

Title: A web scraping framework for stock price modelling using
deep learning methods.

Author: Aleix Fibla Salgado

Advisor: Salvador Torra Porras

Department: Econometrics, Statistics and Spanish Economy

Academic year: 2018/2019

Degree in Statistics

i

Declaration of Authorship

I, Aleix FIBLA SALGADO, declare that this thesis titled, “A web scraping framework
for stock price modelling using deep learning methods.” and the work presented in
it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date: 28/06/2019

ii

Abstract

Aleix FIBLA SALGADO

A web scraping framework for stock price modelling using deep
learning methods.

This work aims to shed light to the process of web scraping, emphasizing its im-
portance in the new ’Big Data’ era with an illustrative application of such methods
in financial markets. The work essentially focuses on different scraping methodolo-
gies that can be used to obtain large quantities of heterogenous data in real time.
Automatization of data extraction systems is one of the main objectives pursued in
this work, immediately followed by the development of a framework for predic-
tive modelling. applying neural networks and deep learning methods to the data
obtained through web scraping. The goal pursued is to provide the reader with
some remarkable notes on how these models work while allowing room for further
research and improvements on the models presented.

Key words: Big data, neural networks, deep learning, web scraping, stock price
modelling, time series.

AMS classification: 82C32 - Neural Nets.

iii

Acknowledgements

Foremost, I should like to express my sincere gratitude to my advisor, Dr. Salvador
Torra Porras. This work would not have been possible unless his continuous sup-
port, patience, motivation and tremendous knowledge in the field of neural net-
works and financial markets.

Besides my advisor, I also owe my deepest gratitude to Dra. Manuela Alcañiz
Zanón, who encouraged me for initiating my studies in Statistics, and guided me
through my entire academic career to become a statistician with her invaluable ad-
vice.

Last but not least, I express my deepest appreciation to Pau Casas Bonet and
Silvia Sardà Rovira for assisting me with their expertise and insightful suggestions
in financial matters.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 The Big Data era 1
1.1 Introduction to Big Data . 1
1.2 A new programming paradigm . 3

1.2.1 How do machines learn? . 4
1.2.2 Machine Learning tasks . 5
1.2.3 Training Data and test data . 6
1.2.4 Assessing the outcome of learning 7
1.2.5 A primer in Deep Learning . 8

1.3 Machine Learning in Finance . 9

2 Web scraping Tools in Finance 11
2.1 The Net as a data source . 11
2.2 Net interactions and networked programs 13
2.3 Overview of alternative data . 14

3 Data Acquisition 16
3.1 Web Data Extraction . 16

3.1.1 Geting data from yahoo finance 20
3.1.2 Geting news data from reuters 22

3.2 Variables . 26
3.3 Exploratory Data Analysis . 27

3.3.1 Company pricing data . 27
3.3.2 News data . 35

4 Methods 40
4.1 Theoretical considerations . 41

4.1.1 Universal approximation theorem 41
4.1.2 Activation functions . 42
4.1.3 Optimization . 44

4.2 VADER Sentiment analysis . 46
4.3 LSTM for time series prediction . 50

5 Results 54
5.1 Unidimensional LSTM prediction . 55
5.2 Multidimensional LSTM prediction . 59

6 Concluding remarks 64

v

A Python class objects 66
A.1 Reuters news crawler . 66
A.2 LSTM data processor . 69
A.3 LSTM model definition . 71

B Natural Language Processing 74
B.1 Stop Words . 74
B.2 Punctuation List . 84
B.3 Negate List . 84
B.4 Booster Dictionary . 85
B.5 Special case idioms . 87

Bibliography 88

vi

List of Figures

3.1 Example of DOM . 18
3.2 Evolution of Adjusted Close Prices . 28
3.3 Volume traded (in hundreds of millions) 29
3.4 Distribution of stock returns . 30
3.5 Distribution of stock returns in 2018 . 33
3.6 SMA, 2012/01/01 - 2019/06/10 . 34
3.7 Stock returns cluster map . 35
3.8 Adj close price cluster map . 36
3.9 Candlestick chart MSFT . 37
3.10 Candlestick chart JNJ . 37
3.11 Candlestick chart JPM . 38
3.12 Top words in headlines . 39
3.13 Top words in news . 39

4.1 Correlation between headlines and normal news sentiment scores . . . 49
4.2 An unrolled RNN . 51
4.3 LSTM architecture diagram . 52

5.1 Unidimensional point-by-point prediction 56
5.2 Unidimensional multi-sequence prediction 58
5.3 Multidimensional multi-sequence prediction (compound) 60
5.4 Multidimensional multi-sequence prediction (volume) 61
5.5 Multi-sequence prediction on complete stock data 62
5.6 Full-sequence prediction on complete stock data 63

vii

List of Tables

3.1 Stock data: Variables . 26
3.2 Highest stock returns . 31
3.3 Lowest stock returns . 31
3.4 News from the day before abnormal returns 31
3.5 Stock returns standard deviation . 32
3.6 Stock returns standard deviation in 2018 32
3.7 Number of news retrieved from Reuters 36
3.8 Average wordcount of headlines and news 37

viii

List of Abbreviations

ACM Association for Computing Machinery
AI Artificial Intelligence
API Application Programming Interface
BDA Big Data Analytics
CSS Cascading Style Sheets
DNA Deoxyribonucleic acid
DOM Document Object Model
EDA Exploratory Data Analysis
GDP Gross Domestic Product
HTML HyperText Markup Language
HTTP HyperText Transport Protocol
ICA Independent Component Analysis
IT Information technology
LOOCV Leave-one-out cross validation
LSTM Long-short term memory
NLP Natural Language Processing
NN Neural Network, typically an Artificial Neural Network
PCA Principal Component Analysis
SMA Simple Moving Averages
SVM Support Vector Machines
TCP/IP Transmission Control Protocol / Internet Protocol
VADER Valence Aware Dictionary and sEntiment Reasoner
W3C World Wide Web Consortium

1

Chapter 1

The Big Data era

1.1 Introduction to Big Data

The last decade has seen the birth of what some call ’the industrial revolution of
data’. With advent of Web 2.0, the amount of published information and data col-
lected is raising exponentially, up to the point that experts believe 90% of today’s
data has been generated in merely the last two years 1. The aforementioned revo-
lution encompasses, not only increments in the amount of data generated but also
prominent advances in other drivers of the data process such as the pace at which
data is coming in or the diversification of data sources.

The term ’Big Data’ was first used in an ACM paper by Michael Cox and David
Ellsworth in 1997 (Cox and Ellsworth, 1997). Despite this first reference, it was John
Mashey, a year after, the one credited for coming up with the term Big data, endow-
ing it with its modern meaning. These first voices noticed enormous increments
in the amount of data that was generated year after year. By that time, the Big Data
phenomenon was perceived as an incredible boost in the quantity and availability of
potentially rellevant data, sometimes referred to as an ‘information explosion’. Mr.
Cox and Mr. Ellsworth defined the term ’big data’ as follows: “Visualization pro-
vides an interesting challenge for computer systems: data sets are generally quite
large, taxing the capacities of main memory, local disk, and even remote disk. We
call this the problem of big data. When data sets do not fit in main memory (in core),
or when they do not fit even on local disk, the most common solution is to acquire
more resources.” A noticeable remark from their terminology is that big data was
initially perceived as a challenge, in the form of a misalignment between data gen-
eration and data processing capabilities available by that time. Experts in the field
alike (Denning, 1990; Lesk, 1997; Crane, 1997) were highly concerned about the real
necessity of finding new ways of both data storage and processing, seeing a whole
universe of opportunities in front of their eyes. The combination of this growing tor-
rent of data and further advances in computing systems such as cloud computing,
Handoop or the rise of machine learning have largely contributed to the launch of
the big data era.

Unfortunately, there is still huge controversy about the precise definition of Big
Data, as it is a broad concept, related to many disciplines and encompassing differ-
ent types of data. However, even though lacking a formal definition, it goes without
saying that, in the last few years, Big Data has become a buzz word. The term gained
popularity roughly across every field of study, creating applied disciplines of a wide
variety of subjects. In general, the term Big Data is used to refer to any collection of
data so massive and complex that exceeds the processing capabilities of traditional
data management systems and techniques. Regarding the purposes of this paper,

1 source IBM: Bringing Big Data to the enterprise.

Chapter 1. The Big Data era 2

(Jothimani, Shankar, and Yadav, 2018) provide an accurate description of what Big
Data is. Authors argue that the term refers to large data being generated continu-
ously in the form of unstructured data produced by heterogeneous groups of ap-
plications. The prior definition entitles three prominent characteristics, commonly
used to give meaning to the term Big Data (see Laney, 2001).

Volume, Velocity and Variety, sometimes referred to as the three Vs, are the di-
mensions frequently used to characterize Big Data. Volume has probably the most
straightforward connotation as it refers to the massive amount of data generated,
collected and stored through records, transactions, files, tables, etc. The total num-
ber of bytes of data out there is truly mind-boggling and continually increasing at
an accelerated pace 2. Experts have already coined the term ’astronomical scale’ to
describe the size of Big Data and there are numerous challenges related to dealing
with this massive amount of information and the necessity to store it efficiently. Ad-
ditional challenges arise in data processing due to volume, as more volume usually
implies a higher cost and a worse performance.

Velocity indicates the speed at which data is flowing in or out. Contrary to tra-
ditional data collection techniques such as probability-based surveys, what we have
now is a torrent of data flowing in continuously. It is even possible to say that nowa-
days data is “harvested” rather than explicitly collected, providing data scientists
with real time data and automatic updates. However, data processing systems do
not always match its production rate and opportunities are dismissed as sometimes
it is extraordinarily challenging to deal with huge volumes of real time data.

Finally, Variety refers to the increase in the amount and heterogeneity of data
sources. The time when only public institutions were responsible for dealing with
data issues has come to an end; today trillions of data are generated from a wide va-
riety of applications, devices, sensors, etc. Heterogeneity has usually a direct impact
on the complexity of data generated. Even though tabular structured data is still
predominant and relevant for data scientists, today a much wider variety of data
structures are being used to solve problems. Images, text or geolocations are exam-
ples of more unstructured data which has created a world of opportunities but also
made the analysis more complex to handle.

Recently, new Vs have been introduced to the Big Data community as new chal-
lenges and opportunities have been emerging. The first of these late Vs is Veracity.
Big Data heterogeneity sometimes implies noisy, biased, uncertain or even volatile
data. Veracity refers to the quality of the data and it is vital to make it operational as
low quality data will inevitably lead to a poor analysis. Capitalizing on big data op-
portunities might offer a great advantage in decision making but, at the same time,
data based decisions will be valuabluable only if data, the raw material of the whole
process, is of a satisfactory quality and consistent over time. Reliability of the data
source, accuracy, consistency of formats or relevance are aspects that definetely have
to be taken into consideration when working with Big Data.

Together with Veracity, another V has recently come to the Big Data scenario and
this one is Valence. Alike Valence in chemistry, a higher Valence means greater data
connectivity. It measures the ratio of directly or indirectly connected data items that
could occur within the connectivity potential of the collection. Holding this defini-
tion, it is clear that the Valence of a collection of data is dynamic and, apparently,
it will increase over time enriching the information embeeded and capturing data

2 In the sixth edition of DOMO’s report it is estimated that by 2020, every person on earth will
generate 1.7MB of data per second.

Chapter 1. The Big Data era 3

from other networks. In a hypothetical universe of data, Valence might be seen as
densities that measure the extent to which data is concentrated.

Nevertheless, what is at the heart of the Big Data challenge, is the capacity of
turning all the previous Vs into truly useful business value. Conversations around
Big Data take place everywhere whilst organizations keep on exploring new ways to
effectively deploy these big volumes aiming to capture value for their stakeholders.
The previously mentioned ’astronomical scale’ has made experts skeptical about the
prevalent imperative of always finding new appraches to deal with Volume. The
focus now is shifting from size to value as for some ’big’ is no longer the defining
parameter, but rather how ’valuable’ the data is. Accordingly, the term ’Smart Data’
has come into play referring to feasible volumes that provide a reasonable number
of insights.

In light of the above, it is possible to argue that Big Data has contributed to the
rise of a data-driven era, where BDA are used in every sector and its possibilities
appear to be endless. The growing of available data is a trend recognized world-
wide and value is arising from this new resource. In fact, the list of opportunities
that Big Data presents knows no boundaries. It can uncover hidden behavioural pat-
terns and shed light on people’s interests and intentions, in a way that makes even
possible to anticipate events. Everyday, we all unconciously leave behind our digi-
tal footprints and this data can yield extremely useful information. In the scientific
sphere, BDA revealed the genetic origin of diseases, which ultimately led to person-
alized patient care, proved neutrinos have non-zero masses3 and even increased the
understanding of our galaxy, bringing light to topics such as dark matter and dark
energy. Regarding potential challenges or risks surrounding BDA, someone could
think about how much data to store, how much this will cost, whether the data will
be secure or how long it must be maintained (Michael and Miller, 2013). In addition,
Big Data also presents new ethical challenges involving the preservation of privacy
likewise needed to be adressed.

Overall, Big Data is changing our lifes in both small and large ways. It delves
deep into our understanding of fundamental issues and has already shifted our fo-
cus to experimenting rather than formulating hypothesis. Some may argue Big Data
is even changing the scientific method as we have more data available and, conse-
quently, testing becomes cheaper. This idea of experimenting and finding statistical
evidence is closely related with the next section and, although improved powers of
discenrment and a better understanding of the real opportunities and risks involving
Big Data are still needed, this phenomenon will unquestionably become an essential
part of our lifes.

1.2 A new programming paradigm

Troughout the last decade, Big Data has become a reality in more and more fields of
research. However, it is also well-known that the ratio of data volume increase has
surpassed the increase in processing power. In addition, data-collection technolo-
gies are becoming more and more efficient and advances like sensor networks, the
Internet of Things, and others, foresee that this volume will continue to increase (Tri-
funovic et al., 2015). Today’s major challenge for data scientists is to get real value
from such quantities of data and, to achieve this goal, being capable of processing
this huge amount of information is a must. In view of the limitations that traditional

3 This achievement came from the SDSS project, a major multi-spectral imaging and spectroscopic
redshift survey using a dedicated 2.5-m wide-angle optical telescope.

Chapter 1. The Big Data era 4

processing units had when facing Big Data problems, added to the necessity of lever-
aging these cutting-edge resources, developers opted for shifting the programming
paradigm to a more data oriented approach.

In general, programming consists in creating applications by breaking down re-
quirements into composable problems that can be coded against. Before the Big Data
era, developers used to figure out the rules behind the data, then write a code capa-
ble of making the calculations to finally output a result. However, with Big Data
problems it is many times more reasonable to focus on the data rather than on the
process, as both the bulk of data and its nature makes impossible to even think about
any process behind it. This new paradigm consists in getting lots of examples of both
inputs and outputs and use the machine to infer the rules between the data and the
answers. Contrary to traditional programming, where rules and data were the in-
puts to the machine, Machine Learning rearranges this diagram by putting data and
answers into the machine to get the rules out. Broadly speaking, Machine learning is
all about feeding the machine with lots and lots of examples so that, regardless of the
relationship behind the data and the answers, the computer is capable of learning
such patterns and distinguish things. Its mathematical analogous would be finding
a formula that maps X to Y.

1.2.1 How do machines learn?

Machine Learning originated in an enivornment where, although not at the same
pace, the availability of data and computing power were rapidly evolving. These
two drivers, fostered the development of new statistical methods and disciplines for
dealing with large datasets as much of the information is valuable, only if there was
a systematic way of making sense from it all.

Arthur Samuel, a pioneer in the study of artificial intelligence in 1950s and 1960s,
said that machine learning is "the design and study of software artifacts that gives
computers the ability to learn without being explicitly programmed". This initial
grasp of what "learning" really meant to computers stressed the fact that, to be
aligned with the volume of data flowing in, computers should learn from experience
either with or without human supervision. A few years later, Tom M. Mitchell, a
software engineer from Carnegie Mellon University, purposed a more formal defin-
tion: " A program can be said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E. Mitchell’s rationale was based on the fact that
learning must ultimately lead to better actions. Accordingly, computers can only be
said to learn if they are capable of using experience to improve their performance on
similar experiences in the future.

This conception of learning is remarkably similar to the human learning process.
It starts with some data input (observation, recall, feel, memory storage etc.) fol-
lowed by an abstraction process to translate the data into broader representations
and finally generalize this abstraction to form a basis of action (Lantz, 2015). No-
tice these steps do follow the scientific method, with the difference that the machine
know is responsible for the abstraction process which, in other words, implies for-
mulating an hypothesis using events observed as the benchmark. The last stage
involves testing the previously forged hypothesis to determine if it is stable and
consistent enough to be generalized.

Likewise, The fundamental goal of machine learning relies on inducing unknown
rules from examples of the rule’s application to finally transform data into intelligent
actions. In machine learning, data is no longer a set of Xs to be fitted in some model,

Chapter 1. The Big Data era 5

but instead, it has to be treated in a more abstract way focusing on the information
encoded in it. Furthermore, to built efficient algorithms it is also important to make
an intelligent use of all the information present in the data and try to maximize its
use because Big Data rapidly turns problems infeasible. As an example, think about
a university exam in which the professor provides students with a set of ten thou-
sand questions and tells them the exam will be fifty of them. Instead of memorizing
ten thousand answers, it appears more reasonable to study a bunch of questions, get
a general notion of the topics covered and then use this knowledge in the exam.

1.2.2 Machine Learning tasks

In line with the idea of learning presented in previous section, machine learning
tasks and methods can be decomposed in two major types; supervised and unsu-
pervised learning. They both profess the idea of utilizing experience to improve
future performance but, at the same time, can be thought of as occupying opposite
ends of the machine learning spectrum.

On the one hand, supervised learning is based on predicting an outcome using a
ground truth as input or, in other words, having prior knowledge of the output val-
ues for the sample data. Supervised learning is usually adopted for problems where
the program learns from a pair of labeled inputs and outputs, namely examples with
the right answers. On the other hand, unsupervised learning aims to learn the inher-
ent structure of the data without using explicitly labeled inputs. Since the ground
truth is missing, it is sometimes difficult to assess the model’s performance in un-
supervised learning. However, these last machine learning systems might be hihgly
useful in exploratory analysis, as they automatically identify structures in the data,
and for dimensionality reduction. Some types of problems require semi-supervised
learning methods, a collection of data and techniques located on the spectrum be-
tween supervised and unsupervised learning 4.

By and large, the vast majority of supervised learning algorithms perform ei-
ther classification or regression tasks. In both cases, the objective is to find struc-
tures or specific relationships in the input data that make possible to attain correct
output results. Classification problems consist on predicting discrete values (labels,
classes, categories) for one or more explanatory variables. On the contrary, in regres-
sion problems the programm predicts a continuous value for the response variable.
Examples of algorithms employed in supervised learning are SVM, Naive Bayes,
Logistic Regression, Artificial Neural Networks and Random Forests, also named
Decision Trees.

In the other side of the coin, clustering and dimensionality reduction are two of
the most common tasks performed in unsupervised learning problems. Clustering
assigns observation to different groups or clusters based on a similarity measure in
a way that observations within a cluster are similar to each other but different from
the ones in other groups. It is an extremely useful technique for exploring a dataset.
Dimensionality reduction is another common unsupervised learning problem used
when the number of explanatory variables is too large to work with. This method is
based on detecting the explanatory variables that account for the greatest variabil-
ity in the response and, consequently, remove from the analysis the ones capturing
noise as their relevance will be lower. Among the most popular algorithms in unsu-
pervised learning, we might encounter the wide range of clustering algorithms (see
Aggarwal, 2014), PCA or ICA.

4See Zhu and Goldberg, 2009 for more information on semi-supervised learning techniques.

Chapter 1. The Big Data era 6

Depending on the user needs and the characteristics of the data available, one
or other of these analysis is more advisable. In the case of labeled data, both super-
vised and unsupervised learning are plausible alternatives, whereas the last one is
the only possible option in the abscence of labels. Furthermore, supervised learning
is generally used in predictive analytics while unsupervised learning can be em-
ployed in earlier stages of the data process for exploratory purposes like clustering,
density estimation or representation learning. The majority of methods employed in
this paper fall under the umbrella of supervised learning as "right answers" will be
always available.

1.2.3 Training Data and test data

The collection of examples that comprise the learning experience in supervised learn-
ing is called the training set. Similarly, the set of examples used to assess the per-
formance of the trained model is called the test set. Broadly speaking, the general
procedure in machine learning is to fit the model on the training set, learn about data
relationships and finally make predictions on data that was not trained. It seems rea-
sonable not to include any training data in the test set because it will be difficult to
evaluate whether the algorithm has learned to generalize from the training set or has
simply memorized the outputs. The purpose of machine learning is to generalize re-
lationships from the training dataset and infer them when dealing with new exam-
ples. A program that memorizes "too well" the training data by learning an overly
complex model will output accurate predictions for the training set, but probably
fail to predict response values for new examples. Memorizing the training set ex-
cessively accurately but not succeding in test data predictions is called over-fitting,
a problem that will be discussed in later sections.

Without regard to the algorithm used, traning and test datasets are the two basic
elements needed in Machine Learning and depending on th nature and structure of
the data, both can be obtained in different ways. Most of the time, data is collected
and stored in a single unit containing all the observations 5 and the classic approach
is to split this data into training and test datasets.

Theory does not provide specific requirements for the sizes of the partitions and
they may vary depending on the data available and the speed at which the algorithm
is capable of learning the underlying data structure. Indeed, there are a lot of factors
influencing the previously mentioned speed rate like the algorithm’s performance,
the heterogeneity of the information or the amount of noise in the training dataset.
As an example, think about an algorithm trained on a large collection of noisy, biased
and sometimes incorrectly labeled data. Even with extra computing power and a
long learning process, it is very likely the algorithm will not perform better than
another one trained on a smaller but more representative dataset.

Some experts argue a third set of observations, called a validation or hold-out
set, is sometimes required (Hackeling, 2017). Splitting the dataset into training and
test data has its dangers. Although not a big concern in Big Data, the partiton has to
be random, in a way both subsets are small representations of the population. For
instance, in classification problems all labels/classes/states must be present in both
training and test data. The opposite will inevitably result in overfitting and cross
validation is a good option to avoid it, particularly when training is scarce. Cross-
validation is a deep topic, there are several methods and applications, also outside

5 each observation consistñs of an observed response variable and a set of observed explanatory
variables.

Chapter 1. The Big Data era 7

Machine Learning (Arlot and Celisse, 2010). On the whole, the rational behind cross-
validation is closely related to bootstrap and resampling principles; estimates yield
from different train/test splits should not be statistically significant assuming both
objects are independent and observations are i.i.d. Therefore, it is a good way of
verifying that the split is, indeed, random.

K-Folds and LOOCV are two popular methods used in cross-validation. The
first one divides the training dataset in k partitions (or folds) and the algorithm is
trained using all but one of them, which is left for testing purposes. Subsequent
iterations rotate partitions so that, in the end, the algorithm is trained and assessed
on all the training data. On the other hand, LOOCV treats each observation as one
fold and builds the model using averages 6. Leaving LOOCV aside, the number of
folds considered represents a tradeoff between bias and variance errors, in addition
to higher computational costs when more folds are added.

1.2.4 Assessing the outcome of learning

Recall, any learning process is characterized by turning abstracted knowledge ob-
tained from inputs into a form that can be utilized for future action and improve
performance on similar tasks. The term generalization is more than often used to
refer to this idea of getting real knowledge out of observational inputs. However, in
Big Data problems it is not feasible to examine one-by-one all the potential concepts
behind the ocean of data flowing in thus, machines employ heuristics to make edu-
cated guesses about which are the most important concepts to be taken into consid-
eration for further predictions. These heuristics necessarily generate imperfections
in machine learning tasks, which are noticed when confronting the trained model
with the validation set. The final step in machine learning problems is to determine
the success of learning in spite of its prediction errors.

Unexplained variations in the data result in prediction errors which mainly fall
under the umbrella of the model’s bias and variance. The first one is associated
with systematic sources of variability so that the model produces similar but biased
results for an input regardless of the training set it was trained with. On the contrary,
variance is more related to random variations derived from sampling the training
data. Ideally, the objective would be to tackle both causes of prediction errors but
usually decreasing one implies increasing the other. For this reason, this phenomeon
is usually referred to as the bias-variance- trade-off and depending on the context,
the optimal balance may vary. Models with high variance are inflexible but errors
are easier to tackle while models with high variability often overfit the training data
and much more difficult to generalize well to new cases. Solutions to overfitting
are spefific to different machine learning and most of the time rely upon intrinsic
characteristics of the algorithm employed (Hawkins, 2004).

Indentifying and understanding errors in prediction outputs is extremely im-
portant for model diagnosis and a first step through improvements. In the field of
statistics, metrics are necessary since any decision should be supported with data
facts and machine learning is not an exception. Metrics are extremely important to
quantify the outcome of learning. In supervised learning, many performance mea-
sures are based on prediction errors whereas, unsupervised learning problems eval-
uate some attributes of the data structures discovered as error signals are missing.
Finally, although somehow aligned, most performance measures are only valid for a

6 Notice how computationally expensive is LOOCV; the number of training sets resulting from all
the combinations will equal the number of observations.

Chapter 1. The Big Data era 8

specific machine learning task and each problem should be evaluated using metrics
that represent the costs associated with making errors in the real world.

1.2.5 A primer in Deep Learning

The term Deep Learning, refers to training neural networks, an artificial creation in-
spired by human neural networks. A regular NN consists of a bunch of processing
units, usually named neurons, each one producing a sequence of valued activations
of some process. These neurons can be activated with external stimulus or through
connections with other active neurons, depending on the relative position of the neu-
ron to the network and how connections are configured. Of course, this is how our
brains work and throughout the last decade, the relationship between these neural
networks and models used in mathematics and computational sciencies have drawn
the attention of a number experts in both fields.

By definition, Deep Learning is a sub-category of Machine Learning and they are
both ought to fall inside the scope of AI. In its broadest definition, Machine Learning
involves the design and implementation of algorithms than can learn from data.
Deep learning is just one possible way of doing it, preaching the learning through
examples and unveiling an outperformance in finiding patterns out of raw data.

Neural Networks are the heart of Deep Learning and they are nothing but ap-
proximations of functions arranged in multiple layers, which when multiplied by
the input return an output close to the real value. As said before, a Neural Network
is made of neurons, little nodes where the learning takes place. Each neuron takes
a data input, computes a function and outputs new data. At the same time, these
neurons are stacked together to compose the different layers.

The parallelism between human and artificial NN stems from (McCulloch and
Pitts, 1943) usually regarded as the inception of NN in the theory of computation.
The main idea presented in the article by McChulloch and Pitts (1943) is the creation
of a logical apparatus to define the basic functioning of real neurons. The distinc-
tion between the input neurons and the rest, the two states of the neuron (firing and
not firing) and predicates that can be computed by a given net; are concepts pre-
sented and developed in this early study 7. A comptemporary picture of the scheme
purposed by McChulloch and Pitts can be today’s model of a neuron in a regular
NN:

xi[t] = q

0

@bi + Â
j2C(i)

wijxj[t � 1]

1

A (1.1)

At time t a neuron is in either a firing: xi[t] = 1 or not firing state xi[t] = 0. All
synapses are charaterized and numerically quantified, depending on their strength,
by a vector of weights: w which is positive for excitatory connections and negative
for inhibitory connections. Notice the neuron also contains a bias parameter: b.
This bias vector is nothing but units appended to the start/end of the input in each
hidden layer to capture any constant needed in the model. A neuron is said to be
activated when the sum of the previous weighted connections, that is from neurons
j connected to it, plus the bias parameter is larger than zero. q is the activation
function or step funtion, and depending on the problem some are more efficient
than others (Karlik and Olgac, 2011). The last element: C(i) is the set of neurons that

7 Ideas developed in the paper by McChulloch and Pitts (1943) are highly complex and hard to
follow nowadays. (Kleene, 1956) purposes a much more clear explanation of the same concepts.

Chapter 1. The Big Data era 9

impige on neuron i. Accordingly, the state of neuron i will be determined trough the
weighted addition of values from previous neurons in C.

Arranging multiple processing layers with different activations allows compu-
tational models to learn representations of data with multiple levels of abstraction.
Starting with the raw data, each layer transforms previous level representation into
a new one at a higher, more abstract level. With enough transormations, very com-
plex data patterns can be learned and irrelevant information is discriminated at each
level. A deep-learning architecture is a multilayer stack of different modules, all (or
most) of them subject to learning and many of which compute non-linear input-
output mappings (LeCun, Bengio, and Hinton, 2015). These mappings are driven
by a loss function that measures the error between the hypothetical layer output
scores when compared to the real values. Each layer adjusts the weights by means
of a gradient vector which indicates the marginal increment or decrement in the loss
function if the weights were increased by a small amount. Finally, before moving on
to the next layer, the weights are modified in the opposite direction to the gradient
vector and this output will be the input to the new module. Repeating this proce-
dure a number of times allows the machine to obtain a very precise X-Y mapping
which can be applied to new input data and continue with the learning process.

The major success of Deep Learning is that layers of features are not designed
by humans, contrary to classical inference. Machines are empowered with total free-
dom to determine the optimal mapping from whatever function of data and weights
using a general-purpose learning procedure. The field is making major advances in
solving previously unfeasible problems with enormous contributions in many do-
mains. Image and speech recognition might be the most popular applications of
Deep Learning techniques but do not forget, predictive modelling in DNA coding
and gene expression, particle acceleration or natural language understanding using
methods such as sentiment analysis or topic classification (LeCun, Bengio, and Hin-
ton, 2015).

In the near future, Deep Learning is expected to have even a greater success
because it requires very little human intervention and due to its high flexibility and
machine oriented approach it can be applied to almost any discipline and can take
advantage of the tremendous increase in the amount of data available in this new Big
Data era. New architectures and algorithms are continually being developed and
machines have proven to become better year after year at prediction tasks thanks to
Deep Learning, a fact that will undoubtedly accelearate its expansion.

1.3 Machine Learning in Finance

Economic and financial prediction models are of great relevance and general interest.
Just imagine the possibilities that might offer being able to anticipate an increase
in the price of a commodity, foresee GDP growth rate for next semester or predict
future returns from a company’s shares. Having read previous sections, someone
might think that Machine Learning is the key to succeed in all these predictive tasks
but, wihout being false, the financial world is sometimes quite daunting. Economic
theory is more than often unclear about the variables that influence a certain output
and it suggests that many of them are spread throughout different types of data
for instance economic, social or political. Dealing with such disparate data sources
is not easy and if reasearchers pursue to capture all factors that might impact some
financial magnitude, the collection of potentially relevant data will probably become
too large to handle. In addition, the way these sources interact is extremely complex,

Chapter 1. The Big Data era 10

presumably non-linear functions, which are not properly specified by the theory. As
a consequence, a number of predictive models in finance are build via trial and error
with little theoretical justification and sometimes accuracy is adversely affected.

In the world of finance, artificial intelligence could be helpful in a lot of different
areas and the value of machine learning is becoming more apparent by the day. Over
the past few years, the big players in the industry have witnessed profound changes
with the entry of new joiners adopting quantitative investment methods to compete
in the marketplace. The so-called Fintech companies have experienced great success
in brining financial services to a new level where machine learning plays a key role.
In response, big firms had to adopt an AI approach in some of their services, because
if not they would have been left behind in not many years. The flow of information
in financial markets is now quicker than ever and machine learning seems to be the
key for investors to chase these fleeting opportunities and keep up with a highly
sensitive environment.

The applications of machine in the financial sector are huge and diverse. Both
regression and classification methods are extremely useful in areas such as fraud
prevention, risk management, investment prediction, customer service, loan under-
writing, document interpretation or algorithmic trading; among others. This pa-
per focuses on the uses and functionalities that big data and machine learning can
bring to stock prediction with emphasis on its advantages against traditional analy-
sis methods.

Stock prices are ought to be very volatile, dynamic and susceptible to quick
changes as they are supposedly influenced by multiple factors both within the finan-
cial domain of companies and outside the scope of financial markets. With proper
information about stock prices with a suitable level of accuracy, the overall loss on
investments might be reduced and the whole society can benefit from it through a
better allocation of resources, avoiding wastes and promoting a healthy expansion
of financial markets where people can invest more confidently. Transparency is de-
finetely an issue in investment for all the stakeholders involved in the process and
machine learning provides a framework where truthful informed financial decisions
are about to be a reality. However, as said before, lots of unknown factors surround
stock prices and the expertise from professional trades is hard to replace. In addi-
tion, famous theorems like the efficient market hypothesis or the random walk hy-
pothesis come to say that future stock prices are completely unpredictable and they
do not depend on past data, henceforth there are not patterns to be exploited since
trends do not exist (Shah, 2007). Machine learning and Deep Learning methods are
now challenging these theorems and it might be still early but investors willing to
adapt these state-of-the-art technologies will likely have an edge in the new financial
sector.

Following sections introduce a stock price forecasting framework where NN are
used to predict future stock movements and alternative data is also feeded into the
model in an attempt to capture potentially relevant unknown factors and enhance
the accuracy of the model, ultimately seeking to avoid blind investment behaviours.
Webscraping methods are used in data acquisition stages since their vision is per-
fectly aligned with the Big Data train of thought posed in this chapter. Next section
presents a detailed outline of webscraping techniques together with the reason why
automatizing data acquisition and even pre-processing is necessary to exploit all the
opportunies that stem from Big Data.

11

Chapter 2

Web scraping Tools in Finance

2.1 The Net as a data source

It is a well-known fact that the World Wide Web is immense and growing at an ex-
traordinary fast pace every second. Its exact size, however, is difficult to determine
as it is hard for a counter to tackle small IT sites and a large portion of the Web, pop-
ularly known as the Deep Web, is hidden and not easy to access. Without forgetting
the above considerations what we can say is that, in terms of weight, the World Wide
Web is measured in zettabytes (1 zettabyte = 1021 bytes) and so forth, such a gigan-
tic universe of data presents a major opportunity to turn it into valuable insights.
The scope and potential of the abundance of data in the network sounds exciting
but it can be both blessing and curse. As probably the biggest source of information
available in the world, the World Wide Web is an optimal illustration of the Big Data
framework discussed in previous chapter. Lots of relevant information, as hidden
treasures in a vast sea of data; along with variety, velocity and veracity issues.

The data growth rate on the internet is soaring every year and, as a consequence,
data comes predominantly in an unstructured form (Chaulagain et al., 2017). Since
this data is not prepared neither to be fitted in any model nor to be analyzed in any
way, information churning might become a problem. Furthermore, the data on the
web is a constant state of flux; it is continously updated and modified. Therefore,
web-based data collection techniques must be fast and flexible enough to keep pace
with this constant change. Ultimately, due to the voluntary and often anonymous
nature of user interactions with the Web, added to the lack of a body responsible for
assessing the quality and availability of the data, some of this information is always
surounded with uncertainity. In light of the above, and with the irruption of Big
Data technologies, it is becoming more and more crucial for both researchers and
practitioners to find efficient ways of exploring the network and retrieving relevant
information. Harnessing such volumes of heterogenous data from the web often re-
quires a highly customizable programmatic approach (Krotov and Tennyson, 2018a)
although, for those not familiar with programming languages, todays’ web is be-
coming overwhelmed with handy resources that most of the time will do the work
for you.

Data acquisition is the starting point of any data science project and the inputs
can be obtained from either private sources like company’s internal data or pub-
lic sources, and it is here where a world of possibilities opens up. Public sources
comprise official data from government institutions, journals or, more generally, any
data that can be found on the web regardless of whether it is open data or you have
to purchase it. All the data employed in this paper falls under the umbrella of open
data and it is obtained from the net through webscraping. At odds with what most
people think, open data not only refers to tidy and structured data published on the
web by some entity. The concept is more general and, in fact, it does not conlfict

Chapter 2. Web scraping Tools in Finance 12

with how data is structured, presented or shared. Open data merely refers to the
belief that some data should be freely available to everybody and all players should
be able to use and republish it without any copyright restrictions, patents or other
mechanisms of control (Berners-Lee, Hendler, and Lassila, 2001). Therefore, no mat-
ter how the data looks like or where it comes from, every byte of information free to
use, reuse and redistribute is considered open data.

In addition, this paper seeks to exemplify previous arguments regarding the
World Wide Web and reinforce the idea that the network is vast and messy but,
with the proper tools, is possible to extract real value out of this universe of infor-
mation. As said before, there are different ways of gathering data from the web;
some users may interact with an API, others may use data mining or text mining
and the ones lacking programming skills will simply click on the download link of a
data provider website. Troughout the last decade, different terms have been coined
to refer to this act of extracting data from websites: web scraping, web harvesting,
web crawling or web data extraction; are just a few examples. However, the defini-
tion of this terminology is still vague and more than often leads to confusions and
controversies. As an example, for many authors alike (Krotov and Tennyson, 2018a,
Boeing and Waddell, 2017), althought the term typically refers to automated pro-
cesses, web scraping is solely the act of extracting data from websites. Accordingly,
manually downloading data from a website could be considered web scraping in the
most user-friendly level. Others understand web scraping from a standpoint close
to parsing text files formatted in HTML and XPath (Krotov and Tennyson, 2018b).
In theory, web scraping is the practice of gathering data through any means other
than a program interacting with an API or a human using a browser. A text min-
ing approach does not seem wrongheaded as the previous interpretation is typically
acomplished by a program that queries a web server, requests data (usually html)
and parses the code obtained to extract the useful information. However, recent
studies (Lawson, 2015) put the emphasis on the web exploration step arguing that
the real added value that webscraping offers is the possibility of gathering and pro-
cessing large amounts of data rather than viewing one page at a time which is what
a browser can attain. Therefore, with convenient scrapers, one can access databases
spanning thousands of webpages at once. Again, this can be attained through dif-
ferent methods and one more time text mining is an option since changing dates in
a web link is usually enough to access historical data. In the absence of consensus
regarding the boundaries of webscraping and in line with the purposes of this work,
any retrieval of information from the web entailing some sort of automatization to-
gether with an organized approach will be considered webscraping.

Likewise analysis where the data is obtained in the form of a table from an official
data provider website or by quering a database, here the source is the net itself and
the goal pursued is to find efficient ways of exploring it, downloading the desired
information and clean it so the final output from this intial data acquisition step is
a tidy dataset ready for futher modelling. This objective is achieved through web-
scraping and in this respect, it involves not only retrieving the data from the web
but also, when required, turn unstructured data into a tidy and properly arranged
dataset. Finally, as said before, the whole process should be fully automatized and
reproducible capturing updates and outputting real time results.

Chapter 2. Web scraping Tools in Finance 13

2.2 Net interactions and networked programs

Contrary to what most people think, the World Wide Web and the Internet are not
synonyms. The first, refers to a descentralized interconnection of different devices
by means of a set of protocols known as TCP/IP protocols, while the World Wide
Web is a system that manages the information shared over the Internet through the
so-called HyperText Transport Protocol or HTTP. This network protocol is actually
quite simple and there are multiple built-in supports in almost all progamming lan-
guages that make it relatively easy to create network connections and retrieve data
over them. These modules are like files, except that they provide a two-way con-
nection between the network and the device in which they are executed. Therefore,
both sides can read and write to the same program and the protocol sets the rules
that regulate this user network interaction 1.

In today’s world, almost every person in developed countries navigates the net-
work everyday but, for the vast majority, its mechanisms still seem quite mysterious.
Computer interfaces have progressed to the point where the net can be extremely
valuable for users even though they do not have any idea about how it works. In-
ternet browsers are the main responsibles of this and, although it is not necessary
to understand what the network is doing in all our interactions to succeed at web-
scraping, web data extraction techniques usually require to connect to the newtork
at a lower level. In fact, the exchange of information between a user and the network
takes place without the intervention of a browser. Broadly speaking, the Internet is
only the mean to request some action from a web server and the browser is merely
code that interprets the server response and gets the user back the same data in more
attractive formats such as images, videos, music, formatted text etc 2. As said before,
capabilities of web browsers are also present in almost all programming languages
and the value that own-built webscrapers can bring to the analysis is the opportunity
to interepret server responses in the most convenient way.

The main output of the previously mentioned request/response mechanism reg-
ulated by the HTTP protocol is an hypertext document, commonly known as a web-
page. HTML is the predominant language for encoding web architectures and it is
largely supported by W3C consortium. HTML pages can be thought of a form of
semi-structured data following a nested structure where information is stored and
accessed using tags. Each HTML element is associated with a speficic tag, repre-
sented with angled brackets, and typically coming in pairs for both opening and
closing the element. These tags can be be also thought as element insertions in a
webpage they can be progitably used in the design of suitable scrapers. The list
of elements in a webpage and their corresponding tags is lengthy, including hy-
perlinks, images, paragraphs or videos, among others. However, although most of
the webpage content is found in the HTML code, it is also important to acknowl-
edge that webpages might also include other items such as CSS or Javascript objects.
These extra features are not particularly relevant for the purposes of this paper but
definetely a factor to be taken into cosnideration from a programmatic perspective
since languages are different and they can be misleading.

1 See a description of the HyperText Transport Protocol in the following document: Hypertext
Transfer Protocol – HTTP/1.1

2 Internet browsers are relatively new compared to the Internet, first ones were released in the
nineties, and, as any other piece of code, they can be re-written, re-used or re-formated (Lawson,
2015).

http://www.w3.org/Protocols/rfc2616/rfc2616.txt
http://www.w3.org/Protocols/rfc2616/rfc2616.txt

Chapter 2. Web scraping Tools in Finance 14

Literature provides a number of different strategies and techniques adopted in
the field of Web Data Extraction (Ferrara et al., 2014) and most of the time human ex-
pertise is required to define the rules of the data extraction process. The challenge is
to stablish a high degree of automatization to reduce human efforts as much as pos-
sible and this often goes hand in hand with having a good knowledge of the domain.
(Krotov and Tennyson, 2018b) purpose a general three-step process to characterize
web-data extraction strategies:

• The initial phase involves examining the website architecture using a web in-
spector to understand how the data is stored at a technical level. The objective
is to get a general idea of how the information is encoded, likely HTML lan-
guage, and feed the scraper with these inputs. Ideally, the underlying structure
of the website captured by the scraper should be extrapolated to others of sim-
ilar nature.

• Second phase concerns running a previously developed piece of code that au-
tomatically browses the web and retrieves the desired information. The under-
standing of the domain comes to play in this stage as it will guide the scraper
to fetch the needed data.

• Finally, there is also a "Data Organization" step which involves cleaning the
data retrieved, sometimes coming in an unstructured form, and arrange it in a
dataset. This last stage makes the data ready for further analysis.

Even though the previous sequence is coherent, the three stages are often inter-
twined. Many times, the programer will have to go back and forward until the final
tidy dataset is obtained since the process might have to be applied, for instance, to
smaller data units like rows or individual chuncks of information retrieved from
different websites. One more time, the common note along all stages is human su-
pervision, particularly when analyzing the website architecture. It is probably the
most tedious part and where more innefficiencies are concentrated since some do-
mains often require to be examined individually.

Over the last decade, various strategies have been developed in the field of web
scraping to deal with previously mentioned concerns and reduce the commitment of
human domain experts. A possible way forward involves the adoption of Machine
Learning algorithms capable of identifying the structure of webpages and extracting
the useful information. Some of these systems are discussed in further research sec-
tions but the basic outline consists of training a program with numerous examples of
web architectures so that after the tranining it becomes competent in autonomously
extracting data from similar, or even different, domains.

2.3 Overview of alternative data

In general, and particularly in whe world of finance, the idea of bringing to the stage
all the Big Data culture is to empower businesses with new insights and foster the
development of data driven models for decision making to ultimately create value.
Recent advances in web data extraction techniques enable a more efficient search
and retrieval of information from different sources and allow traditional datasets to
be enriched with new data. In line with previous discussion about the factors that
might have an impact on some financial indicator, more than often traditional data
used in finance or economics fail to capture enough inputs to conduct accurate fore-
casts 1. One of the contributions of Big Data in this field involves the possibility of

Chapter 2. Web scraping Tools in Finance 15

enriching traditional datasets like production rates, historical financial results from
firms or GDP series with other types of data that will hopefully seize external vari-
ables that might impact a certain output but have not been contemplated before. The
informational advantage provided by these new sources of data can be in the form
of uncovering new relevant information not included in traditional datasets, or an-
ticipating it before traditional sources do. This new information is popularly known
as alternative data and, although veracity issues are not the major concern as many
times the model itself will deploy innacurate information, the three Vs are more than
valid to characterize these new sources. The term alternative data is chiefly used in
finance with little visibility in other fields of research and it refers to all the infor-
mation gathered from non-traditional data sources which can provide new insights
beyond those which traditional data is capable of providing.

The concreteness of what does alternative data include varies from industry to
industry. In finance, the market of alternative data is quite fragmented but recently,
JP Morgan developed a framework to classify alternative data into three main cate-
gories based on the manner in which data was generated:

• Individuals: Information collected at an individual level that will provide in-
sights about market trends, consumer behaviour, public opinion, etc.

• Business Processes: Data from agents in the market with a new higher level of
detail.

• Sensors: This category includes data from satellites or geolocations.

More often than not, it is not easy to evaluate the relevance that a specific type of
alternative data might have on a financial magnitude. In addition, there is little stan-
darization for most alternative data offerings whereby most of the time the data will
come in an ustructured or semi-structured form. Accordingly, pre-processing is usu-
ally a must before getting this data ready and compatible with traditional datasets.
For this reason, webscraping is usually the mean to gather alternative data since a
programmatic approach and an automatized pre-processing is required to make the
whole process feasible.

There are lots of success stories related to the use of alternative data sources
to improve financial processes, specially in predictive modelling matters. A few
examples are the use of consumer transaction data to trade individual stocks, twitter
sentiment data to trade the broad equity market or geolocation data to estimate real
activity in some area. In this paper, the power of alternative data is put to test using
sentiment data from news’ headlines to make stock price predictions more accurate.
The idea is that news data will provide the model with insights about market trends
and expectations so that the program will learn how to anticipate future changes
and outscore stock markets in reaction time.

16

Chapter 3

Data Acquisition

First step in any data science project involves the acquisition and pre-processing of
the data required for further analysis and modelling. In line with the idea devel-
oped in previous sections, the underlying principle behind the obtention of the data
is strongly based on webscraping, attempting to reduce human efforts as much as
possible, and offering a user-friendly approach with a higher degree of automati-
zation. These procedures will most likely be reproducible with a ’manually’ data
obtention process but, and this is one of the main justifications for using webscrap-
ing, in a context as dynamic as financial markets, velocity of data is a sucess factor
and the optimization of processes is essential. Furthermore, when deciding which
data to use in a project its cost is an important consideration. As said before, all the
data employed is open data hence there are not any direct costs associated with its
purchase. Nevertheless, the oppotunity cost of time invested in acquiring and ana-
lyzing the data is also relevant and webscraping pursues to generate savings here.

The Big Data universe is changing the foundations of the entire data science pro-
cess and state-of-the-art methods are a valid patch when resources are scarce or sim-
ply when the researcher does not have any theoretical input behind the phenomenon
studied. Today’s world requires more flexible, adaptative and faster methods to deal
with problems that most of the time demand a prompt response and theoretical con-
siderations are limited. Machine Learning, deep learning and all these new analysis
tools might be the most widely recognized exponent of old methods in data science
being replaced with modern techniques. However, not only the analysis step has
suffered changes, innovations in data acquisition or preprocessing are also remark-
able, largely due to webscraping. In the not too distant future, data storage will be
a serious concern for computer manufacturers and the current trend is in the direc-
tion of web resources and interconnected servers, trying to minimize the amount of
information locally stored. Therefore, in data extraction, a webscraper, designed ad-
hoc for a specific problem, seems to be the most efficient way to obtain the desired
information while optimizing the capacity of memory resources.

3.1 Web Data Extraction

The majority of approaches to extracting data from the Web are designed ad-hoc
to operate on a specific domain 1. Accordingly and, although most of the time pro-
gramming languages provide users with built-in modules that ease the work, certain
programming skills and a good knowledge of html language and data structres are
desirable to built efficient scrapers.

1 (Ferrara et al., 2014) discusses the potential of cross-fertilization methods and the possibility of re-
using Web Data Extraction techniques originally developed in a given application to multiple domains.

Chapter 3. Data Acquisition 17

Programming languages like Python or R have utilities called sockets which are
nothing more than regular files with the peculiarity that they provide a two-way
connection between two programs thus the user can both read and write to the
same socket. These sockets use the HTTP protocol to emulate a browser and make
network connections and data retrieval very easy to handle.

1 import socket
2

3 mysock = socket . socket (socket . AF_INET , socket .SOCK_STREAM)
4 mysock . connect ((’ data . pr4e . org ’ , 80))
5 cmd = ’GET http :// data . pr4e . org HTTP/1.0\ r\n\r\n ’ . encode ()
6 mysock . send (cmd)
7

8 while True :
9 data = mysock . recv (1 0 2 4)

10 i f (len (data) < 1) :
11 break
12 p r i n t (data . decode ())
13

14 mysock . c l o s e ()

LISTING (3.1) A simple socket

This piece of code makes a connection to a web server and follows the HTTP
protocol rules to request some information and display it on python command line.
Once the program sends a get request followed by a blank line, it is told to receive
data in 1024-character chunks from the socket and print it to the screen until there is
nothing more to read (recv() returns an empty string). Notice the output is basically
html code enriched with headers’ information. The same can be done by opening
the url in a web browser with a web developer console and manually examine the
page source code. Html webpage code includes several tags, as discussed in chapter
2, which also offer the possibility to access new related webpages and, consequently,
more information 2.

Sockets can be thought of as low-level network interfaces used to communicate
with a web, mail or many other types of servers. In Python, the coding approach
is highly object-oriented thus the socket() command returns a socket object with a
number of methods that allow programmers to connect, read, write or send infor-
mation from and to the network. The functioning is considerably simple, the only
thing necessary is a written protocol describing which rules to follow while the in-
teraction takes place. However, since most of the time the protocol used is HTTP,
programming languages have already special libraries that support HTTP protocol,
such as urllib in python or urltools in R, for information retrieval over the net. No-
tice in previous example the code read through plain text but same approach can be
considered when retrieving images or music files.

Urllib in python ease the process of geting information from the net by treating
webpages as files. It is only necessary to indicate which domain to retrieve and the
library will figure out how to deal with HTTP protocol and header issues.

1 import u r l l i b
2

3 fhand = u r l l i b . request . urlopen (’ ht tp ://www. ub . edu/monub/ ’)
4 f o r l i n e in fhand :
5 p r i n t (l i n e . s t r i p ())

LISTING (3.2) Webpage retrieval

2 This can be done, for instance, by appending intro-short.txt to the GET request

Chapter 3. Data Acquisition 18

The output object is the html contents of the webpage and it can be treated as
sort of a text file (although still byte literal) and, accordingly, read through it using a
for loop. This level of interaction is higher than using a socket as the information is
ready to be deployed and, up to this point, it is even possible to perform simple tasks
such as word counts or tackle specific tags that might provide the desired informa-
tion. As an example, differences aside, the google search engine works at this level
of abstraction; it looks at the source code of one webpage, extract links to other re-
lated pages, retrieve them, and finally use its famous page rank algorithm to display
the most relevant finds in response to a user search. Web spiders use this principle
to navigate the web, as it quite straightforward since links within a webpage are
defined with an ’a’ tag in html thus not even complicated regular expressions are
needed to find them 3.

The semi-structured nature of webpages, which is so characteristic of html code,
is one of the most exploited features in web data extraction. Such data structure, can
be naturally represented as a labeled ordered rooted tree, where tags illustrate the
different nested levels of the webpage source code. The representation of a webpage
in this form is referred to as DOM which is basically a way of converting html web-
pages to plain text containing the tags and particular keywords that can be easily
interpreted and accessed. For further details on DOM trees consider the following
link: www.w3.org/DOM.

FIGURE (3.1) Example of DOM
Source: (Ferrara et al., 2014)

The DOM tree structure illustrated in figure 3.1 is, in fact, the output of listing
3.2. HTML code might look appealing to some and they are not mistaken, the in-
formation is there an ready for further steps where lots of interesting things, like
the previously mentioned spyder webs, can be done. HTML can be parsed using
regular expressions to repeteadly search and extract strings that match a particular
pattern like links, data within tables, images, headers, etc. Indeed, the adoption of
DOM objects for html language offers the possibility of exploting features inherent
to XML languages since both are of similar nature. Converting webpages to some
XML form is certainly something to be taken into consideration since regular expres-
sions work nicely when html is predictable and properly formatted but a solution
based on only this approach might miss some valid information or completely fail
to retrieve anything when dealing with broken website content.

In order to solve the broken content issue and provide web scrapers with extra
robustness, several libraries have been developed in many different programming
languages and environments to help users parsing html code. In Python, the most

3 Google spiders its way through nearly all the existing webpages in the net.

Chapter 3. Data Acquisition 19

relevant and widely used is BeautifulSoup, a library built to work with data in either
html or XML formats. Amongst other capabilities, BeautifulSoup provides ways of
navigating, fetching and transforming the parse tree. Its main functionality lies in
the fact that the gap between HTML and XML is not always savable. At times, html
is broken in ways that will cause an XML parser to reject the entire website and,
in this respect, BeautifulSoup tolerates flawed html and still lets the user extract the
data easily. JSON is another plausible option for handling web data although it has
fewer capabilities than XML. Conversely, it has the advantage of simplicity since it
is not barely more than a combination of Python dictionaries and lists and, accord-
ingly, the mapping is much easier. Bottomline, data exchanged between applications
through the net is certainly complex and, to some extent, difficult to work with. In
consequence, the tendency is to use XML, JSON or other nested data structures to
represent this data, improve usability and ease the exchange of information between
cooperating programs.

The process of turning raw html from a particular website into a handy text file in
the form of XML, JSON or, even better, a python dictionary can be seen as the highest
level of interaction with the net since the user is giving a web adress as an input and
the program outputs a text object with the desired information nicely formated and
ready to be analyzed. Nonetheless, the human effort is still notable here as all the
steps have to be explicitly written by an expert and, as discussed earlier, the vast
majority of designs are ad-hoc. In addition, it can also happen that the depth of
data required is outside the boundaries of what a regular machine can reach and
efficiently collect. For these reasons, big tech companies like Google, Amazon or
Oracle have developing a number of databases containing tones of bytes of data
impossible to be collected by scanning the net with limited resources.

The next step to webscraping concerns the use of Application Program Inter-
faces or APIs to benefit from a particular service offered by a website application.
The techniques used are very similar to the ones described above but usually more
automatic. An API can be seen as an application-to-application contract in which
a program provides a set of services to those who request them under certain pub-
lished rules. Traditionally, computing has been based on a single individual device
connected to the real world by a set of inputs and outputs. The big data era and,
particularly, the new IoT brought to stage higher complexity of tasks that originated
deployment difficulties and serious test and maintenance issues to those individual
applications (Johnston and Burnett, 2012). Perhaps, it is more efficient to include
in the functionality of our code access to services provided by other programs, in
different IoT network environments, in order to meet current programming needs.
This last approach appears to be the tendency nowadays where interconnection of
devices and shared network environments seem to prevail over single standalone
applications.

Service-oriented architectures or SOA is the term commonly used to refer to the
abovementioned programming approach where one application makes use of the
services of other applications. This type of design has many advantages, including
that the owner always mantains a copy of the data and also has the right of setting
the rules involving the use of their data. APIs are highly diverese and can take dif-
ferent forms but, if properly designed, they aim to act as building blocks to help de-
velopers in creating new programs. In developing new applications, APIs simplify
the programming stage since they abstract the underlying tasks and expose only the
options or actions required by the user. Furthermore, an API can provide critical
support in setting up a web-based system, operating system or a database; among
others. There is a special nomenclature for those applications offering services via

Chapter 3. Data Acquisition 20

their APIs over the web, they are popularly known as web services.
Data acquisition by means of one or many APIs is probably the highest level of

interaction with the network since most of underlying implementations, which were
clearly visible and explicitly programmed in the socket case, are no longer needed
to be set but, instead, driven by the same API. All the previous net interactions, with
their respective abstraction levels, ought to fall within the sphere of webscraping
although, as seen, the way the code is written is totally different.

Subsequent sections and subsections present the two types of data used in fur-
ther models. In both cases, the major bulk of work is conducted by different APIs de-
spite basic knowledge about network interaction and html language will be needed
at some point. The core data for the experiment is mainly stock data retrieved from
yahoo finance by means of the pandas-datareader, a Python library that offers up
to date remote data access for pandas, another open source library (BSD licensed)
used for handling data structures and basic analysis in Python. If familiar with
pandas data structures, the pandas-datareader is an optimal option since it extracts
data from different Internet domains such as Google Finance, Enigma, Morningstar,
Eurostat or the World Bank 4via their respective APIs, and turns it into a pandas
dataframe. Similarly, a news scraper is designed to get data from Reuters, an inter-
national news agency with a web portal very suitable for scraping purposes.

The abovementioned data sets are the raw materials needed in the analysis going
on in this paper. The first and core, a collection of financial data from stock listed
firms. Second, an assortment of news that will enrich the information provided by
financial markets. Complementarily, webscraping offers a systematic approach to
the obtention of data and object-oriented programming, so characteristic of Python,
will be present in both scenarios.

3.1.1 Geting data from yahoo finance

Yahoo finance is a media property belonging to Yahoo! which provides financial
data, including stock quotes, press, releases, financial reports and also technical in-
dicators. As of this writing, Yahoo Finance’s API is working perfectly and within the
scope of pandas-datareader library, although it is not unusual that some API cease
their activity and, if that is the case, it will be unavoidable to resort to other sources
like Google Finance or Morningstar.

The focus will be on S&P500, one of the most important indexes in the world
containing the 500 largest American firms (in terms of market capitalization) listed
on the NYSE, NASDAQ or the Cboe BZX Exchange. The justification behind using
S&P500 is because data of big companies is always easy to obtain and less likely
to include errors or inconsistencies. Furthermore, these firms are more relevant in
global press and the probability of geting a sample of news larger and representative
enough is higher than if working with smaller companies.

Pandas-datareader uses the ticker symbol of a stock to fetch the stock’s data from
yahoo finance. Tickers are stock codes used to uniquely identify public traded shares
of a particular stock in a particular market. Accordingly, the first input to obtain is
the desired tickers to pass them as arguments in pandas-datareader functions. Even
though is possible to look for the ticker symbols of S&P500 firms, copy paste them
in a plain text file and then read the file in Python, the list of S&P500 firms is posted
in several webpages and, in line with the idea of reducing human efforts as much as
possible, a webscraping approach is more convenient.

4 Stable documentation is available on github.io.

https://pydata.github.io/pandas-datareader/stable/

Chapter 3. Data Acquisition 21

1 import reques ts
2 import bs4 as bs
3 import p i c k l e
4

5 def s a ve _ s p 5 0 0 _ t i c k e r s () :
6 resp = reques t s . get (’ ht tp :// en . wikipedia . org/wiki/ L i s t _ o f _ S%26

P_500_companies ’)
7 soup = bs . Beauti fulSoup (resp . t e x t , ’ lxml ’)
8 t a b l e = soup . f ind (’ t a b l e ’ , { ’ c l a s s ’ : ’ w i k i t a b l e s o r t a b l e ’ })
9 t i c k e r s = []

10 f o r row in t a b l e . f i n d A l l (’ t r ’) [1 :] :
11 t i c k e r = row . f i n d A l l (’ td ’) [0] . t e x t
12 t i c k e r s . append (t i c k e r)
13

14 with open (" s p 5 0 0 t i c k e r s . p i c k l e " , "wb") as f :
15 p i c k l e .dump(t i c k e r s , f)
16

17 re turn t i c k e r s

LISTING (3.3) S&P500 Tickers

The Python function defined in listing 3.3 requests the source code of a wikipedia
webpage List of S&P500 companies containing the tickers for companies in the S&P500
index. Wikipedia is just an option, it is highly likely to find the tickers needed in
other webpages. After requesting the primary information, BeautifulSoup is use to
parse the html code creating a "soup" object. Next commands tell the function to
get the first column of the table data lines within the wikitable sortable object. Ulti-
mately, the list locally saved with the pickle module, which automatically serializes
Python objects to a byte stream.

Next step involves the website crawling stage. The previously obtained list of
tickers, after de-serialized, is passed as an argument to pandas-datareader to hit the
yahoo finance API and obtain stock data.

1 import datetime as dt
2 import time
3 import pandas_datareader . data as web
4 import os
5 import p i c k l e
6

7 def get_data_from_yahoo (reload_sp500=Fa lse) :
8 i f reload_sp500 :
9 t i c k e r s = s a v e _ s p 5 00 _ t i c k e r s ()

10 t i c k e r s = [t i c k e r . r e p l a c e (’ . ’ , ’� ’) f o r t i c k e r in t i c k e r s]
11 t i c k e r s = [t i c k e r . r s t r i p () f o r t i c k e r in t i c k e r s]
12 e l s e :
13 with open (" s p 5 0 0 t i c k e r s . p i c k l e " , " rb ") as f :
14 t i c k e r s = p i c k l e . load (f)
15 t i c k e r s = [t i c k e r . r e p l a c e (’ . ’ , ’� ’) f o r t i c k e r in t i c k e r s]
16 t i c k e r s = [t i c k e r . r s t r i p () f o r t i c k e r in t i c k e r s]
17 i f not os . path . e x i s t s (’ s tock_dfs ’) :
18 os . makedirs (’ s tock_dfs ’)
19

20 s t a r t = dt . datetime (2 0 1 0 , 1 , 1)
21 end = dt . datetime . now ()
22 f o r t i c k e r in t i c k e r s :
23 # save progress j u s t in case connect ion breaks
24 i f not os . path . e x i s t s (’ s tock_dfs / { } . csv ’ . format (t i c k e r)) :
25 df = web . DataReader (t i c k e r , ’ yahoo ’ , s t a r t , end)
26 p r i n t (df . head ())
27 df . r e s e t _ i n d e x (i n p l a c e=True)
28 df . se t_ index (" Date " , i n p l a c e=True)
29 df . to_csv (’ s tock_dfs / { } . csv ’ . format (t i c k e r))

http://en.wikipedia.org/wiki/List_of_S%26P_500_companies

Chapter 3. Data Acquisition 22

30 e l s e :
31 p r i n t (’ Already have { } ’ . format (t i c k e r))
32 time . s leep (0 . 5)

LISTING (3.4) S&P500 Stock data

Notice listing 3.4 calls the previously defined save_sp500_tickers() inside the flow
of execution. Another important note is that BeautifulSoup is no longer used here
since we are not retrieving any html code but, instead, the API is responsible for the
parsing issues. Once retrieved, stock data is stored in a previously created direc-
tory named 0stock_d f s0 incorporating the information of all companies in the ticker
list. Individual files are stored in csv format but any other tabular format is also
advisable. A time horizon from 01/01/2010 until the current day has been settled
although the real data range employed will vary depending on computing resources
available since, and next section will evince that, obtaining news data to comple-
ment stock prices is extremely costly 5. Additionally, a control statement is included
to save progress in case connetion breaks.

Around 30 lines of code are enough to build a systematic approach for down-
loading all stock quotes from S&P500 companies and the execution is fully auto-
matic. Nevertheless, due to computing power limitations and in line with previous
argument of targeting firms with numerous and rich news data, only three com-
panies in S&P500 have been considered for further analysis and modelling. Firms
selected are sector leaders in terms of relative weight with respect to total US stock
market capitalization. Another idea behind this filtering is to end up with com-
panies belonging to different sectors to analyze how these industries react to news
data. These firms are:

1. MSFT: Microsoft Corporation, as the representative of tech firms (4.13% share).

2. JNJ: Johnson & Johnson, as the representative of goods manufacturing comap-
nies (1.53% share).

3. JPM: JPMorgan Chase & Co., as the representative of the financial sector (1.52%
share).

3.1.2 Geting news data from reuters

Contrary to financial information which follows a tabular structure, it is relatively
easy to handle and there are not many barriers to its obtention; news data is pre-
sumed to be a more precious resource on account of the fact that the information is
highly dispersed, extremely unstructured and requires certain expertise for manip-
ulation. In addition, the potential of these types of data like news, market trends
or online opinions is believed to be gigantic since it contains lots of relevant infor-
mation which, if properly treated, can be critical in a large number situations. Still
nowadays the problem with news data is its complexity as it is unformatted text
posted somewhere in the net with little preparation to be retrieved and used for
data analysis. In financial analysis, news play the role of alternative data aiming to
capture additional insights out of reach for traditional financial data.

As expected, several developers have been working on APIs that deal with pre-
viously mentioned complexity and provide the user with cleaned and preprocessed
data almost ready to be fitted in a math model. Enterprise and commercial projects

5 If feasible a good option is to include periods belonging to different economic cycles, for instance
information within and out the context of 2008’s economic crisis.

Chapter 3. Data Acquisition 23

that require news data in their analysis use to benefit from these APIs like the Google
News API to search and get live headlines, articles, images, and other news meta-
data. The negative side is that to make their work profitable, these API force the use
to pay for their services. The pricing is variable but, in general, without paying, data
will very likely flow in with delay and the amount of requests per day will be limited
to a small amount. For the purposes of this analysis, using the free services of APIs
is not feasible and a lower-level programmatic approach is required. Because of the
inaccessibility of APIs, the complexity of the retrieval has increased exponentially
and again, parsing issues and html keyword findings will have to come to the stage.

Before going into detail with html parsing, different utilities are defined to ease
the process and perform tasks that are to be required repeteadly.

1 import numpy as np
2 import time
3 import datetime
4 from bs4 import Beauti fulSoup
5 from u r l l i b . request import urlopen
6

7 def get_soup_with_repeat (url , repeat_t imes =3 , verbose=True) :
8 f o r i in range (repeat_t imes) : # repeat in case of ht tp f a i l u r e
9 t r y :

10 time . s leep (np . random . poisson (3))
11 response = urlopen (u r l)
12 data = response . read () . decode (’ utf�8 ’)
13 re turn Beauti fulSoup (data , " lxml ")
14 except Exception as e :
15 i f i == 0 :
16 p r i n t (e)
17 i f verbose :
18 p r i n t (’ r e t r y . . . ’)
19 continue
20

21 def generate_past_n_days (numdays) :
22 " " " Generate N days u n t i l now " " "
23 base = datetime . datetime . today ()
24 date_range = [base � datetime . t imedel ta (days=x) f o r x in range (0 ,

numdays)]
25 re turn [x . s t r f t i m e ("%Y%m%d") f o r x in date_range]

LISTING (3.5) News data scraping utilities

The first function outputs a soup object, similar to XML format, from a url link
input and repeats the operation a predefined number of times (3 is the default) in
case of http failure due to connection problems or simply because the webpage did
not have enough time to fully load. One interesting control to avoid http failures
is to include time.sleep, a command that pauses Python execution, very useful to
let the webpage time to load or to simulate human behaviour when scraping the
net. The second function generates a datetime object in Python ranging N days until
now.

The news case is slightly different, in terms of coding, than scraping stock data.
As discussed earlier, complexity is higher and when facing complex multitasking
problems, the general approach in python is to built class objects capable of per-
forming different functions. A class object is an object constructor, an environment to
create different objects that empower the class with their capabilites. To understand
how classes work, it is important to pay special attention to the built-in __init__()
function. This function is executed when the class is initialized to assign values to
object properties, or other operations that are necessary to be conducted when dif-
ferent objects. A class object contains different methods belonging to the objects.

Chapter 3. Data Acquisition 24

These methods are functions inside the class that endow the object with certain ca-
pabilities. Last important note concerns the self parameter. It is a reference to the
current instance of the class, and is used to access variables that belong to the class
object in a way blocks inside it will always be able to call objects defined in the init
stage despite having been modified for other purposes.

1 import os
2 import sys
3 import datetime
4

5 import i n s p e c t
6 c u r r e n t d i r = os . path . dirname (os . path . abspath (i n s p e c t . g e t f i l e (i n s p e c t .

currentframe ())))
7 parentd i r = os . path . dirname (os . path . dirname (c u r r e n t d i r))
8 sys . path . i n s e r t (0 , parentd i r)
9 import u t i l i t i e s

10

11 def main () :
12 r eu t er _ cr a wl e r = ReutersCrawler ()
13 r eu t er _ cr a wl e r . run (Ndays)
14

15 i f __name__ == " __main__ " :
16 main ()

LISTING (3.6) Reuters news crawler

Listing 3.6 does a very simple job, it loads some required libraries, including
the utilities module located in some parent directory and executes method run from
ReutersCrawler class defined in Appendix A. Roughly speaking, the function takes a
numeric input and crawls news from Reuters for a number of days in the past equal
to the input given. The whole process is very complex and can be extremely costly to
obtain a large dataset with news from different firms over a relatively lengthy time
horizon.

ReutersCrawler starts by loading any finished routers locally available.
Calc_finished_ticker method is required whenever restarting a task since it loads the
already retrieved data into a new temporal object named finished.reuters, mainly for
validation purposes. The same process is executed with the news_failed_tickers file
and load_failed_tickers method. After generating the past dates, the ticker list file
is opened and a for loop is used to read over all the lines (each line represents a
different ticker).

After loading the information required from local files, essentially the ticker list
if running the script for the first time, all the work is done by calling fetch_content
method. Notice method run executed in listing 3.6 calls fetch_content alone from all
previous python definitions in the class. The reason is because everything happens
inside the fetch_content object although the method calls, at the same time, other
defintions in the class that will be discussed further following the flow of execution.

Firslty, inside fetch_content, the csv with the tickers is broken into its four com-
ponents: ticker, name, exchange and market capitalization. The exchange variable is
included because Reuter links present the following structure:

• Domain: "https://www.reuters.com/finance/stocks/company-news" + com-
pany ticker + exchange suffix

• Example: https://www.reuters.com/finance/stocks/company-news/MSFT.O

Previous url looks for news on the day the script is run and, subsequently, it
is passed as an argument to get_news_num_whenever, a method that checks if the

https://www.reuters.com/finance/stocks/company-news/MSFT.O

Chapter 3. Data Acquisition 25

ticker has any news and, if true, returns the count. The output is stored in news_num
and represents the number of news available on Reuters the day the script is being
run. However, the goal is to retrieve past news for a given date range, and notice
fetch_content method has a date_range argument hence the scraper should be ca-
pable of accessing Reuters drop down menu and look for news in the past. Besides
further date concerns, up to this point, there are three different paths to follow de-
pending on the value of news_num:

• If news_num 6= 0, fetch_within_date_range method is called. This object per-
forms 5 tasks:

– Keeps track of the number of days with missing content, initializing the
value at zero and resetting it every time news are obtained (variable miss-
ing_days).

– Controls for whether a retrieved html code has content or not, initializing
the value at False and turning it into True every time news are obtained
(variable has_content).

– Loops over the date range and appends "?date=", followed by new_time
(date index over date_range), to previous dateless url. This final url takes
dates into consideration, the final structure of a Reuters’ link for any past
date is the following: https://www.reuters.com/finance/stocks/company-
news/MSFT.O?date=mmddaaaa

– Retrieves html associated to the previously defined url and stores it as a
soup object.

– Calls parse_and_save_news, a method which takes the previous soup
object as input and returns the top story and the new text displayed in
Reuters.

The corresponding outputs are all automatically converted to csv format and
stored in files finished.reuters, news_failed_tickers and news_reuters.

• If the company has news (news_num 6= 0) on the current day, but none of
them found within the given date range, the ticker is set as LOW priority and
saved in a separate file to be used later, if desired. Variable no_news_days
takes account of the consecutive number of days with no news found and it is
restarted whenver a new is fetched.

• If the company has no news, even with no date range specified, the ticker is
added to the LOWEST priority list.

Overall, all the methotology is oriented towards optimizing the process by first
targeting webpages in which the program knows in advance that they contain use-
ful data. Furthermore, fetch_within_date_range stops the crawler if a company has
no news for a number of consecutive days in the past. The stop crawling limit is
calculated using the number of news found in the current day, thus proportional to
an indicator of news frequency. The higher the news count, the longer willigness to
wait for new data to appear on Reuters. If a forced stop occurs, it is probably due
to some kind of systematic error and the scraper will very rarely find more news
in previous days hence the effort of trying is not worth. Finally, a company may
have multiple news in a single day but as the information within a day should be
highly correlated and, to simplify the process, it is perfectly valid to consider only
top stories for prediction purposes.

https://www.reuters.com/finance/stocks/company-news/MSFT.O?date=04022019
https://www.reuters.com/finance/stocks/company-news/MSFT.O?date=04022019

Chapter 3. Data Acquisition 26

Variable Type Description

Date datetime
(yyyy-mm-dd)

Trading date in the CRSP output calendar for
the period.

High Floating point Highest trading price during the day.
Low Floating point Lowest trading price during the day.

Open Floating point Daily price of the first trade after the market
opens.

Close Floating point Last available daily price before the close of
the day.

Volume Floating point Total raw number of shares of a stock traded
on the given date.

Adj Close Floating point

Close price amended to accurately reflect the
stock’s value after accounting for any corpo-
rate actions (stock splits, rights offerings, div-
idends, etc.). It is considered to be the true
price of the stock.

TABLE (3.1) Stock data: Variables

3.2 Variables

After running the code provided in previous sections, all the data needed in further
steps will be already available in a local directory. Despite the files may need a bit
more of processing, the data format is quite intuitive and before geting into the de-
tails of the analysis, it is always advisable to get familiar with the data. Insights such
as the description of relevant variables, data types or formats are of great importance
after obtaining the data and will be definitely useful when undertaking next stages
in the data science process. The common approach is to conduct some EDA to get a
first taste of the information we are working with. This section is the preface of sub-
sequent EDA and it presents a brief description of the variables obtained through
scraping the net.

The data employed is divided into stock market data and news data. Regarding
stocks, each company is downloaded as a separate file, in this case csv, comprising
the variables presented in table 3.1.

Each company included in the analysis has its associated csv file with previous
list of variables. As said before, in this particular scenario the time horizon consid-
ered ranges from 2010/01/01 until the current day. The idea is to build an applica-
tion capable of geting uptdated market data automtically by just running the script.

Regarding news data, the dataset is entirely made of text data. It has 6 manually
created fields accounting for the following information:

1. Ticker: The ticker symbol.

2. Company: The name of the company.

3. Date: The date, still a text string but properly formatted yyyymmdd.

4. Text1: The top story for the given date (e.g., JNJ 06/06/2019: "FDA advisory
panel recommends approval of TB Alliance’s tuberculosis treatment").

5. Text2: Full new’s text in the given date (e.g., JNJ 06/06/2019: "June 6 Indepen-
dent experts of an FDA advisory panel voted in favor of the not-for-profit TB Alliance’s

Chapter 3. Data Acquisition 27

treatment for drug resistant tuberculosis, as a part of a three-drug combination regi-
men").

6. Type: A factor indicating whether the text is a normal new or a top story.

Notice the linking variable between the two tables is the date. Using this variable,
it is possible to relate ups and downs in stock prices with the information coming
from Reuters and conduct a number of interesting experiments, such as analyzing
the time lag between favorable or disadvantageous news and the resulting varia-
tions in financial markets.

3.3 Exploratory Data Analysis

For many people, the EDA stage of a data science project is a bit difficult to describe
in concrete terms. The goals are many, but the general idea pursued is to get a first
taste of how the data looks like and prepare it for later fitting. EDA is responsible
for checking if there is any clear evidence for or against an hypothesis, validating the
collected data, identifying correlations between variables or certain areas in which
more data is needed.

In this stage, finer details of data presentation and statitistical evidence should
be avioded since the focus is not necessarily the final product but the information
available to work with. EDA is important for the investigator or project manager
because it allows to make the first decisions such as what is interesting to follow
up and which ideas are no longer feasible as the data will never provide enough
evidence. This preliminar analysis is important to save resources and ensure the
project moves forward, remaining within its budget.

3.3.1 Company pricing data

With respect to financial data, visualizing the time series may be highly revealing re-
garding the identification of certain patterns. Properties associated with time series
patterns are mostly trends, seasonalities and cycles. Accordingly, it is a good start
to plot adjusted close prices over the years under observation. Even though all the
data is available, the information for each company is stored in a separate csv file
and the objective here is to asses all the data together.

1 def compile_data () :
2

3 with open (" s p 5 0 0 t i c k e r s . p i c k l e " , " rb ") as f :
4 t i c k e r s = p i c k l e . load (f)
5 t i c k e r s = [t i c k e r . r e p l a c e (’ . ’ , ’� ’) f o r t i c k e r in t i c k e r s]
6 t i c k e r s = [t i c k e r . r s t r i p () f o r t i c k e r in t i c k e r s]
7

8 main_df = pd . DataFrame ()
9

10 main_df = pd . DataFrame ()
11

12 f o r count , t i c k e r in enumerate (t i c k e r s) :
13 df = pd . read_csv (’ s tock_dfs / { } . csv ’ . format (t i c k e r))
14 df . se t_ index (’ Date ’ , i n p l a c e=True)
15 df . rename (columns ={ ’ Adj Close ’ : t i c k e r } , i n p l a c e=True)
16 df . drop ([’Open ’ , ’ High ’ , ’Low ’ , ’ Close ’ , ’Volume ’] , 1 , i n p l a c e=

True)
17

18 i f main_df . empty :

Chapter 3. Data Acquisition 28

19 main_df = df
20 e l s e :
21 main_df = main_df . j o i n (df , how= ’ outer ’)
22

23 i f count % 10 == 0 :
24 p r i n t (count)
25 p r i n t (main_df . head ())
26 main_df . to_csv (’ j o i n e d _ c l o s e s . csv ’)

LISTING (3.7) Joined close prices

Listing 3.7 loads the ticker list and unifies all the individual stock datasets select-
ing, from each company, variable ’Adj Close’ and dropping the rest. Adjusted close
prices are used since they reflect the true price of the stocks and are the optimal indi-
cator of company’s performance in the marketplace. Previous code loads the entire
list of tickers although the resulting data frame is subsequently filtered to include
only the three targeted firms. Once these prices are available, matplotlib is used to
build subsequent graphs. 6.

FIGURE (3.2) Evolution of Adjusted Close Prices

In terms of the previously mentioned properties of time series, neither seasonal-
ities nor cycles are appreaciated, whereas the three companies show a positive trend
in their respective stock price. Their evolution appears to be aligned with the eco-
nomic cycle and the growth of USA GDP. If someone looks at figure 3.2, the imme-
diate conclusion might be that investing in any of the three firms is a good decision
since long term profits seem reasonable and stocks are not specially volatile. How-
ever, the outcome of a hypothetical investment is not that straightforward to asses
as many considerations such as the time value of money, fees, taxes, opportunity
cost of capital, etc. should not be forgotten. Despite financial details are out of the
scope of this report since the focus is predominantly on prediction matters, previous
argument seeks to suport the idea that trading strategies shall chase opportunities

6Matplotlib is a popular plotting library in Python which handles different data structures and pro-
duces high quality figures in a wide variety of formats, sometimes allowing interaction. See Matplotlib
for further details.

https://matplotlib.org

Chapter 3. Data Acquisition 29

in short time intervals and anticipate ups and downs to get a real benefit from stock
price variations.

Another important magnitude is the volume of stocks traded in a given day since
prices in stock markets fluctuate a lot depending on the supply and demand of se-
curities.

FIGURE (3.3) Volume traded (in hundreds of millions)

Figure 3.3 illustrates the volume of stocks traded throughout the time horizon for
the three companies. The time series of volume is generally characterized by several
peaks associated with massive buying or selling actions. These peaks usually ap-
pear after favourable or disadvantageous news releases, depending on whether the
order is a buy or a sell. For instance, the Microsoft Corporation experienced a notice-
able peak on 29 April 2011. Notwithstanding the news database will be discussed
further below, a couple of top stories from the day before Microsoft’s volume peak
are displayed to analyze its content and see if they can shed light to this sudden
increase.

• 2011/04/28: U.S. top court declines to hear Microsoft antitrust case.

• 2011/04/28: U.S. UK advise avoiding Internet Explorer until bug fixed

Apparently, the two press releases are bad news and, although returns on Mi-
crosoft stocks will unveil the real effect on prices, signs until now suggest a drop.
It is natural to think that news releases and announcements have a major influence
on abrupt price variations. Negative or controversial information about a certain co-
many increases uncertainity, generating higher variability in stock prices, since the
future scenario is unclear, and therefore makes the investment more risky.

Investors generally speculate with variabilty on the basis of different types of
analysis but, in all cases, the unit of study are the returns, which they try to max-
imize. Stock market returns are returns generated out of the stock market, in the
form of profit through trading or dividends percieved from the company. In reality,

Chapter 3. Data Acquisition 30

investors do not pay attention to the nature of the return obtained since adjusted
close price reflects both, and the bottomline is merely to make the highest profit pos-
sible no matter whether it is achieved through dividends or by trading stocks. In
this respect, further EDA will focus exclusively on returns for each company under
study since they are the value reference for securities investment and the magnitude
to be maximized.

Pandas has a pre-build method called pc_change() which, when applied to a pan-
das dataframe field, creates a for loop that goes and calculates for each row the per-
centage change with respect to the previous observation. By applying the afore-
mentioned method to ’Adj Close’ it is quite simple to obtain a column representing
return values.

FIGURE (3.4) Distribution of stock returns

Figure 3.4 displays joined relationships (biplots) and univariate distributions of
returns for Microsoft Corporation, Johnson & Johnson and J P Morgan Chase & Co
throughout the time period considered. In the three cases, the distribution of re-
turns resembles a normal distribution and correlations are positive although more
evident between Microsoft Corporation and J P Morgan Chase & Co. Results are not
surprising since, although belonging to different sectors, the three companies are
large American firms and they have lots of things in common. In general, if one of
them is doing good in the market, the others will very likely be doing so.

Tables 3.2 and 3.3 gather, respectively, the dates when companies registered their
highest and lowest returns. Once again, it may be a good exercise to explore news
headlines around the dates shown in previous tables to detect if any positive or neg-
ative statements originated these ’abnormal’ returns. Furthermore, previous tables
also reveal that negative returns are, in absolute terms, higher than the positive ones
and the range of returns for the Microsoft Corporation is much more wider, in both
sides, than the rest.

Chapter 3. Data Acquisition 31

Symbol Company Date Return

MSFT Microsoft Corporation 2015-04-24 10,45%
JNJ Johnson & Johnson 2011-08-11 5,38%
JPM J P Morgan Chase & Co 2011-11-30 8,44%

TABLE (3.2) Highest stock returns

Symbol Company Date Return

MSFT Microsoft Corporation 2013-07-19 -11,40%
JNJ Johnson & Johnson 2018-12-14 -10,03%
JPM J P Morgan Chase & Co 2011-08-08 -9,41%

TABLE (3.3) Lowest stock returns

Symbol Date Return News

MSFT 2013-07-19 -11,40% Microsoft profit misses as Surface tablets
languish; shares drop.

MSFT 2015-04-24 10,45% Microsoft profit revenue beats Wall Street
view; shares up.

JNJ 2018-12-14 -10,03% J&J shares drop on report company knew
of asbestos in baby powder.

JNJ 2011-08-11 5,38% FDA approves Gilead’s once-daily HIV
pill.

JPM 2011-08-08 -9,41% No news available
JPM 2011-08-08 8,44% No news available

TABLE (3.4) News from the day before abnormal returns

Chapter 3. Data Acquisition 32

Symbol Company Standard deviation

MSFT Microsoft Corporation 0,014488
JNJ Johnson & Johnson 0,009343
JPM J P Morgan Chase & Co 0,016000

TABLE (3.5) Stock returns standard deviation

Symbol Company Standard deviation

MSFT Microsoft Corporation 0,017805
JNJ Johnson & Johnson 0,013796
JPM J P Morgan Chase & Co 0,013931

TABLE (3.6) Stock returns standard deviation in 2018

Ponder to what extent an immediate drop or increase in share prices might be
anticipated if investors make a proper use of news data. Table 3.4 discloses that
press releases are great indicators of what will happen with share prices. Up to
this point, it does not seem unreasonable to assume that by detecting media trends
and developing methods capable of assessing the current scenario surrounding a
company, variation in stock prices is very likely to be predictable.

Nevertheless, variation always involves certain risks, in this case the risk of suf-
fering loses. In EDA it is also recommended to make an initial directional assessment
of variation in the data. There are several statistical figures for measuring variabil-
ity but, among all, standard deviation has probably the most direct interpretation.
As stated in Table 3.5, JPM shares present the highest standard deviation, hence as-
sumed to be the riskiest investment.

More visualizations can focus on specific periods with pressumably relevant
events. For instance, figure 3.2 exhibits high volatility of adjusted close prices dur-
ing 2018 thus, it may be interesting to scale up previous graphic and analyze the
distribution of company’s returns and their respective standard deviations within
the mentioned timespan.

Apparently, the Microsoft Corporation is the company that offers potentially
higher returns during the period, although its variability is presumably the largest
as well. J P Morgan Chase & Co bears the brunt in that particular year since its re-
turns’ distribution is centered slightly before 0 and, as shown in Table 3.6, its stocks
do not provide any significant advantage over other companies in terms of volatility.

Analysis conducted thus far do not evince major changes in stock prices over the
time horizon considered. Adjusted close prices show clearly positive trends, and
returns are considerably stable (standard deviations around 1pp) and not specially
distant from 0. The previously described picture is common when working with big
multinational firms on account of a strong brand reputation, operational diversity
and easy access to financing. In consequence, their stocks are highly stable overtime
and the abscence of risk in finance is not rewarded with high returns. A priori,
investing in any of the companies under study may be considered a safe investment.

Nevertheless, this is not always the case and investors quite often encounter
stocks whose mid/long term trend is not as evident as in the case of Microsoft,
Johnson & Johnson or J P Morgan. SMA is a widely used trend indicator in finance,
calculated by taking the average of stock prices over certain previous periods on a

Chapter 3. Data Acquisition 33

FIGURE (3.5) Distribution of stock returns in 2018

rolling window. The SMA framework employs two lines, a short-term moving av-
erage and a long-term moving average, and the idea is to make trading decisions
when both lines cross.

Theory suggests that if 50-day moving average crosses above the 200-day mov-
ing average, the crossover is bullish and interpreted as a sign of buying. On the con-
trary, if the 50-day moving average crosses below the 200-day moving average, the
crossover is bearish and the investor should sell the security. SMA is very popular
in technical analysis since financial market technicians assume stock prices move in
trends. This trading discipline focuses on the actions of the market itself rather than
the goods in which the market deals. Besides SMA, many other indicators are used
in technical analysis to evaluate investments and, although the discipline’s scope is
different than pure predicive modelling, some of the elements are still suitable for
EDA 7.

Another interesting visualization regarding stocks data involves building a cor-
relation table to unveil any interesting correlated data and set the stage for further
clustering. Although not of great relevance here, since only three companies are con-
sidered for modelling purposes, correlation matrices are extensively used in finance
and multivariate analysis when dealing with a large number of variables and they
definitely deserve a mention. Correlation tables are nothing but handy ways of re-
porting correlation coefficients between variables. In this regard, one can calculate
correlation coefficients for both adjusted close prices and returns.

7 See (Kirkpatrick II and Dahlquist, 2010) for more information on technical analysis

Chapter 3. Data Acquisition 34

FIGURE (3.6) SMA, 2012/01/01 - 2019/06/10

Either a heatmap or a cluster map is a good option for representing correlation
matrices. Figures 3.7 and 3.8 are aligned with previous insights showing that the
relation between Microsoft and JP Morgan stocks is stronger than with Johnson &
Johnson. With respect to coefficients, they are all positive (in both cases) although
notably higher in figure 3.8. A naive explanation behind this phenomenon might
be the fact that stock prices are influenced by the market to a greater extent than
returns, where comapny’s perfomance might play a more important role.

Overall, it is expected that firms from the same index, or those who share com-
mon characteristics, are positively correlated. Ideally, investing in a bunch of compa-
nies with zero correlation over time would be a decent way to be diverse, although it
is still early to assume companies with coefficient values close to zero are not related
at all.

Lastly, another significant chart type in financial analysis is the candle plot or
candlestick chart. It is used to characterize price movements of some financial mag-
nitude. Each "stick" represents the four relevant price fields of a single day: high,
open, close and low. The filled part is popularly known as the real body and it may
appear in two colors; one for those days in which the close price was higher than the
open price, and the other for the opposite situation. In general, candlestick charts
are an excellent representation of trading patterns over short time periods and they
are widely used to foresee the short-term direction of the price.

Compared to traditional line or bar charts, candlestick charts are easier to inter-
pret and more visually appealing. Each stick represents a day and the comparison
between open and close prices as well as high and low is instantaneous. Further-
more, the mapping of relevant dates to news data is also direct. As an example,

Chapter 3. Data Acquisition 35

FIGURE (3.7) Stock returns cluster map

figure 3.10 shows a relevant drop and large price variations, in JNJ stocks during the
first half of May. News found around these days are the following and, once again,
they justify the negative impact on stock prices.

• 13/05/2019: An Oklahoma judge on Monday cleared the way for Johnson &
Johnson and Teva Pharmaceutical Industries Ltd to face trial at the end of May
in a lawsuit by the state’s attorney general accusing the drugmakers of helping
fuel the opioid epidemic.

• 07/05/2019: Johnson & Johnson agreed to pay about $1 billion to resolve the
bulk of lawsuits claiming the company sold defective metal-on-metal hip im-
plants that ultimately had to be removed Bloomberg reported on Tuesday cit-
ing people with knowledge of the matter.

Summarizing, the most relevant conclusions obtained from the EDA regarding
stocks are that the three companies present relatively stable prices with positive
trends and the distribution of returns is largely normal centered around zero with
not very large variances.

3.3.2 News data

The EDA approach to the news data is totally different since the information is
mainly text. When confronted with a promising yet large text file which contains
relevant features and data subsets that might lead to prominent findings, but also
tones of useless information, it is necessary to, somehow, categorize and quantify
the text under consideration. NLP covers a broad range of techniques that apply
computational analytical methods to textual content, which provide means of cat-
egorizing and quantifying text that can help researchers explore their textual data

Chapter 3. Data Acquisition 36

FIGURE (3.8) Adj close price cluster map

(Saldaña, 2018). The vast majority of these techniques are of exploratory nature since
they pursue to ’explore’ texts aiming to find indications that might be worth investi-
gating further. Nevertheless, since NLP techniques have a strong mathematic com-
ponent and are formally defined, they are regarded as belonging to the methodology
section rather than to EDA according to the definition provided in the beginning of
the chapter.

Having said the above, after running the scraper it is interesting to see how many
news have been retrieved from each stock and the associated date ranges.

Symbol Company News count Date range

MSFT Microsoft Corporation 3.415 2011/07/06 - 2019/06/17
JNJ Johnson & Johnson 1.681 2011/07/07 - 2019/06/06
JPM J P Morgan Chase & Co 1.780 2015/02/17 - 2019/06/13

TABLE (3.7) Number of news retrieved from Reuters

Microsoft doubles the other two companies in number of associated news within
the date range. However, the date range for J P Morgan is substantially narrower
thus, the density of news is presumably higher for the bank. Recall the news scraper
is programmed to stop the crawling if no news are found in some consecutive num-
ber of days in the past. In this case, after 2015/02/17, the scraper did not find any
news on Reuters associated with J P Morgan for 71 consecutive days, hence the
crawling stopped and JPM was classified as lowest priority. Further requests to J
P Morgan news can be ordered for days before 2015/02/17 if necessary but, the
problem appears to be systematic (change in ticker nomenclature, copyright prob-
lems...) since it is quite rare that a company with such a high news density has no

Chapter 3. Data Acquisition 37

FIGURE (3.9) Candlestick chart MSFT - 2019

FIGURE (3.10) Candlestick chart JNJ - 2019

associated news for 71 consecutive days.
The previously mentioned lack of data is not a problem here as news act as an

enriching factor to company pricing data added to the fact that sentiment analysis
and feature engineering offer methods to deal with different sample sizes. Next step,
concerns wordcounts of headlines and regular news. There are not solid arguments
to think that wordcounts may vary between different companies but they are an
interesting figure that will be useful in further stages.

Symbol Company Headlines Regular news

MSFT Microsoft Corporation 9,779298 32,348007
JNJ Johnson & Johnson 9,966854 34,286517
JPM J P Morgan Chase & Co 8,971596 31,151098

TABLE (3.8) Average wordcount of headlines and news

As presumed, average wordcount values are very similar for the three compa-
nies. Before getting into the details of sentiment analysis and feature engineering, it
is interesting to see which are the most popular words in our news database. Fig-
ures 3.12 and 3.13 exhibit the top words in both headlines and news by means of a

Chapter 3. Data Acquisition 38

FIGURE (3.11) Candlestick chart JPM - 2019

wordcloud, probably the most common figure to represent word frequences in text
data.

At a glance, it is observed that the words in both clouds are substantially differ-
ent. Top stories ought to capture the most popular news of the day or, somehow,
provide a general outline of everthing involving the company, whereas news can be
thought of as individual stories reflecting the reality. Very rarely the same words are
used for both purposes and it is expected to detect discrepancies in most frequent
words between the two fields. Nevertheless, the information contained in both news
and headlines is expected to be similar with respect to the measures used in text an-
alytics. For instance, when quantifying the postiveness/negativeness of news for a
particular company and day; the information in headlines and news will probably
be aligned as it is extremely unsual for a news website to write a positive headline
when news are negative, and viceversa. Accordingly, futher analysis are perfectly
applicable to either case.

In addition, the process of converting text data to something readable for a com-
puter might require some pre-processing as well. In NLP, it is highly common to
remove useless information by means of a ’stop words’ list which the computer is
programmed to ignore. These words are generally commonly used words (such as
’the’, ’a’, ’an’, ’in’) that are theoretically equally distributed among the units of study.
Nltk in Python offers a pre-built easy-to-download list of stop words although is
preferrable to obtain a industry specific set if available. In this paper, the list of stop
words presented in Appendix B has been obtained using some discrepancy measure
from a NN trained with S&P500 data. Its use remains only for exploratory purposes
since tokenization and feature engineering methods are not employed in the mod-
elling stage. The interest relies exclusively on polarity scores and the methodology
employed will automatically deploy these ’stop words’ without requiring any spec-
ifications.

As discussed earlier, sentiment analysis is not treated in this section since the
method is formally defined and uses data transformations presumed to be beyond
the scope of EDA.

Chapter 3. Data Acquisition 39

FIGURE (3.12) Top words in headlines

FIGURE (3.13) Top words in news

40

Chapter 4

Methods

The question raised in this paper is mainly of predictive nature. One of the major ob-
jectives pursued, besides automating the data obtenion process, involves being able
to cast future stock prices of companies using time series of financial data and infor-
mation from news on Reuters. Notwithstanding the theoretical nature of the study,
the capacity of anticipating future ups and downs in securities’ price is a precious
resource that many companies use to get profits in stock markets or make business
with it.

Traditionally, financial analysis has been highly based on a large list of financial
indicators and data taken from financial statements. Accounting ratios, percentage
of inter-firm comparison, intra-firm comparison, common size statement, etc., were
very popular figures employed to ascertain relationships between internal account-
ing magnitudes and what was happening in the market. Even though these methods
allow some space for certain mathematical modelling, the approach was still highly
theoretical-based and strongly rooted in economic theory.

In recent years though, Machine learning and Deep leaning have proven to be
effective strategies to maximize profits in financial markets. The approach is com-
pletely different since financial statements are no longer contemplated and the focus
now is on the alternative sources of information which provide additional insights
to capture drivers outside the scope of economic theory but still influential in stock
markets. Finance is highly nonlinear and some theorists even believe price move-
ments are completely random. In 1973 professor Burton Gordon Malkiel published
his famous ’Random Walk Down Wall Street’, one of the most famous experiments
about the reliability of investments made by stock market analysts. In his book,
Malkiel compared an investment guided by professionals with another made com-
pletely at random, precisely, he used as a figure of speech, a blinded monkey throw-
ing darts to a wall street newspaper with stock names. Surprisingly, the monkey’s
portfolio got higher returns than 85% of professional investors in addition to exceed-
ing returns achieved by the main indexes. By that time, traditional time series meth-
ods like ARIMA or GARCH models were the dominant note in the industry, and
these methods are effective only when the series is stationary. Stationarity of time
series is a restricting assumption that requires data to be preprocessed by taking log
returns (or other transformations). Furthermore, even if the data shows certain sta-
tionarity, in a live trading system there is no guarantee of stationarity as new data
is added. Neural Networks partially resolve the stationarity problem as they do not
require any data assumptions and, as discussed in chapter 1, they are also very good
at finding patterns out of raw data.

Flexibility and non-linearity are probably the most powerful characteristics of
neural networks. They do not require any data assumption and are capable of ap-
proximating practically anything that can be turned into a number. Another im-
portant feature of neural networks is their adaptive feature/basis structure which

Chapter 4. Methods 41

enables them to face problems with many inputs and high dimensionality, such as
images. Futhermore, even though the training can be tedious, once finished, pre-
dictions are instantaneous. On the other hand, likelihood functions are no longer a
convex function of the model parameters hence the problem might become to expen-
sive and time consuming to train with traditional CPUs. In addition, overfitting and
generalization problems are very likely to appear, specially in data scarce scenarios.

The methodology employed in this paper is strongly based on Deep Learning
and Neural Networks seeking to turn a financial/economic problem into pure pre-
dictive modelling and forget about any data assumption which is out of our control.
The hypothesis raised pretends to test if time series modelling of financial data can
be enriched using news’ sentiments. Some neural networks achieved significant re-
sults in time series prediction of financial data, although the methods employed are
extension of regression algorithms that can only handle quantitative variables. Ac-
cordingly, the inclusion of any kind of sentiment magnitude in these models has
been a real challenge still unresolved. The common approach to stock price predic-
tion using news data is slightly different as it generally uses classification algorithms
on labelled data and the predictions are predominantly buy or sell signals. On the
occasion of the recent emergence of VADER sentiment analysis, a method capable of
assigning quantifiable sentiment scores to text data, this study aims to test whether
the VADER methodology has practical applications on the modelling of financial
time series from a regression perspective, essentially acting as an enriching factor to
other quantitative magnitudes considered.

Firstly, to turn news data into something a computer can understand and use
when training the network, VADER sentiment analysis is conducted to assign a sen-
timent score to each new in the dataset. Subsequently, company price data is merged
with the previously obtained scores by date, and different models are fitted. There is
still litte theory behind deep learning models hence highly difficult to find answers
to questions like: which NN architecture is the best for this problem, what is the
optimal number of epochs/layers or which activation functions should be consid-
ered. Sometimes NN design is more an art than a science, with trial and error as the
best option to assess a model’s performance. Accordingly, the models built seek to
provide the reader with certain educated guesses that might be of practical utility in
the industry based on previous empirical evidence.

4.1 Theoretical considerations

Neural Networks are a relatively new instrument in scientific computing and they
offer many advantages over traditional inferential methods, some of them already
discussed. However, it is also important to be concerned about their limitations and
the theoretical basis behind. Some of the most important ones are presented below.

4.1.1 Universal approximation theorem

The universal appoximation theorem lays the mathematical foundations of artificial
neural networks by stating that a feed-forward network (no cycles) with a single
hidden layer containing a finite number of neurons can approximate continuous
functions on compact subsets of Rn.

One of the first versions of the theorem was developed by (Cybenko, 1989) for
sigmoid activation functions.

Chapter 4. Methods 42

Theorem 1. Let s be any continous discriminatory function. Then finite sums of the
form:

G(x) =
N

Â
j=1

ajs
⇣

yT
j x + qj

⌘
(4.1)

are dense in C(In). In other words, given any f 2 C(In) and e > 0, there is a sum,
G(x) of the above for which

|G(x)� f (x)| < e, for all x 2 In

Previous expression clearly resembles the mathematical representation of an arti-
ficial neuron in 1.1. Later proofs demonstrate the equality still holds when replacing
e with any general nonconstant, bounded and continuous function: j : R ! R.

In 2017, Hanin improved previous result 4.1 showing that ReLU neural networks
with width n + 1 are sufficient to approximate any continuous convex function of n-
dimensional input variables (Hanin, 2017).

Theorem 2. For any Lebesgue-integrable function f : Rn ! R satisfying {x : f (x) 6= 0}
is a positive measure set in Lebesgue measure, and any function FA represented by a fully-
connected ReLU network A with width dm n, the following equality holds:

Z

Rn
| f (x)� FA(x)|dx = +•

Z

Rn
| f (x)|dx (4.2)

The evolution of the universal approximation theorem throught the last 20 years
is a strong argument for believing that neural networks are capable of approximating
practically anything that can be turned into a quantifiable magnitude without any
data assumptions.

4.1.2 Activation functions

In the flow of a network, as its name suggests, the activation function is responsible
for deciding whether the neuron is ’firing’ or not. Consider the neuron in 1.1. It
basically calculates a weighted sum of its input, adds a bias, and function q decides
whether it should be active or not.

The value of xi[t] can be anything in the range (�•,+•) as the neuron itself
does not stablish any bounds of the output. Activation functions are added to assess
the value produced by a neuron and decide whether outside connections should
consider this neuron as ’activated’ or not.

First thing that might come to someone’s mind is a threshold based step function
to discriminate between active and inactive neurons. Something such as f (xi[t]) = 1,
hence ’activated’ if xi[t] > threshold, and f (xi[t]) = 0 otherwise, is very intuitive and
even of practical utility for a binary problem. However, when facing a multi-class
classification problem or a continous target, step functions have various limitations
as a 0/1 ouput does not say much about results the network is trying to predict. In
this situations, it is better to obtain a range of activations and dedice which neurons
are firing by taking the max (or softmax) among, for instance, the values of those
sets of connected neurons where at least one is supposedly firing. This lead us to
conclude that, in theory q can be any function since the operation is just a mapping
of the resulting values into some domain where max or softmax functions can be
later applied.

Chapter 4. Methods 43

Selecting the optimal activation function is, to a great extent, an unresolved prob-
lem. If certain characteristics of the function approximated are known in advance,
it is easier to choose an activation function which approximates it faster leading to
a faster training process. As an example, sigmoid works well for classifiers as the
function is nonlinear, smooth and ’step function like’, thus tends to bring the acti-
vations to either side of the curve and makes clear distinctions on different classes.
Other activations, for instance ReLU, are easier to operate with and lead to a faster
training process and converge. In fact, ReLU activation functions are the most used
right now since convergence is relatively fast and (Hanin, 2017) demonstrated that
they are sufficient to approximate any continuous convex function of n-dimensional
input variables.

Linear, sigmoid and tanh activations are covered in more detail since they are the
only ones applied in the models developed in further sections.

• Linear activation function: It is a simple straight line where the activation is
proportional to the input. The main concern with using this type of activation
function is that the derivative with respect to x is constant hence the gradient
has no relationship with the input data (constant gradient). This type of acti-
vation is generally applied in the last layer where no further optimization is
required.

– Equation: f (x) = cx.
– Derivative (with respect to x): f 0(x) = c.
– Range: (�•,+•).
– Order of continuity: C•.
– Monotonic: Yes.
– Derivative monotonic: Yes.
– Approximates identity near the origin: Yes.

• Sigmoid activation function: It is a "step function like", non-linear in nature
and with a smooth gradient. Narrow X intervals near the origin are very steep,
which means the function has the tendency to bring Y values to either sides of
the curve showing great discrimation properties and optimal performance in
classification problems. However, the function is very robust to changes in X
values far from the origin, a property that usually generates a problem known
as ’vanishing gradients’, which will be discussed in further sections.

– Equation: f (x) = 1
1+e�x .

– Derivative (with respect to x): f 0(x) = f (x)(1 � f (x)).
– Range: (0, 1).
– Order of continuity: C•.
– Monotonic: Yes.
– Derivative monotonic: No.
– Approximates identity near the origin: No.

• Tanh activation function: It is a scaled sigmoid function tanh(x) = 2 · sigmoid(2x)�
1 and it has similar characteristics. One point worth to mention is that its gra-
dient is stronger than the sigmoid case (steeper derivatives).

– Equation: f (x) = 2
1+e�2x � 1.

Chapter 4. Methods 44

– Derivative (with respect to x): f 0(x) = 1 � f (x)2.
– Range: (�1, 1).
– Order of continuity: C•.
– Monotonic: Yes.
– Derivative monotonic: No.
– Approximates identity near the origin: Yes.

4.1.3 Optimization

Learning from data involves finding the unknown rules that will convert inputs
into outputs. In other words, the model learns a function f , such that f (X) maps
to y by adjusting the model parameters. In neural networks, these parameters are
combinations of weights and biases which are repeteadly updated to approximate
the target variable for all training inputs. After the training stage, once the model
has learnt the optimal values for the parameters, they can be used to predict values
of y given new Xs. Next immediate question is how does the program check the
goodness of some given parameters and also, how are they updated in the proper
direction to finally reach out the optimum.

Recall the focus in Deep Learning is on learning from examples. Accordingly, if
the goal is to approximate y as accurately as possible using the examples available, it
is necessary to define a loss function that somehow quantifies how wrong different
values of weights and biases approximate the dependent variable. Even though
the loss function varies from model to model, the general idea is to express it as a
distance/difference between the predicted values and the actual values.

Quadratic loss functions such as MSE or MBE are often used in regression prob-
lems to measure the difference between estimated values of y and the ’ground truth’
(real values of y in the training dataset) 1.

MSE =
1
n

n

Â
i=1

(Yi � Ŷi)
2 (4.3)

Previous expression of the MSE 4.3 is generally adjusted to simplify calculations
down the track. As long as the loss function remains as a measure of discrepancy
between predictions and the ’ground truth’ any modifications can be made. Let
Q = {W(1), b(1), W(2), b(2), . . . , W(L), b(L)} be the set of learnable parameters, and L
the number of layers in the network:

L(y|Q, x) =
1

2m

m

Â
i=1

(hQ(x(i))� y(i))2 (4.4)

Here, Q encloses the collection of all weights and biases in the network (also
called learnable parameters), m is the number of training inputs and hQ is the out-
put from previous connected layers in the network. Notice L(y|Q, x) is constantly
modified with parameter updates but the function is entirely non-negative, since
every term in the sum is non-negative. In addition, the output value of the loss

1 Classification losses, however, measure the number of correct labels over the total number of
inputs by some safety margin hence algebraic distances are no longer applicable and other functions
such as cross entropy loss or hinge loss are needed.

Chapter 4. Methods 45

function becomes small when network predictions resemble y values in the training
dataset, suggesting that the learning has been successful.

The learning process consists in finding combinations of weights and biases that
minimize the loss function through the different layers of the network. As in any
situation which demands minimizing or maximizing a function, optimization algo-
rithms are used to achieve this purpose. Loss functions are like objective functions
in optimization problems, dependent on the model’s learnable parameters (weights
and biases), which are used to compute the target values from predictors.

Gradient descent is a general optimization algorithm widely used in NN train-
ing. Gradients enable the model to determine the direction it should take in order
to reduce the loss function value. What gradient descent does is mainly evaluating
how the loss function changes when introducing small variations in the learnable
parameters. Mathematically, the gradient of the loss function LQ is defined as the
vector of partial derivatives with respect to Q.

Hence, if Q = {W(1), b(1), W(2), b(2), . . . , W(L), b(L)} is the set of learnable param-
eters, and being L the number of layers in the network, after each iteration the loss
function changes as follows:

DQLQ ⇡ ∂LQ

∂W(1) · DW(1) + . . . +
∂LQ

∂W(L) · DW(L) (4.5)

In addition, equations 4.6 and 4.7 display the gradient vector and the vector of
changes in weights.

rQLQ ⌘
✓

∂LQ

∂W(1) , . . . ,
∂LQ

∂W(L)

◆T
(4.6)

DW ⌘ (DW(1), . . . , W(L))T (4.7)

Modifying the weights in the direction of the gradient will calculate DQLQ itera-
tively through each hidden layer. However, changes in the loss function should be
negative, reducing the value of the loss in each iteration as much as possible. There-
fore, the optimizer has to figure out how choose DW so as to make DQLQ negative.
With previous definitions, the gradient descent in 4.6 can be rewritten as:

DQLQ ⇡ rQLQ · DW (4.8)

being the gradient the mathematical object relating changes in weights to changes
in the loss function. The real benefit of 4.8 is that it allows DW that always result in
negative DQLQ. In particular:

DW = �hrQLQ, (4.9)

where h is a small predefined positive parameter, known as the learning rate
that measures how quickly the optmizer moves towards the minimum. Replaceing
equation 4.9 in equation 4.8 results in DQLQ ⇡ �h||rQLQ||2 and, as ||rQLQ||2 � 0,

Chapter 4. Methods 46

it can be guaranteed that DQLQ 0. Consequently, parameters will be updated as
follows:

Q0 := Q � hrQLQ

Q0
j := Qj � h

∂

∂Qj
rQLQ

(4.10)

As the model iterates, it gradually converges towards the minimum of the loss
function where further modifications of the parameters produce little changes in the
loss. In addition, better estimates of weights and biases are also obtained in each
iteration. Speed of convergence usually depends on the function the network is
approximating and the learning rate h, which is tuneable and specified before the
training. Excessively large learning rates might overshoot a minimum while values
too small will delay convergence. An optimal trade-off should be found although
a learning rate around 0,2 is considered standard and can be applied, at least as
an initial guess. In recent years though, almost all neural networks use the Adam
optimizer, a method that computes individual adaptive learning rates for different
paramenters using estimates of first and second moments of the gradients.

After the training, the model obtains the optimal weights and biases, those which
minimize the loss function. These parameters are now ready to be used for predic-
tion purposes.

4.2 VADER Sentiment analysis

Sentiment Analysis (also known as opinion mining) is a field of NLP that aims to
identify, extract and quantify affective states and subjective information. In today’s
world, it is estimated that 80% of the data available is unstructured and not orga-
nized in any defined manner 2. Most of if it comes in the form of text data like
emails, chats, social media, articles, surveys, customer reviews, etc. Contrary to tra-
ditional tabular data, the analysis of texts is usually more complex, time consuming
and expensive. In this sense, sentiment analysis systems allow a statistical approach
to the study of text data, trying to make sense of all this unstructured information
and get actionable insights in an efficient manner.

In recent years, specially with the raise of social media, sentiment analysis has
become a topic of great interest. Reviews, ratings and other forms of recommenda-
tion, are a kind of virtual gold highly demanded by businesses looking to market
their products more effectively, identify opportunities in the marketplace and man-
age their reputation. As an example, with the help of sentiment analysis, facebook
posts can be automatically transformed into quantitative structured data from which
is possible to infer public opinions about politics, sports, a particular company/ser-
vice, or any topic people express their opinion about.

Furthermore, opinion mining algorithms can be applied to different levels of text
like documents, paragraphs, sentences or even words within a sentence. Alike other
NLP problems, sentiment analysis can be interpreted as a classification problem with
different subproblems associated with attributes of the expression under study. The
most basic task concerns the polarity of a given text level, classifying it as expressing

2The biggest data challenges that you might not even know you have, Cristie Schneider, May 25
(2016).

https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/
https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/

Chapter 4. Methods 47

a positive, negative or neutral opinion. More advanced methods go beyond mere
polarity classification and are capable of detecting feelings and emotions or iden-
tify intentions. Advantages of sentiment analysis include scalability which allows
data processing at scale in a cost-effective way and, as a result, the chance of using
the methodology during specific scenarios in real-time, identifying, and even antic-
ipanting, changes in opinions.

Methods and algorithms applied in sentiment analysis are primarily classified
as:

• Rule-based: system which perform the analysis on the basis of a set of manu-
ally crafted rules.

• Automatic: sentiment anlysis systems relying on machine learning algorithms
that learn from data.

• Hybrid: systems combining the two previous types.

The first collection of methods is the only one employed in this study. Appar-
ently, rule-based implementations seem to be quite simple; they can be applied by
just defining two lists of polarized words, count the number of words from each list
in a given text and if positives are higher output a ’positive’ label, otherwise a ’neg-
ative’. Although theoretically valid, previous approach is very naïve since it does
not consider the relative position of words in a sentence, potential subjectivity is-
sues and boosting effects of certain words. For instance, if the number of positives
exceeding negatives is relatively small and negatives are preceded by a word such
as ’incredibly’, it might be adventurous to label the sentence as ’positive’.

To deal with previously mentioned issues, among other aspects, this paper em-
ploys VADER 3, a lexicon and rule-based sentiment analysis tool that is specifically
attuned to sentiments expressed in social media but proven to be quite successful
when dealing with editorials and reviews. VADER uses a pre-built list of lexical fea-
tures (e.g. words) which are labelled according to their semantic tendence as either
postive or negative 4. The main advantage of vader is that, instead of using dis-
crete variables, it returns a numerical output capturing how positive or negative a
sentiment is and the user can use this figure to create further labels. In addition, it
does not require any training data as it is built from a generalizable, valence-based,
human-curated gold standard sentiment lexicon (Hutto and Gilbert, 2014).

VADER is a fully open source developed under the MIT licence and the source
code is available on github, together with a complete description of implementation
details (see VADERS’s gihub page for further details). Among all VADER utilities,
the following are noteworthy:

• Punctuation: The use of certain figures, such as exclamation marks (!), increase
the magnitude of the intensity without modifying the semantic orientation.
Appendix B contains the set of punctuation symbols that VADER considers to
increase or decrease valences accordingly.

• Capitalization: All upper case letters to emphasize a sentiment-relevant word
in the presence of other non-capitalized words, increases the magnitude of the
sentiment intensity, again without changing semantic orientation.

3 VADER: Valence Aware Dictionary and sEntiment Reasoner
4Link to VADER’s lexicon: vader_lexicon.txt.

https://github.com/cjhutto/vaderSentiment
https://github.com/cjhutto/vaderSentiment/blob/master/vaderSentiment/vader_lexicon.txt

Chapter 4. Methods 48

• Boosters: Booster dictionary listed in Appendix B includes intensifiers which
impact the sentiment intensity by either increasing or decreasing the inten-
sity. For instance words such as extremely, absolutely or highly have a positive
impact on sentiment scores while partly, occasionally or little contribute nega-
tively.

• Conjunctions: Words expressing contrast like ’but’ suggest a shift in sentiment
polarity, with the sentiment of the text following the conjunction being domi-
nant. For instance, a sentence such as: "The place was good but, the weather
was horrible" will be classified as negative.

• Preceeding tri-gram: It is believed that by examining the word preceeding
a sentiment-laden lexical feature, nearly 90% of the negations are captured.
VADER negate list displayed in Appendix B includes words that very likely
flip the polarity of a text.

The code for applying VADER sentiment analysis to a text variable is more than
simple. All the process described above, with all utilities, can be implemented in
merely 8 lines of code by means of polarity_scores method (see listing 4.1).

1 import pandas as pd
2 from n l t k . sentiment . vader import Sent imentIntens i tyAnalyzer as SIA
3

4 s i a = SIA ()
5 r e s u l t s = []
6

7 f o r l i n e in news [’ Text2 ’] :
8 pol_score = s i a . p o l a r i t y _ s c o r e s (l i n e)
9 pol_score [’ headl ine ’] = l i n e

10 r e s u l t s . append (pol_score)
11

12 df = pd . DataFrame . from_records (r e s u l t s)
13 df . head ()

LISTING (4.1) Sentiment Intensity Analyzer

VADER sentiment analysis is applied to variable ’Text2’ in the Reuters news
dataset. Recall section 3.2 in chapter 3 describes the variables and, in this case, the
one considered is the full text of the new, not the top story. When working with a
massive number of news, it is more common to use headlines in sentiment analysis
for time-saving and efficiency issues. However, the number of news retrieved for
the three companies under study is handy enough to conduct the analysis on the
full text instead of the top story. The justification behind the use of ’Text2’ relies on
the idea that complete texts might provide a more detailed description of the facts,
hence the sentiment intensity analyzer will have more inputs to classify the instance.
Nevertheless, both options should not be significantly different. Figure 4.1 displays
the correlation table between negative, neutral and positive scores obtained after
running listing 4.1 separately on variables ’Text1’ and ’Text2’. Neg, neu and pos are,
respectively, negative, neutral and positive valences for the headlines (’Text1’), and
those followed by a 2 are the same measures for normal news (’Text2’).

As expected, negative, neutral and positive scores are positively correlated and
grouped together in the same cluster, as final results should be similar, no matter
which ’Text’ variable considered. In addition to scores for polarities above, the
VADER sentiment intensity analyzer also provides a compound score, which is a
synthetic measure that calculates the sum of all the lexicon ratings after being nor-
malized between -1 (most extreme negative) and +1 (most extreme positive).

Chapter 4. Methods 49

FIGURE (4.1) Correlation between headlines and normal news sen-
timent scores

Compound scores are the measure used to feed the network in the modelling
stage. They represent a comprehensive score of polarities and are probably the most
intuitive way to summarize overall sentiment.

News EDA in chapter 3 makes a brief mention to tokenization and feature en-
gineering. Although beyond the scope of this study, since the main utility of these
methods is for classifcation problems, once polarity scores has been obtained it is
possible to define labels based on a certain criteria (e.g. ’positive’ for scores �
0.2, ’negative’ for scores -0.2 and ’neutral otherwise). Then, after removing ’stop
words’, the text can be splitted into senteces or words to further build some feature
measures/figures such as most common words among texts labelled as ’positive’,
distribution of positive and negative word counts, etc.

This type of analysis is commonly referred to as feature extraction or feature
engineering and has some relevance in stock market prediction problems, specially
from a classification perspective. As this paper pursues to integrate news’ sentiment
in a regression problem via polarity scores, there is no need to conduct any further
analysis beyond the application of VADER’s Sentiment Intensity Analyzer.

Chapter 4. Methods 50

4.3 LSTM for time series prediction

One of the fundamental problems which plagued traditional feed forward neural
networks for a long time since its inception was the ability to identify patterns in se-
quence of inputs relying on previous sequences for information and context. From a
theoretical point of view, taking into account that neural networks mimic biological
neurons, it is totally justifiable to include the concept of memory in artificial NN sys-
tems since humans do not start their learning process from scratch every second. For
instance, when reading a text, the meaning of words is based on the understanding
of previous words in a sentence which allow for a context to predict what the next
word might be.

Traditional neural networks cannot do this, they take in a stand-alone data vector
of some dimension each time and past information do not persist. A few years ago,
this lack of memory seemed a major shortcoming in the learning process since it
was unclear how traditional neural networks could use information about previous
events to predict later ones.

First attemps to tackle this issue used feed forward neural networks with the
peculiarity that the output was fed-back as a new input to provide context on the
last seen events. These architectures are no more than traditional networks with
loops inside them, allowing information to persist. As an example 4.11 presents a
simple recurrent neural as a length-2 sequence with tanh activations:

ŷt = f (yt�1, yt�2)

ŷt = htV + c
ht = tanh(ht�1W + yt�1U + b)

ht�1 = tanh(ht�2W + yt�2U + b)
ht�2 = 0

(4.11)

V is the output of hidden layer t which includes weights W and data units U
from t � 1. In fact, RNN are multiple copies of the same network, each one passing
a message to subsequent t. While these architectures worked to an extent, the idea
that they are capable of relating previous information to the present event is not
always true. RNN specially suffer from ’long-term’ dependencies, situations where
the time gap between the present and the past relevant information becomes large
5. This represents a major downfall since, in practice, many time series modelling
problems require the information enclosed in past distant data for future predictions.

In theory, RNN are absolutely capable of dealing with such ’long-term depen-
dencies’ but the mechanics suffer from the so called vanishing gradient problem
when trying to learn from distant events. In accordance with the structure defined
in ??, a RNN with sequence length x can be ’unrolled’ so that each step back in the
past is added to the model as a new hidden layer. For instance, previous example
is essentially a two hidden layer network where t considers information exclusively
from the two previous time moments. As more layers are added to the network, to
capture more distant observations, certain activation functions return gradient val-
ues close to zero, making the network hard to train. Figure 4.2 depicts an unrolled
RNN for some t sequence length being A neural network chunks.

5(Bengio, Simard, and Frasconi, 1994) explores the problem in detail.

Chapter 4. Methods 51

FIGURE (4.2) An unrolled RNN
Source: Colah’s blog

Recall the gradients are found using backpropagation and the chain rule, in sim-
ple terms, multiplying the values of each layer’s derivatives down the network.
Dense functions that squish a large input space into a small one such as sigmoid,
tanh or ISRU; are very robust to significant changes in the input hence derivatives
become small and, when multiplied together, these small values exponentially de-
crease the gradient as propagated down to the initial layers. Possible remedies to the
vanishing gradient problem include identity RNN (same architecture using ReLU
activations), batch normalization or even gradient clipping.

Despite previous solutions achieved certain success, RNN were still poorly suited
in most real-world problems, thus other ways of tackling the long term memory is-
sue needed to be found. Thereupon, in 1997, Hochreiter and Schmidhuber presented
their Long Short Term Memory networks, the first architecture capable of learning
long-term dependencies (Ferrara et al., 2014). It was a real phenomenon in the field
as their methodology worked tremendouly well on a wide variety of problems and
still the most popular method nowadays for time series modelling.

LSTM model are explicitly designed to resolve the long term dependency prob-
lem and remembering distant events is practically their default behaviour. These
models work, for many tasks, much better than standard versions of RNN, outper-
forming them in practically all scenarios and getting rid of the vanishing gradient
problem.

Differences between standard RNN and LSTM models are noticeable, although
the two architectures present the characteristic chain like structure discussed earlier.
Nevertheless, while the repeating module in standard RNN has a very simple struc-
ture (in most of the cases just a single layer), LSTM is built with a repeating module
containing four interacting layers. Figure 4.3 depicts a diagram of a LSTM archi-
tecture, being the yellow rectangles the neural network layers inside the repeating
module 6.

The main key to success of LSTM models is the inclusion of a cell state in the
network flow (the horizontal line at the top of the diagram). Cell states are very
important objects in LSTMs since they have few linear interactions and it is very
easy for them to trasmit information through the different network layers practically
unchanged, hence keeping the track of past distant events.

Recall As represent neural network pieces thus, in the LSTM case, each repeating
module can be thought of as a neural network inside another neural network. The
core idea, and also the main innovation behind LSTMs is that the model has the
ability to remove or add information to the cell state based on its relevance.

6 A standard RNN will only have one layer of the corresponding activation function, and the net-
work’s output will be transfered directly to the next A chunk.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Chapter 4. Methods 52

FIGURE (4.3) LSTM architecture diagram
Source: Colah’s blog

This process is regulated by means of sigmoid layers which describe how much
of the output should be retained and transferred to further time moments or inter-
vals. These sigmoid layers are similar to ’gates’ regulating which previous informa-
tion should be kept and which should be dimissed.

Each A chunk in figure 4.3 takes as input previous layer cell state Ct�1, together
with ht�1 and data points corresponding to time t, Xt.

Following the process flow described in figure 4.3, first step in an LSTM is to
decide which past information should be discarded from the cell state. The object
responsible for this task is the first sigmoid layer called the ’forget gate layer’. Using
Colah’s notation:

ft = s(Wf · [ht�1, xt] + b f) (4.12)

The ouput of a sigmoid layer is a number between 0 and 1 and the operation
is performed for each number in the cell state Ct�1. A value of 1 means to keep
everything while 0 stands for dismissing all the information. ’Forget gate layers’ act
as premilimar filters to mantain only relevant information in cell states and avoid
the transfer of noisy or trivial data to further layers.

Next step is to update previous parameters, on the basis of which new informa-
tion is going to be stored in the cell state. This process has two parts: first the second
sigmoid decides which cell values to update and next (input gate layer), a tanh layer
(or an equivalent activation) creates a vector of new candidates that might be poten-
tially added to cell state Ct�1. Again, using Figure 4.3 notation:

it = s(Wi · [ht�1, xt] + bi)

C̃t = tanh(WC · [ht�1, xt] + bC)
(4.13)

These two objects are further combined and added to the product of previous
cell states and the output of the previously calculated ’forget gate layer’. Therefore,
the new cell state Ct will be:

Ct = ft · Ct�1 + it · C̃t (4.14)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Chapter 4. Methods 53

The new state is calculated with contributions from previous states and new in-
formation of time t, in both cases previously filtered by applying a sigmoid layer to
capture only relevant information.

Finally, last sigmoid layer dedices what to output based on previously calculated
cell state Ct. After applying the sigmoid for filtering purposes, the cell state is passed
to a tanh activation (output between -1 and 1) and the result is multiplied by the
output of the sigmoid gate. Once again, in Colah’s notation:

st = s(Wo · [ht�1, xt] + bo)

ht = st · tanh(Ct)
(4.15)

Equation 4.15 is the output of a regular LSTM layer. Previously described ar-
chitecture represents a normal LSTM but, although the core idea of the four gates
is essentially the same, the actual placement of the arrows differs depending on the
research paper allowing for slightly different versions of the model. Differences are
minor, mainly related to interactions between the four gates, looking forward to sim-
plify the model and adapt it better to the problem treated.

In this paper, the LSTM model employed was originally designed by Jakob Aungiers,
2018 and further adapted to include sensitivity scores. As disscussed in the begin-
ning of the chapter, the motion of a stock market time series is not any sort of known
function, in fact, the best propery to describe them appears to be a random walk. In
theory, a random walk has no predictable patterns hence attempting to model will
be worthless but, fortunately, there are on-going arguments by many experts in the
field arguing that stock price movements are not pure random walks and they have
some sort of hidden pattern.

An important remark is that, as stock prices are constantly moving with no spec-
ified boundaries, data normalization is needed, otherwise the model will never con-
verge. To combat this, a recommended procedure is to normalize the data by taking
percentage changes from the start of the window hence, in the case of financial time
series, the output feeded to the network will reflect returns on stock over a rolling
window of width equal to the specified sequence length. Following equation is used
to normalize the data:

ni =

✓
pi
p0

◆
� 1 (4.16)

https://www.altumintelligence.com/articles/a/Time-Series-Prediction-Using-LSTM-Deep-Neural-Networks
https://www.altumintelligence.com/articles/a/Time-Series-Prediction-Using-LSTM-Deep-Neural-Networks

54

Chapter 5

Results

After the merging process, a variable with compound scores is added to the stock
prices dataset, reflecting the news’ sentiment of those dates with news available.
The model is programmed to deploy those observations with NAs as it will not be
possible to calculate the loss function otherwise. Whilst this work aims to exhibit
a practical example of LSTM neural networks, it only scratches the surface of the
tremendous potential the method has, not only in the financial sector but also in any
time series prediction problem.

There is still room for improvement in all models presented and greater accuracy
results could be certainly achieved with more iterations on deeper networks and
proper hyperparamenter tuning. Subsequent architectures are, to some extent, naïve
models which pretend to open the doors for further reaseach in a field with huge
potential.

The LSTM methodology is implemented by means of a run file which calls meth-
ods inside data processor and model class objects defined in Appendix A. These
python classes require as arguments to their methods a network design together
with some hyperparamenters, dimensionality of the inputs and some other specifi-
cations. All these figures are provided to the network from a json file which contains
the model settings and configuration. This approach is genuinely worthwhile ow-
ing to its flexibility, allowing the development of highly cusomizable models by only
changing the settings and runing the script again.

By way of example, listing 5.1 presents one of the configurations used in this
study.

1 {
2 " data " : {
3 " f i lename " : " MSFT_scores . csv " ,
4 " columns " : [
5 " Adj Close " ,
6 "compound"
7] ,
8 " sequence_length " : 21 ,
9 " t r a i n _ t e s t _ s p l i t " : 0 . 8 5 ,

10 " normalise " : t rue
11 } ,
12 " t r a i n i n g " : {
13 " epochs " : 2 ,
14 " b a t c h _ s i z e " : 32
15 } ,
16 " model " : {
17 " l o s s " : "mse " ,
18 " opt imizer " : "adam " ,
19 " save_dir " : " saved_models " ,
20 " l a y e r s " : [
21 {
22 " type " : " lstm " ,

Chapter 5. Results 55

23 " neurons " : 200 ,
24 " input_t imesteps " : 20 ,
25 " input_dim " : 2 ,
26 " re turn_seq " : t rue
27 } ,
28 {
29 " type " : " dropout " ,
30 " r a t e " : 0 . 2
31 } ,
32 {
33 " type " : " lstm " ,
34 " neurons " : 200 ,
35 " re turn_seq " : t rue
36 } ,
37 {
38 " type " : " lstm " ,
39 " neurons " : 200 ,
40 " re turn_seq " : f a l s e
41 } ,
42 {
43 " type " : " dropout " ,
44 " r a t e " : 0 . 2
45 } ,
46 {
47 " type " : " dense " ,
48 " neurons " : 1 ,
49 " a c t i v a t i o n " : " l i n e a r "
50 }
51]
52 }
53 }

LISTING (5.1) LSTM settings

JSON formats resemble a combination of python lists and dictionaries, thus it is
very easy for python to parse it and access the attributes. Previous configuration
includes specifications about the data to use, the training process and the model
architecture.

Notice the model uses only 2 training epochs and a reasonable batch size to speed
up the training process. Dropout is a commonly used regularization technique for
reducing overfitting. It basically consists in cutting some connections between both
hidden and visible neurons. Sequence length considered is 21 days, a period ap-
proximately equivalent to a natural month.

Next steps implement the model on company price datasets, enriched with com-
pound scores.

5.1 Unidimensional LSTM prediction

In the first instance, unidimensional models are developed hence the only column
that should appear in the settings file is ’Adj Close’ and the input dimension has to
be resetted to 1. The model’s design is the following:

• Layers: (1, 200, 200, 200, 1).

– LSTM: 200 neurons ! (1, 200).
– LSTM: 200 neurons ! (200, 200).
– Linear: 1 fully connected output ! (200, 1).

Chapter 5. Results 56

• Epochs: 2.

• Batch Size: 32.

• Train-test split: 85%.

• Loss function: MSE.

• Optimizer: Adam.

• Sequence length: 21.

(A) MSFT (B) JNJ

(C) JPM
FIGURE (5.1) Unidimensional point-by-point prediction

As its name suggests, point-by-point predictions shown in figure 5.1 are only
predicting a single point ahead each time using data from previous 21 observations.
Then, the program plots the point and moves towards the next training window to
repeat the same process again.

In addition to the plots, results for the three companies are the following ones:

• MSFT

– Date range: 06/07/2011 - 10/06/2019.
– Time periods: 1.024.
– Training time: 6,98 seconds.
– Training loss in last iteration: 0,0015.

• JNJ

– Date range: 07/07/2011 - 06/06/2019.

Chapter 5. Results 57

– Time periods: 638.
– Training time: 48,29 seconds.
– Training loss in last iteration: 0,0024.

• JPM

– Date range: 17/02/2015 - 10/06/2019.
– Time periods: 609.
– Training time: 5,35 seconds.
– Training loss in last iteration: 0,0016.

Predictions in figure 5.1 seem to match returns quite accurately. However, pre-
vious exercise is of little practical utility since the network is predicting returns one
step ahead the prior true history window. In reality, the model is just answering the
question what is going to happen tomorrow.

Furthermore, even if a prediction for time t + 1 is incorrect, next window will
automatically deploy this value replacing it with the true result after reaching t + 1
(which will become the new t). In consequence, previous models are not capable
of predicting future returns over a relatively lengthy period, although still useful
in volatility forecasting as they provide a representation of the ranges that prices
should be moving within.

In order to deal with previous concerns and to provide a model of greater utility
in a life trading system, multi-sequence prediction is a commonly used technique to
compute LSTM predictions for X-steps ahead.

The mechanics are quite simple, the model also initializes the test window with
test data and predicts the next point. Thus far, it is the same as a regular point-by-
point prediction. However, instead of using test data in forthcoming windows, it
uses the previous predicted point to calculate the next one, and so on. The process
continues until the input window is fully made of past predictions. At such time, it
shifts forward one full window length through the test data and resets the window
to start the process again. In this case, each training point is feeded only once in the
model.

The network architecture remains unchanged although a smaller batch size of 8
has been considered to reinforce the learning and also the sequence length has been
shortened to 11 periods. The main justification behind this decision relies on the
fact that data is significantly scarce in the current scenario hence excessively broad
windows will prompt the model to work mainly with predicted points and forego
relevant information in the testing dataset. Figure 5.2 shows the implementation of
multi-sequence predictions.

Chapter 5. Results 58

(A) MSFT (B) JNJ

(C) JPM
FIGURE (5.2) Unidimensional multi-sequence prediction

Results obtained are the following for the three companies:

• MSFT

– Date range: 06/07/2011 - 10/06/2019.
– Time periods: 1.024.
– Training time: 12,42 seconds.
– Training loss in last iteration: 8,4948e-04.

• JNJ

– Date range: 07/07/2011 - 06/06/2019.
– Time periods: 638.
– Training time: 58,57 seconds.
– Training loss in last iteration: 0,0011.

• JPM

– Date range: 17/02/2015 - 10/06/2019.
– Time periods: 609.
– Training time: 1 minute 56,61 seconds.
– Training loss in last iteration: 0,0013.

Whilst far from perfect, multiple-trend like predictions seek to capture future
momentum trends which, translated to trading, represent the capacity of benefiting
from future ups and downs in the market.

Chapter 5. Results 59

5.2 Multidimensional LSTM prediction

Thus far, previous models only consider a single variable in their analysis, concretely
’Adj Close’ price. However, in this type of analysis, is is believed that other variables
related to price data can enrich the training dataset, ultimately leading to a higher
performance of the model.

Chapter 3 showed that Volume and news’ sentiment are magnitudes certainly
correlated with adjusted close prices therefore, if VADER polarity scores were to
be accurate estimates of news’ sentiment, both variables will presumably improve
previously obtained result. Accordingly, these two variables are the ’enriching can-
didates’ considered.

In this section, the objective is to determine wheteher Volume or compound
scores are better enriching factors for company price data in terms of model perfor-
mance. In line with the argument presented in previous section, multi-sequence pre-
dictions are the only ones considered from now on, since point-by-point has proven
to be of doubtful practical utility in life trading systems.

LSTM class methods in Appendix A are capable of handling multiple dimensions
and, this time, the settings file should be modified in the opposite way as before.
Columns should include the two variables considered and the input dimension field
has to be assigned a value of 2. Other settings are the same as in the unidimensional
case.

• Layers: (1, 200, 200, 200, 1).

– LSTM: 200 neurons ! (1, 200).
– LSTM: 200 neurons ! (200, 200).
– Linear: 1 fully connected output ! (200, 1).

• Epochs: 2.

• Batch Size: 8.

• Train-test split: 85%.

• Loss function: MSE.

• Optimizer: Adam.

• Sequence length: 11.

Predictions using compound scores are displayed in figure 5.3, together with the
corresponding results for each firm:

• MSFT

– Date range: 06/07/2011 - 10/06/2019.
– Time periods: 1.024.
– Training time: 18,62 seconds.
– Training loss in last iteration: 0,0034.

• JNJ

– Date range: 07/07/2011 - 06/06/2019.

Chapter 5. Results 60

– Time periods: 638.
– Training time: 11,46 seconds.
– Training loss in last iteration: 0,0024.

• JPM

– Date range: 17/02/2015 - 10/06/2019.
– Time periods: 609.
– Training time: 10,67 seconds.
– Training loss in last iteration: 0,0031.

(A) MSFT (B) JNJ

(C) JPM
FIGURE (5.3) Multidimensional multi-sequence prediction (com-

pound)

Similarly, figure 5.4 does the same, this time using ’volume’ as the enriching
factor.

• MSFT

– Date range: 06/07/2011 - 10/06/2019.
– Time periods: 1.024.
– Training time: 2 min 33,32 seconds.
– Training loss in last iteration: 0,0016.

Chapter 5. Results 61

• JNJ

– Date range: 07/07/2011 - 06/06/2019.
– Time periods: 638.
– Training time: 10,84 seconds.
– Training loss in last iteration: 0,0021.

• JPM

– Date range: 17/02/2015 - 10/06/2019.
– Time periods: 609.
– Training time: 11,86 seconds.
– Training loss in last iteration: 0,0024.

(A) MSFT (B) JNJ

(C) JPM
FIGURE (5.4) Multidimensional multi-sequence prediction (vol-

ume)

Eventually, although not a fair comparison, an investor may actually wonder
why not using stock prices and volumes directly from files retrieved from Yahoo
finance. Recall previous models consider only those observations with non-missing
compound scores hence, if the focus is excluseviley on volume, information from
yahoo finance seems to be a better option since no dates will be missing and the
obtention process is much faster.

Figure 5.5 displays a multi-sequence prediction of length 40 and a 24 batch size
on full time series of company price data using ’volume’ as the enriching factor.

Chapter 5. Results 62

Modifications on batch size and sequence length respond to the larger datasets con-
sidered in this case, seeking to speed up the learning process.

(A) MSFT (B) JNJ

(C) JPM
FIGURE (5.5) Multi-sequence prediction on complete stock data

Previous model results for the three companies under study are the following:

• MSFT

– Date range: 04/01/2010 - 10/06/2019.
– Time periods: 2.374.
– Training time: 3 min 00,49 seconds.
– Training loss in last iteration: 0,0018.

• JNJ

– Date range: 04/01/2010 - 10/06/2019.
– Time periods: 2.374.
– Training time: 33,58 seconds.
– Training loss in last iteration: 9,0235e-04.

• JPM

– Date range: 04/01/2010 - 10/06/2019.
– Time periods: 2.374.
– Training time: 2 mins 59,06 seconds.
– Training loss in last iteration: 0,0021.

Chapter 5. Results 63

(A) MSFT (B) JNJ

(C) JPM
FIGURE (5.6) Full-sequence prediction on complete stock data

In general, multi-sequence predictions does appear to be correctly predicting the
trend for a good majority of the time series.

Lastly, with an enough rich dataset, it is also possible to conduct a full sequence
prediction. This procedure is similar to the multi-sequence case despite the fact that,
this time, only the first testing window is initialized with test data, while the rest of
the predictions are entirely based on previously predicted points (see figure 5.6).

64

Chapter 6

Concluding remarks

Today’s world is being increasingly driven by data. Consumers, companies, public
institutions and other agents throughout the globe are constantly generating mas-
sive amounts of data. Almost any day-to-day action leaves behind a data trace that
can be further harvested, preprocessed and analyzed making up the basis of ’Big
Data’.

Even though ’Big Data’ is a complex issue, if treated appropiately, it can be
turned into really valuable insights to inform competitive decision-making and gen-
erate value in businesses from a wide range of industries. However, such a boost in
the scale of the information available and steadily generated requires an adaptation
of the traditional data science process to more flexible methods capable of living in
a highly dynamic environment.

Operational velocity is one of the main issues adressed in this new era, not only
in data analysis but also througout all stages of the data science process. More pow-
erful and sophisticated technologies for data processing are in the market today, thus
data collection techniques should be also aligned with these recent innovations, and
web scraping methods are undoubtedly into the spotlight.

Traditional data collection systems are becoming of less practical utility as time
goes by, being replaced with new mechanisms that essentially ’harvest’ data in-
stead of collecting in. With the irruption of Web 2.0, and in today’s world of net-
worked and distributed applications, the Internet is becoming the quintessentially
data source as practically everything is shared through it and, consequently, it con-
tains a real universe of information awaiting for a retrieval.

Web scraping tools allow reasearchers and businesses to monitor information
over the net and also an automated data collection on a routinary basis. They also
permit a highly customizable approach to data extraction in an efficient and fast
way, visiting a large number of webpages simultaneously. The vast field of web
scraping applications is truly mind-blogging as information on the net is extremely
heterogenous. Competitor price monitoring, market data, financial statements or
movie reviews are just a few examples of data that scrapers can harvest over the
net, to thereafter use them in real-time analytics, as the information can be analyzed
right after becoming available.

A web based approach to data extraction processes can definitely improve the
quality of our data products. This added value is certainly noticed in the application
of such methods described in this paper, as financial markets are a clear example of
an scenario where the abovementioned operational velocity is no longer a desire but
a necessity.

Either by using an API or by extracting html references from webpages, the
methodology employed enables an instantanous disposal of highly heterogenous
data in large quantities. Furthermore, pre-built datsets of the information demanded

Chapter 6. Concluding remarks 65

for this work, with an special emphasis on news data, are either scarce or non-
existent, hence web scraping is, in fact, the only plausible alternative to effectively
retrieve the data needed.

Additionally, a deep learning framework for predictive modelling is also devel-
oped, aiming to illustrate a possible use of the already retrieved data in line with
previously mentioned principles of large data quantities and real-time analysis. A
standard LSTM neural network model is considered in the modelling stage as it has
proven to be a very consistent method for characterizing time series data. The hy-
pothesis suggested pretends to test if news data can be a ’enriching factor’ to stock
price predictions, thus improving the accuracy of our models.

Before delving deeper into the details, an important consideration is that all mod-
els displayed in chapter 5 can achieve greater accuracy with more training and care-
ful hyperparameter tuning. Having said that, figures 5.1a, 5.1b and 5.1c evince the
model is predicting the series very accurately on a point-by-point basis without any
enriching factor. As discussed earlier, although of little relevance in a life trading
system, these predictions are still useful in certain applications such as volatility
analysis or anomaly detection.

As moving towards, in multi-sequence prediction, overfitting is the dominant
note in practically all scenarios, presumably due to data scarcity issues. Training
losses are small but still the trained network fails to capture certain trends when
tested against the ’ground truth’. Overfitting is not resolved by just increasing the
epochs in the network, it is a concern which requires further research. A good start,
perhaps, is to study the distribution of training losses against test losses.

Besides overfitting issues, if models in figures 5.3 and 5.4 are compared, the in-
clusion of polarity scores from news data seems to generate smoother predictions
although in many cases, trend estimates are better. On the contrary, enriching prices
with volume makes the model more senstive to abrupt price variations, although
if lacking them, the model predominantly fails in estimating medium term trends
for those stocks which are generally more stable. In addition, enriching factors such
as compound polarity scores or volume partially resolve the data scarcity problem
since the network is feeded with more information that can be considered in pre-
dictions (compare figures ?? and ?? vs, for instance, figures ?? and ??). In general,
although long-term trends seem to be better predicted by including polarity scores
as enrichers instead of volumes, there is not enough evidence to either accept or re-
ject the previously stated hypotesis since more data has to be feeded into the model
and, with the available computing resources, the shown data volume is the maxi-
mum plausible achievement.

Nevertheless, in terms of practical utility and real applications of the methodol-
ogy it is preferrrable to opt for volumes as the data retrieval process is easier, and
prediction results achieved when working with complete stock data are certainly
succesful. In the three cases (figure 5.5c) trend estimates seem to correctly capture
future data tendencies and, in the case of Johnson & Johnson (figure ??) the model is
also capable of outputting a sensible estimate of the trend over the entire time hori-
zon considered. Notice how meaningful is this result since we are saying that given
40 days of data entries, the LSTM model can predict a trend for the next 2300 days
(approx.) using excusively the previously predicted values as inputs.

66

Appendix A

Python class objects

A.1 Reuters news crawler

1 import os
2 import sys
3 import datetime
4

5 # import News data scraping u t i l i t i e s from parent d i r e c t o r y
6 import i n s p e c t
7 c u r r e n t d i r = os . path . dirname (os . path . abspath (i n s p e c t . g e t f i l e (i n s p e c t .

currentframe ())))
8 parentd i r = os . path . dirname (os . path . dirname (c u r r e n t d i r))
9 sys . path . i n s e r t (0 , parentd i r)

10 import u t i l i t i e s
11

12

13 c l a s s ReutersCrawler (o b j e c t) :
14

15 def _ _ i n i t _ _ (s e l f) :
16 s e l f . t i c k e r _ l i s t _ f i l e n a m e = ’ ./ input/ t i c k e r L i s t . csv ’
17 s e l f . f i n i s h e d _ r e u t e r s _ f i l e n a m e = ’ ./ input/ f i n i s h e d . r e u t e r s ’
18 s e l f . f a i l e d _ r e u t e r s _ f i l e n a m e = ’ ./ input/ n e w s _ f a i l e d _ t i c k e r s . csv ’
19 s e l f . news_filename = ’ ./ input/news_reuters . csv ’
20

21 def c a l c _ f i n i s h e d _ t i c k e r (s e l f) :
22 # c a l l t h i s funt ion when r e s t a r t i n g a task
23 os . system ("awk �F ’ , ’ ’ { p r i n t $1 } ’ ./ input/news_reuters . csv | s o r t

| uniq > ./ input/ f i n i s h e d . r e u t e r s ")
24

25 def l o a d _ f i n i s h e d _ t i c k e r s (s e l f) :
26 # Load the already f i n i s h e d r e u t e r s i f any
27 re turn s e t (s e l f . _ load_f r om _ f i l e (s e l f . f i n i s h e d _ r e u t e r s _ f i l e n a m e))
28

29 def l o a d _ f a i l e d _ t i c k e r s (s e l f) :
30 f a i l e d _ t i c k e r s = { } # { t i c k e r : p r i o r i t y }
31 f o r l i n e in s e l f . _ load_f rom_f i l e (s e l f . f a i l e d _ r e u t e r s _ f i l e n a m e) :
32 t i c k e r , _ , p r i o r i t y = l i n e . s p l i t (’ , ’)
33 f a i l e d _ t i c k e r s [t i c k e r] = p r i o r i t y
34 re turn f a i l e d _ t i c k e r s
35

36 def _ load_f rom _f i l e (s e l f , f i lename) :
37 i f os . path . e x i s t s (f i lename) :
38 with open (fi lename , ’ r ’) as f :
39 f o r l i n e in f :
40 y i e l d l i n e . s t r i p ()
41

42 def f e t c h _ c o n t e n t (s e l f , task , date_range) :
43

44 t i c k e r , name , exchange , market_cap = task

Appendix A. Python class objects 67

45 p r i n t ("%s � %s � %s � %s " % (t i c k e r , name , exchange , market_cap))
46

47 s u f f i x = { ’AMEX’ : ’ .A ’ , ’NASDAQ’ : ’ .O’ , ’NYSE ’ : ’ .N’ }
48 l i n k = " ht tps ://www. r e u t e r s . com/f inance/s t o c k s/company�news/"
49 u r l = l i n k + t i c k e r + s u f f i x [exchange]
50

51 t i c k e r _ f a i l e d = open (s e l f . f a i l e d _ r e u t e r s _ f i l e n a m e , ’ a+ ’)
52 today = datetime . datetime . today () . s t r f t i m e ("%Y%m%d")
53

54 news_num = s e l f . get_news_num_whenever (u r l)
55 i f news_num :
56 # I f news , f e t c h f o r N consecut ive days in the past
57 has_content , no_news_days = s e l f . fe tch_within_date_range (

news_num , url , date_range , task , t i c k e r)
58 i f not has_content :
59 p r i n t (’%s has no content within date range ’ % t i c k e r)
60 i f no_news_days :
61 p r i n t (’ s e t as LOW p r i o r i t y ’)
62 f o r timestamp in no_news_days :
63 t i c k e r _ f a i l e d . wri te (t i c k e r + ’ , ’ + timestamp + ’ , ’ + ’

LOW\n ’)
64 e l s e :
65 # The company has no news even with unspec i f i ed date
66 # add i t i n t o the lowest p r i o r i t y l i s t
67 p r i n t ("%s has no news at a l l , s e t as LOWEST p r i o r i t y " % (

t i c k e r))
68 t i c k e r _ f a i l e d . wri te (t i c k e r + ’ , ’ + today + ’ , ’ + ’LOWEST\n ’)
69 t i c k e r _ f a i l e d . c l o s e ()
70

71 def get_news_num_whenever (s e l f , u r l) :
72 # check i f the t i c k e r has any news
73 # re turn the number of news
74 soup = u t i l i t i e s . get_soup_with_repeat (url , repeat_t imes =4)
75 i f soup :
76 re turn len (soup . f i n d _ a l l (" div " , { ’ c l a s s ’ : [’ topStory ’ , ’

f e a t u r e ’] }))
77 re turn 0
78

79 def fe tch_within_date_range (s e l f , news_num , url , date_range , task ,
t i c k e r) :

80 # No news f o r X consecut ive days , stop i t e r a t i n g dates
81 # Second�lowest p r i o r i t y l i s t
82 missing_days = 0
83 has_content = Fa l se
84 no_news_days = []
85 f o r timestamp in date_range :
86 p r i n t (’ t r y i n g ’+timestamp , end= ’\r ’ , f l u s h=True)
87 new_time = timestamp [4 :] + timestamp [: 4]
88 soup = u t i l i t i e s . get_soup_with_repeat (u r l + " ? date=" +

new_time)
89 i f soup and s e l f . parse_and_save_news (soup , task , t i c k e r ,

timestamp) :
90 missing_days = 0 # i f get news , r e s e t missing_days as 0
91 has_content = True
92 e l s e :
93 missing_days += 1
94

95 # the more news_num , the longer we can wait
96 i f missing_days > news_num ⇤ 5 + 2 0 :
97 # no news in X consecut ive days , stop crawling
98 p r i n t ("%s has no news f o r %d days , stop t h i s candidate . . .

" % (t i c k e r , missing_days))
99 break

Appendix A. Python class objects 68

100 i f missing_days > 0 and missing_days % 20 == 0 :
101 no_news_days . append (timestamp)
102

103 re turn has_content , no_news_days
104

105 def parse_and_save_news (s e l f , soup , task , t i c k e r , timestamp) :
106 content = soup . f i n d _ a l l (" div " , { ’ c l a s s ’ : [’ topStory ’ , ’ f e a t u r e ’] })
107 i f not content :
108 re turn Fa l se
109 with open (s e l f . news_filename , ’ a+ ’ , newline= ’\n ’) as fout :
110 f o r i in range (len (content)) :
111 t i t l e = content [i] . h2 . g e t _ t e x t () . r e p l a c e (" , " , " ") . r e p l a c e

("\n" , " ")
112 body = content [i] . p . g e t _ t e x t () . r e p l a c e (" , " , " ") . r e p l a c e ("

\n" , " ")
113

114 i f i == 0 and soup . f i n d _ a l l (" div " , c l a s s _ =" topStory ") :
115 news_type = ’ topStory ’
116 e l s e :
117 news_type = ’ normal ’
118

119 p r i n t (t i c k e r , timestamp , t i t l e , news_type)
120 fout . wri te (’ , ’ . j o i n ([t i c k e r , task [1] , timestamp , t i t l e ,

body , news_type]) + ’\n ’)
121

122 re turn True
123

124 def run (s e l f , numdays=1000) :
125 " " " S t a r t crawler back to numdays " " "
126 f i n i s h e d _ t i c k e r s = s e l f . l o a d _ f i n i s h e d _ t i c k e r s ()
127 f a i l e d _ t i c k e r s = s e l f . l o a d _ f a i l e d _ t i c k e r s ()
128 date_range = u t i l i t i e s . generate_past_n_days (numdays)
129

130 # s t o r e low�p r i o r i t y task and run l a t e r
131 delayed_tasks = { ’LOWEST ’ : s e t () , ’LOW’ : s e t () }
132 with open (s e l f . t i c k e r _ l i s t _ f i l e n a m e) as t i c k e r _ l i s t :
133 f o r l i n e in t i c k e r _ l i s t :
134 task = tuple (l i n e . s t r i p () . s p l i t (’ , ’))
135 t i c k e r , name , exchange , market_cap = task
136 i f t i c k e r in f i n i s h e d _ t i c k e r s :
137 continue
138 i f t i c k e r in f a i l e d _ t i c k e r s :
139 p r i o r i t y = f a i l e d _ t i c k e r s [t i c k e r]
140 delayed_tasks [p r i o r i t y] . add (task)
141 continue
142 s e l f . f e t c h _ c o n t e n t (task , date_range)
143

144 # run low p r i o r i t y
145 f o r task in delayed_tasks [’LOW’] :
146 s e l f . f e t c h _ c o n t e n t (task , date_range)
147

148 # run lowest p r i o r i t y
149 f o r task in delayed_tasks [’LOWEST ’] :
150 s e l f . f e t c h _ c o n t e n t (task , date_range)

LISTING (A.1) Reuters crawler class object

Appendix A. Python class objects 69

A.2 LSTM data processor

1 import math
2 import numpy as np
3 import pandas as pd
4

5 c l a s s DataLoader () :
6 " " "A c l a s s f o r loading and transforming data f o r the lstm model " " "
7

8 def _ _ i n i t _ _ (s e l f , f i lename , s p l i t , c o l s) :
9 dataframe = pd . read_csv (f i lename)

10 i _ s p l i t = i n t (len (dataframe) ⇤ s p l i t)
11 s e l f . d a t a _ t r a i n = dataframe . get (c o l s) . values [: i _ s p l i t]
12 s e l f . d a t a _ t e s t = dataframe . get (c o l s) . values [i _ s p l i t :]
13 s e l f . l e n _ t r a i n = len (s e l f . d a t a _ t r a i n)
14 s e l f . l e n _ t e s t = len (s e l f . d a t a _ t e s t)
15 s e l f . len_train_windows = None
16

17 def g e t _ t e s t _ d a t a (s e l f , seq_len , normalise) :
18 ’ ’ ’
19 Create x , y t e s t data windows
20 ’ ’ ’
21 data_windows = []
22 f o r i in range (s e l f . l e n _ t e s t � seq_len) :
23 data_windows . append (s e l f . d a t a _ t e s t [i : i +seq_len])
24

25 data_windows = np . array (data_windows) . astype (f l o a t)
26 data_windows = s e l f . normalise_windows (data_windows , single_window=

False) i f normalise e l s e data_windows
27

28 x = data_windows [: , :�1]
29 y = data_windows [: , �1, [0]]
30 re turn x , y
31

32 def g e t _ t r a i n _ d a t a (s e l f , seq_len , normalise) :
33 ’ ’ ’
34 Create x , y t r a i n data windows
35 ’ ’ ’
36 data_x = []
37 data_y = []
38 f o r i in range (s e l f . l e n _ t r a i n � seq_len) :
39 x , y = s e l f . _next_window (i , seq_len , normalise)
40 data_x . append (x)
41 data_y . append (y)
42 re turn np . array (data_x) , np . array (data_y)
43

44 def g e n e r a t e _ t r a i n _ b a t c h (s e l f , seq_len , batch_s ize , normalise) :
45 ’ ’ ’ Yie ld a generator of t r a i n i n g data from fi lename on given l i s t

of c o l s ’ ’ ’
46 i = 0
47 while i < (s e l f . l e n _ t r a i n � seq_len) :
48 x_batch = []
49 y_batch = []
50 f o r b in range (b a t c h _ s i z e) :
51 i f i >= (s e l f . l e n _ t r a i n � seq_len) :
52 # stop�condi t ion f o r a smal ler f i n a l batch i f data

doesn ’ t divide evenly
53 y i e l d np . array (x_batch) , np . array (y_batch)
54 i = 0
55 x , y = s e l f . _next_window (i , seq_len , normalise)
56 x_batch . append (x)
57 y_batch . append (y)

Appendix A. Python class objects 70

58 i += 1
59 y i e l d np . array (x_batch) , np . array (y_batch)
60

61 def _next_window (s e l f , i , seq_len , normalise) :
62 ’ ’ ’ Generates the next data window from the given index l o c a t i o n i

’ ’ ’
63 window = s e l f . d a t a _ t r a i n [i : i +seq_len]
64 window = s e l f . normalise_windows (window , single_window=True) [0] i f

normalise e l s e window
65 x = window[: �1]
66 y = window[�1 , [0]]
67 re turn x , y
68

69 def normalise_windows (s e l f , window_data , single_window=Fa l se) :
70 ’ ’ ’ Normalise window with a base value of zero ’ ’ ’
71 normalised_data = []
72 window_data = [window_data] i f single_window e l s e window_data
73 f o r window in window_data :
74 normalised_window = []
75 f o r c o l _ i in range (window . shape [1]) :
76 normalised_col = [((f l o a t (p) / f l o a t (window [0 , c o l _ i])) �

1) f o r p in window [: , c o l _ i]]
77 normalised_window . append (normalised_col)
78 normalised_window = np . array (normalised_window) . T # reshape

and transpose array back i n t o o r i g i n a l multidimensional format
79 normalised_data . append (normalised_window)
80 re turn np . array (normalised_data)

LISTING (A.2) LSTM data processing methods

Appendix A. Python class objects 71

A.3 LSTM model definition

1

2 import os
3 import math
4 import numpy as np
5 import datetime as dt
6 from numpy import newaxis
7 from core . u t i l s import Timer
8 from keras . l a y e r s import Dense , Act ivat ion , Dropout , LSTM
9 from keras . models import Sequent ia l , load_model

10 from keras . c a l l b a c k s import EarlyStopping , ModelCheckpoint
11

12 c l a s s Model () :
13 " " "A c l a s s f o r an bui lding and i n f e r e n c i n g an lstm model " " "
14

15 def _ _ i n i t _ _ (s e l f) :
16 s e l f . model = Sequent ia l ()
17

18 def load_model (s e l f , f i l e p a t h) :
19 p r i n t (’ [Model] Loading model from f i l e %s ’ % f i l e p a t h)
20 s e l f . model = load_model (f i l e p a t h)
21

22 def build_model (s e l f , c o n f i g s) :
23 t imer = Timer ()
24 t imer . s t a r t ()
25

26 f o r l a y e r in c o n f i g s [’ model ’] [’ l a y e r s ’] :
27 neurons = l a y e r [’ neurons ’] i f ’ neurons ’ in l a y e r e l s e None
28 dropout_rate = l a y e r [’ r a t e ’] i f ’ r a t e ’ in l a y e r e l s e None
29 a c t i v a t i o n = l a y e r [’ a c t i v a t i o n ’] i f ’ a c t i v a t i o n ’ in l a y e r e l s e None
30 re turn_seq = l a y e r [’ re turn_seq ’] i f ’ re turn_seq ’ in l a y e r e l s e None
31 input_t imesteps = l a y e r [’ input_t imesteps ’] i f ’ input_t imesteps ’ in

l a y e r e l s e None
32 input_dim = l a y e r [’ input_dim ’] i f ’ input_dim ’ in l a y e r e l s e None
33

34 i f l a y e r [’ type ’] == ’ dense ’ :
35 s e l f . model . add (Dense (neurons , a c t i v a t i o n = a c t i v a t i o n))
36 i f l a y e r [’ type ’] == ’ lstm ’ :
37 s e l f . model . add (LSTM(neurons , input_shape =(input_t imesteps ,

input_dim) , return_sequences=return_seq))
38 i f l a y e r [’ type ’] == ’ dropout ’ :
39 s e l f . model . add (Dropout (dropout_rate))
40

41 s e l f . model . compile (l o s s =c o n f i g s [’ model ’] [’ l o s s ’] , opt imizer= c o n f i g s [’
model ’] [’ opt imizer ’])

42

43 p r i n t (’ [Model] Model Compiled ’)
44 t imer . stop ()
45

46 def t r a i n (s e l f , x , y , epochs , batch_s ize , save_dir) :
47 t imer = Timer ()
48 t imer . s t a r t ()
49 p r i n t (’ [Model] Training S t a r t e d ’)
50 p r i n t (’ [Model] %s epochs , %s batch s i z e ’ % (epochs , b a t c h _ s i z e))
51

52 save_fname = os . path . j o i n (save_dir , ’%s�e%s . h5 ’ % (dt . datetime . now () .
s t r f t i m e (’%d%m%Y�%H%M%S ’) , s t r (epochs)))

53 c a l l b a c k s = [
54 EarlyStopping (monitor= ’ v a l _ l o s s ’ , pa t ience =2) ,
55 ModelCheckpoint (f i l e p a t h =save_fname , monitor= ’ v a l _ l o s s ’ ,

save_best_only=True)

Appendix A. Python class objects 72

56]
57 s e l f . model . f i t (
58 x ,
59 y ,
60 epochs=epochs ,
61 b a t c h _ s i z e=batch_s ize ,
62 c a l l b a c k s = c a l l b a c k s
63)
64 s e l f . model . save (save_fname)
65

66 p r i n t (’ [Model] Training Completed . Model saved as %s ’ % save_fname)
67 t imer . stop ()
68

69 def t r a i n _ g e n e r a t o r (s e l f , data_gen , epochs , batch_s ize , steps_per_epoch ,
save_dir) :

70 t imer = Timer ()
71 t imer . s t a r t ()
72 p r i n t (’ [Model] Training S t a r t e d ’)
73 p r i n t (’ [Model] %s epochs , %s batch s ize , %s batches per epoch ’ % (

epochs , batch_s ize , steps_per_epoch))
74

75 save_fname = os . path . j o i n (save_dir , ’%s�e%s . h5 ’ % (dt . datetime . now () .
s t r f t i m e (’%d%m%Y�%H%M%S ’) , s t r (epochs)))

76 c a l l b a c k s = [
77 ModelCheckpoint (f i l e p a t h =save_fname , monitor= ’ l o s s ’ , save_best_only=

True)
78]
79 s e l f . model . f i t _ g e n e r a t o r (
80 data_gen ,
81 steps_per_epoch=steps_per_epoch ,
82 epochs=epochs ,
83 c a l l b a c k s =c a l l b a c k s ,
84 workers=1
85)
86

87 p r i n t (’ [Model] Training Completed . Model saved as %s ’ % save_fname)
88 t imer . stop ()
89

90 def predic t_point_by_point (s e l f , data) :
91 # P r e d i c t each t imestep given the l a s t sequence of t rue data
92 p r i n t (’ [Model] P r e d i c t i n g Point�by�Point . . . ’)
93 predic ted = s e l f . model . p r e d i c t (data)
94 predic ted = np . reshape (predicted , (predic ted . s ize ,))
95 re turn predic ted
96

97 def predic t_sequences_mul t ip le (s e l f , data , window_size , p r e d i c t i o n _ l e n) :
98 # P r e d i c t sequence of 50 s teps before s h i f t i n g p r e d i c t i o n run forward

by 50 s teps
99 p r i n t (’ [Model] P r e d i c t i n g Sequences Mult iple . . . ’)

100 p r e d i c t i o n _ s e q s = []
101 f o r i in range (i n t (len (data) / p r e d i c t i o n _ l e n)) :
102 curr_frame = data [i ⇤p r e d i c t i o n _ l e n]
103 predic ted = []
104 f o r j in range (p r e d i c t i o n _ l e n) :
105 predic ted . append (s e l f . model . p r e d i c t (curr_frame [newaxis , : , :]) [0 , 0])
106 curr_frame = curr_frame [1 :]
107 curr_frame = np . i n s e r t (curr_frame , [window_size �2] , predic ted [�1] ,

a x i s =0)
108 p r e d i c t i o n _ s e q s . append (predic ted)
109 re turn p r e d i c t i o n _ s e q s
110

111 def p r e d i c t _ s e q u e n c e _ f u l l (s e l f , data , window_size) :

Appendix A. Python class objects 73

112 # S h i f t the window by 1 new p r e d i c t i o n each time , re�run p r e d i c t i o n s on
new window

113 p r i n t (’ [Model] P r e d i c t i n g Sequences F u l l . . . ’)
114 curr_frame = data [0]
115 predic ted = []
116 f o r i in range (len (data)) :
117 predic ted . append (s e l f . model . p r e d i c t (curr_frame [newaxis , : , :]) [0 , 0])
118 curr_frame = curr_frame [1 :]
119 curr_frame = np . i n s e r t (curr_frame , [window_size �2] , predic ted [�1] ,

a x i s =0)
120 re turn predic ted

LISTING (A.3) LSTM model class object

74

Appendix B

Natural Language Processing

B.1 Stop Words

1 ‘ ‘
2 =
3 >
4 |
5 �
6 ��
7 ;
8 :
9 !

10 ?
11 .
12 ’ ’
13 ’
14 "
15 " "
16 (
17)
18 [
19]
20 @
21 $
22 ⇤
23 ⇤⇤
24 \&
25 \%
26 +
27 �
28 +1
29 10�k
30 10�q
31 1/2
32 +1�646�223�8780
33 1�b r a z i l
34 1�china
35 1�u . s .
36 2016
37 2017
38 2018
39 21 s t
40 2�u . s .
41 3d
42 3rd
43 4 th
44 +91
45 a
46 ’ a

Appendix B. Natural Language Processing 75

47 ’ a�
48 ’ a+
49 a .
50 A
51 ’ aa
52 ’ aaa
53 ab
54 abb
55 about
56 abu
57 a f r i c a
58 a f r i c a n
59 a f t e r
60 ago
61 a l
62 a l b e r t a
63 a l i b a b a
64 a l l
65 a l l e r g a n
66 a l s o
67 amazon
68 amazon . com
69 america
70 american
71 amsterdam
72 an
73 and
74 angeles
75 announce
76 another
77 anthem
78 any
79 apol lo
80 apple
81 apply
82 a p r i l
83 are
84 area
85 around
86 as
87 a/s
88 a s i a
89 ask
90 as t razeneca
91 a t
92 aug
93 aug .
94 august
95 a u s t r a l i a
96 a u s t r a l i a n
97 automaker
98 aviv
99 b

100 ’ b
101 ’ b+
102 b .
103 baidu
104 bancorp
105 bangalore . newsroom
106 bank
107 b a r c l a y s
108 bb
109 ’ bb

Appendix B. Natural Language Processing 76

110 ’ bb�
111 ’ bb+
112 ’ bbb
113 ’ bbb�
114 ’ bbb+
115 bce
116 be
117 because
118 become
119 before
120 begin
121 b e i j i n g
122 b e l l
123 b i l l i o n
124 b i l l i o n a i r e
125 b i l l i t o n
126 b lackstone
127 bln
128 bloomberg
129 boeing
130 book
131 boston
132 both
133 b r a z i l
134 b r a z i l i a n
135 b r i e f
136 b r i e f�aegon
137 b r i e f�american
138 b r i e f�taiwan
139 b r i t a i n
140 b r i t i s h
141 b r u s s e l s
142 bt
143 business
144 by
145 c
146 c .
147 ca
148 ca lgary
149 c a l i f o r n i a
150 can
151 canada
152 canadian
153 car
154 c a r o l i n a
155 case
156 cent
157 century
158 �ceo
159 c e r t a i n
160 c f
161 chase
162 chevron
163 chicago
164 china
165 c igna
166 c i s c o
167 c i t e
168 c i t i
169 c i t i g r o u p
170 cme
171 cnbc
172 co

Appendix B. Natural Language Processing 77

173 co .
174 coca�co la
175 colombia
176 comcast
177 company
178 corp
179 corp .
180 corporate
181 corporat ion
182 customer
183 d .
184 dan
185 data
186 date
187 day
188 day�
189 de
190 dec
191 dec .
192 december
193 d e l l
194 d e l t a
195 d e t r o i t
196 deutsche
197 disney
198 do
199 doj
200 d o l l a r
201 don
202 donald
203 dow
204 dr .
205 dubai
206 during
207 dutch
208 e
209 e .
210 e a s t
211 e i g h t
212 eikon
213 e l
214 e l i
215 e⇤ t rade
216 eu
217 euro
218 europe
219 europe
220 european
221 event
222 exchange
223 exxon
224 f
225 ’ f1
226 ’ f2
227 f�35
228 facebook
229 fargo
230 f a s t�food
231 f / c a s t
232 feb
233 february
234 f e l l
235 f f o

Appendix B. Natural Language Processing 78

236 f i e l d
237 f i l e
238 f i n a l
239 f irm
240 f i r s t
241 f i r s t �quarter
242 f i t c h
243 f i v e
244 f l a .
245 f l o r i d a
246 f o r
247 ford
248 four
249 fourth
250 fourth�quarter
251 fox
252 f rance
253 f r a n c i s c o
254 f r a n k f u r t
255 f rench
256 f r i d a y
257 from
258 f u l l�year
259 f u r t h e r
260 fy
261 fy2016
262 g
263 gaap
264 ge
265 george
266 germany
267 get
268 give
269 g laxosmithkl ine
270 gm
271 gmt
272 goldman
273 google
274 gopro
275 gp
276 green
277 group
278 h
279 h1
280 ha
281 h a l t
282 has
283 have
284 hbo
285 he
286 h i s
287 holiday
288 home
289 honda
290 houston
291 how
292 hsbc
293 ht tp
294 humana
295 i
296 i /b/e/s
297 ibm
298 icahn

Appendix B. Natural Language Processing 79

299 i c i c i
300 i d r
301 i f
302 i f r
303 i i
304 immuno�oncology
305 in
306 inbev
307 inc
308 inc .
309 index
310 india
311 indian
312 indonesia
313 i n t e r n a t i o n a l
314 i n t o
315 iphone
316 i s
317 i s r a e l i
318 i t
319 i t a l i a
320 item
321 i t s
322 iv
323 j
324 j .
325 j an .
326 january
327 japan
328 japanese
329 j . c .
330 j e f f r e y
331 job
332 john
333 johnson
334 j o u r n a l
335 jp
336 j . p .
337 jpmorgan
338 j r .
339 j u l y
340 june
341 j u s t
342 j v
343 k
344 ke l logg
345 kfc
346 korea
347 l
348 l .
349 l�3
350 l e
351 l e t
352 l e t t e r
353 lg
354 l i k e l y
355 l i n k
356 l l c
357 lng
358 l o c a l
359 l o c a l /gmt
360 lockheed
361 london

Appendix B. Natural Language Processing 80

362 look
363 lp
364 l . p
365 l . p .
366 l t d
367 l t d .
368 lynch
369 m
370 m.
371 main
372 make
373 march
374 market
375 may
376 mcdonald
377 m e r r i l l
378 mexico
379 michael
380 microsof t
381 m i l l i o n
382 mln
383 mobil
384 monday
385 monsanto
386 moody
387 morgan
388 mt
389 must
390 m/v
391 mylan
392 name
393 nasdaq
394 near
395 n e t f l i x
396 next
397 nike
398 n ikke i
399 nine
400 no . 2
401 nokia
402 non�t imely
403 nordisk
404 norm
405 north
406 northern
407 norwegian
408 note
409 nov
410 nov .
411 novo
412 now
413 nv
414 nyse
415 o
416 obama
417 oc t
418 october
419 of
420 o i
421 on
422 one
423 or
424 other

Appendix B. Natural Language Processing 81

425 our
426 over
427 p
428 p .
429 pa
430 parent
431 par t
432 par tner
433 past
434 paulo
435 pc
436 pct
437 pdvsa
438 per
439 percent
440 period
441 petrobras
442 p f i z e r
443 phase
444 place
445 p lc
446 point
447 poland
448 previously
449 q1
450 q2
451 q3
452 q4
453 q t r l y
454 quar ter
455 q u a r t e r l y
456 r
457 r .
458 ralph
459 r e c e n t
460 r e c e n t l y
461 region
462 r e l a t e
463 repor t
464 r e p o r t s
465 r e s u l t
466 r e u t e r s
467 r i chard
468 r i c o
469 r i g
470 r i o
471 russ ian
472 s
473 ’ s
474 s .
475 sa
476 s . a .
477 san
478 sanc t ion
479 sao
480 saturday
481 say
482 says
483 se
484 season
485 s e a t t l e
486 sec
487 �sec

Appendix B. Natural Language Processing 82

488 second
489 second�quarter
490 s e c t o r
491 sedan
492 sept
493 sept .
494 september
495 s e r i e s
496 s e r v i c e
497 s e t
498 shanghai
499 she
500 shr
501 s ingapore
502 s i x
503 s i x t h
504 s i z e
505 sk
506 so
507 so�c a l l e d
508 some
509 son
510 sony
511 soon
512 �sources
513 south
514 southern
515 spor t
516 squibb
517 s t
518 s t .
519 s t a n l e y
520 s t a r t�up
521 s t a t e
522 s t i l l
523 s tocks�t s x
524 s tocks�wall
525 s t r u g g l e
526 such
527 s u i s s e
528 sunday
529 sweeten
530 swiss
531 sydney
532 t
533 t .
534 taiwan
535 take
536 tap
537 td
538 t e l
539 telecom
540 t e l e f o n i c a
541 t e l l
542 ten
543 t e s l a
544 teva
545 t h a i
546 than
547 t h a t
548 the
549 t h e i r
550 them

Appendix B. Natural Language Processing 83

551 there
552 they
553 t h i r d
554 th ird�quarter
555 t h i s
556 thomson
557 thomsonreuters . com
558 those
559 through
560 thursday
561 t�mobile
562 to
563 tokyo
564 too
565 toronto
566 t o t a l
567 toyota
568 transcanada
569 tuesday
570 tv
571 t w i t t e r
572 two
573 type
574 u
575 ubs
576 uk
577 uni t
578 us
579 u . s
580 u . s .
581 usa
582 u . s .�based
583 user
584 u . s .� l i s t e d
585 u t i l i t y
586 v
587 verizon
588 vers ion
589 versus
590 viacom
591 v i sa
592 volkswagen
593 volume
594 vs .
595 w
596 w.
597 wa
598 wall
599 wal�mart
600 walt
601 warner
602 was
603 washington
604 we
605 web
606 website
607 wednesday
608 week
609 wel ls
610 were
611 west
612 what
613 when

Appendix B. Natural Language Processing 84

614 where
615 whether
616 which
617 who
618 whose
619 w i l l
620 wi l l iams
621 with
622 within
623 wo
624 world
625 would
626 wsj
627 x
628 x l
629 year
630 year�ago
631 yet
632 york
633 you
634 y/y
635 zuckerberg

LISTING (B.1) Stop Words

B.2 Punctuation List

1 PUNC_LIST = [
2 " . " ,
3 " ! " ,
4 " ? " ,
5 " , " ,
6 " ; " ,
7 " : " ,
8 "�" ,
9 " ’ " ,

10 " \ " " ,
11 " ! ! " ,
12 " ! ! ! " ,
13 " ? ? " ,
14 " ? ? ? " ,
15 " ? ! ? " ,
16 " ! ? ! " ,
17 " ? ! ? ! " ,
18 " ! ? ! ? " ,
19]

LISTING (B.2) VADER punctuation list

B.3 Negate List

1 NEGATE = {
2 " a i n t " ,
3 " arent " ,
4 " cannot " ,
5 " cant " ,
6 " couldnt " ,
7 " darent " ,
8 " didnt " ,
9 " doesnt " ,

10 " ain ’ t " ,
11 " aren ’ t " ,

Appendix B. Natural Language Processing 85

12 " can ’ t " ,
13 " couldn ’ t " ,
14 " daren ’ t " ,
15 " didn ’ t " ,
16 " doesn ’ t " ,
17 " dont " ,
18 " hadnt " ,
19 " hasnt " ,
20 " havent " ,
21 " i s n t " ,
22 " mightnt " ,
23 " mustnt " ,
24 " n e i t h e r " ,
25 " don ’ t " ,
26 " hadn ’ t " ,
27 " hasn ’ t " ,
28 " haven ’ t " ,
29 " isn ’ t " ,
30 " mightn ’ t " ,
31 " mustn ’ t " ,
32 " neednt " ,
33 " needn ’ t " ,
34 " never " ,
35 " none " ,
36 " nope " ,
37 " nor " ,
38 " not " ,
39 " nothing " ,
40 " nowhere " ,
41 " oughtnt " ,
42 " shant " ,
43 " shouldnt " ,
44 "uhuh " ,
45 " wasnt " ,
46 " werent " ,
47 " oughtn ’ t " ,
48 " shan ’ t " ,
49 " shouldn ’ t " ,
50 "uh�uh " ,
51 "wasn ’ t " ,
52 " weren ’ t " ,
53 " without " ,
54 " wont " ,
55 " wouldnt " ,
56 "won’ t " ,
57 " wouldn ’ t " ,
58 " r a r e l y " ,
59 " seldom " ,
60 " desp i te " ,
61 }

LISTING (B.3) VADER negate list

B.4 Booster Dictionary

1 BOOSTER_DICT = {
2 " a b s o l u t e l y " : B_INCR ,
3 " amazingly " : B_INCR ,
4 " awfully " : B_INCR ,
5 " completely " : B_INCR ,
6 " cons iderably " : B_INCR ,
7 " decidedly " : B_INCR ,

Appendix B. Natural Language Processing 86

8 " deeply " : B_INCR ,
9 " e f f i n g " : B_INCR ,

10 " enormously " : B_INCR ,
11 " e n t i r e l y " : B_INCR ,
12 " e s p e c i a l l y " : B_INCR ,
13 " e x c e p t i o n a l l y " : B_INCR ,
14 " extremely " : B_INCR ,
15 " fabulous ly " : B_INCR ,
16 " f l i p p i n g " : B_INCR ,
17 " f l i p p i n " : B_INCR ,
18 " f r i c k i n g " : B_INCR ,
19 " f r i c k i n " : B_INCR ,
20 " f r i g g i n g " : B_INCR ,
21 " f r i g g i n " : B_INCR ,
22 " f u l l y " : B_INCR ,
23 " fucking " : B_INCR ,
24 " g r e a t l y " : B_INCR ,
25 " h e l l a " : B_INCR ,
26 " highly " : B_INCR ,
27 " hugely " : B_INCR ,
28 " i n c r e d i b l y " : B_INCR ,
29 " i n t e n s e l y " : B_INCR ,
30 " majorly " : B_INCR ,
31 " more " : B_INCR ,
32 " most " : B_INCR ,
33 " p a r t i c u l a r l y " : B_INCR ,
34 " purely " : B_INCR ,
35 " qu i te " : B_INCR ,
36 " r e a l l y " : B_INCR ,
37 " remarkably " : B_INCR ,
38 " so " : B_INCR ,
39 " s u b s t a n t i a l l y " : B_INCR ,
40 " thoroughly " : B_INCR ,
41 " t o t a l l y " : B_INCR ,
42 " tremendously " : B_INCR ,
43 " uber " : B_INCR ,
44 " unbel ievably " : B_INCR ,
45 " unusually " : B_INCR ,
46 " u t t e r l y " : B_INCR ,
47 " very " : B_INCR ,
48 " almost " : B_DECR,
49 " bare ly " : B_DECR,
50 " hardly " : B_DECR,
51 " j u s t enough " : B_DECR,
52 " kind of " : B_DECR,
53 " kinda " : B_DECR,
54 " kindof " : B_DECR,
55 " kind�of " : B_DECR,
56 " l e s s " : B_DECR,
57 " l i t t l e " : B_DECR,
58 " marginal ly " : B_DECR,
59 " o c c a s i o n a l l y " : B_DECR,
60 " p a r t l y " : B_DECR,
61 " s c a r c e l y " : B_DECR,
62 " s l i g h t l y " : B_DECR,
63 " somewhat " : B_DECR,
64 " s o r t of " : B_DECR,
65 " s o r t a " : B_DECR,
66 " s o r t o f " : B_DECR,
67 " sor t�of " : B_DECR,
68 }

LISTING (B.4) VADER booster dictionary

Appendix B. Natural Language Processing 87

B.5 Special case idioms

1 SPECIAL_CASE_IDIOMS = {
2 " the s h i t " : 3 ,
3 " the bomb " : 3 ,
4 " bad ass " : 1 . 5 ,
5 " yeah r i g h t " : �2,
6 " cut the mustard " : 2 ,
7 " k i s s of death " : �1.5 ,
8 " hand to mouth " : �2,
9 }

LISTING (B.5) VADER special case idioms

88

Bibliography

Aggarwal, Charu C (2014). Data classification: algorithms and applications. CRC press.

Arlot, Sylvain, Alain Celisse, et al. (2010). “A survey of cross-validation procedures
for model selection”. In: Statistics surveys 4, pp. 40–79.

Bengio, Yoshua, Patrice Simard, Paolo Frasconi, et al. (1994). “Learning long-term
dependencies with gradient descent is difficult”. In: IEEE transactions on neural
networks 5.2, pp. 157–166.

Berners-Lee, Tim, James Hendler, Ora Lassila, et al. (2001). “The semantic web”. In:
Scientific american 284.5, pp. 28–37.

Boeing, Geoff and Paul Waddell (2017). “New insights into rental housing markets
across the united states: web scraping and analyzing craigslist rental listings”.
In: Journal of Planning Education and Research 37.4, pp. 457–476.

Chaulagain, Ram et al. (2017). “Cloud Based Web Scraping for Big Data Applica-
tions”. In: pp. 138–143. DOI: 10.1109/SmartCloud.2017.28.

Cox, M. and D. Ellsworth (1997). “Application-controlled demand paging for out-
of-core visualization”. In: pp. 235–244. DOI: 10.1109/VISUAL.1997.663888.

Crane, DJ (1997). “How the Web is changing the business of business information.”
In: Electronic Library 15.4, pp. 311 –316. ISSN: 0264-0473. URL: https : / / www .
emeraldinsight.com/doi/abs/10.1108/eb045575.

Cybenko, George (1989). “Approximations by superpositions of a sigmoidal func-
tion”. In: Mathematics of Control, Signals and Systems 2, pp. 183–192.

Denning, PJ (1990). “Saving all the bits”. In: American Scientist 78.5, pp. 402 –405.
ISSN: 00030996. URL: https://ntrs.nasa.gov/search.jsp?R=19910023503.

Ferrara, Emilio et al. (2014). “Web data extraction, applications and techniques: A
survey”. In: Knowledge-based systems 70, pp. 301–323.

Hackeling, Gavin (2017). Mastering Machine Learning with scikit-learn. Packt Publish-
ing Ltd.

Hanin, Boris (2017). “Universal function approximation by deep neural nets with
bounded width and relu activations”. In: arXiv preprint arXiv:1708.02691.

Hawkins, Douglas M (2004). “The problem of overfitting”. In: Journal of chemical in-
formation and computer sciences 44.1, pp. 1–12.

Hutto, Clayton J and Eric Gilbert (2014). “Vader: A parsimonious rule-based model
for sentiment analysis of social media text”. In: Eighth international AAAI confer-
ence on weblogs and social media.

Johnston, Alan B and Daniel C Burnett (2012). WebRTC: APIs and RTCWEB protocols
of the HTML5 real-time web. Digital Codex LLC.

https://doi.org/10.1109/SmartCloud.2017.28
https://doi.org/10.1109/VISUAL.1997.663888
https://www.emeraldinsight.com/doi/abs/10.1108/eb045575
https://www.emeraldinsight.com/doi/abs/10.1108/eb045575
https://ntrs.nasa.gov/search.jsp?R=19910023503

BIBLIOGRAPHY 89

Jothimani, Dhanya, Ravi Shankar, and Surendra S Yadav (2018). “A big data analyt-
ical framework for portfolio optimization”. In: arXiv preprint arXiv:1811.07188.

Karlik, Bekir and A Vehbi Olgac (2011). “Performance analysis of various activation
functions in generalized MLP architectures of neural networks”. In: International
Journal of Artificial Intelligence and Expert Systems 1.4, pp. 111–122.

Kirkpatrick II, Charles D and Julie A Dahlquist (2010). Technical analysis: the complete
resource for financial market technicians. FT press.

Kleene, Stephen C (1956). “Automata studies”. In:

Krotov, Vlad and Matthew Tennyson (2018a). “Tutorial: Web Scraping in the R Lan-
guage”. In:

— (2018b). “Tutorial: Web Scraping in the R Language”. In:

Laney, Doug (2001). “3D data management: Controlling data volume, velocity and
variety”. In: META group research note 6.70, p. 1.

Lantz, Brett (2015). Machine learning with R. Packt Publishing Ltd.

Lawson, Richard (2015). Web scraping with Python. Packt Publishing Ltd.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: na-
ture 521.7553, p. 436.

Lesk, Michael (1997). “Digital Libraries: A Unifying or Distributing Force?.” In: URL:
https://eric.ed.gov/?id=ED414929.

McCulloch, Warren S and Walter Pitts (1943). “A logical calculus of the ideas imma-
nent in nervous activity”. In: The bulletin of mathematical biophysics 5.4, pp. 115–
133.

Michael, Katina and Keith W Miller (2013). “Big data: New opportunities and new
challenges [guest editors’ introduction]”. In: Computer 46.6, pp. 22–24.

Saldaña, Zoe Wilkinson (2018). “Sentiment Analysis for Exploratory Data Analy-
sis”. In: URL: https://programminghistorian.org/en/lessons/sentiment-
analysis.

Shah, Vatsal H (2007). “Machine learning techniques for stock prediction”. In: Foun-
dations of Machine Learning| Spring 1.1, pp. 6–12.

Trifunovic, Nemanja et al. (2015). “Paradigm Shift in Big Data SuperComputing:
DataFlow vs. ControlFlow”. In: Journal of Big Data 2.1, p. 4. ISSN: 2196-1115. DOI:
10.1186/s40537-014-0010-z. URL: https://doi.org/10.1186/s40537-014-
0010-z.

Zhu, Xiaojin and Andrew B Goldberg (2009). “Introduction to semi-supervised learn-
ing”. In: Synthesis lectures on artificial intelligence and machine learning 3.1, pp. 1–
130.

https://eric.ed.gov/?id=ED414929
https://programminghistorian.org/en/lessons/sentiment-analysis
https://programminghistorian.org/en/lessons/sentiment-analysis
https://doi.org/10.1186/s40537-014-0010-z
https://doi.org/10.1186/s40537-014-0010-z
https://doi.org/10.1186/s40537-014-0010-z

90

Listings

3.1 A simple socket . 17
3.2 Webpage retrieval . 17
3.3 S&P500 Tickers . 21
3.4 S&P500 Stock data . 21
3.5 News data scraping utilities . 23
3.6 Reuters news crawler . 24
3.7 Joined close prices . 27
4.1 Sentiment Intensity Analyzer . 48
5.1 LSTM settings . 54
A.1 Reuters crawler class object . 66
A.2 LSTM data processing methods . 69
A.3 LSTM model class object . 71
B.1 Stop Words . 74
B.2 VADER punctuation list . 84
B.3 VADER negate list . 84
B.4 VADER booster dictionary . 85
B.5 VADER special case idioms . 87

	Declaration of Authorship
	Abstract
	Acknowledgements
	The Big Data era
	Introduction to Big Data
	A new programming paradigm
	How do machines learn?
	Machine Learning tasks
	Training Data and test data
	Assessing the outcome of learning
	A primer in Deep Learning

	Machine Learning in Finance

	Web scraping Tools in Finance
	The Net as a data source
	Net interactions and networked programs
	Overview of alternative data

	Data Acquisition
	Web Data Extraction
	Geting data from yahoo finance
	Geting news data from reuters

	Variables
	Exploratory Data Analysis
	Company pricing data
	News data

	Methods
	Theoretical considerations
	Universal approximation theorem
	Activation functions
	Optimization

	VADER Sentiment analysis
	LSTM for time series prediction

	Results
	Unidimensional LSTM prediction
	Multidimensional LSTM prediction

	Concluding remarks
	Python class objects
	Reuters news crawler
	LSTM data processor
	LSTM model definition

	Natural Language Processing
	Stop Words
	Punctuation List
	Negate List
	Booster Dictionary
	Special case idioms

	Bibliography

