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1 Introduction

In some theories, turning on magnetic fields can lead to Nielsen-Olesen instabilities [1, 2].

They occur for charged particles with spin. Their origin can be simply understood from

the energy formula for a charged particle in a uniform magnetic field B:

E2 = M2 + qB(2`+ 1)− 2qBS ,

where M is the mass, q is the charge, S is the spin, we took the gyromagnetic factor g = 2,

and ` = 0, 1, 2, . . . is the Landau level. For a scalar particle, S = 0 and the gyromagnetic

interaction contributes positively to the energy. For a spin 1/2 fermion, the minimum

energy occurs when S = 1/2, in which case E2 = M2. However, for a spin 1 particle,

such as the W± bosons, the component with spin parallel to the magnetic field, S = 1,

would have

E2 = M2 − qB .

A tachyon instability appears if qB > M2. This leads to condensation of W bosons (which

are then expected to form a triangular lattice of vortices, [3, 4]). More generally, a spin S

particle with spin aligned to the magnetic field, becomes tachyonic if

E2 = M2 − qB(g|S| − 1) < 0 or qB >
M2

g|S| − 1
.

In string theory, there are particles with all spins. This implies that the negative contribu-

tion coming from the gyromagnetic interaction can be large, even for very weak magnetic

fields. For a given mass, the maximum spin scales like M2, so the gyromagnetic interac-

tion competes with the rest mass term. As a result, the value of the critical magnetic field

depends on the detailed form of the energy formula. However, the general lesson is that we

should expect Nielsen-Olesen instabilities in any theory with spinning objects which are

charged under some flux that is turned on. This applies to strings, D strings and, more

generally, Dp branes, which can also have arbitrarily large spin.

Nielsen-Olesen instabilities have been studied for open strings [5–7] and for closed

strings [8–12] in various contexts. In this paper we study, for the first time, this phenomenon
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in D branes. Different aspects of D branes in background RR magnetic fluxes have been

discussed in [13]. Here we will use the same magnetic background. In the presence of a

Fp+2 = dAp+1 background magnetic flux, the energy of Dp branes gets reduced for some

angular momentum components. Understanding the emergence of instabilities requires

identifying potential tachyonic modes and a precise determination of the energy formula.

This paper is organized as follows. In section 2 we study tachyon instabilities in the

superstring spectrum in the presence of an H3 flux, in the context of an exact conformal

string σ model. The mass spectrum exhibits the appearance of tachyons above critical

fields. We show that some of these tachyon states admit a semiclassical description in

terms of classical string solutions moving in the background flux. We close this section by

discussing a supersymmetry-preserving field configuration and the corresponding formula

for the mass spectrum. In section 3 we consider the dynamics of Dp branes moving in

a background with Fp+2 flux. We identify a classical Dp brane solution which becomes

tachyonic above a critical field. Finally, in section 4, we give a more general discussion

on instabilities induced by generic flux configurations, in particular, for quantized fluxes

on cycles. We briefly comment on the implications for the construction of metastable flux

compactifications with broken supersymmetry.

2 Fundamental string in NS-NS 3-form flux H3

It is useful to start with strings in H3 fluxes, as in this case we can determine the complete

energy spectrum. We consider the following string σ model

L = −∂+t∂−t+ ∂+ρ∂−ρ+ F (ρ)ρ2(∂+ϕ+ b∂+y)(∂−ϕ− b∂−y)

+ ∂+y∂−y + ∂+x
i∂−x

i +
1

4
α′
√
gR(2)

(
φ0 +

1

2
lnF

)
, F =

1

1 + b2ρ2
. (2.1)

with i = 1, . . . , 6. It represents an exact conformal field theory for type II superstrings. We

use the conventions σ± = τ ± σ and σ ∈ [0, 2π). y is a periodic coordinate, y = y + 2πR .

For simplicity, here we only quote the bosonic part. It is straightforward to incorpo-

rate the world-sheet fermions [9]. The Lagrangian (2.1) describes strings propagating in

the geometry

ds2 = −dt2 + dρ2 + ρ2F (ρ)dϕ2 + F (ρ)dy2 + dx2i ,

e2(φ−φ0) = F , B2 = bρ2F (ρ) dϕ ∧ dy . (2.2)

This string model is obtained, by T-duality in the y direction, from the Kaluza-Klein

“Melvin” string sigma model [9]

L = −∂+t∂−t+ ∂+ρ∂−ρ+ ρ2(∂+ϕ+ b̃∂+y)(∂−ϕ+ b̃∂−y)

+ ∂+y∂−y + ∂+x
i∂−x

i , (2.3)

with constant dilaton and vanishing B2. The σ-model (2.3) describes a locally flat space-

time, as can be seen by a formal redefinition of the polar angle, ϕ′ = ϕ+ b̃y. Because y is

– 2 –



J
H
E
P
0
6
(
2
0
1
6
)
0
2
1

periodic, the solution of the model is non-trivial. The model (2.3) can be solved in terms

of free fields by carefully imposing the appropriate boundary conditions.

It is convenient to introduce complex coordinates x = ρeiϕ. Clearly, ρeiϕ
′

is a free field

and the general solution is given by [9]

x = e−ib̃y(τ,σ)
(
X+(σ+) +X−(σ−)

)
,

y = y+(σ+) + y−(σ−) . (2.4)

One can choose world-sheet coordinates such that

y+(σ+) + y−(σ−) = y0 + wRσ + α′pyτ , (2.5)

where w is the winding number and py = n/R, n ∈ Z is the quantized Kaluza-Klein

momentum. Demanding that x is single-valued, x(σ + 2π, τ) = x(σ, τ), leads to twisted

boundary conditions for free fields X+, X−,

X(τ, σ + 2π) = e2πiγX(τ, σ) , γ ≡ b̃wR . (2.6)

Hence

X± = e±iγσ± χ±(σ±), (2.7)

where χ±(σ±) are single-valued free fields, with the Fourier expansion

χ+ = i

√
α′

2

∞∑
n=−∞

ãn e
−inσ+

, χ− = i

√
α′

2

∞∑
n=−∞

an e
−inσ− . (2.8)

The σ-model (2.1), while equivalent as a conformal field theory to the T-dual

model (2.3), describes strings moving in curved space-time and as a result the general

solution to the string equations of motion is more complicated. It can be obtained from

section 5 in [8], adapting the parameters to the present case. The general solution is

x = e−ib(y+(σ+)−y−(σ−)) (X+(σ+) +X−(σ−)
)
, (2.9)

y = y+(σ+) + y−(σ−)− bϕ̃ , (2.10)

∂±ϕ̃ = ± i
2

(X∗∂±X −X∂±X∗) . (2.11)

Note that

y+(σ+)− y−(σ−) = wRτ + α′pyσ . (2.12)

X+, X− satisfy the same twisted boundary conditions as before, now with

γ = bα′py .

Note, however, that y, given by (2.10), is not a free field in this case.
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Mass spectrum and tachyon instabilities. The mass spectrum for the model (2.1)

is given by the formula

α′M2 = 2N̂R + 2N̂L +
α′n2

R2
+
R2

α′

(
w − bα

′

R
Ĵ

)2

− 2γ(ĴR − ĴL) , (2.13)

N̂R − N̂L = nw , γ =
α′nb

R
.

Here N̂R, N̂L have the standard free string theory expression in terms of normal-ordered

bi-linear products of bosonic and fermionic oscillators,

N̂R,L = NR,L − a , a(R) = 0 , a(NS) =
1

2
.

Thus N̂R,L have eigenvalues 0, 1, . . . (half-integer eigenvalues are projected out by GSO).

The angular momentum operators are

ĴL,R = ±
(
lL,R +

1

2

)
+ SL,R , Ĵ = ĴL + ĴR = lL − lR + SL + SR ,

and lL,R = 0, 1, 2, . . . are Landau quantum numbers and the spin components SL,R have

the same expressions as in free string theory and satisfy the bound |SL,R| ≤ N̂L,R + 1.

The mass formula is periodic with γ. As written, the formula applies for |γ| < 1; in other

intervals one must substitute γ → γ̂ = γ − [γ].

We note that there are two gyromagnetic couplings in (2.13): one involves the product

of the winding charge w and ĴR + ĴL; the other one involves the product of the Kaluza-

Klein charge n and ĴR − ĴL. Equivalently, the Left charge QL = wR
α′ + n

R couples to JR,

the Right charge QR = wR
α′ −

n
R couples to JL.

The mass spectrum for the string model (2.1) contains tachyons for a flux above some

critical value, which are not projected out by GSO. The first tachyon appears for the state

N̂R = N̂L = 0 , SR = 1 , SL = −1 , w = 0 , n = 1 ,

lR = lL = 0 , Ĵ = 0 , ĴR − ĴL = 1 , γ = b
α′

R
. (2.14)

Then

M2 =
1

R2
− 2

b

R
, (2.15)

which is tachyonic for b > bcr, bcr = 1/(2R). Now, taking into account the condition γ < 1,

the tachyon can appear only when R2 > α′/2.

Let us now consider states with high quantum numbers, N̂R or N̂L � 1. In particular,

we consider the state

N̂L = N̂R , w = 0 , py = n/R ,

lR = lL = 0 , SR = −SL = N̂R + 1 ,

Ĵ = 0 , ĴR − ĴL = 2N̂R + 1 . (2.16)
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These are states with maximum left and right components of the spin, chosen in a way that

the negative contribution to the energy coming from the gyromagnetic interaction involving

ĴR− ĴL is maximized. Substituting these quantum numbers into the mass formula, we get

α′M2 = 4N̂R +
α′n2

R2
− 2γ(2N̂R + 1)

= 4N̂R(1− γ) +
α′n2

R2
− 2γ

=
α′n2

R2
+ 2(1− γ)(ĴR − ĴL)− 2 , γ =

α′nb

R
. (2.17)

This is tachyonic for

γ >
4N̂R + α′n2/R2

4N̂R + 2
. (2.18)

The condition γ < 1 is satisfied with n2 < 2R2/α′. All these states become tachyonic above

the critical field (2.18).

Classical string solutions associated with instabilities. It is instructive to identify

the classical string solution corresponding to the tachyonic states with N̂R = N̂L � 1,

for which a semiclassical description should apply. Since the state has maximum value for

the spin components, this state is obtained by setting to zero all oscillator modes an, ãn
with |n| 6= 1, and turning on ã±1, a±1 such that the solution has maximum ĴR − ĴL,

with vanishing total Ĵ = ĴR + ĴL, i.e. the same quantum numbers as in (2.16). Note that

non-zero Landau levels, coming from a0, ã0, give an (orbital) contribution to the angular

momentum in the antiparallel direction and they increase the energy.

The left and right angular momentum components are given by the following formulas

(see (5.29) in [8])

JR = −1

2

∑
n

(n+ γ)a∗nan , JL = −1

2

∑
n

(n− γ)ã∗nãn . (2.19)

The classical string with the same angular momentum components as the quantum

state (2.16) thus has ã1 6= 0 and a−1 6= 0, setting all other modes to zero. This gives

JR =
1

2
(1− γ)a∗−1a−1 , JL = −1

2
(1− γ)ã∗1ã1 , (2.20)

with |a−1|2 = |ã1|2. Therefore, the solution (2.9), (2.12), with w = 0, takes the form

x = e−ibα
′pyσ(X+ +X−) , (2.21)

where

X+ = i

√
α′

2
eiγσ+ ã1e

−iσ+ = L e−i(1−γ)σ+ , (2.22)

X− = i

√
α′

2
e−iγσ− a−1e

iσ− = L ei(1−γ)σ− . (2.23)

That is,

x = 2Le−iσ cos[(1− γ)τ ] . (2.24)
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This represents a circular pulsating string. The classical description applies for L � ls,

where ls ≡
√
α′.

Using (2.10), (2.11), we also find

y = α′pyτ − bL2 (2(1− γ)τ + sin[2(1− γ)τ ]) . (2.25)

In order to compute the energy, we have to solve the Virasoro constraints T++ = T−− = 0.

This leads to the formula

α′p20 = α′p2y +
4L2

α′
(
1− γ

)2
=
α′n2

R2
+ 2(1− γ)(JR − JL) . (2.26)

This agrees with the quantum formula (2.17) except for the −2 contribution. This is a

small quantum contribution, which is not visible in the semiclassical approximation, which

requires N̂R � 1 and thus 4N̂R + 2 ≈ 4N̂R. In the classical limit, the critical field gives

γ → 1 (see (2.18)). As a result, the energy — which for zero field is large — attains a

minimum value p0 = n/R. The tachyon instability is not seen classically, but we know that

it exists, because we have computed the exact quantum spectrum. Classically, the sign that

there is an instability at a critical field is the fact that, as the magnetic field is increased, the

energy decreases from a very large, macroscopic value lsp0 = 2
√
NR = 2L/ls � 1 to a tiny

value O(ls/R), i.e. to a value that may be overcome by a negative quantum contribution

of O(1/ls).

Supersymmetric extension and mass spectrum. The background (2.2) breaks all

supersymmetries. A way to preserve a fraction of the supersymmetries is by introducing

several magnetic fields in different planes [14]. For example, consider the solution obtained

by introducing two fluxes, one in the plane (r1, ϕ1) and the other in the plane (r2, ϕ2). The

background is as follows

ds2 = −dt2 + dx2i + dr21 + dr22 + r21dϕ
2
1 + r22dϕ

2
2 + Λ−1

(
dy − (b1r

2
1dϕ1 + b2r

2
2dϕ2)

2
)

e−2(φ−φ0) = Λ , B2 = Λ−1 (b1r
2
1dϕ1 + b2r

2
2dϕ2) ∧ dy

Λ = 1 + b1r
2
1 + b2r

2
2 . (2.27)

The corresponding string sigma model is exactly conformal and solvable, and the mass

spectrum is given by [14]

α′M2 = 2(N̂R + N̂L) +
R2

α′

(
w − b1

α′

R
Ĵ1 − b2

α′

R
Ĵ2

)2

+ α′
n2

R2

− 2α′b1
n

R
(Ĵ1R − Ĵ1L)− 2α′b2

n

R
(Ĵ2R − Ĵ2L) , (2.28)

with N̂R − N̂L = nw. For b1 6= ±b2, there are tachyonic instabilities appearing at critical

fields. However, when b1 = ±b2, there are sixteen unbroken supersymmetries. In this case,
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one has M2 ≥ 0 for all states in the spectrum, as expected from supersymmetry. Taking

b1 = b2 ≡ b, the mass spectrum becomes

M2 =
2

α′
(N̂R + N̂L) +

(
wR

α′
− b(Ĵ1 + Ĵ2)

)2

+
n2

R2
− 2b

n

R
(Ĵ1R + Ĵ2R − Ĵ1L − Ĵ2L) . (2.29)

An important class of states are the BPS states, investigated in [13]. The BPS states

have N̂L = 0 (or N̂R = 0). Then the mass becomes a perfect square provided Ĵ1 + Ĵ2 =

Ĵ1R + Ĵ2R − Ĵ1L − Ĵ2L, which implies

(S1L, S2L) = (−1, 0) or (0,−1) .

Then

M2
BPS =

(
n

R
+
wR

α′
− b(Ĵ1 + Ĵ2)

)2

. (2.30)

Supersymmetry ensures that the energy formula is exact and does not receive quantum

corrections. In the zero field limit, this gives the familiar formula, with MBPS being the

sum of winding and KK charges. Since α′nb/R < 1, and Ĵ1 + Ĵ2 ≤ N̂R = nw, the

minimum mass is not zero, but MBPS = n/R. For R �
√
α′, this is a tiny, microscopic

energy, compared with the energy at zero field, MBPS = wR/α′+n/R. This is a surprising

feature, since the formula N̂R = nw implies that, for nw � 1, this is highly excited string

state. Moreover, the BPS state admits a semiclassical description in terms of a long,

rotating string, where the same energy formula is reproduced [13]. This macroscopic string

has a microscopic energy at a critical field.

3 Dp branes in the Fp+2 background

Consider the general problem of a Dp brane moving on a background with Fp+2 flux.

Assuming that there is no other field turned on, the Dp brane action is given by

SDp = −τp
∫
dp+1σ e−(φ−φ0)

√
−det(Gab) + iτp

∫
Ap+1 , (3.1)

with

τp =
1

(2π)plp+1
s gs

, ls ≡
√
α′ .

Starting with (2.27), by S-duality we find a solution with F3 = dA2 flux. By T-duality

transformations along the different xi, one can construct a solution with Fp+2 flux,

ds2 = Λ
1
2 (−dt2 + dx2s + dr21 + dr22 + r21dϕ

2
1 + r22dϕ

2
2)

+ Λ−
1
2
(
dy21 + . . .+ dy2p − (b1r

2
1dϕ1 + b2r

2
2dϕ2)

2
)

Ap+1 = e−φ0Λ−1 (b1r
2
1dϕ1 + b2r

2
2dϕ2) ∧ dy1 ∧ . . . ∧ dyp

e2(φ−φ0) = Λ
3
2
− p

2 , Λ = 1 + b1r
2
1 + b2r

2
2 , (3.2)

with s = p+ 5, . . . , 9.
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Consider first the action (3.1) for the D string in the background (3.2) with p = 1.

One immediately finds that this coincides with the Nambu-Goto action for a fundamental

string moving in the background (2.2). As the Lagrangians are the same, this has the

important consequence that the solutions are the same and that the classical energies for

any D string motion will be the same as in the fundamental string case, with the appropriate

modification in the string tension (this arises because, after S duality, one must rescale time

variable in string frame by a factor gs to have Minkowski metric in the zero field limit).1

In the supersymmetric b1 = ±b2 case, there is a Dp brane analog of the BPS string

state (2.30), studied in [13]. The rotating Dp brane has essentially the same energy for-

mula (2.30), replacing wR/α′ by τpVol(Tp)ω, where ω is the winding number of the Dp

brane around the torus Tp,

MBPS =
n

R
+ |τpVol(Tp)ω − bJ | . (3.3)

In particular, the energy of this macroscopic Dp brane decreases down to a tiny value n/R

at a critical field. At the critical field, the gyromagnetic coupling cancels the huge D brane

energy τpVol(Tp)ω due to tension.

For b1 6= ±b2, the spectrum may contain tachyons above some critical fields, which will

now be of order 1/gs. Consider, for example, the non-supersymmetric solution with b2 = 0,

b1 ≡ b. The classical solution representing a pulsating Dp brane, which is the analogue of

the pulsating circular string solution (2.24), (2.25) considered above, can be constructed

by starting with the following ansatz.

t = κτ, r1 = r(τ) , ϕ = −σ1 , y1 = y1(τ) , yj = wjRjσj , j = 2, . . . , p .

The Dp brane Lagrangian thus takes the form

LDp = − cp r

1 + b2r2

√
(κ2 − ṙ2)(1 + b2r2)− ẏ12 +

cp br
2ẏ1

1 + b2r2
, (3.4)

with

cp ≡ (2π)pτpR2 . . . Rpw =
Rp−1w

lp+1
s gs

, w = w2 . . . wp .

The canonical momenta py and pr are given by

py =
∂LDp
∂ẏ

= cp

(
r ẏ

(1 + b2r2)
√

(κ2 − ṙ2)(1 + b2r2)− ẏ2
+

br2

1 + b2r2

)
(3.5)

pr =
∂LDp
∂ṙ

= cp
r ṙ√

(κ2 − ṙ2)(1 + b2r2)− ẏ2
(3.6)

The Hamiltonian is then given by

H = prṙ + pyẏ − LDp = cp
r κ2√

(κ2 − ṙ2)(1 + b2r2)− ẏ2
. (3.7)

1The S-dual background (3.2) is not expected to be an exact solution to all α′ order. However, possible

α′ corrections do not affect the energies of classical strings, which have lengths much greater than the

string scale.
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One can express ẏ and ṙ in terms of py and pr,

ṙ =
κpr√

p2y + c2p r
2(1− γ)2

, (3.8)

ẏ =
κ
(
py − cpbr2(1− γ)

)√
p2y + c2p r

2(1− γ)2
, (3.9)

where

γ =
bpy
cp

. (3.10)

Substituting these expressions into the Hamiltonian (3.7), after some algebra one finally

obtains the surprisingly simple formula

H = κ
√
p2r + V (r) , (3.11)

with

V (r) = p2y + c2p r
2(1− γ)2 . (3.12)

This Hamiltonian is dimensionless and generates translations in world-volume time τ . The

spacetime Hamiltonian is

H = κ−1 H =
√
p2r + V (r) ;

it has as usual dimension of energy and generates translations in t.

The classical solution can be obtained by using energy conservation. It is similar to

the circular string. We find

r(τ) = 2L cos[(1− γ)τ ] , y = qτ − bL2 (2(1− γ)τ + sin[2(1− γ)τ ]) , (3.13)

with γ = bq, and q = py/cp. The classical energy is then

E2 =
n2

R2
+

4w2

g2s

R2p−2L2

l2p+2
s

(1− γ)2 . (3.14)

Again the energy attains a minimum value at γ → 1 where the Dp brane energy becomes

tiny, equal to py (rather than proportional to the size L). The difference with the BPS

Dp brane is that, in the BPS case, E2 is garanteed to be greater or equal to zero by

supersymmetry. For non-supersymmetric configurations, there is nothing that prevents E2

from receiving a small, quantum negative correction, which can cause tachyon instabilities

above a critical magnetic field.

Quantum energy. So far we have computed the classical energy (3.14). Although a

complete quantization of the p-brane is not known for p > 1, in the sector of the ansatz

(where only a specific oscillation mode of the Dp brane is turned on) we have a simple

Hamiltonian and we can compute the quantized eigenvalues.
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Consider first the fundamental string, for which the exact quantum spectrum is known2

and whereby we can check the consistency of the present approach. In the Nambu-Goto

formulation, the Hamiltonian is given by (3.11) with cp → 2πτ1 = 1/α′.

The eigenvalues of H2 are well-known, since H2/2 is the Hamiltonian of the radial part

of a 2-dimensional harmonic oscillator with frequency ω = |1− γ|/α′. Assuming as before

γ < 1, we can remove absolute value bars. Therefore

α′H2 = α′E2 = α′p2y + 2(2k + 1)
(
1− γ

)
+ δ , k = 0, 1, 2, . . . . (3.15)

where k is radial quantum number. We have added a constant δ to account for possible nor-

mal ordering contributions, which cannot be computed from first principles in this sector.

The reason is that the normal ordering constant picks contributions from all oscillators of

the string, including all those set to zero in this sector. It is easy to compute δ in the zero

field limit. In this limit, supersymmetry must be restored. A supersymmetric Hamiltonian

must have zero energy in the ground state. This requires δ
∣∣
b=0

= −2, so that E = 0 for

k = 0, py = 0.

Of course, the zero field limit does not determine what is δ at finite field b. δ could in

general be b dependent. One can determine δ by computing the ground state (k = 0) energy

at finite field. In this case, the string is rigid, it has no excitation, and it is described by the

supergravity multiplet. The energy of the graviton can be computed by using the effective

field theory, i.e. solving the Laplace-type equation for the gravitational fluctuations in the

magnetic background (2.2) (for a discussion, see [11]). For a state with SR = 1, SL = −1,

py = 1/R, this calculation leads to the same formula (2.15) found before for N̂R = N̂L = 0,

that we reproduce here

E2 =
1

R2
− 2

b

R
. (3.16)

On the other hand, setting k = 0 and py = 1/R in our formula (3.15), we obtain

α′E2 =
1

R2
− 2

b

R
+ 2 + δ , (3.17)

therefore δ = −2 for all b. This matches (2.17),

α′E2 = α′p2y + 2(2k + 1)
(
1− γ

)
− 2 . (3.18)

Note that the radial quantum number k is related to ĴR− ĴL. Therefore we find the correct

formula for the quantum spectrum in this sector.

We now generalize this calculation for a Dp brane. The Hamiltonian (3.11), (3.12) is

formally the same upon replacing α′ by 1/cp. Thus, we obtain the eigenvalues:

E2 = p2y + cp
(
2(2k + 1)

(
1− γ

)
+ δp

)
= p2y − 2bpy(2k + 1) + cp (4k + 2 + δp) , γ =

bpy
cp

. (3.19)

2Here, of course, we mean the exact quantum spectrum in α′; the quantum spectrum that includes string

loops is not known even for flat spacetime. The regime of validity of the present approximations is gs � 1

(or gs � 1, in a dual description). That is, quantum field theory loops are not included.
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To compute δp, we follow the same procedure as in the string case. Supersymmetry in the

zero field limit requires, as before, δp
∣∣
b=0

= −2. For finite b, we compute δp at for the

ground state, k = 0. This corresponds to a rigid Dp brane, which can be dimensionally

reduced to a D-string along the directions yj , j = 2, . . . , p. The k = 0 state then describes

the state SR = 1, SL = −1 having energy (3.16) (for this state, the energy does not depend

on the tension; it corresponds to a point-like limit described by the effective field theory).

This leads to δp = −2 once again. Thus we have the general formula for quantum Dp brane

states in this sector:

E2 = p2y + cp
(
2(2k + 1)

(
1− γ

)
− 2
)
, (3.20)

i.e.

E2 = p2y +
Rp−1w

lp+1
s gs

(
2(2k + 1)

(
1− γ

)
− 2
)
. (3.21)

At large k, the energy (3.21) agrees with the energy formula (3.14) of the classical pulsating

Dp brane.

We see that a Dp brane with quantum numbers n, k, w becomes tachyonic above a

critical field

Rbcr =
n

4k + 2
+

2k

2k + 1

Rp+1w

lp+1
s gsn

. (3.22)

Thus, as expected, a macroscopic Dp brane can become tachyonic when magnetic fluxes

are turned on.

4 Discussion

In this paper we have studied instabilities of the Nielsen-Olesen type in backgrounds with

RR magnetic fluxes. In our examples, gravitational back reaction to the magnetic flux is

incorporated exactly.

In compactifications having fluxes on cycles, fluxes are quantized in units of the inverse

volume of the cycle and an interesting question is when to expect instabilities. The mere

existence of a single tachyon in the quantum spectrum of a theory implies that the vacuum

is unstable. It is obvious that, to linear order in the magnetic flux, the energy formula for

a Dp brane will contain the standard gyromagnetic interaction. Let us see this explicitly

in a simple example. Let x1, . . . , xp+2 be the coordinates of a rectangular torus, T p+2. We

consider the constant field configuration

Ap+1 = f x1 dx2 ∧ . . . ∧ dxp+2 . (4.1)

Moreover, we choose a static gauge for the world-volume coordinates where xj = wjRjσ
j ,

j = 3, . . . , p+ 2, and let us first assume that x1, x2 only depend on τ . Then the coupling

to the gauge field in the Dp brane action becomes

iτp(2π)pR3 . . . Rp+2 wf

∫
dτx1∂τx2 ≡ iwB

∫
dτx1∂τx2 (4.2)

where w = w3 . . . wp+2 . The flux quantization condition can be obtained by demanding

that the generalized Wilson loop

eiτp
∫
Ap+1 , (4.3)
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is single-valued under x1 → x1 + 2πR1 (with periodic τ for a closed contour). This implies

f =
2πk

τpVol(T p+2)
, (4.4)

where k is an integer. This reproduces the result of [15]. Thus

B =
2πk

Vol(T 2)
, Vol(T 2) = 4π2R1R2 . (4.5)

The interaction (4.2) exhibits a gyromagnetic coupling to the angular momentum of the

brane in the plane (x1, x2). In particular, when p = 1, this is the same coupling that

appears in open string theory (the open string mass spectrum for magnetic field in toroidal

directions was computed in [6]). There is no rotational symmetry in the 12 plane, but as

usual spin is defined for the Lorentz group acting on tangent space. Because we assumed

that x1, x2 only depend on τ , the brane has only orbital angular momentum. We can relax

this assumption and let x1, x2 depend on some σi, in which case the brane will also carry

spin and this term will give rise to the standard gyromagnetic interaction wB
(
2`+1−2S

)
.

To linear order in the field f , for a brane in a quantum state of spin S, we would expect

the mass formula to contain the terms

M2 = M2
0 +

∑
i

n2i
R2
i

+ (wτpVol(T p))2 − 2wτpVol(T p)fJ12 + . . .

= M2
0 +

∑
i

n2i
R2
i

+ (wτpVol(T p))2 + (2`+ 1)Bw − 2SBw + . . . (4.6)

where ` = 0, 1, 2, . . . are the Landau levels and M2
0 represents positive contributions origi-

nating from oscillations and kinetic energy of the brane. It must be noted that, for a Dp

brane, there are other linear couplings to the magnetic flux; even for the string, we have

a coupling to ĴR − ĴL. Such coupling does not show up in this simple example because of

the particular ansatz we took for the brane embedding (the coupling to ĴR− ĴL, related to

x1∂σ1x2 − x2∂σ1x1, appeared in the pulsating D brane discussed in section 3). The most

general linear coupling to the flux is essentially read from (4.1) once the brane embedding

is given.

However, this example gives an easy insight into some important features: 1) It ex-

hibits the explicit dependence on the quantized flux in the gyromagnetic interaction. 2) In

the exact quantum string spectrum (2.13), the gyromagnetic coupling involving the wind-

ing charge appears upon expanding a positive definite term. This exposes the fact that

O(B2) terms are important in order to make a statement about the positivity of M2. De-

termining such O(B2) terms requires taking into account the gravitational back reaction.

This is a difficult problem in more general contexts, but the important point is that the

linearized approximation already identifies the precise D brane states that can become light

at critical fields. 3) Naively one might think that for sufficiently high spin, the term 2SBw

would render M2 negative. But, of course, the angular momentum gives, in addition, a

positive contribution to the kinetic energy, represented by M2
0 . In the string model, the
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oscillation/kinetic energy is represented by 2N̂L + 2N̂R, and the highest spin for a given

kinetic energy is determined by the bound |SL,R| ≤ N̂L,R + 1.

In our background magnetic flux, we have identified a tachyonic D brane state. It

has zero angular momentum, but the linear coupling to the flux comes through ĴR − ĴL
(Right and Left being associated with

(
∂τ ± ∂σ1

)
ϕ). At large quantum numbers, it admits

a semiclassical description in terms of a pulsating D brane. In general terms, even for

supersymmetric configurations, where the spectrum is tachyon free and the vacuum is

stable, we have seen that certain high angular momentum states become very light at

critical fields. A naive field theory analysis would ignore such D brane quantum states,

because they typically have huge energies of order τpVol(Tp)ω. However, we now see that

at a certain critical field, such states can be very light, with energies E � 1/ls. Near the

critical point, an effective field theory analysis should take into account these modes in

order to properly describe the low energy dynamics of the system.3 More generally, for

any given flux configuration, one can easily compute the classical energy formula to linear

order in the fluxes to see if the spectrum contains a D brane state with high quantum

numbers that became light by the interaction with the flux. In configurations with no

residual supersymmetry, the appearance of Dp brane tachyonic modes above some critical

fields seems to be a common feature, by the same mechanism that induces Nielsen-Olesen

instabilities in quantum field theory.

Non-supersymmetric flux compactifications have been extensively used for the con-

struction of inflationary models and semi-realistic string compactifications [17]. In these

models, fluxes generate a superpotential which freezes all Calabi-Yau moduli and super-

symmetry is typically broken by the presence of anti-branes. An important question is

whether some of these models could be affected by tachyonic instabilities of the kind stud-

ied in this paper. To address this problem, a direct approach is to use the Dp brane

Lagrangian (3.1) in the given background flux and to compute the classical energy formula

— analogue to (4.6) — for a Dp brane motion that maximizes the gyromagnetic interaction

with low cost in oscillation/kinetic energy. Typically, these are rigidly rotating Dp branes

or pulsating Dp branes with no other oscillation modes turned on. A quick estimate of the

expected order of the critical field can be obtained from (4.6), giving f ∼ w
2J τpVol(T p).4

This is consistent with our examples, the BPS state with energy (3.3) or the pulsating

Dp brane with critical field (3.22). At stronger fields, potential tachyonic instabilities can

arise and the vacuum becomes unstable. This implies a bound for the maximum possible

value for the quantized flux (4.4), roughly k .
cτ2p
4π Vol(T p+2)Vol(T p), where c is a rational

number (for our examples, w/J or w/n), which in a first approximation may be set to

1.5 It would be extremely interesting to revisit the counting of metastable string vacua

with semi-realistic phenomenology (see e.g. [18]), in view of these new constraints on the

possible choices of flux.

3A recent discussion on brane effective field theory in background fluxes can be found in [16].
4As discussed below (4.6), J does not need to be the angular momentum.
5In particular, for an H3 flux, this would give k . (R/ls)4.
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