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Introduction

1.  NON-COMMUNICABLE DISEASES

1.1 Global Prevalence

Non-Communicable Diseases (NCDs) are chronic diseases that result from a
combination of genetic, physiological, environmental and behavioral factors [1]. The main
types of NCDs are cancer, cardiovascular and cerebrovascular diseases, chronic obstructive
pulmonary disease (COPD), asthma and metabolic diseases (diabetes). NCDs are a major
global health problem of the 21st century [1]. They are estimated to represent 63% of global
annual deaths according to the World Health Organization (WHO) [2, 3]. They are known to
be by-and-large preventable with the appropriate management of their principal risk factors at
an individual level throughout life: tobacco smoking, alcohol abuse, physical inactivity and
unhealthy dieting. Specifically, the WHO estimates that up to 40% of cancers and 75% of
heart diseases, stroke and type 2 diabetes could be prevented. Unfortunately, 80% of NCDs
deaths occur in low- and middle-income countries [2] where individuals lack preventive
information, early detection, access to healthcare and the economic resources to minimize the

risk factors or afford treatment.

1.2 NCDs are Complex and Heterogeneous Conditions

NCDs are caused by complex gene-environment interactions that develop over years or
decades (thus are associated with aging) and often co-exist in the same individual as they
share risk factors [4] and pathological mechanisms (leading to what is known as
multimorbidity) [5]. These cooccurrences lie at the heart of NCDs and make clear-cut singular
diagnostics difficult. Their pathobiology is also complex, heterogeneous and may lead to
unspecific symptoms. For most NCDs, current available treatments are not able to cure the

condition, but rather only alleviate symptoms and slow the disease progression.

NCDs often share major risk factors [4]. Therefore, multimorbidity may be explained by
the hypothesis that the progressive abnormal transformation of a biological system (e.g.
metabolic or respiratory) that lead to a dysfunctional long-lasting state with observable

symptoms is likely to also affect other parts of the organism in its course or to be caused by a




common denominator (e.g. systemic inflammation or impaired immune response, or common

susceptibility genes [6]).

2. BIOMEDICAL RESEARCH OF COMPLEX DISEASES

2.1 Historical Perspective

The continuous ageing of the general population worldwide over the last two centuries
[7] has caused an increase in the overall incidence of NCDs since they are more prevalent in
older individuals. Life expectancy in fact rose from a worldwide average of 32 years in 1850,
to 48 years in 1950 and is now, as of 2018, over 70 years (Figure 1), and is associated to three
cooccurring factors: the worldwide expansion of modernization and industrialization, general
lifestyle improvements in high-income countries (such as overall reduced tobacco smoking

[8] and less physical strenuous jobs), and unprecedented progress in experimental medicine.
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Figure 1. Progress of worldwide life expectancy. Reproduced from https://ourworldindata.org/life-expectancy

Significant scientific advances in our understanding of health and (chronic) diseases

since the nineteenth century [9] have been translated into numerous novel treatments,
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medication, drugs, surgical procedures and preventive measures that drastically reduced
maternal, infancy and elderly mortality (Figure 2). A non-exhaustive list of these innovations
[9] range from Louis Pasteur and Robert Koch germ theory of disease in 1870s, to a host of
first vaccines in the second half of the 19th century (for cholera, rabies, plague, etc.), as well
as the discovery of insulin for diabetes in 1922, the first pacemaker by Paul Zoll in 1952, the
first kidney transplant by Dr Jose E. Murray in 1954, the HIV discovery in 1983, the first
released draft of the human genome in 2003, the creation of embryonic stem cells from
human skin cells in 2007, and the 2014 first FDA-approved US clinical trial for a wearable
artificial kidney (Blood Purification Technologies Inc.). The rate of innovations is
incrementing swiftly, as corroborated by the double-exponential increase of the biomedical
literature in the last 20 years (Figure 2).
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Figure 2. Growth in the Biomedical Literature, 1986-2005, reproduced from ref. [10]

This growth is fueled by increasing worldwide funding for biomedical research
(estimated in 2012 at 268 billion of U.S. dollars [11]), and, as mentioned, driven by
technological advances and breakthroughs (e.g. internet, which has enabled the fast exchange
of information and facilitated scientific collaborations, as well as software and hardware
improvements in terms of availability, versatility, power and cost). Nevertheless, all these

progressive efforts still remain insufficient as most chronic diseases do not yet have a cure.
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2.2 Biotechnological Revolution

Over the last three decades, biomedical research has undergone a fast-paced revolution
in methods and scope. Experimental medicine research of NCDs now routinely collects
extensive samples data at several biological levels, termed omics, thanks to novel arrays,
sequencing and imaging technologies [12], that commonly are genetic (genomics), messenger
RNA (transcriptomics), proteins (proteomics) and metabolites (metabolomics). The first
international milestone enabled by the interleaving of biology and technology is arguably the
Human Genome Project (HGP), which started in 1990 and was declared completed in April
2003 with the release of the first human complete DNA sequence (genome), consisting of 3
billion base pairs, for a total cost of 2.7 billion dollars. Since then, incredible advances in
technology and cost reduction have led to the pursuit of the “1000 dollars Genome”. It is now
a reality in the strict sense if considering only the cost of sequencing. The cost of interpreting
the data, however, is still several order of magnitudes higher [13, 14].

Because of the increase in biomedica data size and complexity, many fields of expertise
are now necessary to the research efforts on NCDs. The cost of studies is also increasing,
partly because the higher the number of biological (omics) determinations characterized, the
more samples are required to separate signal from noise and reach statistical significance.
Even in the simplified case of a single omic analysis, detecting variants (e.g. genes) that have
a different average expression between two conditions (e.g. healthy versus NCD) requires
many samples because of the high number of measurements (e.g. up about 10000-50000
genes per sample for a routine transcriptomics array). In statistical terms, because these
measured biological variables tend to follow a (normal) distribution of substantial variability,
the probability (p-value) that some of them will be significantly differentially expressed by
chance (false positives) between any two groups of interest is not negligible. Fortunately, p-
values calculations can be corrected for multiple testing [15], e.g. controlling for the relative
proportion of false positives to true positives. However, to reach statistical significance, the
sample size must be in the order of tens or hundreds of samples for the most complex chronic
conditions (or even thousands for exhaustive multi-omics or genome-wide association
studies). Collaborations between scientists and research groups have become paramount to

cover the scientific expertise and reduce the research costs of these complex studies.
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2.3 Systems Medicine, Biostatistics and Bioinformatics

It is plausible to conceptualize human health and NCDs as emergent properties of a
complex, non-linear, dynamic multilevel biological system. The existence of heterogeneity as
an intrinsic property of a (diseased) biological system implies that the system processes are
sufficiently complex for its emergence, and that no isolated part of the system can fully grasp

the heterogeneity on its own [16].

As such, the ongoing scientific approach to better understand NCDs like COPD lies in
the analysis of the interaction between the many biological components upon which they rest,
in an attempt to relate the observed clinical symptoms to their underlying biological (and
environmental) systems’ parts. These components, or variables, exist as useful abstractions at
different conceptual levels, for example organs at the physiological level, proteins at the
cellular levels, genes at the (epi-)genetic level, diet/exercise/pollution at the environmental

level and so on and so forth [17].

That being said, determining the isolated state of each of these components (e.g.
whether an organ is functioning properly or not, how much a single protein is expressed, how
healthy the patient’s diet is, etc.) fails to capture the disease processes and symptoms,
because, as stated, they are emergent [16] properties of the mechanistic interactions between
the variables, and not of the isolated variable states by themselves. Systems medicine thus
places the dynamic interaction of the parts in a holistic system at the centre of the research
approach. Conceptually diseases are understood as abnormal states of a dynamic network of

(biological and environmental) interactions.

This NCDs research approach then requires the expression of as many relevant
biological components as possible, plus their dynamic interaction, which appears daunting
when considering the sheer number of potentially involved genes or genetic variants alone.
That is precisely, however, what the exponential progress of (bio)technologies in the last
decades has made possible. In parallel, the computational tools required for the task, i.e.

bioinformatics and biostatistics algorithms able to process and extract the relevant variability
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and processes out of the data, are also the subject of an incredibly fast progress in order to
yield powerful mechanistic or predictive models. Network correlation analysis in particular is
a novel research approach that is able to unravel the complexity of biological systems [12].
Other useful methods exist, based either on Bayesian statistics, machine learning or matrix

factorization [12].

These emerging tools can be divided into biased (also termed supervised) or unbiased
(unsupervised) algorithms. Biased algorithms use a priori hypothesis about the data, such as
which are the relevant clinical subgroups of a disease and which are the known relationships
between variables (e.g. protein-protein interactions), and then identify the variables and
mechanisms that best distinguish and describe these subgroups, while unbiased algorithms
look for (combinations of) variables that best capture the variance of the data and attempt to
cluster patients without leveraging any prior knowledge of their condition. Both analytical
strategies have strengths and drawbacks (detailed in table 3 of my systems biology review
[12]) that have to be considered when deciding which method is best suited for a particular

research question and dataset.

3. COPD: A MAJOR NON-COMMUNICABLE DISEASE

3.1 Epidemiology and Clinical Presentation

Chronic Obstructive Pulmonary Disease (COPD) is currently viewed as a broad
diagnostic term that may encompass a continuum of subtypes each characterized by a distinct
functional and pathobiological mechanism (endotypes [18]) and is characterized by persistent

respiratory symptoms and airflow limitation [19].

COPD global age-standardised prevalence is 9.23% (95% credible interval [Crl]:
8.16%-10.36%) in men and 6.16% (95% Crl: 5.41%-6.95%) in women [20], although it may
equalize in the near future, as women are now more exposed to indoor air pollution (from
low-income countries biomass fuel used for cooking and heating) [20]. Females appear to be
more susceptible to the harmful effects of smoking on lung function [21], and COPD-related

deaths in U.S. women have now surpassed those among U.S. men [22].
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COPD frequency is increasing worldwide and is projected to be by 2020 the third
leading cause of death worldwide. It also represents a major financial burden on countries
economies. Direct US healthcare cost was estimated at 29.5 billion dollars in 2010 and is
projected to reach 49 billion by 2020 [19, 23], which includes treatment, prevention, detection
and rehabilitation. The inability to work cost caused by the disease morbidity and mortality

also adds indirect costs to the economy.

Exhaustive and updated diagnostics criteria are established by the Global Initiative for
Obstructive Lung Disease (GOLD), which publishes yearly a comprehensive guide for health
care professionals [19]. The report also covers treatment recommendations based on severity
and disease progression, prevention and management recommendations, medication and
therapies review, as well as comorbidities information. The GOLD diagnostic criteria keep
updating slightly as clinical research progresses [24]. Additionally, COPD was found to be
both regularly misdiagnosed [25] and under-diagnosed [26].

Available treatment options for COPD significantly improve the patient’s quality of life,
but they arguably mostly operate at the symptoms level, only slow the progression of the
disease and are not yet able to restore the lung biological system to a normal healthy and
optimal state. Current therapies are not based on biomarkers of specific underlying
pathological processes (endotypes) because these are still unknown [12]. In order to provide
more effective and personalized therapeutic interventions, as well as to decrease the costs
associated to chronic airway diseases, a better understanding of their pathobiology is needed
and appropriate patient stratification is required.

3.2 COPD Risk Factors

COPD has been traditionally considered a self-inflicted condition caused by tobacco
smoking, that induces an abnormal inflammatory response and accelerates the normal decline
of lung function with age [27]. This paradigm is now challenged since recent reports showed
that half of patients with spirometrically defined COPD at 60 yrs. of age never had a normal
peak lung function in early adulthood [28] (Figure 3), pointing to a dynamic heterogeneity of
the natural history of COPD. Furthermore, it is now estimated that 25-45% of COPD patients
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never smoked [29]. Of note, however, approximately 75% of individuals with a low peak

FEV1 in early adulthood do not develop COPD.
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Figure 3. Lung function trajectories leading to COPD reproduced from ref. [30]

More specifically, the following COPD risk factors have been proposed:

Tobacco Smoking and Age

COPD incidence increases with age and is typically diagnosed in individuals older than
40 y.o. (on average at 64 y.o. [31, 32]) who have accumulated years of smoking (commonly
measured in pack-years, that is the number of packs of cigarettes smoked per day multiplied
by the number of years of smoking). It is estimated that up to 50% of smokers develop COPD
[33]. Inversely, currently up to one third of never-smokers meet the COPD criteria [34]. It is
worth mentioning that the relative prevalence of COPD never-smokers will increase in
developed countries since the proportion of smokers in the general population is decreasing.
The effect of smoking is very variable and is tied to the host genetics and immune system [35,
36].
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Occupational Exposure to Dusts and Chemicals or to Biomass Fuel

Prolonged exposure to toxic particles for the lung is estimated to be responsible for 15-
20% of COPD diagnosis [37]. They are mostly linked to either workplace environments that
involve dust, vapours, chemicals, fumes, or household environments that make use of wood
smoke, coal or coke open-fires [38]. Both conditions are more prevalent in developing

countries due to less stringent protections of employees and less household regulations.

Air Pollution

As mentioned, short-term exposure to air pollution intensifies COPD exacerbations
[39], and it generally has adverse effects on COPD symptoms. The influence of chronic
exposure to air pollution on COPD is still unclear, although recent cross-sectional studies (on
healthy individuals) suggest that it is related to delayed pulmonary function growth in
children, and to a faster decline of lung function in adults [40].

Chronic Respiratory Infections

Infections like tuberculosis or HIV are unfortunately still endemic in low and middle-
income countries. A meta-analysis evaluates that tuberculosis may double the odds-ratio of
chronic airflow obstruction [41], and HIV is a similar risk factor [42]. The inverse is also true
as COPD exacerbates the sensitivity to tuberculosis and mycobacterial infections [43, 44]. A
history of severe medical illnesses in childhood like respiratory infections and HIV increases
COPD risk as well [45].

Genetics

Only about 20% of smokers develop COPD [46], and inversely there is a minority of
never-smokers that fit the COPD diagnostic criteria. There is transgenerational association of
COPD diagnostic within families [47], so it is likely that genetic (and environmental) factors
play a significant role in disease susceptibility. The only endotype of COPD in which the
underlying pathobiology is known is due to mutations in the SERPINA1 gene, that cause
alphal-proteinase inhibitor (A1PI1) enzyme deficiency [48], and is considered as a different
disease entity. Mutations in the SERPINAL gene account for only 1 to 3% of COPD patients.
Since 2009 several genome-wide association studies (GWAS) and meta-analysis have been

conducted in several cohorts that include COPD patients [49-52]. Overall these studies have
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contributed to the identification of several genomic regions that are associated with COPD at
genome-wide significance, including FAM13A, HHIP, CHRNA3/CHRNAS/IREB2, and a
region on chromosome 19. Several other genes and gene regions, including ADAM19, FGF7,
and SP-D showed evidence for association to develop COPD in smokers. Furthermore,
several genes have been associated to the heterogeneity of COPD, for example: i) CHRNA3/5
mutations are associated with cumulative smoking exposure (pack-years), emphysema and
airflow limitation [49], ii)) HHIP - although not associated with pack-years - is related to
FEV,/FVC ratio, lean body mass and COPD exacerbations in the ECLIPSE cohort [49]; iii)
BICD1 SNPs are associated to the presence of emphysema as assessed by radiologist scores
[53]. Since variants in BICD1 are correlated with telomere length [53], this observation
suggests accelerated aging as a potential mechanism involved in the development of
emphysema [54, 55]. It was also found that a significant proportion of emphysema patients
have a genetic predisposition for abnormally small telomeres that affects alveolar cells [54],
on genes TERT, TR, or NAFL1 [56].

Microbiome

Perturbations of the microbiome is an emerging risk factor for both COPD initiation and
development [57]. The common characteristic observed in the recent COPD studies is a loss
of microbiotic diversity that is correlated to COPD severity, as seen in other non-lung

pathological conditions.

Diet

The comparison of dietary elements in terms of preventive and protective effects is
generally difficult to investigate due to the lack of relevant longitudinal cohorts data. A 2010
Study of the Hertfordshire Cohort showed by regression analysis that a “prudent” dietary
pattern (high consumption of fruit, vegetables, oily fish and wholemeal cereals) is positively
associated with FEV1 and FVC in both sexes, and that in males specifically a higher
“prudent” pattern score is linked to a higher FEV1/FVC and a lower prevalence of COPD,
with associations in males stronger in smokers than non-smokers [58]. A 2016 Spanish cross-
sectional study analysis of 207 adult smokers without respiratory disease identified three
major dietary patterns from PCA analysis of semi-quantitative food-frequency questionnaire,

and then derived from regression analysis that the Mediterranean-like pattern appears to be
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associated with preserved lung function, while the Alcohol-consumption pattern and the
Westernised pattern are associated with impaired lung function (reduced FEV1, FVC or
FEV1/FVC), especially in women [59]. Similarly in 2017, Kaluza J. and colleagues add
evidence that high consumption of fruits and vegetables is correlated with reduced COPD

incidence in ever-smokers [60], possibly linked to the consumption of antioxidants.

3.3 COPD Heterogeneity

As described above, COPD is currently defined by the presence of chronic airflow
limitation [19]. Yet, from the clinical and pathological points of view, we now know that
airflow limitation is only one component of COPD [61]. The disease has many other elements
that contribute to its clinical presentation, both in the lungs and outside them [62]. As a result,
it is often said that COPD is a “complex and heterogeneous disease” [63]. However, in this
setting, it is important to define precisely the meaning of words. “Complex” means that COPD
has several components which display nonlinear interactions between them, whereas
“heterogeneous” indicates that not all of these components are present in all patients or, in a
given patient, at all-time points (i.e., there is dynamic heterogeneity [64]). Several examples
of this complexity and heterogeneity will be introduced, with special emphasis on
exacerbations and comorbidities as they are two aspects that have been investigated in this
PhD.

Emphysema and Chronic Bronchitis

The clinical manifestation of COPD can result from a mixture of two pathological
processes, emphysema and chronic bronchitis (Figure 4), whose relative proportion vary
greatly from patient to patient, evidencing the heterogeneity of the disease.

Emphysema can be broadly defined as impaired alveoli structure (or parenchymal
destruction). Alveoli are the tiny air sacs localized in the lungs at the end of the smallest air
passages (bronchioles), where the lungs and the bloodstream exchange carbon dioxide and
oxygen. Chronic bronchitis refers to inflammation of the bronchial tubes that carry air to and
from the alveoli, and is associated with daily cough and mucus production. The presence of
emphysema is usually diagnosed by CT scan, and/or impaired diffusing capacity of the lungs
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for carbon monoxide (DLCO) [65, 66]. Different pathobiological mechanisms have been
postulated for both conditions such as protease/anti-protease imbalance, apoptosis, abnormal

immune response and abnormalities in telomeres [67].

Normal Obstructive Normal Emphysema
chronic bronchitis

Figure 4. Emphysema versus Chronic Bronchitis. Reproduced from https://
www.livingwellwithcopd.com/en/what-is-copd.html

COPD Exacerbations (ECOPD)

ECOPD are acute episodes of worsening of the symptoms [19], whose frequency is
variable and correlates with the disease stage [32]. The episodes are clinically defined by
significant lung function alterations, acute dyspnoea or respiratory failure that require special
management and hospitalization for the most severe instances. Early signs of exacerbations
include feelings of unusual breathlessness, noisy breathing and worse coughing, chest pains,
abnormal difficulty in sleeping or eating, changes in skin or nail colour, or fever (in case of
infection). Aside from the negative impact in patients regular quality of life, exacerbations
also worsen significantly the FEV1 decline and increase the mortality rate [68]. Physiological
recovery from an exacerbation do not fully restore patients health, which makes future
exacerbations even more frequent. ECOPD are also statistically linked to the incidence of a
varied range of comorbidities, such as cardiovascular, cognitive or metabolic chronic

disorders, depression, osteoporosis, dysfunctional skeletal myopathy, lung cancer, etc. [69].
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Physical fitness, muscle mass, BMI, and diet play a role in the risk of exacerbations. In
a 12-months follow-up study of patients hospitalized for acute COPD exacerbation, low initial
body mass index (BMI) and weight loss were shown to be risk factors for increased frequency
of exacerbations and mortality rate [70]. Peripheral muscle force is also statistically weaker
during exacerbations [71]. Finally, daily variations in exposure to outdoor air pollution also
intensify the frequency of acute ECOPD [40]. Common biomarkers include plasma or sputum
inflammatory mediators (fibrinogen, CRP, tumour necrosis factor-alpha (TNF-a),
differentiation factor-15 (GDF-15), interleukins, chemokines) [72] and sub-populations of
activated immune cells (decreased CD4+ & CD8+ T cells, increased macrophages and
neutrophils) [73]. Neutrophils play not only a role in COPD initiation and inflammatory
response but also in exacerbations, in which case their proportion is increased in submucosa
and subepithelial tissue [74] and is correlated (r 0.3) with percent FEV1 lost because of the
exacerbation [75]. Significant blood eosinophilia (count >2%) affects up to 60% of severe
exacerbations and airway eosinophilia is increased in 20-40% of exacerbations [76]. These

cases respond well to systemic corticosteroid therapy [77, 78].

The pathobiology of exacerbations is an active area of research. It is complex, clearly
varies among patients and depends on (epi-)genetic factors, baseline airway inflammation,
microbiome, as well as host immunological responses and susceptibility to infections. Most
exacerbations are associated to a burst in airway or systemic inflammation that is thought to
be caused, for the majority of cases, by respiratory viruses or bacterial species [79], while one
third remains of undetermined cause [80]. 58% of viral infections are caused by rhinovirus,
while the others comprise human respiratory syncytial virus, coronavirus, influenza virus,
parainfluenza virus and adenoviruses [81]. 25% of exacerbations involve coinfection of both
viruses and bacteria and recent research suggests that bacterial exacerbation may be
precipitated by viruses [82].

A strategy to better manage exacerbations is to distinguish between different clinical
subgroups or different pathobiologies so that patients can be treated accordingly. A new
"frequent exacerbator™” phenotype is now firmly established [83]. These patients are at greater

risk of comorbidities and poor health outcomes. They have higher levels of inflammatory
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biomarkers (plasma fibrinogen and CRP, sputum interleukin IL-6 and IL-8). In terms of
pathophysiology, they are afflicted by increased airway and systemic inflammation, dynamic
lung hyperinflation, as well as changes in lower airway bacterial colonization. Arostegui . et
al. identified, from exacerbation variables and past clinical history, four main subgroups of
ECOPD npatients that have different prognosis, comorbidities, hospitalization and mortality
rates [84].

Under-Nutrition and Muscle Mass Wasting

Low Body Mass Index (BMI) and low fat-free mass index (FFMI) are more prevalent in
COPD patients (especially in females) than in the general healthy population [85] and are
demonstrated to be poor-prognostic factors that can be partly addressed by nutritional

supplement therapy [86].

Exercise and Muscle Dysfunction

In relation with low muscle mass, low exercise tolerance affects COPD patients in terms
of disease progression; quality of life and mortality rate [86, 87]. Exercise-based pulmonary
rehabilitation programme were shown to make a difference in that regard [88].

Comorbidities

More than 80% of COPD patients suffer additional comorbid conditions [89] that are
varied and most commonly consist of respiratory, cardiovascular, metabolic and
gastrointestinal diseases, as well as lung cancer, osteoporosis, anxiety, depression, skeletal
muscle dysfunction, or cachexia. They have significant effects on mortality rate, clinical

outcomes and patients quality of life.

Clinically, these conditions share risk factors that explain part of the multimorbidity:
smoking and exposure to air pollution in particular are causally associated to many pulmonary
and nonpulmonary conditions [90]. Other shared risk factors include early life events (e.g.

prematurity [91, 92]), low BMI and physical inactivity [93].
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In terms of pathobiology, several conditions share genetic loci for their development
(e.g. for COPD and lung cancer [94, 95], or COPD and asthma [96]). A clear biological
hallmark of multimorbidities is shared common pathways such as oxidative stress and
systemic inflammation. Rubio-Perez C. et al. built networks that combined disease-disease
associations, protein-protein interactions as well as gene-disease and variant-disease
associations, in order to cluster diseases into related subgroups that internally share genetic
alterations and mechanistic (mostly inflammation-based) pathobiological pathways [97].
Similarly, correlation networks analysis by Faner R. et al. added evidence of a shared
unspecific molecular diseasome (in particular, mechanisms related to inflammation and

vascular tone regulation) to explain the frequent comorbidities occurrence [98].
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Research Hypothesis

The general hypothesis underlying this PhD Thesis is that the use of multi-level

integrated analysis will help us understand holistically highly heterogeneous respiratory

diseases such as COPD.

This general hypothesis has been divided in two specific hypotheses that correspond

to two distinct well defined clinical scenarios.

1)

2)

Exacerbations of COPD

ECOPD are highly heterogeneous episodes of worsening of the symptoms with a non-
specific diagnosis biomarker, whose pathogenesis and biology is not entirely
understood. We hypothesize that the comparison of multi-level (i.e., clinical,
physiological, biological, imaging and microbiological) correlation networks
determined during ECOPD and clinical recovery can help us identify the key

diagnostic biomarkers and features of these highly heterogeneous episodes.

Lung function in early adulthood

Low peak lung function in early adulthood, which can result from abnormal lung
development, is associated with the diagnosis of COPD later in life. If for any reason
the lungs have been poorly developed, it is conceivable that other organs have also
done so (e.g. from the cardiovascular or metabolic systems). Accordingly, we
hypothesize that abnormal lung development is linked to the impaired development of
other organs and systems, and is associated to an increased frequency of subclinical

abnormalities and comorbidities in later adulthood.
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Objectives

The general aim of this PhD Thesis is to apply multi-level integrated analysis to better

understand highly heterogeneous respiratory complex diseases such as COPD.

The specific goals that have been addressed refer to two specific aspects of COPD

heterogeneity:

1) Exacerbations of COPD (ECOPD), specific goals:

e To characterize the heterogeneity of ECOPD, using a common set of variables and
individuals during the exacerbation phase and at convalescene.

e To integrate and compare the information using Multi-Level Differential Networks.

e To identify ECOPD biomarkers.

2) Early low lung function and health in later life, specific goals:

e To determine the prevalence of low peak lung function in early adulthood in the

general population.

e To assess the association of early low peak lung function with subclinical

abnormalities from the lungs and other organs.

e To evaluate if early low peak lung function is a risk factor for earlier incidence of

comorbidities.

e To investigate the relationship between early low peak lung function and later

mortality risk.

e To determine the transgenerational reproducibility of early low lung function status.
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Results

The core results of this PhD Thesis have been published in the form of two original papers in
high impact factor international journals (Eur. Respir. J, IF 2018: 12.2, paper cited 4 times;
and the Lancet Respiratory Medicine, IF 2018: 21.5, paper cited 5 times). Besides, the
experience gained with this work has also been substantiated in a review paper (Eur. Respir.

Rev.) which is presented in the appendix but not discussed directly.
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Original Paper 1: Multi-level Differential
Network Analysis of COPD Exacerbations

(published in: Noell et al. Eur. Respir. J. 2017)
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ABSTRACT Patients with chronic obstructive pulmonary disease (COPD) often suffer episodes of
exacerbation (ECOPD) that impact negatively the course of their disease. ECOPD are heterogeneous
events of unclear pathobiology and non-specific diagnosis. Network analysis is a novel research approach
that can help unravelling complex biological systems. We hypothesised that the comparison of multi-level
(i.e, clinical, physiological, biological, imaging and microbiological) correlation networks determined
during ECOPD and convalescence can yield novel patho-biologic information.

In this proof-of-concept study we included 86 patients hospitalised because of ECOPD in a multicentre
study in Spain. Patients were extensively characterised both during the first 72 h of hospitalisation and
during clinical stability, at least 3 months after hospital discharge.

We found that 1) episodes of ECOPD are characterised by disruption of the network correlation observed
during convalescence; and 2) a panel of biomarkers that include increased levels of dyspnoea, circulating
neutrophils and C-reactive protein (CRP) has a high predictive value for ECOPD diagnosis (AUC 0.97).

We conclude that ECOPD 1) are characterised by disruption of network homeokinesis that exists during
convalescence; and 2) can be identified objectively by using a panel of three biomarkers (dyspnoea,
circulating neutrophils and CRP levels) frequently determined in clinical practice.
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Introduction

Patients with chronic obstructive pulmonary disease (COPD) often suffer episodes of exacerbation
(ECOPD) that impact negatively their health status and prognosis [1]. The pathogenesis of these episodes is
not entirely understood, but it is presumed complex and heterogeneous [2-4]. Their diagnosis relies mostly
on symptom perception by the patient [5] and their prevention and treatment is, by and large, empiric [1].

Network analysis is an integrative research strategy well suited for the investigation of heterogeneous and
complex diseases [6, 7] such as COPD [8-14]. We hypothesised that multi-level differential network
analysis (MLDNA), a novel analytical method that involves the comparison of clinical, physiological,
biological, imaging and microbiological (i.e. multi-level) correlation networks determined during ECOPD
and clinical stability, can provide new insights into the pathobiology and diagnosis of ECOPD [15, 16].
Accordingly, in this proof-of-concept study we used MLDNA, for the first time to our knowledge, to
1) compare the multi-level network structure determined during ECOPD and convalescence; and
2) identify a panel of specific ECOPD biomarkers.

Methods
Methods are described in detail in the supplementary material.

Study design and ethics

This observational, prospective proof-of-concept study was carried out in seven tertiary referral hospitals
in Spain (www.clinicaltrials.gov: NCT01750658). Patients were recruited and studied during the first 72 h
of hospitalisation because of ECOPD, and investigated again during convalescence, at least 3 months after
hospital discharge. The Institutional Review Boards of participating institutions approved the study, and
participants gave their informed consent.

Patients

All patients were older than 45 years, current or former smokers (>10 pack-years) and had COPD (and
ECOPD) according to the Global Initiative for Chronic Obstructive Lung Disease criteria [1]. In order to
homogenise the studied population as much as possible, pneumonia on chest radiography, the presence of
severe comorbidity driving the clinical presentation of the patient and/or need of (invasive or noninvasive)
mechanical ventilation were exclusion criteria. We initially attempted to recruit patients who had not
received oral steroids and/or antibiotic treatment in the community before hospitalisation. Yet, this
strategy limited recruitment a lot, so we decided to adopt a more pragmatic design and exclude patients
who received oral steroids before hospitalisation (with a potential rapid anti-inflammatory effect) but not
those who may have received antibiotics (which may take longer to affect microbiological results). A total
of 14 patients (16%) were included in the analysis despite they received antibiotic treatment in the
community before hospitalisation.

Measurements
Clinical, functional, biological, microbiological and imaging variables were recorded following standard
procedures, as detailed in the supplementary material.

Data analysis

Descriptive statistics

Because many variables were non-normally distributed, the results are presented as median (and 95%
confidence intervals) or proportions. Likewise, because not all measurements were available in all patients
in both visits, to maximise the potential of available information, the results at ECOPD and convalescence
were compared using pairwise statistics ( paired Wilcoxon or Chi-squared tests for continuous and discrete
variables, respectively). Participants with missing data were discarded on a per-variable basis, such that no
value imputation was required. We used false discovery rates (FDRs) to account for multiple comparisons
[17]. All analyses were performed using R [18].

Multi-level correlation networks

We built multi-level correlation (Spearman) networks that integrate quantitative and qualitative clinical,
functional, biological, microbiological and imaging variables (independently for ECOPD and
convalescence) using R [18], and we graphed them with Cytoscape [19].

Module finding

We used the fast-greedy community algorithm to identify network modules on the basis of their module
modularity (MM) score, so those with more dense internal connections and fewer external links get higher
MM scores [20, 21].

https://doi.org/10.1183/13993003.00075-2017 2
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Differential network analysis

To compare multilevel correlation networks at ECOPD and convalescence we 1) nominally contrasted the
variables and modules identified under both clinical circumstances; 2) estimated the mean “density” of
networks determined at ECOPD and convalescence by comparing (Wilcoxon test) the number of nodes,
and the average number of edges per node (node degree, k) during ECOPD and convalescence [6]; and,
3) used Monte Carlo permutation tests [22] to identify those Spearman correlations that were significantly
different between ECOPD and convalescence.

ECOPD biomarkers

We defined as “outliers” at ECOPD those values below or above the 5th or 95th percentiles, respectively,
of the same variable at convalescence, and we identified those ECOPD variables with a significant
(bootstrapping FDR <0.05) number of outliers. To identify potential ECOPD biomarkers, we calculated
receiver operating characteristic (ROC) curves considering all values determined at ECOPD and
convalescence and excluding missing data on a per-variable basis.

Results

We studied 86 patients at ECOPD (mean+sn age of 67+9 years). As shown in figure 1, 19 patients were
lost for follow-up, so we could study 67 of them at convalescence. Table 1 presents the main characteristics
of participants at both time points.

Observations at ECOPD

Besides the expected observations during ECOPD (dyspnoea, tachypnoea, tachycardia, respiratory failure)
some other salient findings were (table 1): 1) elevated blood glucose levels, likely to be in relation to the
generalised use of systemic steroids in the management of ECOPD [1, 23]; 2) echography identified the
presence of pulmonary hypertension in 21.2% of patients and right chamber enlargement in 19.1%, but no
patient suffered heart failure with low ejection fraction; 3) computed tomography (CT) emphysema was
present in 56.7% of patients, bronchiectasis in 17.5% and, interestingly, alveolar infiltrates (not seen in
chest radiography films) in 23.8%. Pulmonary embolism was found in 1.5% of individuals; and 4) in
patients producing spontaneous sputum (77.9%), bacterial culture was positive for potential pathogenic
microorganisms (PPMs) in 19.4% of them, whereas viruses were detected by a positive sputum virus in
30.9%. A total of 37.8% of patients were positive for sputum PPMs and/or viruses (table 1). More detailed
microbiologic information can be found in the supplementary material.

Changes at convalescence

The main changes from ECOPD to convalescence (highlighted in bold type in table 1) included 1)
improved dyspnoea; 2) reduced heart and respiratory rate; 3) reduced serum levels of glucose and urea; 4)
improved pulmonary gas exchange without significant changes in spirometric variables; 5) reduced total
leukocyte count, with lower circulating neutrophils and higher lymphocyte and eosinophil proportions; 6)
reduced concentration of acute phase reactants (C-reactive protein (CRP) and fibrinogen) with increased
levels of serum amyloid A (SAA). Other systemic inflammatory markers did not change significantly or
changed marginally; and, finally, 7) neither bacterial load, viral load nor inflammatory markers changed
significantly.

Multi-level differential network analysis
Figure 2 shows the correlation networks determined at ECOPD and convalescence, and table 2 their
quantitative comparison. The main observations were 1) the number of nodes at ECOPD and

- ‘ 86 patients hospitalised because of ECOPD

19 patients lost for follow-up:
3 died during hospital admission
16 abandoned the study:
8 withdrew consent
5 developed new co-morbidity
3 lost for follow-up

ztISéJYRE 1 Consort diagram of the _ | 67 patients studied when clinically stable
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TABLE 1 Clinical, physiologic, imaging, biological and microbiological data determined during exacerbation of chronic

obstructive pulmonary disease (ECOPD) and convalescence

COPD | G.NOELL ETAL.

ECOPD Convalescence Pairwise n FDR p-value
n Median (95% Cl)or n (%) n  Median (95% Cl] or n (%]
Vital constants
Heart rate min™ 83 89 (72-112.5) b4 83 (69-100.5) bh 0.004
Respiratory rate min™"' 82 22 (15-30) 64 20 (16-24.5) 64 0.000
Dyspnoea; MMRC scale 79 5(2-5) 63 3 (1.5-5) 59 0.010
Dyspnoea [1-10); visual scale 80 7 (3.5-8.75) 64 3 (0.5-8) 62 0.000
Body temperature °C 81 36.5 (35.85-37.25) 63 36 (35.55-36.8) 63 0.000
Biochemistry
Urea H‘lg-dL"1 81 42 (27-77) 65 33 (19-53) 63 0.000
Creatinine mg-dL™ 82 0.9 [0.64-1.3] 65 0.9 (0.59-1.13] bh 0.076
Glucose mg-dL " 73 169 (101-315] 63 98 (81-195.5) 59 0.000
Haemoglobin g-dL_1 82 14.8 [12.4-17.1) 65 14.7 (12.25-16.8] 64 0.724
Erythrocyte sedimentation rate mm:-h™"' 64 21 [3-67.51) 55 12 (2-46.5) 52 0.002
Lung physiology
FVC % reference 86 71.5(51.5-106.5) 63 75 (56-109) 63 1.000
FEV1 % reference 86 442 (25.5-77) 63 46 [28-81.79) 63 0.4687
FEV1/FVC % 86 47.9 (31.05-64.5] 63 49.4 (31-65.5) 63 0.882
IC % reference 69 b4 [38.6-94.5) 57 64 (43.7-91.6) 55 1.000
RV % reference 68 169.3 [107.2-245.45) 56 169.1 (108.5-247.35) 53 0.946
TLC % reference 71 115 (82.85-140.5] 59 109.4 (72.18-133.8) 56 0.164
RV/TLC % 57 146 (102.5-192] 40 138.7 (87.3-192) 33 0.914
Dico % reference 72 56 (31.5-88) 52 54 (30-84) 50 0.035
Kco % reference 71 73 (37.99-111) 57 79 (51-103) 53 0.474
Pao, mmHg 82 55.4 (41.05-74.1) b4 66.2 (52.5-91.1) 63 0.000
PAFI 76 254.3 (173.55-322.38) b4 315.2 (247.17-438.57) 57 0.000
Paco, mmHg 82 43.5 [32.95-49.74) 6L 427 (34.9-53.35) 63 0.605
Arterial pH 82 7.4 (7.33-7.47) 63 7.4 (7.37-7.46) 62 0.946
AMWD m 67 435 [238.5-536.5) 4h 443.5 (274-580) 42 0.280
Cardiovascular physiology
Creatinine phosphokinase U-L™’ 70 68 [30.5-238.51) 58 69.5 (39-150] 56 0.914
Fibrinogen mg-dL_1 74 497 (307.5-760) 58 405 (307.5-574.51) 57 0.000
Pro-BNP pg-l‘nL_1 85 0.4 (0.1-0.78) 67 0.4 (0.04-1.06) 67 0.882
Troponine | % detected above 0.05 pg-L™" 73 6 (8.2%) 40 3 (5.0%) 0.872
Echography
Left ventricle ejection fraction % 37 68 (42-80.5) ND ND
Right atrial enlargement 68 13 (19.1%) 18 ND
Pulmonary hypertension 33 7121.2%) ND ND
CT imaging
Emphysema 60 34 (56.7%] ND ND
Bronchiectasis 43 11 (17.5%) ND ND
Alveolar infiltrates 63 15 (23.8%) ND ND
Pulmonary embolism b6 1 (1.5%) ND ND
Lung inflammation (sputum)
TAS mM 84 0.3 (0.05-1.29) 67 0.2 (0-1.26) &7 0.977
IL-8 pgmL’1 84 2146.7 [791.68-2575.22) 67 2128.3 (25.91-2580.18) &7 0.458
IL-1B pg-mL ! 84 621.5 (73.33-3194.87) 67 504.9 (1.39-2861.79) 67 0.490
IL-6 pg-mL~" 84 43.2 (3.05-572.87) 67 39.8 (3.05-758.15) 67 0.392
TNF-u pg-mL_1 83 14.3 [0.52-552.37) 67 6.2 (0.52-345.42) &7 0.450
TGF-B pg-mL~" 84 0.2 (0.02-2.89) 67 0.3 (0-3.79) 67 0.392
TNF RS pg-mL ! 84 1.3(0.04-11.78] 67 2 (0.01-21.61] 67 0.621
SAA pg-mL"1 84 3.3 (0.38-16.72) 67 2.4 (0.09-14.37) 67 0.392
Systemic inflammation
Leukocytes x10% qu 82 10.9 (6.35-22.59) 65 8.1 (5.97-12.78) b4 0.000
Neutrophils % 72 88.2 (52.35-94.15) 58 64.8 (38.55-75.7) 58 0.000
Lymphocytes % 82 7.4 (3.75-20.25) 65 22.1 (14-38.4) .74 0.000
Eosinophils % 53 0.3 (0-2.45) b4 2.4 (1.05-7.8) 39 0.000
% of patients with eosinophils >2% 53 3 (5.7%) 64 35 (54.7%) 53 0.000
C-reactive protein mg-L~" 86 3.6 10.43-16.82) 66 0.5 (0.09-6.1) 66 0.000
Total antioxidant status mM 86 1.5 (0.98-2.41) 47 1.6 10.79-2.48) 67 0.724
Continued
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TABLE 1 Continued

ECOPD Convalescence Pairwise n FDR p-value
n  Median [95% Cl)orn (%) n  Median [95% Cl) or n (%)

IL-8 pg-mL~! 84 11(0.26-4.37) 67 1.3 (0.35-4.53) 67 0.128
IL-1B pg~mL_1 80 0.2 (0.16-0.83) &7 0.2 (0.16-0.75) &7 0.914
IL-6 pg-mL-~" 80 0.3 (0.3-7.41) 67 0.3 (0.3-8.81) 67 0.290
TNF-e pg-mL " 79 0.5 (0.51-1.89) 67 1.3 (0.51-2.49) 67 0.000
Procalcitonin mg-L™’ 85 0.4 (0.09-0.93) 67 0.4 (0.03-0.86) 67 0.605
TGF-B pg-mL~" 86 0.8 (0.21-3.55) 67 1.1 (0.17-6.05) 67 0.015
TNF-RS pg-rﬁL_T 86 12.7 (1.36-50.19) &7 19.4 (1.45-71.49) &7 0.256
SAA pg-mL ' 84 0.8 (0.13-4.11) 67 1.4 (0.13-7.64) 67 0.002
Microbiology
Spontaneous sputum production 86 67 (77.9%) 67 45 (67.2%) 0.513
Positive sputum bacteria (culture) Y 13 (19.4%) 45 12 (26.7%) 0.848
Positive sputum virus (PCR) 55 17 [30.9%) 27 3(11.1%) 0.394
Positive bacteria (culture] and/or virus [PCR] 74 28 (37.8%) 59 14 (23.7%) 0.753
Adenovirus seroconversion 39 1(2.6%) ND ND
Chlamydia seraconversion 45 2 (4.4%) ND ND
Influenza seroconversion 43 4 (9.3%] ND ND
Mycoplasma seroconversion 59 1(1.7%) ND ND
Parainfluenza seroconversion 43 7 (16.3%) ND ND
RSV seroconversion 40 5 (12.5%) ND ND

Values in bold type identify those variables with a statistically significant change from ECOPD to convalescence. (Wilcoxon or Fisher exact tests,
corrected for multiple comparison (false discovery rate (FDR], for continuous and categorical variables, respectively). MMRC: modified Medical
Research Council; FVC: forced vital capacity; FEV1: forced expiratory volume in 1 s; IC: inspiratory capacity; RV: residual volume; TLC: total
lung capacity; DLco: carbon monoxide diffusing capacity of the lung; Kco: Dico/alveolar volume [transfer factor]; Pao.: arterial partial pressure
of axygen; PAFI: Pao, (mmHg)/inspired fraction of oxygen ratio (%); Paco.: arterial partial pressure of carbon dioxide; 6MWD: é-min walking
distance; BNP: brain natriuretic peptide; CT: computed tomography; TAS: total antioxidant status; IL: interleukin; TNF: tumour necrosis factor;
TGF: transforming growth factor; SAA: serum amyloid A; TNF-RS: tumour necrosis factor soluble receptor; RSV: respiratory syncytial virus.

convalescence was similar (51 versus 47), but the convalescence network was significantly denser, as shown
by the higher total number of edges, a significantly higher node degree (k), and lower modularity; 2) there
were six hubs with a Kleinberg score >0.8 in the ECOPD network and four in the convalescence one. All
of the former correspond to sputum inflammatory markers whereas all of the latter correspond to lung
function variables; 3) there were five modules at ECOPD and six at convalescence (figure 2, blue areas).
All of them appear relatively homogeneous in terms of their biological content, since the majority
contained nodes of similar functional category (see colour codes in figure 2). A detailed description of
each of these modules is provided in the supplementary material; and 4) the comparison of both networks
showed a higher density of significantly different Spearman correlations at convalescence than during
ECOPD (table 2 and figure 3) and that more than half of these differential correlations linked different
modules (figure 3): at ECOPD, TNF-o was the node with more differential links (n=4) whereas at
convalescence these were TGF-B (n=6), Kco (n=5), PAFI (n=5), P20, (n=5) and heart rate (n=4). All in
all, these observations suggest that the network “perturbation” induced by ECOPD involves a reduction in
module co-regulation (i.e. co-occurrence).

ECOPD biomarkers: outlier analysis

To investigate potential ECOPD biomarkers, we 1) identified 16 variables (12% of the total number of
variables analysed in the study (table 1)) with a significant proportion of ECOPD “outliers”, this is a
significant (FDR p-value<0.05) proportion of variable values outside the 5th to 95th percentile range of
the same variable determined at convalescence (by Monte-Carlo ECOPD/convalescence permutation test
on the statistic (% outliers at ECOPD - % outliers at convalescence)); 2) assessed the extent to what these
outliers co-occur in the same patients. To this end, we built a co-occurrence network (figure 4) where
each node correspond to one of these 16 variables, node size to the proportion of outliers at ECOPD (as
indicated by the percentage for each of them), node shape (up or down triangle) indicates if a given
variable is higher (up) or lower (down) at ECOPD, and edge colours represent the proportion of
co-occurrence between ftwo given nodes (see keys). Circulating lymphocytes and neutrophils were
co-altered (albeit in opposite directions) in more than 75% of the exacerbated patients (blue edge), and
eosinophils, dyspnoea and glucose levels in 50-75% of patients (green edges; note also the different
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FIGURE 2 Correlation networks at exacerbation of chronic obstructive pulmonary disease (ECOPD) and convalescence. Node colours identify their
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continuous lines; negative, dashed lines), whereas their width is proportional to the strength of such correlation. Blue shaded areas indicate the
different modules (MM)] identified by the fast-greedy community algorithm used, so modules with a higher proportion of internal connections get
higher MM scores. For further explanations, see text.

triangle shapes). The remaining nodes co-occurred in 25-50% of patients (orange edges); 3) explored the
capacity of these 16 variables to predict ECOPD by ROC analysis, and identified a subset of seven of them
with an area under the curve (AUC) >0.8. Figure 5a presents the scatter distribution of these seven
variables and their individualised ROC profile and AUC (figure 5b); of note, although all of them had a
large number of outliers at ECOPD (red symbols), a proportion of values at ECOPD still remained within
the 5th to 95th range (horizontal lines) determined at convalescence (figure 5a), likely reflecting the
heterogeneity of ECOPD episodes; and, finally, 4) included these seven variables in a general linear mixed
model to identify the best diagnostic biomarker panel of ECOPD. We found that the combination of
dyspnoea severity, raised circulating neutrophils and elevated CRP levels had an AUC of 0.97 (95% CI
0.95-1) to diagnose ECOPD (figure 5¢). Finally we calculated what different combinations of abnormal
values of these three variables gave the better specificity, sensitivity, positive and negative prediction values
for the diagnosis of an ECOPD (table 3). We observed that dyspnoea levels >5 (on an analogue visual
score that ranges from 0 to 10), CRP >3 mgL ™' and >70% circulating neutrophils had a specificity of
0.96, a sensitivity of 0.901, negative predictive value of 0.88 and positive predictive value of 0.97 for the
identification of ECOPD.

Discussion

This proof-of-concept study develops and applies for the first time MLDNA to a relevant, complex and
heterogeneous clinical problem (ECOPD). By doing so it shows that 1) ECOPD episodes are characterised
by fragmentation of the correlation network observed during clinical stability, suggesting loss of system
control and reduced resilience during ECOPD [24, 25]; and 2) a panel of biomarkers that includes
dyspnoea (=5 on an analogue visual score from 0 to 10), CRP level (>3 mg-L™") and >70% circulating
neutrophils had an extremely high value (AUC 0.97) for the diagnosis of ECOPD.

Previous studies
Many studies have previously described the clinical, physiological, biological and microbiological
characteristics of ECOPD [26]. By and large, our clinical observations are in keeping with them, but some
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TABLE 2 Comparison of correlation networks determined at exacerbation of chronic obstructive pulmonary disease (ECOPD)

and convalescence

ECOPD Convalescence p-value
Number of nodes 51 47
Number of edges 96 125
Within-module edges/between-module edges 12/84 37/88
Node degree (k) 3.8-12.6 5.3:2.8 <0.01
Hubs with (Kleinberg score) >0.8 SAA (1.00) FEV1 (1.00)
TNF-c [0.92) PAFI (0.97]
IL-1b (0.92] Pao, (0.97)
IL-8 (0.92] IC (0.90]
TNF-RS (0.92]
IL-6 (0.88]
[all sputum variables]
Number of modules of at least 3 nodes 5 [
Modularity score [fast-greedy algorithm) 0.871 0.685
Total number of significantly different Spearman correlations 1 43
Differential correlations with 0.3<|RholV1]-Rho[¥2]]<0.5 11 (100%) 25 [58%)
Differential correlations with |RholECOPD]-Rholconvalescence]| =0.5 0 [0%) 18 [42%) <0.01
Within-module differential correlations/between-module differential correlations 7/4 2419

SAA: serum amyloid A; TNF: tumour necrosis factor; IL: interleukin; TNF-RS: tumour necrosis factor soluble receptor; FEV1: forced expiratory
volume in 1 s; Pa0,: arterial partial pressure of oxygen; PAFI: Pao, (mmHg)/inspired fraction of oxygen ratio [%); IC: inspiratory capacity.

deserve specific comment, During ECOPD 1) a substantial number of patients had pulmonary
hypertension and right chamber enlargement, in keeping with recent reports [27], but we did not identify
patients with low ejection fraction heart failure [28]; and 2) CT found evidence of pulmonary embolism in
only 1.5% of patients [29, 30] but, in contrast, alveolar infiltrates (not seen in chest radiographs) were
identified in about a quarter of patients, as reported recently too [31]. These alveolar infiltrates can
correspond to pneumonic condensations not apparent in plain chest radiographs and/or areas of local
inflammation/oedema. At convalescence many (but not all) abnormalities observed during ECOPD
improved. Of note, 3) even though dyspnoea and pulmonary gas exchange improved, spirometric changes
only showed a statistically nonsignificant trait to improvement, which is at variance with other previous,
smaller studies [32-34]; 4) as expected, several markers of systemic inflammation (total leukocyte count
and levels of circulating neutrophils, CRP and fibrinogen) were reduced at convalescence. Of note,
however, only 5.7% of patients showed >2% circulating eosinophils during ECOPD, and this proportion
increased up to 54.7% at convalescence. This is at variance with reports from other centres, where between
25% and 50% of the patients have >2% circulating eosinophils during ECOPD [3, 35, 36]. We do not have
a clear explanation for these discrepancies but regional differences may play a role [37]; and, finally, 5) in
patients producing spontaneous sputum, the prevalence of PPM and/or viruses did not change at
convalescence. Given that bronchial colonisation in clinically stable COPD patients that produce
spontaneous sputum is common [38], this may have contributed to explain this lack of statistically
significant changes.

Interpretation of novel results

Homeokinetic disruptive effects of ECOPD

Homeokinesis has been defined as “the ability of an organism to maintain a highly organised internal
environment fluctuating within acceptable limits in a far from equilibrium state” [24, 25]. ECOPD
episodes appear to be characterised by disrupted homeokinesis since, during clinical stability we observed
a dense and well-connected correlation network with physiologically meaningful modules whereas, during
ECOPD, although these modules mostly remain their connections become disrupted to a large extent
(figure 2, table 2). Specifically, during clinical stability a central module (MM7), which basically includes
all lung function parameters, was closely co-regulated with other modules that include pulmonary and
systemic inflammatory markers (MM8, MM9, MM10) as well as a general biochemical module (MM6). By
contrast, during ECOPD, the system becomes more fragmented, the sputum inflammation module (MMS5)
appears isolated, and systemic inflammatory markers are also less well coordinated and distributed across
two different modules (MM3 and MM4). That microbiological nodes appear isolated from the main
network during ECOPD probably reflects the heterogeneity of these ECOPD. Finally, the Monte Carlo
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permutation test [22] also identified more significantly different Spearman correlations at convalescence
than during ECOPD (figure 3). All in all, these observations suggest that episodes of ECOPD are
characterised by breakdown of the normal homeokinetic characteristics of the system with presumably less
system control and resilience [24, 25].

A panel of biomarkers for the diagnosis of ECOPD

The diagnosis of ECOPD currently relies on the patient’s perception of increased symptoms (mostly
dyspnoea) [1, 5]. Yet, recent research has shown that dyspnoea perception vary between patients with
frequent and infrequent exacerbations [39]. Thus, having an objective way to diagnose ECOPD is of great
clinical relevance [2]. Our results indicate that the combination of increased dyspnoea (>5) and raised
levels of circulating neutrophils (>70%) and CRP (>3 mg~L'1) has an excellent value for the diagnosis of
ECOPD (AUC 0.97) (figure 5c). Although the methodology we used is different, results are similar to
those reported by HursT et al. [40], who showed that elevated CRP levels were the best diagnostic
biomarker for ECOPD, although their diagnosis accuracy was suboptimal (AUC 0.73); however, their
combination with a major exacerbation symptom (dyspnoea, sputum volume or sputum purulence)
significantly increased the AUC to 0.88 (p<0.0001) [40]. Our results extend these observations further by
showing that this can be further improved (AUC 0.97) by considering too the number of circulating
neutrophils. The potential diagnostic utility of this biomarker panel (as well as its specific cut-off values)
will have to be validated prospectively in other cohorts, but it may greatly help to advance clinical research
in this area by offering for the first time an objective diagnostic tool of ECOPD. Needless to say that
increased dyspnoea, elevated CRP and leukocytosis can also occur in other clinical circumstances that may
not even arise from the lungs (e.g. cholecystitis, pneumonia or sickle cell crisis, among others). Therefore,
the clinical context in which these three biomarkers can contribute to the diagnosis of ECOPD is of
paramount importance. Finally, using unbiased cluster analysis of 182 ECOPD episodes, BAraDHEL et al.
[3] recently provided convincing evidence of the heterogeneity of such episodes. Unfortunately, the
relatively small sample size of our cohort (n=86) limits this type of analysis in our cohort.
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Strengths and limitations

The development and application, for the first time to our knowledge, of a new analytical approach (e.g.
MLDNA) to get further insight into the complexity of a relevant clinical problem like ECOPD is a clear
strength of our study since it provides novel, integrated, dynamic and holistic information on this frequent
condition. Importantly, it also paves the way for MLDNA to be applied to other complex biological
conditions in respiratory medicine and elsewhere [6, 8, 16, 41, 42].

On the other hand, several potential limitations deserve comment. First, we included in the study a slightly
lower number of patients (n=86) than anticipated (n=100; www.clinicaltrials.gov: NCT01750658), and not
all measurements were available in all patients for comparison between ECOPD and convalescence. This is
why we consider our study as proof-of-concept and we acknowledge that it requires validation in larger
cohorts. Second, we studied severe (hospitalised) ECOPD, so our results are not directly generalisable to
other milder forms of ECOPD. Third, some clinical variables, such as cough and sputum colour, were not
registered. Fourth, it is not clear how much the initiation of systemic corticosteroids, before the collection
of biological samples (within 72 h after admission) might have modified the inflammatory profile of
ECOPD. Yet, it is of note that we excluded patients who received oral corticosteroid treatment before
hospitalisation. Finally, patients present to hospital at various time points in the evolution of an ECOPD.
All in all, we acknowledge that the results of this study will have to be confirmed in future studies, since
the exclusion of severe co-morbidity, pneumonia, relatively small sample size and study of hospitalised
patients (not ambulatory ECOPD) may restricts the generalisability of our observations.

Conclusions
By using a novel analytical strategy (MLDNA), this study shows that ECOPD 1) are characterised by
disruption of network homeokinesis observed during clinical stability; and 2) in the appropriate clinical
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FIGURE 5 a] Scatter plot of seven continuous variables with a significant (bootstrapping FDR p-value <0.05] proportion of exacerbation of chronic
obstructive pulmonary disease (ECOPD] outliers (<5TH or >95th percentiles (horizental lines) at convalescence. Red symbols represent outlier
values; blue symbols represent values within the convalescence 5th to 95th percentiles. b] Receiver operating characteristic curves and
corresponding area under the curve [AUC] values for each of these 7 potential diagnostic biomarkers of ECOPD identified in a) with an AUC >0.8;
c] When the seven variables identified in b) were combined in a general linear mixed model, the best panel of biomarkers to predict ECOPD (auC
0.97) included circulating neutrophils, C-reactive protein levels and dyspnoea. For further explanations, see text.

TABLE 3 Specificity, sensitivity, negative [NPV] and positive predictive value [PPV) of a logistic
regression model that includes different cut-off values of dyspnoea, C-reactive protein (CRP)
and circulating neutrophil for the diagnosis of chronic obstructive pulmonary disease

exacerbation (ECOPD)

Dyspnoea Neutrophils CRP Specificity Sensitivity NPV PPV
(visual analogue scale 1-10) (%) (mg-L7")
=5 =60 23 0.89 0.94 0.92 0.92
=5 265 =3 0.95 0.91 0.90 0.95
=5 =70 =3 0.96 0.90 0.88 0.97
https://doi.org/10.1183/13993003.00075-2017 10
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context, ECOPD can be objectively identified by a panel of three biomarkers (dyspnoea, circulating
neutrophils and CRP) commonly measured in clinical practice.
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Lung function in early adulthood and health in later life:
a transgenerational cohort analysis

Alvar Agusti*, Guillaume Noell*, Josep Brugada, Rosa Faner

Summary

Background Early life events can affect health in later life. We hypothesised that low lung function (FEV,<80% predicted)
in early adulthood (2540 years) is associated with higher prevalence and earlier incidence of respiratory, cardiovascular,
and metabolic abnormalities, and premature death.

Methods In this cohort analysis, we tested this hypothesis using data from the Framingham Offspring Cohort (FOC)
and validated our observations in CARDIA (an independent cohort) and Genlll (which includes the direct
descendants of FOC participants). These were three general population cohorts that included men and women, who
were regularly and prospectively followed up to collect extensive clinical, physiological, biological, and imaging
information. Main outcomes were prevalence (in early adulthood) and incidence (during follow-up) of comorbidity,
and all-cause mortality. 2 test, unpaired t test, Fisher’s exact test, and Cox proportional hazards models were used
for data analysis. Differential dropout rates during follow-up were regarded as a potential source of bias.

Findings We found that 111 (10%) of 1161 participants in FOC, 338 (13%) of 2648 participants in CARDIA, and 71 (4%)
of 1912 participants in GenlII had FEV, of less than 80% predicted at the age of 25-40 years. These individuals also had
higher prevalence of respiratory, cardiovascular, and metabolic abnormalities in early adulthood; higher and earlier
(about a decade) incidence of comorbidities during follow-up (39 years vs 47 years in FOC; 30 years vs 37 years in
CARDIA, p<0-0001); and higher all-cause mortality than individuals with normal lung function in early adulthood (in
FOC, hazard ratio 2.3 [95% CI 1-4-3.7], p=0.001), which was independent of, but additive with, cumulative smoking
exposure. In Genlll, we observed that individuals with at least one parent stratified as having low lung function in early
adulthood in FOC (n=115) had lower FEV, in early adulthood (10% had FEV, of less than 80% predicted; this proportion
was 3% in those with both parents classified as normal in FOC [n=248]; p<0-0001); and early adulthood FEV, of GenIII
participants was related (R2=0.28, p<0-0001) to FOC parents’ average FEV, in early adulthood.

Interpretation Low peak lung function in early adulthood is common in the general population and could identify a
group of individuals at risk of early comorbidities and premature death.

Funding Fondo de Investigacion Sanitaria, Sociedad Espafiola de Neumologia y Cirurgia Toricica, Formaci6 Personal
Investigador, Agencia de Gestié d’Ajuts de Recerca 2016, and AstraZeneca Foundation Young Researcher Award.

Introduction

Chronic obstructive pulmonary disease (COPD) is a
major cause of disability and death around the globe.
COPD is generally considered to be a self-inflicted
disease caused by tobacco smoking and characterised by
an accelerated decline of lung function with age.’ Yet,
other COPD risk factors, including occupational
exposures to organic and inorganic dusts; chemical
agents and fumes; indoor pollution from biomass
cooking and heating in poorly ventilated dwellings; and
a history of severe childhood respiratory infection, HIV,
or tuberculosis, have also been identified.! Furthermore,
low peak lung function in early adulthood has been
shown to increase the risk of COPD later in life,
independently of the rate of lung function decline.’ A
previous study showed that about half of patients
diagnosed with COPD in late adulthood had evidence of
low peak lung function in early adulthood.’ These
observations suggest that abnormal lung development
(in utero, after birth, or both) could be a novel risk factor
for COPD.*

Lung development is a complex process that can be
altered by various genetic or environmental factors,’
including passive smoking, poor nutrition, and repeated
infections.*” These factors (acting alone or in combination)
might also compromise the development of other organ
systems (eg, the cardiovascular and metabolic systems).*"
We hypothesised that individuals with low lung function in
early adulthood would also present a higher prevalence of
respiratory, cardiovascular, and metabolic abnormalities, as
well as a higher and earlier incidence of comorbid diseases
and premature mortality during follow-up compared with
individuals with normal lung function. Given that there is
familial COPD aggregation,” and that lung function has
been related to several environmental exposures and gene
polymorphisms,”? we also aimed to explore the trans-
generational reproducibility of these traits.

Methods

Study design and participants

For this cohort analysis, we obtained permission to
access two large independent cohorts (the Framingham

www.thelancet.com/respiratory Published online November 14,2017 http://dx.doi.org/10.1016/52213-2600(17)30434-4

@x®

CrossMark

Lancet Respir Med 2017

Published Online
November 14, 2017
http://dx.doi.org/10.1016/
5221}-2600(]7)30434-4

See Online/Comment
http://dx.doi.org/10.1016/
$2213-2600(17)30437-X

*Contributed equally

Hospital Clinic, University of
Barcelona, Barcelona, Spain
(A Agusti MD,

Prof | Brugada MD); Institut
d'Investigacions Biomédiques
August Pi i Sunyer (IDIBAPS),
Barcelona, Spain (A Agusti,

G Noell MS, Prof ) Brugada,

R Faner PhD); and Centro de
Investigacion Biomédica en
Red de Enfermedades
Respiratorias (CIBERES),
Barcelona, Spain (A Agusti,

G Noell, R Faner)

Correspondence to:

Dr Rosa Faner, Centro de
Investigacion Biomeédica en Red
Enfermedades Respiratorias
Institut d'Investigacions
Biomédiques August Pii Sunyer
(CIBERES-IDIBAPS), Barcelona
08036, Spain
RFANER@clinic.cat

46



Articles

See Online for appendix

Research in context

Evidence before this study

We searched for articles published in English up to June 30, 2017,
in PubMed with the search terms “loci associated lung function
(GWAS)", “lung function trajectories”, and “longitudinal lung
function patterns”. We also searched for relevant references in
major review articles from noted experts. We identified evidence
supporting that lung function is heritable (with up to

95 associated genetic variants described so far), and that lung
function early in life tracks with lung function later in life and is a
novel risk factor for chronic obstructive pulmonary disease
(COPD).

Added value of this study

To our knowledge, this is the first study to test the hypothesis
that the genetic or environmental factors that affect lung
development might also affect other organ systems, such as the
cardiovascular and metabolic systems, and that this might
increase the likelihood of having a higher prevalence and earlier
incidence of comorbidities during follow-up, which could lead to

Offspring Cohort [FOC]" and the Coronary Artery Risk
Development in Young Adults Study [CARDIA]
Cohort*) and the Framingham Generation III cohort
(GenlII), which includes the direct descendants of FOC
participants.”

The FOC started between August, 1971, and September,
1975, and includes 5124 participants aged between 5 and
93 years.” The offspring cohort consists of children of
individuals in the original Framingham cohort, who
were respondents of a random sample of two-thirds of
the adult population of Framingham, MA, USA.

CARDIA is a community-based cohort that recruited
black and white individuals (aged 18-30 years) from
March 26, 1985, to June 7, 1986, from four US centres."
The GenllIl cohort includes the offspring of FOC
participants (aged 19-78 years). Most participants (98%)
were white. Thus, these two cohorts are not fully
independent and might share some genetic background
and might have been exposed to similar environmental
factors. GenlII started in April, 2002, and is ongoing.”

We obtained ethics approval from the institutional
review board of Hospital Clinic (Barcelona, Spain) for the
analysis (DbGaP project 7202).

Procedures
In these cohorts, we investigated cross-sectional dif-
ferences between participants with normal versus low
lung function (FEV, 280% [normal] or <80% [low]
predicted), both in early adulthood (25-40 years; FOC,
CARDIA, and GenllIl) and late adulthood (50-65 years;
FOC, CARDIA); and the incidence of comorbidities
(appendix) and death during follow-up (FOC, CARDIA).
For our analysis, we extracted data from eight clinical
visits for the FOC (exam 1, 1971-75; exam 2, 1979-83;

premature death. We tested this hypothesis in the Framingham
Offspring Cohort (FOC) and validated the reproducibility of
observations in CARDIA (an independent cohort) and Genlll
(which includes the direct descendants of participants in FOC).
Our results showed that low peak lung function in early
adulthood is associated with a higher prevalence, and about a
decade earlier incidence, of respiratory, cardiovascular, and
metabolic abnormalities, as well as with premature death.

Implications of all the available evidence

Our results confirm previous observations that indicate that
smoking is not the only risk factor for COPD and extend them by
showing that low peak lung function in early adulthood identifies
agroup of individuals at risk of poor health outcomes later in life
(higher incidence of comorbidities and premature death). Thus,
the possibility that spirometry measured during infancy or early
adulthood identifies these individuals and facilitates the
implementation of effective preventive or therapeutic measures
merits further research.

exam 3, 1983-87; exam 4, 1987-91; exam 5, 1991-95;
exam 6, 1995-98; exam 7, 1998-2001; exam 8, 2005-08),
which spanned almost 40 years of follow-up. Following
the same criteria used in our previous analysis of the
FOC cohort,’ participants were stratified in two groups
(normal or low) according to their FEV, value (=80%
or <80% predicted”) in early adulthood (25-40 years).
To reduce classification errors due to spirometry
variability, we restricted our analysis to FOC
participants with two or more concordant (normal or
low) FEV, values in early adulthood (n=1161). These
individuals were followed up until they dropped out of
the study, death, or late adulthood (50-65 years), when
clinical and functional measurements were repeated in
Survivors.

For the CARDIA cohort, we included in the analysis
only those participants with two or more concordant
FEV, values in early adulthood (n=2648). We extracted
data from six clinical visits for these participants
(recruitment and visits at 2, 5, 7, 10, and 15 years),
which spanned 20 years of follow-up.™

For the GenlII cohort, we extracted data from two
visits (2002-05 [n=4095], and 2008-11 [n=3411]) and
finally included 1912 individuals with available
spirometric measurements at the age of 25-40 years. In
these individuals, only one spirometry was available
(and used) for analysis.

Outcomes

Main outcomes were the prevalence and incidence of
comorbid diseases and all-cause mortality in normal
versus low individuals. Differential dropout rates
during follow-up were considered as a potential source
of bias.
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Normal Low p value
N n (%) or mean (SD) N n (%) or mean (SD)
Demographics
Age (years) 1050 337(15) 111 340(15) 0-102
Sex
Men 1050 488 (47%) 111 57 (51%) 0-380
Women 1050 562 (53%) 111 54 (49%) 0-380
BMI (kg/m?) 1050 252 (4-1) 111 253 (5) 0-766
Morbid obesity (BMI>40 kg/m?) 1050 14 (1%) 111 2(2%) 0-999
Pregnancy, delivery, and infancy data
Low birthweight (<2-5 kg) 472 41(9%) 50 10 (20%) 0-021
Caesarean delivery 745 62 (8%) 76 9 (12%) 0-409
Maternal obesity, diabetes, or hypertension 241 21(9%) 30 6 (20%) 0-105
Overweight children 268 63 (24%) 32 9 (28%) 0-720
Smoking exposure
Ever smoker 1050 676 (64%) 111 84 (76%) 0-023
Age started smoking (years) 619 17-5(35) 75 168 (2:4) 0-020
Number of cigarettes smoked per day 576 20-3(11.9) 74 28.8(14-1) <0-0001
Current smoker 676 486 (72%) 84 71(85%) 0-012
Respiratory measures
FEV, (% predicted) 1024 97:3(8-6) 109 695 (8-1) <0-0001
FEV,/FVC (%) 1050 84-4% (57) 111 76-8% (8-9) <0-0001
Inhaled medication for respiratory diseases 771 5(1%) 91 6 (7%) <0-0001
Asthma 1050 86 (8%) 111 28 (25%) <0-0001
Chronic bronchitis, emphysema, COPD 1049 58 (6%) 110 24 (22%) <0-0001
Pneumonia 571 6 (1%) 45 1(2%) 0-999
Other pulmonary disease 910 10 (1%) 69 2 (3%) 0-458
Cardiovascular measures
Electrocardiogram abnormality 1046 287 (27%) 111 46 (41%) 0-003
Arterial hypertension treatment 1050 81 (8%) 111 7 (6%) 0731
Cardiovascular disease medication 585 17 (3%) 47 1(2%) 0-999
Arrhythmia 1048 41 (4%) 111 6 (5%) 0-613
Myocardial infarction 1049 1(<1%) 111 0(0) 0-999
Peripheral vascular disease 1050 53 (5%) 111 9 (8%) 0-254
Valvular disease (aortic, mitral, rheumatic) 1050 30 (3%) 111 4 (4%) 0-883
Other heart disease (excluding above) 928 13 (1%) 92 2 (2%) 0-894
Echocardiographic abnormalities 902 140 (16%) 96 19 (20%) 0-347
Left ventricular ejection fraction 905 74-2% (4-2) 98 73-8% (5-4) 0-551
Metabolic measures
Diabetes 1046 7 (1%) 109 4 (4%) 0-011
Hypercholesterolaemia treatment 1034 3 (<1%) 110 1(1%) 0-845
Circulating blood measures
White blood count (1000 cells per pL) 909 6-3(17) 98 7-1(22) 0-001
C-reactive protein (mg/L) 916 2.0 (4-1) 93 2:2(3) 0-576
Plasma fibrinogen (mg/dL) 172 284-9 (49-6) 7 312:3(53:6) 0-229
FOC=Framingham Offspring Cohort. N=number of individuals available for each specific comparison. BMI=body-mass index. FVC=forced vital capacity. COPD=chronic
obstructive pulmonary disease.
Table 1: Characteristics of FOC participants with normal or low lung function in early adulthood

Statistical analysis they were averaged to get a unique estimate per participant
When several continuous variable measurements from and time period. The key categorising variable (FEV,) was
different clinical visits during a given study period (early not averaged when it was used to stratify participants
or late adulthood) were available for the same individual, into the low or normal group, as we required the
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Figure 1: Proportion of participants with at least one respiratory, cardiovascular, or metabolic abnormality by lung function level in early adulthood
(A) FOC. (B) CARDIA. (C) Genlll. CARDIA=Coronary Artery Risk Development inYoung Adults Study. FOC=Framingham Offspring Cohort. Genlll=Framingham

Generation Il cohort.

Normal

Low

p value
N n (%)or mean (SD) N n (%) or mean (SD)

Demaographics
Age (years) 2310 31.9(16) 3138 317(17) 0-009
Sex

Men 2310 1015 (44%) 338 176 (51%) 0-006

Women 2310 1295 (56%) 338 162 (49%) 0-006
BMI (kg/m?) 2304  25.6(51) 337 28.0(72) <0-0001
Morbid obesity (BMI=40 kg/m*) 2304 77(3%) 337 30(9%) <0-0001
Pregnancy, delivery, and infancy data
Paternal or maternal diabetes 2258 491 (22%) 324 111(34%) <0-0001
Maternal diabetes 2239 269 (12%) 318 76 (24%) =0-0001
Paternal diabetes 2103 273 (13%) 278 53 (19%) 0.015
Maternal high blood pressure 2160 928 (43%) 313 185(59%) <0.0001
Paternal high blood pressure 1970 887 (45%) 268 131(49%) 0-263
Smoking exposure
Ever smoker 2051 1089 (53%) 277 170 (61%) 0-011
Age started smoking (years) 1002 17-6 (4-3) 158 179 (4-9) 0-406
Mumber of cigarettes smoked perday 1843 6-2(83) 245 7-8(8-8) 0-005
Years smoked reqularly 781 8.7 (5-6) 107 10-5(5-3) 0-001
Current smoker 1085 710 (64%) 169  66(38%) <0-0001
Respiratory measures
FEV, (% predicted) 2310 977(93) 138 705(63) <0-0001
FEV,/FVC (%) 2310 82:0%(53) 338 78.0%(81) <0-0001
Lung problems before age of 16 years 1557 98 (6%) 191 20(11%) 0-044
Respiratory symptoms 2310 670(29%) 338 115(34%) 0-040
Asthma 2310 347 (15%) 338 98(29%) <0-0001
Chronic bronchitis, emphysema, 2307 349 (15%) 337 61 (18%) 0184
COPD
Pneumonia 2303 413 (18%) 337 67 (20%) 0-429
Tuberculosis or lung cancer 2153 65 (3%) 313 22 (7%) 0-001
Cardiovascular measures
High blood pressure or treatment 2310 467 (20%) 338 109 (32%) <0-0001

(Table 2 continues on next page)

FEV, % predicted values of each individual to be con-
cordant in the age range of 25-40 years, both in FOC and
CARDIA (ie, either all values higher than 80% predicted
or all below 80% reference). Likewise, main outcome
variables (comorbidity, death) are categorical and were not
averaged either. We selected variables to be included in the
analysis from those available in each of the three cohort
datasets by clinical judgment—ie, by considering those
which could eventually be more helpful to test our
hypothesis and to interpret the results clinically. We used
the y2 test to compare categorical variables and the
unpaired t test to compare continuous variables, in normal
versus low participants cross-sectionally. We used a Cox
proportional hazards model” adjusted for potential
baseline confounders (sex and body-mass index [BMI]) to
estimate the time to first reported comorbidity or death in
individuals with normal or low peak lung function in early
adulthood both in FOC and CARDIA. We compared
differential dropout proportions during follow-up
(excluding deaths) in 5-year bins, from 20 to 65 years, with
Fisher's exact tests. p values less than 0.-05 were
considered statistically significant. All statistical analyses
were performed with custom R scripts and relevant
Bioconductor Packages.*

Role of the funding source

The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report. GN and RF had access to the raw
data. The corresponding author had full access to all the
data in the study and had final responsibility for the
decision to submit for publication.

Results

In participants from the FOC cohort, recruited between
August, 1971, and September, 1975, FEV, in early adulthood
(2540 years) was consistently 80% or higher than
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predicted in 1050 (90%) of 1161 participants, who were
therefore classified as having normal lung function,
whereas FEV, was less than 80% predicted in 111 (10%),
who were classified as having low lung function.
Demographics were similar between the two groups
(table 1). The proportion of individuals with low birth-
weight was two-times higher in participants with low lung
function that in those with normal lung function. There
were no differences in reported maternal illnesses,
caesarean deliveries, or overweight children. The
prevalence of ever smokers was higher in individuals with
low lung function, who also started smoking almost a year
earlier, and had higher cumulative smoking exposure, and
included a higher proportion of current smokers than in
the normal lung function group. By design, FEV, was less
than 80% predicted in individuals with low lung function.
Notably, the FEV -to-forced vital capacity ratio (FEV,/FVC)
was also significantly lower in these participants than in
those with normal lung function. In keeping with these
functional abnormalities, individuals with low lung
function used inhaled medications for respiratory diseases
more often and were diagnosed with respiratory diseases
such as asthma, chronic bronchitis, emphysema, or COPD
more frequently than those with normal lung function.
Accordingly, the proportion of cumulative (at least one)
respiratory abnormalities was significantly increased in
participants with low lung function (figure 1A).

Individuals with low lung function also had a
significantly higher prevalence of electrocardiogram
abnormalities, and other clinical cardiological diagnoses
were numerically more prevalent, but not statistically
different (table 1). However, there was a significantly
higher prevalence of cumulative cardiovascular
abnormalities in participants with low lung function
(figure 1A). Likewise, the prevalence of diabetes was
four times higher in individuals with low lung function
and, these individuals also had higher circulating
leucocyte counts (table 1).

338 (13%) of 2648 participants in CARDIA were
classified as individuals with low lung function in early
adulthood. Observations in CARDIA were largely the
same as in FOC participants (table 2, figure 1B), but
some differences should be noted. Although statistically
different, probably due to the large sample size, there
were clinically insignificant differences in age (31-7
vs 31-9 years). There were more men and participants
who were overweight in those with low lung function,
and their mothers and fathers reported having diabetes
and arterial hypertension more often. Similar to FOC,
smoking exposure was higher in individuals with low
lung function, but the proportion of current smokers was
lower than in participants with normal lung function.
CARDIA participants with low lung function in early
adulthood also reported more frequent respiratory
symptoms, before the age of 16 years, and reported
having been diagnosed with other respiratory diseases,
such as asthma, tuberculosis, and lung cancer, more

Normal Low p value
N n (%) ormean (SD) N n (%) or mean (SD)
(Continued from previous page)
Cardiovascular disease medication 2193 63 (3%) 314 21 (7%) 0-001
Coronary artery disease 377 14 (4%) 62 6 (10%) 0-079
Arrhythmia 938 2 (<1%) 91 1(1%) 0-633
Heart failure 2229 5 (<1%) 318 2 (1%) 0-474
Valvular heart disease (including 365 51(14%) 61 10 (16%) 0-763
rheumatic heart disease)
Congenital heart diseases 114 7 (6%) 16 2 (13%) 0-680
Maximum heart rate during exercise 2016  179-8(13-9) 277  172:3(18.0) <0-0001
Recovery time to heart rate 130 bpm 2007  268:3(115-3) 268  243.1125.5) 0-002
O]
Metabolic measures
Diabetes 2310 144 (6%) 338 35(10%) 0-007
Glucose (mg/dL) 1533 83.2(12:8) 188 84.0(27-4) 0-669
Insulin (uU/mL) 1541 9.5 (6-4) 187 127(94) <0-0001
Leptin (ng/mL) 186 122(14-4) 29 205(21:0) 0-048
Plasma lipoprotein A (mg/dL) 2132 186 (21) 306 26-2(22:6) <0-0001
Hypercholesterolaemia or treatment 2310 434 (19%) 338 58 (17%) 0-520
Circulating blood measures
White cell count (1000 cells per pL) 1545 6-0(1.7) 187 62(2.2) 0-183
C-reactive protein (pg/mL) 876 1.9 (2-4) 155 2:5(3.0) 0-009
Fibrinogen (mg/dL) 2247  253-5(52:8) 321 272:2(61.8) <0-0001
Interleukin 6 (pg/mL) 199 1.6 (13) 38 2:1(1.8) 0-115
CARDIA=Coronary Artery Risk Development in Young Adults Study. N=number of individuals available for each specific
comparison. BMI=body-mass index. FVC=forced vital capacity. COPD=chronic obstructive pulmonary disease.
bpms=beats per min.
Table 2: Characteristics of CARDIA participants with normal or low lung function in early adulthood

often than in the normal lung function group. These
individuals had numerically more cardiovascular and
metabolic abnormalities, including higher concentrations
of some systemic inflammatory markers, although
differences did not reach statistical significance in some
instances (table 2). The proportion of participants with
at least one respiratory, cardiovascular, and metabolic
abnormality in CARDIA was higher in participants with
low lung function than in those with normal lung
function (figure 1B).

The GenllII cohort included 1912 individuals, 1841 (96%)
of whom had normal, and 71 (4%) of whom had low lung
function in early adulthood (table 3). Because participants
in GenlII are direct descendants of FOC participants, they
are genetically related and, therefore, observations need to
be considered with caution when considering the
reproducibility of observations. With this caveat in mind,
participants in GenlII with low lung function in early
adulthood had similar proportions of abnormalities
measured to those in FOC (related cohort) and CARDIA
(independent cohort). Participants with low lung function
in GenllI were again most often men, were more often
overweight, with a higher prevalence of parental asthma,
with higher smoking exposure, who had evidence of
airflow limitation and reported more respiratory
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Normal Low p value
N n (%) or mean (SD) N n(%)ormean (SD)

Demographics
Age (years) 1841 349 (4-1) 71 357(37) 0-134
Sex

Men 1692 793 (47%) 65  36(55%) 0221

Women 1692 899 (53%) 65 29 (45%) 0-221
BMI (kg/m?) 1841 26.5(51) 71 293(7:9) 0-004
Morbid obesity (BMI>40 kg/m?) 1841 41 (2%) 71 5(7%) 0-028
Pregnancy, delivery, and infancy data
Paternal asthma 1457 217 (15%) 54 15 (28%) 0-017
Maternal asthma 1549 245 (16%) 58 12 (21%) 0-417
Smoking exposure
Ever smoker 1841 654 (36%) 71 29 (41%) 0-428
Age started smoking regularly 121 17-5(2°1) 7 17-7 (4-5) 0-795
Number of cigarettes smoked per 259 13-1(7-1) 15 17-4(8-2) 0-065
day
Current smoker 653 287 (44%) 29 18 (62%) 0-084
Respiratory measures
FEV, (% predicted) 1692 102:0(8-2) 65  72:0(10:5) <0-0001
FEV,/FVC (%) 1692 79-0% (10-3) 65  67:0% (5-6) <0-0001
Presence of respiratory symptoms 1841 711 (39%) 71 39 (55%) 0-008
(dyspnoea, wheezing, chest
discomfort)
Asthma 1840 259 (14%) 71 21(30%) 0-001
Chronic bronchitis, emphysema, 1841 676 (37%) 71 31(44%) 0-287
COPD
Pneumonia 1841 378(21%) 71 25(35%) 0-005
Sleep apnoea 1840 75 (4%) 71 4 (6%) 0-732
Pulmonary fibrosis 1833 2 (<1%) 70 0(0) 0-999
Other pulmonary disease 917 106 (12%) 22 5(23%) 0-204
DLCO (% reference) 1564 98.6 (13-1) 53 883 (16-2) <0-0001
CT-diagnosed emphysema 397 17 (4%) 18 4(22%) 0-004
(measured at 40-50 years)
Cardiovascular measures
Electrocardiogram abnormality 1841 849 (46%) 71 37(52%) 0-383
Mean arterial pressure (mm Hg) 1686 86-7(9-8) 64  923(12:8) 0-001
Arterial hypertension treatment 1840 89 (5%) 71 9 (13%) 0-008
Cardiovascular disease treatment 1838 11 (1%) 71 0(0) 0999
Arrhythmia 1838 22 (1%) 71 1(1%) 0999
Myocardial infarction 1692 1(<1%) 65 0(0) 0-999
Valvular disease (aortic, mitral, 1839 22 (1%) 70 0(0) 0726
rheumatic)
Peripheral vascular disease 1841 19 (1%) 71 0(0) 0-802
Other heart disease 1778 15 (1%) 68 1(2%) 0-999
Echocardiography: left ventricular 1663 34-8 (3-4) 60 352 (4) 0-412
percentage fractional shortening
NT-proBNP (pg/mL) 1690 369 (37-7) 64  415(486) 0-452
Metabolic measures
Glucose (mg/dL) 1692 928 (16-5) 64 94-6 (9-6) 0-167
Glucose levels 2 h post tolerance 719 985 (22-7) 19 114-6 (27-2) 0-019
test beverage (mg/dL)
HbA, (%) 765 5:3% (0-4) 22 5.6% (0-5) 0-028
Diabetes medication 1840 23 (1%) 71 2 (3%) 0-543

(Table 3 continues on next page)

symptoms, and who were more likely to have been
diagnosed with asthma or pneumonia. Unlike FOC or
CARDIA, which did not have information on emphysema,
GenlII used two specific methods to assess the disorder
(CT scan and lung diffusing capacity [DLCO]) and both
methods resulted in the report of higher prevalence of
emphysema in individuals with low lung function (table
3). As in FOC and CARDIA, individuals in GenlII with
FEV, less than 80% predicted had a higher prevalence of
cardiovascular and metabolic abnormalities (figure 1C), as
well as higher concentrations of circulating inflammatory
markers (table 3).

Longitudinal observations during follow-up in FOC
showed that dropout rates were higher in participants with
low lung function in early adulthood (appendix). The
incidence of reported comorbid diagnoses during follow-
up was higher in individuals with low lung function at any
age (appendix). The mean age at which 50% of individuals
reported the presence of one comorbid diagnosis was
around a decade earlier in those with low lung function in
early adulthood than in those with normal lung function
(39 years vs 47 years, p<0-0001; figure 2A). Cox analysis
showed that low lung function in early adulthood
significantly increased first disease occurrence during
follow-up, whereas never smoking (in or before early
adulthood) and lower baseline BMI decreased it
significantly; sex had no significant effect on age at first
disease occurrence (appendix).

All-cause mortality during follow-up in FOC was higher
in ever smokers (Cox model hazard ratio [HR] 1-8 [95% CI
1-1-2-8], p=0-028) and in individuals with low lung
function in early adulthood (2-3 [1-4-3-7], p=0-001;
figure 3). These two effects were statistically additive and
independent (non-significant Fisher association and non-
significant interaction in Cox models), and BMI did not
significantly influence mortality. We did not find
statistically significant differences in cause-specific
mortality between high and low lung function groups, but
there was a numerically higher, but non-significant,
cardiovascular mortality in participants with low lung
function (appendix).

FOC participants who were alive and not lost to follow-
up were reassessed in late adulthood (50-65 years). Most
of the differences observed between participants with low
and normal lung function in early adulthood remained
(appendix). The prevalence of emphysema (not assessed
in early adulthood) was much higher in individuals with
low lung function in early adulthood than in those with
normal lung function (appendix).

Available follow-up data in CARDIA is shorter (20 years)
than in FOC (40 years). However, observations during
follow-up in CARDIA were similar to those of FOC
discussed above. Similar to FOC, dropout rates and the
incidence of comorbid diagnoses during follow-up were
higher in those with low lung function in early adulthood
(appendix), and the mean age at which 50% of individuals
reported the presence of one comorbid diagnosis was
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7 years earlier in CARDIA participants with low lung
. . Normal Low p value

function in early adulthood (30 years vs 37 years,
p<0-0001; figure 2B). Similarly, using a Cox model to s DiYeroEmEh) M ofyerme=miEy
investigate which factors affect the incidence of comorbid (Continued from previous page)
diagnoses during follow-up in CARDIA, we found that Total cholesterol (mg/dL) 1692 1843(353) 64 184:6(357) 0:961
low lung function in early adulthood significantly HDL cholesterol (plasma, mg/dL) 1840 547 (15:0) 70 510(156) 0.050
increases risk; whereas, unlike in FOC, smoking status Triglycerides (mg/dL) 1692 109-3(86-8) 64 126.0(765) 0-094
and baseline BMI did not have a significant effect on Cholesterol medication 1840 90 (5%) 71 1(1%) 0-285
comorbidity incidence in CARDIA (appendix). Circulating blood measures

Because the precise date of death is not registered in the White blood count (10° cells perpl) 480 6.1(1-4) 14 73(18) 0.027
CARDIA database, we could not generate Kaplan-Meier C-reactive protein (mg/L) 1838 25 (4-4) 70 38(49) 0-029
survival curves for this cohort. However, all-cause mortality Fibrinogen (mg/dL) 1680 3305 (67) 60 3306 (74-9) 0.991
before the age of 50 years in CARDIA participants with low Interleukin 6 (pg/mL) 1673 16 (2:0) 63 23(23) 0-020
lung function in early adulthood was three times higher _ ‘ - _ _ ‘
tha thtof pople with normal lung funcion (19615075, | Gl st chat Kbttt
odd ratio [OR] 4.1 [95% CI1.7-9. 6]- P=0 OO]-) capacity for carbon monoxide. NT-proBNP=N-terminal pro-B-type natriuretic peptide. HbA, =glycated haemoglobin.

We could not investigate the reproducibility of FOC — — - —
and CARDIA longitudinal observations in GenlIl Table 3: Characteristics of Genlll participants with normal or low lung function in early adulthood

because it is an ongoing cohort and extended follow-up
data are not yet available.

Finally, to assess the transgenerational reproducibility
of low lung function in early adulthood, we compared the
characteristics of Gen III participants for whom both
parents were classified as normal in FOC (n=248) with
those with at least one parent classified as having low
lung function in FOC (n=115; figure 4). More individuals
with at least one parent who had low lung function in
early adulthood were women, reported more parental
history of asthma, and, albeit within the normal range,
had lower FEV, (% predicted) and FEV,/FVC than those
who had two parents with normal lung function. In
GenlII participants with at least one parent stratified as
having low lung function in FOC (n=115), 10% had FEV,
of less than 80% predicted; this proportion was 3% in
those with both parents classified as normal in FOC
(n=248; p<0.0001; figure 4A, appendix). Further, we
found a positive correlation between the FEV, of GenlII
participants and FOC parents’ average FEV, (R2=0.28,
p<0-0001; figure 4B). We did not find significant
cardiovascular, metabolic, or systemic inflammatory
marker differences between these two groups, although
the prevalence of arterial hypertension was higher in
descendants of FOC participants with low lung function
in early adulthood (8.2% vs 2-9%, p=0-051).

Discussion

In this study, we analysed three large cohorts (FOC,
Genlll, and CARDIA) and found that 4-13% of the general
population has low lung function (FEV, <80% predicted)
in early adulthood (2540 years of age); that this is not a
bystander effect because these individuals also have a
higher prevalence of respiratory, cardiovascular, and
metabolic abnormalities and a higher and earlier incidence
of comorbidities during follow-up than those with normal
lung function in early adulthood, and these individuals
also die prematurely; and some of these abnormalities are
also found in direct descendants (GenlII).

It is well established that low birthweight is associated
with dysfunction of several organs later in life***" and that
low lung function in infancy tracks into adulthood.*** To
our knowledge, however, this is the first study to test the
hypothesis that the genetic or environmental factors that
govern lung development®** might also affect the
development of other organ systems, such as the
cardiovascular and metabolic systems, and that this might
increase the likelihood of having a higher prevalence and
earlier incidence of comorbidities during follow-up,
eventually causing premature death. Our results support
this hypothesis because individuals with low lung function
in early adulthood consistently reported more frequent
symptoms, were more often diagnosed with (and received
treatment for) various clinical conditions, had higher and
earlier incidence of comorbidities, and died earlier.
Further, individuals with low lung function surviving into
late adulthood continued to have a higher proportion of
abnormal cardiopulmonary and metabolic disorders than
those who had normal lung function, as well as evidence
of low-grade systemic inflammation. An analysis of the
Tucson Epidemiological Study of Airway Obstructive
Disease recently confirmed that low FEV, by the age of
21-35 vyears predicts risk of early cardiopulmonary
mortality.” Overall, these observations suggest that some
of the comorbidities frequently reported in patients with
COPD might originate earlier in life than previously
thought and might not always be associated with ageing.
This finding indicates that potential opportunities exist for
prevention and early intervention. Finally, the high
reported prevalence of a previous diagnosis of several
respiratory diseases, such as asthma, was notable. We
propose that, if the lungs develop suboptimally, resulting
symptoms or airflow limitation can be easily misdiagnosed
as asthma. This potential misclassification should be
considered in future studies.

The precise biological mechanisms underlying these
observations cannot be disentangled from our results.

www.thelancet.com/respiratory Published online November 14,2017 http://dx.doi.org/10.1016/52213-2600(17)30434-4

52



FEV, 280% predicted in early
adulthood (n=1050) -

Numberof

FEV, <80% predicted in early

100 adulthood (n=111)

comorbidities

1

Participants (%)

FEV, =80% predicted in early
- adulthood (n=2310) -

FEV <B0% predicted in early
adulthood (n=338)

T T
30 40

Age (years) Age (years)

T S p—
25 30 35 40 45
Age (years)

Age (years)
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function level in early adulthood

Age range for FOC was 40 years; age range for CARDIA was 20 years. Dotted lines indicate the age at which half of the population reports the first comorbidity.
CARDIA=Coronary Artery Risk Development inYoung Adults Study. FOC=Framingham Offspring Cohort.
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Figure 3: Kaplan-Meier survival curves and Cox model HRs in FOC participants

(A) Smoking (ever vs never smoker by 40 years of age). (B) Lung function in early adulthood. FOC=Framingham Offspring Cohort. HR=hazard ratio.

Theoretically, the observed associations between low
peak lung function and the earlier incidence of
comorbidities and premature death can result from
shared genetic or environmental factors (eg, cumulative
smoking exposure) or both;””*” in fact, smokers with low
lung function in early adulthood consumed significantly
more cigarettes than smokers with normal lung function.
This exposure in early life might be a risk factor for
having low lung function in the first place, and is
certainly associated, as shown in many previous studies,

with a higher incidence of comorbidity and premature
death during follow-up. Further mechanistic studies are
required to investigate the interaction between these
factors. That observations in FOC and CARDIA were
largely reproduced in Genlll participants (who were
direct descendants of FOC participants) support genome-
wide association studies in the general population, which
identified specific gene variants associated with lung
function levels,” but might also be the result of a shared
exposome (eg, similar smoking habits or diet in families)

www.thelancet.com/respiratory Published online November 14, 2017 http://dx.doi.org/10.1016/52213-2600(17)30434-4

53




Articles

A B
1409 o T o
=}
o
=
&
2
5 120+ —
£
=
Q
=]
=
=
=
R 1004 -
=
i
@
£
@
=
£ % .
E
= a
© 8
e °
60 =1
0/( Wilcoxon p<0-0001 /]l r=0-28, p=0-0001
T T 1 T T T 1
At least one low Both normal 0 60 2o 100 120
Parent group Parents’ average FEV, (% predicted)

Figure 4: Transgenerational FEV, observations

(A) Box plot showing median FEV, (% predicted) of Genlll participants with at least one parent in FOC classified as low in early adulthood (n=115) and participants
with both FOC parents classified as normal (n=248). (B) Scatter plot showing the relationship between early adulthood FEV, (% predicted) of Genlll participants and
parents’ average early adulthood FEV, (% predicted). FOC=Framingham Offspring Cohort.

or, again, the interaction of both.* However, it is
interesting to note that individuals with low peak lung
function also reported a higher prevalence of emphysema,
which might represent poor lung development, enhanced
lung destruction, or defident lung maintenance
capacity.®” Finally, individuals with low lung function
were often men, overweight, and had a high prevalence
of diabetes and who often reported family history of
asthma, hypertension, and diabetes, potentally
llustrating the complex interactions between the genome
and the exposome.”

The main strength of our study is that it tests a novel
hypothesis in three large and well characterised,
independent (FOC and CARDIA) and family related
(FOC and GenllIl) cohorts, whose participants were
followed up for long periods of time (FOC and CARDIA).
Potential limitations include higher dropout rates during
follow-up in participants with low lung function, both in
FOC and CARDIA. Yet, if anything, this should
contribute to underestimate the effect size of the
observed differences. The prevalence of individuals’ low
lung function in early adulthood in GenlIl was lower
than that in FOC or CARDIA. One potential explanation
ig that, because only one spirometry was available for
analysis in GenlII (compared with two or more in FOC
and CARDIA), a significant number of participants
might have been misclassified in GenlIll. We do not
think that this is the case because this might have
overestimated (not underestimated) the prevalence of
participants with low lung function in GenlIl. Further,
we calculated that the proportion of individuals
misclassified as having low lung function if one rather
than two or more measures were used for stratification

would have been 10% in FOC and 5% in CARDIA. It is
therefore, unlikely, that a similar number in GenlIl
would have altered the main results. Additionally, the
GenlII cohort started about 30 years later than FOC and
about 17 years later than CARDIA. During this long
period of time, many environmental factors (eg, smoking
prevalence, air pollution, or diet) have changed
significantly. For instance, findings from one study
showed that air pollution levels have chronic, adverse
effects on lung development in children from the age of
10-18 years, so the proportion of individuals with FEV, of
less than 80% predicted was 1-6% at the lowest level of
exposure compared with 7-9% at the highest (p=0-002).
10 years later, this same group of investigators also
showed that the progressive decrease in air pollution
levels that occurred after the implementation of air
quality control policies in southern California was
associated with statistical and clinical improvements in
respiratory health in children.” In any case, although we
cannot ascertain with certainty the causes of a reduced
prevalence of participants with low lung function in early
adulthood in Genlll, observations basically reproduced
those of FOC and CARDIA.

Because variables included in the analysis vary between
cohorts, their pairwise comparison is limited. However,
within each cohort, observations comparing individuals
with low and normal lung function were consistent,
showing that individuals with low lung function always
had a higher proportion of cardiorespiratory and
metabolic abnormalities. We also cannot exclude a
potential detection bias because individuals with low
lung function and poorer health might be seen more
often in the health-care system, presenting increased
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opportunities for tests and diagnoses, and hence
treatments for comorbid conditions. This potential bias
does not detract from the basic observation of this study
that individuals with low peak lung function in early
adulthood have increased prevalence and incidence of
comorbidities, as well as premature death. The cross-
sectional nature of comparisons in early and late
adulthood between individuals with low and normal lung
function in early adulthood makes inference about
causation challenging, although the reproducibility of
observations in the three cohorts studied make them
more robust. Finally, because many comparisons were
explored in this study, some of them might have achieved
statistical significance by chance. However, the repro-
ducibility of observations in the three cohorts studied
argues against this possibility, as do the findings of a 2017
analysis of the Tucson Epidemiological Study of Airway
Obstructive Disease, which also showed that low levels of
FEV, achieved by the age of 21-35 years predict risk of
early mortality.”

The results of this study can have clinic and public
health implications because they show that abnormal
spirometry results in early adulthood, a cheap and
reproducible test, has the potential to identify a group of
individuals at high risk of having earlier comorbidities
and premature death. Although we did not do a predictive
risk modelling study that determines the sensitivity,
specificity, positive and negative predictive values of
spirometry in this particular setting, these are well
established in practice where spirometry is routinely used
for diagnosis and treatment of many respiratory diseases.”
Spirometric evaluation of the general population at an
early age (at school or, when applying for a driving licence)
can potentially help in the identification of this high-risk
group of individuals in whom to establish the appropriate
preventive measures, monitor health status regularly and
closely, and implement therapeutic measures as early as
possible when needed.”* Alignment of spirometric testing
to a highly focused and effective educational campaign on
the dangers of smoking might likely have a bigger impact
than either in isolation.*

In conclusion, low lung function (FEV, <80%
predicted) in early adulthood (aged 2540 years) occurs
in 4-13% of the general population and is associated
with increased prevalence and earlier incidence of
respiratory, cardiovascular, and metabolic comorbidities,
and premature death.
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General Discussion

The main findings of the two original papers that form the core of this PhD Thesis are that:

1) Episodes of ECOPD are characterized by (1) a wide range of bioclinical variables
significantly altered at exacerbation (including lung physiology, vital signs, microbiology,
lung inflammation, CT imaging as well as biochemistry, systemic inflammation and
cardiovascular variables), (2) a panel of biomarkers - comprised of increased levels of
dyspnoea (=5 on an analogue visual score from 0 to 10), C-reactive protein level (>3 mg/L
—1) and >70% circulating neutrophils - that has a high predictive value for ECOPD diagnosis
(AUC = 0.97) and by, (3) a disruption of the biological correlation network associated with
clinical stability.

2) Early adulthood low peak lung functions is clearly associated with global increased
health risks later in life. These observations were first made in the Framingham Offspring
Cohort (FOC) and then reproduced in CARDIA (independent cohort) and Genlll (which
includes the direct descendants of FOC participants). In all cohorts a sizeable proportion of
individuals (in the range 4-12%) had FEV1<80% ref. at 25-40 years of age and were therefore
classified as having Early adulthood Low peak Lung Function (ELLF). Analysis of the data
revealed that: (1) they have, vs. those with Early adulthood Normal peak Lung Function
(ENLF), a higher prevalence of respiratory, cardiovascular and metabolic abnormalities in
early adulthood; and, (2) they also have a higher and earlier (about a decade) incidence of co-
morbidities during follow-up as well as an increased all-cause mortality (Hazard Rate (HR)
2.3 [95% CI 1.4-3.7], p=0.001). Finally, in Genlll we observed that: (3) individuals with at
least one parent stratified as ELLF in FOC had lower FEV1 in early adulthood (p<0.0001);
and early adulthood FEV1 of Genlll participants was related (p<0.0001) to their FOC parents

average FEV1 also in early adulthood.

All in all, these observations indicate that COPD heterogeneity refers to both cross-
sectional differences between patients as well as longitudinal variations at several time scales,

months in the case of exacerbations and throughout life for the lung function trajectories that
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lead to COPD. These disparities identify subgroups of patients that have on average
significant differences in aetiology, pathobiological patterns, as well as different clinical
implications such as differential prognosis, comorbidity susceptibility and therapeutic targets.

The challenge of investigating the heterogeneity of complex conditions lies in the
integration of clinical and biological variables that have distinct properties, in terms of
proportion of variance explained, distribution shape, effect size that can be considered
clinically relevant, normalization requirements, redundancy, etc. Clinical data is often lacking
in details, reported as discrete (e.g. categorical) information, may contain missing values
whose imputation is not trivial, or be of imprecise quantification (e.g. smoking exposure, one
of the most central risk factors, is rarely accurately reported in longitudinal studies since at
best it consists of self-reported periodic estimations of average consumption). In contrast,
biological data usually consists of a large amount of continuous determinations that
individually show poor correlations to clinical outcomes and phenotypes (small effect size
and high dimensionality). Furthermore, since omics technologies are still in infancy and
regularly upgraded, the normalization procedures that need to be applied to the data, as well
the statistical methods for differential expression and multi-level integration, are not yet well

established and standardized.

In this context, given the research questions and cohorts data of this PhD Thesis,
standard statistics methodologies as well as a networks approach were applied to the study of
ECOPD heterogeneity, while standard statistical tools only were used for the study of low
peak lung function in early adulthood in relation to health in later adulthood. The networks
approach to the study of correlation structures presents several specific advantages and

drawbacks:

e As mentioned, networks are an accurate representation of biological systems since
these consist of interacting parts in a global dynamic system. Networks allow for the
visualization of mechanistic pathways and subsystems (modules) that are perturbed in

disease states (e.g. ECOPD versus clinical stability).

e In contrast to standard (mixed effects or logistic regression) models, correlation
networks explicitly lay out all the relationships (collinearity) between covariates.
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e Due to the high number of associations estimated (between every pair of variables),
networks approaches need to comply with several requirements in order to filter out
false positives (correlations significant by chance only): a high sample size, the use of
multiple p-value adjustment methods [99], and optionally the application of custom

bootstrapping methods.

e A correlation (calculated with Pearson/Spearman method or similar) only reveals an
association and as such do not necessarily imply causality, nor give the direction of

causality if any (which or the two variables is the cause or consequence of the other).

e The comparison of correlation networks and their interpretation are challenging, in
part because of the lack of causality information, but also because a cut-off based on
p-value or correlation strength (such as R? or odds-ratio) has to be arbitrarily chosen
below which weaker correlations are not shown. The density of the networks is thus
arbitrary (as well as depends heavily on the sample size) and must be interpreted with

caution.

The specific research results of the two core original papers that form this PhD Thesis are

discussed below:

1. SPECIFIC DISCUSSION OF THE FIRST AIM: MULTILEVEL
CHARACTERIZATION OF COPD EXACERBATIONS

This paper constitutes a proof-of-concept study in which Multi-Level Differential
Network Analysis (MLDNA) was applied for the first time to a relevant, complex and
heterogeneous clinical problem (ECOPD). Below we further discuss the specific findings and

the main limitations of that work.

1.1 Characterization of ECOPD

The reported biological and clinical characteristics determined in core paper 1 both
during exacerbation and at convalescence are largely in agreement with previous studies on
ECOPD, in terms of individual measures (physiological, biological and microbiological)
[100]. Importantly the heterogeneity of exacerbations is made clear in the analysis of the 16

continuous variables that had a significant (bootstrapping False Discovery Rate (FDR) p-
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value <0.05) proportion of ECOPD outliers (<5th or >95th percentiles established at
convalescence). More than 50% of values of all the study variables at ECOPD still remained
within the 5th to 95th range determined at convalescence, indicating a major overlap between
the two clinical states. Furthermore, an analysis of the correlations between alterations for all
possible pairs of variables reveals that only neutrophils and lymphocytes had their outliers co-
occurring in more than 75% of patients. In contrast, all other pairs of variables had at least
25% of their outliers associated with a "normal” value (non-outlier value in the 5%-95%
percentiles range of convalescence) in the other pair's variable, pointing out that patients do
not all share the same subset of altered variables at exacerbations. Likewise, considering
possible causes of the acute event, pathogenic virus or bacteria were not detected from
spontaneous sputum at ECOPD in more than 60% of the patients, likely due to the fact that
positive cultures were used instead of the qPCR-based techniques (1L6sRNA sequencing) that
tend to provide better detection sensitivity. Of note, the large proportion of outliers in glucose
levels is probably caused by systemic steroids taken at or before hospitalization [19, 101]).
Additionally, only 5.7% of patients at ECOPD had >2% circulating eosinophils, which
increased to 54.7% at convalescence. This differs significantly from other studies where 25%
to 50% of patients have >2% circulating eosinophils during ECOPD [78, 102, 103],
suggesting that in this cohort the population did not capture eosinophilic-associated

exacerbations.

1.2 Biomarkers Diagnostic of Exacerbations

Biomarkers analysis derived from the patients’ data showed that ECOPD episodes can
be accurately identified (with an AUC of 0.97) by combining the levels of dyspnoea (=5 on
1-10 visual analog scale), blood neutrophils (>70%) and plasma CRP (>3 mg/L) into an
optimized general linear mixed model, providing a simple yet reliable diagnostic tool of
hospitalized exacerbations. The patients were all recruited at the hospital because of the
episode so that the validity of the model to detect non-hospitalized (thus milder) forms of
exacerbations could not be investigated. Several other studies [104-108] have defined a higher
threshold of CRP for hospitalized acute ECOPD, mostly >10 mg/L, possibly due to a higher
severity of the included exacerbations [109]. Needless to say that increased dyspnoea,
elevated CRP and leucocytosis can also occur in other clinical circumstances that may not
even arise from the lungs (e.g. cholecystitis, pneumonia, sickle cell crisis, pulmonary

embolism (PE) or congestive heart failure). The dyspnoea levels reported consist of patients
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self-evaluation and the diagnostic would be less subjective if dyspnoea were replaced by a
biological biomarker, for example from a serum or sputum sample. For research and clinical
use, the computational model requires cross-examination and validation in external cohorts
[72]. Maria Montes de Oca et al., in a 2018 review citing our study and others, present
different schemes to precisely define exacerbations and propose to use the same three
parameters and associated cut-off values of the core paper 1 in addition to three new
parameters in order to improve the definition of acute ECOPD. These new parameters are:
Procalcitonin >0.25 pg/L (suggestive of bacterial aetiology and encourage the use of
antibiotic therapy), N-terminal pro b-type natriuretic peptide (NT-proBNP) >300 pg/mL
(suggestive cardiac dysfunction [108]) as well as X-Rays (to evaluate the presence of
pneumonia) [110].

1.3 Multi-Level Differential Network Analysis of Exacerbations (MLDNA)
With the application of MLDNA, the core paper 1 aimed to draw attention to the

usefulness of this new analytical approach to add novel, integrated, dynamic and holistic
information to the heterogeneity of a complex biomedical condition. Networks medicine
premise is that complex multi-level states like exacerbations or COPD can be viewed as
derailed biological systems, or perturbed networks, in which the normal dynamic interactions
at the subclinical levels (for example in terms of lung gas exchange pathways and cellular
processes) are going through an abnormal state far from ideal homeokinetic operating
conditions [16, 111]. In that paradigm, the phenotypic abnormalities observed in patients (i.e.
clinical symptoms of exacerbations) are emergent properties of a dysfunctional physiological
system that are associated to subclinical alterations and improper biological interactions.
These can be represented as perturbed pathways or perturbed correlation networks. In the
worst-case scenario where the disease progressively gets worse, the system departs too far
from functional equilibrium towards a partial system collapse (i.e. lung respiratory failure,
heart attack, etc.) or complete collapse (death). In core paper 1, the perturbed Spearman
correlation network of ECOPD with respect to clinical stability indicates a loss of system
control and reduced resilience during ECOPD. Most of the correlations that significantly
differ between the two states are present at clinical stability while absent at ECOPD.
Furthermore, supporting the idea that network modules represent biological subsystems that
consist of variables highly connected internally but little to outsiders, it can be noted that
network nodes in both clinical states did cluster into sparsely connected modules that appear
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biological homogeneous: five modules at ECOPD and six at clinical stability were identified
by a common unsupervised unbiased algorithm, and the resulting modules were mostly
comprised of node of one or two of the following categories: systemic inflammation, lung
inflammation, biochemistry, lung physiology, vital signs, microbiology, CT imaging or
cardiovascular. In addition, more than half of the differential correlations between the two
states linked different modules at ECOPD, which can be interpreted as a reduction in
biological subsystems (modules) co-regulation. In addition, dynamic non-linear systems may
have some components (biological mediators or variables) that are more critical than others to
their proper regulation. In a network framework, these are referred to as "hubs" and
"bottleneck” nodes and are defined by being respectively either more central and more
connected than the other nodes, or forming a non-redundant thus important link between
modules [112, 113]. Specifically in core paper 1 networks, only one node had more
differential links at ECOPD (TNF-a, with n=4 links to other nodes) while there were many
nodes with more differential links at convalescence: TGF-p (n=6), KCO (n=5), PAFI (n=5),
PaO2 (n=5) and heart rate (n=4), suggesting that these markers are central to the regulatory
processes of lung function, and it can be hypothesized that their alteration are more likely to
lead to health complications. For pharmaceutical research purposes, the central hubs and
bottleneck variables are a priori the ones most susceptible to be relevant, as targeting them
with a specific pharmaceutical agent might help returning the network to the clinically stable
equilibrium state, or inversely to prevent a healthy network topology from turning into one

susceptible to lead to future episodes of exacerbations.

The heterogeneity of exacerbations can then be conceptualized by considering that there
is always more than one way for a system to dysfunction and display the same subset of
observable symptoms. In the physiological and biological network operating in COPD
patients, nominal alterations (such as increased CRP levels) and pressure points (prolonged
submission to tobacco toxic particles) have consequences that spread throughout the network
via the connections of the different parts and nodes (e.g. via systemic inflammation
mediators). Thus exacerbations are not only associated to lung abnormalities but may also be

correlated to cardiovascular, metabolic and systemic complications in COPD patients.

Systems biology approaches that involve networks are now widely used in respiratory

medicine studies that involve omics data [12], for example to investigate lung transcriptomics
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of emphysema [114] or to characterise COPD comorbidities co-occurrence [115]. To my
knowledge, it is the first time that networks medicine is used to get further insight into the
complexity of a relevant clinical problem like ECOPD. Hopefully, core paper 1 paves the way
for network analytical strategies to be applied to other complex biological conditions in

respiratory medicine and elsewhere.

Heterogeneity can be investigated with other systems biology approaches than differ
from networks medicine and complements it. Another common and useful scheme to look
into complex conditions is to perform unbiased clustering of the patients and their data, then
look for significant differences between the clusters with the end goal to (in)validate the
findings in other cohorts. Such an unbiased cluster approach was successfully used on
ECOPD by Bafadhel et al. on a dataset of 182 ECOPD episodes [102]. Unfortunately, the

sample size of the core paper 1 cohort (n=86) was too small for that approach.

1.4 Core Paper 1 Limitations

This paper’s research has several limitations worth pointing out. It is not clear how
much the initiation of systemic corticosteroids, before the collection of biological samples
(within 72h after admission) might have modified the inflammatory profile of ECOPD. It
must also be noted that only hospitalised ECOPD were included, so that the results are not
directly generalisable to other milder (or more severe) forms of ECOPD. Furthermore,
patients presented to hospital at various time points in the evolution of an ECOPD and it is
unclear where the exacerbations were sampled along that continuum. Additionally, the
recovery phase data at 3 months was used as a proxy for COPD clinical stability in our
(networks and biomarkers) differential analysis. However, the underlying assumption that the
patients’ bioclinical status is the same before and after the exacerbations is partially incorrect.
The cohort further lacks controls without COPD and COPD patients who do not suffer
exacerbations. Finally, the core paper 1 networks analysis must be considered a proof-of-
concept study because of the relatively low number of patients included (n=86) so that the
findings require validation in larger cohorts. All in all, the exclusion of severe co-morbidity,
pneumonia, relatively small sample size and study of hospitalised patients (not ambulatory
ECOPD) restrict the generalisability of the results.
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2.  SPECIFIC DISCUSSION OF THE SECOND AIM: RELEVANCE OF LOW
LUNG FUNCTION IN EARLY ADULTHOOD

The analysis of the prevalence, associated biomarkers and clinical relevance of the low
lung function in early adulthood, in three large cohorts (FOC, Genlll, and CARDIA)
constitutes the follow-up of the vital lung function trajectories described by my group in 2015
[28]. Specifically, the novel information provided is that 4-12% of the general population has
low lung function (FEV1 <80% predicted) in early adulthood (25-40 years of age); that this is
not a bystander effect because these individuals also have a higher prevalence of respiratory,
cardiovascular, and metabolic abnormalities and a higher and earlier incidence of
comorbidities during follow-up than those with normal lung function in early adulthood, as
well as a higher rate of premature death; and that low lung function status in early adulthood

is correlated between parents and direct descendants (Genlll), suggesting genetic heritability.

These results were not derived from a novel networks analysis as in core paper 1
analysis of COPD exacerbations, but instead from standard statistical tools. However, the core
paper 2 also analyzed the heterogeneity globally from a multi-level perspective since, on one
hand, the analysis processed longitudinal data at multiple time points within adulthood and
across population generations, and on the other hand, they integrated multiple biomedical
variables (e.g. FEV1 or biomarkers) in correlation with clinical outcomes such as
comorbidities and death. These specific aspects and the main limitations are further discussed
hereafter:

2.1 Early Life and Pre-Birth Factors of Abnormal Low Lung Function

The traditional hypothesis of COPD aetiology is an accelerated decline of lung function
with age mainly caused by prolonged tobacco smoking [27]. That paradigm is now challenged
as reports showed that up to half of COPD patients never had a normal peak lung function in
early adulthood [30], pointing to a dynamic heterogeneity of the natural history of COPD. The
observations of core paper 2 also support the idea that COPD might arise from failure to attain
the normal early adulthood spirometric plateau since low peak lung function in early
adulthood (25-40 years old) in FOC and CARDIA was significantly correlated to also having
an abnormally low peak lung function later in life (50-65 years) and an increased COPD

prevalence.
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The aetiology can be pushed even further back in time, as low lung function and
respiratory symptoms in infancy appear to track from birth into adulthood, and that parental
respiratory factors (such as maternal or paternal asthma or maternal smoking) are correlated to
children lung health [116]: In 1991 Barker D. J. and colleagues showed that childhood
respiratory symptoms such as bronchitis, pneumonia, or whooping cough are associated to a
reduced adult lung function [117]. Spirometry measurements in more than a hundred infants
in the Tucson Children's Respiratory Study demonstrated that those who had a low (1st
quartile) maximal expiratory flows at functional residual capacity (Vmax(FRC)) at birth
ended up with statistical lower FEV1, FVC, and forced expiratory flow between 25% and
75% of FVC (FEF25-75) throughout childhood up to early adulthood [118]. A 2016 study of
the same cohort, analysing FEV1/FVC trajectories in 599 subjects from 11 to 32 years old,
identified with latent class analysis a significant proportion of individuals (9.3%) who had a
persistently low trajectory throughout. The latter was associated to more paternal asthma than
in the normal trajectory group, as well as more early life lower respiratory illnesses caused by
respiratory syncytial virus, physician-diagnosed active asthma at age 32 years and lower
VmaxFRC at age 6 years [119]. Similarly, Owens L. et al. derived, from a 2018 longitudinal
study that tested lung function from 1 year old to 24 year old in 253 individuals, that the
airway framework is laid down in the antenatal period and tracks into adulthood [120] and
that childhood low lung function is associated to increased respiratory symptoms later on.
They further uncovered two pre-birth factors associated with a lower FEV1 between 6 and 24
years old: maternal smoking and maternal asthma. In CARDIA, paternal asthma had a
significant different prevalence between individuals with early adulthood low peak lung
Function (ELLF) and individuals with normal peak lung function (ENLF). In 2009, Svanes C.
et al. uncovered several "childhood disadvantage factors" significantly associated with lower
FEV1 in adulthood, faster lung function decline and higher COPD incidence: maternal
asthma, paternal asthma, childhood, asthma, maternal smoking, and childhood respiratory
infections [121]. In 2016, a longitudinal study that followed asthmatic children also
established childhood asthma as well as specific patterns of abnormal (reduced FEV1) lung
function growth as predictors of early adulthood low long function [122]. Multinomial
regression on spirometry measurements of 1389 individuals from a Tasmanian cohort at 7 and
45 years old also exposed that the lowest quartile of FEV1 at 7 years was associated with the

co-occurrence of asthma and COPD (ACQOS) at 45 years old, but not COPD or asthma alone,
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wile the lowest quartile of FEV1/FVC ratio at 7 years was associated with ACOS, COPD but
not asthma alone [123, 124]. However, it must be noted that the diagnostic of asthma in
children is of limited utility since it is very unspecific: it relies only on clinically observable
phenotypes that do not use biological objective tests and may include distinct pathobiological

endotypes, such as abnormal lung development.

Aside from paternal or maternal asthma and maternal smoking, there are other (pre-)
birth factors correlated to abnormal lung development [125], such as low birth weight or
premature birth [126]. In FOC, low birth weight (<2.5 kg) was twice as high (20% vs 9%,
p=0.021) in participants with low lung function that in those with normal lung function, which
corroborates several studies. Barker D. J. hypothesised in 1991 that intrauterine influences
that retard foetal weight gain may also irrecoverably impair the growth of the airways [117].
In that study he noted that lower birth weight was associated with worse adult lung function,
and that COPD death in adult life was associated with lower birth weight and weight at 1
year. The idea was developed in what is known as the “Barker Hypothesis” [127]: suboptimal
foetal development caused by undernutrion lead to permanent changes in structure and
metabolism that may be the origin of a number of diseases later in life, including coronary
heart disease, stroke, diabetes and hypertension. A 2015 study confirmed with a logistic
regression the negative influence of low birth weight on COPD incidence [128], and likewise
a 2016 study used a linear mixed model to negatively correlate birth weight, gestational age

and gestational maternal smoking to lung function in children [129].

2.2 Tobacco as a Potential Cause of Early Adulthood Low Lung Function

Tobacco (accumulative) smoking is a central adverse factor for COPD and lung
function in general, and, as mentioned, maternal smoking is also known to have a negative

influence on children’s lung function [130-132].

Given the core paper 2 data, it was impossible to unequivocally disentangle the effect of
smoking (or maternal smoking, or chronic exposure to smoking) from the effect of early
adulthood low lung function on the occurrence of later abnormalities, mainly because
maternal smoking, passive exposure during childhood and smoking in adolescence are

themselves three known causal risk factors for early adulthood low lung function, reduced
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FEV1/FVC and increased airway resistance [133, 134]. In fact, FOC and CARDIA smoking
exposure data in the age range 20-40 y.o. revealed that ELLF had significantly more
(compared with ENLF), % of ever-smokers (76% vs versus 64% in FOC, 61% vs 53% in
CARDIA), number of cigarettes smoked per day (28.8 vs 20.3 in FOC, 7.8 vs 6.2 in
CARDIA), as well as possibly an earlier age of smoking onset (16.8 vs 17.5 in FOC, not
different in CARDIA: 17.7 vs 17.5). The same tendency was also observed in Genlll,
although not statistically significant (possibly because of the lower sample size, or because
later generations smoke less on average). Furthermore, a recent paper by Mathew A. R. and
colleagues [135] correlated (low rate) tobacco smoking trajectories to severe increase of
emphysema risk, which may indicate that ELLF smoked more than ENLF since in Genlll the
prevalence of emphysema in early adulthood and during follow-up was significantly higher in
ELLF than ENLF. In the former, similarly, the FOC prevalence was also higher during late
adulthood (50-65 years old, not measured in early adulthood). All in all, deconvoluting
accumulated smoking exposure from early adulthood low peak lung function would require
large cohorts spanning from childhood until late adulthood that contain extensive smoking
records, including maternal exposure to smoking and infancy data (e.g. birth weight and

spirometry).

2.3 Novel Hypothesis: The factors that Cause an Abnormal Lung Development Might
Also Compromise the Cardiovascular and Metabolic Systems

Going further that limiting the possible putative effects of early-life factors to the
pulmonary system, it can be hypothesized that the factors that lead to a sub-optimal lung
development might not be specific to the lungs but instead also cause abnormalities in the
cardiovascular and metabolic systems, as well as more premature death [117]. This new
hypothesis is consistent with the core paper 2 analysis since early low lung function
individuals had higher cumulative and earlier incidence of abnormalities in all these
biological systems when contrasted with normal lung function participants, at 25-40 and

during follow-up until 65 years of age.

A recent analysis of the Tucson Epidemiological Study of Airway Obstructive Disease
confirmed that low FEV1 (and to a lesser extent FVC) in early adulthood is a risk factor for
early cardiopulmonary (heart disease or COPD) mortality [136]. A 2018 analysis of the
Hertfordshire Cohort by Humphreys J. et al. with more than 2000 participants, for which
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perinatal and infant health records were available, as well as medication and chronic diseases
data until about 66 years old, reported that early-life factors such as childhood illnesses
significantly increased the risk of multimorbidities in later life [137].

Furthermore, low birth weight (LBW) is associated with dysfunction of several organs
later in life. It is a risk factor not only for COPD onset [128], but also for metabolic conditions
(e.g. diabetes mellitus), circulatory and heart conditions [138], obesity incidence [139], severe
steatosis and non-alcoholic steatohepatitis [140]. Boeri L. and colleagues assessed in 2016, in
adult males, that LBW predicted higher Charlson Comorbidity Index (CCI) values, a measure
of Health-significant comorbidities, as well as more pathologic progressive motility and
pathologic sperm morphology [141]. Two recent reviews of the accumulated evidence,
combined with other birth and pre-birth adverse factors (maternal/foetal disease states,
nutritional  deficits/excess, stress, exposure to environmental chemicals, medical
interventions) suggest that insults occurring during the perinatal period alter the
developmental trajectory of the offspring’s cardiopulmonary system [142] and other systems

[143] leading to long-term detrimental outcomes that often culminate in adult pathologies.

2.4 (Epi-)Genetic Factors that Lead to Abnormal Lung Development

The core paper 2 research revealed a trans-generational reproducibility of low lung
function in early adulthood since it showed a significant correlation or R2=0.28 between the
FEV1 of Genlll participants and their FOC parents’s average FEV1. Accordingly, 10% of
Genlll participants that had at least one parent stratified as having low lung function in FOC
had a FEV1 below 80% predicted, while in contrast the proportion was only 3% in those
whom both FOC parents were classified as normal. Furthermore, those Genlll participants
with at least one ELLF parent also had a significantly lower FEV1/FVC ratio, a higher
proportion of women and more reported parental asthma. These associations suggest that
there may be a genetic component to abnormal lung development and resulting early low lung

function.

Much of the lung function development and COPD heritability remains unexplained,
although several GWAS studies have established gene variants significantly associated with
either lung function parameters (e.g. to FEV1, FVC, and FEV1/FVC ratio, longitudinal
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variations), tobacco effects on lung decline, or COPD parameters (e.g. onset, or airflow
obstruction severity) [144-147]. Recently, McGeachie J., Yates P. and colleagues uncovered a
specific genetic polymorphism (rs4445257) associated to early decline in lung function after

normal growth that may also protect against early decline in reduced growth groups [148].

Recent research uncovered gene variants that affect lung development as early as the
embryonic stage [149, 150], and now that early adulthood peak lung function and trajectories
importance for COPD are established, more research is needed into their genetic basis. In
terms of epigenetic determinants in early life, a 2018 Epigenome-wide association study of
cord blood and mid-childhood peripheral blood total serum Immunoglobulin E (IgE) levels
identified several cord blood methylation signals that were correlated to mid-childhood IgE,
thus providing evidence that IgE-mediated hyper-sensitivity may be epigenetically
programmed in utero and during early childhood [151]. Several of these methylation sites
were already associated to asthma (ADAM19, EPX, IL4, IL5RA, and PRG2) [152-154].

These studies lead to new interpretations of COPD pathobiology unrelated to tobacco
smoking for a subset of patients, via abnormal early life lung development supported by

genetic susceptibility and/or early life adverse programming of epigenetic sites.

2.5 Potential Opportunities for Treatment, Prevention and Early Intervention

The findings of this PhD Thesis suggest that some of the comorbidities frequently
reported in COPD patients might originate earlier in life than previously thought, especially
for the high proportion (up to 50%) of COPD patients who had a low peak lung function in
early adulthood. For clinical practice it means that these individuals might benefit greatly
from early detection (potentially via systematic population-wise spirometry tests in childhood
and early adulthood), early intervention and targeted preventive measures.

2.6 Core Paper 2 Limitations

In both FOC and CARDIA cohorts, the drop-out rate during follow-up was higher in
participants with early low adulthood peak lung function (ELLF) than in the normal peak
group individuals (ENLF). It is a potential results bias, although it may underestimate the
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observed higher proportion of bioclinical abnormalities in ELLF, as adverse medical
conditions and poor health may be the reason of drop-out for a number of cases in these
decade-long observational cohorts of the general population.

Additionally, the comparison of observations between the three cohorts (FOC, CARDIA
and GENIII) was limited by the fact that most often the nominal biological variables, clinical
variables and questionnaires were not the same across cohorts (or even in-between visits of a
given cohort). This potential bias was mitigated by summarizing the alterations into their
respective clinical category (e.g. respiratory, cardiovascular or metabolic) and then calculating
for each category the proportion of individuals that have at least one clinical alterations in any
of the category’s variables. These accumulative proportions are more robust than nominal
variable prevalences and more readily compared between ELLF vs ENLF across cohorts as

well as longitudinally during follow-up.

Finally, the associations reported in this Thesis do no establish causation and the
observations are prospective. Therefore, the findings require validation and confirmatory
analysis in other cohorts, as well as a more detailed analysis of the clinical factors discussed
(effects of early life factors on early lung function, causal interactions with tobacco smoking

exposure, etc.).

2.7 Futures Challenges of Systems Medicine in this Field

If the lungs develop suboptimally, resulting symptoms of airflow limitation may be
diagnosed as asthma [155], which would represent an important misdiagnosis since the
underlying pathobiological mechanisms of individuals born prematurely are different from
those of common asthmatics [126]. This potential misclassification should be further

considered in future studies.

Longitudinally the core paper 2 reports important statistical associations between
clinical and biological factors across time, but it does not uncover the biological mechanisms

and endotypes that underlie these relationships. Extensive omics data collection and
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genotyping in large cohorts of the appropriate clinical setting will provide the necessary basis

for the analysis of such mechanisms.

One of the hardest (but major) aspects of NCDs to quantify is the environmental impact
on disease initation and development [156]. The environmental variables (termed exposome)
range from prenatal events to lifelong exposure variables (e.g. air pollution, low physical
activity and adverse diet) that could not be properly tracked in past cohorts. Of note, although
cumulative tobacco smoking is a crucial COPD risk factor, its current quantification based on
patients self-estimation clearly lacks accuracy. Future advancements in technology (e.g.
wearables or drones to continuously track air pollution) will improve the quantification in

future prospective (ideally trangenerational) cohorts.

Access to extensive electronic medical records is also important to the proper study of
NCDs comorbidities and their of confounding factors (sex, age, socioeconomic status, etc.).
The centralized collection of that much individual data (omics data, environmental data and
medical records) in large cohorts - arguably necessary to fully understand NCDs
heterogeneity - poses substantial ethical challenges, as well as confidentiality, security and

legal issues [157].

Finally, it is possible that the future implementation of personalized medicine in
healthcare will partly rely on probabilistic models that do not use mechanistic pathobiological
information, but instead leverage big data with unbiased machine learning algorithms to
predict clinical outcomes and best medication strategies in tools tailored to the profile of
individual patients [158, 159].
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Conclusions

In conclusion, this PhD Thesis has used multi-level integrated analysis to shed light on

two specific aspects of COPD heterogeneity:

1) Exacerbations of COPD (ECOPD)

ECOPD are characterized by several alterations (dyspnoea, tachypnoea,
tachycardia and respiratory failure, lung and cardiovascular physiology, systemic
inflammation markers, biochemistry markers, sputum bacteria or viral infection),
although, for practically all variables, significant overlap remain between the two

clinical states distributions, thus highlighting the heterogeneity of the events.

ECOPD are characterised by a fragmentation of the correlation network observed
during convalescence, suggesting loss of system control, homeostasis and reduced

resilience.

These acute events can be identified objectively (AUC 0.97) by using a panel of
three biomarkers (dyspnoea, circulating neutrophils and CRP levels) frequently

determined in clinical practice.

2) Early low lung function and health in later life

Low peak lung function in early adulthood (FEV1 of less than 80% predicted at
the age of 25-40 years) is common in the general population, with a prevalence of
4-12%.

Early low peak lung function individuals have a higher prevalence of respiratory,

cardiovascular, and metabolic abnormalities in early adulthood.

These individuals also have a higher and earlier (about a decade) incidence of

cardiovascular, metabolic and systemic comorbidities in later adulthood.

They are burdened by an increased risk of premature death (hazard ratio 2.3 [95%
Cl 1.4-3.7]).
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Low peak lung function status in early adulthood is significantly correlated
(R2=0.28) in-between parents and offsprings, indicating a possible genetic

heritability.
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Appendix

Published review

From systems biology to P4 medicine: applications in respiratory medicine.
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ABSTRACT Human health and disease are emergent properties of a complex, nonlinear, dynamic
multilevel biological system: the human body. Systems biology is a comprehensive research strategy that
has the potential to understand these emergent properties holistically. It stems from advancements in
medical diagnostics, “omics” data and bioinformatic computing power. It paves the way forward towards
“P4 medicine” (predictive, preventive, personalised and participatory), which seeks to better intervene
preventively to preserve health or therapeutically to cure diseases. In this review, we: 1) discuss the
principles of systems biology; 2) elaborate on how P4 medicine has the potential to shift healthcare from
reactive medicine (treatment of illness) to predict and prevent illness, in a revolution that will be
personalised in nature, probabilistic in essence and participatory driven; 3) review the current state of the
art of network (systems) medicine in three prevalent respiratory diseases (chronic obstructive pulmonary
disease, asthma and lung cancer); and 4) outline current challenges and future goals in the field.

Introduction
Human health and disease are emergent properties of a complex, multilevel biological system that spans
from the molecular domain to the microbiome, exposome and social levels (figure 1) [1, 2]. Ideally,
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therefore, if we want to intervene prophylactically to preserve health or therapeutically to cure disease, in a
safe and effective way, we should understand these dynamic gene-environment interactions in greater detail.
Certainly, this will not be an easy task, but the alliance of new high-throughput “omic” methodologies, novel
imaging techniques and current (and future) computational power can project us forward in this endeavour
and eventually facilitate the development of novel therapeutic strategies (and the repurposing of old ones) [3].
However, as wisely highlighted by one of the anonymous reviewers of this paper, to whom we are grateful:
“... full understanding of complex nonlinear systems in physics and biology might not be ever possible and,
fortunately, might not be even required because probabilistic decisions are (and will become) more powerful
than decisions based on precise mechanistic understanding. This is a real revolution already happening in
society (Google and Amazon can predict your behaviour without knowing (less understanding) you).
Similarly, Artificial Intelligence (AI) will be able soon to predict the clinical course and responsiveness to
intervention based on probabilities rather than on deep understanding of the system ...”. We think that both
concepts are actually synergistic since a more comprehensive and precise understanding of human biology
(figure 1) will, no doubt, feed back to any AI platform, which will in turn provide new hypotheses to test
iteratively. In any case, embracing a holistic scientific approach (as opposed to the reductionist research
strategy used traditionally) for the understanding of human health and disease is a unique (and mandatory)
opportunity to really move medical practice forward in the 21st century.

In this review, we: 1) discuss the principles of systems biology, a relatively recent research strategy that
leverages from omics and bioinformatics to gain a holistic understanding of complex biological systems; 2)
elaborate on how this can pave the way towards the effective deployment of the so-called “P4 medicine”
(predictive, preventive, personalised and participatory) [4], which can shift healthcare from treatment of
illness to prediction and prevention of illness, in a revolution that will be personalised in nature,
probabilistic in essence and participatory driven; 3) review the state of the art of network (systems)
medicine in three prevalent respiratory diseases (chronic obstructive pulmonary disease (COPD), asthma
and lung cancer); and 4) outline current challenges and future goals in the field.

Systems biology

System approaches and emergent properties

System approaches stem from the premise that separate analysis of information gathered from different
elements, compartments or levels of a dynamic system (figure 1) cannot yield appropriate understanding/

Genome

Transcriptome

Proteome

Metabolome

Microbiome

Epigenome

Exposome
Social graph

Biosensors

Imaging

FIGURE 1 Multilevel layers of biological, environmental and social information ideally integrated in systems
biomedicine approaches. For further explanations, see text. Reproduced and modified from [2] with permission.
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prediction of the global behaviour of the system (so-called emergent properties, which are implicit in
nonlinear systems) nor allow to fix it if found globally away from an homeokinetic state (e.g. disease versus
health), with alterations that may spread throughout various levels or compartments of the system [5]. As
Mackiem [5] pointed out, emergent properties arise spontaneously as self-organised order from the
nonlinear interactions of the different biological components and thus the overall emergent behaviour
transcends the behaviour from each part in isolation. It follows that a more holistic approach, integrating
information of the interacting parts and subentities into a single mathematical representation or model,
can potentially offer better clues as to the causal chain of events that leads to the apparent phenotypic
manifestations and how to remedy the situation [6]. Therefore, systems biology departs from the
reductionist approach followed by traditional biomedical research by integrating (rather than taking apart)
different biological levels (genes, molecules, cells, organs and the environment) and mechanisms, and
shares a very similar goal with integrative physiology: to better understand holistically the systemic
dynamic state of individuals [7, 8]. In this context, systems biology (and systems or network medicine) is
nothing more than physiology, which has always meant to be multiscale and integrative [7, 8]. The
difference is that today’s availability of new tools, high-throughput technologies and computing power
allows, for the first time, real physiology to be performed. In essence, it is all about perspective [9]. Before
“perspective” (ie. three-dimensional) painting was “invented”, classical painting considered only two
dimensions. Systems biology includes many different biological levels (dimensions) as well as the element
of time dynamics. Hence, it has the potential to provide a much better definition for “the eye of the
beholder” [9].

Biology as an informational science

In recent decades, faced with the biological complexity of human diseases, biomedical scientists have
increasingly turned their efforts to apply high-throughput methodologies that embrace the Cartesian view
that the human body is a system of formally interacting parts and that biology is an informational science.
A nonexhaustive list of information sources (table 1) includes “omics” data ((epi-)genomic, transcriptomic,
proteomic, metabolomic and microbiomic), single-cell analyses, phenotypic assays, extensive medical
records and an endless list of environmental factors (“exposome”), such as smoking, exercise, diet and
pollution, among others (figure 1). Common respiratory-specific levels of information are lung function
and imaging.

System representation: networks

A network (or graph) is a practical graphical representation of complex data in the context of systems
approaches (figure 2), where nodes are the elements of the system under study (e.g. genes, proteins,
biochemical or physiological measures, individuals or patients, among many others) and edges (or links)
connect nodes that interact somehow (causality, correlation). The network(s) constructions are hypothesis
driven, i.e. there is not a single, fixed, network “template”; on the contrary, they can be “custom-made”.
Networks are used to make inferences regarding the emergent dynamic (spatial and temporal) behaviour
of the system in response to perturbations of putative critical network elements (nodes and/or edges).

Diseases as network perturbations

Any disease can be viewed as a system in an abnormal state (a perturbed network) far from homeokinetic
operating conditions [5], either with: 1) associated nonemergent (ie. subclinical) alterations, or 2)
observable phenotypic abnormalities (ie. clinical symptoms) progressively departing from functional
equilibrium towards partial system collapse (i.e. organ failure, efc.) or complete collapse (death). In
opposition, perfect health, or wellness, can be viewed as the optimal and quantifiable state of a system in
dynamic equilibrium (i.e. homeokinesis [5]).

Biological network properties

Several aspects of biomedical networks are due to their particular biological nature and must always be
considered in a research setting [16]. In terms of “topology” (i.e. their spatial distribution) they are
generally scale-free (as opposed to random networks). In this setting, “scale-free” means that this type of
network contains many nodes with few connections and a few nodes with many links (hubs) (figure 2).
This topology makes networks more robust against random perturbations [17] because of their higher
modularity [18]. They are composed of loosely connected subparts (modules), which are groups of nodes
highly connected internally but little to outsiders. Modules are usually coupled with specialised biological
subtasks. Additionally, not all nodes are equal relative to the network structure. Central elements that are
much more connected than the average are denominated “hub” nodes [19], while linkers between modules
are termed “bottleneck” nodes (figure 2) [20]. Perturbations of these elements (hubs and bottlenecks)
often alter the system behaviour drastically, whereas the impact of more peripheral nodes on systems
behaviour (emergent properties) is often marginal. Other influential network properties with regard to the
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Platform
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Main advantages and
disadvantages

Standard
bioinformatics
pipelines

Genomics

Transcriptomics

Proteomics

Metabolomics

Epigenomics

Microbiomics

Identify nucleotide
variants [SNPs] in the
whole genome
assaciated with clinical
traits [GWAS]
Quantify expression
levels of cellular
transcripts (e.g. mRNA]

Characterise protein
expression levels of
cells/samples

Characterise
abundance profile of
metabolites and their

relative ratios

Determine
modifications in DNA
and small RNA that
interfere with gene

Genotyping arrays, whole-

exome sequencing

Expression arrays, RNA

sequencing

MS-based approaches

MS-based approaches

DNA methylation analysis with

arrays (Infinium

MethylationEPIC 850K; Illumina,

San Diego, CA, USA],

SNP variability is stable during life;
provides limited information in
complex diseases due to several
loci implicated

Widely used due to its high
information content on cell status;
differences in mRNA expression do

not imply differences in proteins;
does not take into account
post-transcriptional modifications

Expected to be closer to the

phenotype; not widely used,
expensive and more cumbersome

analysis
Representative of the cellular

status; applicable to many
biological fluids li.e. breath, blood,

urine, etc.]; not widely used
Provides additional information to

transcriptomics; related to

exposures; more expensive than

transcriptomics; sequencing-based

GWAS protocol
review [10]

RNA sequencing
pipelines review [11]

Next-generation
proteomics review [12]

Review of analytical
methods for
metabolomics [13]

Bioinformatics aspect of
DNA methylation
studies [14]

expression

Characterise bacterial
[and virall composition
of a sample

approaches have computational
tools in active development

next-generation sequencing,
small RNA sequencing, arrays,
etc.
Targeted sequencing of 165
rRNA gene, shotgun
metagenomics sequencing

Provides information of external
factors likely to be associated with
disease; 165 sequencing does not
differentiate between the presence

of live/dead bacteria

Bioinformatics analysis
for the characterisation
of the human
microbiome [15]

SNP: single nucleotide polymorphism; GWAS: genome-wide association study; MS: mass spectrometry.

robustness of the system include “redundancy” and “degeneracy” [21]. Finally, nodes and edges may
be characterised qualitatively (e.g. fold-change sign for nodes that represent gene products) or
quantitatively (e.g. chemical binding constant for edges that connect drug ligands to their target molecules)

(figure 2).

Medical uses

Although systems biology is best suited for experimental models of disease, it can also provide actionable
and useful insights in clinical medicine [22-24]. Systems (network) medicine can lead to the identification
of disease biomarkers or drug targets, both defined as key nodes whose perturbation transits the state of
the biological system from health to disease or vice versa. A paradigmatic example comes from the field of
cancer and the observation that the sequential use of anticancer drugs enhances cell death by rewiring
apoptotic signalling networks [25].

P4 medicine

The holistic approach of systems biology discussed earlier has enabled the emergence of a new
comprehensive paradigm in medicine, called P4 medicine, for predictive, preventive, personalised and
participatory [4, 26-28].

From treatment to prediction and prevention

Current western medicine mostly focuses on treating diseases and symptoms when they appear, Thus, the
current healthcare system organisation (and its major stakeholders, i.c. hospitals and primary care centres,
pharmaceutical industry, insurance companies, policy makers, providers (e.g. physicians) and patients) is
based on the provision of medication and related health products to individuals once they are sick and
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biosensors continuously tracking essential variables, such as exhaled breath [39], urine [40], imaging [41]
and/or ambient pathogens or allergens [42-44].

Participatory driven

Finally, the benefits of this new P4 medicine will only be possible if patients and healthy subjects become
active agents in the continuous assessment and preservation of their health. The role of health providers, both
traditional (physicians, nurses, physiotherapists) and novel (genetic counsellors, behavioural coaches), will
evolve to facilitate actionable information to individuals, which they can use to maintain their health [45].
Importantly, a new legal framework of rights, obligations and protections for individuals/patients and health
professionals alike remains to be established and implemented. The emergence of personalised “big” data
repositories raises unprecedented ethical, privacy, confidentiality, security and policy issues related to
information ownership, access and management. Of note, the insurance company regulatory framework is
markedly unprepared in most countries.

How to do it?

Research strategy

In principle, there are two different approaches to analyse data in this setting: “supervised” analysis based
on a priori knowledge (e.g clinical characteristics of patients) and “unsupervised” analysis (i.e.
hypothesis-free). Both strategies have advantages and disadvantages, and in a sense they are
complementary; their characteristics are further discussed in the Analytical complexity section.

Input data

Systems biology leverages from several omics data types. The most commonly used data types are
genomics, transcriptomics, proteomics, metabolomics, epigenomics and microbiomics. Table 1 summarises
their definitions, available experimental platforms, advantages/disadvantages and the bioinformatics tools
needed. In each omic, data is curated, normalised and the differences between groups are usually
computed using general linear models [46, 47]. We acknowledge that exposomics and imaging are missing
in table 1; this is on purpose as both fields are currently developing very actively [48, 49].

Analytical complexity

Single-level analysis

A common research approach is to perform standard (supervised or unsupervised) single-level omic
analysis (table 1) and then use further bioinformatics tools to facilitate the translational interpretation
(table 2 and figure 3). For instance, from a list of genes/proteins of interest, in order to identify underlying
biological mechanisms, functional enrichment can be performed against many databases that host
annotated information on functional roles (figure 3d): Gene Ontologies of biological processes, cellular
components or molecular functions [62], KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways
[63], Reactome pathways [64] and gene set enrichment analysis (GSEA) [50]. Furthermore, the

TABLE 2 Widely used tools to facilitate biomedical interpretation from omics analysis

Analytical tool Goal Advantages and disadvantages Pipelines

Functional
enrichment

Gene set enrichment analysis (GSEA):
http://software.broadinstitute.org/

From lists of identifiers [commonly genes)
computes the over-representation in a

Noise and dimension reduction, helps
interpret gene sets; useful to

specific molecular function, Gene
Ontology, pathway, biological process, cell
localisation, etc.

Data clustering Classifies samples/variables based on
their similarity in order to obtain

homogeneous groups

From the dataset builds a correlation
network to identify groups of related genes
[modules), which can be investigated for
biological functions and/or related to
clinical traits

Coexpression
networks

aggregate the individual gene

contribution to overall changes;
results are dependent on database
knowledge and thus may be biased

Unsupervised, data driven and
probabilistic; requires medium/Large
data sets

Coexpression in order to reflect
causative processes must be coupled
with functional enrichment and
validation; correlations are affected
by sample size of the dataset;
requires proper data normalisation

gsea/index.jsp [50]; gene set variation
analysis [GSVA) [51]; Enrichr: http://
amp.pharm.mssm.edu/Enrichr [52];
FunRich: http://funrich.org [53];
STRING: https://string-db.org [54]
k-means [55, 56]; hierarchical
bottom-up [57]; hierarchical top-down
(divisive analysis clustering
(DIANA)) [58]

Weighted gene coexpression networks
analysis (WGCNA] [59]; conventional
coexpression measures [Pearson/
Spearman/Kendall, mutual
information [60]); miIRNA (targets)-
genes [67]
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with any imputed (usuvally clinical) characteristicc. WGCNA can be complemented with functional
enrichment analysis.

Multilevel analysis: the true revolution

Although some studies have and will continue to work successfully on a single omic level, recent decades
have seen an ever-increasing body of work where several distinct omics datasets, including also other
biological or clinical levels, are analysed conjointly using multiscale integrative methods such as SNF
(similarity network fusion) [69]. This combination of levels has the potential to provide researchers with
simultaneous information from several compartments of the biological system of interest, thus facilitating
the modelling of the dynamic nonlinear relationships that characterise emergent properties (phenotypes)
and complex diseases. Accordingly, this strategy would be able to provide more power to identify groups
of patients affected with the same pathobiological mechanism or more power to probabilistically model
(without understanding) the health versus disease states. The main multiscale analytical tools described to
date are summarised in table 3. The “supervised” methods can be grouped mostly into either
network-based, machine learning or multistep approaches [86], while the “unsupervised” can be further
classified as based primarily on networks, Bayesian approaches or matrix factorisation (table 3).

Current applications of systems approaches in respiratory medicine

The pathogenesis of most common respiratory diseases is complex and largely undefined from a precise
pathobiological point of view. Chronic respiratory conditions, such as asthma or COPD, are still diagnosed
(and treated) based on respiratory symptoms and traditional lung function measures, but they are highly
heterogeneous and often overlap. In fact, they are the end result of complex genetic and environmental
interplays that are vet to be explicitly modelled. This poorly defined characterisation of the basic disease
mechanisms results in nonspecific, mostly symptom-driven treatment options, or lack thereof, that may
eventually be able to slow the progression of these diseases in fortunate, responsive patients.

Systems biology and network medicine approaches are being put forth in an effort to palliate this painful
lack of knowledge and understanding by tackling two fundamental and interrelated matters: 1) as in other
biomedical fields such as cancer, a novel classification (ie. “taxonomy”) of chronic airway diseases is
needed, based not on clinical presentation (i.e. “phenotypes”) but instead either on the underlying
biological mechanisms (i.e. “endotypes”) when characterised or resulting directly from data-driven
probabilistic clustering of patients data; and 2) a more precise patient stratification that can be transferred
to distinct and personalised preventive or therapeutic prognosis as well as improved prognosis (i.e. P4
medicine) is also needed, as recently highlighted in a review focused on biological therapies for airway
diseases [87].

COPD

COPD is a heterogeneous disease with pulmonary and extrapulmonary manifestations [88], and variable
response to pharmacological treatment [89], suggesting that the condition affects several distinct biological
pathways. To characterise this heterogeneity at the molecular level, several studies have already used a
number of different systems approaches. 1) WGCNA and GSEA showed that a molecular signature
composed of gene modules related to B-cell activity, NK-cell activity or viral infection cellular markers
might be detectable in peripheral blood months following COPD exacerbations [90]. 2) XuE et al. [91]
used other network-centric procedures to reveal an unexpected loss of inflammatory signature in COPD
patients, as well as an activation-independent core signature for human and murine macrophages. 3) Grass
et al. [92] used the network inference analysis PANDA (Passing Attributes between Networks for Data
Assimilation) [93], designed for improved integration of individual with public datasets, and discovered
network rewiring of lymphocyte activation signalling circuits in a known gene variant implicated in COPD
by genome-wide association studies. 4) Faner ef al. [94] unravelled differences in the molecular
pathogenesis of emphysema and bronchiolitis by performing correlation network analysis of lung
transcriptomics on COPD patients. They found that B-cell-related genes were significantly enriched in
emphysema (compared with COPD patients without emphysema), paving the way for differential
therapeutic research on inflammatory pathways of the adaptive immune response. 5) Two COPD studies
demonstrated the utility of unsupervised k-means clustering by identifying robust cluster associations with
clinical characteristics and known COPD genetic variants [95, 96]. 6) Very recently, Ross et al. [97] introduced
a new Bayesian method for COPD subtyping. They applied it to the COPDGene cohort and identified
nine different patient subgroups with distinct disease progression trajectories. Of note, Ross et al. [97] prove
that their sophisticated model has a better predictive capacity than multivariate ordinary least squares
regression analysis.
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clinical and biomarker profiles (from blood, sputum and airway data) [98]. 2) Kuo et al. [99] recently
reported three novel molecular phenotypes of asthma in the U-BIOPRED cohort by analysing sputum cell
transcriptomics in asthmatic and nonasthmatic subjects. They applied hierarchical clustering of
differentially expressed genes as well as gene set variation analysis, gene—protein coexpression and pathway
enrichment analysis. 3) SHARMA ef al. [100] used network-based tools to analyse the predictive value of the
asthma interactome, and characterised high-impact pathways central to the disease heterogeneity and drug
response. 4) Quu et al. [101] used PANDA on participants of the Childhood Asthma Management
Program cohort to assess the differential connectivity between the gene regulatory network of good
responders to inhaled corticosteroids versus that of poor responders. The method allowed them to
integrate their dataset with public data interactions of genes, transcription factors and proteins, and
eventually implicate several network hubs and transcription factors (as well as regulatory rewiring) in the
heterogeneity of drug treatment effects. Specifically, the differential network topology of good responders
versus that of poor responders revealed enriched corticosteroid-induced pro-apoptosis pathways in the
former and anti-apoptosis pathways in the latter, as well as key regulatory transcription factors (hubs) that
drove differential downstream gene expression in the two groups.

Lung cancer

Lung cancer is the leading cause of cancer death in the world. Lung cancer is highly heterogeneous
genetically because of a high mutation rate, as well as extremely complex since it comprises a disparate
subset of diseases with distinct and possibly overlapping pathobiologies that share a common phenotypic
manifestation. Smoking is a core shared risk factor for COPD and lung cancer; up to 65-70% of lung
cancer patients suffer both lung cancer and COPD [102, 103]. So far, no single satisfactory circulating (i.e.
liquid biopsy) tumour marker has been properly validated, but recently a panel of six tumour markers
showed a very high specificity and sensitivity in patients referred to a tertiary hospital because of the
clinical suspicion of lung cancer [104, 105]. Given that inherited genetic variants play a significant role in
lung cancer development [106], but contribute little to risk estimates of classical predictive statistical
models [107-109], it is hoped that systems biology approaches will allow the comparison multilevel
high-throughput omics data between tumour and normal tissue, and facilitate the identification of early
diagnostic lung cancer biomarkers. WGCNA has already been used successfully in lung cancer research. 1)
Tanc et al. [110] related the gene expression profile of lung squamous cell carcinoma with five
differentially expressed long noncoding RNAs that could help in prognosis evaluation. Their gene
signature was statistically associated with overall survival in important clinical subsets (stage I, epidermal
growth factor (EGFR) wild-type and EGFR mutant). 2) Tiax et al. [111] analysed coexpression networks
and protein-protein interactions of data available in public repositories (The Cancer Genome Atlas, KEGG
and Gene Ontology).

What's next? Future challenges
For the successful development and implementation of systems biology and network medicine approaches
in respiratory medicine, several challenges need to be faced and eventually solved.

Technical challenges

In any clinical study, only a fraction of the biological variability is captured (and therefore analysed) due
to technical limitations (and cost) of the experimental tools available. The development of new
experimental tools (e.g. high-throughput next-generation sequencing, mass spectrometry-based flow
cytometry or real-time molecular imaging) will generate new information but, at the same time, massive
amounts of (big) data that will have to be adequately handled, analysed and interpreted [112-114]. In this
context, RiskrserG and Powrrs [115] recently reviewed the methodological advancements and successful
applications of metabolomics, one the newest omic fields.

However, research would benefit not only from measuring “more” relevant variables, but also from
estimating with better precision those variables already determined in the context of a more complete
definition of reference and pathological ranges (that vary in time, across individuals and biological
codeterminants) [116]. Of the variability supposedly present in experimental data, these currently
unaccounted factors and batch effects should not be underrated since they can partly explain the general
difficulty to replicate scientific findings in the biomedical field, of which respiratory biomedicine is not
exempt.

Computational challenges

Computational methodologies and programming analytical tools are being constantly refined as they
translate advancements from complementary areas such as AI and information science. However,
challenges and difficulties remain. For instance, in differential expression (omics) analysis, one of the main
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