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Abstract. We study the homogeneous artinian ideals of the polynomial ring K[x, y, z] generated

by the homogenous polynomials of degree d which are invariant under an action of the cyclic group

Z/dZ, for any d ≥ 3. We prove that they are all monomial Togliatti systems, and that they are

minimal if the action is defined by a diagonal matrix having on the diagonal (1, e, ea), where e is

a primitive d-th root of the unity. We get a complete description when d is prime or a power of a

prime. We also establish the relation of these systems with linear Ceva configurations.
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1. Introduction

The Togliatti surface in P5 is the rational surface parametrized by the cubic monomials in

three variables x2y, x2z, xy2, xz2, y2z, yz2. It was introduced and studied by Eugenio Togliatti

in his two articles [17], [18] about rational surfaces satisfying Laplace equations. The apolar

system of cubics, i.e. the ideal I3 generated by the cubic monomials x3, y3, z3, xyz, has the

remarkable property of being the only homogeneous ideal, generated by four cubics of the

form x3, y3, z3, f , failing the Weak Lefschetz Property ([2]). This twofold example has lead

the authors of this note, together with G. Ottaviani, to establish the connection between

the geometric notion of variety satisfying Laplace equations and the algebraic notion of

artinian ideal failing the Weak Lefschetz Property, thanks to the notion of Togliatti system,

introduced in [12], see Definition 2.3.

Togliatti systems of cubics have been completely described in [12] and [14]. For degree

d > 3, the picture quickly becomes much more complicated and only partial results are

known so far, see for instance [11] containing a characterization of Togliatti systems with

“low” number of generators.

An interesting property of the ideal I3 is that the associated morphism ϕ : P2 → P3 is a

cyclic Galois cover of degree 3 of the image surface, such that for a general line L ⊂ P2 the

inverse image of ϕ(L) is a union of three lines in general position. This observation has been

exploited to give a new beautiful proof of the theorem of Togliatti (see [20], Theorem 2.2.1).

In this article we start from this observation to construct a new class of examples of

Togliatti systems in three variables of any degree d, and by consequence of rational surfaces

parametrized by polynomials of degree d satisfying a Laplace equation of order d−1. We call

them GT-systems in honour of Galois and Togliatti. Precisely, we consider the Galois cyclic

covers with domain P2, with cyclic group Z/dZ, for any d ≥ 3 and any representation of

Z/dZ on GL(3, K). We prove in Theorem 3.4 that they are all defined by monomial Togliatti

systems of degree d. In other words, the ideal generated by the invariant homogeneous

polynomials of degree d for any action of this type is a monomial Togliatti system. Moreover

we prove in Theorem 4.5 that the GT-systems are all minimal in the case of an action

represented by a matrix of the form Ma =

1 0 0

0 e 0

0 0 ea

, where e denotes a primitive d-th

root of the unity and GCD(a, d) = 1. In particular this is always the case when d is prime

or a power of a prime.

We then perform a detailed study of the Togliatti systems associated to the representation

Ma, for any coprime a and d, giving a complete description of the classes and number of

generators of the ideals of invariant degree d polynomials Ia. We also describe for any degree
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d the geometry of the toric surface Sd, image of the morphism defined by the monomials

invariant for the action of M2. These we call generalized classical Togliatti systems.

Finally, we also explain the interesting relations between GT-systems and linear configu-

rations in P2, in particular Ceva configurations and their dual: Fermat arrangements.

Let us briefly explain how this paper is organized. In Section 2, we fix the notation

and basic facts needed later on. In particular, we recall the definition of smooth monomial

minimal Togliatti system and we introduce new families of Togliatti systems, the so-called

GT-systems, which will be our objects of study. In Section 3, we establish the basic properties

of a GT-system I generated by all forms of degree d invariants under the action of the

matrix Ma,b,c =

ea 0 0

0 eb 0

0 0 ec

, where e denotes a primitive d-th root of the unity and

GCD(a, b, c, d) = 1. Namely, I is generated by monomials, its minimal number of generators

µ(I) is bounded by d + 1, it fails Weak Lefschetz Property from degree d − 1 to degree d

and it defines a Galois cover ϕI : P2 −→ Pµ(I)−1 with cyclic Galois group Z/dZ. Section 4

is entirely devoted to study the minimality of GT-systems. As a main tool we use circulant

matrices. In Section 5, we completely classify GT-systems in the case d prime or a power

of a prime, while in Section 6 we give the complete classification for all d of the actions

represented by matrices of the form Ma. In Section 7, we study from a geometric point of

view the rational surfaces Sd associated to generalized classical GT-systems. We prove that

the homogeneous ideal I(Sd) is a Cohen-Macaulay ideal generated by quadrics and cubics if

d is odd and only by quadrics if d is even. Finally, we describe the singular locus of Sd: the

3 fundamental points of P2 are sent to the singular points of Sd which are cyclic quotient

singularities. Finally, in Section 8, we establish the link between GT-systems and Ceva linear

configurations C(d); and we study the freeness of the arrangement Hd of lines associated to

C(d).

Acknowledgement. Many of the ideas for this paper were developed during a stay at BIRS

(Banff International Research Station) and the authors are very grateful to BIRS for the

financial support. We also thank J. Vallès, F. Perroni, R. Pardini, A. Logar, M. Reid and

A. Iarrobino for interesting comments and conversations.

2. Preliminaries

In this section we establish general results on Weak Lefschetz Property and linear config-

urations that will be used along the remainder of this paper. Throughout this work K will

be an algebraically closed field of characteristic zero and R = K[x0, x1, . . . , xn].

2.1. Togliatti systems.
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Definition 2.1. Let I ⊂ R be a homogeneous artinian ideal. We say that R/I has the Weak

Lefschetz Property (WLP, for short) if there is a linear form L ∈ (R/I)1 such that, for all

integers j, the multiplication map

×L : (R/I)j → (R/I)j+1

has maximal rank, i.e. it is injective or surjective. We will often abuse notation and say that

the ideal I has the WLP.

Associated to any artinian ideal I generated by r forms F1, . . . , Fr ∈ R of degree d there

is a morphism

ϕI : Pn −→ Pr−1.

Its image Xn,Id := Im(ϕId) ⊂ Pr−1 is the projection of the n-dimensional Veronese variety

V (n, d) from the linear system 〈(I−1)d〉 ⊂| OPn(d) |= Rd where I−1 is the ideal generated by

the Macaulay inverse system of I (See [12], §3 for details). Analogously, associated to (I−1)d
there is a rational map

ϕ(I−1)d : Pn 99K P(n+d
d )−r−1.

The closure of its image Xn,(I−1)d := Im(ϕ(I−1)d) ⊂ P(n+d
d )−r−1 is the projection of the n-

dimensional Veronese variety V (n, d) from the linear system 〈F1, . . . , Fr〉 ⊂| OPn(d) |= Rd.

We have ([12]):

Theorem 2.2. Let I ⊂ R be an artinian ideal generated by r homogeneous polynomials

F1, ..., Fr of degree d. If r ≤
(
n+d−1
n−1

)
, then the following conditions are equivalent:

(1) The ideal I fails the WLP in degree d− 1,

(2) The homogeneous forms F1, . . . , Fr become k-linearly dependent on a general hyper-

plane H of Pn,

(3) The n-dimensional variety X = Xn,(I−1)d satisfies at least one Laplace equation of

order d− 1.

Proof. [12], Theorem 3.2. �

The above result motivates the following definition:

Definition 2.3. Let I ⊂ R be an artinian ideal generated by r forms F1, . . . , Fr of degree

d, r ≤
(
n+d−1
n−1

)
. We introduce the following definitions:

(i) I is a Togliatti system if it satisfies the three equivalent conditions in Theorem 2.2.

(ii) I is a monomial Togliatti system if, in addition, I (and hence I−1) can be generated

by monomials.

(iii) I is a smooth Togliatti system if, in addition, the n-dimensional variety X is smooth.
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(iv) A monomial Togliatti system I is said to be minimal if I is generated by monomials

m1, . . . ,mr and there is no proper subset mi1 , . . . ,mir−1 defining a monomial Togliatti

system.

The names are in honour of Eugenio Togliatti who proved that for n = 2 the only smooth

Togliatti system of cubics is I = (x3, y3, z3, xyz) ⊂ K[x, y, z] (see [2], [17], [18]).

We underline an interesting geometric property of this example: the morphism

ϕI : P2 −→ P3

is a cyclic Galois covering of degree 3 of the image, the cubic surface of equation x0x1x2−x3
3 =

0. Moreover, for a general line L ⊂ P2, the inverse image of ϕI(L) is a union of three lines.

This observation can be exploited to give a new beautiful proof of the theorem of Togliatti

(see [20], Theorem 2.2.1).

This example admits a family of generalizations in all degrees, sharing the property of

defining a cyclic Galois covering, as we see in the next definition.

Definition 2.4. Fix an integer d = 2k + ε, 0 ≤ ε ≤ 1. The monomial artinian ideal

I = (xd, yd, zd, xyd−2z, x2yd−4z2, . . . , xkyεzk) ⊂ K[x, y, z] defines a monomial Togliatti system

that we call generalized classical Togliatti system. Clearly for d = 3 we recover Togliatti’s

example.

Any such ideal defines a Galois covering of degree d

ϕI : P2 −→ Pk+2

of the surface ϕI(P2), with cyclic Galois group Z/dZ represented by the matrix

1 0 0

0 e 0

0 0 e2

 ,

where e is a primitive d-th root of 1. This is not true for all monomial Togliatti systems,

as shown for instance by the ideal I = (x5, y5, z5, x4y, x4z) ⊂ K[x, y, z]. It is a monomial

Togliatti system and its associated regular map ϕI : P2 −→ P4 is a birational morphism.

Remark 2.5. Note that, for d odd, all monomials different from xd, yd, zd in a generalized

classical Togliatti system contain all variables with strictly positive exponent. Therefore,

applying the smoothness criterion for toric varieties (see [11], Proposition 3.4), we get that,

for d odd, the generalized classical Togliatti systems are smooth. This is no longer true for

d even.

So, we are let to pose the following problem:
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Problem 2.6. Classify all Togliatti systems I ⊂ K[x, y, z] generated by forms of degree d,

whose associated regular map is a Galois covering with cyclic Galois group Z/dZ. We will

call them GT-systems.

Since any representation of Z/dZ on GL(3,C) can be diagonalized (see for instance [16]),

we can assume that it is represented by a matrix of the form Ma,b,c :=

ea 0 0

0 eb 0

0 0 ec

 , where

e is a primitive d-th root of 1, and GCD(a, b, c, d) = 1.

The goal of next section will be to prove our first main result that for any integer d, any

ideal generated by all forms of degree d invariant under the action of Ma,b,c is a monomial

GT-system (see Theorem 3.1, Proposition 3.2 and Theorem 3.4). In Section 4, we will study

the minimality of GT-systems (see Theorem 4.5). In Section 5 we classify all GT-systems

I ⊂ K[x, y, z] generated by forms of degree d with d a prime integer, or a power of a prime

and we postpone until §6 the study of GT-systems I ⊂ K[x, y, z] generated by forms of

arbitrary degree d. Finally, we devote Sections 8 and 7 to study their geometric properties.

2.2. Linear configurations. We will finish this section recalling the definition of linear

configuration and we will prove later that associated to any GT-systems there always exists

a linear configuration (see Theorem 8.1). The reader can see [4] for more details about linear

configurations in Algebraic Geometry.

Definition 2.7. A linear configuration C in P2 is a finite set of points, and a finite arrange-

ment of lines, such that each point is incident to the same number of lines and each line is

incident to the same number of points. A linear configuration C in the plane will be denoted

by (ps, `r) where p is the number of points, ` is the number of lines, s is the number of lines

per point, and r is the number of points per line. These numbers necessarily satisfy the

equation p · s = ` · r.

Example 2.8. (1) (43, 62) is the complete quadrangle.

(2) (94, 123) is a Hesse configuration (see Figure 1).

(3) (124, 163) is a Reye configuration.

(4) For any d ≥ 3, C(d) = (3dd, d
2
3) is a Ceva configuration.

3. Galois covers

Let I ⊂ K[x, y, z] be an artinian ideal generated by forms of degree d ≥ 3. We denote by

µ(I) the minimal number of generators of I. In this section, we establish the main properties

on Galois covers

ϕI : P2 −→ Pµ(I)−1
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Figure 1. Hesse configuration

with cyclic Galois group Z/dZ represented by a matrix

Ma,b,c :=

ea 0 0

0 eb 0

0 0 ec


where e is a primitive d-th root of 1, and 0 ≤ a ≤ b ≤ c ≤ d−1. We observe that in order that

the subgroup of GL(3) generated by Ma,b,c is cyclic of order d, the greatest common divisor

of a, b, c, d has to be 1. We note that the surface S = ϕI(P2) is the weighted projective plane

P(a, b, c), that has been extensively studied in the context of classification of singularities of

surfaces ([15], [1], [3]).

First, for sake of completeness, we give the proof that the artinian ideal I associated to

such Galois cover is monomial. Indeed, we have:

Theorem 3.1. Fix 3 ≤ d ∈ Z, e a primitive d-th root of 1 and Ma,b,c a representation of

Z/dZ. The ideal I ⊂ K[x, y, z] generated by all forms of degree d invariant under the action

of Ma,b,c is monomial. In particular, any GT-system is monomial.

Proof. Consider m1, . . . ,ms all monomials invariants under the action of Ma,b,c and assume

there is F ∈ I \ 〈m1, . . . ,ms〉. Write F as a sum of monomials of degree d: F = mi1 +

· · · + mit . We proceed by induction on t. Set mi1 = xαyβzγ. Since M r
a,b,cF = F for

0 ≤ r ≤ d − 1 we have that eraαxαerbβyβercγzγ is a summand of F for 0 ≤ r ≤ d − 1.

Therefore, xαyβzγeaα+bβ+cγ(e0 + e1 + · · ·+ ed−1) is a summand of F but this is zero. �

Proposition 3.2. Fix an integer d ≥ 3 and a representation Ma,b,c of Z/dZ. Let I ⊂
K[x, y, z] be the ideal generated by all monomials of degree d invariant under the action of

Ma,b,c. If µ(I) ≤ d+ 1 then I is a GT-system, i.e. I fails WLP from degree d− 1 to degree

d.
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Proof. Since µ(I) ≤ d+1 we can apply Theorem 2.2 and hence we only have to check that for

a general linear form L ∈ (K[x, y, z])1 the map ×L : (K[x, y, z])d−1 = (K[x, y, z]/I)d−1 −→
(K[x, y, z]/I)d is not injective. Since I is a monomial ideal it is enough to check the failure

of the injectivity for L = x + y + z (see [13, Proposition 2.2]). This is equivalent to prove

that given L = x + y + z there exists a form Cd−1 of degree d − 1 such that L · Cd−1 ∈ I.

Consider Cd−1 = (eax+ eby + ecz)(e2ax+ e2by + e2cz) · · · (e(d−1)ax+ e(d−1)by + e(d−1)cz). The

polynomial F = L · Cd−1 is invariant under the action of Ma,b,c. Therefore, it belongs to I

and we have proved what we want. �

Remark 3.3. We observe that, up to proportionality, after replacing a, b, c by 0, b−a, c−a,

we can assume a = 0. So from now on we will consider always actions defined by matrices

of the form Ma,b =

1 0 0

0 ea 0

0 0 eb

 with e a primitive d-th root of 1 and GDC(a, b, d) = 1.

Theorem 3.4. Fix an integer d ≥ 3 and let I ⊂ K[x, y, z] be the ideal generated by all

monomials of degree d invariant under the action of Ma,b :=

1 0 0

0 ea 0

0 0 eb

 , with 1 ≤ a ≤

b ≤ d− 1 and GCD(a, b, d) = 1. Then, I is a GT -system.

Proof. We know that I is a monomial ideal (see Theorem 3.1) and any monomial of degree d

can be written in the form xd−m−nymzn with m,n ≥ 0 and m+ n ≤ d. Clearly xd−m−nymzn

is invariant under the action of Ma,b if and only if am+ bn ≡ 0 (mod d). It is easy to prove

(see for instance [7], Ch. 3) that this linear congruence has d (resp. d + 1) incongruent

solutions if a 6= b (resp. if a = b), which implies that µ(I) ≤ d + 1. The thesis follows from

Proposition 3.2. �

4. Minimality of GT-systems

We fix an integer d ≥ 3 and a representation Ma,b :=

1 0 0

0 ea 0

0 0 eb

 of the cyclic group

Z/dZ. We are going to study the minimality of all monomial GT-systems I generated by

all monomials of degree d invariant under the action of Ma,b. By the proof of Proposition

3.2, proving the minimality of the GT-system I is equivalent to proving that the monomials

of degree d invariant under the action of Ma,b all appear with non-zero coefficient in the

development of the product of linear forms (x+ y+ z)(x+ eay+ ebz)(x+ e2ay+ e2bz) · · · (x+

e(d−1)ay+e(d−1)bz). This is not at all a trivial problem, that we will address by expressing this

last product as the determinant of a suitable circulant matrix, then we will exploit the basic
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properties of circulants ([8] and [9]). So, let us start this section by recalling the definition

and the properties on circulant matrices needed in the sequel. The reader should read [21]

and [10] for more details.

Definition 4.1. A d× d circulant matrix is a matrix of the form

Circ(v0, . . . , vd−1) :=


v0 v1 · · · vd−2 vd−1

vd−1 v0 · · · vd−1 vd−2

...
... · · · ...

...

v1 v2 · · · vd−1 v0


where successive rows are circular permutations of the first row v0, . . . , vd−1.

A circulant matrix Circ(v0, . . . , vd−1) is a particular form of a Toeplitz matrix i.e. a matrix

whose elements are constant along the diagonals. A circulant matrix Circ(v0, . . . , vd−1) has

d eigenvalues, namely, v0 + epv1 + e2pv2 + · · · + ep(d−1)vd−1, 0 ≤ p ≤ d − 1, where e is a

primitive d-th root of unity. Therefore,

(1)

det(Circ(v0, . . . , vd−1)) =

∣∣∣∣∣∣∣∣∣∣
v0 v1 · · · vd−2 vd−1

vd−1 v0 · · · vd−1 vd−2

...
... · · · ...

...

v1 v2 · · · vd−1 v0

∣∣∣∣∣∣∣∣∣∣
=

∏d−1
j=0(v0 + ejv1 + e2jv2 + · · ·+ ej(d−1)vd−1).

The product on the right hand side in the equation (1), when expanded out, contains(
2d−1
d

)
terms and it is still an open problem to find an efficient formula for the coefficients

and decide whether they are zero or not. Let us relate this problem to our problem of

determining the minimality of GT-systems. For any integer d ≥ 3 and 1 ≤ a < b ≤ d, we

consider the d× d circulant matrix

Aa,bd = Circ(x, 0, . . . , 0, y, 0, . . . 0, z, 0, . . . , 0)

where y is in the position of index a and z in the position of index b. We have

det(Aa,bd ) =
d−1∏
j=0

(x+ eajy + ebjz).

The determinant of Aa,bd is therefore exactly the product we are interested in and we want to

prove that all monomials of degree d invariant under the action of Ma,b appear with non-zero

coefficient in det(Aa,bd ). Let us now summarize what is known about the coefficients in the

left hand side of the equation (1). To this end we express the determinant of a d×d circulant

matrix as follows:
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det(Circ(v0, . . . , vd−1)) =
∑

0≤a0≤···≤ad−1≤d−1

ca0···ad−1
va0 · · · vad−1

.

Proposition 4.2. With the above notation, it holds:

(1) If a0 + a1 + · · ·+ ad−1 6≡ 0 (mod d), then ca0···ad−1
= 0.

(2) If d is prime and a0 + a1 + · · ·+ ad−1 ≡ 0 (mod d), then ca0···ad−1
6= 0.

Proof. (1) See [10], Theorem 1 or [21], Proposition 10.4.3.

(2) See [10], Corollary 4 or [21], Chapter 11.

�

Remark 4.3. The converse of Proposition 4.2(2) is not true if d is not prime. Indeed, for

d = 6 we have c0,0,1,3,3,5 = 0, and for d = 10 we have c0,0,0,0,1,21,1,3,6,8 = 0 (see, for instance,

[21], p. 123).

In [9], Loehr, Warrington and Wilf addressed the problem of determining whether ca0···ad−1
6=

0 when condition (1) in Proposition 4.2 is satisfied and there are only three distinct non-zero

elements in (v0, v1, . . . , vd−1). They obtained the following result.

Proposition 4.4. Fix integers d ≥ 3 and d − 1 ≥ a ≥ 2 and consider the d × d circulant

matrix Aad = Circ(x, y, 0, . . . 0, z, 0, . . . , 0) where z is located at the position of index a. Then,

we have

det(Aad) =
d−1∏
j=0

(x+ ejy + eajz) =
∑

0≤m,n≤d
m+n≤d

cm,nx
d−m−nymzn

and cm,n 6= 0 if and only if m+ an ≡ 0 (mod d).

Proof. See [9], Theorem 2. �

We are now ready to state our main result concerning the minimality of GT-systems. We

have

Theorem 4.5. Let d ≥ 3 be an integer and let I ⊂ K[x, y, z] be the GT-system generated

by all monomials of degree d, which are invariant under the action of Ma =

1 0 0

0 e 0

0 0 ea

 .

Then, I is a minimal Togliatti system.

Proof. It immediately follows from Proposition 4.4. In particular, all generalized classical

Togliatti systems are minimal. �
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In Section 5, we will prove that, if d = pr is a power of a prime p ≥ 3, then the action

on K[x, y, z]d of a representation Ma,b,c of Z/dZ is equivalent to the action on K[x, y, z]d of

a representation Mα of Z/dZ for a suitable 2 ≤ α ≤ pr − 1 and, hence, for d = pr, a power

of a prime p ≥ 3, all GT-systems are minimal. As we will see in Section 6, for a general

integer d with a prime factorization d = pα1
1 · · · pαr

r with r ≥ 2, it is no longer true that all

actions of Z/dZ on K[x, y, z]d can be represented by a matrix of the form Mα for a suitable

2 ≤ α ≤ d − 1 (see Remark 6.11). For a general integer d, we will only classify the actions

of Z/dZ on K[x, y, z]d represented by a matrix of the form Mα for a suitable 2 ≤ α ≤ d− 1.

By Theorem 4.5, the GT-systems associated to these actions are always minimal.

Based on the above theorem and our computation, we are led to pose the following con-

jecture:

Conjecture 4.6. Fix an integer d ≥ 3 and let I ⊂ K[x, y, z] be the GT -system generated by

all monomials of degree d invariant under the action of Ma,b =

1 0 0

0 ea 0

0 0 eb

 with 1 ≤ a ≤

b ≤ d− 1 and GCD(a, b, d) = 1. Then, I is a minimal Togliatti system.

5. Classification of GT-systems: The case d prime or power of a prime.

The goal of this section is to classify all GT-systems I ⊂ K[x, y, z] generated by forms

of degree d, where d is a prime integer or a power of a prime; i.e. classify all monomial

Togliatti systems I ⊂ K[x, y, z] generated by forms of degree d whose associated regular

map is a Galois covering with cyclic Galois group Z/dZ.

We have to study the action on K[x, y, z]d by the matrices of the form Ma,b,c with 0 ≤ a ≤
b ≤ c ≤ d − 1. Our aim is first to characterize the monomials, and then the homogeneous

artinian ideals, generated by forms of degree d, which are invariant under these actions.

Therefore we give the following definition.

Definition 5.1. We will say that the actions on K[x, y, z]d of two representations Ma,b,c

and Ma′,b′,c′ of Z/dZ are equivalent if the homogeneous artinian ideals, generated by forms

of degree d which are invariant under their actions, coincide up to a permutation of the

variables.

First of all we observe that since we are interested in artinian ideals I ⊂ K[x, y, z]d failing

WLP from degree d − 1 to degree d we can always assume that the three exponents are

different, i.e. 0 ≤ a < b < c ≤ d− 1 because we have:

Lemma 5.2. Let I ⊂ K[x, y, z]d be an ideal invariant under the action of Ma,b,c. If a = b or

b = c then I has the WLP.
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Proof. Assume a = b (analogous argument works for b = c). Then, I contains (x, y)d and

×(x+ y + z) : (K[x, y, z])d−1 −→ (K[x, y, z]/I)d is surjective. Therefore, I has WLP. �

5.1. d prime. Assume first that d ≥ 3 is an odd prime. Let 1, e, e2, . . . , ed−1 be the d-th

roots of 1. Then, for any i = 1, . . . , d− 1, ei is a primitive root of 1.

As observed in Remark 3.3, we can assume a = 0. Moreover we can denote by e the

primitive d-th root of 1 at the second position in the diagonal of the matrix, in other words, we

can assume b = 1. So we are reduced to study the action on K[x, y, z]d by the representations

Ma =

1 0 0

0 e 0

0 0 ea

 of Z/dZ for a = 2, . . . , d− 1.

Remark 5.3. Let α be an integer with 2 ≤ α ≤ d− 1. We will associate to α two positive

integers b and k defined as follows. Since d and α are coprime, there is an expression

b′α− k′d = 1, with b′, k′ ∈ Z. Any other pair of coefficients occuring in a similar expression

is of the form (b′ + nd, k′ + nα), with n ∈ Z.

Let b := min{b′ ∈ Z | b′α − k′d = 1, k′ ∈ Z, b′ > 0}. Then the class of b (mod d) is equal

to 1
α

in Z/dZ.

Let k be the unique integer such that bα − kd = 1. It results that k > 0. Moreover

1 < b < d. Indeed b 6= 1 because α < d, and b 6= d otherwise (α− k)d = 1.

Lemma 5.4. (1) If α = 2, then 1
α

= d+1
2

, k = 1;

(2) if α = d− 1, then 1
α

= d− 1, k = d− 2;

(3) if α < d− 1 then 1
α
6= α.

Proof. The first two assertions are straightforward. For the third one, α = 1/α gives α2 = 1

and since d is prime, d must divide α− 1 or α + 1, but both cases are impossible. �

We consider now two matrices Ma and Mb and we want to understand when their actions

on K[x, y, z]d are equivalent.

Proposition 5.5. Assume 2 ≤ a, b ≤ d − 1. Then the actions on K[x, y, z]d of the repre-

sentations Ma, Mb of Z/dZ are equivalent if and only if either b = d− a+ 1 or (ea)b = e.

Proof. Let xd−m−nymzn be a monomial of degree d. This monomial is invariant for the action

of the first matrix if and only if m + an ≡ 0 (mod d). But this congruence is equivalent

to (d −m − n) + (d − a + 1)n ≡ 0 (mod d), which means that the monomial xmyd−m−nzn

obtained from xd−m−nymzn interchanging the roles of x and y is invariant for the action of

the second matrix. The second equivalence corresponds to interchanging the roles of y and

z, because if (ea)b = e then m+ an ≡ 0 (mod d) if and only if bm+ n ≡ 0 (mod d). �
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Corollary 5.6. The three matrices M2, M d+1
2

, Md−1 define equivalent actions on the ho-

mogenous polynomials of degree d.

Proof. It immediately follows from Proposition 5.5 because d− 1 = d− 2 + 1 and e( d+1
2

)2 =

e. �

Remark 5.7. Assume 2 < a < d − 1, a 6= d+1
2

. Then there exists one and only one b,

2 < b < d− 1, b 6= d+1
2

such that (ea)b = e. Indeed, b is nothing else than 1/a in Z/dZ (see

Remark 5.3 and Lemma 5.4).

Before stating next theorem, we remark that any prime number d ≥ 5 can be written in

one of the forms 6n− 1 or 6n+ 1.

Let us premise a lemma, which will also be used in the next section.

Lemma 5.8. Let p ≥ 5 be a prime, let d = pr with r ≥ 1. Then there exists an integer a,

2 < a < d− 1, such that a(d− a+ 1) ≡ 1 (mod d) if and only if p = 6n+ 1.

Proof. The relation a(d−a+1) ≡ 1 (mod d) holds true if and only if a2−a+1 ≡ 0 (mod d),

i.e. a is a root modulo d of the cyclotomic polynomial φ6(x) = x2 − x+ 1. This means that

the cyclic group Z/6Z of the roots of order 6 of 1 is contained in (Z/prZ)∗. This happens if

and only if 6 divides the cardinality of (Z/prZ)∗, which is ϕ(pr) = pr−1(p− 1), if and only if

p ≡ 1 (mod 6). The thesis follows. �

Theorem 5.9. Let d ≥ 5 be a prime number. Then the number of non-equivalent actions of

representations Ma, 2 ≤ a ≤ d − 1, of Z/dZ on K[x, y, z]d is equal to n if d = 6n − 1, and

to n+ 1 if d = 6n+ 1.

Proof. By Corollary 5.6, there is a class with three elements corresponding to a = 2, d+1
2
, d−1.

If d = 6n + 1, there is a class with two elements a0, d − a0 + 1, where a0 is a root of φ6(x)

(Lemma 5.8). The remaining values of a are subdivided in classes with 6 elements that are

a, b, c, d− a+ 1, d− b+ 1, d− c+ 1, where b = 1/a (mod d) and c = 1/(d− a+ 1) (mod d).

This immediately gives the number of classes, in view of Proposition 5.5. �

Remark 5.10. The six numbers a, b, c, d−a+ 1, d− b+ 1, d− c+ 1, where b = 1/a (mod d)

and c = 1/(d− a+ 1) (mod d), are the values of the cross-ratio with the same j−invariant,

modulo d. The three values 2, d+1
2
, d − 1 correspond to the harmonic cross-ratio, and the

pair a0, d− a0 + 1 to the equianharmonic cross-ratio.

The matrices in Corollary 5.6 define the generalized classical Togliatti systems (see Defi-

nition 2.4). We will see that the other classes we have just found define all GT-systems for

d prime. To this end we will study the degree d monomials invariant under these actions.
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Example 5.11. Here are the classes of integers ≥ 2 defining equivalent actions Ma on forms

of degree d, for the primes d = 5, . . . , 17.

d = 5, one class: (2, 3, 4);

d = 7, two classes: (2, 4, 6), (3, 5);

d = 11, two classes: (2, 6, 10), (3, 4, 5, 7, 8, 9);

d = 13, three classes: (2, 7, 12), (4, 10), (3, 5, 6, 8, 9, 11);

d = 17, three classes: (2, 9, 16), (3, 6, 8, 10, 12, 15), (4, 5, 7, 11, 13, 14).

Let us fix a prime d and an integer a, 2 ≤ a ≤ d − 1. We want to count the number of

monomials of degree d which are invariant under the action of the matrix Ma.

Theorem 5.12. Let d ≥ 3 be a prime. Then for any integer a, with 2 ≤ a ≤ d − 1, the

number of invariant monomials under the action of Ma is 3 + d−1
2

.

Proof. The monomial xd−m−nymzn, with m,n ≥ 0, m+ n ≤ d, is invariant under the action

of Ma if and only if m + an ≡ 0 (mod d). So we look for the pairs (m,n) of non-negative

integers such that 0 ≤ m + n ≤ d and there exists a relation m + an = kd for a suitable

integer k ≥ 0. The pairs (0, 0), (d, 0), (0, d) are clearly of this type; they correspond to the

monomials xd, yd, and zd. So, we assume from now on m < d, n < d and m + n > 0. We

observe that, if m + n = d and the corresponding monomial yd−nzn is invariant under the

action of Ma, then d+ (a− 1)n = kd, i.e. (a− 1)n = (k− 1)d, which is impossible under our

assumption that n < d. Moreover the monomials of the form xd−mym, xd−nzn are certainly

not invariant, the first ones because em 6= 1, the second one because an cannot be a multiple

of d. So from now on we can also assume m,n > 0 and m+ n < d.

We begin looking for pairs (m,n) with m = 1. We apply Lemma 5.4 to a, d: there exist

unique k, n1 with dk−an1 = 1, k > 0, 0 < n1 < d. So we obtain a unique invariant monomial

xd−1−n1yzn1 , of degree d with m = 1. We easily check that the inequality 1 + n1 < d is also

true.

We take now another m and define nm :≡ n1m (mod d), i.e. the remainder of the division

of n1m by d. The pair (m,nm) defines a monomial of degree d invariant under the action of

Ma if and only if m+ nm ≤ d. So we want to count for how many m’s with 1 ≤ m ≤ d− 1
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the condition m+ nm ≤ d holds true. We consider the table

1 n1 n1

2 2n1 n2

3 3n1 n3

. . . . . . . . .

m mn1 nm

. . . . . . . . .

d− 2 (d− 2)n1 nd−2

d− 1 (d− 1)n1 nd−1

In the third column there are the remainders of the division by d of the elements of the

second column. We observe that they are all different: if mn1 = hd+ r and m′n1 = h′d+ r,

then (m −m′)n1 = (h − h′)d, which is impossible because m −m′ and n1 are < d. Hence,

the first and the third column contain the same numbers.

Now look at the last row: note that nd−1 = d − n1 and that (d − 1) + (d − n1) =

2d − (1 + n1) ≤ d if and only if d ≤ 1 + n1, a contradiction. Therefore, the last line does

not give an invariant monomial. Now we consider the second and the last but one rows: the

corresponding pairs (m,n) are respectively (2, n2) and (d− 2, d− n2), and 2d− (2 + n2) < d

if and only if 2 + n2 > d, which means that of these two pairs one and only one defines a

monomial of degree d invariant under the action of Ma. We can repeat this argument for any

m, concluding that one and only one of the pairs (m,nm), (d−m, d−nm) gives a monomial

of degree d invariant under the action of Ma. Since there are d− 1 of these pairs, we get d−1
2

invariant monomials of degree d in addition to xd, yd, zd. This concludes the proof. �

Remark 5.13. Note that any monomial of degree d different from xd, yd, zd and invariant

under the action of Ma must contain all variables with strictly positive exponent. In partic-

ular, by the smoothness criterion [11, Proposition 3.4], this implies that the GT -systems for

d prime are all smooth.

Example 5.14. For d = 7 or d = 11, there is only one class, in addition to the generalized

classical Togliatti systems.

If d = 7 and a = 3, we get the invariant monomials x7, x4yz2, x2y4z, xy2z4, y7, z7.

If d = 11, we have 5 invariant monomials. For instance, for a = 3, we get:

x11, x3yz7, x6y2z3, xy4z6, x4y5z2, x2y8z, y11, z11.

From now on, we denote by Ia ⊂ K[x, y, z] the artinian ideal generated by all monomials

of degree d invariant under the action of Ma. Given a prime integer d ≥ 3 and 2 ≤ a ≤ d−1,
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we denote by k and n1 the unique integers k, n1 > 0 with dk − an1 = 1 and n1 < d. As

in the proof of Theorem 5.12, for any integer m, we define nm := n1m (mod d), i.e. the

remainder of the division of n1m by d. We have seen:

Proposition 5.15. For any prime integer d ≥ 5, set d = 2k+1. Take 2 ≤ a ≤ d−1. Then,

the following holds:

(1) µ(Ia) = k+ 3. Moreover, there exist integers 1 ≤ i1 < i2 < · · · < ik ≤ d− 1 such that

Ia = (xd, yd, zd, fi1 , fi2 , . . . , fik)

where we use the notation fij = xd−ij−mij yijzmij for 1 ≤ j ≤ k.

(2) I2, Id−1 and Ik+1 coincide up to permutation of the variables.

(3) If a 6= 2, d − 1, d+1
2

, and 1
a
6≡ d − a + 1 (mod d), then, Ia, Ib. Ic, Id−a+1, Id−b+1 and

Id−c+1, where b = 1
a

(mod d) and c = 1
d−a+1

(mod d), coincide up to permutation of

the variables.

(4) If 1
a
≡ d − a + 1 (mod d) then Ia and Id−a+1 coincide up to permutation of the

variables.

(5) Ia is a smooth monomial minimal GT-system.

Proof. (1) It follows from the proof of Theorem 5.12.

(2) It follows from Corollary 5.6.

(3) See the proof of Theorem 5.9.

(4) It is a direct application of Proposition 5.5.

(5) It follows from Theorems 3.4 and 4.5, and Remark 5.13 for the smoothness. �

5.2. d a power of a prime. We consider now the cases when d = pr is a power of a prime

p. First we observe that arguing as in the case when d is an odd prime we can show that the

action on K[x, y, z]d of a representation Ma,b,c of Z/dZ is always equivalent to the action on

K[x, y, z]d of a representation Mα of Z/dZ for a suitable α, 2 ≤ α ≤ pr − 1. Therefore, it is

enough to classify the actions on K[x, y, z]d of representations Mα of Z/dZ.

Theorem 5.16. Let d = pr, where p is a prime, and r ≥ 2 an integer. Then the number of

classes of non-equivalent actions of representations Ma of Z/dZ on K[x, y, z]d is as follows:

(1) if p = 2, r = 2, there is only one class; if p = 2, r > 2 there are (d/4) + 1 classes, of

which three classes have two elements and the remaining classes have 4 elements;

(2) if p = 3 or p = 6n−1, then there are one class with three elements, (d−p)/2p classes

with 4 elements and (dp− 2d− 3p)/6p classes with six elements;

(3) if p = 6n+1, then there are one class with three elements, one class with two elements,

(d− p)/2p classes with 4 elements and (dp− 2d− 5p)/6p classes with six elements.
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Proof. (1) If p = 2, there are exactly three values of a, 2 ≤ a ≤ d − 1, such that a2 ≡ 1

(mod d): a = d−1, (d−2)/2 and (d+2)/2. Each of them gives rise to a class formed by two

elements a, d− a+ 1. For any other value of a, in the pair (a, d− a+ 1) there is an even and

an odd number, which admits inverse b. So, the class is formed by a, b, d− a+ 1, d− b+ 1.

Assume now that p is odd. Then a2 ≡ 1 (mod d) if and only if a = d− 1, which produces

the class with three elements: 2, d − 1 and (d + 1)/2. From Lemma 5.8 it follows that the

equation a(d− a+ 1) ≡ 1 (mod d) has a solution a0 only if p = 6n+ 1. So we have a class

with two elements a0, d−a0 + 1 only if d = 6n+ 1. Then for any multiple of p, px, we have a

class with 4 elements of the form px, d−px+1, y, d−y+1, where y is the inverse of d−px+1

modulo d. It is easy to check that in this class there is also exactly one other multiple of p

i.e. d− y + 1. Finally, the remaining elements distribute themselves in classes of 6 elements

of the form a, b, d − a + 1, x, d − b + 1, d − x + 1, where b, x are the inverses (mod d) of a

and d−a+ 1, respectively. The thesis follows by a straightforward computation, taking into

account that the number of non-zero multiples of p in Z/dZ is (d/p)− 1. �

6. Classification of GT-systems: The general case

We consider now the case of a general integer d. We will restrict our attention to actions

represented by matrices of the form Ma.

For seek of completeness we start recalling a couple of well known results on arithmetic

equations.

Lemma 6.1. Let d = 2αpα1
1 p

α2
2 . . . pαr

r be the prime factorization of d, where pi are distinct

odd primes, r ≥ 0, α ≥ 0, and αi > 0 for 1 ≤ i ≤ r. The number of solutions of the equation

x2 ≡ 1 (mod d) is:

(1) 2r if 0 ≤ α ≤ 1;

(2) 2r+1 if α = 2;

(3) 2r+2 if α ≥ 3.

Proof. See [6], a060594. �

Lemma 6.2. Let d = pα0
0 p

α1
1 . . . pαr

r be the prime factorization of d, where r ≥ 0, p0 = 2,

p1 = 3, pi > 3 for i ≥ 2, α0, α1 ≥ 0, and αi > 0 for 2 ≤ i ≤ r. The equation x2 − x + 1 ≡ 0

(mod d) is compatible if and only if α0 = 0, 0 ≤ α1 ≤ 1 and pi ≡ 1 (mod 6) for any

i = 2, . . . , r, and in this case there are exactly 2r−1 solutions.

Proof. First of all we recall from Lemma 5.8 that for any prime integer p ≥ 5, x2−x+ 1 ≡ 0

(mod pk) is compatible if and only if p ≡ 1 (mod 6). Moreover, in this case we have two

solutions.
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For p = 2, there is no solution of the equation x2 − x + 1 ≡ 0 (mod 2a) and for p = 3

there is a solution of the equation x2 − x + 1 ≡ 0 (mod 3b) if and only if b = 1 and in this

case there is only one solution.

Putting altogether, we obtain the thesis. �

We want to count now the number of non-equivalent representations Ma of Z/dZ on

K[x, y, z]d.

Lemma 6.3. An equivalence class of representations Ma of Z/dZ on K[x, y, z]d can have

2, 3, 4 or 6 elements. Precisely:

• an equivalence class with two elements is formed by a, d − a + 1, where one of the

following happens:

(i) a2 ≡ 1, and d− a+ 1 is non invertible in Z/dZ;

(ii) a(d− a+ 1) ≡ 1 (mod d);

(iii) a, d− a+ 1 are both non invertible in Z/dZ;

• an equivalence class with three elements is formed by 2, d− 1, d+1
2

; such class exists if

and only if d is odd;

• an equivalence class with four elements is formed by a, d− a + 1, y, d− y + 1, where

y is the inverse of d− a+ 1 (mod d), and a, d− y + 1 are non invertible in Z/dZ;

• an equivalence class with six elements is formed by a, b, c, d−a+ 1, d− b+ 1, d− c+ 1

where b = 1/a, c = 1/(d− a+ 1); all six elements are invertible in Z/dZ.

Proof. We recall, from Proposition 5.5, that the class containing an element a always contains

also d− a+ 1, and, if a is invertible, also 1/a.

So to have a class with only two elements, one of the following three possibilities must

occur: 1/a ≡ a, or 1/a ≡ d− a + 1, or a and d− a + 1 are both non invertible. In the first

case, it follows that the two integers d and d− a + 1 are not coprime. Indeed if 1/a ≡ a in

Z/dZ, there exists k ∈ Z such that a2 − 1 = (a − 1)(a + 1) = kd. So each prime divisor of

d divides either a− 1 or a + 1, and at least one divides a− 1. Therefore d− (a− 1) is not

coprime with d, this gives case (i). In the second case and third case, it is clear that the

class does not contain any other element. For the class with three elements see Corollary

5.6. The shape of the classes with four or six elements are analogous to those discussed in

Theorem 5.16. �

Let us denote by Ni the number of classes with i elements, and N21, N22, N23 respectively

the numbers of classes with two elements of type (i),(ii),(iii). Our next goal is to compute

them.

Proposition 6.4. Let d = pα0
0 p

α1
1 . . . pαr

r be the prime factorization of d, where r ≥ 0, p0 = 2,

p1 = 3, pi > 3 for i ≥ 2, α0, α1 ≥ 0, and αi > 0 for 2 ≤ i ≤ r. It holds:
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(1) N21 =


2r − 2 if α0 = 0;

2r − 1 if α0 = 1;

2r+1 − 1 if α0 = 2;

2r+2 − 1 if α0 ≥ 3.

(2) N22 =

2r if α0 = 0, 0 ≤ α1 ≤ 1 and pi ≡ 1 (mod 6) for any i = 2, . . . , r;

0 otherwise.

(3) If α0 = 0, then N23 =
∑r

k=2(−1)k(2k−1− 1)
∑

0≤i1<···<ik≤r
d

pi1 ···pik
. If α0 > 0, then the

expression is analogous but the sum goes from 2 to r + 1.

In addition, N2 = N21 +N22 +N23.

Proof. (1) is a consequence of Lemma 6.1, but we have to subtract 1 because we do not

want to consider the solution 1. (2) is a consequence of Lemma 6.2. We prove now (3). Let

pi, pj be two prime factors of d. We claim that the number of pairs (a, d − a + 1), where a

is divisible by pi and d− a+ 1 by pj, is d/(pipj). Indeed, the pair (a = pix, d− a+ 1 = pjy)

is as we want if we can write d + 1 as pix + pjy, with x, y positive integers. We can write

piλ− pjµ = 1, and we choose λ minimum > 0, hence µ > 0. So the pairs x, y that work are

obtained in this way:

x = (1 + d)λ−mpj > 0,

y = −(1 + d)µ+mpi > 0,

with m > 0. Thus, we must count the number of positive m such that the two inequalities

are satisfied. We must have (1 + d)µ/pi < m < (1 + d)λ/pj, which is equivalent to

pj(d/pipj)µ+ (µ/pi) < m < pi(d/pipj)λ+ (λ/pj).

The number of m’s satisfying this inequality is pi(d/pipj)λ − pj(d/pipj)µ = d/pipj, which

proves the claim.

So the number of these pairs, as i, j vary, is
∑

0≤i<j≤r d/pipj.

But if r ≥ 2, some of the pairs have been counted twice. So we have to subtract the

contribution of these pairs. For any choice of three prime factors pi, pj, ph, the contribution

is 3d/(pipjph), because it is equal to the number of pairs (a, d−a+1) such that a is divisible

by one among pi, pj, ph, and d − a + 1 by the product of the other two. We continue in

this way, taking the contribution of 2, 3, . . . prime factors of d with alternate signs. The

coefficient in the contribution of k primes is the number of partitions of k as sum of two

positive numbers, i.e.
∑bk/2c

i=1

(
k
i

)
= (2k − 2)/2. �
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Remark 6.5. For any d = pα0
0 p

α1
1 p

α2
2 · · · pαr

r with p0 = 2, p1 = 3, pi > 3 for i ≥ 2, r ≥ 0,

α0, α1 ≥ 0 and αi > 0 for i ≥ 2, we have N3 =

1 if α0 = 0;

0 otherwise.

Proposition 6.6. Let d be an integer. Let ϕ(d) be the Euler’s function that counts the

positive integers up to d that are relatively prime to d. Then the following holds:

(1)

N4 =
d− 1− ϕ(d)−N21 − 2N23

2
;

(2)

N6 =
d− 2− 2N2 − 3N3 − 4N4

6
.

Proof. (1) By Lemma 6.3 the equivalence classes with four elements are formed by a, d−a+

1, y, d− y+ 1, where y is the inverse of d− a+ 1 (mod d), and a, d− y+ 1 are non invertible

in Z/dZ. So, we have to compute the number of non-invertible elements not involved in the

equivalence classes with 2 or 3 elements. Since the Euler function ϕ(d) counts the invertible

elements in Z/dZ. i.e. the cardinality of (Z/dZ)∗, we get the required formula for N4.

(2) It immediately follows from the fact that 2N2 + 3N3 + 4N4 + 6N6 = d− 2. �

Putting altogether we have

Theorem 6.7. Let d = pα0
0 p

α1
1 · · · pαr

r be the prime factorization of d, where r ≥ 0, p0 = 2,

p1 = 3, pi > 3 for i ≥ 2, α0, α1 ≥ 0, and αi > 0 for 2 ≤ i ≤ r. The number of classes of

non-equivalent actions of representations Ma of Z/dZ on K[x, y, z]d is N2 +N3 +N4 +N6.

Proof. It immediately follows from Lemma 6.3. �

Let us illustrate our result with a couple of concrete examples.

Example 6.8. (i) If d = 825 = 3 · 52 · 11, we get the following numbers: N3 = 1, N2 =

N21 +N22 +N23 = 6 + 0 + 80 = 86, N4 = 129, N6 = 22.

(ii) If d = 42 = 2 ·3 ·7, then N3 = 0, N2 = N21 +N22 +N23 = 3+0+9 = 12, N4 = 4, N6 = 0.

(iii) If d = 210 = 2 · 3 · 5 · 7, then N3 = 0, N2 = N21 + N22 + N23 = 7 + 57 = 64, N4 =

20, N6 = 0.

In Theorem 3.4 we have obtained un upper bound, valid for any d, on the number of

monomials of degree d invariant under the action of Ma. Next Proposition gives a lower

bound on the same number.

Proposition 6.9. Let d = pα1
1 · · · pαr

r , where p1 < p2 < · · · < pr are primes, αi > 0 for

all i and r ≥ 2. Let Ia be the ideal generated by all polynomials of degree d invariant
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under the action of Ma, 2 ≤ a ≤ d − 1. Then, Ia is a monomial minimal GT-system and

µ(Ia) ≥ bd/2c+ 3.

Proof. By Theorems 3.1, 3.4 and 4.5, Ia is a monomial minimal GT-system. Thus, it only

remains to compute µ(Ia). We distinguish two cases.

If we consider an equivalence class that can be represented by a number a coprime with

d, we can argue as in the proof of Theorem 5.12. For any m with 1 ≤ m ≤ d − 1, we

define the number nm > 0, the minimal positive integer such that anm + m is a multiple of

d of the form kd, k > 0. Note that for m = 1 we have n1 6= d − 1. Otherwise it would be

a(d− 1) + 1 = kd with 1 ≤ k ≤ a− 1, so d = (a− 1)/(a− k), which is impossible. We note

that the integer nd−m associated to d−m is equal to d− nm. Therefore m+ nm ≤ d if and

only if (d−m) + nd−m ≥ d.

We have to count the integers m such that m + nm ≤ d. It is enough to analyze only

bd/2c pairs. If, for any m,nm 6= d −m, then only one of the possibilities: m + nm < d or

(d−m) + (d− nm) < d is true, and we can conclude that µ(Ia) = bd/2c + 3. Otherwise, if

nm = d −m for some m, then both pairs (m,nm = d −m) and (d −m,m) give invariant

monomial and µ(Ia) > bd/2c+ 3.

Assume now that a and d− a+ 1 are both non invertible in Z/dZ, i.e. that both are not

coprime with d. Let g = gcd(d, a) > 1 and write a = gα and d = gδ. We look for the pairs

(m,n) with m ≥ 0, n ≥ 0, m+ n ≤ d, such that m+ an = kd, for some k. This last relation

is possible only if m = 0 or m is a multiple of gcd(d, a) = g. So m has to be of the form yg,

with 0 ≤ y ≤ δ.

If m = 0, then 0 = kd − an, i.e. n = kd/a = kδ/α, which implies that α divides k, so

n = xδ, with 0 ≤ x ≤ g.

If m = g, we look for n, k such that g = kd − an. Let k̄, n̄ be the integers with k̄ > 0

minimum such that g = k̄d − n̄a, i.e. 1 = k̄δ − n̄α. So also n̄ > 0. The other integers k, n

are of the form k̄+xα, n̄+xδ, with x ∈ Z. From them we get the pairs (m,n) = (g, n̄+xδ).

Note that 0 ≤ n ≤ d if and only if 0 ≤ x ≤ g − 1. Indeed n̄ + xδ ≤ d if and only if

x ≤ (d− n̄)/δ = g − (n̄/δ); moreover from the minimality of k̄, we deduce n̄− δ < 0, which

gives 0 < n̄/δ < 1.

Let now m = yg, with 1 ≤ y ≤ δ. We clearly have the pairs (m,n) = (yg, yn̄ + xδ). The

condition 0 ≤ n = yn̄+ xδ ≤ d becomes −yn̄/δ ≤ x ≤ g − yn̄δ.
Altogether we have d + 2 pairs: g + 1 pairs with m = 0, g pairs with m = yg for any

1 ≤ y ≤ δ−1, and (d, 0). We have to impose now the conditionm+n ≤ d, i.e. yg+yn̄+xδ ≤ d

to the pairs different from (d, 0), (0, d), (0, 0). But it is easy to check that this last inequality

is equivalent to (δ−y)g+(δ−y)n̄+(g− n̄−x)δ ≥ d. It is clear that 0 ≤ δ−y ≤ d. Moreover

−(δ − y)n̄/δ ≤ g − n̄− x ≤ g − (δ − y)n̄/δ is equivalent to (d− g)− yn̄ ≤ δx ≤ d− yn̄, so
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the pair (δ− y)g, (δ− y)n̄+ (g− n̄− x)δ is in the admissible range. We conclude that there

are at least bd/2c+ 3 invariant monomials.

�

Remark 6.10. If µ(Ia) > bd/2c+ 3, with a invertible modulo d, then mn1 +m = m(n1 + 1)

must be multiple of d. This observation allows to construct a whole class of examples with

d = 2k, where the first m such that nm = d − m is 2, and n1 + 1 = d/2. It is enough to

take a = (d/2) + 1 and then n1 = (d/2) − 1. We can compute that µ(Ia) = 3d/4 + 2. In

this case, all pairs (m, d−m+ 1) with m even satisfy nm = d−m. The first example is for

d = 8, a = 5, n1 = 3, µ(I5) = 8. For d = 16, we get a = 9, n1 = 7, and µ(I9) = 14.

Remark 6.11. Not all actions of a cyclic group on K[x, y, z]d can be represented by a matrix

of the form Ma, if d has 3 or more prime factors. For instance if d = 42 = 2 · 3 · 7 and e is a

primitive root of order 42 of 1, then the action of M0,3,7 is not equivalent to the action of a

matrix of the form Ma for any a, since it has the following set of monomials invariant under

the action of M0,3,7 and involving only two variables. They are:

x36z6, x30z12, x24z18, x18z24, x12z30, x6z36, x28y14, x14y28, y21z21.

If we now consider the monomials invariant under the action of Ma and involving only two

variables, we have monomials involving x and z, and monomials involving y and z but never

monomials involving x and y.

7. Geometric properties of generalized classical Togliatti systems

This section is entirely devoted to study the geometric properties of the rational surfaces

associated to generalized classical Togliatti systems. To this end, we fix an integer d, 3 ≤
d ∈ Z. We write d = 2k + ε, 0 ≤ ε ≤ 1 and we consider the monomial artinian ideal

Id = (xd, yd, zd, xkykzε, . . . , x2y2zd−4, xyzd−2) ⊂ K[x, y, z].

Set P2 = Proj(K[x, y, z]) and Pk+2 = Proj(K[x0, x1, . . . , xk+2]). We have seen in Theorem

4.5 that Id is a minimal Togliatti system which defines a Galois cover

ϕId : P2 −→ Pk+2

with Galois cyclic group Z/dZ represented by

1 0 0

0 e2 0

0 0 e

 where e is a primitive d-th root

of 1.

We denote by Sd ⊂ Pk+2 the rational surface image of ϕId . We will prove that its homo-

geneous ideal I(Sd) is generated by 1 +
(
k
2

)
quadrics if d is even and by

(
k
2

)
quadrics and k
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cubics if d is odd. To achieve our result we need some basic facts on determinantal ideals

that we recall now for seek of completeness.

Definition 7.1. Let A be a homogeneous m × n matrix, m ≥ n. We denote by I(A) the

ideal of R = K[x0, x1, . . . , xN ] generated by the maximal minors of A and we say that I(A)

is a determinantal ideal if depth I(A) = m− n+ 1.

Any determinantal ideal I ⊂ R is Cohen-Macaulay (i.e. pd(R/I) = codim(I) or, equiva-

lent dim(R/I) = depth(R/I)) with a minimal free resolution given by the so called Eagon-

Northcott complex. In fact, we denote by f : F −→ G the morphism of free graded R-modules

of rank t + c− 1 and t, defined by the homogeneous t× (t + c− 1) matrix A associated to

the determinantal ideal I ⊂ R of codimension c. The Eagon-Northcott complex

0 −→
t+c−1∧

F ⊗ Sc−1(G)∗ ⊗
t∧
G∗ −→

t+c−2∧
F ⊗ Sc−2(G)∗ ⊗

t∧
G∗ −→ · · ·

−→
t∧
F ⊗ S0(G)∗ ⊗

t∧
G∗ −→ R −→ R/I −→ 0

gives a minimal free R-resolution of R/I.

Theorem 7.2. Let Id ⊂ K[x, y, z] be a generalized classical Togliatti system and set R =

K[x0, x1, . . . , xk+2]. Then, the following holds:

(1) If d = 2k + 1 is odd then I(Sd) = I2(A) where

A =

(
x3 x4 · · · xk+1 xk+2 x0x1

x4 x5 · · · xk+2 x2 x2
3

)
.

In particular, I(Sd) is generated by
(
k
2

)
quadrics and k cubics.

(2) If d = 2k is even then I(Sd) = I2(B) + (x0x1 − x2
3) where

B =

(
x3 x4 · · · xk+1 xk+2

x4 x5 · · · xk+2 x2

)
.

In particular, I(Sd) is generated by 1 +
(
k
2

)
quadrics.

Proof. (1) The morphism ϕId : P2 −→ Pk+2 is defined by sending

(x, y, z) 7→ (xd, yd, zd, xkykz, . . . , xyzd−2).

Therefore, we easily check that I2(A) ⊂ I(Sd). The equality follows from the fact that

dim(R/I(Sd)) = dim(R/I2(A)) = 3 and degree(I2(A)) = degree(I(Sd)) = d.

(2) It is analogous. �

Theorem 7.3. With the above notation, the following holds:
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(1) If d = 2k+1 is odd then I(Sd) is a determinantal ideal (and, hence, Cohen-Macaulay)

with the following minimal free resolution:

0 −→ R(−k − 2)k −→ · · · −→ R(−4)3(k
4) ⊕R(−5)3(k

3) −→

R(−3)2(k
3) ⊕R(−4)2(k

2) −→ R(−2)(
k
2) ⊕R(−3)k −→ R −→ R/I(Sd) −→ 0.

(2) If d = 2k is even then I(Sd) is a Cohen-Macaulay ideal with the following minimal

free resolution:

0 −→ R(−k − 2)k −→ R(−k − 1)(k−1)( k
k−1) ⊕R(−k)k −→ · · · −→

R(−5)2(k
3)⊕R(−4)3(k

4) −→ R(−4)(
k
2)⊕R(−3)2(k

3) −→ R(−2)1+(k
2) −→ R −→ R/I(Sd) −→ 0.

Proof. (1) By Theorem 7.2(1) we know that I(Sd) = I2(A) where

A =

(
x3 x4 · · · xk+1 xk+2 x0x1

x4 x5 · · · xk+2 x2 x2
3

)
.

Associated to A we have a morphism F := R(−1)k ⊕ R(−2)
f−→ G := R2 of free graded

R-modules and by the Eagon-Northcott complex I(Sd) has the following minimal free R-

resolution:

0 −→
k+1∧

F⊗Sk−1G
∗ −→ · · · −→

4∧
F⊗S2G

∗ −→
3∧
F⊗G∗ −→

2∧
F −→ R −→ R/I(Sd) −→ 0

which gives what we want.

(2) By Theorem 7.2(2) we know that I(Sd) = I2(B) + (x0x1 − x2
3) where

B =

(
x3 x4 · · · xk+1 xk+2

x4 x5 · · · xk+2 x2

)
.

By the Eagon-Northcott complex I2(B) has the following minimal free R-resolution

0 −→ R(−k)k −→ R(−k + 1)(k−1)( k
k−1) −→ · · · −→ R(−4)3(k

4) −→

R(−3)2(k
3) −→ R(−2)(

k
2) −→ R −→ R/I2(B) −→ 0.

To find a minimal free R-resolution of I(Sd) = I2(B) + (x0x1 − x2
3) we consider the short

exact sequence

0 −→ I2(B)(−2)
ψ−→ I2(B)⊕R(−2)

ρ−→ I(Sd) = I2(B) + (x0x1 − x2
3) −→ 0
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where ψ(F ) = (F (x0x1 − x2
3), F ) and ρ(G,H) = G− (x0x1 − x2

3)H. Applying the mapping

cone procedure to the following diagram

0 0

↓ ↓
R(−k − 2)k R(−k)k

↓ ↓
...

...

↓ ↓
R(−6)3(k

4) R(−4)3(k
4)

↓ ↓
R(−5)2(k

3) R(−3)2(k
3)

↓ ↓
R(−4)(

k
2) R(−2)(

k
2) ⊕R(−2)

↓ ↓
0 −→ I2(B)(−2)

ψ−→ I2(B)⊕R(−2)
ρ−→ I(Sd) −→ 0

↓ ↓
0 0

we get the minimal free R resolution of I(Sd):

0 −→ R(−k − 2)k −→ R(−k − 1)(k−1)( k
k−1) ⊕R(−k)k −→ · · · −→

R(−5)2(k
3)⊕R(−4)3(k

4) −→ R(−4)(
k
2)⊕R(−3)2(k

3) −→ R(−2)1+(k
2) −→ R −→ R/I(Sd) −→ 0.

�

7.1. Singularities of Sd. We describe now the singular points of the surface Sd. The

morphism ϕId is unramified outside the three fundamental points of P2: E0 = [1, 0, 0],

E1 = [0, 1, 0], E2 = [0, 0, 1]. They are sent by ϕId to the singular points of Sd, Pi := ϕ(Ei),

i = 1, 2, 3, that are cyclic quotient singularities: P0, P1 are of type 1
d
(1, 2) and P2 is of type

1
d
(d− 2, d− 1).

Proposition 7.4. The points P0, P1 have multiplicity k on Sd and tangent cone defined by

the equations rankB < 2 and x1 = 0 (resp. x0 = 0). The point P2 is a double point with

tangent cone the pair of planes of equations x0x1 = x3 = · · · = xk = xk+1 = 0.

Proof. Let us compute first the tangent cone to Sd at P0. We work on the affine chart

x0 = 1, with affine coordinates x1, . . . , xk+2. If d is odd, looking at the initial forms of the

polynomials in the ideal of Sd, it follows from Theorem 7.2 that the equations of the tangent
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cone are rankB < 2 and x1x4 = x1x5 = · · · = x1xk+2 = x1x2 = 0, which reduce to rankB < 2

and x1 = 0. If d is even, we get immediately the same equations. The case of P1 is similar.

We work then on the affine chart x2 = 1 with affine coordinates x0, x1, x3, . . . , xk+2. If d

is odd, the tangent cone at P2 is defined by rankB′ < 2, x3 = x4 = · · · = xk+1 = x0x1 = 0,

where

B′ =

(
x3 x4 · · · xk+1

x4 x5 · · · xk+2

)
.

This gives the equations x3 = x4 = · · · = xk+1 = x0x1 = 0. If d is even, we get directly the

same equations. �

Remark 7.5. It is interesting to remark that the surface Sd is also a Galois covering of

P2, with Galois group Z/dZ. The covering map Sd → P2 composed with ϕId is P2 → P2,

[x, y, z]→ [xd, yd, zd].

8. Relations with linear configurations

We establish now a link between GT-systems and linear configurations.

Theorem 8.1. Fix an integer d ≥ 2 and an integer a, 2 ≤ a ≤ d− 1. Let Ia ⊂ K[x, y, z] be

the artinian ideal generated by all forms of degree d invariant under the action of Ma. Then,

the following holds.

(1) Ia is a monomial minimal GT-system.

(2) For any linear form L = αx + βy + γz we define L[j] := αx + βejy + γeajz, j ≥ 0.

It holds:

L ·
d−1∏
j=1

L[j] ∈ Ia.

(3) For any integer 0 ≤ i ≤ d − 1 we define Li,j := x + eiy + ejz. The set of d2 lines

{Li,j}0≤i,j≤d−1 gives rise to a Ceva configuration C(d) = (3dd, d
2
3) of d2 lines and 3d

points with d lines through each point and 3 points on each line.

Proof. (1) follows from Theorems 3.1, 3.4 and 4.5.

(2) Since Ia fails WLP from degree d − 1 to degree d, we know that for any line L =

αx+βy+γz there exists a form Cd−1 of degree d−1 such that F = L·Cd−1 ∈ Ia. By definition

Ia is generated by the monomials of degree d invariant under the action of Ma. Therefore,

F = L·Cd−1 is invariant under the action of Ma, which implies that L[j] := αx+βejy+γeajz,

j ≥ 1, divides F and we conclude that Cd−1 factorizes as
∏d−1

j=1 L[j] which proves what we

want.
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(3) We have a set L = {Li,j}0≤i,j≤d−1 of d2 lines in P2 and we consider P = {p1, · · · , p3d}
the following set of points

p1 = (1, 0,−1) p2 = (1, 0,−e) p3 = (1, 0,−e2) · · · pd = (1, 0,−ed−1)

pd+1 = (0, 1,−1) pd+2 = (0, 1,−e) pd+3 = (0, 1,−e2) · · · p2d = (0, 1,−ed−1)

p2d+1 = (1,−1, 0) p2d+2 = (1,−e, 0) p2d+3 = (1,−e2, 0) · · · p3d = (1,−ed−1, 0)

The pair (P ,L) is a Ceva configuration C(d) since we have d2 lines and 3d points such that

any line Li,j contains 3 points and through each point ps we have d lines. �

Associated to the above Ceva configuration C(d) we have an arrangement Hd of d2 + 3

lines {x, y, z} ∪ {Li,j}0≤i,j≤d−1 in P2 and the derivation bundle D0 defined as the kernel of

the jacobian map:

0 −→ D0 −→ O3
P2

∇F−→ OP2(d2 + 2)

where F = xyz
∏

0≤i,j≤d−1 Li,j and ∇F = (∂F
∂x
, ∂F
∂y
, ∂F
∂z

). The arrangement Hd of d2 + 3 lines

in P2 is said to be free with exponents (a, b) if the derivation bundle D0 splits as D0 =

OP2(−a) ⊕ OP2(−b). So, we are let to pose the natural question whether the arrangement

Hd of lines associated to the Ceva configuration C(d) is free. It holds:

Proposition 8.2. With the above notation the arrangement Hd is a free arrangement of

d2 + 3 lines in P2 if and only if 3 ≤ d ≤ 4. Moreover, H3 is an arrangement of 12 lines free

with exponent (4,7) and H4 is an arrangement of 19 lines free with exponents (9,9).

Proof. If Hd is free with exponents (a, b) we necessarily have c1(D0) = a + b = d2 + 2 and

c2(D0) = ab. On the other hand, if bh is the number of points of multiplicity h in D0, then

we have the following relation (see [5], Remark 2.2):

b3 + 3b4 + 6b5 + 10b6 + · · · =
(
d2 + 2

2

)
− c2(D0).

Therefore, if Hd is a free arrangement necessarily 3 ≤ d ≤ 4. The fact that H3 and H4 are

free arrangements of lines follows from [5, Theorem 2]. In addition, H3 is a free arrangement

of 12 lines with 9 quadruple base points. It is a free arrangement with exponents (4,7). H4

is a free arrangement of 19 lines with 12 quintuple base points; it is a free arrangement with

exponents (9,9). �

Remark 8.3. The set of 3d points in a Ceva configuration C(d) is the dual set of the so

called Fermat arrangement Fd: (xd − yd)(xd − zd)(yd − zd) = 0 which is an arrangement of

3d lines in P2 with d2 triple points and 3 points of multiplicity d. Fd is a free arrangement

of lines in P2 with exponents (2d− 2, d+ 1). In fact, let D0 be derivation bundle defined as

the kernel of the jacobian map:
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0 −→ D0 −→ O3
P2

∇F−→ OP2(3d− 1)

where F = (xd− yd)(xd− zd)(yd− zd). We are looking for integers a ≤ b such that c1(D0) =

3d − 1 = a + b and c2(D0) = ab =
(

3d−1
2

)
− d2 + 3

(
d−1

2

)
. Therefore, (a, b) = (d + 1, 2d − 2)

and the freeness of Fd follows from [5, Theorem 2].
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