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Introduction 

1. NON-COMMUNICABLE DISEASES 

1.1 Global Prevalence 

Non-Communicable Diseases (NCDs) are chronic diseases that result from a 

combination of genetic, physiological, environmental and behavioral factors [1]. The main 

types of NCDs are cancer, cardiovascular and cerebrovascular diseases, chronic obstructive 

pulmonary disease (COPD), asthma and metabolic diseases (diabetes). NCDs are a major 

global health problem of the 21st century [1]. They are estimated to represent 63% of global 

annual deaths according to the World Health Organization (WHO) [2, 3]. They are known to 

be by-and-large preventable with the appropriate management of their principal risk factors at 

an individual level throughout life: tobacco smoking, alcohol abuse, physical inactivity and 

unhealthy dieting. Specifically, the WHO estimates that up to 40% of cancers and 75% of 

heart diseases, stroke and type 2 diabetes could be prevented. Unfortunately, 80% of NCDs 

deaths occur in low- and middle-income countries [2] where individuals lack preventive 

information, early detection, access to healthcare and the economic resources to minimize the 

risk factors or afford treatment. 

 

1.2 NCDs are Complex and Heterogeneous Conditions 

NCDs are caused by complex gene-environment interactions that develop over years or 

decades (thus are associated with aging) and often co-exist in the same individual as they 

share risk factors [4] and pathological mechanisms (leading to what is known as 

multimorbidity) [5]. These cooccurrences lie at the heart of NCDs and make clear-cut singular 

diagnostics difficult. Their pathobiology is also complex, heterogeneous and may lead to 

unspecific symptoms. For most NCDs, current available treatments are not able to cure the 

condition, but rather only alleviate symptoms and slow the disease progression. 

 

NCDs often share major risk factors [4]. Therefore, multimorbidity may be explained by 

the hypothesis that the progressive abnormal transformation of a biological system (e.g. 

metabolic or respiratory) that lead to a dysfunctional long-lasting state with observable 

symptoms is likely to also affect other parts of the organism in its course or to be caused by a 
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common denominator (e.g. systemic inflammation or impaired immune response, or common 

susceptibility genes [6]). 

 

2. BIOMEDICAL RESEARCH OF COMPLEX DISEASES 

2.1 Historical Perspective 

The continuous ageing of the general population worldwide over the last two centuries 

[7] has caused an increase in the overall incidence of NCDs since they are more prevalent in 

older individuals. Life expectancy in fact rose from a worldwide average of 32 years in 1850, 

to 48 years in 1950 and is now, as of 2018, over 70 years (Figure 1), and is associated to three 

cooccurring factors: the worldwide expansion of modernization and industrialization, general 

lifestyle improvements in high-income countries (such as overall reduced tobacco smoking 

[8] and less physical strenuous jobs), and unprecedented progress in experimental medicine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Progress of worldwide life expectancy. Reproduced from https://ourworldindata.org/life-expectancy 

 

Significant scientific advances in our understanding of health and (chronic) diseases 

since the nineteenth century [9] have been translated into numerous novel treatments, 
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medication, drugs, surgical procedures and preventive measures that drastically reduced 

maternal, infancy and elderly mortality (Figure 2). A non-exhaustive list of these innovations 

[9] range from Louis Pasteur and Robert Koch germ theory of disease in 1870s, to a host of 

first vaccines in the second half of the 19th century (for cholera, rabies, plague, etc.), as well 

as the discovery of insulin for diabetes in 1922, the first pacemaker by Paul Zoll in 1952, the 

first kidney transplant by Dr Jose E. Murray in 1954, the HIV discovery in 1983, the first 

released draft of the human genome in 2003, the creation of embryonic stem cells from 

human skin cells in 2007, and the 2014 first FDA-approved US clinical trial for a wearable 

artificial kidney (Blood Purification Technologies Inc.). The rate of innovations is 

incrementing swiftly, as corroborated by the double-exponential increase of the biomedical 

literature in the last 20 years (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Growth in the Biomedical Literature, 1986–2005, reproduced from ref. [10] 

 

This growth is fueled by increasing worldwide funding for biomedical research 

(estimated in 2012 at 268 billion of U.S. dollars [11]), and, as mentioned, driven by 

technological advances and breakthroughs (e.g. internet, which has enabled the fast exchange 

of information and facilitated scientific collaborations, as well as software and hardware 

improvements in terms of availability, versatility, power and cost). Nevertheless, all these 

progressive efforts still remain insufficient as most chronic diseases do not yet have a cure. 
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2.2 Biotechnological Revolution 

Over the last three decades, biomedical research has undergone a fast-paced revolution 

in methods and scope. Experimental medicine research of NCDs now routinely collects 

extensive samples data at several biological levels, termed omics, thanks to novel arrays, 

sequencing and imaging technologies [12], that commonly are genetic (genomics), messenger 

RNA (transcriptomics), proteins (proteomics) and metabolites (metabolomics). The first 

international milestone enabled by the interleaving of biology and technology is arguably the 

Human Genome Project (HGP), which started in 1990 and was declared completed in April 

2003 with the release of the first human complete DNA sequence (genome), consisting of 3 

billion base pairs, for a total cost of 2.7 billion dollars. Since then, incredible advances in 

technology and cost reduction have led to the pursuit of the “1000 dollars Genome”. It is now 

a reality in the strict sense if considering only the cost of sequencing. The cost of interpreting 

the data, however, is still several order of magnitudes higher [13, 14]. 

 

 Because of the increase in biomedica data size and complexity, many fields of expertise 

are now necessary to the research efforts on NCDs. The cost of studies is also increasing, 

partly because the higher the number of biological (omics) determinations characterized, the 

more samples are required to separate signal from noise and reach statistical significance. 

Even in the simplified case of a single omic analysis, detecting variants (e.g. genes) that have 

a different average expression between two conditions (e.g. healthy versus NCD) requires 

many samples because of the high number of measurements (e.g. up about 10000-50000 

genes per sample for a routine transcriptomics array). In statistical terms, because these 

measured biological variables tend to follow a (normal) distribution of substantial variability, 

the probability (p-value) that some of them will be significantly differentially expressed by 

chance (false positives) between any two groups of interest is not negligible. Fortunately, p-

values calculations can be corrected for multiple testing [15], e.g. controlling for the relative 

proportion of false positives to true positives. However, to reach statistical significance, the 

sample size must be in the order of tens or hundreds of samples for the most complex chronic 

conditions (or even thousands for exhaustive multi-omics or genome-wide association 

studies). Collaborations between scientists and research groups have become paramount to 

cover the scientific expertise and reduce the research costs of these complex studies.  
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2.3 Systems Medicine, Biostatistics and Bioinformatics 

It is plausible to conceptualize human health and NCDs as emergent properties of a 

complex, non-linear, dynamic multilevel biological system. The existence of heterogeneity as 

an intrinsic property of a (diseased) biological system implies that the system processes are 

sufficiently complex for its emergence, and that no isolated part of the system can fully grasp 

the heterogeneity on its own [16]. 

 

As such, the ongoing scientific approach to better understand NCDs like COPD lies in 

the analysis of the interaction between the many biological components upon which they rest, 

in an attempt to relate the observed clinical symptoms to their underlying biological (and 

environmental) systems’ parts. These components, or variables, exist as useful abstractions at 

different conceptual levels, for example organs at the physiological level, proteins at the 

cellular levels, genes at the (epi-)genetic level, diet/exercise/pollution at the environmental 

level and so on and so forth [17]. 

 

That being said, determining the isolated state of each of these components (e.g. 

whether an organ is functioning properly or not, how much a single protein is expressed, how 

healthy the patient’s diet is, etc.) fails to capture the disease processes and symptoms, 

because, as stated, they are emergent [16] properties of the mechanistic interactions between 

the variables, and not of the isolated variable states by themselves. Systems medicine thus 

places the dynamic interaction of the parts in a holistic system at the centre of the research 

approach. Conceptually diseases are understood as abnormal states of a dynamic network of 

(biological and environmental) interactions.  

 

This NCDs research approach then requires the expression of as many relevant 

biological components as possible, plus their dynamic interaction, which appears daunting 

when considering the sheer number of potentially involved genes or genetic variants alone. 

That is precisely, however, what the exponential progress of (bio)technologies in the last 

decades has made possible. In parallel, the computational tools required for the task, i.e. 

bioinformatics and biostatistics algorithms able to process and extract the relevant variability 
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and processes out of the data, are also the subject of an incredibly fast progress in order to 

yield powerful mechanistic or predictive models. Network correlation analysis in particular is 

a novel research approach that is able to unravel the complexity of biological systems [12]. 

Other useful methods exist, based either on Bayesian statistics, machine learning or matrix 

factorization [12]. 

 

These emerging tools can be divided into biased (also termed supervised) or unbiased 

(unsupervised) algorithms. Biased algorithms use a priori hypothesis about the data, such as 

which are the relevant clinical subgroups of a disease and which are the known relationships 

between variables (e.g. protein-protein interactions), and then identify the variables and 

mechanisms that best distinguish and describe these subgroups, while unbiased algorithms 

look for (combinations of) variables that best capture the variance of the data and attempt to 

cluster patients without leveraging any prior knowledge of their condition. Both analytical 

strategies have strengths and drawbacks (detailed in table 3 of my systems biology review 

[12]) that have to be considered when deciding which method is best suited for a particular 

research question and dataset. 

 

3. COPD: A MAJOR NON-COMMUNICABLE DISEASE 

3.1 Epidemiology and Clinical Presentation 

Chronic Obstructive Pulmonary Disease (COPD) is currently viewed as a broad 

diagnostic term that may encompass a continuum of subtypes each characterized by a distinct 

functional and pathobiological mechanism (endotypes [18]) and is characterized by persistent 

respiratory symptoms and airflow limitation [19].  

 

COPD global age-standardised prevalence is 9.23% (95% credible interval [CrI]: 

8.16%–10.36%) in men and 6.16% (95% CrI: 5.41%–6.95%) in women [20], although it may 

equalize in the near future, as women are now more exposed to indoor air pollution (from 

low-income countries biomass fuel used for cooking and heating) [20]. Females appear to be 

more susceptible to the harmful effects of smoking on lung function [21], and COPD-related 

deaths in U.S. women have now surpassed those among U.S. men [22]. 
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COPD frequency is increasing worldwide and is projected to be by 2020 the third 

leading cause of death worldwide. It also represents a major financial burden on countries 

economies. Direct US healthcare cost was estimated at 29.5 billion dollars in 2010 and is 

projected to reach 49 billion by 2020 [19, 23], which includes treatment, prevention, detection 

and rehabilitation. The inability to work cost caused by the disease morbidity and mortality 

also adds indirect costs to the economy. 

 

Exhaustive and updated diagnostics criteria are established by the Global Initiative for 

Obstructive Lung Disease (GOLD), which publishes yearly a comprehensive guide for health 

care professionals [19]. The report also covers treatment recommendations based on severity 

and disease progression, prevention and management recommendations, medication and 

therapies review, as well as comorbidities information. The GOLD diagnostic criteria keep 

updating slightly as clinical research progresses [24]. Additionally, COPD was found to be 

both regularly misdiagnosed [25] and under-diagnosed [26].  

 

Available treatment options for COPD significantly improve the patient’s quality of life, 

but they arguably mostly operate at the symptoms level, only slow the progression of the 

disease and are not yet able to restore the lung biological system to a normal healthy and 

optimal state. Current therapies are not based on biomarkers of specific underlying 

pathological processes (endotypes) because these are still unknown [12]. In order to provide 

more effective and personalized therapeutic interventions, as well as to decrease the costs 

associated to chronic airway diseases, a better understanding of their pathobiology is needed 

and appropriate patient stratification is required. 

 

3.2 COPD Risk Factors 

COPD has been traditionally considered a self-inflicted condition caused by tobacco 

smoking, that induces an abnormal inflammatory response and accelerates the normal decline 

of lung function with age [27]. This paradigm is now challenged since recent reports showed 

that half of patients with spirometrically defined COPD at 60 yrs. of age never had a normal 

peak lung function in early adulthood [28] (Figure 3), pointing to a dynamic heterogeneity of 

the natural history of COPD. Furthermore, it is now estimated that 25-45% of COPD patients 
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never smoked [29]. Of note, however, approximately 75% of individuals with a low peak 

FEV1 in early adulthood do not develop COPD. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Lung function trajectories leading to COPD reproduced from ref. [30]  

 

More specifically, the following COPD risk factors have been proposed: 

 

Tobacco Smoking and Age 

COPD incidence increases with age and is typically diagnosed in individuals older than 

40 y.o. (on average at 64 y.o. [31, 32]) who have accumulated years of smoking (commonly 

measured in pack-years, that is the number of packs of cigarettes smoked per day multiplied 

by the number of years of smoking). It is estimated that up to 50% of smokers develop COPD 

[33]. Inversely, currently up to one third of never-smokers meet the COPD criteria [34]. It is 

worth mentioning that the relative prevalence of COPD never-smokers will increase in 

developed countries since the proportion of smokers in the general population is decreasing. 

The effect of smoking is very variable and is tied to the host genetics and immune system [35, 

36]. 
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Occupational Exposure to Dusts and Chemicals or to Biomass Fuel 

Prolonged exposure to toxic particles for the lung is estimated to be responsible for 15-

20% of COPD diagnosis [37]. They are mostly linked to either workplace environments that 

involve dust, vapours, chemicals, fumes, or household environments that make use of wood 

smoke, coal or coke open-fires [38]. Both conditions are more prevalent in developing 

countries due to less stringent protections of employees and less household regulations. 

 

Air Pollution 

As mentioned, short-term exposure to air pollution intensifies COPD exacerbations 

[39], and it generally has adverse effects on COPD symptoms. The influence of chronic 

exposure to air pollution on COPD is still unclear, although recent cross-sectional studies (on 

healthy individuals) suggest that it is related to delayed pulmonary function growth in 

children, and to a faster decline of lung function in adults [40]. 

 

Chronic Respiratory Infections 

Infections like tuberculosis or HIV are unfortunately still endemic in low and middle-

income countries. A meta-analysis evaluates that tuberculosis may double the odds-ratio of 

chronic airflow obstruction [41], and HIV is a similar risk factor [42]. The inverse is also true 

as COPD exacerbates the sensitivity to tuberculosis and mycobacterial infections [43, 44]. A 

history of severe medical illnesses in childhood like respiratory infections and HIV increases 

COPD risk as well [45]. 

 

Genetics 

Only about 20% of smokers develop COPD [46], and inversely there is a minority of 

never-smokers that fit the COPD diagnostic criteria. There is transgenerational association of 

COPD diagnostic within families [47], so it is likely that genetic (and environmental) factors 

play a significant role in disease susceptibility. The only endotype of COPD in which the 

underlying pathobiology is known is due to mutations in the SERPINA1 gene, that cause 

alpha1–proteinase inhibitor (A1PI) enzyme deficiency [48], and is considered as a different 

disease entity. Mutations in the SERPINA1 gene account for only 1 to 3% of COPD patients. 

Since 2009 several genome-wide association studies (GWAS) and meta-analysis have been 

conducted in  several cohorts that include COPD patients [49-52]. Overall these studies have 
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contributed to the identification of several genomic regions that are associated with COPD at 

genome-wide significance, including FAM13A, HHIP, CHRNA3/CHRNA5/IREB2, and a 

region on chromosome 19. Several other genes and gene regions, including ADAM19, FGF7, 

and SP-D showed evidence for association to develop COPD in smokers. Furthermore, 

several genes have been associated to the heterogeneity of COPD, for example: i) CHRNA3/5 

mutations are associated with cumulative smoking exposure (pack-years), emphysema and 

airflow limitation [49], ii) HHIP - although not associated with pack-years - is related to 

FEV₁/FVC ratio, lean body mass and COPD exacerbations in the ECLIPSE cohort [49]; iii) 

BICD1 SNPs are associated to the presence of emphysema as assessed by radiologist scores 

[53]. Since variants in BICD1 are correlated with telomere length [53], this observation 

suggests accelerated aging as a potential mechanism involved in the development of 

emphysema [54, 55]. It was also found that a significant proportion of emphysema patients 

have a genetic predisposition for abnormally small telomeres that affects alveolar cells [54], 

on genes TERT, TR, or NAF1 [56].  

 

Microbiome 

Perturbations of the microbiome is an emerging risk factor for both COPD initiation and 

development [57]. The common characteristic observed in the recent COPD studies is a loss 

of microbiotic diversity that is correlated to COPD severity, as seen in other non-lung 

pathological conditions. 

 

Diet 

The comparison of dietary elements in terms of preventive and protective effects is 

generally difficult to investigate due to the lack of relevant longitudinal cohorts data. A 2010 

Study of the Hertfordshire Cohort showed by regression analysis that a “prudent” dietary 

pattern (high consumption of fruit, vegetables, oily fish and wholemeal cereals) is positively 

associated with FEV1 and FVC in both sexes, and that in males specifically a higher 

“prudent” pattern score is linked to a higher FEV1/FVC and a lower prevalence of COPD, 

with associations in males stronger in smokers than non-smokers [58]. A 2016 Spanish cross-

sectional study analysis of 207 adult smokers without respiratory disease identified three 

major dietary patterns from PCA analysis of semi-quantitative food-frequency questionnaire, 

and then derived from regression analysis that the Mediterranean-like pattern appears to be 
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associated with preserved lung function, while the Alcohol-consumption pattern and the 

Westernised pattern are associated with impaired lung function (reduced FEV1, FVC or 

FEV1/FVC), especially in women [59]. Similarly in 2017, Kaluza J. and colleagues add 

evidence that high consumption of fruits and vegetables is correlated with reduced COPD 

incidence in ever-smokers [60], possibly linked to the consumption of antioxidants. 

 

3.3 COPD Heterogeneity 

As described above, COPD is currently defined by the presence of chronic airflow 

limitation [19]. Yet, from the clinical and pathological points of view, we now know that 

airflow limitation is only one component of COPD [61]. The disease has many other elements 

that contribute to its clinical presentation, both in the lungs and outside them [62]. As a result, 

it is often said that COPD is a “complex and heterogeneous disease” [63]. However, in this 

setting, it is important to define precisely the meaning of words. “Complex” means that COPD 

has several components which display nonlinear interactions between them, whereas 

“heterogeneous” indicates that not all of these components are present in all patients or, in a 

given patient, at all-time points (i.e., there is dynamic heterogeneity [64]). Several examples 

of this complexity and heterogeneity will be introduced, with special emphasis on 

exacerbations and comorbidities as they are two aspects that have been investigated in this 

PhD. 

 

Emphysema and Chronic Bronchitis 

The clinical manifestation of COPD can result from a mixture of two pathological 

processes, emphysema and chronic bronchitis (Figure 4), whose relative proportion vary 

greatly from patient to patient, evidencing the heterogeneity of the disease. 

  

Emphysema can be broadly defined as impaired alveoli structure (or parenchymal 

destruction). Alveoli are the tiny air sacs localized in the lungs at the end of the smallest air 

passages (bronchioles), where the lungs and the bloodstream exchange carbon dioxide and 

oxygen. Chronic bronchitis refers to inflammation of the bronchial tubes that carry air to and 

from the alveoli, and is associated with daily cough and mucus production. The presence of 

emphysema is usually diagnosed by CT scan, and/or impaired diffusing capacity of the lungs 
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for carbon monoxide (DLCO) [65, 66]. Different pathobiological mechanisms have been 

postulated for both conditions such as protease/anti-protease imbalance, apoptosis, abnormal 

immune response and abnormalities in telomeres [67]. 

 

Figure 4. Emphysema versus Chronic Bronchitis. Reproduced from https:// 

www.livingwellwithcopd.com/en/what-is-copd.html 

 

COPD Exacerbations (ECOPD) 

ECOPD are acute episodes of worsening of the symptoms [19], whose frequency is 

variable and correlates with the disease stage [32]. The episodes are clinically defined by 

significant lung function alterations, acute dyspnoea or respiratory failure that require special 

management and hospitalization for the most severe instances. Early signs of exacerbations 

include feelings of unusual breathlessness, noisy breathing and worse coughing, chest pains, 

abnormal difficulty in sleeping or eating, changes in skin or nail colour, or fever (in case of 

infection). Aside from the negative impact in patients regular quality of life, exacerbations 

also worsen significantly the FEV1 decline and increase the mortality rate [68]. Physiological 

recovery from an exacerbation do not fully restore patients health, which makes future 

exacerbations even more frequent. ECOPD are also statistically linked to the incidence of a 

varied range of comorbidities, such as cardiovascular, cognitive or metabolic chronic 

disorders, depression, osteoporosis, dysfunctional skeletal myopathy, lung cancer, etc. [69].  
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Physical fitness, muscle mass, BMI, and diet play a role in the risk of exacerbations. In 

a 12-months follow-up study of patients hospitalized for acute COPD exacerbation, low initial 

body mass index (BMI) and weight loss were shown to be risk factors for increased frequency 

of exacerbations and mortality rate [70]. Peripheral muscle force is also statistically weaker 

during exacerbations [71]. Finally, daily variations in exposure to outdoor air pollution also 

intensify the frequency of acute ECOPD [40]. Common biomarkers include plasma or sputum 

inflammatory mediators (fibrinogen, CRP, tumour necrosis factor-alpha (TNF-α), 

differentiation factor-15 (GDF-15), interleukins, chemokines) [72] and sub-populations of 

activated immune cells (decreased CD4+ & CD8+ T cells, increased macrophages and 

neutrophils) [73]. Neutrophils play not only a role in COPD initiation and inflammatory 

response but also in exacerbations, in which case their proportion is increased in submucosa 

and subepithelial tissue [74] and is correlated (r 0.3) with percent FEV1 lost because of the 

exacerbation [75]. Significant blood eosinophilia (count ≥2%) affects up to 60% of severe 

exacerbations and airway eosinophilia is increased in 20-40% of exacerbations [76]. These 

cases respond well to systemic corticosteroid therapy [77, 78]. 

 

The pathobiology of exacerbations is an active area of research. It is complex, clearly 

varies among patients and depends on (epi-)genetic factors, baseline airway inflammation, 

microbiome, as well as host immunological responses and susceptibility to infections. Most 

exacerbations are associated to a burst in airway or systemic inflammation that is thought to 

be caused, for the majority of cases, by respiratory viruses or bacterial species [79], while one 

third remains of undetermined cause [80]. 58% of viral infections are caused by rhinovirus, 

while the others comprise human respiratory syncytial virus, coronavirus, influenza virus, 

parainfluenza virus and adenoviruses [81]. 25% of exacerbations involve coinfection of both 

viruses and bacteria and recent research suggests that bacterial exacerbation may be 

precipitated by viruses [82].  

 

A strategy to better manage exacerbations is to distinguish between different clinical 

subgroups or different pathobiologies so that patients can be treated accordingly. A new 

"frequent exacerbator" phenotype is now firmly established [83]. These patients are at greater 

risk of comorbidities and poor health outcomes. They have higher levels of inflammatory 
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biomarkers (plasma fibrinogen and CRP, sputum interleukin IL-6 and IL-8). In terms of 

pathophysiology, they are afflicted by increased airway and systemic inflammation, dynamic 

lung hyperinflation, as well as changes in lower airway bacterial colonization. Arostegui I. et 

al. identified, from exacerbation variables and past clinical history, four main subgroups of 

ECOPD patients that have different prognosis, comorbidities, hospitalization and mortality 

rates [84]. 

 

Under-Nutrition and Muscle Mass Wasting 

Low Body Mass Index (BMI) and low fat-free mass index (FFMI) are more prevalent in 

COPD patients (especially in females) than in the general healthy population [85] and are 

demonstrated to be poor-prognostic factors that can be partly addressed by nutritional 

supplement therapy [86]. 

 

Exercise and Muscle Dysfunction 

In relation with low muscle mass, low exercise tolerance affects COPD patients in terms 

of disease progression; quality of life and mortality rate [86, 87]. Exercise-based pulmonary 

rehabilitation programme were shown to make a difference in that regard [88]. 

 

Comorbidities  

More than 80% of COPD patients suffer additional comorbid conditions [89] that are 

varied and most commonly consist of respiratory, cardiovascular, metabolic and 

gastrointestinal diseases, as well as lung cancer, osteoporosis, anxiety, depression, skeletal 

muscle dysfunction, or cachexia. They have significant effects on mortality rate, clinical 

outcomes and patients quality of life.  

 

Clinically, these conditions share risk factors that explain part of the multimorbidity: 

smoking and exposure to air pollution in particular are causally associated to many pulmonary 

and nonpulmonary conditions [90]. Other shared risk factors include early life events (e.g. 

prematurity [91, 92]), low BMI and physical inactivity [93]. 

 



 23 

In terms of pathobiology, several conditions share genetic loci for their development 

(e.g. for COPD and lung cancer [94, 95], or COPD and asthma [96]). A clear biological 

hallmark of multimorbidities is shared common pathways such as oxidative stress and 

systemic inflammation. Rubio-Perez C. et al. built networks that combined disease-disease 

associations, protein-protein interactions as well as gene-disease and variant-disease 

associations, in order to cluster diseases into related subgroups that internally share genetic 

alterations and mechanistic (mostly inflammation-based) pathobiological pathways [97]. 

Similarly, correlation networks analysis by Faner R. et al. added evidence of a shared 

unspecific molecular diseasome (in particular, mechanisms related to inflammation and 

vascular tone regulation) to explain the frequent comorbidities occurrence [98].   
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Research Hypothesis 

The general hypothesis underlying this PhD Thesis is that the use of multi-level 

integrated analysis will help us understand holistically highly heterogeneous respiratory 

diseases such as COPD.   

 

This general hypothesis has been divided in two specific hypotheses that correspond 

to two distinct well defined clinical scenarios. 

 

1) Exacerbations of COPD 

ECOPD are highly heterogeneous episodes of worsening of the symptoms with a non-

specific diagnosis biomarker, whose pathogenesis and biology is not entirely 

understood. We hypothesize that the comparison of multi-level (i.e., clinical, 

physiological, biological, imaging and microbiological) correlation networks 

determined during ECOPD and clinical recovery can help us identify the key 

diagnostic biomarkers and features of these highly heterogeneous episodes.  

 

2) Lung function in early adulthood 

Low peak lung function in early adulthood, which can result from abnormal lung 

development, is associated with the diagnosis of COPD later in life. If for any reason 

the lungs have been poorly developed, it is conceivable that other organs have also 

done so (e.g. from the cardiovascular or metabolic systems). Accordingly, we 

hypothesize that abnormal lung development is linked to the impaired development of 

other organs and systems, and is associated to an increased frequency of subclinical 

abnormalities and comorbidities in later adulthood. 
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Objectives 

The general aim of this PhD Thesis is to apply multi-level integrated analysis to better 

understand highly heterogeneous respiratory complex diseases such as COPD. 

 

The specific goals that have been addressed refer to two specific aspects of COPD 

heterogeneity: 

 

1) Exacerbations of COPD (ECOPD), specific goals:  

• To characterize the heterogeneity of ECOPD, using a common set of variables and 

individuals during the exacerbation phase and at convalescene. 

• To integrate and compare the information using Multi-Level Differential Networks. 

• To identify ECOPD biomarkers. 

 

2) Early low lung function and health in later life, specific goals: 

• To determine the prevalence of low peak lung function in early adulthood in the 

general population.  

• To assess the association of early low peak lung function with subclinical 

abnormalities from the lungs and other organs.  

• To evaluate if early low peak lung function is a risk factor for earlier incidence of 

comorbidities.  

• To investigate the relationship between early low peak lung function and later 

mortality risk. 

• To determine the transgenerational reproducibility of early low lung function status. 
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Results 

The core results of this PhD Thesis have been published in the form of two original papers in 

high impact factor international journals (Eur. Respir. J, IF 2018: 12.2, paper cited 4 times; 

and the Lancet Respiratory Medicine, IF 2018: 21.5, paper cited 5 times). Besides, the 

experience gained with this work has also been substantiated in a review paper (Eur. Respir. 

Rev.) which is presented in the appendix but not discussed directly. 
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Original Paper 1: Multi-level Differential 

Network Analysis of COPD Exacerbations 

 

(published in: Noell et al. Eur. Respir. J. 2017) 
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Original Paper 2: Low Lung Function in Early 

Adulthood and Health in Later Life: a 

Transgenerational Cohort Analysis  

 

(Published in: Agusti, Noell, Brugada, Faner. Lancet Respir. Med. 2017)  
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General Discussion 

The main findings of the two original papers that form the core of this PhD Thesis are that:  

 

1) Episodes of ECOPD are characterized by (1) a wide range of bioclinical variables 

significantly altered at exacerbation (including lung physiology, vital signs, microbiology, 

lung inflammation, CT imaging as well as biochemistry, systemic inflammation and 

cardiovascular variables), (2) a panel of biomarkers - comprised of increased levels of 

dyspnoea (⩾5 on an analogue visual score from 0 to 10), C-reactive protein level (⩾3 mg/L 

−1 ) and ⩾70% circulating neutrophils - that has a high predictive value for ECOPD diagnosis 

(AUC = 0.97) and by, (3) a disruption of the biological correlation network associated with 

clinical stability.  

 

2) Early adulthood low peak lung functions is clearly associated with global increased 

health risks later in life. These observations were first made in the Framingham Offspring 

Cohort (FOC) and then reproduced in CARDIA (independent cohort) and GenIII (which 

includes the direct descendants of FOC participants). In all cohorts a sizeable proportion of 

individuals (in the range 4-12%) had FEV1<80% ref. at 25-40 years of age and were therefore 

classified as having Early adulthood Low peak Lung Function (ELLF). Analysis of the data 

revealed that: (1) they have, vs. those with Early adulthood Normal peak Lung Function 

(ENLF), a higher prevalence of respiratory, cardiovascular and metabolic abnormalities in 

early adulthood; and, (2) they also have a higher and earlier (about a decade) incidence of co-

morbidities during follow-up as well as an increased all-cause mortality (Hazard Rate (HR) 

2.3 [95% CI 1.4-3.7], p=0.001). Finally, in GenIII we observed that: (3) individuals with at 

least one parent stratified as ELLF in FOC had lower FEV1 in early adulthood (p<0.0001); 

and early adulthood FEV1 of GenIII participants was related (p<0.0001) to their FOC parents 

average FEV1 also in early adulthood. 

 

All in all, these observations indicate that COPD heterogeneity refers to both cross-

sectional differences between patients as well as longitudinal variations at several time scales, 

months in the case of exacerbations and throughout life for the lung function trajectories that 
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lead to COPD. These disparities identify subgroups of patients that have on average 

significant differences in aetiology, pathobiological patterns, as well as different clinical 

implications such as differential prognosis, comorbidity susceptibility and therapeutic targets. 

 

The challenge of investigating the heterogeneity of complex conditions lies in the 

integration of clinical and biological variables that have distinct properties, in terms of 

proportion of variance explained, distribution shape, effect size that can be considered 

clinically relevant, normalization requirements, redundancy, etc. Clinical data is often lacking 

in details, reported as discrete (e.g. categorical) information, may contain missing values 

whose imputation is not trivial, or be of imprecise quantification (e.g. smoking exposure, one 

of the most central risk factors, is rarely accurately reported in longitudinal studies since at 

best it consists of self-reported periodic estimations of average consumption). In contrast, 

biological data usually consists of a large amount of continuous determinations that 

individually show poor correlations to clinical outcomes and phenotypes (small effect size 

and high dimensionality). Furthermore, since omics technologies are still in infancy and 

regularly upgraded, the normalization procedures that need to be applied to the data, as well 

the statistical methods for differential expression and multi-level integration, are not yet well 

established and standardized. 

 

In this context, given the research questions and cohorts data of this PhD Thesis, 

standard statistics methodologies as well as a networks approach were applied to the study of 

ECOPD heterogeneity, while standard statistical tools only were used for the study of low 

peak lung function in early adulthood in relation to health in later adulthood. The networks 

approach to the study of correlation structures presents several specific advantages and 

drawbacks: 

 

• As mentioned, networks are an accurate representation of biological systems since 

these consist of interacting parts in a global dynamic system. Networks allow for the 

visualization of mechanistic pathways and subsystems (modules) that are perturbed in 

disease states (e.g. ECOPD versus clinical stability). 

• In contrast to standard (mixed effects or logistic regression) models, correlation 

networks explicitly lay out all the relationships (collinearity) between covariates. 
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• Due to the high number of associations estimated (between every pair of variables), 

networks approaches need to comply with several requirements in order to filter out 

false positives (correlations significant by chance only): a high sample size, the use of 

multiple p-value adjustment methods [99], and optionally the application of custom 

bootstrapping methods. 

• A correlation (calculated with Pearson/Spearman method or similar) only reveals an 

association and as such do not necessarily imply causality, nor give the direction of 

causality if any (which or the two variables is the cause or consequence of the other). 

• The comparison of correlation networks and their interpretation are challenging, in 

part because of the lack of causality information, but also because a cut-off based on 

p-value or correlation strength (such as R² or odds-ratio) has to be arbitrarily chosen 

below which weaker correlations are not shown. The density of the networks is thus 

arbitrary (as well as depends heavily on the sample size) and must be interpreted with 

caution. 

 

The specific research results of the two core original papers that form this PhD Thesis are 

discussed below: 

 

1. SPECIFIC DISCUSSION OF THE FIRST AIM: MULTILEVEL 

CHARACTERIZATION OF COPD EXACERBATIONS 

This paper constitutes a proof-of-concept study in which Multi-Level Differential 

Network Analysis (MLDNA) was applied for the first time to a relevant, complex and 

heterogeneous clinical problem (ECOPD). Below we further discuss the specific findings and 

the main limitations of that work. 

 

1.1 Characterization of ECOPD  

The reported biological and clinical characteristics determined in core paper 1 both 

during exacerbation and at convalescence are largely in agreement with previous studies on 

ECOPD, in terms of individual measures (physiological, biological and microbiological)  

[100]. Importantly the heterogeneity of exacerbations is made clear in the analysis of the 16 

continuous variables that had a significant (bootstrapping False Discovery Rate (FDR) p-
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value <0.05) proportion of ECOPD outliers (<5th or >95th percentiles established at 

convalescence). More than 50% of values of all the study variables at ECOPD still remained 

within the 5th to 95th range determined at convalescence, indicating a major overlap between 

the two clinical states. Furthermore, an analysis of the correlations between alterations for all 

possible pairs of variables reveals that only neutrophils and lymphocytes had their outliers co-

occurring in more than 75% of patients. In contrast, all other pairs of variables had at least 

25% of their outliers associated with a "normal" value (non-outlier value in the 5%-95% 

percentiles range of convalescence) in the other pair's variable, pointing out that patients do 

not all share the same subset of altered variables at exacerbations. Likewise, considering 

possible causes of the acute event, pathogenic virus or bacteria were not detected from 

spontaneous sputum at ECOPD in more than 60% of the patients, likely due to the fact that 

positive cultures were used instead of the qPCR-based techniques (16sRNA sequencing) that 

tend to provide better detection sensitivity. Of note, the large proportion of outliers in glucose 

levels is probably caused by systemic steroids taken at or before hospitalization [19, 101]). 

Additionally, only 5.7% of patients at ECOPD had >2% circulating eosinophils, which 

increased to 54.7% at convalescence. This differs significantly from other studies where 25% 

to 50% of patients have >2% circulating eosinophils during ECOPD [78, 102, 103], 

suggesting that in this cohort the population did not capture eosinophilic-associated 

exacerbations. 

 

1.2 Biomarkers Diagnostic of Exacerbations 

Biomarkers analysis derived from the patients’ data showed that ECOPD episodes can 

be accurately identified (with an AUC of 0.97) by combining the levels of dyspnoea (⩾5 on 

1-10 visual analog scale), blood neutrophils (⩾70%) and plasma CRP (⩾3 mg/L) into an 

optimized general linear mixed model, providing a simple yet reliable diagnostic tool of 

hospitalized exacerbations. The patients were all recruited at the hospital because of the 

episode so that the validity of the model to detect non-hospitalized (thus milder) forms of 

exacerbations could not be investigated. Several other studies [104-108] have defined a higher 

threshold of CRP for hospitalized acute ECOPD, mostly >10 mg/L, possibly due to a higher 

severity of the included exacerbations [109]. Needless to say that increased dyspnoea, 

elevated CRP and leucocytosis can also occur in other clinical circumstances that may not 

even arise from the lungs (e.g. cholecystitis, pneumonia, sickle cell crisis, pulmonary 

embolism (PE) or congestive heart failure). The dyspnoea levels reported consist of patients 
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self-evaluation and the diagnostic would be less subjective if dyspnoea were replaced by a 

biological biomarker, for example from a serum or sputum sample. For research and clinical 

use, the computational model requires cross-examination and validation in external cohorts 

[72]. Maria Montes de Oca et al., in a 2018 review citing our study and others, present 

different schemes to precisely define exacerbations and propose to use the same three 

parameters and associated cut-off values of the core paper 1 in addition to three new 

parameters in order to improve the definition of acute ECOPD. These new parameters are: 

Procalcitonin >0.25 μg/L (suggestive of bacterial aetiology and encourage the use of 

antibiotic therapy), N-terminal pro b-type natriuretic peptide (NT-proBNP) >300 pg/mL 

(suggestive cardiac dysfunction [108]) as well as X-Rays (to evaluate the presence of 

pneumonia) [110]. 

 

1.3 Multi-Level Differential Network Analysis of Exacerbations (MLDNA) 

With the application of MLDNA, the core paper 1 aimed to draw attention to the 

usefulness of this new analytical approach to add novel, integrated, dynamic and holistic 

information to the heterogeneity of a complex biomedical condition. Networks medicine 

premise is that complex multi-level states like exacerbations or COPD can be viewed as 

derailed biological systems, or perturbed networks, in which the normal dynamic interactions 

at the subclinical levels (for example in terms of lung gas exchange pathways and cellular 

processes) are going through an abnormal state far from ideal homeokinetic operating 

conditions [16, 111]. In that paradigm, the phenotypic abnormalities observed in patients (i.e. 

clinical symptoms of exacerbations) are emergent properties of a dysfunctional physiological 

system that are associated to subclinical alterations and improper biological interactions. 

These can be represented as perturbed pathways or perturbed correlation networks. In the 

worst-case scenario where the disease progressively gets worse, the system departs too far 

from functional equilibrium towards a partial system collapse (i.e. lung respiratory failure, 

heart attack, etc.) or complete collapse (death). In core paper 1, the perturbed Spearman 

correlation network of ECOPD with respect to clinical stability indicates a loss of system 

control and reduced resilience during ECOPD. Most of the correlations that significantly 

differ between the two states are present at clinical stability while absent at ECOPD. 

Furthermore, supporting the idea that network modules represent biological subsystems that 

consist of variables highly connected internally but little to outsiders, it can be noted that 

network nodes in both clinical states did cluster into sparsely connected modules that appear 
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biological homogeneous: five modules at ECOPD and six at clinical stability were identified 

by a common unsupervised unbiased algorithm, and the resulting modules were mostly 

comprised of node of one or two of the following categories: systemic inflammation, lung 

inflammation, biochemistry, lung physiology, vital signs, microbiology, CT imaging or 

cardiovascular. In addition, more than half of the differential correlations between the two 

states linked different modules at ECOPD, which can be interpreted as a reduction in 

biological subsystems (modules) co-regulation. In addition, dynamic non-linear systems may 

have some components (biological mediators or variables) that are more critical than others to 

their proper regulation. In a network framework, these are referred to as "hubs" and 

"bottleneck" nodes and are defined by being respectively either more central and more 

connected than the other nodes, or forming a non-redundant thus important link between 

modules [112, 113]. Specifically in core paper 1 networks, only one node had more 

differential links at ECOPD (TNF-α, with n=4 links to other nodes) while there were many 

nodes with more differential links at convalescence: TGF-β (n=6), KCO (n=5), PAFI (n=5), 

PaO2 (n=5) and heart rate (n=4), suggesting that these markers are central to the regulatory 

processes of lung function, and it can be hypothesized that their alteration are more likely to 

lead to health complications. For pharmaceutical research purposes, the central hubs and 

bottleneck variables are a priori the ones most susceptible to be relevant, as targeting them 

with a specific pharmaceutical agent might help returning the network to the clinically stable 

equilibrium state, or inversely to prevent a healthy network topology from turning into one 

susceptible to lead to future episodes of exacerbations. 

 

The heterogeneity of exacerbations can then be conceptualized by considering that there 

is always more than one way for a system to dysfunction and display the same subset of 

observable symptoms. In the physiological and biological network operating in COPD 

patients, nominal alterations (such as increased CRP levels) and pressure points (prolonged 

submission to tobacco toxic particles) have consequences that spread throughout the network 

via the connections of the different parts and nodes (e.g. via systemic inflammation 

mediators). Thus exacerbations are not only associated to lung abnormalities but may also be 

correlated to cardiovascular, metabolic and systemic complications in COPD patients. 

 

Systems biology approaches that involve networks are now widely used in respiratory 

medicine studies that involve omics data [12], for example to investigate lung transcriptomics 
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of emphysema [114] or to characterise COPD comorbidities co-occurrence [115]. To my 

knowledge, it is the first time that networks medicine is used to get further insight into the 

complexity of a relevant clinical problem like ECOPD. Hopefully, core paper 1 paves the way 

for network analytical strategies to be applied to other complex biological conditions in 

respiratory medicine and elsewhere. 

 

Heterogeneity can be investigated with other systems biology approaches than differ 

from networks medicine and complements it. Another common and useful scheme to look 

into complex conditions is to perform unbiased clustering of the patients and their data, then 

look for significant differences between the clusters with the end goal to (in)validate the 

findings in other cohorts. Such an unbiased cluster approach was successfully used on 

ECOPD by Bafadhel et al. on a dataset of 182 ECOPD episodes [102]. Unfortunately, the 

sample size of the core paper 1 cohort (n=86) was too small for that approach. 

 

1.4 Core Paper 1 Limitations 

This paper’s research has several limitations worth pointing out. It is not clear how 

much the initiation of systemic corticosteroids, before the collection of biological samples 

(within 72h after admission) might have modified the inflammatory profile of ECOPD. It 

must also be noted that only hospitalised ECOPD were included, so that the results are not 

directly generalisable to other milder (or more severe) forms of ECOPD. Furthermore, 

patients presented to hospital at various time points in the evolution of an ECOPD and it is 

unclear where the exacerbations were sampled along that continuum. Additionally, the 

recovery phase data at 3 months was used as a proxy for COPD clinical stability in our 

(networks and biomarkers) differential analysis. However, the underlying assumption that the 

patients’ bioclinical status is the same before and after the exacerbations is partially incorrect. 

The cohort further lacks controls without COPD and COPD patients who do not suffer 

exacerbations. Finally, the core paper 1 networks analysis must be considered a proof-of-

concept study because of the relatively low number of patients included (n=86) so that the 

findings require validation in larger cohorts. All in all, the exclusion of severe co-morbidity, 

pneumonia, relatively small sample size and study of hospitalised patients (not ambulatory 

ECOPD) restrict the generalisability of the results. 
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2. SPECIFIC DISCUSSION OF THE SECOND AIM: RELEVANCE OF LOW 

LUNG FUNCTION IN EARLY ADULTHOOD 

The analysis of the prevalence, associated biomarkers and clinical relevance of the low 

lung function in early adulthood, in three large cohorts (FOC, GenIII, and CARDIA) 

constitutes the follow-up of the vital lung function trajectories described by my group in 2015 

[28]. Specifically, the novel information provided is that 4–12% of the general population has 

low lung function (FEV1 <80% predicted) in early adulthood (25–40 years of age); that this is 

not a bystander effect because these individuals also have a higher prevalence of respiratory, 

cardiovascular, and metabolic abnormalities and a higher and earlier incidence of 

comorbidities during follow-up than those with normal lung function in early adulthood, as 

well as a higher rate of premature death; and that low lung function status in early adulthood 

is correlated between parents and direct descendants (GenIII), suggesting genetic heritability. 

 

These results were not derived from a novel networks analysis as in core paper 1 

analysis of COPD exacerbations, but instead from standard statistical tools. However, the core 

paper 2 also analyzed the heterogeneity globally from a multi-level perspective since, on one 

hand, the analysis processed longitudinal data at multiple time points within adulthood and 

across population generations, and on the other hand, they integrated multiple biomedical 

variables (e.g. FEV1 or biomarkers) in correlation with clinical outcomes such as 

comorbidities and death. These specific aspects and the main limitations are further discussed 

hereafter:  

 

2.1 Early Life and Pre-Birth Factors of Abnormal Low Lung Function 

The traditional hypothesis of COPD aetiology is an accelerated decline of lung function 

with age mainly caused by prolonged tobacco smoking [27]. That paradigm is now challenged 

as reports showed that up to half of COPD patients never had a normal peak lung function in 

early adulthood [30], pointing to a dynamic heterogeneity of the natural history of COPD. The 

observations of core paper 2 also support the idea that COPD might arise from failure to attain 

the normal early adulthood spirometric plateau since low peak lung function in early 

adulthood (25-40 years old) in FOC and CARDIA was significantly correlated to also having 

an abnormally low peak lung function later in life (50-65 years) and an increased COPD 

prevalence. 
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The aetiology can be pushed even further back in time, as low lung function and 

respiratory symptoms in infancy appear to track from birth into adulthood, and that parental 

respiratory factors (such as maternal or paternal asthma or maternal smoking) are correlated to 

children lung health [116]: In 1991 Barker D. J. and colleagues showed that childhood 

respiratory symptoms such as bronchitis, pneumonia, or whooping cough are associated to a 

reduced adult lung function [117]. Spirometry measurements in more than a hundred infants 

in the Tucson Children's Respiratory Study demonstrated that those who had a low (1st 

quartile) maximal expiratory flows at functional residual capacity (Vmax(FRC)) at birth 

ended up with statistical lower FEV1, FVC, and forced expiratory flow between 25% and 

75% of FVC (FEF25-75) throughout childhood up to early adulthood [118]. A 2016 study of 

the same cohort, analysing FEV1/FVC trajectories in 599 subjects from 11 to 32 years old, 

identified with latent class analysis a significant proportion of individuals (9.3%) who had a 

persistently low trajectory throughout. The latter was associated to more paternal asthma than 

in the normal trajectory group, as well as more early life lower respiratory illnesses caused by 

respiratory syncytial virus, physician-diagnosed active asthma at age 32 years and lower 

VmaxFRC at age 6 years [119]. Similarly, Owens L. et al. derived, from a 2018 longitudinal 

study that tested lung function from 1 year old to 24 year old in 253 individuals, that the 

airway framework is laid down in the antenatal period and tracks into adulthood [120] and 

that childhood low lung function is associated to increased respiratory symptoms later on. 

They further uncovered two pre-birth factors associated with a lower FEV1 between 6 and 24 

years old: maternal smoking and maternal asthma. In CARDIA, paternal asthma had a 

significant different prevalence between individuals with early adulthood low peak lung 

Function (ELLF) and individuals with normal peak lung function (ENLF). In 2009, Svanes C. 

et al. uncovered several "childhood disadvantage factors" significantly associated with lower 

FEV1 in adulthood, faster lung function decline and higher COPD incidence: maternal 

asthma, paternal asthma, childhood, asthma, maternal smoking, and childhood respiratory 

infections [121]. In 2016, a longitudinal study that followed asthmatic children also 

established childhood asthma as well as specific patterns of abnormal (reduced FEV1) lung 

function growth as predictors of early adulthood low long function [122]. Multinomial 

regression on spirometry measurements of 1389 individuals from a Tasmanian cohort at 7 and 

45 years old also exposed that the lowest quartile of FEV1 at 7 years was associated with the 

co-occurrence of asthma and COPD (ACOS) at 45 years old, but not COPD or asthma alone, 
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wile the lowest quartile of FEV1/FVC ratio at 7 years was associated with ACOS, COPD but 

not asthma alone [123, 124]. However, it must be noted that the diagnostic of asthma in 

children is of limited utility since it is very unspecific: it relies only on clinically observable 

phenotypes that do not use biological objective tests and may include distinct pathobiological 

endotypes, such as abnormal lung development.  

 

Aside from paternal or maternal asthma and maternal smoking, there are other (pre-) 

birth factors correlated to abnormal lung development [125], such as low birth weight or 

premature birth [126]. In FOC, low birth weight (<2.5 kg) was twice as high (20% vs 9%, 

p=0.021) in participants with low lung function that in those with normal lung function, which 

corroborates several studies. Barker D. J. hypothesised in 1991 that intrauterine influences 

that retard foetal weight gain may also irrecoverably impair the growth of the airways [117]. 

In that study he noted that lower birth weight was associated with worse adult lung function, 

and that COPD death in adult life was associated with lower birth weight and weight at 1 

year. The idea was developed in what is known as the “Barker Hypothesis” [127]: suboptimal 

foetal development caused by undernutrion lead to permanent changes in structure and 

metabolism that may be the origin of a number of diseases later in life, including coronary 

heart disease, stroke, diabetes and hypertension. A 2015 study confirmed with a logistic 

regression the negative influence of low birth weight on COPD incidence [128], and  likewise 

a 2016 study used a linear mixed model to negatively correlate birth weight, gestational age 

and gestational maternal smoking to lung function in children [129]. 

 

2.2 Tobacco as a Potential Cause of Early Adulthood Low Lung Function 

Tobacco (accumulative) smoking is a central adverse factor for COPD and lung 

function in general, and, as mentioned, maternal smoking is also known to have a negative 

influence on children’s lung function [130-132]. 

 

Given the core paper 2 data, it was impossible to unequivocally disentangle the effect of 

smoking (or maternal smoking, or chronic exposure to smoking) from the effect of early 

adulthood low lung function on the occurrence of later abnormalities, mainly because 

maternal smoking, passive exposure during childhood and smoking in adolescence are 

themselves three known causal risk factors for early adulthood low lung function, reduced 
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FEV1/FVC and increased airway resistance [133, 134]. In fact, FOC and CARDIA smoking 

exposure data in the age range 20-40 y.o. revealed that ELLF had significantly more 

(compared with ENLF), % of ever-smokers (76% vs versus 64% in FOC, 61% vs 53% in 

CARDIA), number of cigarettes smoked per day (28.8 vs 20.3 in FOC, 7.8 vs 6.2 in 

CARDIA), as well as possibly an earlier age of smoking onset (16.8 vs 17.5 in FOC, not 

different in CARDIA: 17.7 vs 17.5). The same tendency was also observed in GenIII, 

although not statistically significant (possibly because of the lower sample size, or because 

later generations smoke less on average). Furthermore, a recent paper by Mathew A. R. and 

colleagues [135] correlated (low rate) tobacco smoking trajectories to severe increase of 

emphysema risk, which may indicate that ELLF smoked more than ENLF since in GenIII the 

prevalence of emphysema in early adulthood and during follow-up was significantly higher in 

ELLF than ENLF. In the former, similarly, the FOC prevalence was also higher during late 

adulthood (50-65 years old, not measured in early adulthood). All in all, deconvoluting 

accumulated smoking exposure from early adulthood low peak lung function would require 

large cohorts spanning from childhood until late adulthood that contain extensive smoking 

records, including maternal exposure to smoking and infancy data (e.g. birth weight and 

spirometry). 

 

2.3 Novel Hypothesis: The factors that Cause an Abnormal Lung Development Might 

Also Compromise the Cardiovascular and Metabolic Systems 

Going further that limiting the possible putative effects of early-life factors to the 

pulmonary system, it can be hypothesized that the factors that lead to a sub-optimal lung 

development might not be specific to the lungs but instead also cause abnormalities in the 

cardiovascular and metabolic systems, as well as more premature death [117]. This new 

hypothesis is consistent with the core paper 2 analysis since early low lung function 

individuals had higher cumulative and earlier incidence of abnormalities in all these 

biological systems when contrasted with normal lung function participants, at 25-40 and 

during follow-up until 65 years of age. 

 

A recent analysis of the Tucson Epidemiological Study of Airway Obstructive Disease 

confirmed that low FEV1 (and to a lesser extent FVC) in early adulthood is a risk factor for 

early cardiopulmonary (heart disease or COPD) mortality [136]. A 2018 analysis of the 

Hertfordshire Cohort by Humphreys J. et al. with more than 2000 participants, for which 
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perinatal and infant health records were available, as well as medication and chronic diseases 

data until about 66 years old, reported that early-life factors such as childhood illnesses 

significantly increased the risk of multimorbidities in later life [137]. 

 

Furthermore, low birth weight (LBW) is associated with dysfunction of several organs 

later in life. It is a risk factor not only for COPD onset [128], but also for metabolic conditions 

(e.g. diabetes mellitus), circulatory and heart conditions [138], obesity incidence [139], severe 

steatosis and non-alcoholic steatohepatitis [140]. Boeri L. and colleagues assessed in 2016, in 

adult males, that LBW predicted higher Charlson Comorbidity Index (CCI) values, a measure 

of Health-significant comorbidities, as well as more pathologic progressive motility and 

pathologic sperm morphology [141]. Two recent reviews of the accumulated evidence, 

combined with other birth and pre-birth adverse factors (maternal/foetal disease states, 

nutritional deficits/excess, stress, exposure to environmental chemicals, medical 

interventions) suggest that insults occurring during the perinatal period alter the 

developmental trajectory of the offspring’s cardiopulmonary system [142] and other systems 

[143] leading to long-term detrimental outcomes that often culminate in adult pathologies. 

 

2.4 (Epi-)Genetic Factors that Lead to Abnormal Lung Development 

The core paper 2 research revealed a trans-generational reproducibility of low lung 

function in early adulthood since it showed a significant correlation or R²=0.28 between the 

FEV1 of GenIII participants and their FOC parents’s average FEV1. Accordingly, 10% of 

GenIII participants that had at least one parent stratified as having low lung function in FOC 

had a FEV1 below 80% predicted, while in contrast the proportion was only 3% in those 

whom both FOC parents were classified as normal. Furthermore, those GenIII participants 

with at least one ELLF parent also had a significantly lower FEV1/FVC ratio, a higher 

proportion of women and more reported parental asthma. These associations suggest that 

there may be a genetic component to abnormal lung development and resulting early low lung 

function. 

 

Much of the lung function development and COPD heritability remains unexplained, 

although several GWAS studies have established gene variants significantly associated with 

either lung function parameters (e.g. to FEV1, FVC, and FEV1/FVC ratio, longitudinal 
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variations), tobacco effects on lung decline, or COPD parameters (e.g. onset, or airflow 

obstruction severity) [144-147]. Recently, McGeachie J., Yates P. and colleagues uncovered a 

specific genetic polymorphism (rs4445257) associated to early decline in lung function after 

normal growth that may also protect against early decline in reduced growth groups [148]. 

 

Recent research uncovered gene variants that affect lung development as early as the 

embryonic stage [149, 150], and now that early adulthood peak lung function and trajectories 

importance for COPD are established, more research is needed into their genetic basis. In 

terms of epigenetic determinants in early life, a 2018 Epigenome-wide association study of 

cord blood and mid-childhood peripheral blood total serum Immunoglobulin E (IgE) levels 

identified several cord blood methylation signals that were correlated to mid-childhood IgE, 

thus providing evidence that IgE-mediated hyper-sensitivity may be epigenetically 

programmed in utero and during early childhood [151]. Several of these methylation sites 

were already associated to asthma (ADAM19, EPX, IL4, IL5RA, and PRG2) [152-154].  

 

These studies lead to new interpretations of COPD pathobiology unrelated to tobacco 

smoking for a subset of patients, via abnormal early life lung development supported by 

genetic susceptibility and/or early life adverse programming of epigenetic sites. 

 

2.5 Potential Opportunities for Treatment, Prevention and Early Intervention 

The findings of this PhD Thesis suggest that some of the comorbidities frequently 

reported in COPD patients might originate earlier in life than previously thought, especially 

for the high proportion (up to 50%) of COPD patients who had a low peak lung function in 

early adulthood. For clinical practice it means that these individuals might benefit greatly 

from early detection (potentially via systematic population-wise spirometry tests in childhood 

and early adulthood), early intervention and targeted preventive measures. 

 

2.6 Core Paper 2 Limitations 

In both FOC and CARDIA cohorts, the drop-out rate during follow-up was higher in 

participants with early low adulthood peak lung function (ELLF) than in the normal peak 

group individuals (ENLF). It is a potential results bias, although it may underestimate the 
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observed higher proportion of bioclinical abnormalities in ELLF, as adverse medical 

conditions and poor health may be the reason of drop-out for a number of cases in these 

decade-long observational cohorts of the general population. 

 

Additionally, the comparison of observations between the three cohorts (FOC, CARDIA 

and GENIII) was limited by the fact that most often the nominal biological variables, clinical 

variables and questionnaires were not the same across cohorts (or even in-between visits of a 

given cohort). This potential bias was mitigated by summarizing the alterations into their 

respective clinical category (e.g. respiratory, cardiovascular or metabolic) and then calculating 

for each category the proportion of individuals that have at least one clinical alterations in any 

of the category’s variables. These accumulative proportions are more robust than nominal 

variable prevalences and more readily compared between ELLF vs ENLF across cohorts as 

well as longitudinally during follow-up. 

 

Finally, the associations reported in this Thesis do no establish causation and the 

observations are prospective. Therefore, the findings require validation and confirmatory 

analysis in other cohorts, as well as a more detailed analysis of the clinical factors discussed 

(effects of early life factors on early lung function, causal interactions with tobacco smoking 

exposure, etc.). 

 

2.7 Futures Challenges of Systems Medicine in this Field 

If the lungs develop suboptimally, resulting symptoms of airflow limitation may be 

diagnosed as asthma [155], which would represent an important misdiagnosis since the 

underlying pathobiological mechanisms of individuals born prematurely are different from 

those of common asthmatics [126]. This potential misclassification should be further 

considered in future studies.  

 

Longitudinally the core paper 2 reports important statistical associations between 

clinical and biological factors across time, but it does not uncover the biological mechanisms 

and endotypes that underlie these relationships. Extensive omics data collection and 
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genotyping in large cohorts of the appropriate clinical setting will provide the necessary basis 

for the analysis of such mechanisms. 

 

One of the hardest (but major) aspects of NCDs to quantify is the environmental impact 

on disease initation and development [156]. The environmental variables (termed exposome) 

range from prenatal events to lifelong exposure variables (e.g. air pollution, low physical 

activity and adverse diet) that could not be properly tracked in past cohorts. Of note, although 

cumulative tobacco smoking is a crucial COPD risk factor, its current quantification based on 

patients self-estimation clearly lacks accuracy.  Future advancements in technology (e.g. 

wearables or drones to continuously track air pollution) will improve the quantification in 

future prospective (ideally trangenerational) cohorts.  

  

Access to extensive electronic medical records is also important to the proper study of 

NCDs comorbidities and their of confounding factors (sex, age, socioeconomic status, etc.). 

The centralized collection of that much individual data (omics data, environmental data and 

medical records) in large cohorts - arguably necessary to fully understand NCDs 

heterogeneity - poses substantial ethical challenges, as well as confidentiality, security and 

legal issues [157]. 

 

Finally, it is possible that the future implementation of personalized medicine in 

healthcare will partly rely on probabilistic models that do not use mechanistic pathobiological 

information, but instead leverage big data with unbiased machine learning algorithms to 

predict clinical outcomes and best medication strategies in tools tailored to the profile of 

individual patients [158, 159]. 
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Conclusions 

In conclusion, this PhD Thesis has used multi-level integrated analysis to shed light on 

two specific aspects of COPD heterogeneity: 

 

1) Exacerbations of COPD (ECOPD) 

• ECOPD are characterized by several alterations (dyspnoea, tachypnoea, 

tachycardia and respiratory failure, lung and cardiovascular physiology, systemic 

inflammation markers, biochemistry markers, sputum bacteria or viral infection), 

although, for practically all variables, significant overlap remain between the two 

clinical states distributions, thus highlighting the heterogeneity of the events. 

• ECOPD are characterised by a fragmentation of the correlation network observed 

during convalescence, suggesting loss of system control, homeostasis and reduced 

resilience. 

• These acute events can be identified objectively (AUC 0.97) by using a panel of 

three biomarkers (dyspnoea, circulating neutrophils and CRP levels) frequently 

determined in clinical practice. 

 

2) Early low lung function and health in later life 

• Low peak lung function in early adulthood (FEV1 of less than 80% predicted at 

the age of 25-40 years) is common in the general population, with a prevalence of 

4-12%. 

• Early low peak lung function individuals have a higher prevalence of respiratory, 

cardiovascular, and metabolic abnormalities in early adulthood. 

• These individuals also have a higher and earlier (about a decade) incidence of 

cardiovascular, metabolic and systemic comorbidities in later adulthood. 

• They are burdened by an increased risk of premature death (hazard ratio 2.3 [95% 

CI 1.4-3.7]). 
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• Low peak lung function status in early adulthood is significantly correlated 

(R²=0.28) in-between parents and offsprings, indicating a possible genetic 

heritability. 
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Appendix 

Published review 

 

From systems biology to P4 medicine: applications in respiratory medicine. 

Noell G., Faner R.tc, Agustí A. 

Eur Respir Rev. 2018 Feb 7;27(147) 
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Informe de publicaciones de la Tesis 

 La tesis del doctorando se centra en dos artículos originales publicados el año 2017. En ambas 

el doctorando es el primer co-autor, ambas son del primer décil del ámbito respiratorio, y en ambas el 

doctorando ha realizado el análisis de datos, interpretación, extracción de conclusiones y readccion de 

los mismos. Específicamente:  

 

1. Multi-level differential network analysis of COPD exacerbations. 

Autores: Noell G*, Cosío BG*, Faner R*, Monsó E, Peces-Barba G, de Diego A, Esteban C, 

Gea J, Rodriguez-Roisin R, Garcia-Nuñez M, Pozo-Rodriguez F, Kalko SG, Agustí A. 

Eur Respir J. 2017 Sep 27;50(3). PMID: 28954781. (*: authors contributed equally) 

 

◦ La revista de este articulo (European Respiratory Journal) tiene un impact factor en 

2017 de 12.2 puntos. 

◦ El doctorando es primer co-autor de este artículo*. Los otros dos coautores ya son 

doctores y han participado en el diseño del estudio y recolección de los datos. Mientras 

que el doctorando, específicamente ha trabajado con los datos crudos, realizado todos los 

análisis estadísticos del articulo y ha participado en la interpretación de los mismos, 

extracción de conclusiones, elaboración y escritura del articulo y de sus revisiones.  

 

2. Lung function in early adulthood and health in later life: a transgenerational cohort 

analysis. 

Agustí A*, Noell G*, Brugada J, Faner R. 

(*: authors contributed equally). Lancet Respir Med. 2017 Dec;5(12):935-945. doi: 

10.1016/S2213-2600(17)30434-4. Epub 2017 Nov 14. PMID: 29150410  

 

◦ La revista de este articulo (Lancet Respiratory Medicine) tiene un impact factor actual  

de 21.5, siendo la primera de su categoría.  

◦ El doctorando es co-pimer autor de este artículo con Àlvar Agustí, que es codirector del 

doctorando y ha contribuido en el diseño del estudio e interpretación de resultandos. 

◦ En este caso, el doctorando, ha tenido acceso a los datos crudos, ha realizado todos los 

análisis estadísticos del artículo y ha participado en la interpretación de resultdos, 

extracción de conclusiones, elaboración y escritura del artículo y de sus revisiones.  

 

Asimismo, declaro formalmente que ninguno de les coautores de estos dos artículos ha utilizado, 

implícitamente o explícitamente, estos trabajos para la realización de una tesis doctoral. Además el 

doctorando durante su doctorado ha colaborado con la realización de  5 artículos más (1-5), uno de los 

cuales es una revisión, dos se han utilizado en otras tesis doctorales, pero 2 son originales y no se han 

utilizado en ninguna tesis. Todo ello demuestra la implicación del doctorando con el grupo y su trabajo 

de tesis durante este periodo.  

 

 

 

Barcelona, 20 de Diciembre de 2018 

 

Firma del co-director de Tesis             Firma del co-director de Tesis             Firma del doctorando 

Dra. Maria Rosa Faner Canet              Dr. Àlvar Agustí                                  Guillaume Noell 
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Otros artículos que no conforman el trabajo de la tesis, pero en los que ha participado el doctorando: 

 

1: Faner R*, Noell G*, Badia JR, López-Giraldo A, Bakke P, Silverman EK, Tal-Singer 

R, Agustí A. Distribution, temporal stability and association with all-cause 

mortality of the 2017 GOLD groups in the ECLIPSE cohort. Respir Med. 2018 

Aug;141:14-19. PubMed PMID:30053959. * co-primary authors. No usado en ninguna tesis. 

 

2: Toledo-Pons N, Noell G, Jahn A, Iglesias A, Duran MA, Iglesias J, Rios A, 

Scrimini S, Faner R, Gigirey O, Agustí A, Cosío BG. Bone marrow characterization  

in COPD: a multi-level network analysis. Respir Res. 2018 Jun 15;19(1):118. PubMed PMID: 

29903047. Segundo autor, articulo que forma parte de otra tesis doctoral.  

 

3: Noell G, Faner R, Agustí A. From systems biology to P4 medicine: applications  

in respiratory medicine. Eur Respir Rev. 2018 Feb 7;27(147). pii: 170110. doi: 

10.1183/16000617.0110-2017. Print 2018 Mar 31. Review. PubMed PMID: 29436404. Primer autor, 

artículo de revision que no forma parte de otra tesis doctoral. 

 

4: Agustí A, Compte A, Faner R, Garcia-Aymerich J, Noell G, Cosio BG, 

Rodriguez-Roisin R, Celli B, Anto JM. The EASI model: A first integrative 

computational approximation to the natural history of COPD. PLoS One. 2017 Oct 

10;12(10):e0185502. doi: 10.1371/journal.pone.0185502. eCollection 2017. PubMed 

PMID: 29016620; PubMed Central PMCID: PMC5634586. Quinto autor, artículo original que no 

forma parte de otra tesis doctoral. 

 

5: Faner R, Cruz T, Casserras T, López-Giraldo A, Noell G, Coca I, Tal-Singer R,  

Miller B, Rodriguez-Roisin R, Spira A, Kalko SG, Agustí A. Network Analysis of 

Lung Transcriptomics Reveals a Distinct B-Cell Signature in Emphysema. Am J 

Respir Crit Care Med. 2016 Jun 1;193(11):1242-53. PMID: 26735770. Quinto autor, articulo que 

forma parte de otra tesis doctoral. 
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