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The larger center-of-mass energy of the Large Hadron Collider Run 2 opens up the possibility of a more
detailed study of the quartic vertices of the electroweak gauge bosons. Our goal in this work is to classify all
operators possessing quartic interactions among the electroweak gauge bosons that do not exhibit triple
gauge-boson vertices associated to them. We obtain all relevant operators in the nonlinear and linear

realizations of the SU(2), ® U(1), gauge symmetry.
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I. INTRODUCTION

The recent discovery of a Higgs-like boson by the
ATLAS and CMS collaborations [1] brings us a step closer
to a full check of the standard model (SM). The SM has
been subject to a large number of precision tests during the
past decades [2] without any putative indication of devia-
tions from its predictions for the particle couplings, which
in the case of fermion-gauge interactions have been tested
to close to per mil accuracy. Since the SM is a gauge theory
based on the SU(2), ® U(1), group, it fixes completely
the structure of the trilinear (TGC) and quartic (QGC)
electroweak gauge-boson couplings. Therefore, it is impor-
tant to establish whether these couplings indeed are in
agreement with the SM predictions.

Precise knowledge of the gauge-boson self-interactions
not only can serve to further establish the SM in the case of
agreement with its predictions, but also any observed
deviation can indicate the existence of new physics. For
instance, new heavy bosons can generate a tree-level con-
tribution to four gauge-boson couplings while its effect in the
triple-gauge vertex would only appear at one loop [3] and
consequently be suppressed with respect to the quartic one.
Moreover, the comparison of deviations in TGC and QGC [4]
can be used to determine whether the SU(2), ® U(1), is
linearly [5—13] or nonlinearly [14-16] realized in the low-
energy effective theory of the electroweak breaking sector.

Presently, the trilinear gauge-boson couplings are known
to agree with the SM within a few percent [17-19]. On the
other hand, there are sparse direct data on anomalous QGC,
and for a long time, the most stringent bound on QGC
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stemmed from their indirect effects to the Z physics
via their one-loop contributions to the oblique corrections
[20-23], a situation that is starting to change [24-27]. The
LEP Collaborations directly probed WHW~yy and ZZyy
interactions in the reactions ete™ — W W~y [28] and Zyy
[29]. At the Tevatron, the DO Collaboration studied the
W+W~yy vertex in diffractive events exhibiting dielectron
and missing energy [30]. At the LHC, the ATLAS and
CMS collaborations studied the production of Vyy with
V = Z or W¥ to constrain the VVyy QGC [24]. Moreover,
the ATLAS Collaboration analyzed the W*W~ and ZW=
pairs via vector-boson fusion to bound the QGC among
four massive electroweak vector bosons [25] while CMS
studied the Zyjj, W¥yjj and W*W=jj productions to
probe QGC [26]. In addition to these inclusive processes,
the CMS Collaboration also probed the W W~yy vertex
through the exclusive yy — W™ W~ production [27].

The direct study of QGC requires either the production
of three gauge bosons or the pair production of gauge
bosons in vector-boson fusion [23]. Therefore, LHC Run 2
opens the possibility of testing systematically anomalous
QGC due to the large center-of-mass energy. Here, we
focus on genuine QGC, that is, QGC that do not have any
TGC associated to them since the best bounds on the
Wilson coefficients in the latter case are obtained from the
direct study of TGC. In a scenario where the SU(2), ®
U(1)y is realized linearly, the lowest-order QGC are given
by dimension-8 operators [21]. On the other hand, if the
gauge symmetry is implemented nonlinearly, the lowest-
order QGC appear at O(p*) [4,16].

In the previous phenomenological [20-23,31-38] and
experimental [24-30] analyses of QGC, just a partial list of
effective operators has been considered. Our goal in this
work is to classify all genuine QGC in the nonlinear and
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linear realizations of the gauge symmetry including up to
two derivatives acting on the gauge-boson fields. This will
facilitate the translation of bounds between different
notations.

The outline of the paper is as follows. We start by listing
the most general set of Lorentz structures which can be
involved in quartic gauge-boson vertices containing up to
two derivatives acting on the gauge fields in Sec. II. In
Sec. III, we present the most general effective Lagrangian
which generates QGC in scenarios in which the observed
Higgs-like particle is indeed a fundamental state belonging
to an SU(2), doublet and for which the gauge symmetry is
linearly realized. In these scenarios, QGC appear at
dimension-8 independently on the number of derivatives,
and we find a total of 10 independent operators and derive
the relations between the coefficients of the generated
Lorentz structures that this implies. Section IV contains the
most general effective Lagrangian which gives rise to those
QGC in scenarios with a dynamical light Higgs for which
the electroweak symmetry realization is chiral. In this case,
QGC with no derivatives and two derivatives appear at
O(p*) and O(p®), respectively, and we find the same
number of independent chiral operators as Lorentz struc-
tures. Finally, in Sec. V, we summarize our conclusions.
The article is complemented with a set of Appendixes
containing the most lengthy expressions as well as some
technical details.

II. GENERAL LORENTZ STRUCTURES

Without loss of generality, initially we construct the
possible Lorentz structures that are invariant under U(1),,,
and which contain four vector bosons. We group the
vertices in terms of the number of derivatives that they
contain, and we restrict ourselves to vertices exhibiting zero
or two derivatives or, equivalently, to operators with mass
dimension up to 6.

A. Vertices with zero derivatives

Since the U(1),,, invariance requires that the photon
field appears only as part of the electromagnetic field
strength, the zero-derivative vertices do not contain pho-
tons; i.e., the QGC exhibit only massive electroweak gauge
bosons. These structures are

Q4w = WHW W Wy, Q40 = WHW W, Wy,
sz1 =WHW,2°Z,. szz =WHwW™Z,2,,
Q) =2'2,2"2,. (1)
The first four structures in Eq. (1) modify the SM quartic
couplings WrW~-W* W~ and WTW~ZZ, while the last one
leads to a QGC not present in the SM. The effective

Lagrangian containing these five structures has the general
form
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E@ 0 _ ZCOWWQWWz+ZCOWZQW21+COZZQ6 0

(2)

B. Vertices with two derivatives

The quartic vertices containing two derivatives can be
classified according to the number of photons in the vertex
as U(1),, requires that for each photon field at least one
derivative must appear.

1. Vertices with two derivatives and two photons

The vertices with two derivatives and containing two
photons are constructed using two photon field strengths
plus two W= or Z fields. In this case, there are only four
possible Lorentz structures:

Qle -
Q}/Z |

F JFoWrews, QU2 = F, Flew Wy,
=F, P27, QU3 =F,FZ'Z, (3)

2. Vertices containing two derivatives and a single photon

In this group of QGC, one derivative appears in the
photon field strength, while the other derivative can appear
in the antisymmetric combination V,, = 9,V, — 9,V with
V,=2, or Wﬂi or in the symmetric combinations

X5 =0,WF+0,W;i, Y, =0,Z,+0,Z, (4)

In this case, one can construct nine Lorentz structures
corresponding to anomalous yZW* W~ interactions,

QyZWl = F,Z""W* Wy,

QyZWZ F,Zr(WHWe + W WE),

QyZW3 = (W, WaZ% + W, WiZ%),

Qlriva = P (WiaWy Z0 + W W, Z%),

QR s = P(WLW™Z, + W, W*Z,),

F YF(WHW, + W WS,

QU7 7 = FuZo( XM W™ 4 XHeWH),

QUi = FuZd (X MWy + X+ W]),

QyZW9 = F,ZH(X; W™ + X°WH), (5)

QyZW 6

while there are three Lorentz structures associated to the
coupling of a single photon to three Z’s:

Q/zz1 F,Z"WZ°Z,, Qyzzz F,Z'7"Z,,
Q/zz3 =F,YZ'Z,. (6)

3. Vertices with two derivatives without photons

The W W~ZZ quartic interactions exhibiting two deriv-
atives are summarized by 29 distinct Lorentz structures,
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QU2 = WHe W5 297, QUF, = WHW,,207,,
QWZ4 = Wt W™ Z,,Z,W*+H.c.,
Qzr = 2" LW, Quzs = XX 22y,

Q47 =X, XZ,Z,+ He.,

QU2 = XY, Z, W™ + Hc.,

QU2 = X4, YV Z'W=* + He.,

QWZ 20 = YiYiWiw=, QWZ o = VYW, We,

QU2 = WY, Z,W= + He.,

QU2 = XZ,,7,W= + He.,

sz hg = Y# ”ZWW*W“’ +H.c.,

o

QYA =W Z,,Z°W; + He.,
iz = XX Z°Z,,
QY21 = XY, Z°W; + He.,
Q% s = Xu" Y Z, W™ + Hec.,
Q4 s = YWY, WiW™,
Q4 2y, = WX 77, + Hee.,
Q4 70y = WY, Z°W; + H.c.,
Q470 = X"Z,,Z°W; + He.,

PHYSICAL REVIEW D 93, 093013 (2016)

Q)2 — Wiz, 7aW; + He.,

QUFe = 22, WEW™,

QFi0 = Xu"X;*2°Z,,
sz 13 = XY, Z°W; + Hee.,
Q% 16 = Xu"Y""Z,W; + He.,

QWZ 9 = Y"Y, WVIW—e,

Q) Fs = WHeYLZ, W5 + Hec.,
Q0P = Xp"Z,,ZW™% + H.c.,
(7)

where H.c. stands for the Hermitian conjugate. Correspondingly, there are 18 WTW~WT W~ effective vertices containing

two derivatives that are given by

Qi = WH W, WHewy,

QWW4 = WHW,,WeW; + H.c.,
ey = XX WHewy,

Qiz 10 = Xu "X *Wi W + Hec., Q2

Qi 13 = X, "X,*W="W, + H.c.,

Qiz 16 = WH X WeW; + H.c.,

Qwn = W W W Wy,

Qi s = W Wi WW; + Hec.,

s = XX, WOW,,
11 = XX WeW, + Hee.,
Qi 14 = X, "X eW; W, + Hec.,

Qi 17 = X" Wy, WH W= 4+ H.c.,

Qs = WH W, Wy W™,
QWW6 — XX, WHW,,
QWWQ _ X;LMX uw+an’
QWW = XX W W, +He.,
wa 15 = WXL WHW, +H.e.,
Qi s = XMW W™W, 4+ He..
(8)

Finally, seven different Lorentz structures are required to describe ZZZZ vertices with two derivatives: /new/c

0% = 27,22,

QYA =YY Z°Z,,

Q937" 7,27,
QZZG - Yﬁ YWZ(IZV’

QY% = Y™Y,,2°Z,,
QY% = 7MY . 2°Z,. (9)

sz4 = YMDYyaZaZw

o

Altogether, any effective Lagrangian possessing two derivatives and any four gauge bosons can be written as a

combination of the 70 Lorentz structures above as

£82

ZczyWQle + ZCzyZQyzl + ZCZ J/ZWQJ,ZWI + ZCzyZZQyzzl

+Z 2WZQWZt+Z ZWWQWWz Z zzzozzl (10)

It is interesting to notice that the quartic vertices in
Egs. (5), (6), (7), (8), and (9) containing X,i or Y, have not
been considered before in the literature.

In summary, we have found 5 Lorentz structures without
derivatives and 70 with two derivatives. Next, we are going
to build the lowest-dimension electroweak gauge invariant
Lagrangian which can lead to genuine quartic gauge-boson
vertices and map their coefficients to those of these Lorentz
structures.

III. GENUINE QGC IN MODELS WITH AN
ELEMENTARY HIGGS: THE LINEAR
LAGRANGIAN

Assuming that the new state observed in 2012 is indeed
the SM Higgs boson and belongs to a light electroweak
scalar doublet, we can construct an effective theory where
the SU(2); ® U(1), gauge symmetry is linearly realized
[5—13] that can be expressed as
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‘CeffZESM"i_Z%On (11)
n=>5

where the dimension-n operators O, involve SM fields
with couplings f, and where A is a characteristic scale.
The basic blocks for constructing the effective
Lagrangian leading to genuine QGC with the gauge
symmetry realized linearly and their transformations are

P =
D,®' = UD,®

P,
D,®,

that transforms as Uo (12)

(13)

that transforms as

ol A
W, = ZW””E’ thattransformsas W, =UW,, U’
J

(14)

B that transforms as (15)

;o
Hv B, =B

A

where @ stands for the Higgs doublet, W}, is the SU(2),
field strength, and B, is the U(1)y one. Here, we denote an

arbitrary gauge transformation by U. According to our
|

Ogo = [(Dp‘I’)TDu‘I’} X
OS,I = [(Du‘b)TDﬂq’]

OS,Z = [(D”(I))TDHQ)} X

(D)D) =
x [(D,®)"D*®] =

(D*®) Dra] =

PHYSICAL REVIEW D 93, 093013 (2016)

conventions, the covariant derivative is given by
D,® = (0, + igWy% +igB,3)®, and o/ stand for the
Pauli matrices.

Notice that the covariant derivative of ® and also the
field strength tensors contain terms with at least one weak
gauge boson when we substitute ® by its vacuum expect-
ation value, v. Therefore, the lowest-dimension operators
that lead to genuine quartic interactions are dimension 8.'
They can be classified in three groups:

(i) terms that contain four covariant derivatives of the

Higgs field;
(i1) terms exhibiting two Higgs covariant derivatives and
two field strength tensors;
(iii) terms presenting four field strength tensors.
Here, we focus on operators containing up to two deriv-
atives, and therefore, we will not analyze the last class;
however, we present these operators in the Appendix B for
the sake of completeness.

A. Operators containing only D,®

There are three independent operators belong to this
class®:

4,4 b
g [
16 QWWZ QWZZ 4 ngo ’
gt 1 N
16 Q 1 + QWZI 4 ngo ’
4,4 h
g [T
16 QWWI QWZ2 4 ngo (16)

The corresponding effective Lagrangian can be mapped to that in Eq. (2) with coefficients related as

oww __ S.1 +fS2 oww __

1 - 16 A4 A4 2

0wz _ so | [sa 77
4" = oa [A“ " A4] "

where s,,

9 v* fso AWz _ g'v* &
16 A+ ! 16¢3, A*”°
1
=g @S, (17)
w

(c,,) stand for the sine (cosine) of the weak mixing angle 6,, verifying tan@,, = g/¢. Notice that the linear

realization of the symmetry leads to correlations between the Wilson coefficients appearing in Eq. (2).

B. Operators containing D, ® and field strength

. 3
This class possesses seven operators’:

OM,O = TI‘[WWW”U] X [(Dﬂ@)TDﬁ(I)]’ OM,I = Tr[W/AbWDﬁ] X [(Dﬂq))%Dﬂ(I)]? OM.2 = [BWBMD] S [(Dﬁ(I))TDﬁ(I)]’
Ous = [B,,BY] x [(D;®)'D"®], Oya = [(D,®)'Wy,D'®] x B”, Ous = [(D,®)Wj,D"®] x B + H.c.,

OM,7 - [(Dﬂ(I))TW/}DW/}ﬂD’/@}

(18)

'At dimension 6, quartic vertices are generated, but they are always accompanied by triple gauge-boson vertices with related

coefficients.

*We are using the conventions of Ref. [21]; however, the operator Oy, has been included.
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These seven operators involve 23 of the 70 possible Lorentz structures as explicitly given in Appendix A. In particular, none
of the structures with symmetric gauge-boson tensors is generated. The corresponding effective Lagrangian can be written
in the form of Eq. (10) where the 23 coefficients of the Lorentz structures can be expressed in terms of 7 of them. For

2W .
example, these can be chosen to be 02 yw c% §V627, and ¢;”" with
2,2 2 2,2 1 _ 1 2,2
2ww _ g 2fmo 2WW _ 917 Sma 2WZ QU 1 —fuy+35 M7 2wz _ GV S fua
1 8§ A* ? 8 AT : 3 A* ’ ’ 8 ¢, A*
L f f f i / / / /
owz gV 2 J MO0 4052 M2 M2 M 4 2, _g 2IML_ 2 IM3 5 M.5 2 IM7
Ce - ] Cw A4 S A4 — SwCy A4 s - Cy A4 — Sy A4 — 285y Cy A4 + Cy A4
2,2
20w g 2fM,1 2fM% 25 Sms fM7 19
¢ - ] —Sw A4 Cy A4 +2s,,¢y A4 + A4 ( )
and the remaining 16 coefficients satisfy the following relations:
AWz _ L oww 217 _ L o,w _ 2wz _ 2WZ | 2WZ 202ZW _ _Sw 2wz
1 ZC%) 1 ’ 1 ZC%) 1 3 ’ 263‘} 6 3 ’ 3 SW 3 ’
2.7ZW 2.WW 2.WZ 20w c%/_sa’ 2.WZ 2427 1 2.7ZW C%v_ Sw 2wz
T = 2sep e — gt =y 76 ot =56 T G
255, 2ct, S, Cyp
20w 1 2/ 2WZ 2.WZ 2 2\ 2WW 2 2 WZ _ 2WW
¢ = 2cy(e3™ " + g 7)) = (ey —sw)ey ], =2c —C
2s
1 1
277 2 2 2 wz 2 wz 2 2 oW 2072 _ _ 277 2WZ 2 JW
@ =5 5 [(ch = s3) (2cqc ) + 2556577, e -5+ (77 + "),
CW‘ CW
2wz 1 2WZ 2 Wz | Sw 2 gW 2WW 2.WZ 2.WZ 2 2WZ  2WW
s = 3 {—cz + +2¢; } , =05+ 2oy =),
2yZW 1 20 2WZ  2WZ 2 29W 2427 L ozw o — S 2WZ 2WZ
¢ = ) [ i 2 -7 ) — 8Cy ], &) =50 - ( +cy ),
SWCW CW CWSW'
20ZW _ Cw 2wz 2WZy o Sw o owz c2WW
C45 = oy o N e e (e ;). (20)
w w

IV. GENUINE QGC IN MODELS WITH A
DYNAMICAL HIGGS: THE CHIRAL
LAGRANGIAN

In dynamical Higgs scenarios, the Higgs particle is a
composite field which happens to be a pseudo-Nambu-
Goldstone boson (PNG) of a global symmetry exact at
scales Agyong that corresponds to the masses of the lightest
strong resonances. Because the Higgs-like particle
is a PNG, the effective Lagrangian is nonlinear or “chiral,”
a derivative expansion [14,15,39,40] with a global
SU(2), ® SU(2); symmetry broken to the diagonal
SU(2),. The effective low-energy chiral Lagrangian is
entirely written in terms of the SM fermions and gauge
bosons and of the physical Higgs 4. In this scenario, the

3We follow the notation in Ref. [21], but we notice that in there
an additional operator O, ¢ was listed, which we found to be
redundant.

[
basic building block at low energies is a dimensionless
unitary matrix transforming as a bidoublet of the global
symmetry,

U(x) = eoe™ @/ U(x) > LU(x)RT, (21)
where L and R denote SU(2), p global transformations,

respectively, and z¢ are the Goldstone bosons. Its covariant
derivative reads

— 8,U(x) + igZ Wi(x)U(x) - %Bﬂ (X)U(x)o.

D,U(x) 7

(22)

We define the vector chiral field and its covariant
derivative as

v, = (D,U)U", (23)
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D,V,=0,V,+iglW,.V,]. (24)

and the scalar chiral field 7 = Us;U". These three objects
transform in the adjoint of SU(2),. Moreover, the Higgs
field A is a singlet under the global symmetry.

In our framework, we consider genuine QGC that appear
at O(p*) and O(p®) and are invariant under CP. The CP
transformation properties of our building blocks can be
easily obtained once we know that [15]

CPB,,( %,1)(CP)™ = =B, (=%, 1),

CPW(%,1)(CP)™" = 6*Wi (=%, 1)0?,
CPT(x,t)(CP)™' = —02T( X, 1)02,
CPV,(%,1)(CP)! V, (=%, 1)0. (25)

Our choice of phases are such that D, U has a well-defined
transformation under CP. From the above equation, we can
learn that the CP conserving QGC are the ones exhibiting
an even number of 7’°s and B,’s.

The building blocks that we use to construct genuine CP
conserving QGC can be classified according the mass
dimension of the operator (D) [15]. Here, we list all
building block operators needed to construct up to
O(p®) quartic operators, as well as their expressions in
the unitary gauge. There is just one operator with mass
dimension 1:

- g
1[IV, =i~2Z2,. (26)
CW
On the other hand, there are five D = 2 building blocks;
however, only four of them appear in CP-invariant quartic
operators,

B;w = CWF/w - st/w’ (27)
TeTD,) =i2v,, (28)
Cy

2
Te[TW,,] = ¢uZu, + 5, F s (30)

1
(C_zZqu +WiW, + W;Wj), (29)

where we define the symmetric combination D, =
D,V,+D,V,.

Just two of the eight D = 3 basic operators appear in
CP-invariant quartic vertices:

2

g (1 _ _
Tr[VﬂDM] = —3 <CTZMYML + W;Xyﬂ + WMXL-j}») s (31)
w
g 1
Tr [V WM] - 2 C_Zﬂ(cwzy/l + SWFM)
w

+WIW, + W;W,j) : (32)

PHYSICAL REVIEW D 93, 093013 (2016)

Of the 11 possible D =4 operators, just 3 of them
contribute to CP-conserving quartic vertices:

21
Tr(D, Dyl = -5 (—2 Yo Yoy + Xfu X + X, X0, )
cr
(33)
PO 1
Tr[Wqua/i] 2 [(C Z v+ st/w)(CwZaﬁ + sta/)’)
WL W, + W W, (34)
- ig| 1
Tr[W,ul/Daﬂ] = 3 C— (CWZ;JI/ + SWF;U/)Yaﬂ
+ WX + W,;ijﬂ] . (35)

It is interesting to notice that no dimension-5 operator can
give rise to p® CP-conserving QGC.

Using the D = 1, 2, 3, 4 building blocks, we construct all
possible CP-conserving operators for genuine QGC, and
then we remove those which can be related by total
derivatives. For instance, the relation

O, {Tt[V,D,V,|Tr[V,V,]}
= Tt[D,V,D,V,|Tt[V,V,]
+ Tx[V,D,D,V,]Tr[V, V)]
+Tx[V,D,V,|Tt[D,V, V)]
+Tx[V,D,V,|Tr[V,D, V)] (36)

can be used to eliminate operators that contain the building
block Tr[V,D,D,;V,]. To further reduce the number of
equivalent operators, we also use the relation

i
- _g/Bm/T + [V;u Vl/] (37)

D,V,-D)V,=igW, >

Moreover, we introduce a factor ig and i¢ in each operator
containing W,, and B,,, respectively, in order to have
consistent global powers of coupling constants.

A. QGC at O(p*)

The lowest-order genuine quartic operators are O(p*),
and there are two operators which respect to the SU (2)
custodial symmetry, as well as C and P that are given by

*We follow the notation of Refs. [4,16].
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P = Tr[wv ITe[V*V, ] F(h)

1
294 4c 4 0 Z+O(‘)VW,1 +C_20(‘3VZ,1 ]:G(h)’

Py = Te[VAVTHV,V, ) F (k)

1
=g 44OOzz+ (o W1+508VW,2

+ c_QO(v)VZ'Z Fii(h),

w

(38)

and three additional CP-conserving operators that violate
SU(2),.:

Py = TT[V”V |(Tr[TV, ])2f23(h)

=g4 2¢ 4OZ+CWOWZI

Pay = Te[VEVY|TH[TV, | Te[TV,

1 1
_ 4 0 0
=g 2 07z + 2 sz,z_

94
= 6_40%2}-26(}’)'

w

Prs = (Tr[TV”]Tr[TVD])Z}'%(h) (39)

Fi(h) are generic functions parametrizing the chiral-
symmetry-breaking interactions of 4 which can be
expanded as F;(h) =1+ 2&,»%4— l;i';—i—i— --. As we are
looking for operators of which the lowest-order vertex
contains four gauge bosons, we will be only concerned by
the constant term. So, the most general Lagrangian at
O(p*) for genuine QGC is

[1614 = c? =4p..
i=6,1123,24.26

(40)

TV=0 = Tt[TD,, | Tx[TD*| T[TV Tx[TV,],
TP=0 = T[T DL Te[T D Te [TV Te [TV,
T70 = —@Te[TW,, | Te[ TWH | Te[T V| TH[TV,],
TE=0 = igTe[TW,, | Tx[TD | Te[TV¥] T[TV,
T8 = —¢”B,, B Tr[TV*|Tt[TV,],

Ti® = —gg B, T[TW*THTVTHTV,).  Th® =

Notice that all the effective Lagrangians in this class violate SU(2)

PHYSICAL REVIEW D 93, 093013 (2016)

From Egs. (38) and (39), we see that the above Lagrangian
leads to quartic gauge couplings which do not contain
photons. We also see that there are five operators matching
five independent Lorentz structures that do not exhibit
derivatives. In Ref. [15], we can find the p* QGC assuming
that there is no light Higgs-like state, and this corresponds
to the limit F; — 1 in our framework. The correspondence
between the Wilson coefficients of our framework and the
ones defined in Ref. [15] is

_ _ p=4
ay = Cyy As = Cq A = Coq >
a; = by, ayg = che (41)
B. QGC at O(p®)
At order O(p9), there is the emergence of genuine QGC

containing photons as well as only four electroweak
gauge bosons with two derivatives acting on them. As in
Ref. [15], we construct the p6 operators for QGC combin-
ing the D =1, 2, 3, and 4 building blocks defined above.
Without loss of generality, we write the corresponding
Lagrangian as

LY =N "™ T F 0 (h), (42)

where 77 =0 are the O(p®) operators constructed with the

blocks defined above, and we denote by F7=°(h) the
corresponding arbitrary function parametrizing the s cou-
plings. As already mentioned, we will be only concerned

with the first term of its expansion F7~°(h) = 1.

1. (D=1)*(D=2)? terms

There are 12 independent operators in this category:

T5™° = Ti[TD,, | Te[TD*| T[TV Te(TV,).
TV=0 = Te[T DI Te[TD*| Te[TV, | TH[TV ]
T =
T =
7056 = ig B, Tr[TDH|Te[TV¥]TH[TV,],

—Te[TW,, | Tr[TWH Te[T VY| T[TV ),
—9?B,, B Tr[TV|Tr[TV ],

—gg' B, Tr{TWH] Tt TV TH[TV,). (43)

since they contain the 7T field. In Appendix C we

c

present the relations between these operators and the Lorentz structures that allow us to see that all the operators in this

group contain only neutral gauge bosons.

2. (D=1)(D=2)(D=3) terms

This group contains 21 operators that violate SU(2), due to the presence of 7
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T =Te[TV | Te[TD, | Tr[VeD™],  Th O =Tr[TV,|Tt[TD, ) Te[V* D], TV =Te[TV¥|Tx[TD,,|Tr[V D",

TP =Tr [TV, |Tr[TDLTe VDY),  TP70 =Te[TV,Te[TDL|Tr [V, D], T ®=Tr[TV¥|Tr[TD,,|Tr[VD],

T 05 =igTe[TV,|Tt[TD,,|Tr[V*Wr], T4 ° =igTe[TV¥|Tr[TD,,|Te[V , W], T4 °=igTt[TV,]|Tr[T D) Tr[V, W],
T80 = igTe[TV | Te[TW,, | Te[VDre], T8 = igTe[TVITe[TW,, | Tt[V, D],  Th = igTe[TV¥]Tr[TW, | Tr[VeDL],
T550 == T[TV, Tt [TW,, | Te[VEWH], T =g Te[TV,|Tr[TW,, | Tr[V* WHe),

T470 = —@Te[TVHITe[TW,, | Tt [V, WH],  The®=ig Te[TV,)B,, Tr[V*Dr], Th®=ig Te(TV¥|B,,Tr[V, D],

T4, =ig Tr[TV|B, Tr[VeDy], T4 =—gg Tr[TV,|B,, Tr[VEW™], T4 ° =—gg Tr[TV,|B,, Tr[V* W],

T80 =—gg Te[TV¥|B,, Tr[V,WH]. (44)

From the results presented in Appendix C, we can see that the above operators give rise to WrW~2Z, ZZ77, y7Z7Z,
yZW*tW=, and yyZZ anomalous QGC.

3. (D=3)? terms

We find 11 operators in this class with all of them respecting the custodial symmetry:

T5.° =TV, D, |Te[VeD™], T4 =Te[V,D,|Te[V?D], T4 = Te[V'D,,|Tr[V, D,

700 = Te[V, DUTe[VeDy], T4 °=Te[V,DiT[V, D],  Th* =igTe[V,D,,]Tr[V* W+,

Th0 = igTe[VeD,, | Te[V,Wre), T8 = igTe[V, DUITe[V, W, T5° = @ Tr[V W, Tr[vewr),

75173=6 = —ngr[VaWW]Tr[V”W”“], Tfff6 = —ngr[V”WW]Tr[VaW”“]_ (45)

From Appendix C, we can learn that the effective Lagrangians in this class generate W W-W* W=, W W~ZZ, and ZZZZ
quartic vertices, as well as yZWtW~, yZZZ, and yyZZ. Because of the custodial symmetry, the last three vertices are
multiplied by s, therefore vanishing in the custodial-conserving limit s,, — O.

4. (D=2)° terms

There are 12 operators in this class:

Th0 = Tt[TD,, |Te[TD|Te[VAV,],  The® = Te[TD,|Te[TD|Te[V*V,], T4 ° = Te[TDi|Te[TDY|Te[VeV,],
T = Te[TDU T [TD|Tx[V, V],  Thy® = =g Te[TW,, | Tr[TWH|Tr[VeV,),

T80 = —@Te[TW,, | Te[TWFTe[VoV,),  TE° = igTe[TW,, | Te[TD*|Tr[V*V,],

00 = —?B, BUTt[VeV,],  TU® =—g¢?B, BTt[V*V,],  T.°=igB,Tt[TD*|Tr[V*V,],

T80 = —gg B, Te[TWH|Tt[VeV,],  TL°® = —ggB,,Tr[TWF|Tr[V*V,)]. (46)

It is interesting to notice that the operators in this group generate QGC among all electroweak gauge bosons except
for WW-W+Htw-.,
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5. (D=2)(D=4) terms

This class contains seven operators:
7070 = Tr[D,, D*|Tr[VeV,),
T4 = TiDD|Te[V, V],
Th50 = igTe[W,, DH]Te[V¥ V).

700 = Tr[D,, D Tr[V*V,),
Th0 = —Te[W,, WHTI[VV,),

T4y = Te[ DD Tr[VV,),
T = @ TelW,, WHI TV V.
(47)

These operators are SU(2), invariant in the limit s,, — 0, and this can be seen by their expression in terms of Lorentz
structures presented in Appendix C. This class of Lagrangians generates the following QGC: WYW~ZZ, ZZZZ,yZW+W~,

yyW™W~, yZZZ, and yyZZ.

6. (D=1)*(D=4) terms

We find seven operators in this class that violate the custodial symmetry:

T0® = Tr[D,, D*|Te[TVTH(TV,)],
TV = Te[DLD*|Tx[TV,|Tr[TV,),
T5 0 = =g Te[W,, WH Te[T VY| Te[TV,),

As we can see in Appendix C, this group of effective
Lagrangians gives rise to WTW~ZZ, ZZZZ, yZZZ, and
yrZZ QGC.

Altogether we find 70 independent operators leading to
genuine QGC in the chiral Lagrangian at O(p®), so there
are as many operators as independent Lorentz structures
containing two derivatives. As mentioned above, this was
also the case at O(p*). This is somehow not unexpected; as
is well known [41], a generic U(1),,, invariant Lagrangian,
which is the only symmetry imposed in building the
Lorentz structures, is also invariant under nonlinear
SU(2);, ® U(1)y transformations.

V. SUMMARY

In this work, we have constructed the most general form
of the QGC containing up to two derivatives acting on the
electroweak gauge-boson fields. We have shown that there
are 5 independent Lorentz structures that respect the
U(1),, symmetry and contain no derivatives while there
are 70 structures exhibiting two derivatives.

We then derived which of these QGC are generated
assuming that the SU(2); ® U(1), gauge symmetry is
linearly realized, as a characteristic of scenarios with a
fundamental Higgs doublet. In this case, the lowest
dimension that presents QGC without a TGC associated
to them is 8. In these scenarios, there are only three
operators that contain only massive gauge bosons and
no derivative acting on them; see Eq. (16). So, because
of the linear realization of the symmetry, the Wilson

T050 = Te[D,, D|Te[TV¥|Tt[TV,],
Th0 = —Te[ W, W T[TV T[TV,
T4 = igTe[W,, D] Te[T V¥ TX(TV,). (48)

TP = Tr[DaDY| T[TV Tr[TV,],

coefficients of the five Lorentz structures that contain no
derivatives are correlated—independently of the basis of
operators used; see as an example the last line in
Eq. (17). In the same framework, we find seven
operators containing genuine QGC with two derivatives,
and they generate only 23 of the 70 possible Lorentz
structures. So, again, gauge invariance in the linear
realization implies correlations among the coefficients of
the different Lorentz structures, as, for example, those
in Eq. (20).

We also classified the quartic gauge-boson interactions,
assuming that the SU(2), ® U(1), symmetry is realized
nonlinearly  with  the global-symmetry  breaking
SU2), ® SU(2)r = SU(2),., characteristic of scenarios
with a light dynamical Higgs boson. At order O(p*), there
are five chiral operators which generate QGC without an
associated TQC. They contain only W* and Z and no
derivatives. There are 70 independent operators at order
O(p®), and they contain four gauge bosons and two
derivatives. That is, the chiral Lagrangian for genuine
QGC contains the same number of operators as indepen-
dent Lorentz structures. So, no basis-independent correla-
tion can be derived between the coefficients of the Lorentz
structures in this case.

At present, the most sensitive searches for quartic gauge-
boson couplings are those involving vertices with two
photons. Most of the analyses carried out by the LEP
[28,29], DO [30], and LHC [24,27] collaborations used the
following effective Lagrangian to study the two-photon
sector [32],
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Ao al Aoy T a Aoy T A%
Lefp = — e; A02 Qle e; A2 Q;/W2 em 5 QyZl
Aoy T a
2 2 Az QyZ2’ (49)

where a., stands for the electromagnetic fine-structure
constant. In the framework of electroweak gauge invariance
linearly realized, the seven operators in Eq. (18) give rise to
QGC containing two photons which in the notation in
Eq. (49) read

My [, f f f
w w | 2/ M0 2J M2 M4
= 2¢
a4y ﬂem|:wA2+ wA2+wwA2
M; f f fus suf
w 14 2JM1_ 2 TM3 M5 | Swlmja
V== - 2s
e ﬂaem[ VAT TG TG T
Z __ _ M S fMO fM,Z Sy fM,4
ag = + -
0 Tty 2ca, A2 T A2 2¢, A2
@ = — MWCw ng fM1 1fM3 Swa.s szv fM,7
¢ Tem | 262 A2 2 A2 ¢, A2 42 A2
(50)

So, even in the scenario with the linear realization of the
gauge invariance, these four coefficients can be fully
uncorrelated. A test of the presence/absence of the corre-
lations which can point toward an underlaying linear or
chiral expansion will require the measurement with accu-
racy equivalent to quartic vertices involving one or zero
photons, consequently requiring much more data.

At this point, it is interesting to a have an idea of the LHC
potential to constrain the genuine quartic couplings. For
instance, Ref. [38] studied the vector-boson fusion (VBF)
production of W*W~ and W*W% pairs and obtained the
prospective 95% C.L. limits on the p* QCG,

—0.0045 < ¢2=* < 0.0055 and
—0.0022 < 7 < 0.0027, (51)

for a center-of-mass energy of 14 TeV and an
integrated luminosity of 300 fb~!. Moreover, Ref. [31]
analyzed some of the p® QGC containing photons

(Cg,ggl,32,33,42,43,44,52.53.55,56,61,62) through the study of the
VBF production of yy and ye™e™. The typical 95% C.L.
limits on the modulus of these couplings are in the range
1.2-6.3 TeV~2 for a center-of-mass energy of 14 TeV and
an integrated luminosity of 100 fb~!.
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APPENDIX A: RELATIONS BETWEEN LINEAR
OPERATORS AND LORENTZ STRUCTURES

In the framework where the SM gauge symmetry is
realized linearly, the genuine quartic gauge couplings
generated by the dimension-8 operators with two deriva-
tives listed in Sec. IIl can be expressed in terms of the
Lorentz structures defined in Sec. II as

gl)
Omp =" 3 2wa1+ Qw21+ Q76

+2S c Q]/ZWI +st}/W1 + = QZZI

W QyZZ 1 QyZ 1:| (Al)
Oy =22 [waz + Ol + 7 O + RO,
+ swchyzwz + Swawz +5 szz
20+ Qﬂ } (A2)
gv°
Ou ~ 4 {C Qle —2s,¢ Q;/ZW] + 53, QWZ6
1
QyZ 17 QyZZ 1 (A3)
_921]
Ous = 3 Q;/WZ — SpC€ Qyzwz + SWQWZ7
2
R R 2. 7 I

Q;/ZZ 1)

sz 3 T SwCw (Q}/W 1 QWZé

-5 (- 03|

g 1}
Oma = g {(C - Sw) (QyZWl
QyZWS

(AS)
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Ous = 9811 {( - Sw) (QyZW2 QyZZ 2)

Qyzw4 QyZW5 "‘ w (QWZ4 + Q%7s)
5300 (2 (QyWZ Q7 — (Qyzz szz ]
(A6)
Ous == |:2QWW3 + Q7 + chwQ;?z:v%/.z
+SwaW2 (QW7s = QWZ4
(QyZWS QyZW 4) T+ szz L QyZZZ
03+ o) (A7)

APPENDIX B: DIMENSION-8 OPERATORS
CONTAINING FOUR FIELD STRENGTH
TENSORS

There are eight operators containing just field strength
tensors that lead to genuine quartic anomalous couplings,
which in the notation used in Ref. [21] are

= Tr|
Or, = Tt[W,, W] x Tr[W,, W]
Ory = Tr[W,,, W] x Tr[Wj, W],
Ors = Tt[W,,W*] x B,zBY
Org = Tt[W,, W] x B,;B®,
Or7 = Tt[W,,W*] x B;, B
Org = B,, BB, ;B
Org = B,,B"" By, B*. (B1)

APPENDIX C: RELATIONS BETWEEN O(p%)
OPERATORS AND LORENTZ STRUCTURES

Expanding the 70 O(p®) operators introduced in Sec. IV
in terms of the Lorentz structures in Sec. II B, we find

T = Qm (C1)
T = Qm (C2)
70 = QZZS (C3)

PHYSICAL REVIEW D 93, 093013 (2016)

T = sz 6 (C4)

%_4g
Tg = —2[ QZZI +2s CwaZZ 1t Q}’Z 1] (CS)

= gt
T ° 7[ szz+2s € Q}/ZZZ+S Q}/ZZ] (Co)
= qg*
T5° _3[CWQZZ7+SWQ;/ZZ%] (C7)
Tp:6*929/2 (20973 — 25,¢,9%2, + 2 Q%3] (C8)
8 - Cgv w yZZl vZ,1
Th=0 = 79 2 C9
9 [ szz_ SwC QyZZZ+C Q}/Z2] (C9)
o 7Y
Tf(; = 3 [—s sz7+Cwazzz] (C10)
3/
= gy
Tf16: 2 [cwsw(— QZZI+QyZ1)+(C = )QyZZl]
(C11)
3/
= __ 99
T, = 2 s (= szz Qy22)+(c )QyZZZ]
(C12)
=6 94 ]
Tf§ :20»% QWZl2+ Wszz (C13)
=6 94
71174_ :R QWZ]4 sz4 (C14)
=6 94 ]
71175_ :2—% QWZI3 sz4 (C15)
=6 94
Tfﬁ :20@ sz 15 T szs (C16)
=6 94
Tf7_ :26% QWZI7+ QZZ() (C17)
=6 94 ]
TII)S :E QWZ]6+ sz (CIS)
4
=6
T% T2 {szz3+sz7 QyZZ3:| (C19)
T”6—g {Q + 0%, Q } (C20)
20 202 wZzo4 T zz7 1223
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=6 94
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w

(QyZW 7

4
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3
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7
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