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Abstract—The increase in awareness of people towards their
nutritional habits has drawn considerable attention to the field
of automatic food analysis. Focusing on self-service restaurants
environment, automatic food analysis is not only useful for
extracting nutritional information from foods selected by cus-
tomers, it is also of high interest to speed up the service
solving the bottleneck produced at the cashiers in times of high
demand. In this paper, we address the problem of automatic food
tray analysis in canteens and restaurants environment, which
consists in predicting multiple foods placed on a tray image. We
propose a new approach for food analysis based on convolutional
neural networks, we name Semantic Food Detection, which
integrates in the same framework food localization, recognition
and segmentation. We demonstrate that our method improves
the state of the art food detection by a considerable margin on
the public dataset UNIMIB2016 achieving about 90% in terms of
F-measure, and thus provides a significant technological advance
towards the automatic billing in restaurant environments.

Index Terms—food tray analysis, food recognition, semantic
segmentation, convolutional neural networks

I. INTRODUCTION

HAVING a poor routine of physical exercises and poor
nutritional habits are two of the main possible causes

of people’s health-related issues like obesity or diabetes,
among others. For these reasons, nowadays people are more
concerned about these aspects of their daily life. Therefore,
the need for applications that allow to keep track of both
physical activities and nutrition habits are rapidly increasing,
a field in which the automatic analysis of food images plays
an important role. Focusing on self-service restaurants, food
recognition algorithms could enable both monitoring of food
consumption and the automatic billing of the meal grabbed by
the customer. The latter is quite relevant because remove the
need for a manual selection of the chosen dishes, allowing to
speed-up the service offered by these restaurants.
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Fig. 1: Examples of images used in traditional approaches to
food analysis (left) and food tray analysis (right).

From the computer vision side, several approaches have
been proposed in order to tackle the problem, most of them
using Convolutional Neural Networks (CNNs) [1], [2], [3],
[4]. Several of the published work consider the development
of methods for food recognition, that is, being able to recog-
nize the dish depicted in a picture in which a single plate
is shown. An important consideration to take into account
when modeling visual food-related information is its fine-
grained nature, meaning that specially in the problem of food
analysis the intra-class variability and inter-class similarity are
hardly making difficult the problem of obtaining robust food
recognition methods.

Several works in the literature have proposed methods
usable for applications related to food intake self-monitoring
[5], [6], [7], in which the user should take pictures of each
meal and the system would consequently track any nutritional
information associated. Other approaches related to the prob-
lem of food intake include a method to assess meal images by
food portion estimation using two images acquired by mobile
devices [8], a model to learn food ingredients from recipes
using state-of-art CNNs as multi-label predictors [9], and a
multimodal multitask deep belief network to learn both visual
information and image-ingredient representation [10].

Instead of applying a personalized tracking, there are several
contexts where social monitoring or recognition is required. A
clear example might be food tray detection in public spaces
[11], [12], where the sample consists of a tray picture that
includes all the food that a user is about to consume (see
Fig. 1) and the model is intended to process all pictures from
any possible users taking food at the same restaurant. The
development of a system able to apply food tray detection
in a controlled, but social and public environment could
enable several applications. The most straightforward context
of applicability would be automatic billing in self-service
restaurants, where the system could solve the need for a person
selecting what the customer grabbed before paying. A different
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Fig. 2: Different tasks involved in our Semantic Food Detec-
tion framework.

application could consider the design of smart trays [13],
which could provide food recommendations depending on
what the customer is selecting. The provided recommendations
could be based on calorie counting, healthy food, specific
nutritional composition, etc. In addition, if we also consider
a system able to log the food consumed by every individual
along time, it could provide health-related recommendations
in a long-term way.

There are several aspects that make the food tray analysis
a challenging problem [12] like: 1) multiple foods placed
on the dishes and placemats, 2) different foods served in
the same dish, 3) visual distortions as well as illumination
changes due to shadows, and 4) objects placed on a tray
that do not correspond to a type of food. On the other hand,
unlike traditional approaches to food analysis, difficulties due
to intraclass variability have less influence on the problem of
food tray detection.

In this work, we propose a novel method that unifies
the problems of food detection, localization, recognition and
segmentation into a new framework that we call Semantic
Food Detection. As Fig. 2 shows, to achieve this target, we
integrate the information extracted by two main approaches:
a) food segmentation and b) object detection trained for food
detection, by taking advantage of the benefits provided by
both algorithms in a CNN framework. The first one, allows
us to determine where the food is in terms of pixel and
bounding boxes. The second one allows us to locate and
recognize the foods present in the images. The Semantic Food
Detection framework combines the information that provides
both algorithms in order to prevent false food detections and
thus provide a better performance.

The contributions of our paper are as follows: 1) a novel
framework that integrates the problems of food detection,
localization, recognition and segmentation; and 2) a novel
approach to address the problem of food tray analysis, that
integrates a fully-convolutional network for semantic segmen-
tation and a convolutional neural network for object detection.
Our method achieves about 90% in terms of F2-score and is
able to outperform the state of the art methods by more than

10% with respect to recall and more than 20% with respect
to mean average accuracy.

The remainder of this paper is organized as follows: Section
II includes an overview of the related work, Section III
presents the proposed Semantic Food Detection approach,
Section IV shows the experimental results and discussion, and
Section V closes with the conclusions and future research.

II. RELATED WORK

Nowadays, there is a great interest in conducting research
oriented to the visual food analysis, emphasizing mainly in its
applicability for monitoring the diet of the user based on the
intrinsic nutritional information contained in food images. In
this field, researchers have focused on several aspects related
to automatic food analysis.

The most basic aspect tackled in the literature is the
binary food detection problem that determines the presence
or absence of food in an image. This problem is also called
food/non-food classification or food detection [14]. The first
approximation was proposed by Kitamura et al. [15], who
through the combination of a BoF model and an SVM achieve
a high accuracy on a tiny dataset of 600 images. An improve-
ment of about 4% is achieved in terms of overall accuracy
using a method based on CNN [14]. From this, numerous
researchers have proposed models based on CNNs either for
feature extraction [2], [3] or for the whole recognition process
[1], [4]. The best results obtained on public datasets with more
than 15.000 images [1], [2] have been reported in [3] through
the combination of CNN GoogLeNet for feature extraction,
PCA for dimensionality reduction and SVM for classification.
As for its applicability, this problem has commonly been
investigated for indexing WEB images [15] or as a pre-
processing method for an automatic food recognition system
[1], [4]. It has also been used to detect bounding boxes in an
image, where food is present [16] and to automate the process
of image cleaning required when gathering the images of a
food dataset [17].

In food analysis, once images containing food are identified,
food recognition is usually the next step to apply. Again, CNN-
based models have been able to progressively improve the
results of food recognition models reaching an accuracy of
about 90% in datasets with around 100 different kinds of food
[18]. In general, the best proposals are based on the winning
models of the ILSVRC challenge [19], and a fine-tuning
process is usually applied either making some architectural
model changes (e.g. addition or removal of layers) [20], [21] or
not [22]. Several datasets have been proposed for tackling this
problem: a) datasets including fine-grained classes (e.g. apple
pie, pork chop, pizza, tiramisu), being the most popular ones
UECFOOD-100 [23], UECFOOD-256[24] and Food-101[25],
and b) datasets based on high-level categories (e.g. dessert,
meat, vegetables, soup), like Food-11 [4]. The best result
when using fine-grained classes was achieved by the WISeR
model [18], which combines the food traits and the vertical
structure of some food, extracted by the standard squared
convolutional kernel and the proposed slice convolutional
kernel, respectively. Regarding the high-level categories, the
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Fig. 3: Detailed workflow of the proposed Semantic Food Detection method: food segmentation and food detection methods
are applied in parallel, before combining them for a final detection on food tray images.

best results were obtained by [26] through a novel proposal
that fuses several CNN models, achieving a 10% improvement
in terms of accuracy with respect to the baseline method
through the combination of the outputs generated by two CNN
models (GoogLeNet and ResNet50).

Most of the approaches focused on food recognition only
exploit the visual content, but they ignore the context. How-
ever, geolocation and other information have also been ex-
plored in the literature for restaurant-oriented food recognition:
on-line restaurant information is used in [27], similarly to [28]
in which nutritional information is also retrieved; whilst the
menu, the location and user images of dished are used in
[29]. On the other hand, Herranz et al. [30] go a step further
since their target is not only to improve both classification
performance and efficiency, but also to better model contextual
data and its relation with the other elements.

To date, most food recognition algorithms and datasets focus
on classifying images that include only one dish [18], [21],
[22]. However, in some cases, there may be more than one dish
in the image and, in some cases, the dish can contain several
kinds of food. Food localization and food segmentation are
two tasks intended to cope with these problems. The former
consists in extracting the regions of the images where the food
is located. Up to our knowledge, the only available approach
that does not require segmenting the food before extracting the
bounding boxes is the one proposed by [16]. The task of food
segmentation consists in classifying each pixel of the images
representing a food. The latest research for food segmentation
proposes an automatic weakly supervised methods [31], [32],
which are based on Deep Convolutional Neural Networks and
Distinct Class-specific Saliency Maps, respectively.

In this paper, we deal with the identification of different
foods placed on a food tray, by integrating the four food anal-
ysis problems mentioned above. To the best of our knowledge,
only one approach with this purpose has been evidenced in the
literature [12]. The authors there introduced an additional food
dataset composed by images taken in a canteen environment
named UNIMIB2016. In addition, they proposed a pipeline
for food recognition that performs classification based on the

candidate regions obtained by combining two separate images
segmentation processes, through saturation and color texture
(JSEG). The best result was achieved by combining global
and local (path-based) approaches using an SVM as classifier.
However, the proposed approach performs the segmentation
based on generic methods rather than learning the best discrim-
inant features between different foods based on the dataset.
Furthermore, it requires several sequential steps to first seg-
ment and then classify, which implies a high processing time.
Instead, our method is able to perform the food segmentation
and detection processes in parallel, allowing to speed up the
processing time.

III. SEMANTIC FOOD DETECTION

This work proposes a method for food tray semantic detec-
tion that integrates food vs non-food semantic segmentation
with food localization and recognition. The pipeline of our
approach is given in Fig. 3 and explained in detail in the
following subsections.

A. Food Segmentation

Food segmentation deals here with the problem of sep-
arating the food and food-related items, from the tray and
other background elements, thus obtaining a binary image.
For this purpose, we apply semantic segmentation techniques
that work in a supervised learning framework, unlike the most
segmentation methods that focus on image properties (e.g.
color or texture). Notice that semantic segmentation could be
used to directly segment the input image into the different
food categories. However, the most recent methods in this field
provide great results with datasets that contain a relatively low
number of classes, such as CamVid [33] with 11 semantics
classes or Gatech [34] with 8. The number of categories used
in food analysis is much higher, thus increasing the difficulty
of the task and providing not so satisfactory results [35].

Fully convolutional networks (FCNs) [35] are the state-
of-the-art in the field of semantic segmentation. FCNs are
composed of convolutional layers only, which means that they
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do not have any fully-connected layer. FCNs take input images
of arbitrary size and produce outputs of the same size by means
of an efficient inference and learning process.

Several FCN-models can be found in the literature applied
to semantic segmentation. One of the most notable examples
with interesting image segmentation results is the Tiramisu
model [36]. As any FCN, Tiramisu is composed of a down-
sampling path and an up-sampling path, which, in this case, are
connected by skip connections. Its architecture is additionally
composed of dense blocks, based on the idea of densely
connected convolutional networks (DenseNets) [37], each one
of them containing a set of concatenated layers.

Given the binary image predicted by the FCN model, the
next step aims at tracing the exterior boundaries of the food
regions, avoiding the holes inside them. In this manner, small
holes that may appear inside regions are discarded in this stage
and thus the regions are homogenized. For this task, we use
the Moore-Neighbor tracing algorithm modified by Jacob’s
stopping criteria [38].

Once the boundaries are traced, the bounding boxes that
contain the regions are determined, thus obtaining a binary
food detection. As small regions may also appear in the
predicted images, and they usually correspond to false pos-
itives, this step also includes their elimination by considering
a threshold criterion. Figure 4 illustrates an example of the
outputs obtained in the food segmentation procedure, including
the binary image provided by the FCN model, the boundaries
extracted and the bounding boxes generated.

Fig. 4: Food segmentation outputs, from left to right: binary
image predicted by the FCN model, boundaries of the regions,
and food bounding boxes.

B. Food Detection

In this work, following the definition of the Object Detection
problem [19], we consider as Food Detection the localization
and recognition of food. For this purpose, we propose re-
training an object detection algorithm for applying food de-
tection instead. YOLOv2 [39], [40] is currently one of the
best object detection approaches in the state of the art. It
allows to predict the bounding boxes and class probability
of any object with a single convolutional neural network in
real time. As for the model, the authors propose a new FCN
called Darket-19, composed by 19 convolutional layers and
5 max pooling layers to tackle the recognition task. This
network is modified for object detection by: 1) removing
the last convolutional layer and adding four convolutional
layers for producing 13x13 feature maps, and 2) providing
a region selection that enables to predict B bounding boxes
at each cell on the output feature maps. The network predicts

five coordinates for each bounding box, among them is the
confidence score to, which represents both the confidence that
the box contains an object and the accuracy at which the object
is believed to be predicted; and c = 1, . . . , C conditional class
probabilities, Pr(Classc|Object). Predictions are obtained
from the last convolutional layer having a size equal to 1× 1
and F filters, where the number of filters is calculated as:
F = (B× (5+C)). From this, it is possible to determine the
class-specific confidence score, CSc for each bounding box as
follows:

CSc =Pr(Classc|Object) ∗ σ(to) (1)

where σ(.) stands for a logistic activation to constrain the
predictions to fall in the range between 0 and 1.

Figure 5 (b) illustrates the bounding boxes and classes
extracted with YOLOv2 using the threshold 1

65 . We can
observe that all dishes have been detected, but we got eight
false detections. Most of the false detections were located
around the plates (duplicate detections) and only one was
completely in the background.

C. Semantic Food Detection

In object detection, one of the most common errors are false
positives, which can be classified based on the type of error: lo-
calization error, confusion with similar objects, confusion with
dissimilar objects, and confusion with background [41]. Our
Semantic Food Detection proposal focuses on reducing two of
the most common errors of object detectors [39]: localization
errors, specifically those corresponding to duplicate detections;
and errors produced by the confusion with the background.
For this purpose, we propose the following procedure that
integrates the detection and segmentation algorithms:

1) Background Removal: The first step involves the appli-
cation of both boundaries extracted (contour and bounding
box) from the Food Segmentation procedure in order to
remove the background detections. Let Y = {bY1 , . . . , bYN} be
the set of bounding boxes obtained with the detection method,
S1 = {bS1 , . . . , bSL} and S2 = {cS1 , . . . , cSL} the set of bound-
ing boxes and contours extracted by the Food Segmentation
method, respectively. Considering that each element belonging
to the sets named above can be considered as a set of points
(x, y) that defines a polygon, we calculate the probability of a
bounding box, bYi to belong to the background Bkg as follows:

Pr(Bkg|bYi ) = min(CSc(bYi ),max(Pr(S1|bSi )Pr(S2|bYi ))

where CSc(bYi ) is the complement of the confidence score
(1 − CSc(bYi )) for the i-th detection, Pr(S1|bYi ) denotes the
probability that bYi is a false detection based on the extracted
boxes (S1):

Pr(S1|bYi ) = min
j=1,...,L

|bYi ∩ bSj |
|bYi |

where |.| stands for the cardinality of a set of pixels corre-
sponding to an image region, and Pr(S2|bYi ) the probability
that bYi does not intersect with any contour in S2:
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(a) (b) (c) (d)

Fig. 5: Semantic Food Detection outputs: a) original image, b) the results of the food detection with YOLOv2, c) the results
of applying Background Removal procedure to the bounding boxes detected, and d) the results after applying Non-Maximum
Suppression to the remaining bounding boxes. Note that blue bounding boxes stand for correct food detections, and orange
for false food detections.

Pr(S2|bYi ) = min
j=1,...,L

Ind(bYi ∩ cSj = ∅)

where Ind(∗) is an indicator function with value 1 if the
condition is true, and 0 otherwise.

Bounding boxes with a probability higher than 50% to be
background (Pr(Bkg|bYi ) > T, T = 0.5) are considered to be
false detections, and are therefore removed.

Figure 5 (c) illustrates an example of the results obtained
after applying this procedure. As it can be observed, false
detections around the objects of the class mandarine have been
removed.

2) Non-Maximum Suppression: The second step involves
the application of a greedy procedure to eliminate dupli-
cate detections by non-maximum suppression [42]. Once the
Background Removal is applied, the remaining detections
Y ′ ⊆ Y are sorted in descending order by the confidence score
CSc(b

Y
j ) and grouped into C sets Y 1, . . . , Y C ⊂ Y ′, where

C is the number of classes. Then, for each Y c, c = 1, ...C,
we greedily select the highest scoring bounding boxes while
removing detections that are lower in the ranking and their
maximum intersection with respect to the i-th previously
selected bounding boxes is more than 50%.

Figure 5 (d) shows that non-maximum suppression proce-
dure is able to eliminate the remaining false detections while
keeping the foods well localized and classified.

IV. EXPERIMENTAL RESULTS

In this section, we first describe the dataset used to evaluate
the proposed approach, which is composed of images taken
in self-service restaurants. Then, we describe the evaluation
measures used and present the results obtained with the
different methods and model configurations.

A. Dataset

UNIMIB2016 [12] is a food dataset that has been collected
in a self-service canteen. Each image includes a tray with some
food placed both on plates and placemats. The acquisition
process was performed on a semi-controlled environment
using a Samsung Galaxy S3 smartphone. As a result, images
acquired have a resolution of 3264 × 2448 in RGB, and

present visual distortions and variable illuminations, making
them challenging for any task of automatic food analysis.

The dataset is composed of 1.027 images that include a total
of 73 food categories. Among them, only 1.010 images and
65 categories were used for experimentation, as suggested in
[12] due to the low number of samples of the categories not
considered. For experimental purposes, the dataset has been
split in training and test sets: the former contains 650 images
(≈ 64%), whilst the latter contains 360 (≈ 36%).

The annotations included in the dataset contain, for each
food item: the polygon defining its boundaries, the bounding
box and the food label. Figure 6 illustrates an image of the
UNIMIB2016 dataset with its corresponding annotations.

Fig. 6: A representative sample of the UNIMIB dataset [12]:
original image (left) and food annotations (right).

B. Food Segmentation

Metrics. In order to evaluate the different food segmentation
approaches, several performance measures have been used.
First, two pixel-wise metrics commonly used in semantic
segmentation problems have been considered [35]:
• Global pixel accuracy. The pixel-wise accuracy computed

over all the pixels of the dataset.
• Intersection over Union (IoU). Also known as Jaccard

index, it is defined as:

IoU(c) =

∑
i ti == c ∧ pi == c∑
i ti == c ∨ pi == c

(2)

where c is a class, i represents all the pixels of the dataset,
ti are the target labels, and pi are the predicted labels.
Note that this metric is calculated for each single class
c, and then the mean across the classes is computed.
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With the main aim of making a fair comparison with the
results presented in [12], three region-based metrics have been
also considered [43]:
• Covering. The covering of the ground truth (GT ) by the

segmented (S) images measures the level of overlapping
between each pair of regions (R and R′):

C(S → GT ) =
1

N

∑
R∈GT

|R| ·max
R′∈S

|R ∩R′|
|R ∪R′|

(3)

where N is the number of pixels of the image.
• Rank index. It compares the compatibility of assignments

between pairs of elements in the ground truth (GT ) and
the segmented (S) images:

RI(S,GT ) =

1(
N
2

) ∑
i<j

[I(ti == tj ∧ pi == pj) + I(ti 6= tj ∧ pi 6= pj)]

(4)
where

(
N
2

)
is the number of possible unique pairs among

the N pixels of each image, and I is the identity function.
• Variation of information. It measures the distance be-

tween the ground truth (GT ) and the segmented (S)
images in terms of their average conditional entropy:

V I(S,GT ) = H(S) +H(GT )− 2 ·MI(S,GT ) (5)

where H and MI are, respectively, the entropy and the
mutual information. In this case, the lower the better.

Notice that these three metrics are calculated for each single
image, and then the mean across images is computed.

Experimental setup. Regarding the methods used for se-
mantic segmentation, we trained three networks based on the
Tiramisu model [36]:
• Tiramisu56: 56 layers, with 4 layers per dense block and

a growth rate of 12.
• Tiramisu67: 67 layers, with 5 layers per dense block and

a growth rate of 16.
• Tiramisu103: 103 layers, with a variable number of

layers per dense block (from 12 to 4 in the downsampling
path, and from 4 to 12 in the upsampling) and a growth
rate of 16.

Additionally, the Classic Upsampling, which uses standard
convolutions in the upsampling path instead of dense blocks
[44], has been also considered for comparative purposes.

All the models were initialized with HeUniform [45] and
trained with RMSprop [46], with an initial learning rate of
1e− 3 and an exponential decay of 0.995 per epoch. For the
pre-training, we used crops of 224 × 224 and batch size 3.
Then, the models were fine-tuned with full size images and
batch size 1, using a learning rate of 1e − 4. The outputs
were monitored using the global accuracy and the IoU, with a
patience of 100 during pre-training and 50 during fine-tuning.

Table I includes the results achieved with the four networks
used for semantic segmentation, as well as with the two
segmentation methods reported in [12]: the JSEG algorithm
[47], and the segmentation pipeline proposed by Ciocca et
al. [12]. With respect to the pixel-wise measures, all the net-
works produced competitive results (over 0.96). The Tiramisu

models outperformed the Classic Upsampling, thanks to the
dense blocks and despite a lower number of parameters.
In general terms, the Tiramisu model benefits from having
more parameters and depth. However, in this binary problem
the Tiramisu103 produced overfitting whilst the Tiramisu67
achieved the best results, with a good trade-off between depth
and performance. Regarding the region-based measures, all the
FCNs provided better results than the two approaches reported
in [12], which demonstrated the adequacy of the proposed
methods for the problem at hand.

C. Semantic Food Detection Performance

Metrics. In order to evaluate food recognition and local-
ization, we chose three standard measures commonly used in
multi-class object recognition problems:
• Recall (Rec). The proportion of true positives detected.
• Precision (Pre). The proportion of the true positives

against all the positive results.
• Fβ-measure. A weighted average of precision and recall.

We use β = 2 (F2) to place more emphasis on wrong
classified or undetected foods.

For comparative purposes, the measures used by Ciocca et
al. [12] were also considered:
• Standard Accuracy (SA). It is equivalent to the recall.
• Macro Average Accuracy (MAA). The proportion of

correctly classified foods, but taking into account the class
imbalance of the dataset:

MAA =
1

C

C∑
c=1

TPc
NFc

, (6)

where C is the number of classes, TPc is the number of
correctly classified foods of class c, and NFc is the total
number of foods of class c.

• Tray Accuracy (TA). The percentage of trays for which
all the foods contained are correctly recognized:

TA =
1

T

T∑
t=1

Ind(
TPt
NFt

= 1), (7)

where T is the number of food tray images, TPt is the
number of correctly classified foods on the tray t, and
NFt is the total number of foods on the tray t.

Experimental setup. As for the experimental setup,
YOLOv2 was pre-trained on the ILSVRC dataset. Following,
we adapted it by changing the output of the model to 65
classes and applied a fine-tuning using UNIMIB2016 images.
For training the model, we used the framework Darknet [48].
The models were trained during 4000 iterations with a batch
size of 32, and a learning rate of 1e−3. In addition, we applied
a decay of 0.9 to the iterations 3000 and 3500.

Once YOLOv2 training is completed, the next step is to
determine the confidence threshold to be used during localiza-
tion and recognition of the food. A low confidence threshold
implies a greater number of detections, which maximizes the
likelihood that all the foods present in the image will be
detected. At the same time, it also increases the chances
of obtaining false detections. Taking into account that the
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TABLE I: Results obtained by our Food Segmentation approach in test set.

Pixel-wise Region-based
No. parameters Global accuracy Mean IoU Covering Rank index Variation of info.

JSEG [47] - - - 0.385 0.389 3.106
Ciocca et al. [12] - - - 0.916 0.931 0.429

Classic Upsampling 12.7M 0.991 0.962 0.984 0.982 0.125
Tiramisu56 1.4M 0.992 0.967 0.986 0.984 0.112
Tiramisu67 3.5M 0.993 0.971 0.987 0.986 0.105
Tiramisu103 9.4M 0.992 0.968 0.986 0.984 0.111

TABLE II: Results obtained by YOLOv2 and the proposed
approach in training set using different confidence thresholds.

1/65 1/32 1/16 1/8 1/4 1/2

Y
O

L
O

v2
[4

0] Pre 0.511 0.687 0.832 0.926 0.968 0.994

Rec 0.999 0.998 0.997 0.995 0.988 0.966

MAA 0.999 0.997 0.995 0.992 0.981 0.952

TA 0.997 0.992 0.988 0.982 0.960 0.895

Pr
op

os
ed

Pre 0.918 0.952 0.973 0.984 0.991 0.996

Rec 0.998 0.997 0.996 0.994 0.987 0.965

MAA 0.999 0.999 0.996 0.994 0.981 0.951

TA 0.995 0.992 0.988 0.982 0.957 0.894

confidence defined by the detection method considers two
factors (the fit of the bounding box to the object and the
predicted class), we chose the minimum threshold according
to the number of classes. Given that the target dataset has
65 classes, the minimum threshold chosen is 1

65 . With this
value, it can be interpreted that the bounding boxes extracted
will have a recognition probability greater than a random
value when the detected bounding box fits the object perfectly.
Following the interpretation given, we chose 1

2 as maximum
threshold, which implies a high probability, at least 50%, that
the localized object is correctly classified.

Table II shows the results obtained in the training set
using different confidence thresholds. The tested thresholds
range from the minimum and maximum values mentioned
above. As we can observe, when the threshold increases,
the precision also increases considerably, but the rest of the
indicators are affected. When comparing the results obtained
between YOLOv2 and the proposed method, for the minimum
threshold, it can be observed that a significant improvement
in precision is obtained (≈40%) with only a slight decrease in
the other indicators (0.1%-0.2%). Another interesting aspect to
highlight is when comparing the results using the maximum
threshold, in which case the results are practically identical
for both methods. This means that, for a threshold of 1

2 ,
there are almost no false detections that can be reduced with
our procedure. For the remaining experiments, the minimum
threshold was chosen for two main reasons: 1) it obtains the
best results for the Recall, MAA and TA indicators; and 2)
it allows us to discard the false positives that appear when
combining the results with the food segmentation procedure.

The Semantic Food Detection results on the test set are
shown in Table III. First, it should be highlighted that our

proposal outperforms the food recognition, with respect to
the state-of-the-art method (Ciocca et al. [12]) in a 12.4%
for Recall and 20.9% for MAA. Regarding TA, a decrease of
2.5% is observed. However, we consider that this measure
does not reflect how well the recognition works mainly due
to the imbalance in the quantity of food in the trays, which
varies between 1 and 9 (see Fig. 7 (a)), as well as because
TA measures the amount of food trays in which all positive
samples have been correctly predicted, but does not penalize
when there are false positives.

(a) (b)

Fig. 7: a) Distribution of the trays according to the number of
foods that are placed in them, and b) Results in terms of Recall
(blue) and TA (orange), for each item of the distribution.

In order to apply a complete comparison, we also repli-
cated the evaluation proposed by [12], in which the authors
considered a perfect segmentation using the ground truth (GT)
and applied their detection method (bottom section of Table
III). In our case, there is no significant improvement with
respect to the use of the proposed semantic segmentation,
because our proposal considers the integration of the extracted
information with the segmentation to refine the predictions
already obtained by the object detection method. In contrast,
Ciocca et al. [12] performed the recognition directly on the
segmented objects. Comparing to the results obtained in [12],
we can see that their method improves significantly in terms
of Recall using the GT for segmentation, achieving to match
our results. However in terms of MAA, despite improving its
performance, our results are still about 16% better. A low MAA
with a high Recall implies that the classifier has a strong bias
towards the classes that have a greater amount of instances.
Therefore, even if we consider a perfect segmentation to
contrast the results, our proposal keeps a better performance
in the recognition and, in particular, a lower bias towards the
dominant classes.



8

Fig. 8: Some samples of the results obtained using the proposed approach, from left to right: food trays with all the objects
correctly detected (blue), common false detections (orange), and misclassified objects (red).

TABLE III: Tray Food Analysis Results, from top to bottom:
results of YOLOv2 re-trained for food detection, results of the
state-of-the-art method and our proposal, and results achieved
considering the ground-truth segmentation to perform the
recognition. The best results are in boldface.

F2 Pre Rec MAA TA

YOLOv2 [40] 0.786 0.489 0.927 0.850 0.769

Ciocca et al. [12] - - 0.798 0.636 0.789

Proposed 0.905 0.843 0.922 0.845 0.764

Mezgec et al. [17] - - 0.864 - -

Ciocca et al. [12] - - 0.891 0.684 0.871

Proposed 0.911 0.857 0.925 0.849 0.772

The results obtained with the proposed approach based
on the number of objects to be classified per food tray is
shown in Fig. 7 (b). As expected, the TA measure tends to
decrease as the number of objects increases, however there is
no clear trend for the Recall. One of the lowest results in both
measure is obtained in trays containing 6 foods, whereby we
can determine that the errors correspond to 17 misclassified
objects along 12 trays, that is, an average error of 1.42 objects
per incorrectly classified tray. Despite having a low TA (0.478),
the results are good considering the Recall obtained, since it
is preferable to minimize the number of errors per tray if we
think of a semi-automatic food billing system, in which the
operator would make minor corrections if necessary.

When reviewing the overall mean of errors by misclassified

trays, we can see that our classifier has an average of 1.09
errors along 85 trays classified incorrectly, compared to [12]
that has an average of 3.33 errors along 76 trays classified in-
correctly. That said, even though the baseline method achieves
to completely classify 9 trays more than our proposal, due
to its overall performance, the misclassified trays have about
three times as many objects wrongly classified per tray.

Finally, Figure 8 shows some examples of the results
obtained by means of our proposed Semantic Food Detection
method. In general terms, the classifier achieves a good perfor-
mance in a variety of food items, where the main difficulties
encountered are due to the following issues: 1) unlabeled food
items, because they are not part of the 65 classes (eg. fresh
cheese) or because they are not belonging to the same tray
and that have been recognized by our algorithm (eg. pane),
2) the same food items placed very close (eg. mandarine),
3) foods ignored because they are not clearly distinguishable
whether correspond to a meal or not (eg. pudding), and 4)
confusions with classes corresponding to different kinds of
cakes (eg. torta cream), meats, pastas, among others.

V. CONCLUSION

In this paper, we presented a novel system that performs
Semantic Food Detection, which combines semantic segmen-
tation, localization and recognition techniques. We applied
this methodology to the problem of food tray analysis in
self-service restaurants. More precisely, we integrated several
techniques: 1) food/non-food semantic segmentation through
FCNs, 2) food detection, which includes localization and
recognition, and 3) non-maximum suppression to avoid the
occurrence of false detections. As for the results, our proposal
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significantly outperforms the state-of-the-art in terms of recall
and mean average accuracy.

Another aspect to emphasize is that our model is less
sensitive to class imbalance, and also the mean of errors per
foods placed on a tray is about 1, when the classifier does
not achieve to recognize the whole tray well. The latter is
quite relevant if the Semantic Food Detection is applied in
a semi-automatic billing system, in which the cashier would
have to make only small changes to generate the final bill, and
in this way to streamline the process involved in a self-service
restaurant of grab a meal, pay, and eat. Furthermore, our
semantic food detection approach takes less than 0.5 seconds
to predict all foods present in a image, considering the use of
a personal computer with a low performance GPU (GeForce
940MX).

Our future research is focused on semantic detection of food
ingredients and completely automating the self-service billing
by integrating the restaurant menu by geolocalization.
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