the background concentration varies slowly, Pomareda et al. proposed
an adaptative background estimation algorithm that automatically subtracts the background
from the instantaneous signals. Using the background-corrected signals, xC can be used as
a fixed threshold across the entire exploration area. Algorithms based on the derivative of
the signal [121, 145, 218] can also implement a fixed threshold because the derivative is
insensitive to background changes. Li et al. [219] and Lochmatter et al. [29] defined an
adaptive threshold as a linear combination of the instantaneous reading and the average of
the signal since the start of the experiment.

Despite of its importance, the detection threshold is often not estimated properly in the
robotics literature. In some articles, neither the value nor how it should be computed is re-
ported [114,126,129,141,142,148]. Other works provide the value but do not explain how
it was obtained [20,154,201,202,220]. Among those works that explain the computation,
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some of them do not report the value [122] and others ignore the LOD definition and pro-
vide alternative definitions. Examples of reported thresholds are: 0.8×r0 [201], 4σ0 [113],
5µ0 [144] or max(r0) [40], where r0 is the instantaneous response in clean air, µ0 the mean
blank response and σ0 the standard deviation of r0. It is clear that these definitions do not
follow the LOD theory, which fixes the decision limit at µ0 +1.65σ0.

The rapid decay in chemical concentration with increasing distance from the source
combined with incorrectly estimated detection thresholds results in a reduced area where
the plume can effectively be detected (if threshold is too high) or a high number of false
alarms (if threshold is too low). In outdoor applications, the search zone might involve
several km2 so it becomes very important to set the detection threshold very close to yC.
This has not been an issue in reported GSL experiments because the concentration was
unrealistically high and the arena too small, i.e. the robot was too close to the source.

In some cases, the detection threshold is calculated when the instrument is calibrated
in laboratory conditions and then it is (incorrectly) assumed that in future and field op-
eration the threshold is still valid. However, in field operation the range of variation of
interferences such as temperature and humidity can go beyond the calibration range or the
instrument might have drifted. An illustrative example is found in Farrell et al. [40], where
an AUV is used for CSL. The threshold of their binary-based algorithm was computed
from a set of initial measurements taken in San Diego Bay in the absence of the chemical.
They set the threshold as the maximum of the blank response, which represents a lower
false positive rate than the 5 % established in the LOD definition and will probably reduce
the distance at which the source can be detected. In addition to that, the field tests were
conducted 10 months later in a different location (Duck, NC). By changing the scenario
and the time, the background composition might have changed because of different water
properties or the sensor might have drifted. Because the sensor equipped in the AUV is
not mentioned, it is not possible to discuss about the potential cross-sensitivities or the
temporal stability of such sensing technology. This example highlights the poor attention
that is sometimes paid to the gas sensor system in the CSL literature.

1.4 MOX gas sensors

MOX sensors deserve an independent section because they are the most common gas sen-
sors in robotic applications. Besides of that, they have been used to solve problems in a
number of fields: environmental monitoring [221–224], food quality control [225–229],
biomedicine [230–232], safety and security [233–237], automotive [238–240], household
applications [241,242], energy [243], industrial processes [244], fire alarm systems [245],
agriculture [246], law enforcement [247], air and space [248], water quality monitor-
ing [249] and microbiology [250], among others.

1.4.1 Working principle

The working principle of a n-type MOX sensor is illustrated in Figure 1.52. In clean air
(Figure 1.49(a)), free electrons inside the metal oxide are attracted towards air oxygen
absorbed on the material surface, forming a potential barrier that prevents current flow

24http://www.figaro.co.jp/en/technicalinfo/principle/mos-type.html

http://www.figaro.co.jp/en/technicalinfo/principle/mos-type.html
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(a) (b)

Figure 1.49: Operating principle of a n-type MOX sensor36. (a) In clean air; (b) Under gas exposure.

and increases the sensor resistance. In the presence of a reducing gas (Figure 1.49(b)), the
density of adsorbed oxygen on the hot sensing surface decreases and the sensor resistance
decreases.

The basic measuring circuit of an analog MOX sensor, depicted in Figure 1.50(a), requires
two constant voltage inputs (VH and VC) and a load resistor (RL) connected in series with
the sensor output. The heater voltage (VH) is applied to the heater resistor (RH) to heat up
the sensing element at a specific temperature which is optimal for sensing, whereas (VC)
allows measuring the voltage across RL, which can be related to the sensor resistance (RS)
by

RS = RL ×
VC −VRL

VRL
(1.13)

RL

VH VC

VRL

RS
RH

(a) (b)

Figure 1.50: (a) Voltage divider; (b) Sensor response to a step of ethylene.
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The load resistor might be tuned for the gas concentration range of the target appli-
cation, and the output of the voltage divider can be amplified and filtered. Because of the
huge dynamic range of RS (it may vary through several decades), resistance-to-time con-
version (RTC) methods [251] or amplifiers covering a measurement range of eight orders
of magnitude [252] have been proposed to improve the resolution of the measurement.

The response of a MOX sensor is highly non-linear. It usualy shows high sensitivity at
low concentrations (e.g., < 10 ppm) and low sensitivity at mid-high concentrations (Fig-
ure 1.51(a)). In the ideal case of a single gas mixture, the Clifford-Tuma model [253]
mathematically describes the response of a MOX sensor as a power law

rs = rair · (1+ kc)−β (1.14)

where rs (kΩ) is the sensor resistance, rair (kΩ) the sensor resistance in clean air, c
(ppm) the concentration of the target gas, k (ppm−1) is a gas-dependent constant and β is
the power law slope characteristic of the sensor.

Concentration (ppm)

r s
 /

 r
0

0 20 40 60 80 100
0
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18
TGS 2600
TGS 2600
TGS 2602
TGS 2620
TGS 2620

(a) (b)

Figure 1.51: Calibration curve of five MOX sensors to ethylene (Models: TGS 2600, 2602 and 2620,
Figaro Engineering Inc). r0 is sensor resistance at 100 ppm of ethylene (from [254]); (b) Normalized
sensor resistance (R0 is the response in clean air) as a function of temperature and humidity25.

The parameters k, β and rair are typically found by an individual calibration procedure
because they show high variance even for different units of the same sensor model. Once
these parameters are determined, the measured sensor resistance can be converted to gas
concentration by solving for c in Equation 1.14. The validity of Equation 1.14 was con-
firmed for CH4, H2, CO and H2O, when only one of these constituents was variable and
the rest were inexistent or constant.

25

http://www.figarosensor.com/products/2620pdf.pdf
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1.4.4 Selectivity and cross-sensitivity to environmental factors

In the complex case of a dynamic mixture of gases (i.e. several of them can vary simulta-
neously), the sensor response follows a power law that involves multiplicative interaction
between the gases in the mixture and quadratic terms [253]

rs = rair ·
(
1+ kCH4 cCH4 + kH2O cH2O + kCO cH2O cCO + kCO cH2O c2

CO
)−β

(1.15)

where cCH4 , cH2O and cCO are the concentrations (in ppm) of CH4, H20 and CO, re-
spectively, and kCH4 , kH2O and kCO are the corresponding constants (ppm−1). According
to Clifford and Tuma [253], competitive and synergistic interactions among gases and en-
vironmental factors (e.g., air humidity) could enhance or mask the target gas. Converting
sensor resistance measurements into gas concentration is thus non-trivial, as device’s re-
sponse is non-linear with respect to the target gas and interfering substances (which are
typically unknown). In other words, if the target gas is CH4 it is not possible to solve
Equation 1.15 for cCH4 without knowing the values of cH2O and cCO. This illustrates one
of the biggest limitations of MOX sensors, the lack of selectivity.

Humidity is probably the environmental factor that most influences the performance of
MOX sensors, as water molecules adsorbed on the sensing surface decrease the area avail-
able for oxygen chemisorption reactions, decreasing the baseline and sensitivity [255]. In
fact, metal oxides are commonly used in the fabrication of humidity sensors [256]. Pro-
longed exposure to extremely dry or wet atmospheres creates a “memory effect” in the
sensor response [257]. Ambient temperature and barometric pressure may also affect the
sensor response [258] (Figure 1.51(b)).

The lack of selectivity and cross-sensitivity to environmental factors may hinder gas
sensing tasks with a mobile robot. Kamarudin et al. [259] studied the effect of temperature
and humidity on gas distribution mapping, in a scenario in which the spatial distribution of
temperature and humidity varied up to 6.5 ºC and 13.5 %r.h., respectively (Figure 1.27(a)).
Despite no gas source was present, the predictive mean map (Figure 1.27(a)) seems to in-
dicate the presence of a gas source in the east side of the map (lower resistance means
higher concentration). The robot might be therefore misled towards areas with high hu-
midity areas or high concentration of background constituents.

The selectivity of a MOX sensor can be improved by (1) technology and material
improvements, (2) operating mode or (3) signal processing [260]. The recipe for the active
sensor material can be designed to enhance the response to specific gases, for example
adding noble metals such as platinum (Pt), gold (Au), palladium (Pd) or silver (Ag) [261].
The temperature of the semiconductor surface also has a strong impact into the selectivity.
There is usually an optimum temperature for each target gas, but only limited selectivity
can be achieved by working at a constant temperature [262]. In the example of Figure 1.53,
the selectivity to acetone with respect to acetic acid is maximized at 250 ºC, but at this
temperature there is also high interference to 2-butanone.

Temperature modulation

The simplest way to exploit the temperature-dependent sensor response to discriminate
gases is to modulate the sensor temperature by applying a step, sinusoidal or ramp wave-
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(a) (b) (c)

Figure 1.52: Effect of temperature and humidity on gas distribution mapping (adapted from [259]).
(a) Mean temperature map; (b) Mean humidity map; (c) Predictive mean map (gas). Although no
gas source is present, the predictive mean map is clearly influenced by the humidity map.

form to the heater voltage [263, 264] (Figure 1.54(a)). More complex modulations strate-
gies such as pseudorandom binary sequences [265] or self-adapted modulations [266] have
been also reported. The multivariate response patterns resulting from temperature modu-
lation are normally fit by a multivariate calibration model, such as Principal Component
Analysis (PCA) [267] or Partial Least Squares (PLS) [268] (Figure 1.54(b)). The latter is
the de-facto method for regression purposes, as it can deal with high levels of collinearity
in the response.

The length of the modulation cycle is a trade-off between discrimination power and
effective sampling rate. The longer the heating cycle (up to a limit), the richer will be the
sensor response and thus the higher the potential for gas discrimination [263]. However,
long cycles reduce the effective sampling rate of the sensor because a measurement point
is obtained after the heating cycle is completed. Temperature modulation was proposed
for robotic gas sensing tasks by Purnamadjaja et al. [220], although the authors do not
describe how they processed the multivariate response patterns. Temperature-modulated
MOX sensors have been occasionally used within a sensor array [269, 270].

Signal processing and data fusion algorithms to determine and compensate changes of
environmental conditions have been proposed in the literature [233, 271–275]. Sohn et
al. [271] demonstrated that the humidity level in clean air samples can be accurately pre-
dicted by fitting a PLS model with the response of a MOX sensor array. However, these
preliminary experiments did not prove the ability of the proposed model to compensate
humidity fluctuations in samples with concentration higher than zero. Hossein-Babaei
et al. [272] trained an artificial neural network (ANN) using sensor response patterns
recorded at ambient temperature and relative humidity ranging from 23 to 43 °C and 10
to 80 %r.h., respectively. They were able to reduce the average relative prediction error to
3% in independent test samples of methanol in the range 0-2000 ppm (Figure 1.55).
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Figure 1.53: Dependence between the response of a MOX sensor and the temperature of the sensing
layer. The selectivity to certain compounds can be increased by tuning the operating temperature
(from [262]).

Masson et al. [274] fitted a second order polynomial to the sensor response under CO
concentrations between 0 and 2.8 ppm, and changes in temperature from 0 to 35 °C. They
obtained moderate prediction errors of 0.22 to 0.48 ppm. Piedrahita et al. [273] proposed
a linear calibration model which includes independent terms for absolute humidity and
temperature. Huerta et al. [275] proposed an energy band model to correct for humidity
and temperature fluctuations in clean air conditions. The efficacy of the latter two com-
pensation methods cannot be assessed because the results were not benchmarked against
non-compensated data.

Sensor manufacturers on the other hand implement compensations of temperature and
humidity via hardware, either using a thermistor-based analog circuit (as described in a
technical document for the Figaro TGS 203 26) or by digital compensation using an exter-
nal temperature/humidity sensor [252].

1.4.5 Stability

MOX sensors present short- and long-term instability, which is defined by Ionescu et
al. [257] as “a variation of the sensor response when it is exposed to the same analytes
under identical conditions”. The short-term instability comprises two transient behaviours,
named the “burn-in” and “run-in” phases by AMS manufacturer 27, which occur immedi-
ately after powering up the device.

Burn-in phase

Right after the first power up, the sensor performs a special “burn-in” behavior, character-
ized by a drift in the sensor response which might take up to one week (Figure 1.56(a)). It

26http://pdf.dzsc.com/88888/2008617161056961.pdf
27AS-MLV-P2 datasheet: https://ams.com/documents/20143/36005/AS-MLV-P2_DS000359_1-00.

pdf

http://pdf.dzsc.com/88888/2008617161056961.pdf
https://ams.com/documents/20143/36005/AS-MLV-P2_DS000359_1-00.pdf
https://ams.com/documents/20143/36005/AS-MLV-P2_DS000359_1-00.pdf
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Figure 1.54: (a) Temperature modulation using a step heating waveform: (top) Heater voltage; (mid-
dle) Sensor temperature; (bottom) Multivariate response patterns (from [263]); (b) PCA analysis of a
temperature-modulated MOX sensor, showing good discriminative power between four compounds.
The arrow indicates the direction of increasing concentration (from [266]).

is due to manufacturing issues and can be solved by continuously powering the sensor for
several days. Once the burn-in phase is completed this behaviour will not show again.

Immediately after any power up across the lifetime of the device, the sensor enters into an
unstable state characterized by a steady increase in the sensor resistance (Figure 1.56(b)),
also referred to as “initial action” by Figaro manufacturer (in the application note of the
TGS 2610 sensor 28). The standard duration of this transient behaviour depends on the
sensor model and how long the sensor was unenergized; the longer the sensor was unpow-
ered, the longer the run-in phase takes. This means that a reliable and stable measurement
can only be obtained after waiting for that length of time, which represents a practical
issue for devices intermittently operated or with limited energy budget. Immediate stable
measurements can be obtained if the MOX sensor is continuously powered, however the
power consumption in this case might be considered too high for certain battery-operated
application such as robots [276] and, especially, micro aerial vehicles.

Even after powering the sensor long enough to get a stable response, replicate mea-
surements under similar conditions can be noisy. An important component of this drift may
come from the presence (even at low concentration) of traces of unknown and time-varying
compounds. Another part of this apparently random noise may be caused by uncontrolled
variations of the sensor temperature, due to (1) the exothermic nature of chemical reactions
between the gas and the metal oxide, (2) Joule heating of the sensor during the measure-
ment or (3) changes in the air flow [258]. In the technical information sheet 28, Figaro
manufacturer indicates that air flow cools down the sensor surface and thus influences

28Application note Figaro TGS 2610:

http://www.figarosensor.com/products/2610app.pdf
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Figure 1.55: Comparison between relative error for humidity-compensated and uncompensated sig-
nals (from [272]).
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Figure 1.56: Instability of MOX sensors. (a) Burn-in and (b) run-in phases of several units of the
AMS AS-MLV-P2 sensor (adapted from the AS-MLV-P2 datasheet27).

its response. The heater resistor’s TCR is also susceptible to changes in environmental
conditions. Without appropriate temperature control, deviations in the operating tempera-
ture can shift the baseline and sensitivity. Stable operation independent of the surrounding
temperature can be achieved by specialized circuitry to drive the heater voltage 29, or by
integrating a temperature sensor on the hotplate to actively control its operating tempera-
ture [252, 277].

Long-term systematic drift of the sensor response can be noticeable in a time-scale of
several days (Figure 1.57(a)). It may be caused by sensor aging, prolonged exposure to
highly humid environments, thermo-mechanical degradation or poisoning, among other
factors [218]. Drift in heater resistance over time was observed for a MiCS-5525 sen-
sor [274] (Figure 1.57(b)). Long-term drift compensation can be achieved by modifica-

29Alphasense Application Note AAN 601-02:

http://www.alphasense.com/WEB1213/wp-content/uploads/2017/07/AAN-601-02.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2017/07/AAN-601-02.pdf
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tions in sensor technology and design, changes in the operating mode or signal processing
methods [260, 274, 278–283]
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Figure 1.57: (a) Long-term drift of two units of the Figaro TGS 2620 sensor, continuously exposed
to the same conditions within a gas chamber (from [284]); (b) Drift in heater resistance of a SGX
MiCS 5525 sensor over a period of nearly nine months. Ambient temperature and humidity were
both stable (from [274]).

The response of MOX sensors is characterized by a fast response time (typically 1-3 s)
upon exposure to the gas, followed by a slow recovery of the response after gas is removed
(typically 20-30 s). A large component of the slow recovery time is due to the housing of
the sensor, which acts as a small gas chamber where the gas accumulates before reach-
ing the sensing layer, producing a low-pass filtering of the response [285] (Figure 1.58).
MEMS sensors are thus faster than conventional sensors because of the reduced size of the
housing. Removing the sensor housing notably improves the response time [98, 285, 286]
but the sensor might become less stable and more prone to damage. Martinez et al. [285]
showed that a MOX sensor without housing can resolve concentration fluctuations in the
seconds scale (1 Hz), which represents an improvement of one order of magnitude with
respect to the bandwidth of a sensor with housing (0.1 Hz). According to Martinez et al.,
the response time of a naked MOX sensor is still one order of magnitude worse than the
bandwidth of the moth’s antenna (10 Hz).

The response time can be improved either by novel hardware designs [204, 286] or by
signal processing [121, 287–290]. Batog et al. [286] developed a custom hardware piece
where a small DC fan creates a downwards air flow that bounces on the ground and passes
through the perforated housing of a MOX sensor (Figure 1.59(a)). Experimental results
using a mobile robot for chemical trail following indicate that this device, which was
specifically developed for this task, improves the detection of the boundaries of the trail
(Figure 1.59(b)).
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Figure 1.58: Recordings from gas sensor TGS2620 in response to fluctuations in concentration of
ethanol, with (dashed line) and without (solid line) the cap ( from [285]).

(a) (b)

Figure 1.59: (a) Custom enclosure that integrates a DC fan and a MOX sensor with a perforated
housing; (b) Comparison between the sensor response when the fan is turned ON or OFF, during
multiple crossings of a chemical trail (adapted from [286]).

Gonzalez-Jimenez et al. [204] designed a multiple chamber e-nose (MCE-nose) in
which identical MOX sensors are accommodated in four separate chambers (Figure 1.60(a)).
When the system detects that the active sensor is in decay phase, it delegates the sensing
task to one of the sensors in a “clean” chamber. The overall output signal is the concatena-
tion of rise phases of clean MOX sensors. The system clearly improves the respone time
of a conventional e-nose (Figure 1.60(b)), but the use of multiple chambers with electro-
valves increases the cost, size, weight and power consumption, limiting the applicability
of the device to platforms with limited payload.

Regarding signal processing approaches, inverse dynamical models have been pro-
posed to retrieve the (fast) excitation signal from the slow sensor response [287,289,290].
Marco et al. [289] demonstrated that ANNs and kernel estimation methods were superior
than functional expansions. Pardo et al. [290] refined the previous work by including the
dynamics of the sampling chamber into the model and concluded that, among different
kernels, Wiener kernels lead to smaller errors and faster estimation. Monroy et al. [287]
modelled the MOX response using two exponentials with different time constants for rise
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(a) (b)

Figure 1.60: Multi chamber e-nose (MCE-nose). (a) Picture of the hardware system; (b) Response
of a conventional e-nose (blue line) and the MCE-nose (green line) mounted on a mobile robot, as it
passes by three consecutive gas sources separated 2 m from each other (adapted from [204]).

and recovery (Figure 1.61(a)). The practical limitation of this approach is that it requires a
complex setup to calibrate the time constants for each substance and sensor.
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Figure 1.61: Improvement of response time by signal processing. (a) Inverse modelling. The raw
sensor response as a robot passes by a chemical source is depicted as a blue line, the improved
response as a red line and ground truth as a green line (adapted from [287]); (b) Smoothed derivative
(adapted from [291]).

Fonollosa et al. [288] used neural networks to compensate the slow response time of a
MOX sensor array. Experimental results in a gas chamber with mixtures of CH4, CO and
Ethylene yielded relative prediction errors of 4.5-8.5 %. It is unclear the suitability of the
proposed approach for open sampling systems (OSS) where the chemicals are transported
by turbulence rather than by a controlled flow delivery system.

Other authors have used the derivative of the response for improving the response time.
Muezzinoglu et. al [291] first noticed that the height of the peak of the smoothed derivative
(Equation 1.16) can anticipate the steady-state value of the response (Figure 1.61(b)).
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yt = (1−α) · yt−1 +α · (xt − xt−1) (1.16)

where α controls the amount of smoothing. As α increases, the closer is the yt to the
derivative and the earlier the peak appears in time. However, being close to the derivative
means also higher noise. Thus, α governs a trade-off between response time and signal to
noise ratio (SNR).

Schmuker et al. [121] used the smoothed derivative for extracting short-scale features
of turbulent plumes (Figure 1.62). In wind tunnel experiments, the authors found that the
frequency of rising edges of yt (the so-called ‘bouts’), after filtering out low-amplitude
bouts produced by noise, is strongly correlated to the distance to a gas source: the higher
the bout frequency, the closer the sensor to the gas source. Comapared to previous signal
processing methods, the advantage of this approach is that no complex calibration proce-
dures are required. Nonetheless, as of now there is no systematic approach to determine the
smoothing factor α and the threshold to discard low-amplitude bouts, and both parameters
may have a strong impact on the results.

Sensor response
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gas release
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Figure 1.62: Schematic representation of the raw sensor response, its “clean” derivative and the de-
tected bouts when the sensor is exposed to a chemical plume. The figure illustrates that the dynamics
of the derivative are much faster than those of the raw response (Source: unpublished results).

There is a trend towards small SMD housings that integrate the sensing elements with an
analog (e.g., SGX MiCS family30) or digital interface (e.g., Bosch BME68031, Sensirion
SGP-3032, AMS CCS81133). The digital interface simplifies the integration of sensors into
microprocessor applications by accepting a digital power voltage (e.g., 3.3 or 5 V) and pro-
viding a digital output signal which can be directly used without further processing from
the user. Internal algorithms in digital sensors can provide baseline and humidity com-
pensation (e.g., using the signal from an external humidity sensor) and convert raw signals
into calibrated outputs in concentration units [252]. The main disadvantage of using digital
sensors is that the sampling frequency is usually limited by the chip, and there is no access
to the raw output signal. Some SMD sensors combine two (e.g., MiCS-4514) or three (e.g.,
MiCS-6814 or Sensirion SGP-30) sensing layers in the same package, each of those tuned
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for the detection of specific gases. By fusing information from different sensors they can
provide additional outputs such as the indoor air quality (IAQ) index [252].

1.5 Gas �ow visualization

Our limited visual experience about how a released gas disperses in the environment (espe-
cially indoors) impairs our ability to develop efficient GSL strategies. Much of the research
on GSL has relied on the assumption that gases heavier than air, such as ethanol, will flow
along ground level [14,129,184]. However, simply using the density of the pure substance
as the only parameter governing gas dispersion is dangerous, as it is known that, for ex-
ample, in indoor environments thermal sources or recirculating air currents from forced
ventilation systems may have a stronger impact into gas dispersion than the density of the
pure gas [292].

Researchers performing GSL and GDM experiments are often interested in determin-
ing whether the gas will reach a stable spatial distribution and how quickly will that hap-
pen. In most reported experiments, a small amount of time (few minutes) is waited after
the gas is released prior to start measuring. This time is normally estimated without knowl-
edge about how the selected gas disperses in the environment. For example, Purnamadjaja
et al. [119] assumed that 6 min were sufficient to achieve a stable spatial distribution of
ethanol in an indoor environment, whereas Ferri et al. [122] waited for 15 min. Lytridis
et al. [293] claimed instead that dispersion of heavy alcohols is a much slower process
which may take up to 25 min to be detectable at a distance of 1 m from the point source.
If experiments are carried out when the gas distribution is not stable, the results will be
dependent on the specific time frame in which the experiments were performed. Lilien-
thal et al. [294] pointed out that their experimental findings across different trials in an
indoor scenario were linked to the time since the source was uncovered, because of the
non-stationary nature of indoor gas dispersion.

Despite CFD simulations could in theory shed some light about dispersion of a gas in
an environment, measuring the temporal and spatial variations of gas concentrations is the
most reliable characterization of gas dispersion, as it does not rely on assumptions nor ini-
tial conditions. Such experimental measurements are also necessary for testing predictions
from gas dispersion models and CFD simulations. A categorization of the available exper-
imental techniques is possible by distinguishing the operating principle: visualization by
tracer particles, optical remote sensing or chemical sensors.

1.5.1 Particle tracer methods

The fluid in which a gas is supposed to be released can be seeded with small tracer par-
ticles (e.g., dust, smoke, dye) to make the flow pattern visible. A qualitative analysis of
such plumes may be done by a human observer based on video-recorded and digitized

30https://www.sgxsensortech.com/sensor-selector/
31https://www.bosch-sensortec.com/bst/products/all_products/bme680
32https://www.sensirion.com/en/environmental-sensors/gas-sensors/

multi-pixel-gas-sensors
33https://ams.com/ccs811

https://www.sgxsensortech.com/sensor-selector/
https://www.bosch-sensortec.com/bst/products/all_products/bme680
https://www.sensirion.com/en/environmental-sensors/gas-sensors/multi-pixel-gas-sensors
https://www.sensirion.com/en/environmental-sensors/gas-sensors/multi-pixel-gas-sensors
https://ams.com/ccs811
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images [25, 112, 295, 296]. Quantitive analysis of individual particles can be achieved by
particle image velocimetry (PIV) [297], particle tracking velocimetry (PTV) [298] or laser-
induced fluorescence (LIF) [24, 299, 300]. The position and velocity of the particles are
recorded with high-resolution digital cameras and then shown in the form of a vector plot
(Figure 1.63).

Figure 1.63: Experimental velocity field measured in an aircraft cabin using 3D-PTV (from [301]).

Tracer methods can provide visualizations with very high temporal and spatial resolu-
tion (3D), provided that the environment offers sufficiently ample optical access and there
are no elements blocking the line of sight. Due to camera resolution and image require-
ments for accurate particle tracking, only a small fraction of the experimental area can
be interrogated. Particle seeding assumes that the motion of the tracer and the target gas
are identical, which is not necessarily true. It also requires a complex calibration proce-
dure of the camera system and a depth analysis of the carrier gas in terms of viscosity,
surface tension, velocity, etc. The high cost of these techniques together with the demerits
summarized above restrict the practical application considerably [302].

Optical remote sensing (ORS) combined with computed tomography (CT) is an old tech-
nique to visualize 2D gas distributions over room-sized areas. ORS instruments such as the
open-path Fourier transform infrared spectrometer (OP-FTIR) [303] or the TDLAS [5] are
first used to accurately measure the total number of gas molecules in a beam of radiation.
The path-integrated measurements are then converted by means of CT into a represen-
tation of the concentration distribution in the sampling plane [304]. This approach has
been used to build 2D concentration maps of sulfur hexafluoride (SF6) or CH4 (in an in-
door [305, 306] and outdoor areas [307]. Apart from the high cost of ORS instruments,
mirrors and retroreflectors should be carefully placed over the test environment to avoid
unexpected optical effects that would otherwise lead to errors in the measured path-integral
concentrations [305].
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Hyperspectral cameras can be considered a general version of an OGI camera. Instead
of acquiring images in a narrow wavelength band, they acquire spectrally resolved im-
ages [308]. A hyperspectral image contains hundreds of channels per pixel (a red-green-
blue (RGB) image contains three channels per pixel), each corresponding to a narrow
wavelength region of the IR spectrum. These extra channels allow for the visualization
and discrimination of gas plumes without prior knowledge of the sample. Hyperspectral
imaging has been mostly used in outdoor environments for identification of atmospheric
pollutants and chemical warfare agents [309, 310] (Figure 1.64).

Figure 1.64: Gas plume detection in hyperspectral video (from [308], © 2014 IEEE).

The segmentation of hyperspectral images is still a research topic, due to the inter-
ference produced by atmospheric constituents and other objects in the sensor field of
view [311]. Large data storage capacities and fast processors are needed for analyzing hy-
perspectral data. These factors together with the initial cost of the camera greatly increase
the cost of the full system.

An inexpensive solution for investigating gas dispersion patterns without adding tracers
is to use one or more chemical sensors to perform spatially distributed gas concentration
measurements. Unlike optical methods, chemical sensors can only measure gas concen-
tration in a very small area around the sensor surface (≈ 0.5 cm2). This means that either
a single sensor is moved to different locations or a grid format of static sensors is used.
Metal-oxide semiconductor (MOX) sensors are typically used in both cases, due to their
low cost and ease of deployment. Nonetheless, in the case of single-sensor mapping more
expensive devices such as PIDs have been ocassionally used [312]

If the gas distribution is expected to be time-invariant, as in controlled environments
with constant airflow and gas emission rate, the most straightforward approach to map
the gas distribution is to use a single sensor to sequentially measure gas concentration
in different locations [23, 100, 112, 119, 137, 148, 158, 312]. The environment is first dis-
cretized into a uniform [23,112,119,148,158] or non-uniform [23,100,312,313] grid and
the sensor response is recorded for a certain amount of time (typically 2-8 minutes) in the
center of each cell. Then, a map of the gas distribution is created by plotting the aver-
age response [23, 100, 112, 137, 148], the maximum response [119, 158, 313] or the odor
intermittency [26, 312] in each cell. Interpolation between adjacent cells is often used.

Gas distribution mapping by sequential measurements of a single sensor presents two
main inconveniences. First, it has been observed that the movement of the sensor across the
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experimental area can affect the air movement, and thus the gas dispersion [206]. Second,
building a map of a large area by averaging measurements for several minutes at each
location is a slow process. When the gas distribution cannot be assumed to be steady within
the time frame of the mapping process (as it is the case in most natural environments),
the resulting gas distribution map will show a great temporal averaging. This means that
temporary variations in the gas distribution will be mapped as if they were time-constant
structures. To reduce the time required to map the 2D gas distribution in a wind tunnel,
Vergara et al. [313] performed sequential measurements at 6 downwind distances using a
set of 9 sensing units distributed along the crosswind axis. To increase the accuracy in the
sensor placement, Haverkamp et al. [312] used a robotic traversing system to move the
sensor within the three axis of the environment.

In the general case where the gas distribution is time-varying, the most reliable way
to characterize gas dispersion using chemical sensors is to deploy multiple units covering
the target area, to perform simultaneous measurements during an extended period of time.
With an increasing area, establishing a dense grid of gas sensors would involve an arbi-
trarily high number of fixed gas sensors, which poses problems such as cost and lack of
flexibility. Because of this, this approach has been mostly restricted to 1D [122, 314] and
2D [98, 206, 315–317] measurements in small arenas. Grids of sensors are mostly based
on MOX sensors [98,122,206,315,317] although optical sensors were used in [314,316].

A dense 2D grid of 72 MOX sensors was presented by Zakaria et al. [206] to visualize
the temporal evolution of a chemical plume in a 6 m × 3 m indoor arena (Figure 1.65).
Whereas the plume was clearly visible at the beginning of the experiment, it gradually
became less defined as the background concentration increased, becoming hardly distin-
guishable from the background after 30 minutes of release. This experiment illustrates the
importance of characterizing gas dispersion in the environment for reporting and perform-
ing GSL experiments, since experiments carried out during the first half hour (when the
plume is clearly visible) will show higher success rates than experiments performed later
on. Murai et al. [315] deployed a 2D grid of 30 MOX sensors in a 3.5 m × 3.5 m area
within an office room, to study gas dispersion in weak air flow conditions. A fuzzy gas
cloud with unpredictable movements was observed, confirming that air flow has a major
impact on the gas distribution (at least in the 2D slice observable at ground level).

The three-dimensionality of the environment has been only investigated by few pre-
liminary works [148, 149, 318]. Russell et al. [148] used a mobile robot with a MOX
sensor mounted on an extendable vane to map the 3D gas distribution in a small room.
Although the gas source was placed near the floor (h = 0.6 m) and ethanol is heavier
than air, most of the gas concentration was found near the ceiling (Figure 1.66). This sup-
ports the idea that dispersion was dominated by convective air currents instead of by the
density of the pure substance. Reggente et al. [149] used a mobile robot mounting three
MOX sensors at different heights (0.2, 0.4 and 0.6 m) to build a 3D gas distribution map
of an indoor environment. The measurements from different sensors were fused using a
multivariate Gaussian kernel (so-called 3D-Kernel DM+V). De Vito et al. [318] placed 4
wireless MOX sensor nodes at different heights in a small glass box (0.36 m3 volume)to
build a 3D gas distribution map. The 3D setup in this case was only a proof of concept of
the remote logging capability of their propietary wireless modules.
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Figure 1.65: Snapshots of gas distribution map in a ventilated indoor arena. The gas source and the
fan were placed in (x,y) = (1.5, 0) m. The estimated ethanol concentration is described on the color
scale (adapted from [206]).

A practical inconvenience of using a grid of MOX sensors is that the sensors must be
calibrated to correct the non-linear response and the variations in sensitivity across differ-
ent sensor units (even if they are of the same model). The installation of the sensors may
slightly perturb flow motion, due to the supports required to hold them at multiple heights
and due to the local increase in ambient temperature by the sensor heater. The temporal
and spatial resolution of this system cannot be compared to that of optical methods because
(1) gas sensors have a slow response time and (2) with an increasing area, establishing a
dense grid of gas sensors would involve an arbitrarily high number of fixed gas sensors,
which poses problems such as cost and lack of flexibility.

1.6 Summary

Gas source localization by autonomous mobile robots has been a topic of research for
almost 30 years and still today remains elusive beyond simple scenarios. Tracking a tur-
bulent gas plume using a robot equipped with gas sensors is a challenging task, mainly
due to the complex dynamics of gas dispersal, the limitations of current chemical sen-
sors and the limited mobility of robotic platforms. In this sense, the commercial availabil-
ity of low-cost UAVs has ignited new research opportunities related to autonomous gas
sensing in applications such as environmental monitoring, gas source localization or gas
distribution mapping. Whereas large UAVs equipped with complex instrumentation have
been proposed for outdoor applications, nano UAVs are better suited for indoor opera-
tion. However, these small platforms are subject to constraints related to the reduced flight
time and payload, that are not an issue for terrestrial robots or larger drones. For exam-
ple, algorithms that require long measurement times at fixed positions will quickly drain
the batteries of nano UAVs. Similarly, algorithms that rely on heavy instruments such as
anemometers or LIDARs are not feasible due to limited payload.

At this time, it is unclear that bioinspired reactive behaviours have better performance
than other approaches based on statistical inference from cumulative readings. [28, 29].
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Figure 1.66: 3D gas distribution map of a ventilated indoor arena, obtained by sequential measure-
ments of a MOX sensor. The gas source was an ethanol source placed at (x,y,z) = (−0.5,2.5,0.6)
m (from [148]).

According to Hernandez et al. [28], current gas sensors are too slow to resolve plume
features in the milliseconds scale and mobile robots are not agile enough for performing
insect-like reactive movements. Moore and Crimaldi [319] suggest that animals may use
olfactory appendages to modify the chemical signal before it contacts the receptor site.
On top of that, the reactive behaviors that roboticists have been able to model might be
too simple to cope with complex environments. Rapid turns and sudden increases in flight
speed upon contact with pheromone molecules are complex behavioral tasks that are not
fully understood currently [320]. A practical limitation of bioinspired algorithms is that
they require anemometry and real-time obstacle detection, which hinders their use in plat-
forms with limited payload, such as nano-drones.

Engineering-based GSL algorithms are less sensitive to the response time of gas sen-
sors, since instead of reactively tracking the plume they exploit computational resources
available to robots, such as memory and processing power. Modeling the gas plume using
a mathematical model or moving towards the source aided by a map of odor hits have been
both useful GSL methods. However, long measurements are required at each sampling lo-
cation to obtain statistical representations of the plume or to estimate the density of hits,
which significantly increase the exploration time.

A major technical difficulty in designing and testing CSL algorithms is that dispersion
of chemicals is difficult to observe since most chemicals produce an invisible plume. This
has led to poor assumptions about how gases will disperse in an environment, e.g., that
ethanol plumes will disperse at ground level. Lilienthal et al. [14] suggested more than
one decade ago that a promising direction for future work is to investigate gas distribu-
tion mapping in 3D. The increased degrees of freedom of a UAV requires understanding
the dispersion of chemicals in 3D, prior to developing navigation strategies that work in
3D. Visualization of plumes through optical methods is the most accurate method but it
requires a complex and expensive setup that limits its practical applicability. Using a grid
of chemical sensors is a low-cost approach that can be used as a first approximation.

Changes in environmental factors and trace concentrations of unknown gases hinder
the localization a gas source using gas sensors, due to cross-sensitivity. In the presence
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of multiple gas sources, a mobile robot equipped with a MOX sensor will struggle to
identify the source of interest. To account for that, proper calibration and estimation of
the LOD in conditions as similar as possible to the target scenario is necessary. Direct
application of the LOD formulas to non-linear sensors is not possible due to the strong
statistical assumptions imposed by the IUPAC methodology. The LOD is fundamental at
long distances from the source, when the sensors operate near the noise level. In most
reported experiments, the robots were placed unrealistically close to the gas source, thus,
minimizing the need of such parameter. As pointed out by Hernández et al. [28], new
research in the field should consider more general and complex environments.





Chapter 2

Objectives

The main goal of this thesis is to provide a nano-drone with olfaction capability to localize
gas emission sources in indoor environments. This application presents several challenges
related to the:

• ultra-constrained power envelopes of nano-drones,

• limitations of current gas sensors, e.g. high response time (limits robot speed), low
selectivity (increases false positives) and high limit of detection (reduces the dis-
tance at which the chemical plume can be detected),

• interaction between propeller-induced turbulence and the gas sensor signals,

• variability of the experimental scenarios, including source characteristics, wind con-
ditions and chemical interferences,

• complex dynamics of turbulent gas plumes.

The first specific objective is therefore to overcome key limitations of MOX sensors
for mobile sensing applications, such as the low selectivity, the high power consumption
and the high response time. We aim to do that by optimizing the operating mode of the
sensor and by signal processing and chemometrics. In this regard, we aim to contribute in
the following topics:

1. To develop univariate and multivariate LOD estimation methods for sensors whose
response is non-linear, heteroscedastic and (possibly) multivariate (Chapter 3).

2. To develop a low-power heating method to reduce power consumption without de-
grading the predictive power (Chapter 4).

3. To improve the response time of MOX sensors for rapid tracking of turbulent plumes
(Chapter 5).

4. To extract high-frequency features of the sensor response that are most correlated
with the distance to a gas source (Chapter 6).
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5. To redesign the "bout" detection algorithm from a classical signal processing per-
spective and optimize the algorithm parameters to increase the robustness against
changing wind conditions (Chapter 6).

The second specific objective is to develop a 3D grid of MOX sensors to visualize
the gas dispersion patterns (3D) produced by an evaporating chemical source in an indoor
scenario, for different configurations of the gas source and air flow profiles (Chapter 7).
Within this context, we want to compare the performance of different estimators of source
proximity in 3D.

The third specific objective is to integrate a MOX sensor in a commercial nano-drone
(Chapter 8). This includes optimizing the sensor location to minimize the effect of rotor-
induced turbulences and designing the communication protocol with the base station. The
drone should be able to read the MOX signals and send them in real-time to the base sta-
tion, which would process them and command the drone to the next measurement location.

The final part of the thesis comprises the experimental evaluation of the nano-drone in
real-world gas source localization experiments (Chapter 8). We aim at testing the system
in a large indoor environment where a single gas source is placed at multiple heights.



Chapter 3

Optimizing the Limit of Detection
in MOX Sensors

In this chapter, we propose univariate and multivariate chemometric methods for optimiz-
ing the limit of detection (LOD) in temperature-modulated MOX sensors. As we stated
in the Introduction section, the LOD is a key figure of merit of any sensing technology
but MOX sensors have features incompatible with the standard linear univariate LOD
formulas, which assume a univariate linear response with homoscedastic and normally
distributed residual errors. Both methodologies were validated using multiple units of the
FIS SB-500-12 sensor in a scenario where the goal was to quantify low concentrations of
CO (0-20 ppm) and the main source of error was the presence of uncontrolled levels of
humidity (20-80 % r.h.).

In the univariate approach (Paper I), we optimize the calibration range and the uni-
variate measurement point (along the multivariate response pattern) such that the response
(or its logarithm) can be linearized and the residuals of the linear fit comply with the
assumptions of the standard LOD formulas. For that, we fused the output of multiple sta-
tistical tests to ensure that a measurement point simultaneously satisfies the assumptions
of linearity, normality and homoscedasticity. Compared to the measurement point recom-
mended by the manufacturer, the optimized measurement point reduces the mean LOD
from 4.0 to 2.3 ppm and increases the validity of the estimate from 80% to 95%. The op-
timized calibration models (and consequently the reported LOD values) were stable for at
least two weeks if the sensor baseline was corrected using intraday blank samples.

In the multivariate approach (Paper II), we make full use of the data contained in the
multivariate response pattern rather than selecting a single measurement point. Since the
multivariate response exhibits heteroscedastic and correlated noise, it is not clear which is
the best multivariate calibration model for this data. Maximum likelihood principal com-
ponent regression (MLPCR) is optimal from a statistical point of view as it explicitly
includes information on measurement uncertainties in the calibration. On the other hand,
partial least squares (PLS) is the de facto calibration model for this kind of data, due to its
inherent robustness against high multicollinearity and interference rejection capabilities.
We found similar levels of error (0.4 ppm) between PLS and MLPCR, but PLS models
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were simpler. We therefore propose a methodology to estimate the LOD in PLS models
by applying the well-accepted univariate formulas to the first component of the orthog-
onalized PLS model. The average LOD value was reduced to 0.77 ppm, which roughly
represents a five-fold improvement over the standard operating mode and a three-fold im-
provement over the optimized univariate models.

Papers I and II are shown below.
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� A methodology to estimate the LOD
in non-linear chemical sensors is
proposed.

� A set of statistical tests verify the
main LOD assumptions at each
detection point.

� The methodology was applied to a
scenario of carbon monoxide and
variable humidity.
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a b s t r a c t

The limit of detection (LOD) is a key figure of merit in chemical sensing. However, the estimation of this
figure of merit is hindered by the non-linear calibration curve characteristic of semiconductor gas sensor
technologies such as, metal oxide (MOX), gasFETs or thermoelectric sensors. Additionally, chemical
sensors suffer from cross-sensitivities and temporal stability problems. The application of the Interna-
tional Union of Pure and Applied Chemistry (IUPAC) recommendations for univariate LOD estimation in
non-linear semiconductor gas sensors is not straightforward due to the strong statistical requirements of
the IUPAC methodology (linearity, homoscedasticity, normality). Here, we propose a methodological
approach to LOD estimation through linearized calibration models. As an example, the methodology is
applied to the detection of low concentrations of carbon monoxide using MOX gas sensors in a scenario
where the main source of error is the presence of uncontrolled levels of humidity.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many potential applications of gas sensors involve the detection
of very low concentrations of the target gases. For instance, in ap-
plications related to environmental monitoring the United States
Environmental Protection Agency (EPA) specifies four principal
pollutants and their corresponding maximum exposure
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concentrations (hourly) in outdoor air: 9 ppm of carbon monoxide
(CO), 100 ppb of nitrogen dioxide (NO2), 70 ppb of ozone (O3) and
75 ppb of sulfur dioxide (SO2) [1]. In the case of the commercial
automotive market, a sensing range of 5 ppm is required to meet
NO2 regulations [2]. CO detectors integrated in smoking cessation
monitors must comply with a detection threshold of 10 ppm of CO
in exhaled breath in order to differentiate a smoker from a non-
smoker [3].

The figure of merit that characterizes the ability of an instru-
ment to differentiate between the absence of a substance (a blank
value) and measurements with low concentration of the target gas
is the limit of detection (LOD). The LOD is usually reported in
concentration units. The LOD is extremely relevant for the appli-
cations described above because only instruments with LODs
below the thresholds specified for the target gases could satisfy the
applications requirements. The International Union of Pure and
Applied Chemistry (IUPAC) defines the LOD for univariate signals in
terms of statistical hypothesis tests, considering measurements as
random variables [4]. IUPAC simplified formulas are derived from
the upper prediction interval of the blank in a linear regression
model which transforms the observed responses into concentra-
tion values. For binary detection (i.e. analyte present or not present)
the estimated net signal or concentration is compared against the
critical level (LC), which only controls the false positives. The LOD
(LD) is, however, a more representative measure of the inherent
detection capability of the analytical system because it also con-
siders the false negatives. The distribution of the blanks and the
LOD in the signal domain are modelled using a t-distributionwith a
maximum of 5% of false positives and 5% of false negatives. There
are three strong underlying assumptions in the IUPAC LOD for-
mulas based on the use of linear regression models for prediction
purposes:

a) Linearity: A linear model can be fit to the data only if the
relationship between the independent and dependent variables
is linear. In other words, the residual errors of a linear fitting
should have zero mean.

b) Homoscedasticity of the residual errors: If the variance of the
residual errors is not constant along the independent variable,
the standard error will be biased. A biased standard error will
lead to incorrect prediction intervals. Extensions for the heter-
oscedastic case are described in the IUPAC norm but only for a
particular type of heteroscedasticity: variance proportionate to
response.

c) Normality of the residual errors. For Least Squares estimators to
be maximum likelihood estimators of the linear fit the errors
should be normal. Additionally, the use of t-test for hypothesis
testing also requires that the residual errors are normally
distributed.

Violation of any of these assumptions may bias the confidence
and prediction intervals of the linear regressionmodel. Because the
IUPAC LOD is based on the upper prediction interval of the blank,
the LOD will be biased too. Even when the assumptions are satis-
fied, it is important to remark that the LOD estimate has a domain
of validity closely tied to the set of conditions covered by the cali-
bration points, including obviously the conditions for the blanks.
Departure from those conditions casts doubt on the validity of the
LOD estimate (this is true for any analytical instrument).

Instruments based on linear devices such as electrochemical gas
sensors usually satisfy these assumptions and therefore the LOD
estimates are trustworthy. However, this is not the case for certain
chemical sensor technologies. A clear example are semiconductor
gas sensors such as, metal oxide semiconductor (MOX) [5], gasFETs
[6] or thermoelectric sensors [7]. The non-linear response with

respect to concentration will in many cases violate the linearity
assumption. In addition, some of these technologies also present
cross-sensitivity to environmental interferences (e.g. temperature,
humidity or barometric pressure) and lack of stability [8e10]. This
might yield non-normal or heteroscedastic residual errors in
calibration.

In some cases, the LOD is calculated when the instrument is
calibrated in laboratory conditions and then it is (incorrectly)
assumed that in future and field operation the LOD will still be the
same as in calibration. But, in field operation the range of variation
of interferences such as temperature and humidity can go beyond
the calibration range or the instrument might have drifted. Since in
many chemical sensor applications we expect the system to run
without human intervention for extended period of times (months
or even years), a relevant question is the stability of the LOD in time.
The validity of the LOD estimates in MOX sensors is a critical issue
due to the intrinsic drift and cross-sensitivities to environmental
conditions and other gases. However, this problem has not been
properly addressed in the literature. Some works blindly trust the
LOD obtained in calibration [11e14]. Other authors have
approached the LOD validation based on the theory of hypothesis
testing measuring the probabilities of false positive and false neg-
atives, however, using relatively small samples sizes [15]. The re-
sults obtained with this approach are not trustworthy unless there
are many measurements and replicates corresponding to concen-
tration standards near the LOD, which is usually unknown.

Probably due to these issues, the LOD is rarely reported in
archival papers concerning MOX sensors. A search in the current
literature (as of July 2017) reveals that only a handful of articles deal
with LOD estimation in MOX sensors [12e14]. Nevertheless, most
of these works often ignore the IUPAC assumptions and, for
simplicity, assume they hold in their experimental data. Despite the
difficulties associated to the estimation of the LOD, the use of MOX
sensors in applications that require a certain LOD value has obvious
interest. MOX sensors are long-lasting devices which can be
cheaply manufactured in a miniaturized form factor while
achieving low power consumption (thanks to MEMS technology).
The market of MOX sensors has been indeed very active in the last
years due to the potential integration into portable devices such as
smartphones, wearables or tablets. MOX sensors are being used in
diverse applications that range from environmental monitoring
[12,16,17], to safety and security [18], food [19] or medical appli-
cations [20]. Areas with high levels of pollutants could be easily
localized thanks to portable measuring stations based on MOX
sensors [21]. In the biomedical field, MOX sensors are currently
proposed to monitor breath biomarkers for diagnostic of many
diseases, including several types of cancer [22].

The combination of pulsed temperature modulation and uni-
variate CO detection at low temperatures was pioneered in com-
mercial products by Figaro Engineering in the successful product
TGS-203 [23]. The marketing of this product with this recom-
mended operational mode started as early as 1980. The sensor
manufacturer shows that the best selectivity to CO is achieved
when the sensor element temperature is kept under 100 �C. How-
ever, at this temperature the sensor becomes very susceptible to
water vapor. To eliminate this influence, they propose to use a
cycling high/low voltage pulses. They claim that the high heater
voltage cleans the sensor surface and removes the influence of
water vapor, while the low heater voltage conditions the sensor for
measuring CO. This operation mode is still used by several manu-
facturers like Figaro (TGS3870 A-04), FIS (SB-500-12) or SGX Sen-
sortech (MiCS sensors). Newer sensors using either beads or
micromachined substrates are faster from a thermal point of view
and they allow to use shorter thermal cycles, but the recommended
operation mode remains basically the same. In all cases, the
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detection of CO remains univariate for simplicity of use. The
reduction of humidity influence in this operation mode has been
confirmed later [24e26]. It is also true that the selectivity of MOX
sensors can be improved by temperature modulation followed by a
multivariate prediction model. However, from a user perspective,
univariate detection has the advantage of simplicity and probably
for this reason is still the recommended operation mode by the
manufacturers. In this work, we will be using FIS SB-500-12 sen-
sors. Our measurements are based on univariate features: single
detection points at certain locations within the temperature mod-
ulation cycle. Although there is potential for improving the LOD by
using the full response pattern, it is not the scope of this work to
explore the estimation of the LOD from the multivariate response
pattern. The problem of multivariate LOD estimation is that there is
no well-accepted LOD formula, as it is the case for univariate esti-
mation. There are several multivariate LOD proposals [27] andmost
of them produce different outputs [28]. Instead of dealing with the
multivariate case, the idea behind this work is to optimize the
location of the univariate detection point using the standard IUPAC
univariate formula for LOD estimation and then applying a set of
statistical tests to ensure that the underlying LOD assumptions are
satisfied.

The present work, therefore, aims to several purposes: (i) to
recall the main ideas underlying the IUPAC theory regarding the
univariate limit of detection and their impact in non-linear chem-
ical sensing; (ii) to give guidelines to detect situations in which
heteroscedastic, non-normal and biased residuals in calibration
hinder the application of the simplified LOD formulas; (iii) to pro-
pose a set of statistical tests to verify that the obtained LOD values
in calibration are applicable to validation data; (iv) finally to illus-
trate the problems associated to the blind use of the LOD in future
data when using MOX sensors. For that, we proposed a scenario of
carbon monoxide (CO) detection under variable humidity condi-
tions, which is representative of various real applications. In the
selected scenario, humidity is the main interference and we
consider the LOD as a figure of merit to optimize the measurement
point for CO sensing reducing the effect of the humidity. We would
like to stress that here humidity is a random perturbation and not a
systematic influence, and it is not the interest of this work to es-
timate the humidity, but only to ascertain how humidity variations
have an impact on the LOD. Obviously, humidity interference is a
major concern for MOX performance. In the case of CO sensing, this
has been extensively reviewed by Ref. [29]. Our contribution fo-
cuses on the methodological aspects related to the estimation of
the LOD in chemical sensors through linearized models. We will
present a methodology for evaluating the properties of the sensor
data relevant to the LOD formulas.

2. Experimental and methods

To illustrate the challenges described in the introductory section
we designed an experimental scenario of CO detection under
random humidity conditions using temperature-modulated MOX
sensors. The experimental setup was comprised of a test bench
where dynamic mixtures of CO in humid synthetic air were
generated, an electronic board composed of seven MOX sensors
and a temperature/humidity sensor. The data was processed using
MATLAB R2009 (The MathWorks) and libraries from the Statistics
and Machine Learning Toolbox.

2.1. Sensor board

An electronic board including seven MOX sensors for CO
detection (SB-500-12, FIS Inc.), a temperature/humidity sensor
(SHT75, Sensirion AG) and the necessary conditioning circuits was

assembled in-house. The commercial MOX sensors used in this
work are manufactured with large tolerances in baseline (one order
of magnitude) and sensitivity (a factor of two) [30]. To obtain sta-
tistics of the performance of the sensor family (e.g. mean and
variance), several units of the same MOX sensor model were inte-
grated in the sensor board. The Sensirion sensor provided reference
humidity and temperature values with tolerance below 1.8% r.h.
and 0.5 �C, respectively, every 5 s. According to the manufacturer
datasheet, the long-term drift of the SHT75 sensor is less than 0.5%
r.h./year and 0.04 �C/year. The humidity values will not be used for
sensor data compensation, only to obtain a direct measurement of
the humidity values within the sensor chamber.

The heater voltage of the MOX sensors was modulated in the
range 0.2e0.9 V in cycles of 25 s, following the manufacturer rec-
ommendations (0.9 V for 5s, followed by 0.2 V for 20s) (see Fig. 1).
For simplicity, in this work we are not implementing a closed loop
control of the heater temperature which has been shown to pro-
duce more accurate results [31]. The seven MOX sensors were pre-
heated for oneweek before starting the experiments to reach stable
responses. The manufacturer recommends measuring the sensor
response at a single detection point located at the end of low level
of the heating cycle (see Fig. 1). The choice of this detection point,
that we will call “nominal working point”, is specific to CO detec-
tion as the sensors are more sensitive to CO at low temperatures.
Nonetheless, we recorded the sensor response during the whole
heating cycle to evaluate the performance of the sensor in other
measurement points. For that, the MOX read-out circuits consisted
of voltage dividers with 1MU load resistors. The value of the load
resistor allowed proper quantification of the sensor resistance,
considering the large dynamic range (20 kUe10MU) present at low
concentrations of the analyte with the chosen temperature mod-
ulation waveform. The output voltage of the sensors was sampled
at 3.5 Hz using an Agilent HP34970A/34901A DAQ configured at 15
bits of precision and input impedance greater than 10 GU. In this
configuration, the errors introduced in the voltage measurements
were considered negligible compared to the intrinsic variability of
the sensor resistance due to the chemical transduction process.

2.2. Experimental design

Previous experience by the authors on CO sensing suggested
that the LOD could be around 5 ppm or even smaller. At this point, it
is important to remember that for LOD estimation the IUPAC

Fig. 1. FIS SB-500-12 operating mode and output signal. The top subplot represents the
sensor conductance during an exposure to air (50 s), 300 ppm of carbon monoxide
(50 s) and air (25 s). The bottom subplot represents the heater voltage. The black circles
indicate the detection points recommended by the manufacturer.
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recommends that the calibration points should be placed close to
the LOD [4]. For this reason, we selected a calibration range of
0e9 ppm. At this point, it is important to remark that 9 ppm is not
the upper limit for the detection of COwithMOX sensors, but only a
reduced range to follow IUPAC recommendations for LOD estima-
tion. In fact, MOX sensors are routinely used for CO detection in
domestic premises with measurement ranges up to 400 ppm [29].

The experimental design was based on the literature recom-
mendations for LOD estimation of using between five and ten
calibration standards, eight to ten replicates [32] and equidistant
concentration levels [33]. To generate the experimental dataset,
five linearly equally spaced calibration standards in the range
0e9 ppm were selected ({0.0, 2.2, 4.4, 6.7 and 8.9} ppm). Ten rep-
etitions were performed at each concentration, with each repeti-
tion having a relative humidity value randomly chosen from a
uniform distribution between 15 and 70% r.h. (see Fig. 2). Hence,
each experiment was composed of 50 conditions (5 concentrations
x 10 repetitions) which were performed in random order to reduce
the impact of factors that were not explicitly accounted for in the
experimental design. The duration of each exposure was 15mi-
nutes. A single calibration experiment lasted approximately
12 hours and was repeated 13 times for repeatability and repro-
ducibility estimation. The dataset was therefore composed of 650
measurements (13 experimental days x 50 measurements/day)
which were collected over 15 natural days.

2.3. Generator of dynamic gas mixtures

Gas mixing was performed using mass flow controllers (MFC),
which controlled three different gas streams (CO, wet air and dry
air). These streams were delivered from high quality pressurized
gases in cylinders. The CO bottle contained 1600 ppm of CO diluted
in synthetic air with 21± 1% O2. The wet and dry air streams were
both delivered from a synthetic air bottle with 99.995% purity and
21± 1% O2. The humidification of the wet streamwas based on the
saturation method using a glass bubbler (Drechsler bottles) [34]. To
reach higher humidity levels, the Drechsler bottles were sub-
merged into warm water at 42 �C. The selected MFCs (EL-FLOW
Select, Bronkhorst) had full scale flow rates of 1000 mln/min for the
dry and wet air streams and 3 mln/min for the CO channel. Check

valves protected the MFCs against reversed flow in the system. The
gas mixtures at different values of concentration and humidity
were transferred into a small-sized polytetrafluoroethylene (PTFE)
test chamber (250 cm3 internal volume) containing the sensors
under test. Fig. 3 shows a schematic plan of the measuring system.

At the beginning of each experiment, the gas chamber was
cleaned for 15min using a stream of synthetic air at a flow rate of
240 mln/min. After that, the gas mixtures were released at a con-
stant flow rate of 240 mln/min for 15min each. The temperature
variations inside the gas chamber, for each experiment, were below
3 �C. The highest relative uncertainty in CO concentration was 5.5%
for the first non-zero concentration (2.2 ppm), which corresponds
to an absolute uncertainty of 0.12 ppm. A desktop computer
running Labview 2015 (National Instruments) commanded the
MFCs and integrated the readings from the humidity sensor into a
log file.

During each experimental condition, the seven sensor signals,
indicative of the gas conditions presented to the sensors, were
continuously sampled. In order to evaluate the sensor response to a
certain experimental condition, portions of the sensor signal cor-
responding to a full heating cycle (henceforth called patterns) were
extracted from the original signals. To ensure that the extracted
patterns correspond to stable CO levels, only the last three cycles of
each 15-minute condition were taken into account. These three
fragments were averaged to reduce instrumental noise, producing a
single multivariate conductance pattern gsðtÞ, t2½0;  25� s associ-
ated to a stable gas concentrationc (ppm). The readings from the
humidity sensor were also averaged during the same three heating
cycles to provide a reference relative humidity value h (% r.h.).

2.4. Calibration models

As we said earlier in the introduction, MOX sensors present a
non-linear response which might be best fit by non-linear models.
Nevertheless, within a narrow range of small concentrations the
sensor response can be considered quasi-linear and the use of
linear models can be justified. This allowed us to use the sound LOD
theory already developed for univariate linear calibration models.

In this work, we only considered linear univariate calibration
models where the observed response y is predicted from the
experimental analyte concentration x by a linear regression model
of the form:

y ¼ Bþ Axþ ey (1)

Where B and A are the real (unknown) regression coefficients and
ey is the residual error of y. In Eq. (1) it is assumed that the analyte
concentration is error-free because the uncertainty in the prepa-
ration of concentrations was negligible (see Section 2.3).

For CO detection, the most widely used method is the Clifford-
Tuma model (Eq. (2)) [35]. This empirical model uses a linear
relationship between the logarithm of the sensor conductance
gs ðkU�1Þ and the logarithm of the analyte concentration c (ppm):

logðgsÞ ¼ logðgairSÞ þ b logðcÞ ¼ aþ b logðcÞ (2)

Where gair  ðkU�1Þ is the sensor conductance in clean air, S is a
gas depending parameter and b is the so-called sensitivity to the
gas. Log-log models such as the Clifford-Tuma model provide in
general better fitting than normal models but their use for LOD
estimation is questionable because the blanks (c ¼ 0 ppm) need to
be excluded due to the term logðcÞ. As pointed out in the IUPAC
recommendation [4], “The blank is one of the most crucial quantities
in trace analysis, especially in the region of the Detection Limit …
Inadequate attention to the magnitude and variability of the overall

Fig. 2. Scatter plot of the nominal CO concentration (ppm) and the measured humidity
(% r.h.) in the first experimental day. The marginal distributions of the nominal CO
concentration and the measured humidity are displayed as univariate histograms on
the horizontal and vertical axes of the scatter plot, respectively.
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blank, may lead to severe underestimation of the detection limit.”
To introduce blanks into the model, we propose a log-normal

model in which the logarithm is applied only to the sensor
conductance (Eq. (3)):

log
�

gs
gair

�
¼  Bþ Acþ ε (3)

where B is the intercept, A is the sensitivity and ε is the error term.
Dividing gs by gair corrects the potential changes in sensor baseline.
gair was estimated from a blank sample with random humidity
measured at the beginning of the day and all the measurements of
that day were divided by this value. The use of Eq. (3) for LOD
estimation purposes is valid only for a narrow range of small con-
centrations and for certain working points in which the sensor
response (gs) can be linearized without applying the logarithm to
the concentration.

The precision of the calibration function was assessed by the
residual standard deviation (sy;x) and the estimated standard de-
viation of the estimated slope (sbA) and the estimated intercept (sbB ),
as recommended by the IUPAC [36]. Because sbA and sbB only depend

on sy;x and the calibration design -which was fixed-, minimizing sy;x
also minimizes sbA and sbB . Therefore, we only report sy;x (Eq. (4)).

sy;x ¼  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðyi � byiÞ2
n� 2

vuut (4)

where n denotes the number of calibration samples, and yi and byi
are the nominal and fitted value for the calibration samplei,
respectively.

2.5. Limit of detection (LOD)

In the IUPAC recommendations [37], the LOD is defined as the
“smallest measure that can be detected with reasonable certainty
for a given analytical procedure”. IUPAC derives the LOD in terms of
statistical hypothesis testing with default values for the probabili-
ties of false positives (a) and false negatives (b) both equal to 0.05.
The fundamental relations (Eqs. (5) and (6)) are formulated based
on a generic symbol (L) that represents either net signal (blank-
corrected) or analyte concentration:

P
�bL > LC jL ¼ 0

�
¼ a (5)

P
�bL < LC jL ¼ LD

�
¼ b (6)

Where bL is an estimate of L, LC is the threshold used for the
detection decision (i.e. analyte present or not) and LD is the limit of

detection or LOD. Assuming that bL is normally distributed with
known variance (sÞ, the value of LC is given by Eq. (7), after solving
for LC in Eq. (5)

LC ¼ z1�as0 (7)

Where z1�a is the critical value of the normal distribution for sig-

nificance level a and s0 is the true standard deviation of bL when
L ¼ 0. Similarly, LD can be found by first solving for LC in Eq. (6):

LC ¼ LD � z1�bsD (8)

Where z1�b is the critical value of the normal distribution for sig-

nificance level b and sD is the true standard deviation of bL when
L ¼ LD. Then, solving for LD in Eq. (8):

LD ¼ LC þ z1�bsD (9)

Inserting Eq. (7) into Eq. (9) yields:

LD ¼ z1�as0 þ z1�bsD (10)

In many practical applications, the true values s0 and sD in Eq.
(10) are unknown, so a Student t-distribution is used to approxi-
mate the Gaussian curve. The critical value of the Gaussian distri-
bution is replaced by the one-sided t-critical value (t1�a;y) for the
chosen confidence level (a) and degrees of freedom (y). Similarly,
the true standard deviations s0 and sD are replaced by the corre-
sponding estimates s0 and sD, respectively. Because sD corresponds

to the dispersion of bL at LD, which is unknown (in fact, LD is what we
are trying to estimate), sD is replaced by s0 (assuming homosce-
dasticity). Finally, recalling that we chose a ¼ b, the formula of Eq.
(10) is simplified to Eq. (11):

LD ¼ 2t1�a;ys0 (11)

Eq. (11) is a generic LOD formula that can be used to determine
the LOD in the signal domain or in the concentration domain. The
LOD is usually reported in concentration units but the measuring
instruments report signals instead. Given a set of discrete mea-
surements, there are twoways to compute the LOD: (a) Convert the
instrument signals to concentration values and estimate the LOD in

Fig. 3. Experimental test bench for the generation of dynamic gas mixtures and acquisition of the sensor signals. Left: Block diagram. Right: Picture.
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the concentration domain using Eq. (11) or (b) compute the LOD in
the signal domain using Eq. (11) and then transform the “signal
LOD” to a “concentration LOD”. Signals and concentrations can be
related to each other by the use of a calibration curve. The IUPAC
only considers the linear calibration function (c.f. Eq. (1)). In this
case, the concentration (bx) corresponding to an observed gross
signal (y) is estimated by:

bx ¼ y� bBbA ¼
bSbA (12)

Where bB is the estimated intercept, bA is the estimated slope of

the calibration function and bS is the net (blank-corrected) response.
Application of the fundamental LOD definitions (i.e. Eqs. (5) and
(6)) to the concentration domain (i.e. option (a) above) requires
normality in the estimator bx, which is a strong assumption

considering that Â will be estimated with uncertainty. Therefore,
the IUPAC recommends the computation of the LOD in the signal
domain (Eq. (11)) and the posterior transformation to concentra-
tion units through Eq. (12).

The only variable that we need to estimate in Eq. (11) is s0, the

standard deviation of the estimated net response bS when the an-
alyte is absent (x¼ 0). From linear regression [36], we know that
the standard deviation of a predicted value yp at position xi is:

syp ¼ sy;x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ ðxi � xÞ2P�

xj � x
�2

vuut (13)

Where sy;x is the standard error of regression, n is the number of
samples, xj are the calibration standards and x is the mean cali-
bration concentration. Solving for a blank ðxi ¼ 0Þ yields:

s0 ¼ sy;x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ x2P�

xj � x
�2

vuut ¼ sy;xh (14)

where h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n þ x2P
ðxj�xÞ2

r
is a design parameter reflecting the

calibration design (i.e. relative position of the calibration standards
and number of samples) [37].

Substituting Eq. (14) into Eq. (11), yields the LOD in the signal
domain ðSDÞ:

SD ¼ 2t1�asy;xh (15)

The LOD in the concentration domain is obtained by inserting
Eq. (15) into Eq. (12):

xD ¼ SD bA ,

�
K
I

�
¼ 2t1�asy;xh bA ,

�
K
I

�
(16)

The correction factor
�
K
I

�
 accounts for the uncertainty in the

regression slope ðbAÞ [37] and it is defined in Eq. (17):

K
I
¼  

1� rðB;AÞ,
�
sbB.s0

�
,
h
t1�a;v,

�
sbA.A

�i
1�

h
t1�a;v,

�
sbA.A

�i2 (17)

Where rðB;AÞ is the correlation coefficient between the slope and
intercept of the calibration line (Eq. (18)), sbB=s0 is the relative

standard deviation of bB (estimated intercept), s0 is the standard
deviation of the blanks and sbA=A is the relative standard deviation

of bA.
rðB;AÞ ¼ x

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

x2i
.
n

vuut
  (18)

The interpretation of the correction factor
�
K
I

�
  is as follows. If

the slope (A) is estimated with low uncertainty (i.e. ðsbA=AÞ/0), the

term in square brackets in Eq. (17) goes to zero, and both K and I are

equal to 1, yielding
�
K
I

�
¼1. In this case, the LOD is not affected by

the correction factor. At the other extreme, when the uncertainty in
estimating A is very high (as sbA=A approaches 1/t1�a;v), the de-

nominator (I) goes to zero, the ratio
�
K
I

�
goes to infinity and xD is

unbounded. As it can be seen in Eq. (16), the estimated slope (bA) is
the only parameter of the regression line that affects xD. However,

the correction factor includes the effect of the uncertainty of bB
when estimating A. If A and B are estimated individually, the cor-

relation coefficient r (B, A) is zero and the ratio
�
K
I

�
only depends

on the uncertainty of bA. When A and B are estimated jointly, they
will be negatively correlated and the numerator (K) in Eq. (17) will

increase with the uncertainty of bB .

2.5.1. Statistical tests to check the underlying LOD assumptions
In the preceding section, we presented a formula for estimating

the LOD in the concentration domain, assuming certain properties
of the instrumental signals. In particular, the IUPAC LOD definition
[4] assumes that the residual errors are unbiased, normally
distributed and homoscedastic. The violation of any of these as-
sumptions may yield inconsistent LOD values. In this section, we
present a set of statistical tests to systematically verify the under-
lying LOD assumptions:

� Homoscedasticity: Levene's test [38] was used to test the ho-
mogeneity of variance across the residuals of the I concentration
levels (J samples each). This test assumes normally distributed
data but is less sensitive to departures from normality than
other tests for comparison of variances.

� Normality: The Saphiro-Wilk test [39] was applied to the re-
siduals of each concentration level to assess normality (I tests
with J samples each). This test assumes that the sample size is
large enough (30 or more) because for small sample sizes
normality tests have little power to reject the null hypothesis of
normally distributed data. Nonetheless, it has been proved that
Saphiro-Wilk test is the most powerful normality test for small
sample size [40]. When the residuals at every concentration
level are normally distributed the full set of residuals will be
normally distributed too. Based on this, an additional Saphiro-
Wilk test was applied to all the residuals (one test with IxJ
samples) to increase the power of the test.

� Linearity: If the data behaves linearly, the residual errors in each
concentration level should be unbiased or, in other words,
symmetrically distributed around zero. A two-tailed t-test of
zero mean [41] was applied to the residuals of each concentra-
tion level and to all residuals to verify the linearity assumption.
This test assumes normally distributed data. The power analysis
of this test indicated that the minimum detectable changes for
the group tests (10 samples) and for the full set (50 samples)
were 1.5 and 0.3 ppm respectively, which we considered
acceptable values.
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The Holm-Bonferroni correction for multiple comparisons was
applied to the family of tests to reduce the false positive rate [42].
Let H1, H2, H3 be the null hypothesis of the homoscedasticity,
normality and linearity assumptions (see Table 1), sorted by
ascending p-values P1, P2, P3. The Holm-Bonferroni algorithm will
first find the minimum index k such that the p-value Pk satisfies the
following condition:

Pk >
a

mþ 1� k
(19)

Where m is the number of hypothesis (m ¼ 3 in our case) and a is
the significance level (a ¼ 0:05 in our case). The null hypothesis
H1;/;Hk�1 are rejected and Hk;/;H3 are not rejected. We define
the validity of a hypothesis H, as the Boolean variable v:

v ¼ 0;   if  H is rejected
v ¼ 1;   if  H is not rejected (20)

vH , vN and vL represent the validity of the homoscedasticity,
normality and linearity assumptions, respectively. The joint validity
of the LOD assumptions (vH;N;LÞ is a Boolean variable defined as the
AND operation (represented by the logic operator ∧) of the mar-
ginal validities:

vH;N;L ¼ vH∧ vN ∧vL (21)

2.5.2. Validity of xD
The value of xD only makes sense if it is positive, the calibration

function is estimated with reasonable accuracy and the underlying
LOD assumptions are satisfied. The constraint in Eq. (22) is used to
avoid negative values resulting from Eq. (16) due to the random

variable bA.
xD >0 (22)

The constraints in Eqs. (23) and (24) set an upper limit in the
uncertainty of the regression parameters (slope and intercept,
respectively).

sbA.A � 1  (23)

sbB.s0 � 1 (24)

The joint validity of the LOD assumptions (see Section 2.5.1)
must be equal to one:

vH;N;L ¼ 1 (25)

The values of xD which did not satisfy the above constraints
were considered invalid. Combining Eqs. (22)e(25), we obtain the
formula for the validity of xD (VÞ:

V ¼ ðxD >0Þ ∧ 
�
sbA.A � 1

�
 ∧ 

�
sbB.s0 � 1

�
 ∧ 

�
vH;N;L ¼ 1

�
(26)

Here, V is a Boolean variable which takes the value ‘1’ if xD is
considered valid and ‘0’ otherwise.

2.6. Optimization of the working point

To optimize the working point of a given sensor, we used the
measurements of the first experimental day to fit the model
described by Eq. (3) for every working point ti of the response
pattern. Then, from the subset of the models that satisfied Eq. (26),
we selected the working point that minimized the error of
regression sy;x (Eq. (4)). We denote this optimum point as t*i ðsÞ, to
indicate that there is one optimum point for each sensor s.

To report robust indicators of xD and V , for a givenworking point
and a given sensor s, the individual estimates xDðs; dÞ and
Vðs; dÞ obtained in different experimental days d (d ¼ 1;…;NÞwere
averaged according to Eqs. (27) and (28):

xDðsÞ ¼  

1
N

XN
d¼1

xDðs; dÞ (27)

VðsÞ ¼  

1
N

XN
d¼1

Vðs; dÞ (28)

where xDðsÞ and VðsÞ represent the average LOD and average val-
idity for sensor s, respectively.

2.7. Validation of the optimum working point

Previously we described the assumptions imposed by the IUPAC
on the calibration model to reliably calculate a LOD value. The
IUPAC recommendations only concern the calibration process and
expect that the unseen future data used in the prediction step have
the same properties as the calibration data. While this can be the
case in linear stable instruments operating under controlled lab
conditions, MOX sensors tend to drift over time and are very sen-
sitive to interferences. Slight changes in experimental conditions
during the measurements, influences of temperature, pressure or
humidity, can also cause the baseline to drift away from its original
level. As a result, data obtained days after calibration might be
shifted with respect to the calibration data or show different vari-
ance (see Fig. 4). In any of these cases, the LOD value obtained in
calibration will be biased and the number of false positives and
false negatives can be different from the 5% established by the
IUPAC norm.

The calibration models built on the kth day were externally
validated using the samples of the consecutive days kþ1, kþ2,…, N.
The concentration of the external validation samples was predicted
using the inverse of Eq. (3) and the root mean squared error in
prediction (RMSEP) was calculated:

Table 1
Summary of statistical tests used to verify the LOD assumptions.

Assumption Test Null hypothesis Alternative hypothesis

Homoscedasticity Levene's test The multiple data samples have equal variances At least two of the data samples do not have equal
variances

Normality Saphiro-Wilk test Sample data is normally distributed Sample data comes from a non-normal distribution
Linearity One-sample T-

test
The sample data comes from a normal distribution with mean equal to
zero

The sample distribution does not have a mean equal to
zero
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RMSEP ¼  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi � bxiÞ2.n

vuut (29)

Where n denotes the size of the validation set, and xi and bxi are the
true and predicted concentration for sample i, respectively.

3. Results and discussion

In order to illustrate the proposedmethodology in a real data set
and face some of the challenges associated to LOD estimation in
non-linear sensors, we designed a scenario representative of real
world applications: CO detection under random variable humidity
conditions. The working principle of MOX sensors is based on the
change of the sensor conductance when the sensor is exposed to

Fig. 4. Simulated examples of degradation of calibration model due to: (a) shifted validation data; (b) increased variance of the validation data. The blue gaussian curve centered at
y0 is the response in blank samples and the red gaussian curve centered at yd is the response at the LOD level. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 5. Multivariate sensor conductance patterns of a FIS SB-500-12 sensor exposed to (a) 0e300 ppm of CO and (b) 0e20 ppm of CO. The colormap indicates the CO concentration
(see colorbar at the top of each subplot). The black dashed line represents the heater voltage (a.u.). The logarithm is applied to the sensor conductance in (b) to facilitate the
visualization of the low heating temperatures.
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the target gas. The sensitivity to the target gas depends on the
temperature (working point) of the sensing surface. When the
sensor is exposed to relatively high CO concentrations the sensi-
tivity to CO is maximized at the end of the low heating cycle
(Fig. 5a). This is why the nominal detection point recommended by
the manufacturer is t ¼ 25 s. At lower concentration ranges
(Fig. 5b), similar values of the sensitivity are obtained in a range of
measurement points in the low level of the heating cycle
(t2½5;25� s). At the lower end of the concentration range, the
separability across concentrations is higher in a narrow range of
working points located at the beginning of the low temperatures
(t ¼ 6:5� 7:5 s). Because this is barely visible in Fig. 5b and it is a
relevant finding, we have created a zoomed-in version of that area
only for the three lowest concentrations (see Fig. 6).

At high concentration ranges (e.g. 0e300 ppm), the log
conductance e log concentration response curve shows a non-
linear behavior, for every working point of the response pattern
(Fig. 7a). The response at high working temperatures and at the
beginning of the low temperatures (t <7:5 s) follows a slight
quadratic behavior (it cannot be seen in the figure), whereas for
most working points in the low heating temperatures (t >7:5 s) the
response might be approximated by a higher order polynomial.
Because the IUPAC univariate LOD formulas are based on a linear
regression model, no working point satisfied the LOD assumptions
in this concentration range. We found that the logarithm of the
sensor conductance in a reduced concentration range (0e9 ppm)
linearized the response for most working temperatures. In this
reduced concentration range, the working point can affect both the
slope of the calibration graph (sensitivity) and the distribution of
the data in each concentration level. In the example shown in
Fig. 7b, the sensor output at the working point t ¼ 6:3 s showed
more sensitivity and less variability than at the nominal working
point (t ¼ 25 s). This resulted in a lower LOD estimate
(xD ¼ 1:82 versus 4:77 ppm) and smaller residual error of the
calibration model (sy;x ¼  0:55 versus 1:29 ppm). The reliability of
the LOD estimate was also higher at t ¼ 6:3 s because the LOD as-
sumptions were satisfied, whereas at t ¼ 25 s the homoscedasticity
assumption was violated. The Levene's test determined that there
was more variability at 2.2 ppm than at 4.4 ppm. Predictions with
unbiased, normally distributed and homoscedastic residuals are the
basis of LOD theory. The LOD values obtained when any of these
assumption is violated are not trustworthy. This highlights the
importance of assessing the validity of the underlying LOD as-
sumptions before reporting a LOD value.

To find the optimum working point for each sensor, the pro-
cedure described in Section 2.6 was applied. The measurements
corresponding to one experimental day (d¼ 11) were excluded
from the dataset due to abnormal readings caused by an external
factor. The MFC controlling the CO injection channel reported

Fig. 6. Zoom-in of the region t ¼ 6� 10 s of the logarithmic sensor conductance
patterns shown in Fig. 5b. Only the three lowest concentration levels (0.0, 2.2 and
4.4 ppm) are displayed for visual clarity.

Fig. 7. Dependence between sensor conductance and CO concentration at several detection points of the heating cycle. (a) log-log model in the range 0e300 ppm, (b) log-normal
model in the range 0e9 ppm. In both (a) and (b), each point is the average of ten replicate measurements each one having a random humidity value in the range 30e70% r.h.
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unusually low flow rates, probably due to an accidental manipu-
lation of the manometer that controls the injection of CO into the
gas chamber was accidentally manipulated. Similarly, one of the
seven MOX sensors (sensor #2) was not considered for the analysis
because its response was clearly different from the other six sen-
sors. This sensor, which probably belongs to a different fabrication
batch, was acting as an outlier for the statistical analysis. As a result,
the following analysis was performed using data extracted from the
remaining twelve days and six sensors. Fig. 8 shows a summary of
the main parameters used during the optimization process, for the
entire sensor family. The values were averaged across experimental
days -which can be understood as repetition of the calibration
procedure-to producemore robust estimates. The first thing we can
see in Fig. 8 is that the temperature transitions (t ¼ 0 s and t ¼ 5 s)
are not good detection areas because syx was quite high, which
means that the calibrationmodel was not very accurate in this area.
High heating temperatures (t2½0;  5� s) produced better calibration
models (values of syx were moderate) but the obtained models
rarely passed the linearity test. It should be recalled that values of V ,
vH , vN or vL close to 1 indicate that the given constraint was valid in
100% of the repetitions (i.e. experimental days). The logarithmic
transformation was more effective in linearizing the sensor
response at low heating temperatures (t2½5;  25� s). The normality
assumption was satisfied in both high and low heating tempera-
tures. The data became slightly heteroscedastic in the second half of
the heating cycle (t2½10;  25� s). The optimum working points for
the six sensors were located at
t ¼ f6:5;  7:6;  6:8;  6:6;  6:1 and 7:1g s, respectively. The optimum
working point was slightly different for each sensor but an

optimum range consistent for the sensor family was found at the
beginning of the low heating temperatures (t2½6:1; 7:6� s). Within
this narrow range, minimum syx values and maximum values of V
were obtained. This variability in optimum working points may be
related to device tolerances regarding temperature at the sensing
surface. Due to the mini-bead technology of FIS for this sensor se-
ries, we can have small tolerances both in thermal dynamics and
steady temperature values at low power cycle. These small varia-
tions on the surface temperature, then will lead to variations in the
chemical dynamics of the reactions taking place and ultimately
instability of the optimum working point across devices.

Using the optimum working point of each sensor s, calibration
models were computed for every experimental day d. The LOD
xDðs; dÞ and the validity of the LOD Vðs; dÞ of these models were
averaged across experimental days to produce more robust esti-
mates (Eqs. (27) and (28)). A comparison between xDðsÞ and VðsÞ
and the equivalent values obtained at the nominal working point is
shown in Fig. 9. Compared to the nominal detection point, the
optimized models improved both the mean LOD
(2:3 versus 4:0 ppm) and the mean validity (95% versus 80%).
Because the optimum LOD value is at the low end of the concen-
tration range tested in this work, to fully confirm the results more
tests in a reduced range centered around the LOD (e.g. 0e4 ppm)
might be required.

If the LOD value is going to be taken as reference for future
operation, it is key to check the stability of this parameter. In other
words, it is important to check if the calibration model remains
stable. The prediction error may increase due to a shift of the data, a
change of sensitivity or an increase in the variance. In any of these

Fig. 8. Main parameters for the optimization of the working point in the log-normal calibration model (Eq. (3)) in the range 0e9 ppm, as a function of the heating cycle. (a) Standard
error of regression; (b) validity of xD; (cee) validity of the homoscedasticity, linearity and normality assumptions, respectively. The values were first averaged across calibration days
and the dispersion of the average values among sensor units is represented as an area plot. The solid line surrounded by a shaded area indicate the mean± 1 mean absolute
deviation (MAD). MAD ¼ 1

n
Pn

i¼1 jxi �meanðxÞj. The vertical gray shaded area in subplots a-b indicate the optimum working range for the sensor family.

J. Burgu�es et al. / Analytica Chimica Acta xxx (2018) 1e1310

Please cite this article in press as: J. Burgu�es, et al., Estimation of the limit of detection in semiconductor gas sensors through linearized
calibration models, Analytica Chimica Acta (2018), https://doi.org/10.1016/j.aca.2018.01.062

PA
PER I



situations, the reported LOD will not represent the detection ca-
pabilities of the sensor beyond the calibration day. The temporal
evolution of the mean RMSEP of the optimized models is presented
in Fig. 10. In the left graphic, we can see that the mean RMSEP
slightly increased as the elapsed time between calibration and
validation increased. In 15 days, the average RMSEP increased
0.09 ppm (0.61 versus 0.70 ppm), which represents a 3.9% of the
mean LOD value (2.3 ppm). This means that the LOD value can be
trusted in the studied temporal period provided that baseline
correction was performed (i.e. dividing gs by gair in Eq. (3)). This
baseline subtraction method is based on the measurements of a

blank sample, which might not be easy to obtain in a real scenario.
Blank samples could be generated either by exposing the sensor
system to a reference clean air or by directly measuring the target
atmosphere when the target gas is not present. The first approach
increases the complexity of the system by adding a container to
store the reference gas and the extra fluidic components. The sec-
ond method assumes that at certain time the gas sensor will not be
exposed to the target gas or at least not to concentrations near the
limit of detection. For example, background concentrations of
150 ppb can be sometimes found in “clean” air. Since this residual
concentration is one order of magnitude below the estimated limit

Fig. 9. Comparison between the optimized working point and the nominal working point in terms of (a) LOD and (b) its validity. The values were first averaged across calibration
days and the dispersion of the average values among sensor units is represented as a box plot. On each box, the central mark indicates the median, and the bottom and top edges of
the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers.

Fig. 10. Temporal evolution of the RMSEP of the optimized calibration models in the range 0e9 ppm. (a) Baseline correction; (b) No baseline correction. The dispersion of the values
among sensor units is represented as a box plot. On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points not considered outliers. The x-axis indicates the elapsed time between the calibration day dc and the validation
day dv. Each x value combines those groups of days in which fdv � dc ¼ xg. x ¼ 0 represents the RMSE in calibration.
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of detection, the baseline correction method will still work.
If the baseline is not corrected, the stability of the models is

degraded (Fig. 10b). We can see that the mean RMSEP mono-
tonically increased as the elapsed time between calibration and
validation increased. In 15 days, the average RMSEP increased
0.32 ppm (0.64 versus 0.96 ppm), which represents a 13.9% of the
mean LOD value (2.3 ppm). This may put into question the reli-
ability of the LOD in a 2-week period. Further investigation
revealed that the sources of error were small shifts in the mea-
surements from one day to another, probably due to the instability
of the sensor response at blank measurements, the open-loop
control of the sensor temperature and the intentional changes in
the levels of interference (humidity). The sensitivity and the vari-
ance of the measurements were not significantly affected. These
findings greatly encourage baseline correction whenever possible.

4. Conclusions

We have proposed a methodology to overcome the challenges
associated to LOD estimation in non-linear sensors, in this case
MOX sensors aiming at CO detection in the presence of uncon-
trolled humidity levels. A main contribution of the paper is the
selection of the sensor measurement point that should show small
prediction error and simultaneously fulfilled the statistical re-
quirements imposed by the IUPAC for linear univariate LOD esti-
mation. The calibration models with logarithmic transformation at
the input in a reduced concentration range (0e9 ppm) satisfied the
linearity assumption at low temperatures of the heating cycle. The
working points that yielded the most accurate calibration models
and highest validity ratios of the LOD assumptions were all found at
the beginning of the low level of the heating cycle (t2½6:1; 7:6� s).
Average LOD values of 2.3 ppm and average validity ratios of 95%
were found in the optimized models. The nominal working point
suggested by the manufacturer yielded higher LOD values
(4.0 ppm) and satisfied the LOD assumptions only in 80% of the
repetitions.

The calibration models were stable in a scenario of varying
levels of interferences, if baseline correction was performed. In this
case, a maximum RMSEP increase of 0.09 ppm was observed (3.9%
of the mean LOD value). This suggests that the LOD obtained in
calibration is representative of the detection capabilities of the
analytical system at least 2 weeks after calibration. Nonetheless,
longer experiments might be required to confirm these results. If
the changes in baseline were not corrected, the average RMSEP
increased 0.32 ppm in 15 days, which represents a 13.9% of the
mean LOD value. This might question the reliability of the LOD
estimates in the studied time period.

This study demonstrated that linearized MOX sensors calibrated
with optimized univariate features and periodic baseline adjust-
ments can be used for gas sensing applications requiring a detec-
tion threshold. However, we should distinguish between two
scenarios: (i) the LOD required by the application is much higher
than the estimated LOD of a given sensor; (ii) the LOD required by
the application is comparable to the sensor's LOD. Whereas in the
first case the sensor will definitely meet the application re-
quirements, in the second case the use of MOX sensors is ques-
tionable. It should be noted that MOX sensors are characterized by
their intrinsic instability and, therefore, taking the LOD as a hard
threshold in the second scenario might result in more false posi-
tives or false negatives than it was expected. This advice is espe-
cially important in critical applications inwhich a false positive or a
false negative could result in legal consequences. Due to the high
tolerance in sensitivity between MOX sensor units, the values re-
ported in this work are specific to the sensor units used in this
work. If the same experiments were repeated using different units

the results might slightly change.
The main limitation of the current proposal is that the LODmust

lie within the range of linear behavior. The current approach will
fail if the LOD is larger than this limit. Additionally, it must be
remarked that the optimumworking temperature and the reported
LOD values are specific to the scenario of carbonmonoxide as target
gas and humidity as the main interference. If the sensors were
exposed to a complex gas mixture, the LOD values will probably
increase. The methodology proposed in this paper could be applied
to find a better working temperature for the given gas mixture.
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� A methodology to estimate the LOD
in orthogonalized PLS models is
proposed.

� It reveals the role that interferences
(chemical noise) play in the model
structure.

� The methodology allows the estima-
tion of the LOD in temperature
modulated metal oxide sensors.

� As an illustration, we estimated the
LOD of carbon monoxide in the
presence of uncontrolled humidity.
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a b s t r a c t

Metal oxide semiconductor (MOX) sensors are usually temperature-modulated and calibrated with
multivariate models such as partial least squares (PLS) to increase the inherent low selectivity of this
technology. The multivariate sensor response patterns exhibit heteroscedastic and correlated noise,
which suggests that maximum likelihood methods should outperform PLS. One contribution of this
paper is the comparison between PLS and maximum likelihood principal components regression
(MLPCR) in MOX sensors. PLS is often criticized by the lack of interpretability when the model
complexity increases beyond the chemical rank of the problem. This happens in MOX sensors due to
cross-sensitivities to interferences, such as temperature or humidity and non-linearity. Additionally, the
estimation of fundamental figures of merit, such as the limit of detection (LOD), is still not standardized
in multivariate models. Orthogonalization methods, such as orthogonal projection to latent structures
(O-PLS), have been successfully applied in other fields to reduce the complexity of PLS models. In this
work, we propose a LOD estimation method based on applying the well-accepted univariate LOD for-
mulas to the scores of the first component of an orthogonal PLS model. The resulting LOD is compared to
the multivariate LOD range derived from error-propagation. The methodology is applied to data
extracted from temperature-modulated MOX sensors (FIS SB-500-12 and Figaro TGS 3870-A04), aiming
at the detection of low concentrations of carbon monoxide in the presence of uncontrolled humidity
(chemical noise). We found that PLS models were simpler and more accurate than MLPCR models.
Average LOD values of 0.79 ppm (FIS) and 1.06 ppm (Figaro) were found using the approach described in
this paper. These values were contained within the LOD ranges obtained with the error-propagation
approach. The mean LOD increased to 1.13 ppm (FIS) and 1.59 ppm (Figaro) when considering valida-
tion samples collected two weeks after calibration, which represents a 43% and 46% degradation,
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respectively. The orthogonal score-plot was a very convenient tool to visualize MOX sensor data and to
validate the LOD estimates.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Gas sensor technology is evolving towards miniaturized devices
with low power consumption that can be integrated in smart-
phones and wearable devices [1e6] .With millions of units sold
worldwide each year, metal oxide semiconductor (MOX) is the
most commercially successful gas sensor technology. MOX sensors
have been used to solve problems in a number of fields: energy [7],
food [8,9], automotive [10e12], environmental monitoring [13e16],
safety and security [17e21] or biomedicine [22,23]. MOX sensors
offer high sensitivity to many volatile organic compounds (VOCs),
low fabrication cost, miniaturization potential thanks to micro-
electromechanical systems (MEMS) technology and are very
robust devices which can last for decades. However, after more
than 50 years in the market, MOX sensors still suffer from very
important limitations, namely poor stability [24,25], low selectivity
[26], slow recovery time [27,28] and large tolerances in specifica-
tions for identical devices [29e31]. Among those, the lack of
selectivity and stability (temporal drift) might be considered the
most important ones.

The transduction mechanism of MOX sensors consists on
measuring resistance changes resulting from chemical interactions
between the gas species and the metal oxide surface. Clifford-Tuma
[32] found that the response of a SnO2 based Taguchi-type sensor in
the presence of CO, H2O and CH4 follows a power law which con-
tains products between several gas concentrations and quadratic
terms. This non-linear response is due to competitive and syner-
gistic interactions among gases that make the effect of the target
gas can be either masked or enhanced by the presence of other
gases (i.e. “matrix-effect”). The sensor response is also cross-
sensitive to environmental factors, such as temperature, humidity
or pressure. The temperature of the sensing surface affects the rate
at which the chemical reactions occur. There is usually an optimum
working temperature (in terms of sensitivity) for each target gas
but only limited selectivity can be achieved by working at a con-
stant temperature. Selectivity to a given analyte can be increased by
modulating the operating temperature with a periodic heating
power waveform [33]. The resulting multivariate response patterns
capture the selectivity-temperature dependence characteristic of
the target gas plus the effect of the interferences. The variables of
the response pattern are highly correlated because the shape of the
heating waveform smoothly varies the sensor temperature (except
for the temperature transitions).

Using a set of calibration samples with known concentration of
the target gas and varying contributions of potential interferences,
a multivariate calibration model is built to predict the concentra-
tion of the target gas in future samples. Temperature-modulated
MOX sensors are usually calibrated with partial least squares
(PLS) [34] models, which can deal with the highly collinear
response patterns. The good performance of PLS from a theoretical
point of view has been discussed by Helland [35,36]. PLS works
optimally when the measurement errors are independent and
identically distributed (iid). Because temperature-modulated MOX
sensors usually present heteroscedastic and correlated measure-
ment errors (i.e. non-iid), maximum likelihood methods, such as
maximum likelihood principal components regression (MLPCR)
[37], should in principle outperform PLS. MLPCR takes into account

the measurement error structure for building the multivariate
model. However, in a comparison between MLPCR and PLS, M.S.
Reis et al. [38] have found that PLS seems to be more effective than
MLPCR to reject heteroscedasticity. In fact, PLS prediction errors are
close to those found byMLPCR inmost scenarios. Reis attributes the
good results of PLS to the effective way of this method to find a low
dimensional predictive space, onto which the regressors are pro-
jected prior to being used for predicting the response. This pro-
jection is an effective filter that minimizes the effect of noise in X,
regardless of the structure of the noise. The authors of this study
also claim that the use of orthogonal projections benefit PLS for
heteroscedastic data, when compared to maximum likelihood
projections used byMLPCR. However, there are no references in the
available literature regarding the suitability of MLPCR for the cali-
bration of temperature-modulated MOX sensors. One contribution
of this paper is the comparison between PLS and MLPCR in
modelling temperature-modulated MOX sensor data, in a concen-
tration range near the limit of detection (LOD).

After the calibration model is built, it is common to report fig-
ures of merit, such as sensitivity, selectivity, precision or LOD, that
characterize the chemical measurement process. The LOD can be
considered the most relevant figure of merit for a myriad of ap-
plications requiring the detection of low concentrations of the
target gases [10,11,13,39]. Despite of its relevancy, the estimation of
the LOD in multivariate calibration is not standardized (see a recent
review in [40]). The main issue is the lack of agreement between
two alternative methods to estimate the LOD. The LOD is a conse-
quence of uncertainty in analyte prediction at the blank level. As it
is pointed out by Olivieri in [41], this uncertainty in prediction can
be obtained either (i) analytically, by propagating the errors of the
calibration concentrations and measured signals or (ii) empirically,
by carrying out predictions on validation samples.

In the error-propagation approach, the uncertainties of the
measured signals (both calibration and test samples) and the cali-
bration concentrations are propagated through the model to esti-
mate the variance in the predicted concentration of an unknown
sample. Then, a sample-specific LOD can be computed from the
prediction interval of blank samples. The most complete and gen-
eral formula for the multivariate prediction error was proposed by
Faber and Kowalski [42]. It incorporates the above sources of un-
certainty plus the potential bias introduced by lack of model ade-
quacy to the test sample. When a preprocessing method such as,
orthogonal signal correction (OSC) or net analyte signal (NAS) is
applied, Olivieri [41] shows that a correction needs to be applied to
this formula to account for the uncertainty introduced by the
filtering matrix. The uncertainty of the measured signals and the
model parameters (due to variance in the calibration data) take the
form of covariance matrices [43], which introduce complexity into
the formulas. To simplify the covariance matrices to scalar values, it
is assumed that the errors are iid. However, this assumption is
unrealistic in MOX response patterns because the variables are
highly correlated, and the errors of the variables close to the tem-
perature transitions tend to be higher than at smoother tempera-
ture areas. Moreover, the formula assumes that real data is a
contribution of additive signal and random noise and, as we pre-
viously discussed, MOX sensor response is highly non-linear. A
practical limitation of using this formula is that the variance of the
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errors must be estimated a priori (e.g. from replicates), which is
costly and, sometimes, impractical. The Faber and Kowalski formula
[42] was tested in Montecarlo simulations [44], yielding unex-
pected results. Nonetheless, Allegrini et al. [45] developed a LOD
definition based on the formulations of Faber and Kowalski [42],
particularized for PLS models. The result is a range of LOD values:
from the lowest (i.e. LODmin), corresponding to the lowest blank
leverage, to the largest (i.e. LODmax), corresponding to the highest
blank leverage. The LOD range clearly reflects that the composition
of the sample in multivariate calibration affects the LOD estimate.
However, the detection decision is slightly complex when the
predicted concentration c of the test sample falls within the LOD
range (i.e. LODmin< c< LODmax). In this case, it is unclear whether
the decision to be made should be “detected” or “not detected”.
Allegrini et al. [45] propose to recompute a specific LOD for the test
sample, approximating the leverage of the test sample by that of a
blank. Then, the predicted concentration is compared against this
single LOD value.

In the empirical approach, the uncertainty in prediction is
estimated through a univariate “surrogate” variable computed on
the calibration or (ideally) validation samples. The use of cross-
validation for error estimation is a well-accepted practice and has
been recommended among others by Efron and Gong [57]. The
well-accepted univariate LOD formula [46] is then applied to the
pseudounivariate calibration graph that relates the univariate sur-
rogate variable to the analyte concentration. Examples of surrogate
variables are the net analyte signal (NAS) [47], the predicted con-
centrations [48] and the scores of the first component in principal
component analysis (PCA) [49,50]. Among these, the approach
based on the NAS is supported by the IUPAC [51]. The NAS of a
certain sample is (a vector) defined as the part of the gross signal
which can be uniquely attributed to the target analyte. The norm of
the NAS (a scalar) can be used as the surrogate variable. However,
there are different approaches to compute the NAS [47,52e55]
which produce slightly different outcomes [56]. This is an issue
because the resulting LOD estimates might differ depending on
which method was used to estimate the NAS. The use of the pre-
dicted concentrations as the pseudounivariate variable resorts to
the mathematical proof that the LOD is invariant for linear trans-
formations of the response variable [48]. The predictions given by
the model are obtained by multiplying the measured signals by the
regression vector, which is a linear operation. However, this ignores
the uncertainty in the estimated model parameters resulting from
the use of noisy calibration data. Finally, computing the LOD
directly from the scores of the model [49,50] is a promising
approach because there is a unique way to compute the scores and
they reveal the underlying structure of the model. However, this
approach is limited to those cases in which the input data can be
sufficiently well represented by a single component. In
temperature-modulated MOX sensors, usually more than one PLS
component is necessary to properly fit the calibration data. Due to
the non-linearities and noise in the sensor conductance patterns
that are not relevant for predicting the concentration of the target
gas, several PLS components are needed to model one hyperplane
or “latent direction” that relates the predictors to the predictand.
Thus, the percentage of variance captured by the model is distrib-
uted among several latent variables and the LOD formulas based on
the first component cannot be used.

If the error of the instrumental signals is known a priori, the LOD
formula based on error-propagation should in principle provide
more accurate results than any empirical approach. However, it is
not usually the case that measurement errors (including all po-
tential sources of error) are known a priori. In this case, replicate
measurements must be used to compute the error covariance
matrix, prior to applying the error-propagation formula. In

multivariate calibration, these “replicate” measurements must
contain the potential interferences that the analytical systemmight
find during operation. The empirical approach does not strictly
require replicate measurements but the obtained LOD is an average
value instead of a sample-specific LOD. In this case, it is unclear
whether the resulting LOD truly represents the degree of uncer-
tainty of prediction at the blank level. Nevertheless, if replicate
measurements are available (including blank replicates), then the
empirical approach can estimate the uncertainty at the blank level
by computing the errors of the model (i.e. the variance of the sur-
rogate variable) in the blank replicates. One research question that
this paper will address is how different is the LOD computed
analytically or computed empirically, when replicate measure-
ments are available.

As the number of latent factors increases, not only the compu-
tation of the LOD becomes difficult but the interpretability of the
model decreases [58]. A simpler model is advantageous to under-
stand the underlying structure of the model by, for example,
answering some of the following questions: How is the model
induced from the data? Which variables are relevant for predic-
tion? Which variables/observations are more affected by the in-
terferences? Which observations can be considered outliers? Is
there any time-based trend in the observations? To address the
interpretability issues of PLS models mentioned above, Trygg et. al.
[59] proposed a newmethod called orthogonal projections to latent
structures (O-PLS). In the O-PLS algorithm, the structured noise in
the input signals is removed by an integral OSC filter, prior to PLS
modelling. This yields a more simpler and relevant model with the
same predictive power as the original PLS model. An extension of
O-PLS, called O2-PLS, was presented by the same authors [60]. The
advantage of O2-PLS over its predecessor is that it can estimate the
pure constituent profiles, in the case of multiple predictands.
However, for a single predictand case O-PLS and O2-PLS are iden-
tical. Ergon [61] proved that the same results of O-PLS could be
obtained by post-processing the PLS model using a similarity
transformation (ST). The resulting algorithm was named PLS þ ST.
O-PLS has been extensively applied in awide diversity of fields such
as spectroscopy [62], metabolomics [63], bioinformatics [64] and
process monitoring [65]. Surprisingly, 15 years after its invention
(as of July 2017) we have not found any work applying O-PLS,
PLS þ ST or similar methods to chemical sensor data. An alternative
method to simplify a PLS model into a two component model was
proposed by Ergon [66]. The idea behind 2PLS (also referred as bi-
orthogonal PLS in [67]) is to keep the first PLS latent variable (as it is
considered by some authors the best estimate of the spectral profile
of the target gas) and compress the remaining latent variables
(which in theory model the noise and interferences) into a new
variable, allowing a 2D representation of the model. The usage of
2PLS in the literature is very scarce and has been exclusively used in
process monitoring [68].

We consider that O-PLS (equivalently PLS þ ST) provide a more
convenient representation than 2PLS because the first component
of the simplified model is in the direction of the regression vector
(instead of the first latent variable, as in 2PLS). The importance of
the regression vector is that it models the part of the signal that is
useful for prediction. Thus, the projection of the scores onto the
first component describes the variations of the predictors (x)
related exclusively to the predictand (y). We will call the first
component the predictive component. Taking advantage of this
property, we propose a new method to estimate the LOD by
applying the well-accepted univariate formulas [46] to the pre-
dictive component of the orthogonalizedmodel. We consider this is
an improvement over existing methods based on the first PCA
component [49,50] because our approach ensures that the first
component condenses all the variance related to the analyte
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concentration. This approach yields the same results as the IUPAC
accepted multivariate formulas based on the NAS [51], when the
NAS is computed through the regression vector [53]. It is also
equivalent to the method proposed by Ortiz et. al [48] in which the
surrogate variable are the concentrations predicted by the model.
Compared to these methods, the main advantage of computing the
LOD through the orthogonal model is that the role of the in-
terferences and the target gas can be visualized, which is beneficial
for interpreting the LOD.

An underlying assumption when building a calibration model is
that the characteristics of the prediction samples are the same as
for the calibration samples. This is usually the case in analytical
instruments, such as spectrometers, which are highly selective and
usually calibrated and operated in laboratory conditions. However,
MOX sensors are calibrated in laboratory conditions and then are
operated without supervision outside the lab: in domestic sce-
narios (e.g. CO toxic alarm), mobile platforms (e.g. smartphone,
robot) or in environmental samples (e.g. monitoring traces of
contaminants), among others. The greater variability of the envi-
ronmental factors in such scenarios, themore complex composition
of the gas mixtures or even device shift will introduce bias and
variability in the predictions. Subsequently, the LOD obtained in
calibration might not be representative of the model performance
in the target scenario. In this work, wewill show that the validation
of the calibration model using future samples is essential to
quantify the degradation of the model and report more realistic
LOD estimates.

2. Materials and methods

To illustrate that orthogonal PLS (computed either by pre- or
post-processing) is a very convenient tool to treat chemical sensor
data, we designed a scenario of CO detection in the presence of
random humidity, using MOX sensors with different degree of
cross-sensitivity to environmental interferences. In this section, we
describe the dataset used in the experiments and how this dataset
was used to build MLPCR and orthogonalized PLS models. Finally,
we explain the estimation and validation of the LOD from the
orthogonal model. Figure 1 shows a block diagram of the full
process.

The analysis of the data was done using MATLAB R2009a (The
Mathworks) and functions pls and orthogonalizepls from the
PLS_Toolbox_8.0.2 (Eigenvector Research).

2.1. Dataset

For the experiments presented in this work we used the dataset
described in detail in [69]. Therefore, only a brief summary is
described in this section. Seven units of two commercial MOX
sensors (SB-500-12 and TGS 3870-A04, provided by FIS and Figaro,
respectively) were exposed to dynamic mixtures of CO and humid
synthetic air. The heater voltage was modulated following the
manufacturer recommendations (0.9 V for 5s, followed by 0.2 V for
20s (FIS) or 15s (FIGARO)). The resulting multivariate sensor
conductance gs was measured using a voltage divider with a load
resistor of 1MU. The sensors were pre-heated for one week before
starting the experiments.

Dynamic mixtures of CO and humid synthetic air were delivered
from high purity gases in cylinders to a gas chamber, by means of a
piping system and mass flow controllers (MFCs). Each experiment
consisted on 100 measurements: 10 experimental concentrations
uniformly distributed in the range 0e20 ppm and 10 replicates per
concentration (see Fig. 2). Each replicate had a relative humidity
randomly chosen from a uniform distribution between 15 and 75%
r.h. A temperature/humidity sensor (SHT75, from Sensirion) was
used to measure the humidity. The grid of concentration versus
humidity was designed irregularly as we considered it was more
representative of a real scenario. The samples were presented to the
sensors in random order, using an exposure time of 15minutes per
sample. This exposure time ensured that the sensors reached stable
responses and it was determined by the size of the gas chamber and
the gas flow rates used. A single experiment lasted 25 hours (100
samples x 15minutes/sample) and was replicated on 13 working
days spanning a natural period of 17 days. The uncertainty in the
concentrations generated by our systemwas derived through error
propagation, taking into account all known sources of errors (bottle
uncertainty, mass flow control reading errors, etc.). A maximum
uncertainty of 0.12 ppmwas associated to the lowest concentration
(2.2 ppm), because the generation of this concentration requires
the MFC which dilutes the CO in air to operate at the maximum

Figure 1. Block diagram of the LOD estimation/validation method described in this paper. The MOX sensor is exposed to dynamic gas mixtures of CO and Humidity. The sensor
temperature is modulated using a square heating waveform (VH). Measuring the sensor resistance (Rs) during a heating cycle produces patterns characteristic of the target gas and
the interferences. A PLS model is built with the signals obtained in Day 1. This model is then orthogonalized, and the LOD is estimated from the scores of the first orthogonal
component. The LOD estimate is validated by projecting signals measured in the following days into the orthogonal PLS model.
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flow rate (the error of the MFC increases with the flow rate).
In each experimental day, the sensor conductance signals gs

were baseline-corrected and logarithmically transformed. The
baseline correction consists on dividing the sensor conductance gs
(kU�1) by the sensor conductance in air g0 (kU�1), which was
measured at the beginning of each experimental day at a random
humidity and temperature. The logarithmic transformation of the
response in this sensor model linearizes the response at low con-
centrations, which produces simpler and more accurate models
[69]. The data matrix X (n� m) consists of n ¼ 100 observations
(samples) of the baseline-corrected logarithmic sensor conduc-
tance patterns, sampled at m ¼ 100 uniformly distributed points
(variables) along the heating cycle. It should be noted that the
replicates of each sample were included in the matrix X. The vec-
tors y (n� 1) and h (n� 1) contain the true CO concentration (ppm)
and the humidity content (% r.h.) of the 100 samples, respectively.

2.2. PLS models

Given a matrix X (n� m) of n samples and m predictors or
variables and their corresponding concentration y (n� 1), the PLS
algorithm [70] can be used to solve the multiple linear regression
problem in the inverse formulation (Eq. (1)), for the case where
there are more variables than samples (m>n).

y ¼ Xbþ e (1)

Here, b (m� 1) is the vector of regression coefficients and e is
the residual error. PLS solves the inverse calibration problem by
finding a reduced number of underlying latent factors, also called
latent variables (LVs), that account for as much as possible variance
in X while also capturing the correlation to y. The advantage of
inverse calibration is that, because y is modelled as a function of X ,
no explicit knowledge of the potential interfering species is
required (although they must be sufficiently represented in the
calibration set). The latent space is defined by a set of A basis vec-
tors or loadings P ðm� AÞ and q ð1� AÞ, which give information
about the weights for each predictor in X when calculating each

latent variable. The coordinates of each sample in the latent space
are the scores T (n� A). The score matrix is able to summarize X
and predict y with small errors in E (n� m) and F (n� 1):

X ¼ TPT þ E (2)

y ¼ TqT þ F (3)

Xwas mean-centered and standardized to unit variance prior to
PLS modelling. The vector of responses y was mean-centered. PLS
models were built using the samples corresponding to the first
experimental day, which we denote as the calibration set. The
complexity of the models was optimized by performing a 5-fold
cross-validation (CV). The 5-fold CV involves randomly splitting
the data into five groups and fitting the model using four folds (i.e.
using 80% of the samples). The remaining fold (i.e. 20% of the
samples) is hold out as the test set to compute the root mean
squared error (RMSE) (Eq. (4)). The folds are made such that the 80/
20% split is maintained in each concentration level.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðyi � byiÞ2.n

vuut (4)

where n denotes the size of the test set, and yi and byi are the true
and predicted value for test sample i, respectively. This process is
repeated five times so that each fold is used exactly once as the test
set. The optimum number of latent variables (LVs) is found by in-
spection of the average RMSE of the five folds versus number of LV
curve. The final models were built using the selected number of LVs
and the full calibration set.

2.2.1. Orthogonalization of the PLS models (PLS þ ST)
The PLS models were post-processed with an orthogonalization

step (PLS þ ST). This produces simpler models with orthogonalized
loadings and scores, which condense all the y -variance in the first
weight and loading. The first loading of the orthogonalizedmodel is
in the same direction of the regression vector for data in which the
structured noise has been filtered out. The predictions of the new
model are identical to the non-orthogonalized model but the
loadings and weights have been rotated. The second loading of the
orthogonalized model captures the orthogonal variation to y,
which is related to the interferences. There are two main ap-
proaches for PLS orthogonalization [59,71], which produce similar
results. In [71], a similarity transformation matrix M (Eq. (5)) is
used to remove the orthogonal variation of y:

M ¼
�

1 0
q�1
1 q2:A I

�
(5)

where 0 is a matrix of zeros ,I is the identity matrix and q is the
loading matrix. Using M, Eq. (3) is transformed into Eq. (6):

y ¼ ½ t1 T2:A �MM�1
�

q1
q2:A

�
þ F ¼ t*1q1 þ F (6)

where

t*1 ¼ t1 þ q�1
1 T2:Aq2:A (7)

t*1 is a rotation of the original t1 scores. From Eq. (6), it can be

seen that t*1 has the same direction as y.
Similarly, Eq. (2) is transformed into Eq. (8):

Figure 2. Combinations of CO concentration (nominal value) and relative humidity
(measured using a Sensirion SHT75) that were presented to the sensors in each
experimental day.
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X ¼ ½ t1 T2:A �MM�1

"
pT
1

PT
2:A

#
þ E ¼ t*1p

T
1 þ T2:AP

�
2:A þ E (8)

where

P�
2:A ¼ P2:A � q�1

1 p1q
T
2:A (9)

is the rotated loading matrix for the components orthogonal to y.

2.3. MLPCR models

Maximum likelihood principal component regression (MLPCR)
[37] is a supervised regression technique that performs a principal
component decomposition (PCA) of X (i.e. Eq. (2)), considering the
structure of the error matrix E. The final models are built by ordi-
nary least squares (OLS) regression of the scores T and the nominal
analyte concentrations y. In practice, the error matrix E is unknown
and must be estimated from a finite number of samples. In the
general case, the error variance among all measurement errors can
be described by the full covariance matrix U (mn� mn). However,
the MLPCR algorithm [72] cannot handle full covariance matrices
because of computational and storage cost. Therefore, several as-
sumptions are required to simplify the problem. First, it is assumed
that correlation only exists within each row of the data matrix X
(i.e. correlation among variables), but not within the columns (i.e.
samples). In the case of error covariance in the rows, the error
variance S can be described in terms of n row error covariance
matrices Si of size m � m:

S ¼
24S1

1
Sn

35 (10)

Each row error covariance matrix Si (i ¼ 1; :::; n) is estimated in
practice from q replicates of sample i:

bSi ¼
1

ðq� 1Þ
Xq
k¼1

�
xi;k � xi

�T
$
�
xi;k � xi

�
(11)

where bSi is the estimated row error covariance matrix corre-
sponding to the i th sample, xi;k is the kth replicate of sample i and xi
is the average of the q replicates.

The second assumption of MLPCR is that the row error covari-
ance matrix is similar for each sample. In this manner, a single row
error covariance matrix of size m � m, pooled across the different
samples, describes the error variance:

bSpooled ¼ 1
n

Xn
i¼1

bSi (12)

bSpooled is called “equal row error covariance matrix” and is the
default error matrix in the MLPCR algorithm.

2.4. Limit of detection (LOD)

The LOD is defined by the International Union of Pure and
Applied Chemistry (IUPAC) as the minimum concentration that can
be reliably distinguished from blank samples, with stated proba-
bilities of error [46]. In the IUPAC recommendations, the LOD is
formulated in terms of hypothesis testing, interpreting the distri-
bution of the LOD and the blanks as gaussian random variables:

P
�bL > LC jL ¼ 0

�
¼ a (13)

P
�bL < LC jL ¼ LD

�
¼ b (14)

Here L is a generic symbol that represents either net signal

(blank-corrected) or analyte concentration, bL is an estimate of L, LC
is the threshold used for the detection decision (i.e. analyte present
or not) and LD is the limit of detection or LOD. a and b are the
probabilities of false positives and false negatives, respectively.
Solving the above equations for LD yields:

LD ¼ z1�as0 þ z1�bsD (15)

where z1�a and z1�b are the critical values of the normal distribu-
tion for significance level a and b, respectively, while s0 and sD are

the true standard deviation of bL when L ¼ 0 and L ¼ LD, respec-
tively. In practice, a ¼ b and the critical value of the Gaussian dis-
tribution is replaced by the one sided t-critical value (t1�a;y) for the
chosen confidence level (a) and degrees of freedom (y). Similarly,
the true standard deviations s0 and sD are replaced by the corre-
sponding estimates s0 and sD, respectively. Assuming homosce-
dasticity, sD is replaced by s0 and a simplified formula for the LOD
can be obtained (Eq. (16)):

LD ¼ 2t1�a;ys0 (16)

The only variable that needs to be estimated in Eq. (16) is s0, the
standard deviation of the estimated net signal or predicted con-
centration of a blank sample. The two competing methods to es-
timate the LOD, which are explained in detail in the following
sections, differ in how they compute s0.

2.4.1. Pseudo-univariate LOD
In the pseudounivariate LOD approach, s0 is computed from a

“surrogate” univariate variable extracted from the multivariate
model. Examples of surrogate variables are the net analyte signal,
the predicted concentration in a set of calibration samples, or the
first score of an orthogonalized PLS model, as in the present pro-
posal. To compute the LOD, the surrogate variable y is related to the
analyte concentration x by a linear regression model (Eq. (17)):

y ¼ bB þ bAx (17)

where bB and bA are estimates of the intercept and slope of the
calibration curve, respectively.

It should be noted that Eq. (17) represents a direct calibration
model and, thus, the meaning of y and x is interchanged with
respect to inverse models (e.g. PLS). From linear regression [73], we
know that the standard deviation of the predicted value of a blank
sample is:

s0 ¼ sy;x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ x2P�

xj � x
�2

vuut ¼ sy;x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0

p
(18)

where sy;x is the standard error of regression, n is the number of
calibration samples, xj are the concentration of the calibration
samples, x is the mean calibration concentration and h0 is the
leverage of a blank sample (Eq. (19)).
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h0 ¼ 1
n
þ x2P�

xj � x
�2 (19)

We can see that h0 penalizes calibration designs with low
number of samples (h0 grows when n decreases) or high calibration
ranges (h0 grows when the mean calibration concentration x in-
creases). Substituting Eq. (18) into Eq. (16), yields the LOD in the
signal domain (yD):

yD ¼ 2t1�a;ysy;x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0

p
(20)

The LOD is usually reported in concentration units. The con-
centration (bx) corresponding to an observed gross signal (y) is
estimated by:

bx ¼ y� bBbA ¼ bybA (21)

where by is the net (blank-corrected) signal. The LOD in the con-
centration domain is obtained by inserting Eq. (20) into Eq. (21):

xD ¼ yDbA $

�
K
I

�
¼ 2t1�a$

sy;xbA $
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0

p
$

�
K
I

�
(22)

The correction factor
�
K
I

�
accounts for the uncertainty in the

estimated regression parameters (bA; bB) [74] and it is defined in Eq.
(23):

K
I
¼

1� rðB;AÞ$ðsbB=s0Þ$	t1�a;v$ðsbA=AÞ 

1� 	

t1�a;v$ðsbA=AÞ 
2 (23)

where rðB;AÞ is the correlation coefficient between the slope and
intercept of the calibration line (Eq. (17)), sbB=s0 is the relative

standard deviation of bB (estimated intercept), s0 is the standard
deviation of the blanks and sbA=A is the relative standard deviation

of bA.
rðB;AÞ ¼ x

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

x2i
.
n

vuut (24)

The interpretation of the correction factor
�
K
I

�
is as follows. If

the slope (A) is estimated with low uncertainty (i.e. ðsbA=AÞ/0Þ, the
term in square brackets in Eq. (16) goes to zero, and both K and I are

equal to 1, yielding
�
K
I

�
¼ 1. In this case, the LOD is not affected by

the correction factor. At the other extreme, when the uncertainty in
estimating A is very high (as sbA=A approaches 1 / t1�a;v), the de-

nominator (I) goes to zero, the ratio
�
K
I

�
goes to infinity and xD is

unbounded. The correction factor includes the effect of the uncer-

tainty of bB when estimating A. If A and B are estimated individually,

the correlation coefficient r(B , A) is zero and the ratio
�
K
I

�
only

depends on the uncertainty of bA. When A and B are estimated
jointly, they will be negatively correlated and the numerator (K) in

Eq. (16) will increase with the uncertainty of bB.

2.4.2. Multivariate LOD or error-propagation approach
In the error-propagation approach, the uncertainties of the

calibration concentrations and the measured signals (both cali-
bration and test samples) are propagated through the model to
estimate the variance s2by in the predicted concentration by of an

unknown sample (see equation (61) in Reference [42]):

s2by ¼ hu$
�
s2Dy þ b2s2DX

�
þ b2s2DX (25)

where hu is the unknown sample leverage for mean-centered data
(Eq. (26)), s2Dy is the variance of the calibration concentrations, kbk
is the Euclidean norm of the PLS regression vector and s2DX is the
variance of the instrumental signals of the unknown and calibra-
tion samples.

hu ¼ 1
n
þ tTu$

�
TTT

��1
tu (26)

Here, n is the number of calibration samples and tu (1� A) and T
(n� A) are the PLS scores of the unknown sample and the cali-
bration set, respectively. The expression of Eq. (25) assumes that
the measurement errors are iid with zero mean and constant
variance, which is not usually the case in chemical sensing. To
accommodate other error structures, Allegrini et. al [43] derived a
general formula for the prediction error (see equation (11) and
Table 1 (Case 2) in Reference [43]) :

s2by ¼ hu$
�
s2Dy þ bT

SXb
�
þ bT

Sxb (27)

where Sx and SX are the error covariance matrices of the instru-
mental signals of the unknown and calibration samples, respec-
tively. The estimated standard deviation of the predicted analyte
concentration of a blank sample can be obtained by particularizing
Eq. (27) for y ¼ 0 and taking the square root in both sides of the
equation:

s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu$

�
s2Dy þ bT

SXb
�
þ bT

Sxb
r

(28)

Inserting s0 into Eq. (16) would give the LOD in the concentra-
tion domain. However, in contrast to univariate calibration, the fact
that there is no single blank sample in PLS calibration will result in
multiple values of h0, one per each blank sample [45]. The result is a
range of LOD values: from the lowest (Eq. (27)), corresponding to
the lowest blank leverage h0min, to the largest (Eq. (28)), corre-
sponding to the highest blank leverage h0max:

xDmin ¼ 2t1�a;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT

Sxb$ð1þ h0minÞ þ h0mins
2
Dy

q
(29)

xDmax ¼ 2t1�a;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT

Sxb$ð1þ h0maxÞ þ h0maxs2ycal

q
(30)

The details on how to compute h0min and h0max are given in [45].
The relationship between themultivariate LOD range (Eqs. (29-30))
and the pseudounivariate LOD (Eq. (22)) can be clarified by noticing
that h0min in Eq. (29) is equal to the leverage of the blank sample h0
in Eq. (19) [45]. Neglecting the uncertainty in the calibration con-
centrations in Eq. (29) (i.e. s2Dy ¼ 0Þ and rearranging the terms in-

side the square root yields:

xDmin ¼ 2t1�a;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT

Sxb
q

$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ h0Þ

q
(31)

Comparing Eq. (31) to Eq. (22), we can see that the terms
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT

Sxb
q

and sy;xbA are equivalent when the correction factor
�
K
I

�
approaches unity. Both terms represent the propagation of the
uncertainty in the input signals through the model. In the first case,
the propagation occurs directly from the measurement error Sx.
The coefficients of the regression vector b are used to weight the
variables in Sx, according to their importance for prediction. The
resulting value is already in concentration units. In the second case,
the input signals are first projected onto the regression vector to
obtain the surrogate variable. The uncertainty of the surrogate

variable is captured by sy;x. The slope bA is used to convert sy;x to
concentration units.

3. Results and discussion

The dataset described in this section contains samplesmeasured
in 13 experimental days. The problem considered here is to cali-
brate two MOX sensor families with the objective of predicting the
CO concentration and rejecting the humidity interference. First, the
sensor conductance patterns and the measurement noise are
analyzed. Then, PLS and MLPCR models are built using samples
from the first day. The RMSECV and the optimum number of
components of both models are compared. Then, PLS models are
orthogonalized to simplify the visualization and to calculate the
LOD using the pseudo-univariate approach. The resulting values are
compared against the multivariate LOD interval. The samples from
days 2e13 are used to validate the model and quantify its degra-
dation in terms of LOD. First, a comprehensive analysis of the FIS
device is presented and, then, the main results of the Figaro unit
will be shown.

3.1. FIS SB-500-12

The response of one sensor unit to varying levels of carbon
monoxide (CO) under nearly constant humidity (52 %r.h.) is shown
in Fig. 3a. The x-axis represents a single heating cycle in which the
sensor is driven at high temperatures for 5 s and then it is cooled
down for 20 s. The logarithm is applied to the y-axis to facilitate the
visualization of the response at low heating temperatures. Fig. 3b
shows the sensor response to varying levels of humidity, for three
concentration levels. As it can be seen, the sensor response was
cross-sensitive to humidity only in certain areas of the heating
pattern (e.g. t >10 s) and for concentration levels above 15.6 ppm.
This indicates a non-linear effect between humidity and CO on the
sensor response. From this plot, we can see that the signals corre-
sponding to the blanks are clearly distinguishable from the signals
at 11 ppm, at least in the low temperature part of the heating cycle.
Therefore, we can intuitively think that the LOD should be lower
than 11 ppm. To get an initial estimate of the LOD and as a first step
to understand how the PLS algorithm can model these sensor
conductance patterns, PLS models were built using samples from
the first experimental day. Considering the multiple sensor units,
five to seven components were optimum based on the cross-
validation results. A scatter plot of the scores (i.e. score-plot) of
the first two LVs (t1 vs. t2Þ of one calibration model is shown in
Fig. 4a. Since the first two LVs already captured 96% of the variance,
the scores of the following LVs were not represented. The first thing
we can notice in this plot is that there is a non-linear dependence
between t1 and t2 , although the difference in variance between
the two axes should be taken into consideration. Second, the pro-

jection of the estimated regression vector bb (black solid line) into

Table 1
Comparison between xD, xDmin, xDmax and the main parameters related to their computation, for six FIS SB-500-12 sensor units. Sensor S2 was excluded from the analysis due
to abnormal behavior. The meaning of the columns is explained in the text. The term 2t1�a;y was 3.35, h0 ¼ 0:06, and sDy ¼ 0:1 ppm, for all sensor units.

Sensor PLS LV [xDmin , xDmax] (ppm) xD (ppm)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bTSxb

q
(ppm)

[h0min ; h0max]
sy;xbA (ppm) K

I

S1 7 [0.72, 0.81] 0.73 0.21 [0.06, 0.34] 0.21 0.997
S3 5 [0.67, 0.75] 0.73 0.20 [0.06, 0.31] 0.21 0.997
S4 5 [0.67, 0.73] 0.71 0.20 [0.06, 0.23] 0.21 0.997
S5 7 [0.78, 0.93] 0.91 0.23 [0.06, 0.47] 0.26 0.997
S6 7 [0.85, 0.98] 0.92 0.25 [0.06, 0.38] 0.27 0.995
S7 5 [0.78, 0.90] 0.86 0.23 [0.06, 0.38] 0.25 0.996

Figure 3. Conductance of a temperature-modulated SB-500-12 sensor (unit S7) during one heating cycle. Data was extracted from the first week of measurements. (panel a) Several
measurements corresponding to a constant humidity value of 52 ± 3% r.h are overlapped. The color indicates the CO concentration. (panel b) Effect of humidity for several con-
centrations. (0, 11 and 20 ppm). The color indicates the humidity content of the sample. (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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this subspace is confusing because of two reasons: (i) the direction

of bb is not aligned to the analyte-capturing direction and (ii) the
interference direction, which is the direction of the intra-class

scattering, is not orthogonal to bb. From this plot, we may (incor-
rectly) deduce that the PLSmodel was unable to reject the humidity
interference and we cannot precisely assess the LOD.

An improved representation is shown in Fig. 4b, after the model
was orthogonalized. In this plot, the x-axis captures the y -variation
and the y-axis captures the y -orthogonal variation, which is related
to the cross-sensitivity of the sensor to the interferences. The t2
scores were mean-centered at each concentration level to enhance
the interpretability of the model. The ability of the model (and
obviously of the sensor) to distinguish between two consecutive
concentration levels is clearly identified in this plot. The orthogonal
score-plot could be seen as a deformation of the sample space (c.f.
Fig. 2) due to the combined effect of the sensor, the calibration
model and the noise. The smaller the sensor cross-sensitivity to the
noise the less scattered will be the points in the vertical direction
(xi). The intra-class scattering in the x-axis ðxaÞmeasures the ability
of the PLS model to reject the interference. The smaller the value of
xa the higher the selectivity of the model. If the scores of the same
concentration level can be approximated by a straight line, the
angle b between this line and the horizontal axis also indicates the
selectivity of the model for that concentration. b ¼ 90ºwouldmean
perfect rejection of the interference and b ¼ 0º means no rejection
at all. In this example, we can see that the vertical scattering (xi)
increases with concentration, which is coherent with the fact that
the cross-sensitivity to humidity of the sensor conductance pat-
terns was higher for 20 ppm than for 2 ppm (c.f. Figure 3b). We can
visually check that the first non-zero concentration (2.2 ppm) is
clearly separated from the blanks (0 ppm), so the LOD must be
located between these two levels. From this picture, we can un-
derstand that the LOD is affected by the interferences because the
first concentration level is tilted with an angle b. In an interference-
free scenario (b ¼ 0ºÞ, the lesser degree of overlapping between the
blanks and the low concentrations would produce a smaller LOD.

From this initial analysis we visually estimated the LOD in the
region between 0 and 2.2 ppm. To estimate the LOD, it is recom-
mended to use calibration samples with concentration close to the
LOD during the model building step [46]. Therefore, a reduced
range of 0e9 ppm was used for the rest of the analysis. The auto-
scaled and baseline-corrected logarithmic sensor conductance
patterns, in this reduced range, are shown in Fig. 5. The sensor

response at low temperatures (t >5 s) show more sensitivity to
higher concentration levels (see how the distance between the red
and orange traces is higher than the distance between the dark and
light blue signals). On the other hand, the sensor response at high
temperatures (t <5 s) seem more sensitive to the lower concen-
trations. The variance of the signals at 2.2 ppm was higher than at
the other concentration levels (heteroscedasticity), probably due to
the uncertainty in the generation of the calibration concentrations
(see Section 2.1). However, the greatest contribution to hetero-
scedasticity occurs along the response pattern, rather than along
the samples. The measurement error during the temperature
transitions is one order of magnitude higher than in other areas of
the pattern. This can be clearly seen in the pooled row error
covariance matrix (Fig. 6). Looking at the noise structure, we can

Figure 4. Scores from (panel a) PLS and (panel b) orthogonalized PLS of a SB-500-12 sensor (unit S7) in the calibration set, demonstrating the better interpretability of the
orthogonal scores. The projection of the estimated regression vector bb (Eq. (1)) is depicted as a solid black line in panel a. The number in brackets indicate the percentage of variance
captured by that latent variable. The color code represents the nominal CO concentration (ppm), also labeled at the bottom of the vertical black dashed lines which represent the
concentration in the score space (solving for T in Eq. (3)). The symbols in panel b are defined in the text. (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)

Figure 5. Auto-scaled and baseline-corrected logarithmic sensor conductance patterns
of a SB-500-12 sensor (unit S7). The solid line surrounded by a shaded area indicate the
dispersion across replicates as the mean±MAD. MAD ¼ 1

n
Pn

i¼1jxi � meanðxÞj. The
color indicates the CO concentration: 0 ppm (dark blue), 2.2 ppm (light blue), 4.4 ppm
(green), 6.7 ppm (orange) and 8.9 ppm (red). The black dashed line represents the
heater voltage. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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see that the highest measurement noise was found in the tem-
perature transitions (t ¼ 0 and t ¼ 5 s), probably because the
sampling frequency of the acquisition system was not fast enough
to accurately capture the rapid changes in sensor conductance
during the temperature changes. Themeasurements corresponding
to high temperature of the sensing layer (t <5 s) showed significant
error compared to those at the beginning of the low temperatures
(t2½6; 12� s), where the lowest measurement error was found. A
moderate stable noise level was found at the end of the low tem-
peratures (t >15 s). We computed the correlation coefficient
among variables of the response pattern and values above 0.8 were
found (except in the temperature transitions).

In the presence of heteroscedastic and correlated measurement
errors, MLCPR should produce models with lower number of

components and lower prediction error than PLS. However, the
empirical studies of Reis [38] confirm that this is not always the
case: noise level, correlation level and heteroscedasticity play in
role in determining the best linear regression method. Conse-
quently, it seems that an empirical investigation in the particular
case of temperature modulated MOX sensors is needed. A com-
parison of the cross-validation error between PLS and MLPCR is
presented in Fig. 7. In both cases, the calibration models were built
using 50 samples in the range 0e9 ppm (5 concentrations x 10
replicates) collected in the first experimental day. For the same
level of error (i.e. 0.4 ppm), PLS required less components than
MLPCR (5 vs 10 LVs). This behavior ewhich was originally found
between PCR and PLS [75]e is related to the fact that PLS latent
variables consider the correlation with the Y target vector,
providing parsimonious predicting spaces. This behavior has been

Figure 6. Equal row error covariance matrix of a SB-500-12 sensor (unit S7), obtained by pooling the row error covariance matrices of each sample (Eq. (12)). The row error
covariance matrix of each sample was calculated from replicates of the auto-scaled and baseline-corrected logarithmic sensor signals (Eq. (11)). The color indicates the variance/
covariance (also indicated by the z-axis). The variance was saturated at 0.15 for visualization purposes (only the temperature transitions exceeded this value). (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)

Figure 7. Comparison between PLS and MLPCR in cross-validation error, for six units of
the SB-500-12. The solid line surrounded by a shaded area indicate the dispersion of
the RMSECV (ppm) across sensor units as the mean±MAD. MAD ¼ 1

n
Pn

i¼1jxi �
meanðxÞj

Figure 8. Evolution of the regression vector for different number of latent variables,
for a SB-500-12 sensor (unit S7).
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confirmed for MLPCR by Reis [38]. The authors attribute the good
results of PLS to the effective way of this method to find a low
dimensional predictive space, onto which the regressors are pro-
jected prior to being used for predicting the response. These results
do not agree with the MLPCR theory [37,72], which states that, in
the case of non-iid noise, MLPCR should perform better than PLS.
On the light of the analysis of Reis, we may assume that PLS is able
to reject heteroscedastic noise, when this noise is not correlated
with the Y vector. This can be seen by looking at the changes in the
shape of the PLS regression vector as a function of the number of
latent variables (Fig. 8). When only 1 LV is used, the regression
vector equally weights the response pattern, regardless of the error
of each variable. When two latent variables are used, suddenly the
initial part of the low temperature section is heavily weighted
while the rest is rejected. This part of the sensor response exhibits
low measurement errors (see Fig. 6) and is less correlated with the
rest of the pattern. PLS weights more this area by virtue of the
higher correlationwith Y, producing amore effective filtering of the
noise in X.

Based on these results, we only considered PLS models for the
rest of the analysis. New PLS models were built using all samples
from the first experimental day in the range 0e9 ppm and the
optimum number of LVs. After orthogonalization of the resulting
models, xD was estimated using the first orthogonal component
and then compared against the multivariate LOD interval (See
Table 1). Values of xD ranging from 0.71 to 0.92 ppm, with an
average value of 0.79 ppm, were found. The multivariate LOD
ranges were centered at a mean value of 0.80 ppm and they were
relatively narrow (mean width of 0.10 ppm). For the six sensors
analyzed, xD was contained inside [xDmin , xDmax]. From this table,
we can conclude that both LODmethods provide equivalent results
if the model complexity is well estimated. When the model
complexity is underestimated or overestimated, xD was either
slightly higher than xDmax or slightly lower than xDmin, respectively
(Fig. 9). Both LOD methods show a monotonically decreasing rela-
tionship with the number of latent variables, like a typical RMSEC
vs LV curve. In the simplest model (1 LV), xD (3.02 ppm) was 4.9%
higher than xDmax (2.85 ppm). As the model complexity reaches its
optimum value (5 LV), xD (0.91 ppm) falls within the LOD range
([0.78, 0.93] ppm). xD remained within [xDmin; xDmax] beyond the
optimum number of LVs, up to a point in which it exits the LOD

range from the lower end (not shown in the Figure). The width of
the LOD range (i.e. xDmax � xDmin) increased asmore latent variables
were added to the model (from 0.03 to 0.15 ppm in the first ten LV),
due to the term h0max in the computation of xDmax (Eq. (30)). h0max
represents the maximum distance of a given sample to the cali-
bration center in the score space. Because the distance between
two given points in a n-dimensional space increases with the
dimensionality of the space, h0max forces xDmax to separate from
xDmin as the dimensionality of the PLS model increases.

Fig.10 shows the orthogonal scoreplot of the calibration samples
for different model complexities, together with the corresponding
location of xD, xDmin and xDmax. In the left column (panels a, c and e),
moving from top to bottom, we can appreciate the improvement in
fitting of the data as the model complexity increases. The scores
corresponding to the different concentrations become less scat-
tered in the x-axis and less biased with respect the nominal con-
centration (black dashed lines), which results in a lower prediction
error. Looking now at the right column (panels b, d and f), we can
see that xD , xDmin and xDmax shift towards the blanks as more latent
variables are added to the model. When the model is too simple
(panel a), the scores corresponding to different concentrations are
partially overlapped, especially at low concentrations. In this case,
neither xD (2.4 ppm) nor the LOD range ([2.1, 2.2] ppm) satisfy the
5% false positive and false negative rates established by the IUPAC,
because the t-student distributions of the blanks and the LOD
overlap more than 5% (panel b). The underestimation of xD, xDmin
and xDmax is a side-effect of assuming homoscedasticity and using
the pooled standard deviation sy;x in the computation of xD (Eq.

(22)) and the pooled covariance matrix bSpooled in the formulas of
xDmin and xDmax (Eqs. (29-30)). We can see that the samples of
2.2 ppm show more variability in the x-axis than the rest of con-
centration levels. When themodel complexity is adequate (panels c
and d) or the models are overfitted (panels e and f), the PLS re-
siduals are homoscedastic and the approximate distribution of the
samples at the LOD level can satisfy the 5% overlapping with the
blanks, for both LOD estimation methods.

The LOD is estimated using a set of calibration samples, but the
sensors will be typically used to predict future samples not seen by
the model during the calibration process. Here, a relevant question
is whether the calibration LODwill satisfy the 5% false positives and
false negatives in the prediction of new samples. To respond this
question, we projected validation samples -taken days after cali-
bration- into the calibration score plot (Fig.11). The plot reveals that
the calibration data did not represent all the variability contained in
the validation data. The reasons for the increased variability could
be related to the overfitting of the model to the calibration data, the
cross-sensitivity to humidity and temperature -which varied
slightly among different experimental days-, the open-loop control
of the sensor temperature or the intrinsic instability of the sensor.
The intersection between the blanks and the samples centered at
the LOD contains 20 blanks (out of 100) and 20 samples at the LOD
(out of 100). This represents an approximate number of false pos-
itives and false negatives of 20%, which clearly indicates that, for
future operation of the sensor, the LOD was underestimated. To
quantify the underestimation factor, we recomputed the LOD using
both calibration and validation samples, as a function of the elapsed
time between calibration and validation (Fig. 12). The mean LOD
(considering multiple sensor units) smoothly increased from
0.79 ppm (calibration) to 1.1 ppm (two weeks after calibration),
which represents a 43% degradation. This highlights that the ac-
curacy of the LOD value in MOX sensors is not as critical as in more
precise and stable instruments, due to the expected variability of
future data. Reporting a LOD with a safety margin would be a
sensible choice in this case, so we could say that in our chemicalFigure 9. Limit of detection as a function of the number of latent variables, for a SB-

500-12 sensor (unit S7). The optimum number of LV is indicated with an ellipse.
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Figure 10. Calibration score plot of the first two orthogonal PLS components of sensor SB-500-12 (unit S7), using 2 LVs (panels a,b), 4 LVs (panels c,d) and 10 LVs (panels e,f). The
color code represents the nominal CO concentration (ppm), also labeled at the top of vertical black dashed lines which represent the concentration in the score space (solving for T
in Eq. (3)). Panels b, d and f show the blanks and the first concentration level, together with xD (vertical solid red line) and [xDmin , xDmax] (shaded red area). The red crosses simulate
the distribution of the scores at xD , by replication of the score distribution corresponding to the closest concentration level (i.e. 2.2 ppm in panel b, and 0.0 ppm in panels d and f).
The t-student curves below the blanks and xD fit the distribution of the scores of the first orthogonal PLS component (t�1). The number in brackets in the axis label indicates the
percentage of variance captured by that latent variable. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Figure 11. Projection of data from all experimental days into the calibration score-plot of a SB-500-12 sensor (unit S7), using 4 LV. Only the blanks and the first concentration level
are shown for visual clarity. The color code represents the nominal CO concentration (ppm), also labeled at the top of the vertical black dashed lines which represent the nominal
concentration in the score space (solving for T in Eq. (3)). The solid circles represent the calibration data (Day 1) whereas the open circles represent the projection of the validation
samples (Days 2e13). The red crosses simulate the distribution of the scores at xD , by replication of the scores corresponding to the blanks. The t-student curves below the blanks
and xD fit the distribution of the scores of the first orthogonal PLS component (t�1). The number in brackets in the axis label indicates the percentage of variance captured by that
latent variable. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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measurement process the sensors can detect concentrations above
2 ppm. In the presence of humidity as the main chemical interfer-
ence, this sensor model can satisfy the LOD specifications of a
carbonmonoxide (CO) toxic alarm, where the permissible exposure
limit is 35 ppm in 8 h, as established by the Occupational Safety and
Health Administration (OSHA) [76]. On the other hand, the use for a
smoke cessation monitor application, which requires a detection
threshold of few ppm [77], needs to be evaluated considering all
possible interferences in a CO concentration range closer to the
LOD.

3.2. Figaro TGS 3870-A04

The baseline-corrected logarithmic sensor conductance pat-
terns of the Figaro TGS 3870-A04 (Fig. 13) reveal a high cross-
sensitivity to humidity for all the CO concentrations that we
tested (see panel b for 2.2 ppm). Changing the humidity content

from 15% to 65% r.h. produces an effect in the sensor response at
least comparable to a change in CO concentration from 0 to 20 ppm
(c.f. panel a). PLS models with 6e7 components were built using
the samples collected in the first experimental day, in the reduced
concentration range 0e9 ppm. The models were then orthogonal-
ized to facilitate their interpretation and to estimate the LOD. For
example, interference-free signals reconstructed using the first
component of the orthogonal model (Fig. 14) clarified which vari-
ables of the response pattern are more sensitive to CO. The most
important parts of the signal for prediction purposes are the
beginning of the high temperatures and the end of the low heater
temperatures. This information could not be extracted from the
original signals (c.f. Fig. 13a). Regarding LOD estimation, values of
xD ranging from 0.83 to 1.5 ppm, with an average value of 1.1 ppm,

Figure 12. Boxplot of the limit of detection (xD) of six SB-500-12 sensors, as a function
of the days elapsed since calibration. In each box, the central mark indicates the me-
dian, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points not considered
outliers.

Figure 13. Conductance of a temperature-modulated TGS 3870-A04 sensor (unit S2) during one heating cycle. Data was extracted from the first week of measurements. (panel a)
Several measurements corresponding to a constant humidity value of 52± 3% r.h are overlapped. The color indicates the CO concentration. (panel b) Effect of humidity at 2.2 ppm of
CO. The color indicates the humidity content of the sample. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)

Figure 14. Reconstructed patterns of a TGS 3870-A04 sensor (unit S2), using the first
orthogonal PLS component (Eq. (1)). The color code represents the CO concentration
(ppm). (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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were found. The multivariate LOD ranges were centered at a mean
value of 1.2 ppm and a mean width of 0.32 ppm. For the seven
sensors units analyzed, xD was contained inside the LOD range,
similarly to the FIS devices. Fig. 15 shows the score plot of one
orthogonalized PLS calibration model, together with the projection
of the validation data. One interesting comment about the drift and
its impact into the LOD reliability should be remarked. The 2.2 ppm
validation samples (cyan open points) with the lowest humidity
content (15%) drifted towards the blanks, probably due to the high
cross-sensitivity to humidity of this sensor model. Because the
blanks and these samples get closer to each other in the x-axis, the
model degrades its discrimination power between these two con-
centration levels. Consequently, the LOD (which was calculated in

Day 1 when the scores of both samples were far away) might be no
longer valid in Day 13 when the scores are much closer. The
orthogonal scoreplot was a useful visualization tool to detect this
unexpected situation. The average LOD (over seven sensor units)
increased from 1.1 (calibration) to 1.6 ppm (two weeks after cali-
bration), which represents a 46% degradation (Fig. 16).

4. Conclusions

MOX sensors have many challenges to be solved regarding their
selectivity and stability. PLS is the de facto multivariate model to
calibrate temperature-modulated MOX sensors in the presence of
interferences. One research question of this work was if MLPCR
would outperform PLS in the analysis of MOX sensor signals with
non-iid measurement errors. We found that, for the same level of
error, PLS required less components than MLPCR. Unfortunately,
the PLS models were still highly complex (5e7 LVs) to properly
interpret themodels and to estimate common figures of merit, such
as the LOD. In the present study, we propose a method to estimate
the LOD using the scores of the first component of an orthogonal-
ized PLS model. To illustrate the proposed methodology, we used
seven units of two commercial MOX sensors, with different degree
of cross-sensitivity to humidity. The sensors tested in this article are
just examples of many sensors with similar problems. Post-
processing the PLS models with an orthogonalization step resul-
ted in a reduction of the model complexity from 5 to 7 latent var-
iables to two-component models. These simpler models revealed
patterns of the data which were hidden in the original PLS repre-
sentation and yielded average LOD values (estimated using the
proposed approach) of 0.79 ppm (FIS) and 1.1 (Figaro). Through the
orthogonal score plot, we showed that these LOD values were
contained within the multivariate LOD range estimated by error-
propagation, provided the model complexity was adequate.
When the model complexity was underestimated, the proposed
approach yielded slightly higher LOD values than the upper limit of
the multivariate LOD range. The average LOD increased to 1.1 ppm
(FIS) and 1.6 ppm (Figaro), when validation samples obtained two
weeks after calibration were included in the analysis. This

Figure 15. Projection of data from all experimental days into the calibration score-plot of a TGS 3870-A04 sensor (unit S2), using 6 LV. The solid circles represent the calibration data
(Day 1) whereas the open circles represent the projection of the validation samples (Days 2e13). The number in brackets in the axis label indicates the percentage of variance
captured by that latent variable. The color code represents the nominal CO concentration (ppm), also labeled at the top of vertical black dashed lines which represent the con-
centration in the score space (solving for T in Eq. (3)). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Figure 16. Boxplot of the limit of detection (xD) of seven TGS 3870-A04 sensors, as a
function of the days elapsed since calibration. In each box, the central mark indicates
the median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The whiskers extend to the most extreme data points not
considered outliers.
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degradation of 43% (FIS) and 46% (Figaro) in the LOD value suggests
that, if the interfering factors are not completely controlled, caution
should be takenwhen usingMOX sensors for applications requiring
LOD values similar to the metrological LOD of the sensors. Adding a
safety margin of 1 ppm to the original LOD estimates was recom-
mended in our experiments to guarantee the LOD estimates in a
two-week period. This means that the sensors tested in this
experimental setup could be used to detect concentrations of CO of
around 2 ppm in environments in which the main interfering
source is the changes in humidity. This might need to be confirmed
with more tests in a concentration range closer to the LOD. In the
future work we will include other interfering gases in the sample
composition and explore the performance of the sensors in longer
timer periods (months).
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Chapter 4

Low Power Operation of MOX
Sensors

In this chapter, we propose a low-power operating mode to minimize the energy consump-
tion of MOX sensors, which might be considered too high for certain battery-operated ap-
plications, such as nano-drones or smartphones. The proposed low-power mode is based
on 10% duty-cycling operation of 10-min periods, that represents a tradeoff between power
consumption and stability. We benchmarked this mode against the continuous power mode
(highest stability) and on-demand mode (lowest power consumption), during two weeks of
periodic measurements using multiple units of the FIS SB-500-12 sensor operating under
temperature modulation. The proposed duty-cycling powering scheme reduced the predic-
tion error 2.5 times with respect to on-demand operation (2.2 versus 0.9 ppm) and saved
up to 90% energy as compared to the continuous operating mode.

Paper III is shown below.
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Abstract: Mobile applications based on gas sensing present new opportunities for low-cost air quality
monitoring, safety, and healthcare. Metal oxide semiconductor (MOX) gas sensors represent the most
prominent technology for integration into portable devices, such as smartphones and wearables.
Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing
layer. However, continuous power is not feasible in many battery-operated applications due to power
consumption limitations or the intended intermittent device operation. This work benchmarks two
low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling
mode periodically turns the sensors on and off and represents a trade-off between power consumption
and stability. On-demand operation achieves the lowest power consumption by powering the sensors
only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL,
USA) sensors were exposed to low concentrations of carbon monoxide (0–9 ppm) with environmental
conditions, such as ambient humidity (15–75% relative humidity) and temperature (21–27 ◦C),
varying within the indicated ranges. Partial Least Squares (PLS) models were built using calibration
data, and the prediction error in external validation samples was evaluated during the two weeks
following calibration. We found that on-demand operation produced a deformation of the sensor
conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as
compared to continuous operation (2.2 versus 0.45 ppm). Applying a 10% duty-cycling operation
of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm). The proposed
duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating
mode. This low-power mode may be advantageous for applications that do not require continuous
and periodic measurements, and which can tolerate slightly higher prediction errors.

Keywords: smartphone; metal-oxide semiconductor; gas sensor; low power; temperature-
modulation; interferences

1. Introduction

Market forecasts [1] indicate that the number of portable air quality devices will increase
with respect to fixed air quality stations over the next few years. The high market penetration
of smartphones [2] and wearables has opened a market for mobile applications based on gas sensing.
Adding a chemical analysis capability to smartphones targets the in situ detection of Volatile Organic
Compounds (VOCs). Very low levels of VOCs have been found to contribute to the “ sick building
syndrome” , which degrades workers’ health and decreases productivity [3]. At higher concentrations,
both short- and long-term exposure to VOCs are known to create health risks [4]. The World Health
Organization (WHO) has identified nine harmful compounds, including carbon monoxide (CO),
benzene, nitrogen dioxide (NO2), formaldehyde, and naphthalene, which might be present in indoor
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air [5]. In outdoor air, the United States Environmental Protection Agency (EPA) specifies four principal
pollutants and their corresponding maximum exposure concentrations (hourly) [6]: 9 ppm of CO,
100 ppb of NO2, 0.07 ppm of ozone, and 75 ppb of sulphur dioxide. If gas sensing technology is
implemented into smartphones, users could assess the air quality wherever they are, perhaps allowing
them to avoid unhealthy environments or, at least, indicating to them the need for ventilation. Using
the built-in localization and connectivity capabilities of smartphones and wearables, any measured
data could simultaneously be geo-tagged and shared to the Internet of Things (IOT) in order to build
fine-grain air pollution maps.

A gas-sensitive mobile device has also a direct application to the m-Health sector (defined as
medical health practice supported by mobile devices [7]). Such a device can be used to measure
the concentration of VOCs present in expired breath, which might be related to respiratory and
gastrointestinal dysfunction [8–12]. For example, CO and nitric oxide are biomarkers for asthma [12],
chronic obstructive pulmonary disease [8,9], and lung cancer [11], and high levels of ammonia in
expired breath are indicative of renal failure [10]. Gas sensors are less accurate than the analytical
instruments usually deployed in laboratory settings or hospitals, but may be advantageous in terms of
early detection of diseases, reducing healthcare costs, and promoting healthcare equity. Gas-sensitive
mobile devices can also be used in healthcare applications not related to diseases. For example,
tracking acetone levels in expired breath can be used to monitor sleep quality [13] and the fat-burning
process [14]. Expired-air carbon monoxide (eCO) concentrations above 5 ppm might be related to
smoking habits. Providing smokers with a personal monitor for measuring such concentrations was
found to be a feasible method for reducing the intake of smoke [15]. Commercial eCO monitors,
such as the Smokerlyzer (Bedfont Scientific Ltd. Harrietsham, UK), are already sold as plug-ins for
mobile devices. Breathalyzers used to measure the blood alcohol content from breath samples are also
available as plug-ins for mobile devices [16]. The connection between gas sensors and smartphones is
becoming steadily more frequent. The full integration of the gas sensor into the smartphone or wearable
would drastically increase the penetration of current gas-sensing applications and the appearance of
new ones.

The key specifications of a gas sensor with regard to mobile integration are the cost, size,
durability, stability, and power consumption. Among the different gas-sensing technologies, metal
oxide semiconductor (MOX) sensors represent the most prominent technology for integration
into portable devices. They have the advantages of high sensitivity to a large variety of gases,
miniaturization potential, low cost, and long-life. They represent the most commercially successful
type of gas sensor, and have been used in applications ranging from environmental monitoring [17–20],
energy [21], food [22,23], automotive [24,25], and safety and security [26–30] to biomedicine [31,32].
The main limitations of this technology are their inherent lack of selectivity, high power consumption,
and temporal drift [18,33,34].

The main source of power consumption in MOX sensors is the resistor that heats up the sensing
surface to promote efficient redox reactions between the adsorbed molecules of the target gas and the
metal oxide [35]. The evolution of fabrication technologies has permitted the miniaturization of the
sensing chip and heater resistor, leading to smaller and more power-efficient sensors (see Figure 1).
Thanks to micro-machined technology (MEMS), MOX sensors can be fabricated nowadays with a very
compact form factor and power consumption of mere tens of mW [36].

As opposed to other gas-sensing technologies (e.g., electrochemical sensors) in which power
can be issued on-demand (i.e., to take a measurement), MOX sensors require a continuous energy
supply. Immediately after a MOX sensor is switched on, the sensor enters into an unstable state
characterized by a steady increase in the sensor resistance, known as the “ run-in phase” in [37] or
“ initial action” in [38]. In a separate study we made, the standard duration of this transient behaviour
was found to depend heavily on the sensor model and how long the sensor was unenergized (Figure 2).
In general, the longer the sensor is unpowered, the longer the run-in phase takes. In some extreme
cases (e.g., sensor TGS 2602), the run-in phase can take more than two hours if the sensor has been
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unpowered for more than one week. This means that a reliable and stable measurement can only be
obtained after waiting for that length of time, which represents a practical issue for intermittently
operated devices, such as portable gas detectors. Because of this, MOX sensors have traditionally been
powered continuously rather than on-demand.
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Figure 2. Run-in phase of several isothermally operated MOX sensors (TGS models, Figaro
Engineering Inc., Arlington Heights, IL, USA). (A) Initial action of the sensor response after a 12-h
shutdown. The open circles on top of each trace indicate the stabilization time, defined as the time
when the response reaches 95% of its final value. (B) Stabilization time as a function of the shutdown
period. The sensors were continuously powered for several days before each shutdown.

The power consumption under continuous power supply might be considered too high for certain
battery-operated applications. As an example, consider adding a Figaro TGS8100 sensor (one of
the most power efficient sensors in the market at 15 mW) to a Samsung Galaxy S7 smartphone,
which consumes 462 mW under non-intensive use (see Appendix A for the details). The power
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consumption of the MOX sensor represents 3.14% of the total smartphone power usage or, in other
words, a reduction in battery lifetime of 45 min. Considering that more than one MOX sensor might be
needed to increase the selectivity of the system [39], the situation worsens. For example, the recently
released SGP sensor (Sensirion AG) integrates multiple MOX sensors into the same chip, increasing
the power consumption to 48 mW. This would represent 10% of the smartphone’s power consumption
or a reduction in battery lifetime of 2 h and 15 min in our example. Evidently, the power consumption
needs to be further reduced.

Many solutions to the problem of power consumption in MOX sensors have been proposed
using the technique of duty-cycling. Duty-cycling saves energy by periodically switching on and
off the sensor power and, at the same time, it achieves stability because long off periods are split
into smaller “ chunks” . The amount of time the sensor is powered with respect to the duration of the
cycle is known as the duty cycle and this is directly proportional to the average power consumption.
The duty-cycle period (or duration) can be determined by the frequency of measurements required by
the application [40]. Besides this, one needs to take into account that the sensor’s stability depends
on the duration of the active and inactive (or sleep) phases, which can be calculated from the duty
cycle and the cycle period. The minimum duration of the active phase must be longer than the thermal
time constant of the heater resistor. In other words, the heater resistor needs to be powered longer
than its thermal time constant to ensure that the sensing surface will reach the optimum working
temperature. Ceramic sensors have a relatively long thermal time constant, of the order of 3 s. On the
other hand, the thermal response time of MEMS micro-hotplates is some 150 times faster, being of the
order of 20 milliseconds [41]. The duration of the sleep phase represents a trade-off between power
consumption and stability. Long inactive periods reduce the power consumption, but increase the
duration of the transient behaviour that occurs after power-up (cf. Figure 2). Thus, the original duty
cycle and cycle duration might need to be readjusted based on these criteria.

Previous works have explored how various combinations of duty cycle and cycle period affect
the stability of the sensor response and the response time under isothermal operation [40,42,43].
Sayhan et al. [40] found that short heating pulses (below 6 s) did not work well for their proprietary
ceramic sensors, but were appropriate for MEMS sensors. Recently, Macías et al. [42] proposed a 0.8%
duty cycle in 10-min cycles for the detection of ethanol and cigarette smoke using ceramic Figaro TGS
26XX sensors. This is equivalent to an active phase of 5 s, which is consistent with the results found
in [40]. Jelicic et al. [43] explored 20–60% duty cycles and 0.5–1.5 s periods in a MiCS-5525 sensor.
They found that a duty cycle of 30% and a period of 0.5 s were optimal. In this case, the duration
of the heating phase was 150 ms which is several times the thermal time constant of the sensor
(20 ms). Increasing the duty cycle period from 0.5 to 1.5 s increased the limit of detection or minimum
detectable concentration.

In a duty-cycling operation, the sensor response is typically measured at the end of the active
phase when the response is more stable. Nonetheless, several authors have explored the performance
of other features of the sensor response which might lead to lower measurement times [42–45].
Jelicic et al. [43] found an optimum measurement time of only 65 ms using features of the transient
response. Rossi et al. [44] extracted features from the frequency spectrum at 20 Hz in the first 512 ms
of the transient behaviour.

By definition, duty-cycling means that a given on-off pattern is repeated continuously. However,
some authors have explored the response of the sensor to “ bursts” of heating cycles after an inactive
period [46,47]. Oletic et al. [46] explored the stability of the MiCS-5525 sensor’s resistance at the
beginning (Rmin) and end (Rend) of the heating pulse after a 30 s pause. They found that Rmin was
sensitive to the inactive length of the cycle, so higher duty cycles and lower periods were preferred.
On the other hand, the stability of Rend depended on the energy delivered to the sensor, regardless of
the duty cycle, period, or number of pulses in the “ burst” . Bicelli [47] found that a burst of four pulses
with high duty cycle and short period were the optimum in a Figaro TGS2442 ceramic sensor.
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A common factor of the previous works is that measurements were assumed to be taken
periodically. While this might be the case in certain applications, in other situations measurements are
taken asynchronously. This means that a measurement can be requested at any moment even after
the sensor has been switched off for a long period of time (days, weeks, or months). For example,
a MOX-based breathalyser used to check the blood alcohol content in a driver’s blood might be
turned on only prior to driving. Previous works also do not take possible chemical interferences
into account. As Barzan et al. [48] point out, overoptimistic testing conditions in metal-oxide gas
sensor research contribute to the excellent performances published. They specifically referred to the
absence of changing background conditions (humidity, temperature). In gas-sensing applications
in which the user can take a measurement anywhere, and at any time, it is realistic to assume
that interferences such as humidity, temperature, and analytes other than the target gas will be
present. Therefore, the isothermal operation of a single sensor is not reliable as MOX sensors are
intrinsically not selective. Modulating the heater temperature has been shown to be an effective
method for increasing selectivity [49]. Among the explored works in low-power modes for MOX
sensors, only Vergara et al. [50] used temperature modulation and on-demand powering. They studied
the effect of the heating and measurement time in the prediction of gases relevant to fruit quality using
Figaro TGS 26XX sensors. The sensors were powered using multi-sinusoidal waveforms of length
between 5 and 312 s and both the duty cycle and period were fixed. The measurements were taken
periodically twice per day in a time period of 1 month. A measurement time of 39 s was found to be
optimal for quantification purposes.

Following on the work of Vergara et al. [50], the current paper proposes a scenario of on-demand
measurements of low concentrations of carbon monoxide with background interferences of humidity
and temperature. This scenario is motivated by a myriad of applications requiring the detection
of CO under variable humidity and temperature as indicated at the beginning of this section.
We compare the performance of three power management strategies applied to temperature-modulated
FIS SB-500-12 sensors: continuously powered (highest stability), on-demand power (lowest power
consumption), and duty-cycling (a power/stability trade-off).

2. Materials and Methods

2.1. Experimental Design

The experiment timeline is shown in Figure 3. It consisted of a calibration phase, which was
performed on Day 1, followed by validation measurements taken during the next two weeks.
For calibration purposes, the sensors were exposed to five concentrations of CO: 0, 2.25, 4.5, 6.75,
and 9 ppm. Ten measurements per day were done for each concentration, with a humidity value
randomly chosen from a uniform distribution in the range 15–75% relative humidity (r.h.) (Figure 3a).
We believe that this range is representative of various real scenarios, such as indoor air quality or
biomedical applications based on expired breath measurements. The temperature was monitored
during the two experimental weeks and it was in the range 21–27 ◦C. The intraday variation was below
2 ◦C. Dynamic gas mixtures of CO and humid synthetic air were generated using three mass fl ow
controllers (EL-FLOW Select, Bronkhorst High-Tech B.V., Ruurlo, The Netherlands). The resulting
50 gas mixtures (5 concentrations× 10 repetitions) were randomly introduced into a small gas chamber
(250 cm3 internal vol.) at a constant fl ow rate of 500 mln/min for 15 min. The chamber was cleaned at
the beginning of the experiment by fl ooding with synthetic air for 30 min at 500 mln/min.

The validation experiments simulated a use case in which the measurements are requested only
during the day and at random times, there being no measurements at night (the sensing device might be
switched off at night) and no measurements took place on certain days (e.g., days 3 and 4). Validation
measurements were performed in a similar manner to calibration, but there were two minor differences
with respect to calibration: (i) only three concentration standards (0, 4.5, and 9 ppm) were used and
(ii) the gas mixtures were not consecutively introduced into the gas chamber. The 30 measurements
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corresponding to validation (3 concentrations × 10 repetitions) were distributed within the first 16 h of
the day. This yields an average elapsed time between measurements of 30 min. No measurements
took place during the last 8 h of the day.Sensors 2018, 18, x FOR PEER REVIEW  6 of 15 
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2.2. Sensor Board

A board including twelve MOX sensors of the same type (SB-500-12, FIS Inc., Jacksonville,
FL, USA), a temperature/humidity sensor (SHT75, Sensirion AG, Stäfa, Switzerland), and the
corresponding read-out electronics was built. The FIS SB-500-12 sensors were powered using the
temperature modulation waveform suggested by the manufacturer (0.9 V for 5 s, followed by 0.2 V
for 20 s, in cycles of 25 s) [51]. The high heater voltage at the beginning of the cycle cleans the sensor
surface and removes the water vapour infl uence, while the low heater voltage conditions the sensor
for measuring CO. The twelve MOX sensors were divided into three groups according to the target
operating mode (see Figure 4). Six sensors were operated in continuous mode (i.e., always powered),
three sensors were powered on-demand (i.e., powered just before and during the measurement),
and the last three sensors were operated in a duty-cycling mode with a 10% duty cycle in periods of
10 min. When any of the sensors was powered, the heating waveform suggested by the manufacturer
was continuously applied. For example, a sensor operated on-demand was normally shut down
and turned on only for taking a measurement. During the measurement, the heating waveform
was continuously applied. For simplicity, we did not implement a closed loop control of the heater
temperature although this has been shown to produce more accurate results [52]. The redundancy
of sensors included in each power mode accounted for the large tolerance in baseline (one order of
magnitude) and sensitivity (a factor of two) between devices [51]. By analysing the results of several
units of the same model operating under a specific power mode, statistics on the performance of that
mode were obtained. In duty-cycling mode, the temperature modulation waveform was applied only
within the active part of the duty cycle. The duty cycle was selected so that the sensors were powered
with a small number of heating cycles, as we believed this should greatly increase the stability of the
sensor compared to on-demand operation. A time-ON of 60 s allowed for two full heating cycles of 25 s
plus the first 10 s of a third heating cycle. Within each heating cycle, the first 5 s at 0.9 V is where the
sensing surface reaches the maximum temperature and therefore is where the sensor stability increases
the most. With the chosen duty cycle, the sensor was exposed to this high temperature step three times
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per cycle. After fixing the duty cycle at 60 s, a cycle period of 10 min was selected to obtain a reduction
in power consumption of one order of magnitude. It was beyond the scope of this work to study the
effect of other duty cycles. The MOX read-out circuits consisted of voltage dividers with 1 MΩ load
resistors. The value of the load resistor allowed for a proper quantification of the sensor resistance,
considering the large dynamic range (20 kΩ to 10 MΩ) present at low concentrations of the analyte
with the chosen temperature modulation waveform. The output voltage of the sensors was sampled at
approximately 3.5 Hz using an Agilent HP34970A/34901A DAQ configured at 15 bits of precision and
an input impedance greater than 10 GΩ. In this configuration, the errors introduced into the voltage
measurements were considered negligible compared to the intrinsic variability of the sensor resistance
due to the chemical transduction process. The sensor voltage sampled at 3.5 Hz during a full heating
cycle of 25 s is a multivariate signal Vs(t), t ∈ [0, 25] s, containing 88 variables evenly spaced across
the 25 s signal. Vs(t) was then converted to sensor conductance gs (kΩ−1) using Equation (1):

gs(t) =
Vc −Vs(t)
Vs(t)RL

(1)

where Vc is the voltage (V) of the voltage divider and RL is the load resistor (kΩ). The multivariate
sensor conductance patterns gs(t) corresponding to three consecutive heating cycles were averaged to
reduce instrumental noise. This is what we call “ a measurement” . When a measurement was requested,
the discontinuously operated sensors were warmed up for 75 s (i.e., three full heating cycles).
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Figure 4. Schematic illustration of the three power management strategies used in this work. The blue
solid lines represent the heater voltage and the red arrows indicate when the measurements are taken.

The Sensirion sensor provided reference humidity and temperature values with tolerance below
1.8 % r.h. and 0.5 ◦C, respectively, every five seconds. According to the manufacturer datasheet [53],
the long-term drift of the SHT75 sensor is less than 0.5 % r.h./year and 0.04 ◦C/year. The readings
from the humidity sensor were averaged during the last heating period of each experimental condition
to provide a reference relative humidity value h (% r.h.).

2.3. Calibration Models

Multivariate analysis was done in Matlab R2009b (The Mathworks, Inc., Natick, MA, USA) using
PLS Toolbox 8.0 (Eigenvector Research Inc., Wenatchee, WA, USA). Partial Least Squares (PLS) [54]
calibration models were built individually for each sensor using the measurements collected on the
first experimental day. The sensor conductance patterns G were normalized by the sensor conductance
in air G0, which was estimated from a blank sample with random humidity measured at the beginning
of each experimental day. The design matrix X = G/G0 was mean-centered and auto-scaled to unit

PA
PER III



Sensors 2018, 18, 2 8 of 15

variance and the vector of responses Y was mean-centered prior to PLS modelling. The number
of latent variables (LV) was optimized via 100 bootstrapping iterations on the calibration samples
(see Section 2.1). In each bootstrap iteration, a PLS model was built using 50 samples randomly selected
with replacement from the calibration set. The performance of the model in the set of test samples
excluded from the selection process was assessed through the root mean squared error (RMSE):

RMSE =

√√√√ n

∑
i=1

(yi − ŷi)
2

n
(2)

where n denotes the size of the test set, and yi and ŷi are the true and predicted values for the test
sample i. The optimum number of LV was found by inspection of the graph of mean RMSE (across the
bootstrap iterations) versus the number of LV.

The stability of the calibration models was evaluated through the root mean squared error in
prediction (RMSEP) using external validation samples collected in the two weeks following calibration.
The RMSEP was computed using Equation (2), but in this case n denotes the size of the external
validation set and yi and ŷi are the true and predicted values for the external validation sample i.

PLS models usually require several latent variables to account for the effect that chemical
interferences produce in the sensor response patterns. When the model complexity increases beyond
the chemical rank of the problem, PLS models are not easily interpretable [55]. A simpler model is
advantageous to understand the underlying structure. To address this problem, the PLS models were
post-processed with an orthogonalization step [56] that reduced the effective number of latent variables
to two [57]. This produces simpler models with orthogonalized loadings and scores, which condense
all the variance related to the target analyte into the first weight and loading. The first loading is
in the same direction as the regression vector for data in which the structured noise, defined as the
systematic variation of X not linearly correlated with Y, has been filtered out. The second loading
of the orthogonalized model captures the variation orthogonal to Y, which is mainly related to the
interferences and, to a lesser degree, other noise sources. The orthogonalized model yields the same
predictions as the non-orthogonalized model.

3. Results and Discussion

3.1. Drift in Sensor Conductance Patterns

The response of the sensors to the experimental conditions described in Figure 3 was recorded for
two weeks. Depending on the operating mode of each group of sensors, different trends in the sensor
conductance patterns were observed (Figure 5). The patterns of the continuously operated sensors
showed no relevant variations between the calibration and validation samples. The duty-cycling
operation introduced a slight offset towards higher concentrations (the sensor conductance increases
with concentration). The strongest deviations from the calibration data were observed in the sensors
operating on-demand. In this latter case, the shape of the pattern drastically changed after nine days
of on-demand operation. Although the underlying mechanisms governing this drift are still not fully
understood [58], it is thought that keeping the sensing surface hot promotes water desorption and
cleans any existing organic deposits from the surface [59].

3.2. Prediction Error

PLS models were built separately for each sensor using the conductance patterns measured on
Day 1. The optimum number of latent variables was from three to five, depending on the sensor.
An example of the scoreplot of the orthogonalized model of one sensor from each operating mode is
given in Figure 6a–c. In these plots, the x-axis represents the predictive component of the model and
the y-axis captures the variance associated to the structured noise present in the sensor conductance
patterns. Regardless of the operating mode, the five calibration concentrations were non-overlapping
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in the score space, which indicates a good fit of the model to the data. One should note that all of the
sensors were continuously powered before and during the calibration process, thus increasing their
stability. The RMSEC (considering all sensors) was 0.35 ± 0.05 ppm.
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Figure 5. Drift in raw patterns for the three operating modes at 9 ppm of CO. The blue and red solid
lines represent the sensor conductance measured during a full heating cycle taken on day 1 and day 9,
respectively. The black dashed line represents the heater voltage (a.u.).

Figure 6. Score plot of the orthogonal Partial Least Squares (PLS) models obtained from one sensor
of each group under continuous calibration. The title of the subplot indicates the target operating
mode: (a) continuous, (b) duty-cycling, and (c) on-demand. The filled and open circles represent the
calibration and validation observations, respectively. Hand drawn ellipses cluster observations of the
same concentration level. The concentration (ppm) is indicated in the text at the bottom of the figure.
(d) Temporal stability of each operating mode.

Immediately after calibration, the validation phase started, and the sensors were operated in
the target operating mode. One would expect an increase in the prediction error introduced by the

PA
PER III



Sensors 2018, 18, 2 10 of 15

discontinuous operation (duty-cycling and on-demand modes). The error would have two components:
the bias and the variance. The scoreplot of the orthogonalized PLS model is an intuitive tool to visualize
these two contributions to the error term. The scores of the validation samples were projected onto the
latent space of the calibration samples (Figure 6a–c). Looking at the continuous sensors (Figure 6a),
the validation scores remained centred around the calibration scores (i.e., small bias), but the dispersion
mainly increased mainly in the vertical direction and, only slightly, in the horizontal axis. Because the
vertical axis captures the structured noise which the multivariate model is able to reject, the prediction
error increased slightly (Figure 6d) due to the horizontal component of the variability. When the
sensors were operated in duty-cycling mode, there was still a small bias but the variability of the
scores around the calibration data was shared among the x- and y-axis (Figure 6b). Because the x-axis
captures the predictive direction of the model, the prediction error increases (Figure 6d). Thirdly,
under on-demand operation the scores presented both high bias and high variance in the predictive
direction (Figure 6c). This is the result of the drastic change in the shape of the sensor conductance
patterns (Figure 5).

The prediction error as a function of the elapsed time since calibration is presented in Figure 6d.
On the first validation day, all of the samples were used for model building. Since there were no
validation samples, the first data point represents the fitting error (i.e., the RMSE computed on the
fitting samples). Over the remaining days, the RMSEP was computed on the external validation
samples. It is expected that a fitted model will perform worse on unseen data than on the fitting
samples [60]. This produced an increase of the average prediction error from 0.35 ppm on Day 1 to
0.43 ppm on Day 2 (22%) even under continuous operation. This differential error of 0.06 ppm, known
as the “ shrinkage effect” , cannot be attributed to the operating mode. For continuous operation,
the average error subsequently remained stable at 0.45 ppm. The average RMSEP increase that could
be attributed to the discontinuous operating modes (i.e., after discounting the shrinkage effect) was
75% (0.43 versus 0.75 ppm) for duty-cycling sensors and 97% (0.43 versus 0.85 ppm) for on-demand
sensors. After the second day, the error of the duty-cycling sensors was largely stable at 0.9 ppm.
Comparing this error to the error obtained under continuous powering (0.45 ppm), the trade-off
between stability and power consumption can be quantified: reducing the power consumption by
90% increased the average RMSEP by only a factor of 2. On the other hand, the RMSEP of on-demand
sensors kept growing for up to 9 days after calibration and then stabilized at 2.2 ppm. This represents
a five-fold increase with respect to continuous power, which makes the calibration model unusable for
accurate gas quantification.

3.3. Calibration in Discontinuous Mode

The calibration in continuous mode provided low RMSEC estimates, as the sensor response was
stable throughout the calibration process. However, as we saw in the preceding section, the RMSEC was
overoptimistic for the sensors that were discontinuously operated and, therefore, not representative of
the detection capabilities of the system beyond the calibration data. This raises the question about the
potential benefit of calibrating the sensors in the target operating mode instead of under continuous
powering. To answer this question, we explored the performance when the discontinuous sensors
were calibrated in the target operating mode.

Using the 30 samples (3 concentrations× 10 repetitions) corresponding to the second experimental
day, in which the sensors were already operating in the target mode for more than 12 h, we built
new PLS calibration models. The resulting RMSEC was 0.5 ± 0.15 ppm, which is 43% higher than in
continuous calibration. The distribution of the validation samples in the scoreplot of the calibration
samples is shown in Figure 7. Comparing these scoreplots to the scoreplots obtained in continuous
calibration (Figure 5b–c), we can see that in the former case the bias is greatly reduced but the
variability of the blanks has increased considerably. This means that when calibration and validation
are performed both under discontinuous power, the resulting response patterns are not distorted,
but their variability increases. The higher bias might possibly be explained by the lower number of

PA
PER III



Sensors 2018, 18, 2 11 of 15

samples used in discontinuous calibration (30 rather than 50). With respect to continuous calibration,
the average RMSEP increased 44% (0.9 to 1.3 ppm) in duty-cycling sensors and 18% (2.2 to 2.6 ppm) in
on-demand sensors (Figure 8). The stabilization time was also higher in duty-cycling (2 versus 5 days)
and on-demand sensors (9 versus 10 days). Therefore, we can conclude that discontinuous calibration
did not improve the results obtained in continuous calibration. In addition, discontinuous calibration
can be time-consuming for large duty-cycle periods. For example, assuming that 20 samples are used
for calibration and the duty-cycle period is 10 min, the calibration process will take 3.3 h. In continuous
mode, calibration is faster because samples can be measured consecutively.

Figure 7. Discontinuous calibration. Score plot of the orthogonal PLS models obtained from one
sensor of each group of discontinuously operated sensors. The title of the subplot indicates the
target operating mode: (a) duty-cycling and (b) on-demand. The filled and open circles represent the
calibration and validation observations, respectively. Hand drawn ellipses cluster observations of the
same concentration level. The concentration (ppm) is indicated in the text at the top of the figure.
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4. Conclusions

MOX gas sensors are candidate devices for integration in mobile sensing devices, such as
smartphones and wearables. Continuously powering a MOX sensor is not feasible in many
battery-operated applications due to power consumption limitations or the intended intermittent
operation of the device. This work compared two low-power operating modes (duty-cycling and
on-demand) in the prediction of low concentrations of carbon monoxide under variations in ambient
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humidity and temperature. The sensors were modulated in temperature to increase the selectivity to
the target gas and reject chemical interferences. The sensors were calibrated in continuous operation
and then benchmarked for two weeks against a group of continuously powered sensors. We found
that on-demand operation produced a deformation of the sensor conductance patterns, which led to an
increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus
0.45 ppm). Applying a 10% duty-cycling operation in periods of 10 min reduced the prediction error to
a factor of 2 (0.9 versus 0.45 ppm). This means that the proposed duty-cycling powering scheme saved
up to 90% energy compared to the continuous operating mode, which could be advantageous for
applications that do not require continuous and periodic measurements and that can tolerate slightly
higher prediction errors. We found that continuous power during calibration produces better results
than calibration under discontinuous operation.

In this work, we did not test other duty cycles or periods. We expect that increasing the duty
cycle will further reduce the error at the cost of higher power consumption. Future work includes
exploring what is the minimum duty cycle that would achieve errors comparable to continuously
operated sensors.
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Appendix A

In this appendix, we detail the computation of the power consumption in the Samsung Galaxy
S7 smartphone, which hosts a 3000 mAh battery and operates at 3.7 V. The available energy (E)
is therefore:

E = I × V = 3000 mAh × 3.7 V = 11, 100 mWh (A1)

Assuming a battery life of 24 h (non-intensive use), the average power consumption (P) is given
by Equation (A2):

P = E / T = 11, 000 mWh / 24 h = 462 mW (A2)

Adding a TGS8100 sensor (which consumes 15 mW) to this smartphone, the total power
consumption becomes 477 mW. Hence, the MOX sensor represents 3.14% of the total smartphone
power. Recomputing the battery lifetime (T) using this power consumption yields:

T = E / P = 11, 000 mWh / 477 mW = 23.27 h (A3)

The battery lifetime is reduced by 0.73 h = 45 min. Now, we consider the case in which the
SGP sensor (Sensirion AG), which consumes 48 mW, is integrated into the smartphone. The power
consumption of the full system (smartphone + sensor) will be (462 + 48) = 510 mW. Introducing
P = 510 mW in Equation (A3) yields that the new battery lifetime would be 21.76 h. This represents a
decrease in battery lifetime of 2.23 h.
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Chapter 5

Improving the Response Time of
MOX Sensors

The low bandwidth of MOX sensors (<0.1 Hz) is a major hurdle for mobile robots tracking
turbulent odor plumes, where detection of intermittent odor patches is key. Two common
approaches in the MRO field to minimize the negative effects introduced by inherent low-
pass filtering of MOX sensors is to drive the robot at low speeds or to use a stop-sense-
go strategy, which increases the mission time considerably. In this chapter, we present
a fast-response miniaturized e-nose composed of four naked MOX sensors and a digital
band-pass filter that can boost the bandwidth of the system close to 1 Hz. The device was
attached to a fast photo-ionization detector (330 Hz) to quantify the response time during
exposure to turbulent gas plumes. The results indicate that the digital filter can improve the
response time by at least a factor of 4, bringing new possibilities to mobile robot olfaction.

The content of the chapter is provided in Paper IV (shown below).
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ABSTRACT 

The low bandwidth of metal oxide semiconductor (MOX) 

sensors (<0.1 Hz) is a major hurdle to gas source 

localization (GSL) in turbulent environments where 

detection of intermittent odor patches is key. We present a 

fast-response miniaturized electronic nose (Fast-eNose) 

composed of four naked MOX sensors and a digital band-

pass filter that can boost the bandwidth of the system close 

to 1 Hz. The device was attached to a fast photo-ionization 

detector (330 Hz) to quantify the response time during 

exposure to turbulent gas plumes. The results indicate that 

the digital filter can improve the response time by at least a 

factor of 4, bringing new possibilities to mobile robot 

olfaction. 

 

Index Terms— MOX, signal processing, response time, 

CFD, gas plume, gas sensors 

 

1. INTRODUCTION 

A pre-requisite to successful olfactory search in turbulent 

environments is the detection of intermittent odor patches 

[1]. Insects such as the moth, which efficiently use odor 

plumes for mating and foraging can resolve ten pulses of 

pheromones in 1 s [1], which represents a bandwidth of at 

least 10 Hz. In contrast, most chemical sensors have sub-Hz 

bandwidths, which hinders the application of mobile robots 

to olfaction-related tasks [2]. Although fast-response photo-

ionization detectors (PID) with a bandwidth of 330 Hz 

(miniPID 200B, Aurora Scientific, Canada) have been on 

the market for more than 15 years, they have been rarely 

used in mobile robots [3] probably due to the high cost, 

large volume, low specificity and insufficient sensitivity of 

this technology. Instead, low-cost MOX sensors are much 

more popular for this application due to their low cost, 

compact size, ease of use and high sensitivity to many gases. 

However, MOX sensors are slow (response time of 20-30 s) 

and not selective. While the lack of selectivity can be 

improved by combining multiple MOX sensors with 

different properties and pattern recognition algorithms [4], 

improving the response time is the main goal of this paper.  

 

1.1. Related work 

Previous research suggests that the response time of sensing 

systems based on MOX sensors can be improved by 

removing the sensor cap [1], by technology improvements 

[5], by novel system hardware designs [6,7] or by signal 

processing [8–10]. Removing the external housing of the 

sensor can increase the bandwidth up to 1 Hz [1], but the 

sensor might become less stable and more prone to damage. 

Vincent et al. [5] recently presented novel coatings of the 

sensing surface that can reduce the response time down to 

10 s, which is insufficient to track chemical plumes in a 

wind tunnel (with concentration variations of 1 s). To reduce 

the effect of the sensor chamber on the system dynamics, 

Gonzalez-Jimenez et al. [6] designed a multi-chamber e-

nose in which replicate MOX sensors stored in independent 

gas chambers are exposed to the gas in turns. The output of 

the system is the concatenation of the MOX responses 

during the rising phase, effectively ignoring the slow 

recovery phases. Batog et al. [7] demonstrated that the 

detection of a chemical trail on the ground can be improved 

by perforating the sensor housing and placing a small DC 

fan on top of it to create a recirculating airflow pattern. The 

addition of external elements, such as fans or electro-valves 

increase the cost, size, weight and power consumption. 

  

Among the signal processing approaches, first order 

inverse dynamical models [9,10] or artificial neural 

networks [11] have been proposed to retrieve the fast 

excitation signal from the slow sensor response. Inverse 

modelling requires a complex setup to calibrate the model 

parameters (e.g. the time constants of an exponential) for 

each substance and sensor unit. This is normally done in 

controlled laboratory conditions where squared 

concentration pulses are delivered to the sensors. Then, it is 

unclear if the calibration model can work properly in a real 

scenario where turbulence chaotically delivers the chemicals 

to the sensors. In this sense, Schmuker et al. [12] recently 

obtained positive results in wind tunnel experiments using 

the band-pass filter proposed by Muezzinoglu et al. [10].  



 

1.2. Fast-response miniaturized e-nose (Fast-eNose) 

We propose a fast-response miniaturized e-nose (Fast-

eNose) specifically designed as an attachment to a miniPID 

(Fig. 1). The PID is used as a reference device to evaluate 

the dynamics of the MOX sensors and to draw the sample 

inside the e-nose (it has a pump that samples at 1 L/min).  

 

 

 

 

 

 

 

 

 

 

 

 

 

2. MATERIALS AND METHODS 

2.1. Fluidic design 

The fluidic design is an assembly of 3D-printed pieces 

consisting of four small chambers and fluidic channels with 

a total combined volume of 1.3mL (Fig. 2). The fluidic 

channels split the inlet flow into four streams that fill the  

individual chambers in 75 ms (CFD simulation results), exit 

them from a different hole and are merged again into a 

single flow that enters the miniPID after 3 ms.  

 

2.2. Electronics and signal processing 
Four naked MOX sensors (i.e. without cap), two TGS 2602 

and two TGS 2610 (Figaro Engineering, Japan) are placed 

inside the gas chambers (Fig. 2a). The sensors are powered 

at the nominal voltage (5 V) and their output is acquired at 1 

kHz using a simple voltage divider (𝑅L = 10 kΩ)  and a 

USB-6002 datalogger (National Instruments, USA). The 

PID was sampled synchronously with the MOX sensors. 

The MOX response is processed with a band-pass filter [10], 

computed as a moving average filter (window size of 20 ms) 

followed by a derivative, to further increase the bandwidth.  

 

2.2. Experimental evaluation 

To evaluate the response time of the fastNose, we generated 

turbulent plumes in an open environment using a 

pressurized air outlet (6.3 mm radius, 20 L/min) and a 

beaker (5 cm radius) filled with 200 mL of ethanol, which 

acts as a gas source (Fig. 3). The air outlet was placed at 150 

cm to the sensing board and the beaker could be moved in 

the range 15-135 cm. The experimental protocol consists on 

placing the gas source at a random distance among the 

following ones [15, 45, 75, 105 and 135] cm and recording 

the signals of the MOX sensors and the miniPID for 5 

minutes. Then, the similarity between the MOX sensor 

signals and the miniPID is computed using the cross-

covariance, or cross-correlation of the mean centered signals 

 

𝐶𝑜𝑣𝑥𝑦[𝑚] = 𝐸 [(𝒙[𝑛] − 𝜇𝒙)(𝒚[𝑛 + 𝑚] − 𝜇𝒚)
𝑇

] Eq. 1 

 

where 𝜇𝒙 and 𝜇𝒚 are the mean values of 𝒙 and 𝒚. The 99% 

confidence intervals are computed as 2.58 times the 

standard deviation of the covariance at negative lags, as 

these represent the unlikely situation of the MOX signal 

predicting future concentrations. 

 

 

 

 

 

 

 

 

 

 

 

3. RESULTS 

The raw signals (Fig. 4) illustrate the long recovery time of 

the MOX sensor response and how fast concentration 

fluctuations are low-pass filtered by the sensor. The filtered 

signal is a much better reproduction of the ground truth (PID 

signal) at all tested distances. The cross-covariance (Fig. 5) 

allows an easy comparison between the dynamics of the 

MOX sensor and the miniPID. The MOX signal is a 

smoothed version of the PID signal, as indicated by 

significant correlation between the PID and lagged MOX 

responses. The slower the MOX response the longer is the 

correlation tail. Near the source, the correlation of the 

differentiated MOX signal disappears in about 2.3 s 

compared to 9.2 s for the raw signal. Since the correlation 

tail and the bandwidth are inversely proportional, the 

differentiator filter improves the bandwidth by a factor of 4. 

At longer distances to the source, the correlation falls very 

fast towards negative values but remains within the 99% 

confidence limits for the the hypothesis of null correlation. 

Taking the point where it reaches this band as the length of 

the correlation, we may claim that the digital differentiation 

improves the sensor bandwidth by a factor of 15.  

 

4. DISCUSSION 

MOX sensors can achieve an improved response time by 

combining specially designed fluidic connections and digital 

signal processing. The Fast-eNose can be used separately 

            

         

      

          
         

Figure 2. Photos of the (a) Naked MOX sensors; (b) 

Miniaturized sensor chambers. Figure 3. Generator of turbulent plumes. 

Figure 1. Schematic representation of the miniNose 

attached to the miniPID (not at scale). 



from the miniPID (using an alternative pump) or as a 

complement to it, extending the range of compounds 

detectable by the PID, as PIDs cannot detect molecules with 

high ionization potential, such as carbon monoxide (CO). 

GSL algorithms based on ‘odor hits’ (e.g. infotaxis [13]) can 

potentially increase their performance using the Fast-eNose.  

An obvious follow-up research is to combine the 

output of the multiple MOX sensors to discriminate  

multiple gas sources, and testing the device in a longer 

distance range or on board of a mobile robot for GSL and 

mapping. Further work may also include the optimization of 

the digital differentiator to further reduce the time constant 

of the MOX sensor signals. 
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Figure 5. Cross-covariance between the miniPID and the 

MOX response (red) or the filtered response (blue) at 15 

cm (solid line) and 135 cm (dashed line) to the source. 

The arrows point to the lag where the covariance becomes 

not statistically significant. 

 

   

     
             
   

        
                

 

   

 

      

     

  
  

 
   

  
 

  
  

   
  

  

Figure 4. Raw and filtered signals of one MOX sensor (TGS 2610) at 15 cm (top) and 135 cm (bottom) to the source. 





Chapter 6

Feature Extraction of MOX
Sensor Signals for Gas Source
Localization

Chemical sensor signals in response to a turbulent plume show high level of complexity
and apparent randomness. There is no an accepted consensus on the best approach to
extract valuable hidden information from these signals. In this chapter, we study which
are the optimal features of a gas sensor signal for localizing a gas source in a turbulent
environment. Specifically, we compare statistical descriptors directly extracted from the
sensor response (mean, variance and maximum response) with transient features computed
in the derivative of the response (the so-called "bouts").

A desirable behaviour of a signal feature for gas source localization is that its value
is monotonically related to the gas source distance. In Paper V, we compare the different
features based on the probability of monotonicity, defined as the number of experiments
in which the the curve relating the feature value and the source distance is monotonic
divided by the total number of experiments. The experimental setup includes a generator
of turbulent gas plumes and a sensing board composed of three different MOX sensors.
The plume is generated by passing a stream of synthetic air over a beaker filled with
ethanol. The sensor signals are recorded for five minutes at four distances to the gas source
(range 10-230 cm). We compute the signal features in a random chunk (of 30 s) of the
measurement at each distance, and assess the monotonicity of the curve relating the feature
value and the source distance. The process is repeated 100 times to obtain the probability
of monotonicity. The main conclusion of the paper is that the maximum response is the
most robust feature across the three studied sensors.

In Paper VI, we propose a method to extract transient signal features that are strongly
correlated to the distance of the source under constant emission conditions. The paper
follows-up on the research work “Exploiting plume structure to decode gas source dis-
tance using metal-oxide gas sensors” (Schmuker et al., Sens Actuator B-Chem, 2016). In
that work, the authors propose a signal processing method to extract specific features from
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the derivative of the response of MOX sensors, which are then used to predict the distance
of a gas source. To compute the derivative of a noisy signal, they use an overly compli-
cated digital filter with undesirable properties such as nonlinear phase or lack of causality,
distorting the waveform of the signal and hindering real-time operation. The impact of key
parameters of the algorithm, such as the length of the measurement window, or external
factors, such as the wind speed, into the predictive performance was not studied.

In our paper, we improve Schmuker’s algorithm by using a causal linear-phase finite
impulse response (FIR) differentiator, optimizing all algorithm parameters in a multi-
variate way and validating the results against non-matching train and test wind speeds.
This truly enables the use of bout-based features for gas source localization without using
anemometry. We also study how the length of the measurement window affects the pre-
dictive performance. We demonstrate that certain combinations of parameters can reduce
the prediction error to 8 cm (in a distance range of 1.45 m) improving the performance
reported by Schmuker et al. in the same dataset by at least a factor of 2.5. An additional
contribution is that we provide a MATLAB implementation of the improved algorithm and
all of the analysis code used in the study.

Papers V and VI are shown below.
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ABSTRACT 

This paper explores which signal features of a gas sensor are 

optimum for assessing the proximity to a gas source in an 

open environment. Specifically, we compare three statistical 

descriptors of the signal (mean, variance and maximum 

response) against the ‘bout’ frequency, a feature computed in 

the derivative of the response. The experimental setup 

includes a generator of turbulent plumes and a sensing board 

composed of three metal oxide (MOX) sensors of different 

types. The main conclusion is that the maximum response is 

the most robust feature across the three sensors. The ‘bout’ 

frequency can be very sensitive to an additional parameter 

(the noise threshold).  

 

Index Terms— Gas source localization, gas sensors, 

signal processing, feature extraction, MOX, gas plume. 

 

1. INTRODUCTION 

MOX sensors are widely used in mobile robotic olfaction due 

to their low cost, small size, high sensitivity to many gases 

and ease of use. A key question is to determine which signal 

features are optimum for localizing a gas source in turbulent 

air flow conditions. Experimental results using MOX sensors 

in an unventilated indoor environment suggest that the 

magnitude of concentration fluctuations is a more reliable 

indicator of source proximity than the instantaneous or mean 

concentration [1-2]. However, the recovery time of MOX 

sensors (on the order of 10-30 s) is too slow to accurately 

measure the concentration fluctuations of a turbulent gas 

plume. To improve the response time, Schmuker et al. [3] 

proposed a signal processing method that extracts short time-

scale features (the so-called ‘bouts’) from the derivative of 

the response. In wind tunnel experiments, the authors found 

that the frequency of ‘bouts’ with amplitude higher than a 

certain threshold linearly decreases with distance to the 

source, if the sensor is placed in the plume centerline. Based 

on these results, they claim that a robot could use the bout 

frequency to navigate along the plume centerline towards the 

point of release without anemometry. However, Vuka et al. 

[4] could not find a monotonic relationship between the bout 

frequency and the distance to the gas source in an open 

environment, probably because the noise threshold was not 

optimized for the sensor model they used. 

The estimation of the noise level in the derivative to 

reduce false bout detections is a critical part of the bout 

algorithm that has not been studied in detail previously. 

Schmuker et al. proposed a threshold computed as the mean 

plus three standard deviations (μ+3σ) of the amplitude of the 

bouts detected in the sensor baseline (i.e. in the absence of 

gas). However, they did not prove that such threshold is 

optimum for every sensor model. 

In this work, we explore how different noise thresholds 

affect the performance of the bout frequency for localizing a 

gas source in an open environment, using three different 

MOX sensors. We propose modifications of the bout 

detection algorithm to detect bouts in real time. We finally 

compare the bout frequency with optimum threshold against 

the mean and variance of the response.  

 

2. MATERIALS AND METHODS 

2.1. Detection of ‘bouts’ 

The bout detection algorithm [3] was modified by replacing 

the non-causal Gaussian filter with a first order infinite 

impulse response (IIR) filter, decoupling the derivative from 

the smoothing filter and smoothing the second derivative 

(Fig. 1). This enables real-time operation of the algorithm, 

reduces the number of parameters and slightly improves the 

segmentation of the bouts. 

 

 

 

 

 

 

 

The sensor response 𝑥 is first smoothed using an IIR filter 

(with time constant 𝜏). The ‘bouts’ are the rising edges of 𝑥s′, 
the smoothed derivative of 𝑥s, which are delimited by two 

consecutive zero-crossings of the positive derivative of 𝑥s′, 
i.e. 𝑥s

′′ > 0. The amplitude of a bout is 𝑥s′ at the end of the 

respective bout segment minus 𝑥s′ at the start of the same 

bout segment. Bouts with amplitude lower than a threshold 

(𝑏thr) are filtered out. 

   
 

   
 

  
 
   

  

 

  

                                 

  
 

  
 

  
 

Figure 1. Bout detection algorithm. 



𝑏thr = 𝜇 + 3𝜎 Eq. 1 

where 𝜇  and 𝜎  are the mean (first moment) and standard 

deviation (second moment), respectively, of the distribution 

of baseline bout amplitudes. 

 
 

 

 
 

 

 

2.2. Experimental setup 

The experimental setup comprises a sensing platform and a 

generator of turbulent plumes (Fig. 2). The sensing platform 

integrates 3 MOX sensors (Figaro TGS 8100, Figaro TGS 

2620 and SGX MiCS 5524), which are fixed to a piece of 

expanded polystyrene (EPS) very close to each other (sensing 

area ≈1.9 cm2) to ensure homogeneous exposure to the plume 

(Fig. 3). The sensors are powered by an Arduino Mega 2560 

microcontroller and the responses are simultaneously 

acquired at 1 KHz by a USB-6002 datalogger (National 

Instruments) configured in differential mode. The plume 

generator, which consists of a stream of synthetic air (1 

L/min) passing over a beaker filled with 200 mL of ethanol, 

was positioned at four distances (0.1-2.3 m) to the sensing 

unit and each measurement took 5 minutes. 
 

3. RESULTS 

The mean amplitude and variability of the recorded signals 

(Fig. 4) decrease with distance to the source. The MiCS 5524 

sensor shows the highest sensitivity near the source but the 

lowest one far from the source. The mean response of the 

TGS 2620 at 2.3 m is clearly distinct from the baseline 

response but it is constant in the range 10-50 cm. The TGS 

8100 achieves a tradeoff between both behaviours. 

The amplitude threshold has a strong impact on the 

performance of the bout frequency (Fig. 5). If the threshold is 

too low, the relationships between bout frequency and 

distance is non-monotonic. If the threshold is too high, the 

sensitivity far from the source decreases to zero. The μ+3σ 

threshold might be too low for the MiCS 5524 sensor (non-

monotonic behaviour), optimum for the TGS 8100 and too 

high for the TGS 2620 (low sensitivity). The optimum 

thresholds for the MiCS 5524 and TGS 2620 are one order of 

magnitude above and below μ+3σ, respectively (Table 1). 

Table 1. Optimum bout parameters for each sensor. 

 𝝉 

(ms) 
𝒃𝐭𝐡𝐫[μ+3σ]  

(V/s) 

𝒃𝐭𝐡𝐫[𝐨𝐩𝐭𝐢𝐦𝐮𝐦] 

(V/s) 
MiCS 5524 50 0.0021 0.075 

TGS 8100 100 0.019 0.075 

TGS 2620 200 0.0034 0.0003 

 

To evaluate which features are more likely to produce 

monotonic behaviors, we split each 5-minute measurement 

into 10 chunks of 30 s (this is a reasonable measurement 

window for a mobile robot). Then, we compute the selected 

signal features (mean, variance, etc.) in random chunks taken 

from different distances and repeat this process 100 times to 

visualize all possible relationships between the selected 

feature and the distance to the source (Fig. 6). We can for 

example observe that the mean response is monotonic with 

high probability in the MiCS 5524 sensor but not in the TGS 

2620. We repeated this process with the other features and 

summarized the results in Table 2. The mean and maximum 

response both achieve monotonicity with high probability (> 

80%) in the MiCS 5524 and TGS 8100 but only with less than 

65% in the TGS 2620. The bout frequency is monotonic in 

approximately 50% of the trials, but the μ+3σ threshold 

works particularly bad in the MiCS 5524 (7% probability), 

which can explain the findings of Vuka et al. Optimizing the 

threshold can improve the results but the results are still not 

comparable to the mean and maximum of the response.  

 

 

 

 

 

 

 

 

 

4. CONCLUSIONS 

The maximum response is in average the most robust feature 

in the three studied sensors, followed by the mean response. 

The variance, which some authors consider a good indicator 

of source proximity, did not work well in our experiments. 

The μ+3σ threshold was too low in the MiCS 5524 sensor, 

leading to non-monotonic increasing behaviour. Replicate  

experiments in a larger distance range and with multiple units 

of each sensor shall be performed to confirm the results. 

 

Figure 2. Generator of turbulent plumes and sensing platform. 

Figure 3. Sensing platform composed of three MOX sensors.  

Table 2. Probability of monotonic behaviour. 
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Figure 5. Bout frequency versus distance to the source for different amplitude thresholds (see color map). Each point is the 

average of ten windows of 30 s. The optimum and μ+3σ thresholds (Table 1) are highlighted in blue and red, respectively.   

Figure 4. Sensor signals (normalized to unit range and shifted for better visualization) at multiple distances to the gas source.  

Figure 6. Mean response versus distance to the source 

in ten random trials.  
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Abstract: This paper describes the design of a linear phase low-pass differentiator filter with a finite 9 
impulse response (FIR) for extracting transient features of gas sensor signals (the so-called “bouts”). 10 
The detection of these bouts is relevant for estimating the distance of a gas source in a turbulent 11 
plume. Our current proposal addresses the shortcomings of previous ‘bout’ estimation methods, 12 
namely: (i) they were based in non-causal digital filters precluding real time operation, (ii) they used 13 
non-linear phase filters leading to waveform distortions and (iii) the smoothing action was achieved 14 
by two filters in cascade, precluding an easy tuning of filter performance. The presented method is 15 
based on a low-pass FIR differentiator, plus proper post-processing, allowing easy algorithmic 16 
implementation for real-time robotic exploration. Linear phase filters preserve signal waveform in 17 
the bandpass region for maximum reliability concerning both ‘bout’ detection and amplitude 18 
estimation. As a case study, we apply the proposed filter to predict the source distance from 19 
recordings obtained with metal oxide (MOX) gas sensors in a wind tunnel. We first perform a joint 20 
optimization of the cut-off frequency of the filter and the bout amplitude threshold, for different 21 
wind speeds, uncovering interesting relationships between these two parameters. We demonstrate 22 
that certain combinations of parameters can reduce the prediction error to 8 cm (in a distance range 23 
of 1.45 m) improving previously reported performances in the same dataset by a factor of 2.5. These 24 
results are benchmarked against traditional source distance estimators such as the mean, variance 25 
and maximum of the response. We also study how the length of the measurement window affects 26 
the performance of different signal features, and how to select the filter parameters to make the 27 
predictive models more robust to changes in wind speed. Finally, we provide a MATLAB 28 
implementation of the bout detection algorithm and all analysis code used in this study. 29 

Keywords: Gas sensors; Differentiator; Low pass filter; Metal oxide semiconductor; MOX sensors; 30 
Signal processing; Feature extraction; Gas source localization; Robotics; 31 

 32 

1. Introduction 33 

While the spatial distribution of a time-average model of a chemical plume is often described by 34 
a Gaussian model [1], the dynamics of chemical concentration in the plume are complex. In the 35 
vicinity of the chemical source, the instantaneous concentration fluctuations depart strongly from 36 
Gaussianity and are characterized by strong bursts and intermittent periods of near-zero 37 
concentration. Yee et al. described that the concentration distribution of a turbulent plume fits well a 38 
Clipped-Gamma probability density function [2]. In the frequency domain, chemical plumes are 39 
wide-band random signals with substantial power spectral density (PSD) up to several KHz [3]. 40 
While it is accepted that insects are able to find hidden information from these complex signals for 41 
odor navigation purposes [4], the sub-Hz bandwidth of chemical sensor signals largely limits the 42 
efficacy of information retrieval.  43 

One path to follow is to improve the dynamics of the sensor response by signal processing 44 
methods. While it is possible to model the direct dynamic behavior of chemical multisensory systems 45 
[5–7], for the purpose of real-time signal processing it is more convenient to use non-linear dynamic 46 
inverse filters [8,9]. In a very interesting approach, Di Lello et al. model the sensor dynamics as an 47 
Augmented Switching Linear Dynamical System [10] and use the Expectation Correction Inference 48 
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Method [11] to estimate the ground truth gas concentration. However, many of these attempts have 49 
been tested in laboratory conditions where the presence of a sensor chamber masks the underlying 50 
sensor dynamics. In few cases, this strategy has been used to compensate naked gas sensors for 51 
robotics applications [12]. However, currently there is a lack of consensus on the best procedure to 52 
extract information from slow-response chemical sensors for the task of chemical source localization.  53 

Instead of pursuing the ambitious goal of improving the dynamic response of chemical sensors, 54 
a workaround is to extract dynamic features which are informative for the task to be completed. These 55 
dynamic features may appear related to the intermittent contact to gas/odor patches. For example, 56 
Schmuker et al. [13] recently proposed that short time-scale features (the so-called “bouts”) extracted 57 
from the first derivative of the response of metal oxide (MOX) gas sensors can be exploited to predict 58 
the distance to a gas source in a turbulent environment. Before going into algorithmic details, at this 59 
point is sufficient to understand that the bouts are simply the rising edges of the “clean” derivative 60 
of the sensor response, and they appear when the sensor gets in contact with a chemical patch (Fig. 61 
1). Estimating the distance of a gas source is important in applications such as environmental 62 
monitoring [14] or gas source localization by mobile robots [13,15,16]. In the latter case, a source 63 
distance estimate can be used by a mobile agent to navigate towards a gas source [13] or to declare 64 
that the source has been found [15,16]. The advantage of the bout approach is that the derivative is 65 
insensitive to changes in background concentration, providing a source distance estimate that is 66 
independent from slowly time-varying concentration fields. 67 
 68 

Figure 1. Schematic representation of the raw sensor response, its “clean” derivative and the detected 69 
“bouts” when the sensor is exposed to a chemical plume. The figure illustrates that the dynamics of the 70 
derivative are much faster than those of the raw response. 71 

 72 
Differentiation is a risky signal processing operation that often leads to undesired amplification 73 

of high-frequency noise. To prevent signal to noise degradation, differentiation must be combined 74 
with low-pass filtering matched to the signal bandwidth. For that, Schmuker et al. employs a rather 75 
arbitrary cascading of low-pass digital filters with nonlinear phase, introducing unnecessary 76 
complexity into the algorithm and distorting the waveform of the output signal. Preserving the 77 
waveform is important because a thresholding decision must be made on the resulting waveform for 78 
bout detection. Therefore, preserving or recovering the “true” derivative of the sensor response is of 79 
utmost importance for the proper operation of the bout detector in terms of signal-detection theory. 80 
Bout detection errors will degrade the performance of posterior bout-based estimation algorithms.  81 

In Schmuker’s algorithm, the raw sensor response is first smoothed with a Gaussian filter, the 82 
resulting signal is differentiated, and the derivative is smoothed again using a first order infinite 83 
impulse response (IIR) filter [17]. Gaussian filters are ideal time response filters since they show the 84 
fastest step response under the condition of no overshooting [18]. They are mostly used in image 85 
processing, but seldomly in signal processing since they are non-causal and physically unrealizable. 86 
Beyond simple truncation, more sophisticated approaches to Gaussian filter approximation have 87 
been proposed for both IIR [19] and Finite Impulse Response (FIR) [20] filters. In any case, the 88 
intended advantages of the Gaussian filter are lost when in cascade with an IIR fitter. The 89 
disadvantage of IIR filters is the signal distortion due to nonlinear phase in the pass band. A further 90 
disadvantage of using two low-pass filters instead of one is that, for a desired filter response, two 91 
coupled parameters (the standard deviation 𝜎 of the Gaussian filter and the time constant 𝜏 of the IIR 92 
filter) with non-intuitive interpretation must be tuned.  93 
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Differentiation of noisy signals is a well-known signal processing problem [21]. Among other 94 
applications, differentiation is used in biomedical signal processing for the detection of QRS 95 
complexes in ECG signals [22]. The standard approach is to use a low pass differentiator (LPD), also 96 
known as linear-phase FIR differentiator, which can be designed  from the selected specifications in 97 
the frequency domain using the Remez algorithm [23]. A linear-phase filter will delay all frequency 98 
components by the same amount, preserving the waveform of the input signal (assumed bandlimited 99 
and contained in the filter bandpass).  100 

While computing the bouts, Schmuker et al. noticed that low-amplitude bouts produced by noise 101 
were as well detected in the baseline response of the sensor, i.e. in signals recorded in the absence of 102 
gas. In order to reduce false detections, Schmuker et al. filters out all bouts with amplitude below a 103 
threshold, defined as the mean plus three standard deviations of the amplitude of bouts detected in 104 
the sensor baseline. This statistical rule, known as the three-sigma rule, states that for a normal 105 
distribution 99.73% of the samples will fall within three standard deviations of the mean. Thus, it is 106 
empirically used by Schmuker et al. to treat 99.73% probability as near certainty that no bout in the 107 
sensor baseline will exceed the threshold. However, Burgués et al. [24] recently found empirically 108 
that the distribution of bout amplitudes in clean air does not follow a normal distribution. This was 109 
an expected result because the bout amplitude is bounded by zero (i.e. the bout amplitude is strictly 110 
positive). Two questions that immediately arise are: (1) is the three-sigma rule an optimal threshold? 111 
and (2) are these low-amplitude bouts a consequence of a non-optimal low-pass filtering? Instead of 112 
a heuristic selection of the bout amplitude threshold, we propose in this contribution a systematic 113 
optimization of this parameter aiming to extract the maximum information from the sensor signal. 114 

In wind tunnel experiments, Schmuker et al. found that the number of above-threshold bouts 115 
detected by a MOX sensor placed in the centerline of a chemical plume monotonically increases with 116 
proximity to the source (distance range 25-145 cm). To quantify the source distance prediction error, 117 
the authors fitted a linear model relating the number of bouts detected in 3 minutes and the distance 118 
to the source and computed the average prediction error in cross-validation samples. Although the 119 
true relationship between bout count and source distance was non-linear, the linear model achieved 120 
an average error of 18 cm if the train and test wind speeds were the same. Based on these results, the 121 
authors claim that the number of bouts detected in a certain time window provides an accurate 122 
estimation of the distance to a gas source and propose a bout-based GSL strategy that does not require 123 
anemometry. However, they also found that the wind speed has a strong effect in the number of 124 
bouts detected by the sensor, which would notably increase the prediction error if the test and train 125 
wind speeds are different. To compensate that, they suggest incorporating wind speed measurements 126 
into the predictive models, which invalidates one of the main advantages of the algorithm (avoiding 127 
anemometry). In addition, the authors did not benchmark the results to traditional source distance 128 
estimators such as the mean [25], maximum [26] or variance [15,16,27] of the response, which may 129 
also perform well considering the long measurement windows.  130 

In this paper, we propose a method to predict the distance to a gas source from the transient 131 
response of MOX sensor signals. As a case study, we use recordings from MOX sensors in a wind 132 
tunnel (same dataset used by Schmuker et al.). First, we optimize the algorithm parameters (bandpass 133 
frequency and the bout amplitude threshold) in a multivariate way, uncovering interesting 134 
relationships between these two parameters. We then find the optimum predictive model relating 135 
bout frequency and source distance and assess its performance in external validation samples, i.e. 136 
unseen during model fitting. The results are benchmarked against Schmuker’s algorithm and 137 
traditional source distance estimators such as the mean, variance and maximum of the response. We 138 
demonstrate that certain combinations of parameters can largely improve the prediction performance 139 
reported by Schmuker et al. and make the predictive models more robust against changes in wind 140 
speed. We also study how the length of the measurement window affects the performance of different 141 
signal features. Finally, we provide a MATLAB implementation of the bout detection algorithm. 142 

 143 
 144 
 145 
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2. Signal Processing Methods 146 

This section explains the exponentially weighted moving average (EWMA) filter, the 𝑒𝑚𝑎𝛼  147 
operator and the bout computation algorithm, which is based on the 𝑒𝑚𝑎𝛼  operator. 148 

2.1. Exponentially weighted moving average (EWMA) 149 

The exponentially weighted moving average (EWMA) [28], also known as exponential moving 150 
average (EMA), is a first-order IIR filter commonly used to smooth temporal series. EWMA gives 151 
more importance to recent data by discounting older data in an exponential manner (Equation 1). At 152 
time 𝑡 = 𝑛𝑇𝑠, (being Ts the sampling interval) the smoothed value 𝑦[𝑛] is found by computing 153 

 
𝑦[𝑛] = (1 − 𝛼) ∙ 𝑦[𝑛 − 1] + 𝛼 ∙ 𝑥[𝑛] (1) 

where 𝑥[𝑛] is the observation at time 𝑡 = 𝑛𝑇𝑆, 𝑦[𝑛 − 1] is the previous output of the filter and the 154 
smoothing factor 𝛼 (0 < 𝛼 ≤ 1) controls the speed at which older responses are dampened. Values of 155 
𝛼 close to zero place most of the weight on past values of the signal, whereas 𝛼 close to 1 give most 156 
importance to the current value, quickly forgetting old values. By expanding Equation 1, we can 157 
derive the output of the filter as a convolution of the input with the unit impulse response 158 

 
𝑦[𝑛] = ∑ ℎ[𝑘] ∙ 𝑥[𝑛 − 𝑘]

𝑛

𝑘=0

= 𝛼 ∑(1 − 𝛼)𝑘 ∙ 𝑥[𝑛 − 𝑘]

𝑛

𝑘=0

 (2) 

 159 
which illustrates the exponential behavior since the weights, (1 − 𝛼)𝑘 decrease geometrically. A 160 
meaningful way to specify 𝛼 is by the half-life time (s),  𝜏, of the exponential decay, which is the time 161 
at which the exponential weight (1 − 𝛼)𝑘  decays by one half 162 

 

𝛼 = 1 − (
1

2
)

1
𝜏𝑓𝑠

 (3) 

 163 
where 𝑓𝑠 is the sampling frequency of 𝑥 (Hz).  164 

2.2. The 𝑒𝑚𝑎𝛼 operator 165 

Muezzinoglu et al. [29] proposed a rough approximation for a linear inverse filter of the MOX 166 
sensor response to improve sensor dynamics, called the 𝑒𝑚𝑎𝛼  operator 167 

 
𝑦[𝑛] = (1 − 𝛼) ∙ 𝑦[𝑛 − 1] + 𝛼 ∙ (𝑥[𝑛] − 𝑥[𝑛 − 1]) (4) 

where the variables have the same meaning than in Equation 1. The 𝑒𝑚𝑎𝛼  operator is a connection in 168 
cascade of two linear time-invariant systems: first, taking the derivative of the input signal, i.e. 169 
(𝑥[𝑛] − 𝑥[𝑛 − 1]); second, smoothing the derivative using an EWMA filter (Equation 1). The 170 
derivative of the response is the simplest inverse filter of a MOX sensor, which due to the slow 171 
chemical reactions happening on the sensor surface acts as an integrator of the input stimuli [13]. 172 
Smoothing is necessary because differentiation degrades the signal to noise ratio (SNR). As 𝛼 173 
approaches 1, the closer is the filtered signal to the derivative and the faster is the response. However, 174 
being close to the derivative means also higher noise. Thus, 𝛼 governs a trade-off between response 175 
time and SNR. By embedding the computation of the derivative into the EWMA filter and naming 176 
Equation 4 the 𝑒𝑚𝑎𝛼  operator, Muezzinoglu et al. introduced a slight confusion in the terminology 177 
because Equation 1 is also known in the literature as the EMA filter.  178 

2.3. Schmuker’s (SMK) filter 179 

To compute the smoothed derivative of a signal, Schmuker et al. [13] applies the 𝑒𝑚𝑎𝛼  operator 180 
to the smoothed sensor response 𝑥𝑠 resulting from applying a Gaussian filter to the raw sensor 181 
response 𝑥. The procedure is illustrated in Figure 2. The choice of the Gaussian filter is rather arbitrary 182 
and introduces undesirable effects such as non-causality and introduces an extra parameter (the 183 
standard deviation 𝜎) that needs to be optimized. Another problem of the Gaussian filter used by 184 
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Schmuker et al. is that different values of 𝜎 change the gain of the filter (see Fig. 11D in [13]) leading 185 
to potential misinterpretations of the effect of 𝜎 on the filtered signal. The description of Schmuker’s 186 
filter in the original paper (i.e., Eqs. 1-4 in [13]) presents additional issues that are described in detail 187 
in the Appendix. 188 

 189 
 190 
 191 
 192 
Figure 2. Flow diagram of the bout computation. The meaning of each symbol is given in the text. 193 

2.4. Low pass differentiator (LPD) filter 194 
As an alternative to Schmuker’s filter, we propose a low pass differentiator (LPD) filter, also 195 

known as linear-phase FIR differentiator. An LPD filter differentiates the input signal at low 196 
frequencies and, at the same time, removes high frequency components from the signal. Operating 197 
with such a differentiator results in a constant non-zero group delay, which means that all frequency 198 
components are delayed by the same amount, preventing signal distortion. The design specifications 199 
of an LPD filter include the pass-band frequency (𝑓p), stop-band frequency (𝑓s), amplitude in pass-200 
band (𝐴p), amplitude in stop-band (𝐴s) and the maximum allowable deviation or ripples between the 201 
frequency response and the desired amplitude of the output filter for each band. Given some filter 202 
specifications, the Parks-McClellan algorithm [23,30] provide filters with an optimal fit between the 203 
desired and actual frequency responses, and minimum order. For FIR differentiators, which have an 204 
amplitude characteristic proportional to frequency, the algorithm uses a special weighting technique 205 
so that the error at low frequencies is much smaller than at high frequencies. 206 

2.5. Detection of ‘bouts’ 207 
The bouts are the positive segments of the low-pass derivative, 𝑥𝑠

′ , and are found by looking for 208 
two consecutive zero-crossings of the positive derivative of this signal, i.e. 𝑥𝑠

′′ > 0. The amplitude of 209 
a bout is defined as 𝑥𝑠

′  at the end of the respective bout segment minus 𝑥𝑠
′  at the start of the same bout 210 

segment. Bouts with very low amplitude, due to sensor noise, are usually interleaved with larger 211 
bouts produced by the plume. It is of practical interest to filter out bouts produced by noise, as they 212 
deteriorate the relationship between bout count and source distance. For that, Schmuker et al. use a 213 
fixed amplitude threshold 214 

 
𝑏𝑡ℎ𝑟 = 𝜇 + 3𝜎  (5) 

where 𝜇 and 𝜎 are the mean and standard deviation, respectively, of the distribution of 215 
amplitudes of the bouts detected in the sensor baseline (i.e. in clean air), since these are surely 216 
produced by noise if the underlying distribution follows a normal pattern.  217 

3. Experimental 218 
The goal of the experiments is to optimize the proposed algorithm and evaluate its performance 219 

for predicting the source distance in real data. For that, we use the wind tunnel dataset used by 220 
Schmuker et al. In this section, we provide an overview of the wind tunnel dataset and explain how 221 
we optimized the algorithm and analyzed the data. 222 

3.1. Wind tunnel dataset 223 
The wind tunnel dataset [31] contains recordings from nine gas sensor arrays inside a small wind 224 

tunnel where turbulent gas plumes of single compounds from ten possible chemicals (e.g., 225 
Acetaldehyde, Toluene, Carbon Monoxide) were created by injecting pressurized gas into one end of 226 
the tunnel and dragging it with an exhaust fan from the other end of the tunnel (Fig. 3). The gas 227 
source is a flexible nozzle that releases the selected gas at a constant flow rate of 320 sccm. The nozzle 228 
is connected to the outlet of three mass flow controllers (MFCs) that produce a certain concentration 229 
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from pressurized gas stored in cylinders. The nine sensing boards were always positioned along a 230 
line perpendicular to the wind direction, acquiring simultaneous measurements cross-wind. 231 
Depending on the experiment, the whole line of sensors was placed at a different distance to the gas 232 
source (range 0.25 - 1.45 m). In this way, the concentration within the wind tunnel was measured in 233 
54 locations (9 x 6 grid). Each sensor array integrates eight MOX sensors (Several TGS 26XX models, 234 
Figaro Engineering Inc.) operated at the same, constant heater voltage (range 4.0-6.0 V). The sensor 235 
response was measured with a voltage divider (10 kΩ load resistor) and sampled with a 12-bit ADC. 236 
A total of 900 distinct experiments were performed by varying the distance to source (6 possible), gas 237 
(10 possible), sensor temperature (5 possible) and wind speed (3 possible). Each experiment was 238 
repeated 20 times. Different wind speeds (range 10-34 cm/s) were created by varying the rotational 239 
speed of the exhaust fan.  240 
 241 

Figure 3. Schematic representation of the wind tunnel. The six measuring distances are coded in a gray scale and 242 
labelled P1 to P6. The inset on the bottom right corner shows a board with 8 MOX sensors (Several TGS models: 243 
2600 (2x), 2602 (1x), 2610 (1x), 2611 (1x), 2612 (1x), 2620 (2x), Figaro Engineering Inc.). Adapted from [13]. 244 

In each experiment the following sequential procedure was performed: (i) Measure the baseline 245 
response of the sensors for 20 s in the absence of gas, (ii) Release the selected gas for 3 minutes, (iii) 246 
Circulate clean air for 1 minute to record the sensor recovery and (iv) Purge the wind tunnel by setting 247 
the fan at maximum speed (signals not recorded). Despite gas is released at 𝑡 = 20 s, it does not arrive 248 
immediately to the sensors. The recorded signals show a transient behavior from 𝑡 = 20 s to 𝑡 =249 
[80, 110]  s corresponding to the propagation and stabilization of the gas within the wind tunnel.  The 250 
duration of the transient depends on the distance to the source (i.e., sensors closer to the source 251 
stabilize faster) and the wind speed (i.e., signals stabilize faster at high wind speeds). A common time 252 
frame where all signals are stable regardless of the distance and wind speed is from 𝑡 = 110 s to 𝑡 =253 
200 s. We denote this time frame (of length 90 s) as the “stable gas release” period.  254 

3.2. Data analysis 255 
We use the following data from the wind tunnel dataset: board #5 (located in the plume 256 

centerline), sensor #4 (TGS 2600), heater voltage of 6 V and Acetaldehyde gas. For this configuration, 257 
sensor recordings are available at 3 wind speeds, 6 distances to the source and 20 trials per 258 
distance/wind combination (360 experiments). The recordings captured at 𝑑 = 1.40 m present some 259 
artifacts due to an imperfection of the wind tunnel (this was already pointed out by Vergara et al. 260 
and Schmuker et al.) so we excluded them from the analysis. Thus, the dataset that we use contains 261 
300 experiments (3 wind speed x 5 distances x 20 trials). From each recording, we extract the region 262 
corresponding to the stable gas release period and compute four descriptors of the signals: the mean, 263 
variance, maximum response and bout frequency.  264 

Regarding the computation of the bout frequency, we compare different filters and bout 265 
amplitude thresholds. Specifically, we use Schmuker’s filter (Section 2.3) with default smoothing 266 
parameters (i.e., 𝜎 = 0.3 𝑠 and 𝜏 = 0.4 𝑠) and 20 LPD filters (Section 2.4) with different pass-band 267 
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frequencies (𝑓pass) spanning the range [0.1, 2.0] Hz in steps of 0.1 Hz. We set 𝑓stop = 𝑓pass + 0.1 Hz, 268 
𝐴pass = 1,  𝐴stop = 0 and a maximum deviation in both bands of -60 dB. For each of these filters, we 269 
extract the bouts according to the procedure described in Section 2.5 and, instead of applying the 𝜇 +270 
3𝜎 threshold (Eq. 5), we compute the bout frequency using 500 thresholds (𝑏𝑡ℎ𝑟) spanning the range 271 
[10−4, 101] MS/s (S stands for Siemens) in logarithmic steps. The bout frequency (bouts/min) is the 272 
number of above-threshold bouts divided by the length (in minutes) of the measurement window. 273 
The bout frequency associated to each combination of 𝑓pass and 𝑏thr is considered a different signal 274 
feature. Thus, we have 10,500 bout-based features (500 thresholds x [20 LPD filters + 1 SMK filter]). 275 

Using the bout-based features and the three statistical descriptors (mean, variance and 276 
maximum) we build a feature matrix 𝐗 containing 300 rows (1 per experiment) and 10,503 columns 277 
(1 per feature). The matrix 𝐗 is then split into 3 subsets 𝐗1, 𝐗2, 𝐗3, each one corresponding to a 278 
different wind speed. Each 𝐗𝑖  is composed of 100 rows (5 distances x 20 trials) and 10,503 columns. 279 

3.3. Fitting, selection and validation of predictive models 280 
For each signal feature 𝑦 (dependent variable) in 𝐗𝑖 , we want to find the model 𝑓 that best fits 281 

the relationship 𝑥 = 𝑓(𝑦), where 𝑥 𝑖𝑠 the distance to the source (independent variable). Due to the 282 
limited number of levels (5) of the independent variable, we are forced to use simple empirical models 283 
with few degrees of freedom, such as linear, quadratic and cubic polynomials, one-term exponential 284 
and one-term power series. To find which of these models achieves the best prediction accuracy for 285 
each signal feature, we performed a combination of hold-out (external validation) and cross-286 
validation (CV) (internal validation) procedure (Fig. 4).  287 

The hold-out procedure is initially applied to split the dataset 𝐗𝑖  into a ‘train’ and ‘test’ subsets 288 
using the first 14 trials (70% of the data) for training and the remaining 6 trials (30% of the data) for 289 
testing. The training set is used to find a suitable model for the data, and the test set is used to assess 290 
how well the selected model performs on unseen data. To find a suitable model for the data, we apply 291 
5-fold CV in the ‘train’ subset which consists on breaking the data up into 5 partitions and then, 5 292 
times in turn, using one partition for testing and the remaining ones for fitting each of the models. 293 
Then, we compute the RMSE (Eq. 6) of each model in each test partition and select the model that 294 
minimizes the average RMSE over the 5 folds. This model is refit using all training samples and 295 
validated against the hold-out test set by computing the RMSE in prediction (RMSEP). 296 

 297 
 298 

 299 
 300 
Figure 4. Model selection and validation by a combination of hold-out and 5-fold cross-validation (CV). 301 

The dataset is split into ‘test’ (30%) and ‘train’ (70%) partitions. The ‘train’ partition is used to evaluate the 302 
performance of different models by 5-fold CV. In each fold, different models are fit using 80% of the data and 303 
validated against the remaining 20% of the data. The model with minimum average RMSE across the 5 folds is 304 
refit using all training samples and validated against the hold-out subset.  305 

To assess the performance of the predictive models under non-matching train and test wind 306 
speeds, the RMSEP is computed on hold-out partitions (i.e., last 6 trials) from datasets 𝐷𝑗 with 𝑖 ≠ 𝑗. 307 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
  (6) 

where 𝑦̂𝑖 is the distance (m) predicted by the model, 𝑦𝑖  is the true distance (m) at which the 308 
measurements were taken and 𝑛 is the number of validation samples.  309 

3.4. Distance prediction using shorter measurement windows 310 

We also studied the impact of using shorter measurement windows of 60, 30 and 10 s. Since the 311 
window is shorter than the length of the available signal (90 s) we need to select a chunk of the signal 312 
of the desired length. To minimize sampling bias, we randomly sample (with replacement) 𝑁 313 
segments of the desired length from the stable gas release period of the 300 available signals. We used 314 
values of 𝑁 of 5, 10 and 20 for the window sizes of 60, 30 and 10 s, respectively. Then, for each wind 315 
speed, signal feature, window size and segment, we follow the procedure described in Section 3.3 to 316 
fit, select and validate a predictive model. The only difference is that now we have 𝑁 RMSEP values 317 
associated to a given feature (one per segment), so we take the average RMSEP across all segments.  318 

3.5. Spectral analysis 319 

The power spectral density (𝑆𝑦𝑦) of the signal 𝑥 will be approximated by the Periodogram [32].  320 

3.6. Software and reproducibility 321 

Data analysis was performed using MATLAB (version R2018b) and the following toolboxes: 322 
signal processing, and statistics and machine learning toolbox. Spectral analysis was performed using 323 
the function fft. LPD filters were designed using firpmord and firpm functions with ‘differentiator’ 324 
argument. Schmuker filter was implemented in the time domain using the convolution of two 325 
impulse responses: a truncated Gaussian filter G, implemented using the function gausswin(𝑁, 𝛼) with 326 
𝑁 = 10𝜎𝑠 and 𝛼 = 5, and a first order FIR differentiator D of the form [1, -1]. The output of this filter 327 
was the input of the EWMA filter E. Convolution was performed using function conv. The resulting 328 
filters were applied to new data using function filter.  Curve fitting was performed using polyfit and 329 
evaluated on new data using polyeval. 330 

All analysis code used in this study is freely available under an open source license at 331 
https://github.com/jburgues/DistPredMOX. The code allows the reader to reproduce the entire 332 
analysis, including recreation of most figures. 333 

4. Results and Discussion 334 

4.1. Raw signals 335 

We analyzed the signals recorded by a MOX sensor placed in the plume centerline at several 336 
downwind distances from the gas source and three wind speeds (Fig. 5). Regardless of the wind 337 
speed and distance, the signals are characterized by a plateau of stable mean value (produced by the 338 
accumulation of gas within the wind tunnel) modulated by some fluctuations due to turbulence. The 339 
distance of the gas source and the wind speed have a strong influence on the mean intensity and the 340 
fluctuations of the signals: with increasing distance or wind speed, the intensity and variability of the 341 
signals decrease. At higher wind speeds, the chemical source experiences a larger dilution, resulting 342 
in lower average concentrations. At lower wind speeds, the mean, maximum and variance of the 343 
responses seem to be correlated with the distance to the gas source. As the wind speed increases, the 344 
differences between sampling locations diminish and it seems harder to predict the source distance 345 
from these features. 346 

 347 
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 348 

Figure 5. Responses of a TGS XX sensor (trial #1) at multiple downwind distances from the gas source and 349 
three wind speeds.  350 

4.2. Distance prediction with mean, standard deviation and maximum of the response 351 
Figure 6 shows the relationship between common statistical descriptors of the raw signal and 352 

the source distance at different wind speeds. The average response was best fit with logarithmic 353 
models at low wind speeds and with power models at high wind speed (Fig. 6a). The RMSEP 354 
degrades from 21 cm to 28 cm as wind speed increases, due to a decrease in sensitivity far from the 355 
source. The RMSEP is inflated by the abnormally low concentration measured at 𝑑 = 50 cm, which 356 
does not agree with previously reported empirical models [33] describing the relationship between 357 
mean concentration and source distance, 𝑥, as a power law of the form 1/𝑥.  A potential cause for the 358 
anomalous measurements at 𝑑 = 50 cm is the high variance in wind direction measured by Vergara 359 
et al. at that sampling location (c.f. Fig. 3b in [31]), probably owing to the geometry of the wind tunnel.  360 

The standard deviation of the response (Fig. 6b) is highly scattered in different trials, leading to 361 
a high RMSEP of around 26 cm regardless of the wind speed. The high scattering observed at the 362 
lowest wind speed may be a consequence of the low-energy turbulent mixing characteristic of 363 
environments with weak airflow [34]. The optimum model switches from linear to logarithmic to 364 
power with increasing wind speed.  365 

Finally, the maximum of the response (Fig. 6c) has a similar behavior than the mean response 366 
but with lower RMSEP (20-25 cm), resulting the best estimator at all wind speeds. 367 

 368 

Figure 6. (a) mean, (b) variance and (c) maximum response vs. distance from source at different wind 369 
speeds in one of the folds of 5-fold cross-validation (CV). The fit and test samples for this fold are represented 370 
by solid circles and crosses, respectively. The solid lines represent the models with minimum 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  over 5 folds.  371 

4.3. Distance prediction with bouts 372 
We now explore if the bout frequency can improve the previous results. The spectral analysis of 373 

the raw signals (Fig. 7a) indicate that the power content of the signal decays exponentially with 374 
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increasing frequency. The recordings at lower wind speeds or closer to the source contain more 375 
power in higher frequencies than the recordings at higher wind speed or longer distances. Thus, the 376 
range of frequencies in which the derivative can be applied with reasonable signal-to-noise ratio 377 
(SNR) depends on the wind speed and the distance to the source. From visual inspection, it seems 378 
that cut-off frequencies of 5 and 10 Hz could be appropriate for wind speeds of 34 and 10 cm/s, 379 
respectively. However, in practice these values are too high since computing the bouts requires 380 
taking the second derivative of the signals, which is extremely sensitive to noise. Thus, we limited 381 
the maximum pass-band frequency of our LPD filters to 2 Hz.  382 

Figure 7b compares the frequency response of two Schmuker (SMK) filters and two low pass 383 
differentiator (LPD) filters with different specifications. SMK filters are characterized by a narrow 384 
pass-band region where the response of the filter approximates the ideal differentiator, and a wide 385 
transition band were neither the derivative is computed, nor the noise is fully rejected. Resultingly, 386 
the filtered signal will deviate from the ideal derivative in all frequency components corresponding 387 
to the transition band. Another disadvantage of SMK filter is that the design parameters 𝜎 and 𝜏 have 388 
no clear relationship to the standard filter design parameters such as the pass- and stop-band 389 
frequencies or the attenuation in the stop band. For example, the filter SMK0.3𝑠,0.4𝑠 (i.e., 𝜎 = 0.3 𝑠 and 390 
𝜏 = 0.4 𝑠) has pass- and stop-band frequencies of around 0.25 and 0.7 Hz, respectively, whereas in 391 
the filter SMK0.2𝑠,0.2𝑠 these frequencies are around 0.4 and 1.5 Hz. Considering that the power spectral 392 
density (PSD) of the recorded signals beyond 0.5 Hz is not negligible (especially at wind speed of 10 393 
cm/s), the SMK0.3𝑠,0.4𝑠 filter is probably filtering out useful information contained in the signals.  394 

 395 

Figure 7. (a) Power spectral density (PSD) of the raw signals at different distances to the source and wind 396 
speeds. Each trace represents the average of 20 trials. The noise threshold is estimated from the PSD of the 397 
baseline responses; (b) Frequency response of two Schmuker filters (SMK𝜎,𝜏) and two low pass differentiator 398 
filters (LPD𝑓) with different cut-off frequency. The signals of panel (a) are drawn in the background for visual 399 
reference. The ideal differentiator is depicted as a black dashed line. 400 

 401 
In contrast, LPD filters maximize the region in which the derivative is computed and can provide 402 

narrow transition bands, resulting in signals with higher SNR. Comparing the LPD0.7 Hz filter (i.e.,  403 
𝑓c = 0.7 Hz) with the SMK0.3𝑠,0.4𝑠 filter, it can be seen that, with a similar stop-band frequency, the 404 
former one computes the derivative up to 0.7 Hz whereas the latter only up to 0.25 Hz. As an 405 
illustrative example, Figure 8 shows the output of both filters for a signal captured at 𝑑 = 0.98 m and 406 
wind speed of 34 cm/s. Compared to the filtering produced by the SMK filter, the LPD produces a 407 
sharper signal with a similar level of noise and as twice more bouts (19 versus 38 bouts).  408 

To evaluate if the higher number of bouts is advantageous for predicting the source distance, 409 
Figure 8 shows the regression between bout frequency and source distance for the two filters. When 410 
all detected bouts are used for regression (i.e., 𝑏thr = 0) the bout frequency decreases with proximity 411 
to the source, indicating that the noise (i.e. low-amplitude bouts) decreases with proximity to the 412 
source. In this case, both filters provide similar RMSEP values of around 20 cm, which is already 5 413 
cm lower than the best error (25 cm) achieved for this wind speed with statistical descriptors of the 414 
signal. By increasing the bout amplitude threshold, 𝑏thr, the slope of the regression changes from 415 
negative to positive, the scattering among trials decrease and the RMSEP decreases. For example, 416 
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using 𝑏thr = 𝜇 + 3𝜎 = 0.06 MS/s leads to a linear decay between bout frequency and source distance, 417 
yielding an RMSEP of 17 cm. Further increasing the threshold to 0.15 MS/s changes the functional 418 
relationship from linear to a power law and the RMSEP decreases to 14 cm. Since the threshold seems 419 
to have a clear impact into the prediction error, we will try to optimize it to achieve the minimum 420 
possible RMSEP. 421 

 422 

Figure 8. Filtered MOX-sensor signals at 𝑑 = 0.98 m and wind speed of 34 cm/s using Schmuker (SMK) 423 
filter (𝜎 = 0.3 𝑠 and 𝜏 = 0.4 𝑠) and low pass differentiator (LPD) filter (𝑓c = 0.8 Hz). LPD signal has been shifted 424 
downwards by 0.01 MS/s for visualization purposes. “Bouts” in both signals are highlighted in black and red, 425 
respectively. The number in parenthesis indicates the number of detected bouts. 426 

 427 
 428 

 429 
Figure 9. Bout frequency for 20 trials vs. distance from source using LPD filter 𝑓c = 0.8 Hz, 𝑏𝑡ℎ𝑟 = 0) and 430 

SMK filter (𝜎 = 0.3 𝑠 and 𝜏 = 0.4 𝑠) with different amplitude thresholds. The wind speed is 34 cm/s and window 431 
size is 90 s. 432 
 433 

Figure 10 shows the RMSEP associated to different values of 𝑓c and 𝑏thr, for two different wind 434 
speeds. If 𝑏thr is low or no threshold is used at all, 𝑓c has a big impact on the RMSEP, varying in the 435 
range 16-40 cm. Filters with high 𝑓c (i.e., 1.6-2.0 Hz) are optimal at low wind speed (Fig. 10a), whereas 436 
filters with 𝑓c of 0.7-1.0 Hz are optimal at higher wind speeds (Fig. 10b), which matches our visual 437 
analysis of Figure 7b. By increasing 𝑏thr, the RMSEP of certain filters can be reduced below 15 cm. For 438 
example, at low wind speed the threshold region 0.3-1.0 MS/s is optimum for all filters, and those 439 
with 𝑓c > 0.2 Hz achieve RMSEP < 15 cm in this region. The absolute minimum RMSEP (7 cm) is 440 
obtained with 𝑓c = 1.9 Hz and 𝑏thr = 0.53 MS/s. In contrast, the RMSEP of the SMK filter is always 441 
higher than 15 cm regardless of the value of 𝑏thr. The 𝜇 + 3𝜎 threshold (0.06 MS/s), located outside of 442 
the optimum threshold band, achieves an RMSEP of 23 cm. 443 

As 𝑓c increases (this is, the signal is less low-pass filtered) the RMSEP in the optimum region 444 
becomes more sensitive to 𝑏thr. Looking at the reddish traces in Fig. 10a, we can observe that a small 445 
deviation from the optimum threshold produces a fast increase in RMSEP. The sensitivity is much 446 
lower at low 𝑓c (bluish traces) where RMSEPs below 15 cm are obtained in nearly one decade around 447 
the optimum threshold value. 448 
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As wind speed increases, the optimum threshold band shifts towards smaller thresholds (Fig. 449 
10b). At wind speed of 34 cm/s, the optimum threshold band 0.05-0.20 MS/s leads to RMSEP values 450 
below 15 cm for filters with 𝑓c < 0.7 Hz. The minimum RMSEP (13 cm) is obtained with 𝑓c = 0.4 Hz 451 
and 𝑏thr = 0.13 MS/s. Despite the 𝜇 + 3𝜎 threshold is located within the optimum threshold band, 452 
the SMK filter operated with this threshold provides a higher RMSEP of 18 cm. Low 𝑓c values (bluish 453 
traces) which might appear as the worse choice if no threshold is used, provide the minimum RMSEP 454 
values if combined with a properly selected threshold. This illustrates that these two parameters are 455 
coupled and that simultaneous tuning of both of them is the means to achieve the best performance. 456 

 457 

Figure 10. RMSEP of the bout frequency as a function of the bout amplitude threshold (log scale) and the 458 
cut-off frequency of the LPD filter, for two wind speeds: (a) 10 cm/s and (b) 34 cm/s. The RMSECV of 459 
Schmuker’s filter (SMK𝜎𝑠,𝜏ℎ

) with default parameters is depicted as a black trace for visual reference and the 460 
µ + 3𝜎 threshold is indicated by a red dot.  461 

 462 
The observed shift in the optimum threshold band as the wind speed increases can be explained 463 

by looking at the histogram of bout amplitudes at different distances to the source (Fig. 11). At low 464 
wind speed, the overlapping between the baseline distribution (noise) and the gas distribution 465 
(signal) is low, so a high threshold can separate the noise from the signal. At higher wind speed, the 466 
histograms of bout amplitudes during gas exposure shift to the left while the baseline histogram 467 
remains fixed. Therefore, the threshold must “follow” the histogram shift or nearly no bouts will 468 
exceed the threshold far from the source. The optimum threshold lies as far to the right as possible in 469 
the baseline distribution while still capturing enough density of bouts at distant gas exposure. 470 

 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
 481 
 482 
 483 
 484 
Figure 11. Histogram of bout amplitudes at various distances from the source and wind speeds. The width 485 

of the bins in the x-axis is distributed logarithmically. The y-axis represents the relative probability of each bin, 486 
computed as the number of elements in the bin divided by the number of samples. Both axes are displayed in 487 
logarithmic scale. The μ+3σ and optimum thresholds for each wind speed are depicted with vertical lines. 488 
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Since the baseline distribution does not resemble a normal pattern—instead it can be better 489 
approximated by a Beta function— the 𝜇 + 3𝜎 threshold does not capture the expected 99.97% of the 490 
data, but a lower value (97.81%). In other words, approximately 2.2% (instead of 0.13%) of the bouts 491 
detected in clean air will be declared as “true bouts”. This means that 2.2% of the detected bouts 492 
correspond to noise, increasing the scattering among different trials. This can be seen in Figure 8, by 493 
comparing the regression of the SMK filter with 𝑏𝑡ℎ𝑟 = 0.06 MS/s (𝜇 + 3𝜎) and 𝑏𝑡ℎ𝑟 = 0.15 MS/s (optimum 494 
for 34 cm/s). The higher threshold not only produces less scattering of the data but also produces a 495 
smoother increase in bout frequency as the distance to the source decreases, allowing a polynomial 496 
to accurately fit the data even at 𝑑 = 0.5 m.  497 

The optimum predictive model for each combination of 𝑓c and 𝑏thr, as determined in cross-498 
validation, is shown in Figure 12. The optimum models can be roughly clustered in three main 499 
regions: power and logarithmic models in the upper left corner (high 𝑓c and low 𝑏thr), exponential 500 
models in the region 0.5 MS/s < 𝑏thr < 5 MS/s, and linear models elsewhere. This explains why 501 
Schmuker et al. found that their filter, which has an approximate cut-off frequency of 0.6 Hz and a 502 
threshold of 0.06 MS/s, was best approximated by a linear model. However, if one considers the entire 503 
space of combinations, more complex models should be used for optimum performance. The best 504 
model for each 𝑓c always lies in the leftmost edge of the exponential region, where quadratic models 505 
are chosen at low 𝑓c and exponential models dominate at high 𝑓c. A summary of the optimum filter 506 
parameters and predictive model for each wind speed is provided in Table 1.  507 

 508 
 509 
 510 
 511 
 512 
 513 
 514 
 515 
 516 
 517 
 518 
Figure 12. Optimum models, as found in cross-validation, as a function of the cut-off frequency (𝑓c) and 519 

the bout amplitude threshold (𝑏thr). The window size is 90 s and the wind speed 10 cm/s. The threshold that 520 
achieves the minimum RMSEP at each cut-off frequency is indicated by a red dot. 521 
 522 

Wind 
(cm/s) 

LPD [optimum] 

 

SMK [optimum]  SMK [𝝁 + 𝟑𝝈] 

𝑓cut 
(Hz) 

𝑏thr 
(MS/s) 

Model 
RMSEP 

(cm) 
𝑏thr 

(MS/s) 
Model 

RMSEP 
(cm)  

𝑏thr 
(MS/s) 

Model 
RMSEP 

(cm) 
10 1.9 0.51 Exp 7 0.44 Linear 13 0.06 Log 22 
21 1.0 0.21 Poly2 9  0.30 Exp 14  0.06 Log 22 
34 0.7 0.11 Exp 10  0.15 Poly2 14  0.06 Linear 18 

Table 1. Optimum filter parameters for different wind speeds. Wind speed in train is the same than in test. 523 

4.4. Distance prediction using shorter measurement windows 524 
Figure 13 shows the RMSEP curves of the LPD1.9 Hz filter for different sizes of the measurement 525 

window (𝑊). As it was expected, the RMSEP degrades with shorter measurement windows. 526 
Surprisingly, the degradation is consistent across all thresholds, resulting in an optimum threshold 527 
that is independent of 𝑊. Also, the RMSEP degrades non-linearly with 𝑊, since reducing 𝑊 from 30 528 
to 10 s (difference of 20 s) has a stronger impact into the RMSEP than reducing 𝑊 from 90 to 30 s 529 
(difference of 60 s). Specifically, the relationship between the minimum RMSEP and 𝑊 approximates 530 
a power law of the form 𝑅𝑀𝑆𝐸𝑃 = 80 ∙ 𝑊−0.26 − 17. We observed similar trends at other cut-off 531 
frequencies and wind speeds, and for the SMK filter. This means that the optimum cut-off frequency 532 
is also independent of 𝑊. It mostly depends on the wind speed. 533 
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 534 
Figure 13. RMSEP of the bout frequency computed with the LPD1.9 Hz filter, as a function of the bout 535 

amplitude threshold (log scale) and the window size (𝑊). The inset shows a power series fit to the relationship 536 
between minimum RMSEP and 𝑊.  The wind speed is 10 cm/s. 537 

 538 
Figure 14 compares the minimum RMSEP of different signal features as a function of 𝑊. As can 539 

be seen, the mean and maximum response are nearly insensitive to 𝑊, probably due to the slow 540 
dynamics of the wind tunnel facility which produced a stable plateau of mean concentration (Fig. 5). 541 
The RMSEP of the standard deviation degrades at a linear rate of 1 cm for every 10 s of increase of 542 
𝑊. Finally, the bout frequency is the most sensitive to 𝑊, exhibiting a power law dependency.  543 
Resultingly, at small window sizes the bout frequency provides worse performance than simpler 544 
statistical descriptors such as the mean or maximum response.  545 

 546 
 547 

 548 
Figure 14. RMSEP of different signal features as a function of the window size. The wind speed is 10 cm/s. 549 

4.5. Distance prediction under non-matching train and test wind speed 550 
So far, we validated our models using training and test data captured at the same wind speed. 551 

If the train (𝑤train) and test wind speed (𝑤test) differ, the optimum predictive models when 𝑤train =552 
𝑤test produce high RMSEP values when 𝑤train ≠ 𝑤test. Figure 15 plots the RMSEP of the SMK filter as 553 
a function of the threshold and 𝑤test, when 𝑤train = 21 cm/s. The optimum threshold for 𝑤train, which 554 
produces an RMSEP of 15 cm when 𝑤test = 0.21 cm/s, leads to an average RMSEP across all possible 555 
wind speeds of 37 cm. Similarly, the 𝜇 + 3𝜎 threshold produces errors as high as 62 cm if 𝑤test = 34 556 
cm/s. There is an optimum threshold region (0.019 – 0.033 MS/s) in which the prediction error at 557 
different wind speeds is balanced, providing average RMSEPs of around 30 cm. In the LPD filter, the 558 
same cut-off frequency (0.6 Hz) is optimum for all 𝑤train, and the optimum threshold region ranges 559 
from 0.035 to 0.050 MS/s. Table 2 summarizes the optimum filter values for each filter and 𝑤train. 560 

 561 
 562 
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Wind 
(cm/s) 

LPD [optimum] 

 

SMK [optimum]  SMK [3sigma] 

𝑓cut 
(Hz) 

𝑏thr 
(MS/s) 

Model 
RMSEP 

(cm) 
𝑏thr 

(MS/s) 
Model 

RMSEP 
(cm)  

𝑏thr 
(MS/s) 

Model 
RMSEP 

(cm) 
10 0.6 0.035 Linear 31 0.019 Log 33 0.06 Log 56 
21 0.6 0.050 Linear 29  0.033 Linear 28  0.06 Exp 40 
34 0.6 0.041 Linear 30  0.021 Linear 30  0.06 Linear 36 

Table 2. Optimum filter parameters when the train and test wind speed are different. The train wind speed 563 
is indicated in the first column. The other columns are optimum values considering the average of all possible 564 
test wind speeds. The window size is 90 s. 565 

 566 

 567 
Figure 15. Sensitivity of the bout frequency to the test wind speed. The figure shows the RMSEP of the bout 568 
frequency versus threshold, using window size of 90s, training wind speed of 10 cm/s and different test wind 569 
speeds. LPD 2.0 filter (black) and SMK filter (red). 570 

5. Conclusions 571 
We have experimentally demonstrated that, in the wind tunnel facility and assuming the same 572 

constant emission rate during training and test, the proposed algorithm can exploit transient features 573 
of gas sensor signals to predict the gas source distance with high accuracy. This algorithm 574 
significantly reduces the prediction error, as compared to previously reported algorithms, over a 575 
wide range of amplitude thresholds. The main finding of the study is that the cut-off frequency (𝑓c) 576 
of the low-pass differentiator filter and the bout amplitude threshold (𝑏thr) are coupled parameters, 577 
which means that both must be tuned simultaneously to find the global optimum in terms of 578 
prediction error. The optimum values of 𝑓c and 𝑏thr strongly depend on the wind speed, with low 𝑓c 579 
and 𝑏thr being suitable for scenarios with high wind speed and vice-versa. Intuitively, this says that 580 
the cut-off frequency of the filter should match the bandwidth of the signal, which in this dataset is 581 
lower at high wind speeds. If the cut-off frequency is reduced, the derivative will be noisier and the 582 
detected bouts will be smaller in amplitude. This is probably the reason why both parameters are 583 
coupled and why smaller amplitude thresholds improve performance in this case. 584 

The optimization methodology presented in this paper is intuitive and should be applicable to 585 
a wide range of different scenarios, including those that do not satisfy the assumptions of constant 586 
emission rate or non-matching train and test emission rates. For example, we used the methodology 587 
to find optimum values in the challenging scenario in which the train and test wind speed do not 588 
match. In the likely case that the test wind conditions are unknown, our results suggest that lower 589 
prediction errors will be obtained if 𝑓c and 𝑏thr are small and the models are trained at medium wind 590 
speed. We also optimized the algorithm for different sizes of the measuring window, and we found 591 
that the optimum values of both parameters do not change substantially but the minimum possible 592 
error increases as a power law of the window size. These results encourage us to think that the same 593 
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procedure can be applied, for example, to optimize the algorithm for the case of non-constant 594 
emission rate. Expressing the low-pass differentiator filter with a single parameter (𝑓c) was a key step 595 
for reducing the complexity of the optimization process and aiding in the visualization of the results. 596 

A second question addressed by this work is whether the optimized bout frequency outperforms 597 
other estimators of source distance such as the mean, maximum or variance of the sensor response. 598 
We found that if the measurement window is larger than 30 s, the bout frequency always provides 599 
lower prediction errors. However, the mean and maximum of the signal are more accurate if the 600 
measurement window is as short as 10 s. This raises the question as to what extent the bout frequency 601 
provides any advantage over these simpler estimators in applications such as gas source localization 602 
by mobile robots, where rapid response time is critical. The variance of the sensor response—which 603 
some authors consider a reliable estimator of source proximity—did not work well in this dataset. 604 
The reason for the good performance of the bout frequency (assuming a long enough measurement 605 
window) is the consistency of its value among different trials, probably owing to the insensitivity of 606 
the derivative to changes in background concentration.  607 
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Appendix 620 

The description of Schmuker’s filter in the original paper (i.e., Eqs. 1-4 in [13]) contain two typos 621 
that hinder the implementation of the algorithm by other authors. First, the smoothed response (𝑥𝑠) 622 
is differentiated before applying the 𝑒𝑚𝑎𝛼  transformation (Eq. 2 in [13])  (this step has been omitted 623 
in the diagram shown in Fig. 2), which is unnecessary because the 𝑒𝑚𝑎𝛼  transformation already 624 
differentiates the input signal. This extra derivative was probably included by error, due to the 625 
ambiguous terminology used by Muezzinoglu et al. [29] to define the 𝑒𝑚𝑎𝛼  operator. The source code 626 
published by Schmuker et al. is however not affected by this error because they apply the 𝑒𝑚𝑎𝛼  627 
operator by calling the Python function ewma, which provides the functionality of the EWMA filter 628 
only (i.e. it does not differentiate the input signal). Similarly, the definition of 𝛼 as a function of 𝜏ℎ𝑎𝑙𝑓 629 

in Schmuker’s paper (Eq. 4 in [13]) contains a typo (compare it to the correct formulation, i.e. Eq. 3 of 630 
the current paper). Despite the source code published by the authors is not affected by this error 631 
(because such definition is implemented by the Python function pandas.ewma) this typo has difficulted 632 
replication of the algorithm by other authors [35]. 633 
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Chapter 7

Gas Distribution Mapping and
Gas Source Localization using
MOX sensors

In this chapter, we address gas distribution mapping (GDM) and gas source localization
(GSL) tasks in indoor environments using MOX sensors.

In Paper VII, we use a 3D grid of MOX sensors to visualize the temporal evolution
of the gas distribution produced by an evaporating gas source placed at different locations
in an office room (36 m2) including variations in height, release rate and air flow profiles.
We also compared different features of the MOX sensor signals (mean, variance and bout
frequency) for predicting the true source location (TSL) in each experiment, considering
different lengths of the measurement window. The analysis of the data revealed strongly
time-varying and counter-intuitive gas distribution patterns that disprove some assump-
tions commonly held in the MRO field. For example, gas dispersion in the absence of
strong airflow was dominated by convective or recirculating air currents from the HVAC
unit, as demonstrated by the progressive gas accumulation towards the ceiling observed in
most experiments. Resultingly, ground-level measurements were not useful for pinpoint-
ing the TSL and measurements at the height of the gas source were required. The variance
and the bout frequency yielded in average lower localization errors than the mean (0.5 m
and 1.1 m lower, respectively). The bout frequency performed better than the variance in
experiments with strong air flow conditions (localization errors 0.9 m lower) but was much
more sensitive to the window size.

In Paper VIII, a nano-drone equipped with a MOX sensor is used for GSL and GDM in
a large robotics laboratory (160 m2) containing obstacles such as tables, bookshelves and
partitions. The gas source was placed in challenging positions for the drone, for example
hidden in the ceiling of the room or inside a power outlet box. The drone navigates the
environment following a predefined 3D sweeping path, which takes less than 3 minutes in
total. The high complexity of the proposed scenario (size, obstacles and source location),
the 3D navigation strategy and the reduced mission time are key differences with respect to
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USING MOX SENSORS

previous works using nano-drones [72,75], where the experimental scenario was as simple
as a chemical hood [75] or the drone only took measurements at ground level [72]. In con-
trast to previously reported gas distribution mapping experiments in which long measure-
ment times are needed at predefined [28] or adaptively chosen sampling locations [165],
we demonstrate that a rough approximation of a gas distribution map can be quickly ob-
tained with concentration measurements acquired in motion. The "bout" approach yielded
on average a higher localization accuracy (1.38 m error) than using the instantaneous gas
sensor response (2.05 m error).

In both papers, we dedicated a substantial portion of the effort to the processing of
the MOX sensor signals, including calibration, linearization, LOD estimation and "bout"
detection. Regarding calibration, we specifically focused on matching the calibration con-
ditions (temperature, humidity and concentration range) to those of the test scenario to en-
sure the validity of the calibration models and the derived figures of merit (e.g. the LOD).
For example, we assessed the sensor noise—critical for LOD estimation—through prelim-
inary blank measurements acquired by the drone in the target scenario, instead of relying
on the variability of the blanks in the calibration testbench. We also optimized the calibra-
tion concentration range and applied a log-log transformation to fit a linear model to the
calibration data, thus enabling the computation of the LOD using the standard equations.
Regarding the detection of "bouts", we simplified the original algorithm [121], adapted
it for real-time operation and optimized the noise threshold. We found that the 3-sigma
threshold recommended by Schmuker et al. [121] was too low in most scenarios, yielding
an average localization error (4.23 m) three times higher than the one obtained when the
threshold was optimized for each scenario (1.38 m).

A detailed description of both works is provided in Papers VII and VIII (shown below).
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Abstract: The difficulty to obtain ground truth (i.e. empirical evidence) about how a gas disperses 10 
in an environment is one of the major hurdles in the field of mobile robotic olfaction (MRO), 11 
impairing our ability to develop efficient gas source localization strategies and to validate gas 12 
distribution maps produced by autonomous mobile robots. Previous ground truth measurements 13 
of gas dispersion have been mostly based on expensive tracer optical methods or 2D chemical sensor 14 
grids deployed only at ground level. With the ever-increasing trend towards gas-sensitive aerial 15 
robots, 3D measurements become necessary to characterize the environment prior to the 16 
development of source localization and mapping algorithms for these platforms. This paper 17 
presents ten different experiments performed with a 3D grid of 27 metal oxide semiconductor 18 
(MOX) sensors to visualize the temporal evolution of 3D gas distribution produced by an 19 
evaporating ethanol source placed at different locations in an office room, including variations in 20 
height, release rate and air flow profiles. We also studied which features of the MOX sensor signals 21 
are optimal for predicting the source location in each case, considering different lengths of the 22 
measurement window. We found strongly time-varying and counter-intuitive gas distribution 23 
patterns that disprove some assumptions commonly held in the MRO field. In most cases, 24 
measurements at the height of the gas source are key to accurately pinpoint its location. We make 25 
the dataset and the code publicly available to enable the community to develop, validate, and 26 
compare new approaches related to gas sensing in complex environments.   27 

Keywords: Mobile robots; Artificial olfaction; Gas sensors; Signal Processing; Sensor networks; Gas 28 
dispersion; Gas source localization; Gas distribution mapping; Metal oxide semiconductor sensors 29 

 30 

1. Introduction 31 

The difficulty to obtain ground truth (i.e. empirical evidence) about how a gas disperses in an 32 
environment is one of the major hurdles in the field of mobile robotic olfaction (MRO), impairing our 33 
ability to develop efficient gas source localization (GSL) strategies and to validate gas distribution 34 
maps produced by autonomous mobile robots. For example, terrestrial robots equipped with in-situ 35 
gas sensors have been extensively studied for GSL under the assumption that gases heavier than air, 36 
such as ethanol, will flow along ground level [1–3]. However, simply using the density of the pure 37 
substance as the only parameter governing gas dispersion is dangerous, as it is known that 38 
atmospheric conditions (outdoors) or thermal sources or recirculating air currents from forced 39 
ventilation systems (indoors) may have a stronger impact into gas dispersion than the density of the 40 
pure gas [4]. Similarly, researchers conducting GSL and gas distribution mapping (GDM) 41 
experiments usually wait a small amount of time (few minutes) after the gas is released to let the gas 42 
spread and stabilize in the environment. If the robot starts exploring the environment when the gas 43 
distribution is not stable, the experimental results can depend on the time frame in which the 44 
experiments were performed [5]. For example, Purnamadjaja and Russell [6] waited 3 minutes before 45 
mapping the gas distribution produced by an evaporating alcohol mixture in a small unventilated 46 
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indoor arena (9 m2). However, Lilienthal et al. [7] found that the gas distribution produced by a 47 
similar gas source in a similar environment became stable in approximately 30 minutes. 48 

Any physical process is better understood if the changes of the variables involved in such 49 
process can be observed by visual inspection. The most straightforward method to make the gas flow 50 
pattern visible is to add small tracer particles (e.g., dust, smoke, dye) to the carrier flow and video-51 
record the resulting clouds or plumes of particles [15]. Quantification of individual particles can be 52 
achieved by particle image velocimetry (PIV) [16], particle tracking velocimetry (PTV) [17] or laser-53 
induced fluorescence (LIF) [12,18,19]. Tracer methods can provide a 3D representation of gas 54 
dispersion, but the required flow seeding methods and optical instruments for quantification are 55 
expensive and require a complex setup process that hinders its practical application [24]. Further, 56 
tracer methods assume that the tracer particles will have a similar motion to the target chemical when 57 
it is suspended on the fluid, which is not necessarily true. 58 

Two alternative experimental methods are available for visualizing the gas flow in the 59 
experimental scenario without adding tracers: optical remote sensing (ORS) or chemical sensor grids 60 
(CSGs). ORS coupled with computed tomography (CT) is an old technique to visualize 2D gas 61 
distributions over room-sized areas [8–11]. ORS instruments such as the open-path Fourier transform 62 
infrared spectrometer (OP-FTIR) [12] or the tunable diode laser absorption spectroscoper (TDLAS) 63 
[13] are first used to accurately measure the total number of gas molecules in multiple beams of 64 
radiation. The path-integrated measurements are then converted by means of CT into a 65 
representation of the concentration distribution in the sampling plane [14]. Apart from the high cost 66 
of ORS instruments, mirrors and retroreflectors should be carefully placed over the test site to avoid 67 
unexpected optical effects that would otherwise lead to measurement errors [8].  68 

An inexpensive, alternative solution to ORS is to use point chemical sensors, e.g. metal oxide 69 
semiconductor (MOX) sensors, to perform spatially distributed gas concentration measurements [15–70 
21]. Indeed, measurements obtained with chemical sensors are often used to validate gas 71 
concentration maps obtained by ORS [11]. The reduced area covered by each measurement (≈0.5 cm2) 72 
and the time-varying nature of gas dispersion in most natural environments requires deploying a 73 
grid format of sensors (i.e., a CSG). To build a gas distribution map using a CSG, the environment is 74 
discretized into cells and a chemical sensor is placed in the center of each cell. The sensor responses 75 
are recorded for a certain amount of time (typically 2-8 minutes) and a map of the gas distribution is 76 
created by plotting the average response [7,22–24] or the maximum response [6,17,25] in each cell. 77 
The resulting maps can be smoothed by bicubic [24], linear [26], kriging [11] or Gaussian [7] 78 
interpolation. Only in scenarios where the gas distribution is expected to be time-invariant, such as 79 
wind tunnels with a continuous gas source [17,24], sequential measurements of a single sensor (e.g., 80 
using a robot) can replace a CSG. The advantage of CSGs is that measurements are performed 81 
simultaneously in space and time, providing a visualization of the temporal evolution of the gas 82 
distribution. With an increasing area, establishing a dense CSG would involve an arbitrarily high 83 
number of fixed gas sensors, which poses problems such as cost and lack of flexibility. Because of 84 
this, CSGs have been mostly restricted to 1D [20,21] and 2D [15–19] measurements in small arenas.  85 

With the ever-increasing trend towards gas-sensitive aerial robots [27–29], 3D measurements 86 
seem necessary to characterize the environment prior to the development of source localization and 87 
mapping algorithms for these platforms. However, the three-dimensionality of the environment has 88 
been only considered by few works [30–32], and mostly using sequential measurements with a robot. 89 
For example, Russell et al. [30] mapped the 3D gas distribution produced by an ethanol gas source in 90 
a ventilated indoor arena using a mobile robot with a MOX sensor mounted on an extendable vane. 91 
Although the gas source was placed on the floor and ethanol is heavier than air, most gas 92 
concentration was found near the ceiling. This supports the idea that dispersion was dominated by 93 
convective air currents instead of by the density of the pure substance. Similarly, Reggente et al. [31] 94 
used a terrestrial robot equipped with three gas sensors mounted at different heights (0.2, 0.4 and 0.6 95 
m) to acquire 3D measurements in an indoor room. They proposed a multivariate Gaussian function 96 
to interpolate between measurements and produce smooth 3D maps of the mean and variance of the 97 
concentration. The only work using a 3D CSG was presented by De Vito et al. [32], where 4 wireless 98 
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MOX sensors where placed in different locations of a small glass box (0.36 m3 volume). In this case, 99 
the CSG was just a proof of concept of their proprietary wireless technology.  100 

Once a gas distribution map has been obtained, a relevant question is whether the map can be 101 
used to pinpoint the gas source location. Lilienthal et al. [7] observed that the concentration maximum 102 
estimate (CME), this is the cell with maximum value in the mean concentration map, is a good 103 
estimate of the source location when the gas distribution has a circular shape with a peak at the source 104 
location. If the gas distribution resembles instead an elongated plume, fitting a gas dispersion model 105 
with gas concentration measurements [33] or using the divergence operator [34] can improve the 106 
localization accuracy. Later, it was found in 2D [35] and 3D [31] experiments that the maximum cell 107 
in a variance map, i.e. the variance maximum estimate (VME) often provides a more accurate 108 
indication of the source location than the CME because the variance is less sensitive to saturation. 109 
The good localization performance of the CME and VME has been confirmed by Di Rocco et al. [36] 110 
and Hernandez et al. [37]. 111 

A relatively unexplored characteristic of turbulent odor plumes for source localization using 112 
CSGs is the odor intermittency [38]. The odor intermittency, or frequency of odor patches, is a key 113 
directional cue for animal chemo-orientation, as demonstrated by several authors [26,38–40]. For 114 
example, Haverkamp et al. [26] mapped the odor intermittency inside a wind tunnel using a fast 115 
photo-ionization detector (PID) to analyze the odor tracking behaviour of the hawkmoth Manduca 116 
sexta. Their results highlight the importance of the odor encounter rate for M. sexta to navigate 117 
towards a flower in the absence of informative visual cues. Using a CSG to monitor the temporal 118 
evolution of the odor intermittency in environments with time-varying airflow could provide 119 
valuable information for developing bioinspired plume tracking algorithms for mobile robots that 120 
need to work in these conditions. However, this is a priori not feasible due to the slow response time 121 
of the low-cost chemical sensors typically used to make up CSGs. A possible solution to overcome 122 
this issue is to use the signal processing method recently proposed by Schmuker et al. [41] to extract 123 
specific features from the derivative of a MOX sensor (the so-called ‘bouts’) which are produced by 124 
individual plume filaments. A ‘bout’ is declared when the derivative of the sensor response  125 
continuously rises at a fast rate, and the frequency of these ‘bouts’ is correlated to the distance to a 126 
gas source (at least in 2D wind tunnel experiments) [41]. At this time it is unclear if the bout frequency 127 
is also correlated to the distance to a gas source in a 3D environment with time-varying airflow. 128 

This paper, which is an extended version of our previous conference paper [42], presents a 3D 129 
grid of MOX sensors capable of reconstructing a 3D chemical image of the sensed environment. In 130 
contrast to the work by Vito et al. [32], our network is denser (27 nodes instead of 4), the environment 131 
is more realistic (an office room instead of a gas chamber) and the set of experiments is richer. The 132 
first contribution of this paper is the dataset itself, that we make publicly available. Experimental 133 
datasets are fundamental to validate GSL and GDM algorithms, and collecting them is an expensive 134 
task. For this reason, the number of available datasets is quite limited and only available in simple 135 
2D environments such as wind tunnels [17]. The second and main contribution is the analysis of 136 
indoor gas dispersion patterns (3D) resulting from ten experiments in which an evaporating gas 137 
source released ethanol for 90 minutes, including variations in height, release rate and air flow 138 
profiles. The third contribution is to study which type of map (mean, variance or bout frequency) is 139 
better for estimating the source location in each experiment. In this context, we propose a novel 140 
estimator, the bout frequency maximum estimate (BME) which is defined as the cell with maximum 141 
value in a bout frequency map, and compare it against the CME and VME.  142 

2. Materials and Methods 143 

2.1. Test environment and MOX sensor grid 144 

A 30 m2 office room was used as the test environment (Figure 1). The volume of the room (78 m3) 145 
was divided into a 3 × 3 × 3 grid (27 cells) of approximately 2.9 m3/cell and a MOX sensor was placed in 146 
the center of each cell. The 27 MOX sensors (Models: TGS 2600, 2602, 2610, 2611 and 2620, Figaro 147 
Engineering Inc., Osaka, Japan) were selected based on availability in the lab and were calibrated to 148 
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compensate differences in sensitivity and baseline (see Supplementary Material). Each sensor was 149 
mounted on a conditioning board that integrates a voltage divider (load resistor = 68 kΩ) to read out 150 
the sensor output (see inset on Fig. 1). The 27 sensors were divided into four groups of 9, 6, 6 and 6 151 
sensors, respectively, where each group of sensors was connected to a power source and a custom 152 
processing node that acquired the analog output signals. Each processing node integrates an Arduino 153 
Mega microcontroller with a WiFi shield (Arduino AG, Turin, Italy) and a temperature/humidity sensor 154 
(DHT22, Adafruit Industries, New York, NY, USA) with an accuracy of 0.2 °C and 2% r.h (see inset on 155 
Fig. 1). The sensor signals together with temperature and humidity measurements in different locations 156 
of the room were sent to a central computer every 0.5 s via WiFi. A 2D ultrasonic anemometer with 0.01 157 
m/s resolution and 2% accuracy (Model: WindSonic, Gill Instruments Ltd., Hampshire, UK) was used 158 
to measure the wind direction and speed in specific locations of the room. 159 

Figure 1. CAD drawing and photo of the test room, highlighting the MOX sensors (green circles), 160 
processing nodes (orange rectangles), HVAC inlet (pink rectangle), window and radiators. 161 

2.2. MOX measuring circuit 162 
MOX sensors are based on the changes in sensor resistance (𝑅S) produced by gas exposure. To 163 

measure 𝑅S, a voltage (𝑉𝐶) of 5 V is applied across the sensor electrodes and the load resistor (𝑅L) 164 
connected in series. The voltage 𝑉𝑆 (𝑉) measured across the load resistor can be related to 𝑅𝑠 (𝑘Ω) by 165 
applying the voltage divider equation 166 

𝑅S = 𝑅L ∙
𝑉𝐶 − 𝑉𝑆

𝑉𝑆
 (1) 

2.2. Gas source and experiments 167 
Ten independent experiments were performed over the course of three weeks (Fall 2017) to study 168 

the dispersion patterns of a single gas source placed at several locations of the room, including 169 
variations in height (ℎ), release rate and air flow profiles (Table 1). The gas source was either a large 170 
glass beaker (10 cm diameter, 700 mL capacity) filled with 350 mL of ethanol or a small beaker (3 cm 171 
diameter, 100 mL capacity) filled with 80 mL of ethanol. Varying the cross-section of the container was 172 
used to increase the strength of the source, as suggested by Lilienthal et al. [43]. The gas source was 173 
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normally placed on top of a table (ℎ = 0.9 m) near the south wall of the room (Fig. 2a). In Experiment 174 
3, it was placed on the floor near a radiator to test the effect of heat in the gas release (Fig. 2b). In 175 
Experiment 4, it was placed on top of a bookshelf (ℎ = 2.0 m) and the window was open (Fig. 2c). A 176 
fish tank pump was used in Experiment 5 to further increase the release rate. In Experiment 7, the beaker 177 
was placed on top of a blackboard (ℎ = 2.2 m) and a DC fan placed behind it was used to disperse the 178 
chemicals. In Experiment 10, the source was placed on a tripod (ℎ = 1.75 m) in the middle of the room.  179 

 180 
Table 1. List of experiments. 181 

 182 

Figure 2. Gas source placement on (a) Top of table (Exp. 1); (b) Near radiator (Exp. 3); (c) Top of 183 
bookshelf (Exp. 4). 184 

The first five experiments were performed without strong artificial airflow in the room, since these 185 
are the conditions found in most indoor environments (especially if windows and doors are closed). 186 
Strong airflow was introduced in the last five experiments by using two types of fan. A 12V DC fan 187 
placed behind the source was used in Experiments 6 and 7, whereas a 45W tower fan (Model: ND-668R-188 
42, SEEWILLOPTOELECTRONICS TECHNOLOGY CO., Guangdong, China) with three selectable 189 
speeds was used in Experiments 8-10. The tower fan was placed in horizontal position tilted slightly 190 
(approx. 10º) towards the ceiling (Fig. 2a). The air flow in both cases was measured using a 2D 191 
anemometer placed in the middle of the room (h = 1.6 m). The effect of certain experimental variables 192 
can be analyzed by comparing pairs of experiments in which only one variable changes. For example, 193 
the effect of the beaker size on gas dispersion under weak airflow can be assessed by comparing 194 
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Experiments 1 and 2, and under strong airflow by comparing Experiments 8 and 9. Similarly, the impact 195 
of the fan type can be analyzed by comparing Experiments 6 and 8. 196 

An experiment is divided into three phases: baseline recording (10’), gas release (90’) and room 197 
cleaning (60’). During the first 10 minutes of the experiment, the baseline of the sensors is recorded in 198 
the absence of gas. The gas release starts by pouring ethanol into the beaker and it is maintained for 90 199 
minutes. After that, the cleaning process consists on taking the beaker out of the room, opening the 200 
window and door and turning on the fan at maximum power.  201 

2.3. Sensor calibration 202 
Each gas sensor was calibrated individually in a custom testbench (Fig. 3) in which dynamic gas 203 

mixtures of ethanol and synthetic air were generated and delivered to a small gas chamber (48 cm3 204 
internal volume) containing the sensor under test. The gas generation system combines a permeation 205 
oven (Model: OHG-4, Owlstone Inc, Connecticut, USA) and a custom evaporation system to produce 206 
concentrations below and above 25 ppm, respectively. The following concentrations were prepared 207 
using the two methods described above: 0, 1, 2.5, 4, 6, 10, 12, 15, 20, 25, 50, 75, 100, 200, 333, 500, 750 and 208 
1000 ppm. The samples were humidified to 30 ± 1 % r.h. using the bubbler method [21] and the 209 
temperature inside the chamber was kept constant at 23 ± 1.5 °C (these are typical values in the test 210 
room). Humidity, temperature and pressure inside the gas chamber were monitored using an 211 
environmental sensor (Model: BME680, Bosch Sensortec GmbH, Reutlingen, Germany). The 212 
concentration was measured using a PID. The sensor response 𝑉s (V) was recorded at 10 Hz by a digital 213 
datalogger (Model: USB-6002, National Instruments, Austin, TX, USA). The calibration process starts 214 
by flushing the gas chamber with clean air at 1000 ml/min for 5 minutes. Then, randomized gas mixtures 215 
are introduced into the chamber for 2 minutes to let the sensor response reach the steady-state value. 216 
The last 5 s of the measurement are averaged to produce the steady-state value 𝑉𝑠

∗ (V), which is then 217 
converted to resistance by applying Equation 1. The sensor resistance is divided by the resistance in 218 
clean air 𝑅0 (𝑘Ω−1) to correct potential baseline changes. The calibration curves of the 27 MOX sensors 219 
were obtained by spline interpolation of the normalized resistance values in the steady-state.  220 

 221 

 222 
Figure 3. Schematic diagram of the test bench used for sensor calibration. 223 

2.4. Gas distribution maps 224 
The calibrated sensor signals, 𝑠𝑥,𝑦,𝑧(𝑡), are processed to provide spatial representations (i.e. a map) 225 

of the average concentration, variance of the concentration or bout frequency in the room during a given 226 
time interval 𝑡 ∈ [𝑇 −

𝑊

2
, 𝑇 +

𝑊

2
], where 𝑇 is the center of the interval and 𝑊 the window size. Figure 227 

4 shows a diagram of how to compute a mean concentration map. The mean concentration 𝜇𝑥,𝑦,𝑧 (ppm) 228 
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at every sensor location (𝑥, 𝑦, 𝑧) is computed during the given interval and the resulting values are 229 
grouped by height (𝑧) to produce three 2D maps, 𝑀𝑧  (3 x 3). The three maps are independently 230 
interpolated using a triangulation-based cubic method (MATLAB function griddata) and a grid 231 
resolution of 1 cm. The maps are then rotated in 3D and vertically stacked. Interpolation occurs only 232 
within the bounding box of the sensors, i.e. measurements are not extrapolated, so the maps show an 233 
empty area between the sensors and the walls of the room. In our experiments, we used values of 𝑇 =234 
{15, 30, 60, 90} minutes and 𝑊 = 5 minutes. The impact of the window size on the gas distribution 235 
maps is studied in Section 3.4, by reducing the measurement window to 30 seconds. 236 

 237 
 238 
 239 
 240 
 241 
 242 
 243 
 244 
 245 
 246 
 247 
 248 
 249 
 250 

Figure 4. Computation of a mean concentration map (3D). The calibrated sensor responses, 𝑠𝑥,𝑦,𝑧(𝑡), 251 

are averaged in the time interval 𝑡 ∈ [𝑡 −
𝑇

2
, 𝑡 +

𝑇

2
] to produce 𝜇𝑥,𝑦,𝑧, where 𝑥, 𝑦, 𝑧 ∈ {0,1,2} are the 252 

coordinates of a sensor in the grid. The mean values are grouped by height to produce three 2D maps, 253 
which are independently interpolated and vertically stacked.   254 

The variance and bout frequency maps are computed in a similar way, replacing 𝜇𝑥,𝑦,𝑧  by the 255 

variance of the response, 𝜎𝑥,𝑦,𝑧
2 , or the bout frequency, 𝐵𝑥,𝑦,𝑧. To compute 𝐵𝑥,𝑦,𝑧, the bouts of each sensor 256 

signal 𝑠𝑥,𝑦,𝑧(𝑡)  are extracted using Schmuker’s algorithm [41], using as smoothing parameters 257 

𝜎smooth = 2.5 s and 𝜏half = 2.5 s. Regarding the bout amplitude threshold (𝑏thr) necessary to filter out 258 
low-amplitude bouts, we used a constant threshold for all sensors instead of applying the 3-sigma 259 
criterion proposed by Schmuker et al. The constant threshold was optimized in each experiment to 260 
minimize the average localization error (Section 2.5) across different timestamps. Maps obtained by 261 
estimation of 𝑏thr using the 3-sigma criterion are shown in Section 3.5.  262 

2.5. Source localization accuracy 263 

The gas source localization error (m) is quantified by the Euclidean distance between the cell 264 
corresponding to the maximum of the map (i.e., CME, VME or BME) and the true source location (TSL). 265 
As a result of the interpolation method that we used, the maximum of a gas distribution map will be 266 
always located in one of the sampling points, which imposes a lower bound in the localization error.  267 

3. Results 268 

3.1. Temperature, humidity and airflow in the test room 269 

The environmental parameters in the test room were continuously monitored to ensure that the 270 
MOX sensors were operated within the range of variation covered in calibration, and therefore, the 271 
calibration models were valid. Stable temperature and humidity values around 21-24 ºC and 25-35 % 272 
r.h., respectively, were measured in different locations of the room (except when the window was 273 
open). The side of the room near Node 4 was 1 ºC warmer and 2 % r.h. less humid than the rest of the 274 
room. When the window was open (Experiment 4), temperature decreased by 2-3 ºC (experiments were 275 
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carried out in Fall), humidity increased by 4 % r.h and wind speeds up to 0.2 m/s were measured near 276 
the window inside the room. The DC fan generated a wide air beam (approx. 90º), with speeds 277 
between 0.05 and 0.2 m/s measured at the height of the fan and 3 meters in front of it. The tower fan 278 
at the lowest speed produced a highly directional air flow (approx. 40º) with speed between 0.6 and 279 
1.1 m/s. The HVAC released a small airflow with speed below 1 cm/s.  280 

3.2. Gas distribution patterns under weak airflow  281 

3.2.1. Gas source on table and different beaker size (Experiments 1 and 2) 282 

The gas source was placed on top of a table (ℎ =  0.9 m) in Experiments 1 and 2, and the size of 283 
the beaker was the only variable that changed between both experiments. In both experiments, the 284 
mean gas distribution maps show a gas cloud that initially develops near the source and 285 
progressively occupies the middle-upper heights of the room (Figure 5). After approximately 1 hour 286 
of release, the gas cloud disperses towards the opposite side of the room and the gas distribution 287 
becomes relatively stable. The average concentration inside the cloud is only 1 ppm higher than the 288 
surrounding background concentration, which reaches maximum average values of 1.5 ppm after 90 289 
min of release. Accumulation near the ceiling is more evident in Experiment 2, probably due to the 290 
larger beaker size. The floor was the area of the room with the lowest concentration, which was 291 
usually below 1 ppm. The CME coincided with the TSL frequently during the first hour of release in 292 
Experiment 1 and only intermittently during the first 40 minutes of release in Experiment 2. In both 293 
cases, the performance of the CME degraded towards the end of the experiments. The average 294 
localization error considering the whole release period is 2.0 m in Experiment 1 and 3.9 m in 295 
Experiment 2 (the minimum possible error is 0.8 m in both cases). 296 

Figure 5. Mean concentration maps at several timestamps in (a) Experiment 1 (small beaker) and (b) 297 
Experiment 2 (large beaker). The gas source is denoted by a red star, the CME by a red dot and the MOX sensors 298 
by white dots. 299 

The raw signals in both experiments show high intermittency of the concentration in two specific 300 
locations: in front of the source (𝑠101) and near one of the walls of the room (𝑠211). In Experiment 2 301 
(Fig. 6), concentration peaks of 5-25 ppm occurred frequently near the source during the first 40 302 
minutes of release whereas in the second half of the experiment the concentration dropped below 1 303 
ppm for extended periods of time (e.g. 𝑡 ∈ [50, 70] minutes). Near 𝑠211, concentration peaks are less 304 
intense (2-10 ppm) but more consistent along the whole experiment. The remaining sensors show a 305 
steady increase in concentration after 10-15 minutes of release, never exceeding concentration values 306 
of 2 ppm. A slightly different trend is observed in Experiment 1 (small beaker) because the high 307 
concentration fluctuations near the source last for 60 minutes instead of 40, and the concentration 308 
near 𝑠211 fluctuates less intensely.  309 
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Figure 6. Instantaneous concentration (all sensor responses stacked together) in Experiment 2. 310 
 The strong fluctuations of the instantaneous concentration near the source allow a better 311 

estimation of the source location through maps representing the concentration variance (Figure 7a) 312 
or the bout frequency (Figure 7b). Whereas a gradient in the variance maps is observed at the height 313 
of the source and close to it, the bout frequency maps show a larger gradient also visible above the 314 
source, extending the detection area from a plane to a volume around the source. In none of the maps 315 
the source could be detected from ground-level measurements. The VME and BME in Experiment 1 316 
coincide with the TSL along the entire experiment, yielding the minimum possible localization error 317 
(0.8 m) at all timestamps (Fig. 7c). In Experiment 2, the VME coincides with the TSL mostly before 318 
𝑡 = 50  min (when the variability near 𝑠101  is high). Afterwards, it shifts towards 𝑠211  and the 319 
localization error increases (Fig. 7d). The average error considering the whole experiment is 2.1 m. 320 
The bout frequency is less sensitive to the high variability of 𝑠211 and the BME is located either in 321 
front of the source (𝑠101) or on top of it (𝑠102), leading to lower localization errors (average of 1.3 m).  322 

Figure 7. (a) Variance and (b) Bout frequency maps (𝑏𝑡ℎ𝑟 = 0.01 ppm/s) at 𝑡 = [30, 60] min in Experiment 323 
2. The gas source is denoted by a red star, the VME and BME by a red dot and the MOX sensors by white dots; 324 
(c-d) Localization error in (c) Experiment 1 and (d) Experiment 2. The minimum possible error is 0.8 m. 325 

3.2.3. Gas source near a heat source (Experiment 3) 326 
The gas source was placed on the floor next to a radiator to determine if gas dispersion was 327 

affected by convective air currents and how challenging would be to localize a gas source in these 328 
conditions. The mean concentration maps (Fig. 8a) reveal that gas progressively accumulates in the 329 
upper-middle heights of the room, hindering the localization of the gas source through the CME at 330 
all studied timestamps (mean localization error = 4.6 m). The variance (Fig. 8b) and bout frequency 331 
maps (Fig. 8c) yielded only slightly better localization errors (average of 4.0 m).  332 
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 334 
 335 
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Figure 8. Experiment 3. (a) Mean, (b) Variance and (c) Bout frequency maps (𝑏𝑡ℎ𝑟 = 0.005 ppm/s) at 𝑡 =337 
90 min. The gas source is denoted by a red star, the CME by a red dot and the MOX sensors by white dots; (d) 338 
Localization error (the minimum possible error is 0.9 m).  339 

3.2.4. Gas source with high release rate (Experiment 4) 340 
The gas source was placed on the floor in the middle of the arena and a fish tank pump was used 341 

to increase the release rate. In less than 5 minutes, instantaneous concentrations one order of 342 
magnitude higher than in previous experiments were measured in the room (Fig. 9). The mean 343 
concentration map at 𝑡 = 60 min indicates that gas concentration on the floor (≈150 ppm) is three 344 
times higher than near the ceiling (≈50 ppm), probably because the molecular weight of the released 345 
gas dominated dispersion over convective air currents. The sensor that registers the highest mean 346 
concentration and variance is not the closest one to the source (𝑠110) but the one located downwind 347 
of the source (𝑠210). Although no artificial airflow was induced in this experiment, the source was 348 
located on the path of the air flow released by the HVAC inlet, which dispersed the gas towards the 349 
east side of the room. Also, the closest sensor to the gas source (𝑠110) was held on a vertical support 350 
that could partially block the amount of gas reaching the sensor surface. This can explain why the 351 
CME, VME and BME were not found in the center of the room (i.e. near the source), and consequently 352 
the high localization errors (2.3 m).  353 

Figure 9. Experiment 4. Instantaneous concentration and mean concentration maps at 𝑡 = 15 min and  354 
𝑡 = 60 min, in log scale. In the maps, the gas source is denoted by a red star, the airflow direction by a red arrow, 355 
the CME by a red dot and the MOX sensors by white dots. 356 

3.3. Gas distribution patterns under strong unidirectional airflow 357 

3.3.6. Source on table and different types of fan and beaker (Experiments 6, 8 and 9) 358 
Placing a fan behind the source produces gas dispersion patterns radically different than the 359 

ones observed previously. For instance, in Experiment 6 (where a DC fan was used) the sensor signals 360 
located within the main airflow path (e.g., 𝑠111 and 𝑠121) are characterized by a plateau of stable 361 
mean concentration with strong fluctuations due to turbulence (Fig. 10). Sensors outside the main 362 
airflow path (e.g. 𝑠112) show instead a steady increase in concentration that may take up to 40 363 
minutes to reach a steady state. The mean concentration maps show a plume that develops in the 364 
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positive y-direction at the height of the source since the beginning of the release. The plume origin 365 
seems to be in the middle of the room instead of near the source, probably because the strong airflow 366 
cooled down the sensing layer of the closest sensor to the fan (𝑠101). Remember that a cold MOX 367 
sensor is a worse electrical conductor than a hot sensor, i.e. it has higher electrical resistance. Since 368 
resistance decreases with concentration in n-type MOX sensors, an increase in resistance translates 369 
into a lower measured concentration.  370 

 371 
Figure 10. Experiment 6. Instantaneous concentration and mean concentration maps at 𝑡 = 15 min (left 372 

inset) and 𝑡 = 90 min (right inset). In the maps, the gas source is denoted by a red star, the airflow direction by 373 
a red arrow, the CME by a red dot and the MOX sensors by white dots. 374 

The plume discontinuity near the source together with the progressive accumulation of gas near 375 
the ceiling hinders the localization of the source using the CME (mean error = 2.65 m). The variance 376 
maps (Fig. 11a) yield a slightly better localization performance (mean error = 2.36 m) but cannot 377 
accurately pinpoint the TSL because sensors outside of the plume (e.g. 𝑠201 ) registered higher 378 
variance than the sensor in front of the source (𝑠101). For example, at 𝑡 = 90 min the concentration 379 
variance of 𝑠201 (19.2 ppm2) is one order of magnitude higher than the variance of 𝑠101 (1.7 ppm2). 380 
The high variance of 𝑠201 at this timestamp may be caused by a lasting contact with a gas patch 381 
whereas 𝑠101 presents multiple short fluctuations (i.e. bouts) produced by the plume (Fig. 12). This 382 
explains why the bout frequency maps (Fig. 11b) can better reconstruct the gas plume and further 383 
reduce the localization error (mean error = 1.63 m). 384 

 385 
Figure 11. Experiment 6. (a) Variance and (b) Bout frequency maps (𝑏𝑡ℎ𝑟 = 0.045 ppm/s) at 𝑡 = 30 min 386 

and 𝑡 = 90 min. The gas source is denoted by a red star, the airflow direction by a red arrow, the BME and VME 387 
by a red dot and the MOX sensors by white dots. (c) Localization error (minimum possible error is 0.8 m). 388 

Similar qualitative results were obtained for different types of fan and beaker. For example, in 389 
Experiment 8 (tower fan) the mean concentration maps have similar shape than those of Experiment 390 
6, but the maximum mean concentration after 90 minutes of release (11 ppm) is three times lower 391 
than in Experiment 6 (28 ppm) despite the tower fan is more powerful than the DC fan. Since the DC 392 
fan is more compact than the tower fan, it was placed closer to the headspace of the beaker and this 393 
may increase the evaporation rate of the substance. On the other hand, using the large beaker in 394 
combination with the tower fan (Experiment 9) yielded the highest average concentrations (78 ppm) 395 
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among all experiments with artificial airflow. This indicates that the size of the beaker and the type 396 
of fan can strongly affect the evaporation rate of the substance. Regarding GSL, the CME, VME and 397 
BME produced errors of 2.5-3.3, 2.6-2.9 and 1.7-2.3 m, respectively, in these experiments.   398 

Figure 12. (a) Instantaneous concentration of sensors 𝑠201 and 𝑠101 between 𝑡 =  87.5 and 92.5 min in 399 
Experiment 6. The variance of each signal is indicated in the plot; (b-c) 𝑒𝑚𝑎α filtered signals of sensors 𝑠201 400 
and 𝑠101, with bouts above a threshold of 0.045 ppm/s marked in red. The number of detected bouts is indicated. 401 

3.3.7. Elevated source and DC Fan (Experiment 7) 402 
In this experiment, the gas source was placed at a height of 2.2 m in front of a DC fan that 403 

generated unidirectional air flow. At the beginning of the release, a buoyant gas cloud develops at 404 
the height of the source and, as the experiment progresses, the gas cloud progressively bends 405 
downwards (Fig. 13a). This is probably because the fan is not powerful enough to maintain a steady 406 
height airflow. After 45 min of release, most gas is accumulated 3-5 m downwind of the source and 407 
1 m below it. Consequently, the CME accurately estimates the TSL only immediately after the release 408 
and the error increases afterwards (mean error = 4.8 m). The variance maps (Fig. 13b) show the 409 
opposite trend, with the VME located far away from the source at the beginning of the experiment 410 
and getting closer to the source afterwards (mean error = 3.4 m). The bout frequency maps (Fig. 13c) 411 
present two local maxima in most timestamps (one of them matching the TSL), thus leading to the 412 
lowest localization errors (mean error = 1.3 m). 413 

 414 
Figure 13. Experiment 7. (a) Mean, (b) Variance and (c) Bout frequency maps (𝑏𝑡ℎ𝑟 = 0.01 ppm/s) at 𝑡 = 60 415 

min. The gas source is denoted by a red star, the airflow direction by a red arrow, the CME, BME and VME by a 416 
red dot and the MOX sensors by white dots. (d) Localization error (minimum possible error is 1.1 m). 417 

3.3.9. Overall localization performance 418 
The average localization error in each experiment is summarized in Table 2, together with the 419 

average values corresponding to weak (W) and strong (S) airflow conditions. It should be recalled 420 
that the minimum possible localization error ranges between 0.8 and 1.1 m. The worst localization 421 
performance considering the three estimators occurs in Experiment 3, because the source was placed 422 
next to a heat source which created buoyant dispersion patterns. The best performance is obtained in 423 
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Experiment 4, when the source was placed on one corner of the room and the wind blew against that 424 
corner. In weak airflow conditions, the VME and BME perform equally well (1.9-2.1 m error) and 425 
both better than the CME (2.8 m error). Under strong airflow, the BME is clearly the best estimator 426 
(1.8 m error), followed by the VME (2.7 m error) and the CME (2.9 m error). Considering all scenarios, 427 
the BME achieves the lowest localization error (1.8 m) and the CME the largest one (2.9 m).  428 

Table 2. Average localization error (m) in each experiment (columns 1-10), in weak airflow 429 
experiments (W), strong airflow experiments (S) and all experiments (ALL).430 

 431 

3.4. Effect of the window size on the gas distribution maps 432 

In this section, we explore the impact of reducing the window size (𝑇) from 5 min to 30 s on the 433 
mean, variance and bout frequency maps. For that, we plot the temporal evolution of the residual 434 
localization error of each estimator in different experiments (Fig. 14), computed as the difference 435 
between the localization error using 𝑇 = 5 min and 𝑇 = 30 s. The obtained curves indicate that the 436 
impact of 𝑇 in the maps strongly depends on the experiment, and changes over time. For example, 437 
reducing the window size negatively affects the performance of the CME during the first hour of 438 
Experiment 1 (weak airflow) but can improve the performance afterwards (Fig. 14a). In the same 439 
experiment, the VME and BME always degrade at small 𝑇. A completely different trend is observed 440 
in Experiment 5 (Fig. 14b). Neither one of the three estimators is sensitive to 𝑇 during the first 30 441 
minutes of release. Afterwards, the VME and BME improve their performance by reducing the window 442 
size. In Experiment 7 (strong airflow), the performance of the BME strongly degrades for small 𝑇 443 
while the variance slightly improves (Fig. 14c).   444 

Figure 14. Impact of the window size (𝑇) on the source localization error (ε). The three panels show the 445 
temporal evolution of the residual localization error (m), computed as the difference between the localization 446 
error using 𝑇 = 5 min and 𝑇 = 30 s, in (a) Experiment 1, (b) Experiment 5 and (c) Experiment 7. Positive 447 
values of the residual error indicate improvement in localization error when 𝑇 = 30 s and vice-versa. 448 

The reason why the BME strongly depends on 𝑇 is illustrated using the bout frequency maps 449 
and signals of Experiment 1 at 𝑇 = 30 min (Fig. 15). At this timestamp, the BME coincides with the 450 
TSL if 𝑇 = 5 min but not if 𝑇 = 30 s (Fig. 15a). In the first case, 16 bouts are detected by the closest 451 
sensor to the source (𝑠101) whereas at most 11 bouts are detected by any other sensor (e.g., 𝑠102). 452 
However, if the window size is too short, the same number of bouts (1) is detected by 𝑠101 and 𝑠102, 453 
leading to binary bout frequency maps with multiple local maxima. The reason why 𝑠101 only detects 454 
a single bout when 𝑇 = 30 s is that the timeframe 𝑇 = [29.5, 30.5] min (see black rectangle in Fig. 455 
15b) coincides with a period of inactivity near the source after a series of concentration peaks. 456 
Resultingly, only a single long bout corresponding to the sensor recovery is detected by 𝑠101 . This 457 
indicates that a window size of 30 s is probably too short for bout detection in weak airflow conditions 458 
because ‘void’ periods longer than 30 s may occur frequently. 459 
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 460 

Figure 15. (a) Effect of the measurement window (𝑇) on the bout frequency maps at time 𝑇 = 30 min in 461 
Experiment 1. The gas source is denoted by a red star, the BME by a red dot and the MOX sensors by white dots; 462 
(b) (from top to bottom) Instantaneous concentration (highlighting the response of sensors 𝑠101 and 𝑠102 over 463 
the rest), 𝑒𝑚𝑎α filtered signals of sensors 𝑠101 and 𝑠102, with bouts above threshold of 0.01 ppm/s marked in 464 
red. The black rectangle highlights the region corresponding to a window size of 30 s. 465 

3.5. Effect of the bout amplitude threshold 466 
The bout frequency maps presented so far were computed using a constant 𝑏thr  instead of 467 

applying the 3σ criteria proposed by Schmuker et al. The former approach requires a priori knowledge 468 
of the TSL (for optimizing the threshold) whereas the latter method only requires sensor exposure to 469 
clean air during several minutes, which is a more feasible requirement. However, maps obtained with 470 
the 3σ approach might not clearly indicate the TSL whereas maps obtained with the optimized constant 471 
𝑏𝑡ℎ𝑟 continuously present its maximum value near the TSL (Fig. 16b).  472 

The reason why the 3σ threshold may not work properly can be explained by looking at the raw 473 
signals corresponding to the period 𝑇 = [27.5, 32.5] min in Experiment 4 (Fig. 16). While the closest 474 
sensor to the source (𝑠022) clearly shows the highest mean value and variability among all sensors (Fig. 475 
16a), the highest bout frequency is obtained by a sensor (𝑠121) located further away from the source (Fig. 476 
16b). In the same 5-minute period, 8 bouts are detected by 𝑠022 (Fig. 16d) whereas 12 bouts are detected 477 
by 𝑠121 (Fig. 16e). The 3σ threshold neglects the fact that the bout amplitude, which is in average 2.6 478 
times larger in 𝑠022  (0.13 ppm/s) than in 𝑠121  (0.05 ppm/s) also provides valuable information 479 
regarding the TSL. Since the 3σ threshold is estimated in the absence of gas, it cannot predict the bout 480 
amplitude during gas exposure. For example, thresholds between 0.001 and 0.04 were obtained using 481 
the 3σ criteria, whereas a constant threshold of 0.05 ppm/s was the optimum value to minimize the 482 
localization error. 483 

4. Discussion 484 
Monitoring the 3D gas distribution produced by an evaporating chemical substance heavier than 485 

air has revealed that assumptions commonly held in the MRO field, such as that ethanol will 486 
accumulate on the floor or that the lack of induced airflow produces a stable gas distribution [7], do 487 
not necessarily hold in every scenario. The slow evaporation rate of ethanol at room temperature led 488 
to mean concentrations of only few ppm in most locations of the room after 90 minutes of release. At 489 
such low concentrations, the composition of the ambient air did not change enough to affect the 490 
buoyancy of the gas and dispersion was fully dominated by convective or recirculating air currents. 491 
This is demonstrated by the progressive gas accumulation towards the ceiling observed in most 492 
experiments, especially when the gas source was placed next to a heat source. Resultingly, ground-493 
level gas distributions were not useful for pinpointing the TSL in most experiments.  494 

 495 
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 496 
Figure 16. Effect of the bout amplitude threshold (𝑏𝑡ℎ𝑟) on the bout frequency maps of Experiment 4. (a) 497 

Instantaneous concentration of all sensors in the first 50 minutes of experiment; (b) Bout frequency map 498 
computed at 𝑇 = 30 min using 𝑏thr = 𝜇 + 3𝜎 (left) or 𝑏thr = 0.05 ppm/s (right). The gas source is denoted by 499 
a red star, the airflow direction by a red arrow, the BME by a red dot and the MOX sensors by white dots; (c) 500 
Zoom-in of the signals between 𝑇 = 27.5 and 32.5 min, highlighting the response of sensors 𝑠121 and 𝑠022; (d-501 
e) 𝑒𝑚𝑎α filtered signals of sensors 𝑠022 and 𝑠121, with bouts larger than 𝜇 + 3𝜎 (ppm/s) marked in red. 502 

 503 
The high variability observed near the source in the absence of induced airflow seems to 504 

contradict the findings reported by Wandel et al. [43], in which the gas distribution captured by a 505 
terrestrial robot in an unventilated indoor environment was stable over several hours and across 506 
several trials. Similarly, Lilienthal et al [7] observed stable gas distributions in 10 to 25 minutes. This 507 
discrepancy might be due to the different characteristics of the gas source and the environment (e.g. 508 
natural air currents) or, more likely, due to the inherent difficulty in assessing stability of a gas 509 
distribution with a mobile robot. For example, Lilienthal et al. [7] considered the mapped distribution 510 
to be stable when the grid cell with maximum value became spatially invariant, which does not 511 
necessary imply that the gas distribution is time-invariant. 512 

These observations suggest that an evaporating chemical source may not be the ideal method to 513 
simulate a gas leak in weak airflow environments, since it poses unnecessary challenges to mobile 514 
robots such as low concentrations similar to the LOD of MOX sensors [44,45] even near the source, 515 
buoyant dispersion patterns and instable gas distributions. Increasing the size of the beaker was not 516 
an effective method to increase the release rate, as similar gas distributions were observed regardless 517 
of the beaker size. Instead, using a bubbler led to dense gas dispersion patterns and rapid stabilization 518 
of the gas distribution, which are more favorable conditions for terrestrial robots. Placing a fan behind 519 
the gas source led to stable gas distributions with a clearly visible plume. The air flow produced by 520 
the fan had nonetheless a negative effect on the observed gas distribution maps when the fan was 521 
placed close to any of the sensors in the grid, reducing the concentration measured by such sensor 522 
and “disconnecting” the plume from the source location. Actively controlling the heater temperature 523 
is the most obvious solution for this problem, which would also benefit mobile robots equipped with 524 
MOX sensors (as they may experience a similar problem). 525 
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Regarding GSL, the VME and BME yield in average lower localization errors than the mean (0.5 526 
m and 1.1 m lower, respectively). The BME notably better than the VME in experiments with strong 527 
air flow conditions (localization errors 0.9 m lower) and enables the detection of the source from 528 
above. The VME requires measurements taken at the height of the source but is less sensitive to the 529 
window size than the BME, which requires long measurement windows to produce reliable results. 530 
Applying a constant threshold for computing the bout frequency worked better than applying the 3-531 
sigma rule, which suggests that the bout amplitude encodes important information for GSL. 532 
However, how to optimize the threshold without knowing the TSL remains an open question to be 533 
explored in future works. One idea could be to use a multi-threshold approach, i.e., building bout 534 
frequency maps with different thresholds and searching for consistent source predictions over 535 
multiple threshold values. It is worth noticing that further analysis can be done on the generated 536 
dataset, for example to optimize the bout parameters (i.e., measurement window and amplitude 537 
threshold) or to test other estimators of source proximity, such as the mean bout amplitude or the 538 
maximum concentration. To achieve this and to enable other further follow-up research we made the 539 
dataset and the code used through this work available under the GNU General Public License v3.0. 540 

The CSG used in this work can only provide a rough estimation of the gas concentration 541 
distribution due to the low spatial resolution, limitations of MOX technology and technical 542 
considerations related to the installation of the sensors. Despite the gas distribution maps are 543 
interpolated to smooth the representation, interpolation cannot predict the instantaneous 544 
concentration outside of the measurement points due to turbulence. Even at the sensor nodes, the 545 
low response time of MOX sensors produce considerable integration of successive measurements. 546 
Thus, the interpolated gas distribution maps are only valid when averaging over some time interval. 547 
The response time of MOX sensors can be improved by simply removing the cap [46], however 548 
directly exposing the sensing surface to the ambient atmosphere may introduce additional problems 549 
such as higher sensitivity to air flow or lower stability of the response. Another alternative is to use 550 
the smoothed derivative of the sensor response as an estimate of the instantaneous concentration [47], 551 
but this requires tuning additional parameters such as the smoothing factor.  552 

The orientation of the sensors with respect to the main air flow and the type of support used to 553 
hold them at different heights might also affect the results, because MOX sensors are sensitive to air 554 
flow and the holder might block part of the gas reaching the sensor surface. A virtual 3D sensor made 555 
of multiple sensors arranged at different orientations and some kind of sensor fusion algorithm [48] 556 
could be a solution to this problem. The grid resolution establishes a lower bound in the localization 557 
error, determined by the distance between the source and the closest sensor to it. The error can 558 
obviously be reduced by increasing the network density, which requires considerable deployment 559 
effort and poses problems related to the heat emitted by many sensor heaters (which would affect 560 
gas dispersion). Possible options to reduce the power dissipation include low power operation of the 561 
sensors or using MEMS sensors with power consumption of few mW [49]. The deployment time can 562 
be speed up by using wireless modules [50] with factory-calibrated sensors.  563 
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Abstract: This paper describes the development and validation of the currently smallest aerial
platform with olfaction capabilities. The developed Smelling Nano Aerial Vehicle (SNAV) is based on
a lightweight commercial nano-quadcopter (27 g) equipped with a custom gas sensing board that can
host up to two in situ metal oxide semiconductor (MOX) gas sensors. Due to its small form-factor,
the SNAV is not a hazard for humans, enabling its use in public areas or inside buildings. It can
autonomously carry out gas sensing missions of hazardous environments inaccessible to terrestrial
robots and bigger drones, for example searching for victims and hazardous gas leaks inside pockets
that form within the wreckage of collapsed buildings in the aftermath of an earthquake or explosion.
The first contribution of this work is assessing the impact of the nano-propellers on the MOX sensor
signals at different distances to a gas source. A second contribution is adapting the ‘bout’ detection
algorithm, proposed by Schmuker et al. (2016) to extract specific features from the derivative of the
MOX sensor response, for real-time operation. The third and main contribution is the experimental
validation of the SNAV for gas source localization (GSL) and mapping in a large indoor environment
(160 m2) with a gas source placed in challenging positions for the drone, for example hidden in the
ceiling of the room or inside a power outlet box. Two GSL strategies are compared, one based on
the instantaneous gas sensor response and the other one based on the bout frequency. From the
measurements collected (in motion) along a predefined sweeping path we built (in less than 3 min)
a 3D map of the gas distribution and identified the most likely source location. Using the bout
frequency yielded on average a higher localization accuracy than using the instantaneous gas sensor
response (1.38 m versus 2.05 m error), however accurate tuning of an additional parameter (the noise
threshold) is required in the former case. The main conclusion of this paper is that a nano-drone has
the potential to perform gas sensing tasks in complex environments.

Keywords: robotics; signal processing; electronics; gas source localization; gas distribution mapping;
gas sensors; drone; UAV; MOX sensor; quadcopter

1. Introduction

Thanks to recent advances in micro-technology, manufacturers of unmanned aerial vehicles
(UAVs), or drones, have been able to develop miniaturized flying platforms; with insect-sized aircrafts
expected in the future [1] (Figure 1). A micro-UAV (MAV or µUAV) has a length between 15 cm and
100 cm and a weight between 50 g and 2 kg [2]. A nano air vehicle (NAV) or nano-drone is extremely
small, with a wingspan lower than 15 cm, and weighs less than 50 g [2]. If compared to piloted aircrafts

Sensors 2019, 19, 478; doi:10.3390/s19030478 www.mdpi.com/journal/sensors
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or larger UAVs, MAVs and NAVs can fly at low altitudes (i.e., below 150–200 m) over small geographic
or site-specific areas on a real-time basis at affordable operational costs [3]. MAVs equipped with
gas detection systems and/or sampling bags have been already used in the fields of environmental
monitoring [4–9], volcanic gas sampling [10–14], localization of fugitive emissions [15,16], early fire
detection [17,18], precision agriculture [19–21], landfill monitoring [22–24], disaster response [25] and
mine blasting [26], among others [27,28].
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The tiny form-factor and maneuverability of NAVs allow sensing of hazardous environments
inaccessible to terrestrial robots and bigger drones, can fly over areas being unobserved and are not
a hazard for humans, enabling their use in public areas or inside buildings. Providing a NAV with
olfaction capabilities is now possible due to miniaturization and low-cost fabrication of gas sensors.
An odor-sensitive nano-drone can be used in a myriad of applications that range from environmental
monitoring to search and rescue, leak detection, chemical, biological, radiological and nuclear (CBRN)
defense, explosive finding, among others. For example, in the aftermath of an earthquake or explosion
it is important to search for victims and hazardous gas leaks inside pockets that form within the
wreckage of collapsed buildings. A nano-drone could navigate such scenarios much faster than
a terrestrial robot, passing through confined spaces that preclude human entry, evading obstacles or
large gaps and sampling the space in three dimensions (3D).

1.1. Related Work on Gas-Sensitive Nanodrones

Two experimental works [29,30] already explored the viability of nano-drones for gas sensing
tasks. Rossi et al. [29] performed preliminary indoor experiments using a CrazyFlie 2.0 nano-drone
equipped with a metal-oxide semiconductor (MOX) gas sensor. The authors found that the air drawn
around the airframe strongly affected the sensor response, resulting in useless signals. They evaluated
several mechanical solutions to keep the sensor out of the region of airflow created by the nano-drone,
but the drone became uncontrollable because of inertia problems. The adopted solution was to operate
the drone in the so-called “butterfly” mode, in which a human pilot lands the drone in the proximity of
the source and halts the motors to take a measurement. In this way, the sensor signals are not affected
by the rotors but, at the same time, the 3D sensing capabilities of the drone are not used, and the
approach might not scale well to large scenarios.

Fahad et al. [30] equipped the same nano-drone with a chemically sensitive field effect transistor
(CS-FET) sensor for hydrogen (H2) detection. The test environment was a chemical hood in which H2

was released from the upper part of the hood and the drone ascended from the bottom of the hood to



Sensors 2019, 19, 478 3 of 25

the area near the source (h = 60 cm), aided by high tension strings. The sensor response increased as
the drone approached the source, reaching its maximum value after hovering (i.e., levitating) near the
source for 40 s. The drone was merely used as a proof-of-concept demonstration of the proprietary gas
sensor developed by the authors. The above works suggest that a nano-drone might be used for gas
source localization (GSL), however the experimental scenarios were extremely simple.

1.2. Experimental Evaluation of Gas-Sensitive Nanodrones

The main problems for performing large-scale experiments in complex environments using
nano-drones are related to the limited on-board resources and difficulty to control the platform due
to inertia and stability issues. Taking as an example the CrazyFlie 2.0 (CF2) quadcopter, the tiny
240 mAh battery delivers power for up to 7 min of flight and 15 grams of payload, which means that
only lightweight and power-efficient sensors can be mounted on board. Self-localization and obstacle
avoidance—required for autonomous navigation—are hard to accomplish because laser scanners,
for example, are too heavy for the nano-drone payload. Autonomous hovering of a CF2 equipped only
with a tiny RGB camera has been achieved in indoor experiments [31], although the camera consumes
all available payload and reduces the flight time to 3.5 min. The Global Positioning System (GPS) can
be used for localization outdoors where, however, nano-drones can often not be controlled stably due
to their low inertia and strong wind. Navigation in indoor areas can be achieved through motion
capture systems (MOCAPs) [32] or radio frequency (RF)-based systems [33]. MOCAPs offer high
accuracy (1 mm error) but are expensive, typically only cover small volumes and require line-of-sight
(LOS) between the cameras and the drone. RF-based systems are cheaper, have a larger coverage
area, do not necessarily require LOS but are less accurate (10 cm error). In many realistic scenarios,
deploying an external localization system might not be possible (e.g., in a disaster situation) and the
drone would have to navigate autonomously or remotely controlled by an operator.

Gas sensing tasks are also subject to additional constraints, as they must be executed in the
short time limited by the battery capacity and relying exclusively on one or two chemical sensors.
It should be noted that most research on GSL is based on terrestrial robots, which can be running
for hours, perform long measurements of 1–2 min at each sampling location and possibly use
selective sensors (e.g., TDLAS, OGI cameras, e-noses) and anemometers. Large drones can fly for
20–25 min and be equipped with the same technology as terrestrial robots. Nano-drones are therefore
subject to unprecedented constraints because a stop-sense-go strategy would only allow for at most
10 measurements (of 30 s each), the limited number of sensors hinder rejecting chemical interferences
and the absence of anemometry prevents assessing the wind direction, which is a key parameter for
GSL. During its operation, the drone can also not fly too fast or the relevant structures of the chemical
plume may become blurred due to the slow response time of the sensors [34,35]. Lilienthal et al. [35]
pointed out that the gas distribution mapped by a terrestrial robot may be slightly shifted as compared
to the real distribution, due to the memory effect of MOX sensors.

1.3. Gas Source Localization

Gas source localization (GSL) is a key task for gas-sensitive robots that consists in identifying the
point of release of a hazardous gas. GSL strategies can be divided into three groups: reactive plume
tracking (bioinspired), plume modelling and gas distribution mapping (GDM) strategies [36] (Figure 2).
Bioinspired algorithms attempt to track the gas plume along its entire length, mimicking the excellent
odor plume tracking capabilities of some flying insects. At this time it is unclear whether bioinspired
reactive behaviours have better performance than other approaches based on statistical inference from
cumulative readings [37–39]. According to [11], the bioinspired reactive behaviors that researchers have
implemented on mobile robots are modelled too simple to cope with complex environments, gas sensors
used are too slow to resolve plume features in a milliseconds scale and mobile robots are not agile enough
for performing insect-like reactive movements. Besides of that, bioinspired algorithms often require wind
measurements (anemometry) and real-time obstacle detection, which hinders their use in nano-drones.
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Plume modelling algorithms [40–43] assume a mathematical model for the plume, such as
Gaussian shaped plumes [44] or filament/particle based models [45–47], and use local measurements of
concentration and wind to fit the model and estimate the source location, which is usually a parameter
of the model. The practical applicability of plume modelling methods is limited because they tend
to make overly simplifying assumptions (e.g., that the wind field is stable, spatially uniform and
measurable), often require a-priori information such as the source release rate in Gaussian models [40],
or are sensitive to meta-parameters such as the odor detection threshold in filament-based models [41]
or the probability of particle encounter as a function of distance to the source in particle models [42].
The Gaussian model also assumes that the exploration area does not contain obstacles or walls
which could otherwise distort the plume. Further, long time-averaging might be required to observe
a Gaussian plume [48,49] or to estimate the particle density in a certain region, which slows down
plume modelling approaches for GSL.

GDM approaches use sensor measurements to first build a map of the gas distribution in the
environment, which is then used to estimate the source location. Maps reflecting the instantaneous
concentration [50], the mean concentration [35,38], the variance of the concentration [38,51] or the
number of odor hits (which are over-threshold segments in the sensor response) [52] have been
successfully used for GSL. To build a gas distribution map, the path of the robot should roughly cover
the entire search area, typically moving along a predefined trajectory [35,38,50], although adaptative
approaches have been proposed [53]. When the map is based on statistical properties of the gas
distribution (e.g., mean or variance), long measurements (typically 30 s and more) are often carried
out at each sampling location. This stop-and-sense strategy is not suitable for UAVs, particularly for
nano-drones, since any hovering stop quickly drains the battery [15]. GDM algorithms are less efficient
than bioinspired and plume modelling algorithms (in terms of distance travelled by the robot) but
do not rely on unrealistic assumptions nor require wind information or a-priori parameters. They are
compatible with slower robots and sensors and the resulting gas distribution map can be used for
other purposes beyond GSL.
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MOX sensors are probably the most suitable gas sensing technology for nano-drones due to the
reduced size (few mm2), low power consumption of some models (few mW) [54] and simplicity of the
conditioning electronics. Lilienthal et al. [55] observed that the maximum response of a MOX sensor
often corresponds to the approximate location of a gas source if the sensor readings are acquired in
motion. Such a correlation was never observed if the concentration measurements were collected
with a stop-sense-go strategy. This behaviour, which was previously reported by Atema et al. [56]
and confirmed by Farah and Duckett [57], was attributed to the long recovery time of MOX sensors.
If a MOX sensor is exposed to two consecutive gas patches, the response to the second stimulus will
occur when the sensor has not yet recovered from the first exposure. The overall response to the second
patch will be higher than if the sensor had been already fully recovered from the first patch. Since the
local density of gas patches tends to be higher near the source, the encounter rate with gas patches
is higher if the robot is moving. Thus, it is plausible that Rossi et al. [36] and Luo et al. [50] obtained
a good estimate of source location in outdoor experiments using the instantaneous response of a MOX
sensor mounted on a micro drone (≈800 g). In the latter case, the authors were able to build a 3D gas
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distribution map of a relatively large outdoor environment (10 × 16 m2) and localize the source in less
than 10 min. For that, they used a predefined flight path consisting of two 2D rectangular sweepings at
different heights (0.3 m and 1 m), without stopping at predefined locations for measuring. The cell with
maximum value of the gas distribution map coincided approximately with the true source location.

The results of Luo et al. [50] also show that the density of odor hits in a map is correlated to
the source location. An odor hit is typically declared when the instantaneous concentration exceeds
a certain threshold. Although the term ‘odor hit’ is widely used in the literature to indicate contact
between the gas and the sensor, strictly speaking it would be more precise to refer to these events
as ‘gas hits’ or ‘plume hits’ since most gases being released in reported experiments are odorless for
humans. Nonetheless, Thomas Lochmatter [11] argues that the definition of odor as a gas that humans
can smell can be extended to robots. In this sense, terms such as “odor” can also be used instead of
“gas”. Odor hits are supposedly caused by contact with individual patches of the plume and there are
indications that insects use similar features to orient rapidly in turbulent plumes [58,59]. Well-known
GSL algorithms such as Pang and Farrell’s method [41] or Infotaxis [42] model the plume as a sequence
of chemical filaments/particles and use odor hits to localize the source. Detecting odor hits with
a MOX sensor is a challenging task due to the long recovery time (in the order of 10–30 s) compared
to the temporal resolution of the chemical stimuli (in the order of ms). Several research groups
attempted to improve the response time of MOX sensors by novel hardware designs [60,61] or by signal
processing, using inverse dynamical models [34,62,63], artificial neural networks [64] or extracting
specific features [65]. Hardware methods are not appropriate for nano-drones, as they usually increase
the size, weight and power consumption of the system. Signal processing methods are more suitable.
Schmuker et al. [65] proposed a method to extract short time-scale features (called ‘bouts’) from the
derivative of the MOX sensor response that could be caused by contact with individual filaments
of the plume. In wind tunnel experiments, the authors found that the frequency of these ‘bouts’
(as detected with MOX sensors) is strongly correlated to the distance of a gas source: the higher the
bout frequency, the closer the sensor to the gas source. The proposed algorithm uses a threshold to
filter out low-amplitude bouts—produced by sensor noise—that would otherwise lead to meaningless
correlations. It was also found that the variance of the bout frequency (measured across multiple
trials) indicates whether the detector is in the plume centerline (low variance) or slightly lateral from it
(high variance). These features suggest a plume-tracking GSL strategy in which the robot first tries to
locate the plume centerline by monitoring the variance of the bout frequency and then approaches the
source by moving in the direction of increasing bout frequency. The advantages of this method are that
anemometry is not required and, since bouts are detected in the derivative of the signal, the algorithm
is not very sensitive to changes in the background concentration or to differences between individual
gas sensors. The sensitivity of the algorithm to the threshold used to discard noise-induced bouts has
not been studied yet, but it might have a large impact on the results. Since this method has not been
experimentally validated beyond a wind tunnel, it remains to be shown if meaningful gradients of
both bout frequency and its variance can be obtained in real scenarios.

1.4. Proposed Smelling Nano Aerial Vehicle (SNAV)

In this work, we propose a Crazyflie 2.0 nano-drone equipped with a MOX sensor for gas source
localization in large indoor environments. We calibrate the sensor to compensate the non-linear
response, obtain measurements in concentration units and to estimate the limit of detection (LOD).
We assess the impact of the propellers on the MOX sensor signals at different distances of a chemical
source. We then compare two GSL strategies, one based on the instantaneous response and the other
one based on the bout frequency in two experiments where the source is placed challenging positions
for the drone. We show that proper selection of the bout amplitude threshold is critical for good
localization performance. We also demonstrate that a 3D gas distribution map of an environment of
160 m2 can be built in less than 3 min using the proposed platform and the source can be accurately
localized from the map.
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2. Materials and Methods

2.1. Nano-Drone and Gas Sensors

Among all commercial nano-drones, we selected the CF2 (Bitcraze AB, Malmö, Sweden) due to
its low cost, reduced dimensions (10 × 10 cm) and open hardware/software architecture. Weighing
only 27 g, it has a maximum recommended payload of 15 g and is capable of up to 7 min of continuous
flight. The main microcontroller (µC) is an ARM 32-bit STM32F405 Cortex-M4, which runs an open
source real-time operating system (FreeRTOS). The CF2 communicates with a ground station (PC with
USB radio antenna) over the 2.4 GHz ISM radio band in up to 1 km range line-of-sight (LOS). The CF2
periodically sends over this link internal variables of the system (sensor measurements, position,
rotor speed, battery level, user-defined variables, etc.) and receives commands from the base station
such as waypoints or parameter updates. An expansion port—accessible from top and bottom of
the drone—provides the user with access to certain µC pins (4 x GPIO, 3 x PWM), power lines
(GND, VCC 3.0 V, VBAT 3.7 V) and communication buses (I2C, SPI, 2 x UART). New hardware
compatible with 3.0V logic can be easily integrated into the platform by soldering it into an expansion
board, called a deck, which can be connected to the expansion port. An installed deck is automatically
detected and initialized by the CF2 at startup, without having to modify the stock firmware. Only the
deck driver needs to be programmed, a separate piece of code that specifies the functionality of the
deck in FreeRTOS language.

A custom deck (i.e., a printed circuit board), named the MOX deck, was developed to interface
two MOX gas sensors to the CF2 (Figure 3). The deck contains two sockets for 4-pin Taguchi-type
(TGS) gas sensors, a temperature/humidity sensor (SHT25, Sensirion AG, Stäfa, Switzerland),
a dual-channel digital potentiometer (AD5242BRUZ1M, Analog Devices, Norwood, MA, USA) and
two MOSFET p-type transistors (NX2301P, NEXPERIA, Nimega, NL). We selected the TGS 8100 sensor
(Figaro Engineering Inc., Osaka, Japan) due to its compatibility with 3.0 V logic, power consumption of
only 15 mW (the lowest in the market as of June 2016) and miniaturized form factor (MEMS). Since the
sensor heater uses 1.8V, we included two transistors (one per sensor) to reduce the applied power by
means of pulse width modulation (PWM). The MOX read-out circuit (Figure 4) is a voltage divider
connected to the µC’s analog-to-digital converter (ADC). The voltage divider is powered at 3.0 V and
the load resistor (RL) can be set dynamically by the potentiometer (from 60 Ω to 1 MΩ in steps of
3.9 kΩ). In the current work, we only used one of the two sensors and RL was fixed to 70 kΩ. This load
resistor value is selected to operate the voltage divider near its mid-range, where the sensitivity is
maximum (according to the expected concentrations for the gas source described in Section 2.2).
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Figure 3. The CrazyFlie 2.0 equipped with the MOX deck and the UWB tag (center) gets its 3D position
from an external localization system composed of six ultra-wide band anchors (left). The location and
sensor data are communicated to the ground station (right) over the 2.4 GHz ISM band.

The initialization task of the MOX deck driver configures the PWM, initializes the SHT25 sensor,
sets the wiper position of both channels of the potentiometer and adds the MOX readout registers to
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the list of variables that are continuously logged and transmitted to the base station. The goal of PWM
is to convert from 3.0 V to 1.8 V required by the MOX heater. For that, the PWM frequency is set to
8.4 KHz and the duty cycle (DC) to 36% according to

DC =
Pavg

Ppeak
=

V2
avg/R

V2
peak/R

=
1.82

3.02 = 36%, (1)

where Pavg is the average power delivered to the sensor, Ppeak is the peak power of the PWM signal
and P = V2/R (Joule’s first law combined with Ohm’s law) is used to convert from power to voltage.
The duty cycle is the fraction of time that the transistor delivers power to the sensor.

The main task of the deck driver reads the MOX sensor output voltage and the temperature/
humidity values from the SHT25 and sends them to the ground station at 10 Hz.
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Figure 4. Schematic of the conditioning electronic circuit for each MOX sensor in the MOX deck,
using PWM for powering and a voltage divider for read-out.

2.2. Experimental Arena, Gas Source and External Localization System

All experiments were performed in a large robotics laboratory (160 m2 × 2.7 m height) at Örebro
University (Sweden). The laboratory is divided into three connected areas (R1–R3) of 132 m2 and
a contiguous room (R4) of 28 m2 (Figure 5). The ventilation system of the laboratory was not modified
for the experiments and all windows and doors were kept closed.
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indicate the position of the UWB anchors, which are positioned along two inverted triangles
(green lines).

To obtain the 3D position of the drone, we used an external localization system (Loco positioning
system, Bitcraze AB) [66] based on ultra-wide band (UWB) radio transmitters. The system is composed
of six anchors that are positioned in known locations of the room and one tag that is fixed to the
drone. The anchors were placed in the central area of the laboratory, shaped in two inverted triangles
(below and above the flight area), as recommended by the manufacturer. The tag on the drone
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continuously sends short high frequency radio messages to the anchors and estimates its relative
position to them based on the timestamps of transmitted and received messages. The accuracy in the
estimated position is approximately 10 cm if the tag is within the space delimited by the anchors and
there is line-of-sight (LOS) between the anchors and the tag [67]. In the absence of these conditions,
the system may still work but with degraded accuracy.

A gas leak was emulated by placing a small beaker filled with 200 mL of ethanol 96%
(Sigma–Aldrich, Germany) in different locations of the arena (Figure 6). Ethanol was used because it
is non-toxic and easily detectable by MOX sensors. Three experiments were carried out to check the
viability of the proposed system for GSL in complex environments. In the first experiment, the gas
source was placed on top of a table (height = 1 m) in the small room (R4). In the second experiment,
the source was placed inside the suspended ceiling (height = 2.7 m) near the entrance to the lab (R1).
Since the piping system of the lab runs through the suspended ceiling, the gas source could represent
a leak in one of the pipes. In these two experiments, a 12 V DC fan (Model: AD0612HB-A70GL,
ADDA Corp., Taiwan) placed behind the beaker facilitated the dispersion of the chemicals in the
environment, creating a plume. In the third experiment, the source was placed inside a power outlet
box (height = 0.9 m) and a fish tank bubbler was used to increase the evaporation rate. The source
in this location could simulate the early stages of an electrical fire (most of them are caused by
faulty electrical outlets) where volatile organic compounds (VOCs) are released into the environment.
The three experiments started five minutes after setting up the source and turning on the DC fan or
the bubbler.
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2.3. Gas Sensor Calibration and Limit of Detection (LOD) Estimation

The MOX sensor was calibrated under laboratory conditions, to compensate the non-linear
response and obtain measurements in concentration units. Ethanol concentrations up to 50 ppm were
generated using the permeation method [68], humidified to 30 % r.h. and delivered in random order
at 70 mL/min to the chamber containing the sensor under test. The uncertainty of the concentration
reaching the gas chamber was determined by propagation of the main sources of error, namely
the permeation rate, the oven temperature and the MFCs. Uncertainty values ranged from 50 ppb
(at 1 ppm of ethanol) to 1 ppm (at 50 ppm of ethanol), which represents a relative uncertainty of 2–5%.
The concentration range and humidity level for calibration samples were selected based on previous
experience by the authors performing similar experiments in the same test environment.

To estimate the LOD (ppm), we used the simplified LOD formula [69]:

LOD =
3.3× s0

Â
, (2)

where s0 is the estimated standard deviation of blank measurements (assuming homoscedasticity and
normality) and Â is the estimated slope of the calibration graph (assuming linearity). To account for
the expected variability between the calibration setup and the test environment [70], we estimated s0

from a preliminary exploration of the target scenario in the absence of the gas. The LOD was used
during the gas source localization experiments to remove false alarms, by setting to zero any measured
concentration below the LOD.

2.4. Detection of ‘Bouts’

To compute the ‘bouts’ from the MOX response, we adapted the signal processing pipeline
proposed by Schmuker et al. [65]. The goal of this algorithm is to extract the rising edges of the
smoothed derivative of the sensor response, which are called ‘bouts’. Schmuker’s algorithm is based on
a non-causal Gaussian smoothing filter that prevents real-time bout detection, includes an unnecessary
derivative, embeds the computation of the derivative within the smoothing filter (which may lead
to potential implementation errors) and does not smooth the second derivative of the signal where
the ‘bouts’ are segmented. The derivative that converts s to x in [65] is unnecessary because the emaα

transformation already differentiates the input signal. The source code published by Schmuker et al. is
not affected by this error because the transformation is implemented by calling the Python function
pandas.ewma(), which provides the functionality of an EWMA filter (i.e. it does not perform the
derivative). We replaced the Gaussian smoothing filter with a causal (realizable) exponentially
weighted moving average (EWMA) filter, removed the unnecessary derivative, decoupled the
derivative from the EWMA filter and smoothed the second derivative. We chose the EWMA filter
because it is causal, easy to implement and is the same filter used by Schmuker et al. to smooth
the derivative in their bout computation algorithm. The proposed bout computation pipeline is
represented in Figure 7.
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the text.

The sensor response x is first smoothed using a EWMA low-pass filter to remove high-frequency
noise. At time t, the smoothed value xs(t) is found by computing

xs(t) = (1− α)·xs(t− 1) + α·x(t), (3)



Sensors 2019, 19, 478 10 of 25

where x(t) is the observation at time t, xs(t− 1) is the previous output of the filter and the smoothing
factor α (0 < α ≤ 1) controls the speed at which older responses are dampened. The smoothing
factor α in the EWMA filter is equivalent to the cut-off frequency of a low-pass filter. For example,
Pashami et al. [71] found out that α = 0.9 represents a cut-off frequency of 0.44 Hz. It is convenient to
express the smoothing factor as a function of the half-life time τhalf (s)

α = 1− exp

(
log 0.5
τhal f · fs

)
, (4)

where fs is the sampling frequency (Hz) of x. The smoothed response is differentiated and smoothed
again to increase the signal-to-noise ratio (SNR), producing x′s. The ‘bouts’ are the rising edges of x′s,
which are delimited by two consecutive zero-crossings in the positive derivative of x′s, i.e., x′′s > 0.
The amplitude of a bout is defined as x′s at the end of the respective bout segment minus x′s at the
start of the same bout segment. To remove low-amplitude bouts produced by noise, Schmuker et al.
propose to estimate the noise threshold (bthr) using the 3-sigma rule

bthr = µ + 3σ, (5)

where µ and σ are the estimated mean and standard deviation, respectively, of the distribution of
amplitudes of bouts detected in the sensor baseline (i.e., in the absence of gas). Bouts with amplitude
lower than bthr are filtered out. The algorithm that we propose reduces the number of parameters from
three to two (τhalf and bthr), which we estimate after a preliminary exploration of the target scenario in
the absence of gas (i.e., using the signals corresponding to blank measurements).

2.5. Effect of Rotors on MOX Sensor Signals

Previous work using the CF2 indicate that turbulence generated by the propellers may severely
affect the MOX sensor signals [29]. To evaluate this effect in our platform, we performed a set of
measurements near a gas source under two conditions: rotors switched on or rotors switched off.
The drone was placed on a height-adjustable stand—designed to minimize its interference with the
rotors’ airflow—that could be moved around the source (Figure 8a). Using a stand is necessary to
perform measurements when the rotors are switched off, and we also used it to perform measurements
with the rotors switched on. The gas source was an open ethanol bottle (Figure 8b) and measurements
were performed above the source (vertical distance between 25 and 65 cm) and in front of it (at 50 cm)
At each location, the sensor response was recorded for 25 min (using an external battery), first with the
rotors switched off and, after cleaning the room, measurements were repeated with the four rotors
spinning at 10,000 rpm (this is typical for hovering).
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Figure 8. Setup for assessing the effect of the rotors on the MOX sensor signals. (a) Top view of the
stand used to hold the drone at different heights while minimizing interference with the rotors air flow;
(b) Photo of an experiment with the drone placed 25 cm above an ethanol bottle (gas source), overlaid
with an illustration of a gas cloud.
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2.6. Gas Source Localization Strategies

Two gas source localization strategies, one based on the instantaneous response and the other
one based on odor hits are evaluated using the nano-drone. In both cases, the drone was sent to fly
along a predefined sweeping path consisting of two 2D rectangular sweepings at different heights
(0.9 m and 1.8 m), collecting measurements in motion (Figure 9). These two heights divide the vertical
space of the lab in three parts of equal size. Flying first at a lower altitude minimizes the impact of the
propellers’ downwash in the gas distribution. For safety reasons, the trajectory is designed to ensure
enough clearance around obstacles and walls, and people working inside the laboratory were told to
remain in their seats during the experiments. The ground station communicates the flight path to the
drone as a sequence of (x, y, z) waypoints, with a target flight speed of 1.0 m/s.

As the drone navigates the environment, it reports the instantaneous concentration and its
location to the ground station. At the end of the exploration, the ground station uses all the received
information to compute a 3D map of the instantaneous response (first strategy) and the bout frequency
(second strategy). The location of the gas source is estimated in both cases as the cell of the map with
maximum value. We will also discuss the viability of both methods for real-time plume tracking,
assuming that the drone would follow the gradient of instantaneous concentration or the gradient of
bout frequency (computed using a sliding window of 5 s).
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The green squares indicate the location of the UWB anchors.

3. Results

3.1. Calibration, LOD and Optimum Parameters for Bout Detection

A preliminary exploration of the test environment in the absence of gas was performed to estimate
the sensor noise and the optimum bout parameters (Figure 10A). The raw response was smoothed
using an EWMA filter with a smoothing factor τhalf = 0.25 s. The noise can be approximated by
a Gaussian distribution with mean value of 2.047 MΩ−1 and standard deviation of 0.013 MΩ−1

(Figure 10B). The observed variability was used in combination with the calibration line (Figure 11A)
to estimate the LOD (Equation (2)), assuming homoscedasticity. The calibration line behaved linearly
in the range 1–50 ppm after applying the logarithm to both concentration and response. The bout
amplitude threshold (bthr) was estimated as 0.04 ppm/s by applying Equation (5) to the amplitude of
the bouts detected in the calibrated blank signals (Figure 11B).
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frequency increases from 0.48 to 7.74 bouts/min by switching on the propellers, improving the 
detection of the source. The propellers produced nonetheless a negative effect in the signals acquired 
in front of the source, reducing the bout frequency by a factor of two.  

Figure 10. (A) 2D map of MOX sensor response during 15 min of random exploration of the target area
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Figure 11. (A) Calibration line in the range 1–50 ppm (log-log plot), with blank variability superimposed
at each concentration level (see inset). The LOD is estimated using Equation (2); (B) Histogram of
amplitudes of bouts detected in the calibrated blank signals. bthr (Equation (5)) is indicated by a red
dashed vertical line.

3.2. Effect of Propulsion on MOX Signals

When the propellers were switched off (Figure 12A), the concentration fluctuations due to the gas
evaporating from the ethanol bottle were clearly reflected on the on-board sensor signals at 25 cm above
the source (green trace) and, to less extent, at 50 cm in front of the source and (blue trace). At 65 cm
above the source (yellow trace), the sensor does not seem to detect the source except immediately
after opening the bottle (t = 2 min). When the same measurements were repeated with the propellers
switched on (Figure 12B), the fluctuations of the signals at 25 cm above the source became less intense
but more frequent. This can be better observed in Figure 13, where the bouts detected with the
propellers switched on are as twice as frequent than when the propellers are switched off (Table 1).
This effect is even more noticeable at 65 cm above the source because the bout frequency increases
from 0.48 to 7.74 bouts/min by switching on the propellers, improving the detection of the source.
The propellers produced nonetheless a negative effect in the signals acquired in front of the source,
reducing the bout frequency by a factor of two.
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The steady increase of the average concentration and higher bout frequency observed when the 
drone was sampling above the source with the rotors switched on can be explained based on how 
the propellers interact with the gas surrounding the drone. The propellers generate a downwash (i.e., 
a downward airflow) that acts as an opposing force to the gas moving upwards by convection, 

Figure 12. Sensor signals (log scale) near an evaporating source. (A) Propellers switched off;
(B) Propellers switched on. The ethanol bottle is opened at t = 2 min.
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Figure 13. Smoothed derivative (i.e., x′s in Figure 7) of the sensor signals at 50 cm in front of the source
(blue line), 65 cm above the source (yellow line) and 25 cm above the source (green line). Bouts with
amplitude higher than µ + 3σ are highlighted in red. In the left column, the propellers are switched off
whereas in the right column they are switched on. The ethanol bottle is opened at t = 2 min.

Table 1. Characterization of MOX signals at different distances of the source under two conditions:
propellers switched on or off.

Distance Propellers Mean (ppm) Variance
(ppm2)

Bout Frequency
(Bouts/min)

Bout Amplitude
(ppm/s)

Above 25 cm
OFF 10.05 60.46 3.52 0.39
ON 9.22 29.97 7.69 0.084

Above 65 cm
OFF 1.39 0.053 0.48 0.027
ON 2.67 0.53 7.74 0.015

Front 50 cm
OFF 1.68 0.59 1.13 0.10
ON 1.45 0.12 0.47 0.10

The steady increase of the average concentration and higher bout frequency observed when the
drone was sampling above the source with the rotors switched on can be explained based on how
the propellers interact with the gas surrounding the drone. The propellers generate a downwash
(i.e., a downward airflow) that acts as an opposing force to the gas moving upwards by convection,
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breaking the laminar flow into a turbulent gas cloud that spreads around the drone’s frame (Figure 14A),
probably increasing the background concentration. When the gas is spread around the drone,
the propellers drag the gas patches towards the MOX sensor (Figure 14B) and this probably increases
the bout frequency. Therefore, from this study we can conclude that the propellers severely change
the gas distribution near the drone, which in turn affects the MOX signals. However, it may still be
possible to extract relevant features for gas source localization (e.g., the bout frequency).
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maximum concentration (35 ppm) was found there while concentrations below 5 ppm were 
measured in the rest of the lab. The gas plume can be outlined from the obtained bout map, which 
shows the highest bout density (25 bouts/min) also in R4. Most bouts were detected during the first 
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120 s). The cells corresponding to the maximum concentration and maximum bout frequency were 
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Figure 14. Aerodynamics of Crazyflie 2.0 when the four rotors are spinning, visualized using
a Deskbreeze wind tunnel (Courtesy of Bitcraze AB). The drone is fixed to one of the walls of the
tunnel using a 3D printed stand and dry ice fog is emitted from (A) below the drone or (B) above the
drone. It shows the downwash of the propellers and how part of the fog reaches the MOX gas sensor
(red arrow). The MOX deck has been overlaid to the original images for visual clarity.

3.3. Experiment 1: Localization of a Source 17 m Away from the Starting Point

In the first experiment, the drone took off near the entrance of the lab (R1), 17 meters downwind
of a gas source located in the other end of the laboratory (R4). Flying along a predefined trajectory
that took 2.75 min, the drone acquired measurements to build a map of the instantaneous response
(Figure 15A). From this map it is evident that the gas source must be in R4, because the maximum
concentration (35 ppm) was found there while concentrations below 5 ppm were measured in the rest
of the lab. The gas plume can be outlined from the obtained bout map, which shows the highest bout
density (25 bouts/min) also in R4. Most bouts were detected during the first part of the exploration
(Figure 15C), when the drone was flying at the same height of the source (Figure 15B). Nonetheless,
multiple bouts were also detected flying above the source in R4 (t = 110–120 s). The cells corresponding
to the maximum concentration and maximum bout frequency were found at 0.94 and 1.16 m of the
true source location, respectively.
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increases when the drone crosses the plume (e.g., bouts #1, #2 and #6), it is not clear when the drone 
exits the plume due to the increase in background concentration and slow sensor recovery. In this 
sense, the bout frequency behaves like a more sensitive version of the instant response, exhibiting 
abrupt changes when the drone enters/exits the plume. This can be seen at 𝑡 ൌ 85 s, when the drone 
exits R4 and enters R3. The bout frequency sharply drops to zero, but the instantaneous concentration 
remains flat at 5 ppm. Another example is found by comparing both features when the drone crosses 
the door that connects R3 to R4 flying at ℎ ൌ 0.9 m (𝑡 ൌ 75 s) or at ℎ ൌ 1.8 m (𝑡 ൌ 110 s). In the 
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Figure 15. Results of Experiment 1. (A) 2D map of the instantaneous concentration (ppm) in log
scale, with bouts represented by blue circles (bthr = 0.52 ppm/s). A hand-drawn ellipse outlines
the approximate plume shape based on the location of bouts. The average bout frequency along
the y-axis is shown in the leftmost panel. The box plot below the map represents the instantaneous
concentration along the x-axis; (B) Trajectory of the drone along the z-axis. (C) Temporal evolution of
the instantaneous concentration (ppm) on a log scale, with detected bouts highlighted in red (the black
star indicates the start of a bout). The identifiers R1–R4 between panels (B) and (C) indicate the area of
the map in which the drone is flying at each moment. The maximum instantaneous concentration and
the maximum bout frequency are indicated by a green star and a blue triangle, respectively.

For real-time plume tracking, following the gradient of instantaneous concentration would not
easily lead the drone towards the source, since the concentrations measured in R1 are only slightly
higher than the LOD of the sensor (1.1 ppm). Although it is true that the instantaneous concentration
increases when the drone crosses the plume (e.g., bouts #1, #2 and #6), it is not clear when the drone
exits the plume due to the increase in background concentration and slow sensor recovery. In this
sense, the bout frequency behaves like a more sensitive version of the instant response, exhibiting
abrupt changes when the drone enters/exits the plume. This can be seen at t = 85 s, when the drone
exits R4 and enters R3. The bout frequency sharply drops to zero, but the instantaneous concentration
remains flat at 5 ppm. Another example is found by comparing both features when the drone crosses
the door that connects R3 to R4 flying at h = 0.9 m (t = 75 s) or at h = 1.8 m (t = 110 s). In the first case,
the instantaneous concentration jumps from 4 to 35 ppm whereas in the latter case the step is only from
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5 to 10 ppm. On the other hand, the bout frequency shows a similar increase (0 to 23–25 bouts/min) in
both cases. This could mean that the bout frequency, which simply counts events regardless of their
amplitude is more robust for detecting the source when its height is unknown.

To obtain the bout map shown in Figure 15A, we had to increase the bout threshold (bthr)
from 0.04 ppm/s (computed using Equation (5)) to 0.52 ppm/s (determined from visual inspection).
The effect of the bout amplitude threshold on the bout map is show in Figure 16. If the threshold is set
too low (blue circles), slight variations of the background concentration can trigger bout detections
that are not necessarily produced by the gas plume, resulting in a sparse distribution of bouts that
hinders the localization of the source (localization error of 4.32 m). This variability in the background
concentration may be caused by the downwash of the drone, which breaks the plume and disperses
fragments of the plume in the room. On the other hand, if the threshold is set too high (green circles)
it is virtually guaranteed that every detected bout is produced by the plume. However, in this case,
bouts appear only near the source, which reduces the distance at which the source can be detected.
Only when the threshold is suitably estimated (Figure 15A), the bout map resembles an elongated
plume that can be used to move towards the source from a long distance. As of now, we are not aware
of a systematic approach to properly set this threshold without prior information about the source
intensity. One idea could be to use a multi-threshold approach, i.e., building bout maps with different
thresholds and searching for consistent source predictions over multiple threshold values.
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localization and mapping of elevated gas sources. However, since the source is presumably not 
directly exposed to the environment, concentrations below 3 ppm were found in most locations of 
the room, which complicates the GSL task. The 𝜇 + 3𝜎 threshold yielded better results than in the 
previous experiment, outlining a feasible plume shape according to the true gas source location and 
predominant wind direction (Figure 18A). The instantaneous response map and the bouts map 
suggest that the gas source is in the division between R1 and R2, which represents a localization error 
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between bouts #3 and #4 (as compared to bouts #1 and #2) leads to a higher bout frequency near the 
source. 

Figure 16. Effect of the bout amplitude threshold in the results of Experiment 1. The blue circles
represent bouts with amplitude higher than 0.04 ppm/s (µ + 3σ threshold) and the green circles
represent bouts with amplitude higher than 1.0 ppm/s. In each case, a hand-drawn ellipse outlines the
approximate plume shape based on the location of the bouts. The green and blue stars indicate the
source location estimate in each case, according to the maximum bout frequency.

3.4. Experiment 2: Localization of a Source Hidden in the Suspended Ceiling (h = 2.7 m)

In this experiment, the source was located just above the starting point of the exploration, hidden
in the suspended ceiling (Figure 17). The resulting maximum concentration in the test room was
measured when the drone flew at h = 1.8 m, highlighting the importance of sampling in 3D for
localization and mapping of elevated gas sources. However, since the source is presumably not
directly exposed to the environment, concentrations below 3 ppm were found in most locations of
the room, which complicates the GSL task. The µ + 3σ threshold yielded better results than in the
previous experiment, outlining a feasible plume shape according to the true gas source location and
predominant wind direction (Figure 18A). The instantaneous response map and the bouts map suggest
that the gas source is in the division between R1 and R2, which represents a localization error of 4.0 and
3.31 m, respectively. The localization error can be reduced to 2.22 m by increasing the bout threshold
from 0.04 ppm/s to 0.18 ppm/s (Figure 19). In this case, the lower inter-bout interval between bouts
#3 and #4 (as compared to bouts #1 and #2) leads to a higher bout frequency near the source.
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Figure 17. 3D map of the instantaneous concentration (ppm) in Experiment 2. The black square
indicates the gas source location (x,y,z) = (14.0, 5.2, 2.7) m, the black arrow the wind direction
(positive x-axis) and the letter ‘S’ the starting point of the drone (x,y,z) = (13.5, 5.2, 0.0) m.
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Figure 18. Results of Experiment 2. (A) 2D map of the instantaneous concentration (ppm), with odor
hits represented by blue circles (bthr = 0.04 ppm/s). A hand-drawn ellipse outlines the approximate
plume shape based on the location of bouts. The average bout frequency along the y-axis is shown in
the panel on the left. The box plots below the map represents the instantaneous concentration along
the x-axis; (B) Drone trajectory in the z-axis. (C) Temporal evolution of the instantaneous concentration
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(ppm), with detected bouts highlighted in red (the black star indicates the start of the bout). The bout
frequency (gray line) is computed using a sliding window of 5 s. The identifiers R1–R4 between panels
(B) and (C) indicate the area of the map in which the drone is flying at each moment. The maximum
instantaneous concentration and the maximum bout frequency are indicated by a green star and a blue
triangle, respectively.

Sensors 2018, 18, x FOR PEER REVIEW  18 of 26 

 

concentration (ppm), with detected bouts highlighted in red (the black star indicates the start of the 
bout). The bout frequency (gray line) is computed using a sliding window of 5 s. The identifiers R1–
R4 between panels (B) and (C) indicate the area of the map in which the drone is flying at each 
moment. The maximum instantaneous concentration and the maximum bout frequency are indicated 
by a green star and a blue triangle, respectively. 

 

Figure 19. Results of Experiment 2 when 𝑏௧௛௥  is increased to 0.18 ppm/s. (top) 2D map of the 
instantaneous concentration (ppm), with odor hits represented by blue circles. A hand-drawn ellipse 
outlines the approximate plume shape based on the location of bouts. (bottom) Temporal evolution 
of the instantaneous concentration (ppm), with detected bouts highlighted in red (the black star 
indicates the start of the bout). The bout frequency (gray line) is computed using a sliding window of 
5 s. The maximum bout frequency is indicated by a blue triangle. 

3.5. Experiment 3: Localization of a Source Hidden Inside a Power Outlet Box (h = 0.9 m) 

In this experiment, the gas source was placed inside a power outlet box and a bubbler was used 
to increase the release rate (no artificial airflow). The gas distribution map (Figure 20A) shows a local 
accumulation of gas in R3 near the source (max concentration = 8 ppm), whereas in the rest of the 
map the gas concentration is below 1 ppm. The bout map does not resemble the elongated plume 
observed in previous experiments probably due to the absence of induced airflow. During the first 
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reactively track the plume. Only when the drone approached the source (𝑑 ൏ 3 m) the first bouts 
were detected (bouts #1–3). The remaining bouts and the maximum concentration were found during 
the second pass at ℎ ൌ 1.8 m, which may indicate a buoyant gas dispersion due to convective air 
currents produced by heat inside the power outlet box. The location of the source in the instantaneous 
concentration map and using the bout frequency were very accurate in the x-y plane (error of 0.7 m), 
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Figure 19. Results of Experiment 2 when bthr is increased to 0.18 ppm/s. (top) 2D map of the
instantaneous concentration (ppm), with odor hits represented by blue circles. A hand-drawn ellipse
outlines the approximate plume shape based on the location of bouts. (bottom) Temporal evolution of
the instantaneous concentration (ppm), with detected bouts highlighted in red (the black star indicates
the start of the bout). The bout frequency (gray line) is computed using a sliding window of 5 s.
The maximum bout frequency is indicated by a blue triangle.

3.5. Experiment 3: Localization of a Source Hidden Inside a Power Outlet Box (h = 0.9 m)

In this experiment, the gas source was placed inside a power outlet box and a bubbler was used
to increase the release rate (no artificial airflow). The gas distribution map (Figure 20A) shows a local
accumulation of gas in R3 near the source (max concentration = 8 ppm), whereas in the rest of the map
the gas concentration is below 1 ppm. The bout map does not resemble the elongated plume observed
in previous experiments probably due to the absence of induced airflow. During the first part of the
exploration at h = 0.9 m, the measured concentration was constantly below the LOD and no bouts
were detected (Figure 20C), which represents a clear challenge for a robot attempting to reactively
track the plume. Only when the drone approached the source (d < 3 m) the first bouts were detected
(bouts #1–3). The remaining bouts and the maximum concentration were found during the second pass
at h = 1.8 m, which may indicate a buoyant gas dispersion due to convective air currents produced
by heat inside the power outlet box. The location of the source in the instantaneous concentration
map and using the bout frequency were very accurate in the x-y plane (error of 0.7 m), but the bout
frequency yielded a lower localization error (0.77 m) than the instantaneous response (1.22 m) because
the estimated height of the source in the first case (1.2 m) was closer to the true value (0.9 m) than in
the second case (1.7 m).
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Figure 20. Results of Experiment 3. (A) 2D map of the instantaneous concentration (ppm), with bouts
represented by blue circles (bthr = 0.20 ppm/s). A hand-drawn ellipse outlines the approximate plume
shape based on the location of bouts. The average bout frequency along the y-axis is shown in the
leftmost panel. The box plot below the map represents the instantaneous concentration along the
x-axis; (B) Drone trajectory in the z-axis. (C) Temporal evolution of the instantaneous concentration
(ppm), with detected bouts highlighted in red (the black star indicates the start of the bout). The bout
frequency (gray line) is computed using a sliding window of 5 s. The identifiers R1–R4 between panels
(B) and (C) indicate the area of the map in which the drone is flying at each moment. The maximum
of the instantaneous concentration and the bout frequency are indicated by a green star and a blue
triangle, respectively.

3.6. Overall Localization Results

A summary of the localization results is given in Table 2. The bout frequency with optimum noise
threshold achieved comparable results to the instantaneous concentration, except in Experiment 2
where the former achieved better performance (2.2 m versus 4.0 m error). The bout frequency ((µ + 3σ)

threshold) produced relatively high localization errors.
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Table 2. Gas source localization error (m) in the three experiments, using the instantaneous
concentration, the bout frequency with µ+ 3σ threshold or the bout frequency with optimum threshold.

Experiment Instantaneous Concentration Bout Frequency (µ+3σ) Bout Frequency
(Optimum Threshold)

1 0.94 4.32 1.16
2 4.0 3.31 2.22
3 1.22 5.07 0.77

Mean 2.05 4.23 1.38

4. Discussion

Our results suggest that a gas-sensitive NAV can be used for gas source localization and mapping
in large indoor environments. The two GSL strategies compared in this paper require either building
a map of the gas distribution or a map of the bouts. In contrast to previous works in which long
measurement times are needed at predefined or adaptively chosen sampling locations, we have
demonstrated that a rough approximation of such maps can be obtained in very short time with
concentration measurements acquired in motion. Both maps seem coherent with respect to the true
source location and wind direction, and not only enable the detection of the source with relatively
small localization errors but also provide a rich visual interpretation of the gas distribution, especially
if the bouts are overlaid on the gas distribution map. We adapted the bout detection algorithm for
real-time operation and optimized the noise threshold, discussing how it affects the results in each
experiment. The instantaneous gas distribution provides a more intuitive representation of the gas
source location whereas the bout map can outline the gas plume without requiring anemometry.

The experiments presented in this paper also demonstrate that the air flow generated by the
propellers greatly affects the gas sensor signals, but key information for GSL can still be extracted by
signal processing methods. This appears to contradict the results reported by Rossi et al. [29] who
claimed that the signals of a MOX sensor on board of a Crazyflie 2.0 are useless if the propellers are
switched on. It is difficult to reason about the causes of this discrepancy because Rossi et al. do not
show nor describe the experimental arena in which their experiments were performed, including the
type of gas source and its location relative to the drone position. If they attempted to measure the gas
coming out from an evaporating chemical source placed right below the drone, we have seen in this
work that the downwash of the drone prevents most of the gas reaching the sensor surface and this
produces raw signals with much less fluctuations than they would have if the same measurements
were carried out with the propellers turned off (see green trace in Figure 12). We have also seen that
such characteristic fluctuations can be still extracted from the smoothed derivative of the response
(Figure 13). Another possible reason for this difference may be that different MOX sensors were
used (MiCS 5525 for CO detection in [29] and Figaro TGS 8100 in this work) or they were operated
differently. While we operate the sensor in continuous mode, Rossi et al. apply duty-cycling to the
sensor heater to reduce the power consumption, which is known to degrade the signal quality [54].
Other reasons may be the signal processing carried out, the test gas concentrations or the range of
variation of environmental conditions. If the gas concentrations are close to the LOD of the sensor,
any turbulence created by the propellers or slight changes in ambient temperature or humidity may
hinder distinguishing the response to the gas from the noise [72].

We dedicated a substantial portion of the effort to calibrate the MOX sensor in similar conditions
to the test scenario and to find a suitable linear calibration model that enables the computation of
the LOD using the standard equations. The log-log transformation linearized the MOX response in
the range 0–50 ppm and the LOD was estimated as 1.1 ppm. This is something not usually done in
the field of mobile robot olfaction since calibration of gas sensors is time-consuming and requires
expensive dedicated equipment. The sensor signals are often uncalibrated [73–76] or only scaled to
unit range [77–80], which produces maps that represent the sensor response instead of the absolute
concentration. Response maps are not easily interpretable due to the non-linear sensor response
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and are sensor-dependent; i.e., two response maps obtained with different gas sensors may show
notable differences even if the underlying gas distribution is similar. Scaling is a linear operation that
cannot remove non-linearities of the original signals. Some authors assume a linear response within
a certain concentration range [75,76]; however, for most gas sensing technologies (e.g., MOX, gasFETs
or thermoelectric sensors) this is only true within a narrow range of concentrations (e.g., 0–10 ppm)
often exceeded by the typical concentrations obtained in real experiments.

Most GSL algorithms require a detection threshold that is used to differentiate when a given sensor
reading is produced by the gas plume or by background noise. Algorithms based on ‘odor hits’ require
such a threshold to binarize the sensor response or to filter out low-amplitude bouts produced by
noise. The rapid decay in chemical concentration with increasing distance from the source combined
with incorrectly estimated detection thresholds may lead to a reduced area where the plume can
effectively be detected (if the threshold is too high) or a high number of false alarms (if the threshold
is too low). This has not been reported in the literature as an issue in GSL experiments because the
concentration was often unrealistically high and the arena too small, i.e., the robot was very close
to the source during the whole experiment. In this work, we challenged the drone by placing the
source up to 17 m from the starting point or hiding it in the suspended ceiling or inside a power outlet
box, leading to concentrations near the LOD of the sensor. It seems that for proper estimation of the
noise threshold it is critical to have some prior information regarding the source intensity. A threshold
computed exclusively from measurements in the absence of gas (e.g., µ + 3σ threshold) may only work
when the concentrations in the room are small. If the background concentration in the room increases,
for example due to gas dispersed by the propellers of the drone, the threshold must be increased to
reduce false bout detections. This suggests a multi-threshold approach, i.e., building bout maps with
different thresholds and searching for consistent source predictions over multiple threshold values.

An obvious future direction for nano-drones is to achieve autonomous navigation, i.e., without
resorting to external localization systems. This requires three-dimensional obstacle detection and
self-localization, which is not an easy task whatsoever because there are many degrees of freedom and
the low payload does often not allow for range sensors. In this line, the Fast Lightweight Autonomy
(FLA) program (https://www.darpa.mil/program/fast-lightweight-autonomy) from the Defense
Advanced Research Projects Agency (DARPA) is exploring novel perception methods and algorithms
for small autonomous UAVs to fly at speeds up to 20 m/s in cluttered environments with no remote
pilot, no communication links, no GPS guidance and no pre-programmed map of the area. In phase
2 of the program (June 2018), successful tests were performed with drones weighing around 2 kg
equipped with a single camera, flying through a narrow window into a building, searching rooms,
creating a 3-D map of the interior and exiting the building through an open doorway. In this paper we
have demonstrated that a gas sensor could complement the camera in this application, adding a gas
distribution layer to the acquired map of the environment which could be eventually analyzed by
an operator to identify potential leak sources or victims.

Before reaching this goal, the SNAV shall be tested in more complex scenarios, for example
in environments with chemical interferences or multiple gas sources. In this context, it may be
required to use multiple MOX sensors, integrate air flow information or implement more advanced
localization/mapping algorithms, for example bioinspired reactive plume tracking or BASED maps of
bouts [81,82] (i.e., using bouts as events or as weighted events).
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Chapter 8

Conclusions

The main conclusion of this thesis is that a nano-drone equipped with MOX sensors can be
used for gas source localization and mapping in large indoor environments. Other conclu-
sions that we reached during the development and test of the platform are detailed below:

• A rough approximation of the gas distribution can be obtained in very short time
with concentration measurements acquired in motion.

• The bout frequency yields higher localization accuracy than the instantaneous con-
centration (average error of 1.55 m and 2.45 m, respectively).

• The log-log transformation linearizes the response of the TGS 8100 sensor in the
range 0-50 ppm, enabling the computation of the LOD with the standard formulas.

• Regarding the bout amplitude threshold,

– If it is too low, the high number of false alarms hinders source localization.

– If it is too high, the plume can only be detected near the source.

– When correctly estimated, a narrow plume can be detected at 15 m distance
from the source.

• Turbulence generated by the propellers affects the gas sensor signals, but key fea-
tures for gas source localization can still be extracted by signal processing methods.

• To localize an elevated source is necessary to sample the space in 3D.

The analysis of gas distribution patterns using a MOX sensor grid (Chapter 7) reveled
that:

• Convective or recirculating air currents may have a stronger effect on the gas distri-
bution than the density of the released substance.

• A gas heavier than air (e.g., ethanol) does not necessarily accumulate on the floor.

• The gas distribution might not be stable in the absence of strong air flow.
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• Strong unidirectional airflow produces a stable gas distribution.

• The density of the gas is a relevant factor for gas dispersion only at high release
rates.

• The installation of the sensors (e.g. orientation and type of support) with respect to
the main airflow stream might affect the results.

Regarding gas source localization using a grid of MOX sensors (Chapter 7),

• The bout frequency and the variance yield lower localization errors than the mean
(average difference of 0.9 and 0.5 m, respectively).

• The bout frequency outperforms the variance under strong air flow (average differ-
ence of 1.0 m).

• Measuring at the height of the source is critical for successful gas source localiza-
tion, especially when using the variance or mean concentration.

• The bout frequency allows detecting the source from above.

• The performance of the bout frequency strongly depends on the noise threshold and
the size of the measurement window.

• The variance is less sensitive to the window size than the bout frequency.

Regarding the use of the bout frequency for predicting the distance to a gas source
(Chapter 6),

• The cut-off frequency of the low-pass differentiator filter and the bout amplitude
threshold are coupled parameters, which means that both must be tuned simultane-
ously to find the global optimum in terms of prediction error.

• The optimum parameter values strongly depend on the wind speed, with low values
being suitable for scenarios with high wind speed and vice-versa.

• The bout frequency with optimized parameters outperforms the mean, variance and
maximum response when the measuring window is large enough.

• The three-sigma threshold is not an optimum threshold, probably because the distri-
bution of amplitudes of baseline bouts does not follow a Gaussian distribution.

• The optimum bout amplitude threshold is specific to the sensor model.

The response time of MOX sensors can be improved by a factor of 10 by miniaturiza-
tion of the gas chamber, removing the sensor cap and filtering the response with a low pass
differentiator filter (Chapter 5).

Regarding low power operation of temperature-modulated MOX sensors (Chapter 4),

• 10% duty-cycling operation of 10-min periods reduces the prediction error 2.5 times
with respect to on-demand operation (2.2 versus 0.9 ppm) and saves up to 90%
energy as compared to the continuous operating mode.
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• On-demand operation increases the prediction error by almost a factor of 5 as com-
pared to continuous operation (2.2 versus 0.45 ppm).

• Applying continuous power during calibration yields lower prediction errors (15-30
%) than calibration in the target powering mode.

A series of conclusions were reached regarding the use of temperature-modulated
MOX sensors for quantification of low concentrations of CO under variable humidity con-
ditions (Chapter 3):

• The optimum measurement point (t = 6−7 s) differs from manufacturer recommen-
dations (t = 25 s).

• The optimum measurement point reduces the LOD from 4.0 to 2.3 ppm and in-
creases the reliability of the estimate from 80% to 95%.

• The LOD can be further reduced to 0.73 ppm by using multivariate calibration
(PLS).

• PLS models are simpler than MLPCR models, for the same level of prediction error.

• The underlying assumptions of the LOD formula can be satisfied by reducing the
calibration range, applying logarithmic transformation to the signal and/or the con-
centration and optimizing the measurement point.

An obvious future direction for gas source localization using nano-drones is to achieve
autonomous navigation. This requires three-dimensional obstacle detection and self-localization,
which is not an easy task whatsoever because there are many degrees of freedom and the
low payload does often not allow for range sensors. The lack of selectivity and high limit
of detection of current gas sensors, as compared to biological chemoreceptors, are also
major limitations for gas source localization in realistic scenarios characterized by large
exploration areas and chemical interferences. In this context, it may be worth it to inves-
tigate the use of multiple MOX sensors (to improve selectivity), use a pump to "sniff"
the air surrounding the drone (improve limit of detection) or implement more advanced
localization/mapping algorithms.





Chapter 9

Resumen en castellano

Esta tesis representa un paso adelante en el uso de sensores semiconductores de óxido
de estaño (MOX) en diversos entornos, desde medidas estáticas en una cámara de gas
hasta medidas dinámicas con un robot en entornos abiertos. Debido a su baja selectivi-
dad y estabilidad, los sensores MOX se utilizan en productos comerciales principalmente
como detectores de altas concentraciones de gases tóxicos, por ejemplo, en alarmas de
monóxido de carbono (CO) o en detectores de límite inferior de explosividad (LEL). Sin
embargo, muchas aplicaciones interesantes de estos sensores requieren cuantificación de
bajas concentraciones; desde robots para localización de fuentes químicas hasta disposi-
tivos biomédicos para detección de biomarcadores en muestras de aliento. En estas apli-
caciones, el limite de detección (LOD) es una figura de mérito fundamental que mide la
capacidad del sensor para medir bajas concentraciones del gas objetivo en presencia de
ruido químico/eléctrico. El principal problema es que los sensores MOX presentan carac-
terísticas incompatibles con las fórmulas para el cálculo del LOD definidas por la Interna-
tional Union of Pure and Applied Chemistry (IUPAC), las cuales asumen que la respuesta
es univariante, lineal y que los errores residuales están distribuidos de manera Gaussiana
y homocedástica (varianza constante).

El primer objetivo de esta tesis es desarrollar métodos para superar los retos asociados
al cálculo del LOD en sensores MOX, particularmente en sensores modulados en temper-
atura. La modulación en temperatura es una manera comúnmente aceptada de incrementar
la selectividad de un sensor, mediante la aplicación de una onda de potencia periódica en
el calentador del sensor. De hecho, es el modo de operación recomendado por los fabri-
cantes de sensores MOX para la detección de CO. Pese a que la respuesta de un sensor
modulado en temperatura es multivariante, por simplicidad para el usuario los fabricantes
recomiendan medir únicamente en un punto del ciclo de temperatura. El primer método
que proponemos (Paper I) consiste por tanto en optimizar el punto de medida de manera
que el error de predicción sea lo más bajo posible y se cumplan las hipótesis subyacentes
a la fórmula del LOD. Para esto último, definimos una batería de tests estadísticos que
comprueban que un determinado punto de medida cumple las suposiciones de linealidad,
normalidad y homocedasticidad. Para ilustrar la metodología, utilizamos siete unidades del
sensor FIS SB-500-12 en un escenario de detección de CO con variaciones controladas de
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humedad (interferencia química), representativo de varias aplicaciones reales. En este sen-
sor, el modo de operación recomendado combina un perfil de temperatura cuadrado (alta
temperatura durante 5 s seguido de baja temperatura durante 20 s) y medida univariante
de la respuesta al final del ciclo (t = 25 s). En ese punto, la sensibilidad al CO es máxima
en un rango alto de concentraciones (p.ej. 20-300 ppm) pero no está claro que sea el punto
óptimo en el rango de bajas concentraciones (p.ej. 0-10 ppm) relevante para el cálculo del
LOD. De hecho, nuestros experimentos confirman que los errores de predicción en dicho
punto son mayores que en otros puntos del ciclo y las suposiciones de la IUPAC sólo se
cumplen con una probabilidad del 80%. El punto óptimo, que se encuentra situado al prin-
cipio del escalón de baja temperatura (t = 7 s), disminuye el LOD desde 4.0 ppm (punto de
medida recomendado) hasta 2.3 ppm y aumenta la probabilidad de cumplir las hipótesis
subyacentes (y por tanto la fiabilidad de la estimación) al 95%. Para cumplir la hipótesis de
linealidad tuvimos que transformar logarítmicamente la señal. Los modelos de calibración
en el punto óptimo (y por tanto el LOD) son estables al menos durante dos semanas (incre-
mento de error de predicción < 90 ppb), si se corrige la línea de base de manera periódica.
La manera más simple de realizar dicha corrección requiere exponer los sensores a aire
limpio, lo cual podría no ser trivial en ciertas aplicaciones. En cualquier caso, este estudio
demuestra que sensores MOX linealizados, previa optimización del punto de trabajo y con
ajustes periódicos de la línea de base, pueden ser usados en aplicaciones que requieran un
umbral de detección del orden de 3 ppm.

Utilizar toda la información contenida en el patrón de respuesta multivariante, en lu-
gar de un único punto de medida, parece una estrategia inmediata para reducir el error de
predicción y, consecuentemente, mejorar el LOD de sensores modulados en temperatura.
Debido a que el patrón de respuesta presenta ruido heterocedástico y correlacionado, no
está claro cual es el mejor modelo de calibración multivariante para estos datos. Por un
lado, los métodos de máxima verosimilitud (p.ej. MLPCR), son óptimos desde un punto
de vista estadístico porque incluyen información explícita sobre la incertidumbre de la me-
dida durante el proceso de calibración. Sin embargo, no hay referencias disponibles en la
literatura sobre la idoneidad de MLPCR para la calibración de sensores MOX modulados
en temperatura. Por otro lado, PLS es el modelo de calibración de facto para este tipo de
datos, debido a su inherente robustez ante la multicolinearidad y rechazo de sustancias in-
terferentes. Nuestros experimentos (Paper II) demuestran que PLS y MLPCR son capaces
de alcanzar niveles similares de error (0.4 ppm), pero los modelos PLS son más simples.
Este comportamiento—que fue originalmente reportado en una comparativa entre PCR y
PLS y después confirmado para MLPCR—está relacionado con el hecho de que las vari-
ables latentes de PLS consideran la correlación con el vector de etiquetas (y), proporcio-
nando espacios predictivos más parsimoniosos que PCR, cuyas componentes principales
están únicamente basadas en la matriz de predictores (X). PLS filtra de manera efectiva
el ruido en X sin conocimiento explícito de la incertidumbre en las medidas, mediante
la reducción del peso asociado a áreas del patrón con alto error de medida (estimado en
réplicas) si dichas áreas no están correlacionadas con el vector de etiquetas. Esto sucede,
por ejemplo, en las inmediaciones de las transiciones de temperatura (p.ej. t = 5 s) debido
al mayor error de medida. Por otro lado, las variables con mayor poder predictivo están
situadas al principio del ciclo de baja temperatura (i.e. t = 6−7 s), lo que coincide con el
punto óptimo de medida encontrado en el estudio univariante.
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La estimación de figuras de mérito básicas como la sensibilidad, selectividad o LOD
en calibración multivariante es actualmente un problema sin resolver. En el caso del LOD,
el mayor problema son las discrepancias fundamentales entre la aproximación analítica,
basada en propagación de errores, y la aproximación empírica, basada en predicciones
sobre muestras reales. En el primer caso, las incertidumbres instrumentales y de las con-
centraciones de calibración se propagan a través del modelo para estimar la varianza de la
concentración predicha, dando lugar a un rango de LODs que hace explícito que la com-
posición de la muestra (debido a diferentes niveles de interferentes) afecta al LOD. En el
segundo caso, las predicciones sobre muestras de calibración o (idealmente) validación se
tratan como una variable subrogada sobre la que se aplican las fórmulas del LOD univari-
antes, dando lugar a un único LOD que podría considerarse como un promedio represen-
tativo de las muestras utilizadas. Puesto que el método analítico requiere conocimiento a
priori de los errores instrumentales (incluyendo todas las fuentes de error) y esta infor-
mación no está habitualmente disponible, los métodos empíricos son los más usados en
la práctica. Pese a que el método empírico basado en la señal analítica neta (NAS) como
variable subrogada está aceptado por la IUPAC, el LOD obtenido varía en función del
método que se utilice para calcular el NAS. Para solucionar este problema, hemos desar-
rollado un método empírico (Paper II) para estimar el LOD de manera unívoca en modelos
PLS, basado en la aplicación de las fórmulas univariantes a los scores de la primera vari-
able latente del modelo ortogonalizado (sólo existe una manera de calcular dichos scores).
La ortogonalización del modelo condensa en la primera componente toda la varianza del
bloque X relacionada exclusivamente con el vector de etiquetas y, no sólo asegurando que
el LOD se calcule teniendo en cuenta todo el poder predictivo del modelo sino facilitando
también la visualización de la estructura del modelo en un único gráfico 2D, independi-
entemente del numero de componentes del modelo PLS original. Usando este método,
obtuvimos un LOD medio de 0.77 ppm (considerando los siete sensores) que aproximada-
mente representa una mejora de un factor 5 respecto al modo de operación recomendado
por el fabricante (4.0 ppm) y un factor 3 respecto al modelo univariante optimizado (2.3
ppm). Este valor está contenido dentro del rango de LODs obtenidos mediante el método
analítico cuando la complejidad del modelo es adecuada, llegando por tanto a un acuerdo
entre ambos métodos. La estabilidad de los modelos de calibración PLS, calculada en
muestras de validación externa durante dos semanas, es similar a la obtenida en los mode-
los univariantes optimizados. Estos resultados sugieren que sensores MOX modulados en
temperatura y calibrados con modelos PLS tienen potencial para ser utilizados en aplica-
ciones que requieran umbrales de detección de 1 ppm.

Tradicionalmente, los sensores MOX se han operado mediante alimentación ininter-
rumpida (incluso aunque no estén midiendo) para aumentar la estabilidad de la respuesta.
Es conocido que, tras encender el sensor, la respuesta entra en un régimen transitorio que
puede durar desde pocos segundos a varias horas en función del tiempo que el sensor haya
estado apagado. Mantener un sensor continuamente alimentado no siempre es posible, so-
bre todo en instrumentos portables (p.ej. robots detectores de olor), debido a limitaciones
en el consumo de energía o por la operación intermitente del dispositivo. Por otro lado,
operar el sensor bajo demanda (o sea, encenderlo únicamente para hacer medidas pun-
tuales) es muy eficiente a nivel energético pero una medida estable sólo es posible pasado
un cierto tiempo. Para alcanzar un compromiso entre consumo y estabilidad, proponemos
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un modo de operación de bajo consumo (Paper III) que consiste en encender el sensor
durante 1 minuto cada 10 minutos (ciclo de trabajo del 10%) cuando no se está midi-
endo para evitar largos periodos de desconexión y, al mismo tiempo, ahorrar un 90% de
energía respecto al modo continuo. Tras comparar el rendimiento de los tres modos de al-
imentación (continuo, ciclo 10% y bajo demanda) en predicciones de CO con condiciones
de humedad variable durante dos semanas, observamos que el modo propuesto reduce el
error de predicción, en media, 2.5 veces con respecto a la operación bajo demanda (0.9
versus 2.2 ppm) y duplica el error del modo continuo (0.9 versus 0.45 ppm). También ob-
servamos que, independientemente del modo de operación, resulta beneficioso calibrar el
sensor en modo continuo ya que los errores de predicción son un 15-30% más pequeños
que si se calibra el sensor en un modo de bajo consumo.

El tiempo de respuesta de los sensores MOX (del orden de varios segundos) es de-
masiado lento para extraer las características de alta frecuencia de una pluma turbulenta,
que facilitarían la localización de fuentes químicas en entornos reales. De entre todas las
opciones disponibles para mejorar el tiempo de respuesta, en esta tesis se explora en de-
talle una técnica de procesado de señal (Schmuker et al., 2016) que aprovecha la rápida
dinámica de la derivada de la respuesta. Experimentos realizados en un túnel de viento de-
muestran que el número de flancos de subida de la derivada filtrada, denominados "bouts",
disminuye de manera lineal a medida que el sensor se aleja del origen de la pluma. Esto
permitiría estimar la distancia a una fuente química más rápidamente que utilizando la
concentración media, lo cual puede requerir ventanas de medida de hasta 10 minutos para
obtener una estimación fiable. La ventaja de esta técnica es que no requiere hardware
adicional—algo deseable en plataformas robóticas con poca carga útil—ni complicados
procesos de calibración en comparación con otras técnicas de procesado de señal como
los modelos dinámicos inversos. Utilizando un detector de fotoionización (PID) con alto
ancho de banda (330 Hz) hemos correlacionado, por primera vez, los "bouts" de un sen-
sor MOX con las fluctuaciones de concentración de una pluma turbulenta. Durante estos
experimentos, observamos que bouts no producidos por la pluma pueden aparecer durante
la recuperación del sensor o simplemente debido a ruido. Eliminar dichos bouts "falsos",
caracterizados por baja amplitud y larga duración, es crítico para obtener una relación
monótonamente creciente entre el número de bouts y la proximidad a la fuente. En este
sentido, el umbral basado en la regla de las tres desviaciones estándar (i.e. 3-sigma), prop-
uesto por Schmuker et al., podría no ser óptimo ya que (entre otras cosas) está basado en
una suposición Gaussiana que hemos comprobado no se cumple en la práctica.

Nuestros experimentos revelan que el umbral óptimo es específico al modelo de sensor,
el estimador de distancia a la fuente utilizado (p.ej. frecuencia de bouts, amplitud media
de bouts, . . . ) y la intensidad de la pluma. La amplitud media de bouts es un indicador
robusto en los tres sensores MOX probados, ya que crece monótonamente con proximidad
a la fuente, independientemente del umbral escogido. Sin embargo, es muy poco sensible
lejos de la fuente a menos que el umbral sea muy alto (al menos un orden de magnitud
superior al umbral 3-sigma), lo cual requiere largas ventanas de medida que permitan
capturar suficientes bouts como para obtener una estimación fiable de la amplitud media.
Por otro lado, la frecuencia de bouts es monótonamente creciente y sensible lejos de la
fuente, sin necesidad de utilizar umbrales tan altos (excepto en el sensor MiCS 5524). En
este sensor, el umbral tiene que estar un orden de magnitud por encima de 3-sigma para
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producir el comportamiento deseado, lo cual podría explicar el nulo poder predictivo de
la frecuencia de bouts reportado por Vuka et al. en experimentos realizados con sensores
de la familia MiCS, operados (probablemente) con el umbral 3-sigma. En los sensores de
la familia TGS (Figaro Engineering Inc), el umbral 3-sigma y valores más bajos sí dan
buenos resultados. Por ejemplo, el sensor TGS 2620 se vuelve mucho más sensible en
el rango de distancias probado (0-2.3 m) al reducir el umbral un orden de magnitud por
debajo de 3-sigma. Un problema que se abre tras esta investigación es cómo optimizar de
manera sistemática dicho umbral sin tener que exponer los sensores a la pluma, lo cual
podría no ser posible en ciertas aplicaciones.

La conclusión del estudio anterior es que la frecuencia de bouts, tras aplicar el umbral
óptimo, es un mejor estimador de proximidad a la fuente que la amplitud media de bouts.
La siguiente pregunta es si este estimador también es superior a estimadores de proximidad
conocidos como la media o la varianza de la concentración. Nuestros resultados sugieren
que la frecuencia de bouts es superior a la varianza cuando el sensor está relativamente
lejos de la fuente (d>1.2 m), mientras que la varianza es más sensible a distancias cor-
tas (d<1.2 m). La concentración media, que algunos autores consideran un estimador no
fiable de proximidad a la fuente, es el mejor estimador (ligeramente más sensible que la
frecuencia de bouts) en el sensor TGS 2620 pero no en los otros. Esto puede ser debido al
comportamiento conocido del encapsulado del sensor (de mucho mayor tamaño en el TGS
2620 que en los otros dos sensores tipo MEMS), que filtra paso bajo las fluctuaciones de
la pluma, dando lugar quizás a una mejor estimación de la concentración media que con
encapsulados más pequeños. Una ventaja teórica de utilizar la concentración media o la
varianza es que no se requiere ningún umbral para su cómputo. Sin embargo, un umbral sí
es necesario en la práctica ya que seguir un gradiente de cualquiera de estas variables para
moverse en dirección a la fuente puede dar lugar a muchas falsas alarmas debido al ruido,
especialmente si no hay ninguna fuente de gas en el área de exploración.

Las conclusiones alcanzadas respecto al umbral de ruido y al rendimiento de diferentes
estimadores de proximidad están basadas en estudios unidimensionales (1D) en los que el
sensor está situado en el eje central de la pluma. Sin embargo, en una aplicación real el
robot puede estar en cualquier posición respecto a la pluma (p.ej. fuera de la pluma) y, en el
caso de robots aéreos, también por encima o por debajo de la pluma. Por consiguiente, para
el desarrollo de algoritmos de localización de fuentes que funcionen en tres dimensiones
(3D) es necesario explorar el comportamiento de estos estimadores en estudios 3D. Para
ello, desplegamos una red tridimensional de sensores MOX en una sala de pruebas (6 x 5
m2) donde una fuga de gas es emulada mediante un recipiente con etanol y un ventilador.
Los 10 experimentos realizados, de 1.5 horas de duración cada uno, incluyen variaciones
de la posición y la altura de la fuente, la velocidad de evaporación y la velocidad del viento.

Tras monitorizar la evolución temporal de la distribución de gas en dichos experimen-
tos, descubrimos que ciertas suposiciones comúnmente aceptadas en el campo de olfacción
con robots móviles (MRO) podrían no ser ciertas en todos los escenarios. Por ejemplo,
muchos autores asumen que gases más densos que el aire (p.ej. etanol) se acumulan en el
suelo, justificando así el uso de robots terrestres. Sin embargo, en nuestros experimentos
esto sólo sucedió cuando incrementamos la velocidad de evaporación (por medio de un
burbujeador), llegando a concentraciones medias de 100-150 ppm en la sala. Sin el bur-
bujeador, la baja volatilidad del etanol a temperatura ambiente da lugar a concentraciones
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medias de pocos ppm, demasiado bajas como para alterar la flotabilidad del aire de la sala.
La acumulación progresiva de gas en el techo de la habitación que observamos en var-
ios experimentos sin burbujeador sugiere que la dispersión podría estar dominada por las
corrientes de convección o recirculación generadas por el sistema de climatización. Otra
suposición de ciertos investigadores es que la ausencia de un flujo dominante de aire pro-
duce una distribución de gas estable, lo cual no se cumple en nuestros experimentos (al
menos, en las inmediaciones de la fuente de gas).

Respecto a los estimadores de proximidad de fuente, parece fundamental tomar medi-
das a la altura de la fuente para poder localizarla. Este requisito no es tan estricto cuando
se utiliza la frecuencia de bouts, ya que si hay un flujo de aire dominante es posible de-
tectar la fuente a una altura ligeramente superior a la de la fuente. Usando este estimador,
es importante seleccionar un tamaño de ventana lo suficientemente grande y optimizar el
umbral de ruido. Tal y como se observó en los estudios univariantes, para optimizar dicho
umbral es necesario exponer los sensores a la pluma o conocer la intensidad de la fuente.
La frecuencia de bouts y la varianza tienen un rendimiento similar en ausencia de viento,
mientras que el primero es superior en condiciones de mucho viento (diferencia en error
de localización de 1.0 m). Ambos son más precisos que la concentración media (errores de
localización 0.5-0.9 m menores), independientemente del nivel de viento. Futuras líneas
de investigación en este campo podrían ir encaminadas a estudiar el rendimiento de difer-
entes estimadores de proximidad en presencia de interferencias químicas, por ejemplo, en
un escenario con varias fuentes de gas.

Cuando los bouts son utilizados por un robot para seguir una pluma de gas hacia la
fuente, éstos tienen que ser detectados en tiempo real para responder inmediatamente a
ellos. Una limitación práctica del algoritmo de detección de bouts es que implementa de
filtros de suavizado que utilizan datos futuros, es decir, no son realizables. Para solucionar
este problema, proponemos una serie de modificaciones para simplificar el algoritmo y
adaptarlo para operación en tiempo real. La idea es sustituir los filtros no-causales por
filtros causales (realizables) que utilizan el mismo factor de suavizado en las múltiples
aplicaciones del filtro, reduciendo así el número de parámetros requerido por el algoritmo.
El resultado es que la detección de bouts se puede conseguir con retrasos de sólo 25-65
ms. El algoritmo fue testeado en un nano-drone equipado con un sensor MOX, encargado
de localizar una fuente química en una sala de grandes dimensiones (160 m2). A pesar
de que las turbulencias generadas por los rotores afectan significativamente la señal del
sensor, pudimos obtener un mapa aproximado de la distribución del gas en la sala y de
los bouts en menos de 3 minutos, tomando medidas en movimiento. El uso de un nano-
drone para este propósito y el hecho de tomar medidas en movimiento diferencia nuestro
trabajo de trabajos previos, donde lo robots típicamente se detienen para tomar medidas,
lo cual aumenta la duración de la misión considerablemente. La construcción del mapa de
concentración o de bouts en entornos de mayores dimensiones podría acelerarse utilizando
un grupo de robots que exploren colaborativamente diferentes partes del escenario.
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[135] G. Falkovich, K. Gawȩdzki, and M. Vergassola. Particles and fields in fluid tur-
bulence. Reviews of Modern Physics, 73(4):913–975, 2001. (Cited on pages 20
and 21.)

[136] Daniel Grünbaum and Mark A. Willis. Spatial memory-based behaviors for locating
sources of odor plumes. Movement Ecology, 3(1), 2015. (Cited on page 20.)

[137] Hiroshi Ishida, Takamichi Nakamoto, and Toyosaka Moriizumi. Remote sensing of
gas/odor source location and concentration distribution using mobile system. Sen-
sors and Actuators, B: Chemical, 49:52–57, 1998. (Cited on pages 20 and 59.)

[138] Takashi Ushiku, Nozomi Satoh, Hiroshi Ishida, and Shigeki Toyama. Estimation of
gas-source location using gas sensors and ultrasonic anemometer. In Proceedings
of IEEE Sensors, pages 420–423, 2006. (Cited on pages 20 and 21.)

[139] Yuichiro Fukazawa and Hiroshi Ishida. Estimating gas-source location in outdoor
environment using mobile robot equipped with gas sensors and anemometer. Pro-
ceedings of IEEE Sensors, pages 1721–1724, 2009. (Cited on pages 20 and 21.)

[140] Jorge Sánchez-Sosa, Juan Castillo-Mixcóatl, Georgina Beltrán-Pérez, and Severino
Muñoz-Aguirre. An Application of the Gaussian Plume Model to Localization of
an Indoor Gas Source with a Mobile Robot. Sensors, 18(12):4375, 2018. (Cited on
pages 20, 21, and 40.)

[141] Jay A. Farrell, Shuo Pang, and Wei Li. Plume Mapping via Hidden Markov Meth-
ods. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
33(6):850–863, 2003. (Cited on pages 21 and 44.)

[142] Shuo Pang and Jay A. Farrell. Chemical plume source localization. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B: Cybernetics, 36(5):1068–1080,
2006. (Cited on pages 21, 43, and 44.)

[143] Víctor Pomareda, Rudys Magrans, J.M. Juan M. Jiménez-Soto, Dani Martínez,
Marcel Tresánchez, Javier Burgués, Jordi Palacín, and Santiago Marco. Chemical
source localization fusing concentration information in the presence of chemical
background noise. Sensors (Switzerland), 17(4), 2017. (Cited on pages 21, 34,
and 44.)

[144] Massimo Vergassola, Emmanuel Villermaux, and Boris I Shraiman. ’Infotaxis’ as a
strategy for searching without gradients. Nature, 445(7126):406–409, 2007. (Cited
on pages 21, 43, and 45.)



236 REFERENCES

[145] Mikel Vuka, Erik Schaffernicht, Michael Schmuker, Victor Hernandez Bennetts,
Francesco Amigoni, and Achim J. Lilienthal. Exploration and localization of a gas
source with MOX gas sensors on a mobile robot-A Gaussian regression bout ampli-
tude approach. ISOEN 2017 - ISOCS/IEEE International Symposium on Olfaction
and Electronic Nose, Proceedings, pages 3–5, 2017. (Cited on pages 22 and 44.)

[146] Hiroshi Ishida, Akito Kobayashi, Takamichi Nakamoto, and Toyosaka Moriizumi.
Three-dimensional odor compass. IEEE Transactions on Robotics and Automation,
15(2):251–257, 1999. (Cited on pages 22, 25, and 40.)

[147] H. Ishida, K. Yoshikawa, and T. Moriizumi. Three-dimensional gas-plume tracking
using gas sensors and ultrasonic anemometer. Proceedings of IEEE Sensors, 2004.,
pages 1175–1178, 2004. (Cited on pages 22, 23, and 25.)

[148] R. Andrew Russell. Tracking chemical plumes in 3-dimensions. 2006 IEEE In-
ternational Conference on Robotics and Biomimetics, ROBIO 2006, pages 31–36,
2006. (Cited on pages 22, 23, 25, 26, 44, 59, 60, and 62.)

[149] Matteo Reggente and Achim J. Lilienthal. The 3D-kernel DM+V/W algorithm: Us-
ing wind information in three dimensional gas distribution modelling with a mobile
robot. Proceedings of IEEE Sensors, pages 999–1004, 2010. (Cited on pages 22
and 60.)

[150] Hiroshi Ishida. Blimp robot for three-dimensional gas distribution mapping in in-
door environment. In AIP Conference Proceedings, volume 1137, pages 61–64,
2009. (Cited on pages 23 and 24.)

[151] Jorge M Soares, Ali Marjovi, Jonathan Giezendanner, Anil Kodiyan, A Pedro
Aguiar, M Pascoal, and Alcherio Martinoli. Towards 3-D Distributed Odor Source
Localization : An Extended Graph-Based Formation Control Algorithm for Plume
Tracking. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016. (Cited on page 23.)

[152] Kok Seng Eu and Kian Meng Yap. Chemical plume tracing: A three-dimensional
technique for quadrotors by considering the altitude control of the robot in the cast-
ing stage. International Journal of Advanced Robotic Systems, 15(1), 2018. (Cited
on pages 25 and 26.)

[153] Adam J. Rutkowski, Roger D. Quinn, and Mark A. Willis. A sensor fusion ap-
proach to odor source localization inspired by the pheromone tracking behavior of
moths. In Proceedings - IEEE International Conference on Robotics and Automa-
tion, pages 4873–4878, 2007. (Cited on pages 26 and 27.)

[154] Achim Lilienthal, Denis Reimann, and Andreas Zell. Gas Source Tracing with a
Mobile Robot Using an Adapted Moth Strategy. Autonome Mobile Systeme, pages
150–160, 2003. (Cited on pages 27, 28, 40, and 44.)



REFERENCES 237

[155] J. Atema. Chemical signals in the marine environment: dispersal, detection, and
temporal signal analysis. Proceedings of the National Academy of Sciences,
92(1):62–66, 1995. (Cited on page 29.)

[156] A. Farah and T Duckett. Reactive Localisation of an Odour Source by a learning
Mobile Robot. Second Swedish Workshop on Autonomous Robotics, Stockholm,
Sweden, 11–12 October, pages 29–38, 2002. (Cited on page 29.)

[157] Michael R Wandel, Achim Lilienthal, Tom Duckett, Udo Weimar, and Andreas
Zell. Gas Distribution in Unventilated Indoor Environments Inspected by a Mobile
Robot. Proceedings of the IEEE International Conference on Advanced Robotics
(ICAR 2003), pages 507–512, 2003. (Cited on page 30.)

[158] Anies Hannawati Purnamadjaja and R. Andrew Russell. Pheromone communica-
tion in a robot swarm: Necrophoric bee behaviour and its replication. Robotica,
23(6):731–742, 2005. (Cited on pages 30, 40, and 59.)

[159] Amy Loutfi, Silvia Coradeschi, Achim J. Lilienthal, and Javier Gonzalez. Gas
distribution mapping of multiple odour sources using a mobile robot. Robotica,
27(2):311–319, 2009. (Cited on pages 30, 35, and 40.)

[160] Matteo Reggente and Achim J. Lilienthal. Using local wind information for gas
distribution mapping in outdoor environments with a mobile robot. In Proceedings
of IEEE Sensors, pages 1715–1720, 2009. (Cited on page 30.)

[161] Yuta Wada, Marco Trincavelli, Yuichiro Fukazawa, and Hiroshi Ishida. Collecting
a Database for Studying Gas Distribution Mapping and Gas Source Localization
with Mobile Robots. International Conference on Advanced Mechatronics, pages
183—-188, 2010. (Cited on pages 30 and 34.)

[162] Ali Marjovi, João Gonçalo Nunes, Lino Marques, and Aníbal De Almeida. Multi-
robot exploration and fire searching. In 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2009, 2009. (Cited on page 30.)

[163] Mirbek Turduev, Gonçalo Cabrita, Murat Kirtay, Veysel Gazi, and Lino Marques.
Experimental studies on chemical concentration map building by a multi-robot sys-
tem using bio-inspired algorithms. Autonomous Agents and Multi-Agent Systems,
28(1):72–100, 2014. (Cited on pages 30 and 40.)

[164] Ali Marjovi and Lino Marques. Multi-robot odor distribution mapping in realis-
tic time-variant conditions. In Proceedings - IEEE International Conference on
Robotics and Automation, pages 3720–3727, 2014. (Cited on page 30.)

[165] Patrick P. Neumann, Sahar Asadi, Achim J. Lilienthal, Matthias Bartholmai, and
Jochen H. Schiller. Autonomous gas-sensitive microdrone: Wind vector estimation
and gas distribution mapping. IEEE Robotics and Automation Magazine, 19(1):50–
61, 2012. (Cited on pages 30 and 162.)



238 REFERENCES

[166] Bing Luo, Qing Hao Meng, Jia Ying Wang, Biao Sun, and Ying Wang. Three-
dimensional gas distribution mapping with a micro-drone. Chinese Control Confer-
ence (CCC), Hangzhou, China, 28–30 July, 2015-Septe:6011–6015, 2015. (Cited
on pages 30, 31, and 40.)

[167] Hiroshi Ishida, Takamichi Nakamoto, and Toyosaka Moriizumi. Remote Sensing
and Localization of Gas/Odor Source and Distribution Using Mobile Sensing Sys-
tem. International Conference on Solid State Sensors and Actuators, 49(1):4–7,
1997. (Cited on pages 31 and 40.)

[168] Dominique Martinez and Laurent Perrinet. Cooperation between vision and olfac-
tion in a koala robot. Report on the 2002 Workshop on Neuromorphic Engineering,
pages 51–53, 2002. (Cited on page 31.)

[169] A. Loutfi, S. Coradeschi, L. Karlsson, and M. Broxvall. Putting olfaction into ac-
tion: using an electronic nose on a multi-sensing mobile robot. 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), 1:337–342, 2004. (Cited on page 31.)

[170] Gideon Kowadlo, David Rawlinson, R. Andy Russell, and Ray Jarvis. Bi-modal
search using complementary sensing (olfaction/vision) for odour source localisa-
tion. In IEEE International Conference on Robotics and Automation (ICRA), Or-
lando, FL, USA, 15–19 May, volume 2006, pages 2041–2046, 2006. (Cited on
pages 31 and 40.)

[171] Marco Trincavelli, Matteo Reggente, Silvia Coradeschi, Hiroshi Ishida, Amy
Loutfi, and Achim J Lilienthal. Towards environmental monitoring with mobile
robots. Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pages 2210–2215, 2008. (Cited on page 31.)

[172] Ping Jiang, Qing Hao Meng, and Ming Zeng. Mobile robot gas source localization
via top-down visual attention mechanism and shape analysis. In Proceedings of
the World Congress on Intelligent Control and Automation (WCICA), pages 1818–
1823, 2010. (Cited on page 31.)

[173] Victor Hernandez Bennetts, Erik Schaffernicht, Todor Stoyanov, Achim J. Lilien-
thal, and Marco Trincavelli. Robot assisted gas tomography - Localizing methane
leaks in outdoor environments. In Proceedings - IEEE International Conference on
Robotics and Automation, pages 6362–6367, 2014. (Cited on page 31.)

[174] Werner Baetz, Andreas Kroll, and Gero Bonow. Mobile robots with active IR-
optical sensing for remote gas detection and source localization. Proceedings -
IEEE International Conference on Robotics and Automation, pages 2773–2778,
2009. (Cited on page 31.)

[175] G. Bonow and A. Kroll. Gas leak localization in industrial environments using a
TDLAS-based remote gas sensor and autonomous mobile robot with the Tri-Max
method. In Proceedings - IEEE International Conference on Robotics and Automa-
tion, pages 987–992, 2013. (Cited on page 31.)



REFERENCES 239

[176] H Nanto and J R Stetter. Introduction to Chemosensors. In Handbook of Machine
Olfaction: Electronic Nose Technology, chapter 4, pages 79–104. John Wiley &
Sons, 2004. (Cited on page 32.)

[177] Javier G. Monroy, Jose Luis Blanco, and Javier Gonzalez-Jimenez. Time-variant
gas distribution mapping with obstacle information. Autonomous Robots, 40(1):1–
16, 2016. (Cited on page 34.)

[178] Julian W Gardner and Philip N Bartlett. Performance definition and standardiza-
tion of electronic noses. Sensors and Actuators B: Chemical, 33(1-3):60–67, 1996.
(Cited on page 34.)

[179] J. W. Gardner and P. N. Bartlett. Electronic noses. Principles and applications.
Measurement Science and Technology, 11(7):1087, 1999. (Cited on page 34.)

[180] E. L. Hines, Pascal Boilot, Julian W. Gardner, and Mario A. Gongora. Pattern
analysis for electronic noses. In Handbook of Machine Olfaction, pages 133–160.
John Wiley & Sons, 2003. (Cited on page 34.)

[181] M. Castro, B. Kumar, J. F. Feller, Z. Haddi, A. Amari, and B. Bouchikhi. Novel
e-nose for the discrimination of volatile organic biomarkers with an array of carbon
nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors. Sensors and
Actuators, B: Chemical, 159(1):213–219, 2011. (Cited on page 35.)

[182] Marco Trincavelli, Silvia Coradeschi, and Amy Loutfi. Online classification of
gases for environmental exploration. In 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2009, pages 3311–3316, 2009. (Cited on
page 35.)

[183] Marco Trincavelli and Amy Loutfi. Feature selection for gas identification with
a mobile robot. Proceedings - IEEE International Conference on Robotics and
Automation, pages 2852–2857, 2010. (Cited on page 35.)

[184] Victor Bennetts, Erik Schaffernicht, Victor Pomareda, Achim Lilienthal, Santiago
Marco, and Marco Trincavelli. Combining Non Selective Gas Sensors on a Mobile
Robot for Identification and Mapping of Multiple Chemical Compounds. Sensors,
14(9):17331–17352, 2014. (Cited on pages 35 and 57.)

[185] Victor Hernandez Bennetts, Erik Schaffernicht, Victor Pomareda Sesé, Achim J.
Lilienthal, and Marco Trincavelli. A novel approach for gas discrimination in natu-
ral environments with open sampling systems. Proceedings of IEEE Sensors, 2014-
Decem(December):2046–2049, 2014. (Cited on page 35.)

[186] Ji Gong Li, Biao Sun, Fan Lin Zeng, Jia Liu, Jing Yang, and Li Yang. Experimental
study on multiple odor sources mapping by a mobile robot in time-varying airflow
environment. In Chinese Control Conference (CCC), Chengdu, China, 27–29 July,
volume 2016-Augus, pages 6032–6037, 2016. (Cited on pages 35 and 40.)



240 REFERENCES

[187] Javier G. Monroy and Javier Gonzalez-Jimenez. Gas classification in motion: An
experimental analysis. Sensors and Actuators, B: Chemical, 240:1205–1215, 2017.
(Cited on page 35.)

[188] Han Fan, Victor Hernandez Bennetts, Erik Schaffernicht, and Achim J. Lilienthal. A
cluster analysis approach based on exploiting density peaks for gas discrimination
with electronic noses in open environments. Sensors and Actuators, B: Chemical,
2018. (Cited on page 35.)

[189] Jane Hodgkinson and Ralph P. Tatam. Optical gas sensing: A review, 2013. (Cited
on page 35.)

[190] FLIR. Gas detection. Technical report, FLIR Systems, 2009. (Cited on page 36.)

[191] Arvind P. Ravikumar, Jingfan Wang, and Adam R. Brandt. Are Optical Gas Imaging
Technologies Effective for Methane Leak Detection? Environmental Science and
Technology, 51(1):718–724, 2017. (Cited on page 36.)

[192] D. F. Swinehart. The Beer-Lambert Law. Journal of Chemical Education,
39(7):333, 1962. (Cited on page 37.)

[193] Marco Trincavelli, Victor Hernandez Bennetts, and Achim J. Lilienthal. A least
squares approach for learning gas distribution maps from a set of integral gas con-
centration measurements obtained with a TDLAS sensor. Proceedings of IEEE
Sensors, 2012. (Cited on page 37.)

[194] Gary Nelson. Gas mixtures: preparation and control. CRC Press: Boca Raton, FL,
USA, 1992. (Cited on page 38.)

[195] Javier Burgués, Juan Manual Jimenez-Soto, and Santiago Marco. Estimation of
the limit of detection in semiconductor gas sensors through linearized calibration
models. Analytica Chimica Acta, 1013:13–25, 2018. (Cited on page 39.)

[196] TimTaffner Yue Li Michael Bischoff,Bernd Niemeyer. Test Gas Generation
fromPure Liquids_An Application_Oriented Overview of Methods in a Nutshell.
International Journal of Chemical Engineering, 2012, 2011. (Cited on page 39.)

[197] Javier G. Monroy, Achim Lilienthal, Jose Luis Blanco, Javier Gonzalez-Jimenez,
and Marco Trincavelli. Calibration of MOX gas sensors in open sampling systems
based on Gaussian Processes. In Proceedings of IEEE Sensors, 2012. (Cited on
page 39.)

[198] Ahmad Shakaff Ali Yeon, Kamarulzaman Kamarudin, Retnam Visvanathan, Syed
Muhammad Mamduh Syed Zakaria, Ammar Zakaria, and Latifah Munirah Ka-
marudin. Gas Source Localization via Behaviour Based Mobile Robot and
Weighted Arithmetic Mean. In IOP Conference Series: Materials Science and En-
gineering, 2018. (Cited on page 40.)



REFERENCES 241

[199] Matteo Reggente and Achim J. Lilienthal. Three-dimensional statistical gas distri-
bution mapping in an uncontrolled indoor environment. In AIP Conference Pro-
ceedings, volume 1137, pages 109–112, 2009. (Cited on page 40.)

[200] Sepideh Pashami, Achim J. Lilienthal, Erik Schaffernicht, and Marco Trincavelli.
TREFEX: Trend estimation and change detection in the response of MOX gas sen-
sors. Sensors (Switzerland), 13:7323–7344, 2013. (Cited on page 40.)

[201] Hiroshi Ishida, Gouki Nakayama, Takamichi Nakamoto, and Toyosaka Moriizumi.
Controlling a gas/odor plume-tracking robot based on transient responses of gas
sensors. IEEE Sensors Journal, 5(3):537–545, 2005. (Cited on pages 40, 44,
and 45.)

[202] G. Kowadlo and R. a. Russell. Using naïve physics for odor localization in a clut-
tered indoor environment. Autonomous Robots, 20(3):215–230, jun 2006. (Cited
on pages 40 and 44.)

[203] J. Fonollosa, L. Fernández, A. Gutiérrez-Gálvez, R. Huerta, and S. Marco. Cali-
bration transfer and drift counteraction in chemical sensor arrays using Direct Stan-
dardization. Sensors and Actuators, B: Chemical, 236:1044–1053, 2016. (Cited on
page 40.)

[204] Javier Gonzalez-Jimenez, Javier G. Monroy, and Jose Luis Blanco. The Multi-
Chamber Electronic Nose—An Improved Olfaction Sensor for Mobile Robotics.
Sensors, 11(6):6145–6464, jan 2011. (Cited on pages 40, 53, 54, and 55.)

[205] Qing Hao Meng, Wei Xing Yang, Yang Wang, and Ming Zeng. Collective odor
source estimation and search in time-variant airflow environments using mobile
robots. Sensors, 11(11):10415–10443, 2011. (Cited on page 40.)

[206] Syed Muhammad Mamduh Syed Zakaria, Retnam Visvanathan, Kamarulzaman Ka-
marudin, Ahmad Shakaff Ali Yeon, Ali Yeon Md Shakaff, Ammar Zakaria, and Lat-
ifah Munirah Kamarudin. Development of a scalable testbed for mobile olfaction
verification. Sensors (Switzerland), 15(12):30894–30912, 2015. (Cited on pages
40, 60, and 61.)

[207] L. A. Currie. Detection and quantification limits: Origins and historical overview.
Analytica Chimica Acta, 391(2):127–134, 1999. (Cited on page 41.)

[208] Paolo Montuschi, Sergei A. Kharitonov, and Peter J. Barnes. Exhaled carbon
monoxide and nitric oxide in COPD. Chest, 120(2):496–501, 2001. (Cited on
page 42.)

[209] Simon Davies, Patrik Spanel, and David Smith. Quantitative analysis of ammonia
on the breath of patients in end-stage renal failure. Kidney International, 52(1):223–
228, 1997. (Cited on page 42.)

[210] Jingying Zhang, Xin Yao, Rongbin Yu, Jianling Bai, Yun Sun, Mao Huang, Ian M
Adcock, and Peter J Barnes. Exhaled carbon monoxide in asthmatics: a meta-
analysis. Respiratory research, 11(1):50, 2010. (Cited on page 42.)



242 REFERENCES

[211] Alejandro C Olivieri. Analytical figures of merit: from univariate to multiway cali-
bration. Chemical reviews, 114(10):5358–5378, 2014. (Cited on page 43.)

[212] Avraham Lorber, Klaas Faber, and Bruce R Kowalski. Net Analyte Signal Calcu-
lation in Multivariate Calibration. Analytical Chemistry, 69(8):1620–1626, 1997.
(Cited on page 43.)

[213] M C Ortiz, L A Sarabia, A Herrero, M S Sánchez, M B Sanz, M E Rueda,
D Giménez, and M E Meléndez. Capability of detection of an analytical
method evaluating false positive and false negative (ISO 11843) with partial least
squares. Chemometrics and Intelligent Laboratory Systems, 69(1-2):21–33, nov
2003. (Cited on page 43.)

[214] Anita Singh. Multivariate decision and detection limits. Analytica chimica acta,
277(2):205–214, 1993. (Cited on page 43.)

[215] Alejandro C. Olivieri, Nicolaas M. Faber, Joan Ferré, Ricard Boqué, John H. Kali-
vas, and Howard Mark. Uncertainty estimation and figures of merit for multivariate
calibration (IUPAC Technical Report). Pure and Applied Chemistry, 78(3):633–
661, 2006. (Cited on page 43.)

[216] A Muñoz de la Peña, A Espinosa-Mansilla, M I Acedo Valenzuela, H C Goicoechea,
and A C Olivieri. Comparative study of net analyte signal-based methods and partial
least squares for the simultaneous determination of amoxycillin and clavulanic acid
by stopped-flow kinetic analysis. Analytica Chimica Acta, 463(1):75–88, 2002.
(Cited on page 43.)

[217] J. Hodgkinson, Q. Shan, and R. D. Pride. Detection of a simulated gas leak in a wind
tunnel. Measurement Science and Technology, 17(6):1586–1593, 2006. (Cited on
page 44.)

[218] Erik Schaffernicht, Marco Trincavelli, and Achim J Lilienthal. Bayesian Spatial
Event Distribution Grid Maps for Modeling the Spatial Distribution of Gas Detec-
tion Events. Sensor Letters, 12(6):1142–1146, 2014. (Cited on page 44.)

[219] Ji-Gong Li Ji-Gong Li, Qing-Hao Meng Qing-Hao Meng, Fei Li Fei Li, Ming
Zeng Ming Zeng, and D. Popescu. Mobile robot based odor source localization via
particle filter. Proceedings of the 48h IEEE Conference on Decision and Control
(CDC) held jointly with 2009 28th Chinese Control Conference, pages 2984–2989,
2009. (Cited on page 44.)

[220] Anies Hannawati Purnamadjaja and R. Andrew Russell. Robotic pheromones: Us-
ing temperature modulation in tin oxide gas sensor to differentiate swarm’s be-
haviours. 9th International Conference on Control, Automation, Robotics and Vi-
sion, 2006, ICARCV ’06, 2006. (Cited on pages 44 and 49.)

[221] Jacques Nicolas and Anne-Claude Romain. Establishing the limit of detection and
the resolution limits of odorous sources in the environment for an array of metal ox-
ide gas sensors. Sensors and Actuators B: Chemical, 99(2-3):384–392, may 2004.
(Cited on page 45.)



REFERENCES 243

[222] M. Kuske, M. Padilla, A. C. Romain, J. Nicolas, R. Rubio, and S. Marco. Detec-
tion of diverse mould species growing on building materials by gas sensor arrays
and pattern recognition. Sensors and Actuators, B: Chemical, 119(1):33–40, 2006.
(Cited on page 45.)

[223] George F Fine, Leon M Cavanagh, Ayo Afonja, and Russell Binions. Metal oxide
semi-conductor gas sensors in environmental monitoring. Sensors, 10(6):5469–
5502, 2010. (Cited on page 45.)

[224] C. Borrego, A. M. Costa, J. Ginja, M. Amorim, M. Coutinho, K. Karatzas,
Th Sioumis, N. Katsifarakis, K. Konstantinidis, S. De Vito, E. Esposito, P. Smith,
N. Andr??, P. G??rard, L. A. Francis, N. Castell, P. Schneider, M. Viana, M. C.
Minguill??n, W. Reimringer, R. P. Otjes, O. von Sicard, R. Pohle, B. Elen, D. Suri-
ano, V. Pfister, M. Prato, S. Dipinto, and M. Penza. Assessment of air quality mi-
crosensors versus reference methods: The EuNetAir joint exercise. Atmospheric
Environment, 147(2):246–263, 2016. (Cited on page 45.)

[225] Naomi Funazaki, Akihide Hemmi, Satoshi Ito, Yasukazu Asano, Yukio Yano, Norio
Miura, and Noboru Yamazoe. Application of semiconductor gas sensor to quality
control of meat freshness in food industry. Sensors and Actuators: B. Chemical,
25(1-3):797–800, 1995. (Cited on page 45.)

[226] Noureddine El Barbri, Eduard Llobet, Nezha El Bari, Xavier Correig, and Benachir
Bouchikhi. Electronic nose based on metal oxide semiconductor sensors as an alter-
native technique for the spoilage classification of red meat. Sensors, 2008. (Cited
on page 45.)

[227] A Perera, A Pardo, D Barrettino, A Hierlermann, and S Marco. Evaluation of fish
spoilage by means of a single metal oxide sensor under temperature modulation.
Sensors and Actuators B: Chemical, 146(2):477–482, 2010. (Cited on page 45.)

[228] Amalia Berna. Metal oxide sensors for electronic noses and their application to
food analysis, 2010. (Cited on page 45.)

[229] Amy Loutfi, Silvia Coradeschi, Ganesh Kumar Mani, Prabakaran Shankar, and John
Bosco Balaguru Rayappan. Electronic noses for food quality: A review. Journal of
Food Engineering, 144:103–111, 2015. (Cited on page 45.)

[230] Piet Bergveld. Sensors for biomedical applications. Sensors and Actuators, 10(3-
4):165–179, 1986. (Cited on page 45.)

[231] Alphus D Wilson and Manuela Baietto. Advances in electronic-nose technologies
developed for biomedical applications. Sensors, 11(1):1105–1176, 2011. (Cited
on page 45.)

[232] Marco Righettoni, Anton Amann, and Sotiris E Pratsinis. Breath analysis by nanos-
tructured metal oxides as chemo-resistive gas sensors. Materials Today, 18(3):163–
171, 2015. (Cited on page 45.)



244 REFERENCES
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