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Preface

This thesis1 gathers most of the research projects I participated in during my predoc-
toral studies, from 2015 to 2019, in the group of Gravity and Strings of Universitat
de Barcelona under the supervision of David Mateos and Antón F. Faedo. These
projects were always aimed to understand the theoretical description of strongly cou-
pled quantum field theories using holographic techniques and they led up to a series of
publications [1, 2, 3].
The content of this thesis is distributed as follows

• Chapter 1 consists on an introduction to the theoretical framework in which this
work is developed, string theory and the AdS/CFT correspondence, advancing
some concepts that will be recurrent during the following chapters.

• In chapter 2 we describe a family of supergravity solutions dual to three-
dimensional quantum field theories that present multi-scale dynamics and mass
gap without confinement. In chapter 3 we compute the mass spectrum of spin-0
and spin-2 modes in these solutions.

• In chapter 4 we study systems of D1-branes with special holonomy manifolds
and obtain some solutions dual to quantum field theories in two dimensions.

• Finally, chapters 5 and 6 present a summary of the thesis in english and spanish,
respectively.

1Cover image credits to Ben Felten.
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1. The AdS/CFT correspondence

The AdS/CFT correspondence, originally proposed in the late 1990’s [4, 5, 6], is a
very useful tool to understand the strongly coupled quantum field theories. This corre-
spondence establishes a duality between superstring theories, which are gravitational
theories, and gauge quantum field theories without gravity. The quantum field theory
can be interpreted as living in the boundary of the gravitational theory, for this reason
the correspondence is also referred as holography. A remarkable scientific implication
of this is that we can study and understand the dynamics of strongly coupled theories
through gravity, something that is not accesible by the usual perturbative methods in
quantum field theory.
In this chapter we will review the correspondence, introducing its main statement

and some of the important features that will be used in the next chapters. Everything
stated here is quite standard and contained in several textbooks [7, 8] and reviews
[9, 10], and is a common topic in lectures in graduate courses.

1.1. Basic aspects of (super)string theory

The AdS/CFT correspondence is formulated in the framework of superstring theory.
For that reason, we should begin by introducing some fundamental concepts of this
theory that will be useful for the development of the chapter.
The main difference between superstring theories and usual quantum field theories

for particles is that it considers that the fundamental components of the universe are
one-dimensional objects called strings, in contrast to the point-like particles. An
important feature is the presence of a fundamental energy scale given by (the inverse
of) the string length `s. Sometimes we may use the so called Regge slope, α′ = `2

s
instead.
String theory can be defined perturbatively, first specifying the elements of the free

theory and then introducing interactions via diagrams. To begin let us consider a single
string, which can be either open or closed. Its state is defined by two parameters σα
(α = 0, 1) and its trajectory in the spacetime is given by an embedding XM(σα) which

1



1. The AdS/CFT correspondence

defines a Riemann surface called worldsheet.
In the same way that the action for a particle is given by the volume (length) of

its spacetime trajectory, the action for a string is given by the volume (area) of its
worldsheet. This is the Nambu-Goto action:

SNG
[
XM

]
=

1
2π`2

s

∫
Σ

d2σ
√
−γ, (1.1)

where γ is the determinant of the induced metric γαβ in the worldsheet by the spacetime
metric ηMN ,

γαβ = ∂αXM∂βXNηMN , (1.2)

and the coefficient in front of the action is there for units consistency and can be
interpreted as the tension of the string. One can find that this highly non-linear action
is equivalent to the Polyakov action,

S Poly
[
XM, γαβ

]
=

1
4π`2

s

∫
Σ

d2σ
√
−γ γαβ∂αXM∂βXNηMN , (1.3)

where γab now has been promoted to be a dynamical degree of freedom.
Upon quantization we find the Hilbert space of the single-string states. These states

are different vibrational modes of the string and correspond to different particles, with
a given mass and spin, from the spacetime point of view. The final result is a tower of
states spaced by Ms ∼ `

−1
s . At energies below Ms we can keep the massless sector and

ignore the rest.
The massless sector of the closed string contains a spin 2 state which can be decom-

posed into its traceless symmetric component (GMN), anti-symmetric part (BMN) and
trace (Φ), called dilaton field. Then, even when we are starting with a flat spacetime
with metric ηMN , the string theory itself includes a dynamical gravitational field so it
is, in particular, a theory of gravitation.

In light-cone quantization, requiring Lorentz invariance after quantization of the
string has a dramatic consequence. It fixes the dimension of the spacetime to a
particular value, called critical dimension. For the bosonic string theory this value is
D = 26, but for superstring theory (a theory that includes fermionic degrees of freedom
in the worldsheet) this dimension is D = 10.
Interactions in string theory are introduced geometrically. For simplicity, consider

the closed string. Any amplitude can be constructed considering any possible topology
for the worldsheet in a genus expansion (fig. 1.1), weighted by the number of 3-point
vertices that each diagram contains, contributing each one with a power of the string

2



1.2. Dp-branes

g2
s

+

g4
s

+

g6
s

+ . . .

Figure 1.1.: Genus expansion of the 4-point scattering amplitude for closed strings.

coupling gs. Thus an amplitude for a process of string scattering will be an infinite
sum of the form

A =

∞∑
g=0

g2g−2
s fg(`s), (1.4)

where fg(`s) is some function associated to the topology with genus g containing the
details about the amplitude. The string coupling is not a free parameter of the theory,
but it is dynamically determined because it is given by the asymptotic value of the
dilaton field

gs = eΦ
∣∣∣
∂M

. (1.5)

If we expand the superstring action at low energies E � `−1
s , the leading term

corresponds to a supergravity theory. Most of the computations in holography are done
in this approximation.
The massless sector of superstring theories can also contain extra bosonic modes

parametrised by forms Fp of different degrees p together with their fermionic super-
partners.

1.2. Dp-branes

Superstring theory is not only a theory of strings. There are very important non-
perturbative solution of superstring theory, called Dp-branes. These are p + 1-
dimensional hyperplanes where Dirichlet boundary conditions for open strings can
be imposed. It is often said that open strings end in D-branes. In the low energy limit,
the Dp-branes correspond to a supergravity solution called extremal black p-brane.
The metric for the extremal black p-brane in flat space can be written as

ds2
10 = h−1/2

(
−dt2 + dx2

p

)
+ h1/2

(
dr2 + r2dΩ2

(8−p)

)
, h = 1 +

(L
r

)7−p
, (1.6)

3



1. The AdS/CFT correspondence

where dΩ2
d is the metric of a sphere of dimension d. The solution is accompanied with

some matter fields, a scalar dilation Φ and a (p + 2)-form given by

eΦ = gsh
3−p

4 , F(p+2) = dt ∧ dx1 ∧ · · · ∧ dxp ∧ d
(
h−1

)
(1.7)

Of paramount importance is the Dp-brane with p = 3. In that case, we see that
asymptotically, when r � L, the space becomes flat. On the other hand, for r � L the
sphere factorises and the space becomes AdS5 × S 5:

ds2
10 ∼

( r
L

)2 (
−dt2 + dx2

3

)
+

(L
r

)2
dr2 + R2dΩ2

5. (1.8)

This observation is crucial in the derivation of the AdS/CFT duality.
The tension of a Dp-brane is

TDp =
1

(2π`s)pgs`s
. (1.9)

The g−1
s dependence shows the non-perturbative nature of the D-branes.

The length scale L associated to the brane is related to its tension through Newton’s
constant in ten dimensions G10 ∼ g2

s`
8
s . The power of `s is given by the units and the

power of gs is fixed by comparing the gravitational term in the low energy action with
the Einstein-Hilbert action. Then,

L7−p ∼ G10TDp ∼ `
7−p
s gs. (1.10)

If instead of only one brane we have Nc stacked branes the tension acquires a factor of
Nc, (

L
`s

)7−p

∼ gsNc. (1.11)

Thus, if gsNc � 1 then the strings see flat space in the directions transverse to the
brane.
Strings attached to Dp-branes can also be quantized. The massless sector of open

strings attached to a Dp-brane contains

• A gauge field Aµ (µ = 0, . . . , p) living in (coupled to) the worldvolume of the
brane.

• 9 − p scalar fields Xm (m = p + 1, . . . , 9) transverse to the brane, corresponding
to its embedding in the full spacetime.

4



1.3. The large Nc limit

The effective action for the brane at low energies is given by de Dirac-Born-Infeld
(DBI) action

SDBI = TDp

∫
dp+1σ e−Φ

√
det

(
gµν + 2πl2s Fµν

)
, (1.12)

where gµν = ∂µXM∂νXNGMN is the induced metric on the brane and Fµν is the field
strength associated to Aµ. Notice that due to diff-invariance in the worldvolume of
the brane we can choose the (p + 1) spacetime coordinates parallel to the brane to
be Xµ = σµ (µ = 0, . . . , p), and redefine the transverse coordinates as Xi = 2π`2

sφ
i

(i = p + 1, . . . , 9). In a background with Φ = 0 and GMN = ηMN , the DBI action can
be expanded in powers of the derivatives of the fields, yielding

SDBI ∼ TDp

∫
dp+1σ

const. − 1
4

F2 −
∑

i

1
2

(∂φi)2 + · · ·

 (1.13)

which is the action for a Maxwell-scalar theory. If instead of having a single brane we
are dealing with a stack of Nc branes, then the gauge symmetry would get enhanced
from U(1) to U(Nc) and the brane would contain a Yang-Mills sector with coupling

g2
YM = 4πgs(2π`s)p−3. (1.14)

1.3. The large Nc limit

Quantum Chromodynamics (QCD) is an SU(3) non-abelian gauge theory. Due to
dimensional transmutation it has no expansion parameter. In [11] ’t Hooft proposes
a generalisation of QCD considering a SU(Nc) theory and using as an expansion
parameter 1/Nc. This theory contains N2

c − 1 gluon degrees of freedom that we can
approximate to N2

c in the regime where Nc � 1. Also there are Nc degrees of freedom
corresponding to the quarks. In the large Nc limit we can ignore them and focus on the
gluons only.
Consider the self-energy of the gluon (fig. 1.2). If we want to keep this diagram

finite when Nc → ∞ then we must ensure that the combination λ ≡ g2
YMNc also stays

finite. This quantity receives the name ’t Hooft coupling.
Gluon diagrams are classified by their topology and number of loops. Each diagram

can be associated to a Riemann surface with genus g and it will scale with N2−2g
c . On the

other hand, counting the number n + 1 of loops of the diagram (for any topology) will
give us the scaling with the ’t Hooft coupling as λn. Any amplitude can be computed

5



1. The AdS/CFT correspondence

∼ g2
YMNc

Figure 1.2.: Self-energy of the gluon.

as the following expansion

A =

∞∑
g=0

N2−2g
c

∞∑
n=0

cg,nλ
n =

∞∑
g=0

N2−2g
c Fg(λ). (1.15)

This means that in the Nc → ∞ limit, the planar diagrams (those with g = 0) dominate
in the expansion. Notice that this expansion has the same form than (1.4) if we associate
N−1

c ∼ gs. This similitude suggests a connection between the perturbative expansion
of string theory and the large Nc limit of gauge theories.

1.4. The AdS/CFT correspondence

After this preamble we can dive into the most famous realisation of the AdS/CFT
correspondence and formulate it. Consider a stack of Nc D3-branes and let us study
its ground state. As we have said, the gravitational radius of the system is related to
the string coupling and the number of branes by equation (1.10). There are to possible
limits:

1. If gsNc � 1, then L � `s. This means that the strings will see flat space and the
branes are just an hypersurface where to impose boundary conditions for open
strings. This is called the open strings description.

2. If gsNc � 1, then L � `s. This is known as the decoupling limit. The spacetime
curvature is noticeable, so we are perceiving the backreaction of the branes in the
spacetime and the best description for the system is as a background geometry
for closed strings. This is the closed strings description.

6



1.4. The AdS/CFT correspondence

We now consider excitations in both cases. In the open strings picture the closed-
closed and closed-open string interactions are controlled by the energy of the system
(because gravity couples to energy). In the low energy limit, the closed strings decouple
and become free. However, the open-open string interactions are controlled by g2

YM ∼

gs so they remain finite when E � `−1
s , thus resulting in a gauge theory. In particular,

the theory isN = 4 super Yang-Mills with gauge group SU(Nc). The global content of
the system at low energies is N = 4 SYM SU(Nc) plus free gravity in ten dimensional
flat space.
In the closed strings picture there are not open strings. Closed strings far in the

asymptotic region have a very big wavelenght that cannot resolve the throat of radius
R of the background, and closed strings down the throat do not have enough energy to
climb out of it, so both sets cannot interact with each other. The strings in the throat
see the decoupling limit metric (1.8) AdS5 × S 5, while the strings in the asymptotic
region see flat space. Then, in this case the system is composed by closed strings in
AdS5 × S 5 plus free gravity in flat space.
The AdS/CFT correspondence states that, because we are just choosing two different

descriptions of the same system (a stack of Nc D3-branes in string theory), physically
they should actually be equivalent. Thus we can formulate:

N = 4 SU(Nc)
SYM in D = 4

≡
IIB superstrings
in AdS5 × S 5

This SYM gauge theory is conformal, that is why the duality receives the name
of AdS/CFT correspondence. However there are also examples of non-AdS/non-CFT
correspondence. For this reason this duality is also sometimes called gauge/gravity or
gauge/string duality.
We can see how parameters in one side of the duality relate to the ones in the other.

The gauge theory is characterised by the ’t Hooft coupling λ and the number of colours
Nc, while the superstrings theory is given by the string coupling constant gs and the
size of the AdS space L. By looking at the expansion of the DBI action we have already
argued that g2

YM ∼ gs. So, (
L
`s

)4

∼ gsNc ∼ g2
YMNc = λ. (1.16)

Now, if we want to keep the low energy terms in the 1/`s expansion, we must ask
that `s � R, which means λ � 1, that is, when the gauge theory is strongly coupled,

7



1. The AdS/CFT correspondence

then the gravity side is dominated by the supergravity action and we can ignore stringy
effects.
On the other hand, if we compare the size of the spacetime with the Planck length

we have
L4

`4
P

∼
L4
√

G10
∼

gsNc`
4
s

gs`s
∼ Nc. (1.17)

Thus if we want to keep quantum gravity effects suppressed, we must demand Nc � 1.
This means that we can study strongly coupled gauge theories in the large Nc limit with
classical supergavity.
A check of consistency of the duality is the comparison of symmetries in the gauge

and gravity theories. On the gauge theory side we have:

• Conformal symmetry in 3 + 1 dimensions.

• R-symmetry group SU(4)

• 16 supercharges superpartners of the Poincaré translations.

• 16 supercharges superpartners of the special conformal symmetries.

While on the gravity side,

• SO(2, 4) invariance in AdS5.

• SO(6) symmetry on the sphere.

• 32 Killing spinors, because the solution is maximally supersymmetric.

We can match these symmetries, since the conformal group in 3 + 1 dimensions is
isomorphic to SO(2, 4) and SU(4) is isomorphic to SO(6).

SinceN = 4 SYM is a conformal theory, this means that it does not have an intrinsic
energy scale. In the Poincaré patch of AdS5, the directions where the brane lives (the
Minkowski ones) are invariant under a rescaling xµ → Λxµ as long as the coordinate
r is also rescaled by r → r/Λ. This means that short-distance physics in the gauge
theory is associated to physics in the boundary of AdS5 and r is identified with the
renormalisation group scale. For this reason we say that the gauge theory lives in the
boundary of AdS5.
Instead of Dp-branes in flat space we can consider another background manifold.

The result is that in the dual theory the gauge group or the amount of supersymmetry
will be different. This techniquewill allow us to construct holographic duals to different
quantum field theories along this thesis.

8



1.5. Precise formulation of the duality

1.5. Precise formulation of the duality

We have argued that a classical supergravity is equivalent to a strongly coupled gauge
theory in the large N regime. But how do we actually compute things? We should
establish the dictionary between both sides: amap relating observables in both theories.
We know that the asymptotic value of the dilaton field gives the string coupling

gs, which regulates gYM in the gauge theory. This suggests us a relation between the
asymptotic values of fields in the gravity side and couplings in the gauge theory, that
is, a scalar field Φ(r, x) acts as a source φ(x) for an operator O(x) as∫

d4x φ(x)O(x), (1.18)

where φ(x) = Φ(x, r)|∂AdS.
We can postulate that the partition functions of both theories are equivalent, identi-

fying the gravity fields in the boundary with couplings of the gauge theory:

Zgauge[φ] = Zstrings[Φ|∂AdS] (1.19)

In the strong coupling, large Nc limit, the partition function for string theory is well
approximated by the on-shell action of classical supergravity,

Zstrings ≈ e−S SUGRA . (1.20)

The direct consequence is that we can easily compute on supergravity any correlation
function for a strongly coupled gauge theory.
As we said, the coupling φ of an scalar operator O in the gauge theory is given by the

asymptotic behaviour of a scalar field Φ in supergravity. The dynamics of this scalar
field is dictated by a second order differential equation, so near the boundary r → ∞
we can write an expansion

Φ(x, r) ∼
φ(x)
rα

+ · · · +
φ̃(x)
rβ

+ · · · (1.21)

where β < α. The expansion depends on two modes. The leading term φ(x)/rα is
called non-normalizable mode and the sub-leading one φ̃(x)/rβ is called normalizable
mode. If α is not zero, the field will not approach a finite quantity in the boundary, so
the coupling dual to this field will actually be given by

φ(x) = lim
r→∞

rαΦ(x, r). (1.22)

9



1. The AdS/CFT correspondence

Under a scale transformation, φ transforms as a scalar density with mass dimension
α, so, in order to keep the action (1.18) invariant, the operator O must have a mass
dimension ∆ ≡ 4 − α.
The coupling φ(x) acts as a source for the operator O. The interpretation for the

normalizable mode is that it acts as a vacuum expectation value (vev) for the operator.
We can understand this as follows. In the supergavity action, integrating by parts and
evaluating the scalar field on the boundary one can find a term were both modes are
multiplied:

S SUGRA ⊃

∫
AdS

(∂Φ)2 ∼

∫
∂AdS

Φ ∂Φ ∼ φ2 + · · · + φφ̃ + · · · (1.23)

Then, when reading this as the partition function for the gauge theory, we can compute
the 1-point function for O by varying with respect to the sources and setting them to
zero:

〈O(x)〉 ∼
δ

δφ(x)
log Zgauge

∣∣∣∣∣
φ(x)=0

∼
δ

δφ(x)
S SUGRA

∣∣∣∣∣
φ(x)=0

∼ φ̃(x) + · · · (1.24)

In principle there are two independent solutions for Φ, but after imposing regularity
in AdS, the normalizablemode is given in terms of the non-normalizable one. Speaking
in gauge theory terminology, once we have selected a source, the vev is dynamically
determined. We control the sources by imposing boundary conditions to Φ in the AdS
boundary.

1.6. The duality for non-conformal branes

In section 1.4 we proposed the AdS/CFT conjecture by studying a stack of Nc D3-
branes in flat and we found that the conformal field theory living in the branes is dual
to string theory in an AdS background, thus the name AdS/CFT correspondence. But
this duality goes beyond scale invariant theories. In [12] the correspondence is studied
for other types of branes. We will review here the cases of D2-branes and D1-branes,
that we will use in the forthcoming chapters.
Consider the case of Nc D2-branes. We can enunciate the duality as follows:

N = 8 SU(Nc)
SYM in D = 3

≡
D2-branes in IIA
superstring theory

10



1.6. The duality for non-conformal branes

Unlike the D3-branes, the theory living in the D2-branes is not conformal, and the
Yang-Mills coupling constant is not dimensionless, g2

YM ∼ length−1. Then, at a given
energy scale U, the effective dimensionless coupling of the theory is g2

eff ∼ g2
YMNcU−1.

The system can be described perturbatively when U � g2
YMNc.

IfU � g2
YMNc then the system is well described by supergravity. Following equation

(1.6), the solution for the D2-branes in flat space in the decoupling limit is

ds2
10 =

( r
L

) 5
2

dx2
1,2 +

(L
r

) 5
2 (

dr2 + r2dΩ2
6

)
, (1.25)

eΦ = gs

(L
r

)5/4
(1.26)

where r = α′U and L5 = 6π2Nc(α′)3g2
YM. Notice that U should not be too small,

because in that case the dilaton would blow up. We must impose g2
YMN1/5

c � U.
In the region U � g2

YMN1/5
c , the type IIA supergravity is not a valid description.

This supergravity can be obtained by reducing eleven-dimensional supergravity in a
circle. The radius of this circle is proportional to the dilaton, so the reduction is
consistent while the dilaton is small. For large values of the dilaton we must use the
eleven-dimensional supergravity description. This is the low energy limit of M-theory.
For D1-branes the analysis is similar. The duality now establishes

N = (8, 8) SU(Nc)
SYM in D = 2

≡
D1-branes in IIB
superstring theory

The Yang-Mills coupling has dimensions of gYM ∼ length−2. The perturbative
description is valid for energies U � gYM

√
N.

For U � gYM
√

N the theory is well described by type IIB supergravity, with the
background

ds2
10 =

( r
L

)3
dx2

1,1 +

(L
r

)3 (
dr2 + r2dΩ2

7

)
, (1.27)

eΦ = gs

(L
r

)3
(1.28)

where now L6 = 26π3Nc(α′)4g2
YM. Again this description is valid up to energies

U ∼ gYMN1/6. In the region U � gYMN1/6 the dilaton is large, and so it is the string
coupling. We can use S-duality to find a suitable representation of the system, by
switching gs → g−1

s . Then the solution becomes a fundamental string.
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2. Duals of N = 1 three-dimensional
gapped non-confining theories

2.1. Introduction

Holographic duals of gauge theories that possess a mass gap are also expected to
exhibit confinement in the sense of an asymptotically linear potential between an
external quark-antiquark pair. Geometrically, the reason is simple, as illustrated in
fig. 2.1. The mass gap arises because the geometry ends smoothly at a non-zero value
of the holographic coordinate. The linear potential comes from the fact that a string
hanging from a well-separated quark-antiquark pair finds it energetically advantageous
to place most of its length near the regular end of the geometry, where it attains a
constant, minimum energy per unit length. A crucial ingredient in this argument is
that the string configuration cannot consist of two disconnected pieces. The reason is
charge conservation since, in a regular background, each piece would have no place to
end. Put differently, an isolated quark or antiquark is not an allowed configuration.

? ?

Figure 2.1.: (Left) Connected string configuration (thick red curve) in the calculation of the
quark-antiquark potential in string theory. The top, continuous, black, horizontal line represents
the boundary on which the gauge theory resides. The bottom, dashed, black, horizontal line is
the place where the geometry ends smoothly. (Right) Disconnected configuration that is not
allowed due to charge conservation, since the endpoints of the strings have no place to end.

The system that we present in this chapter is a counterexample to this expectation.
The crucial point is that the gauge theories in question possess a regular supergravity
description in eleven-dimensional M-theory but not in ten-dimensional string theory.
Hence the existence of a mass gap or the presence of confinement can only be reliably
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2. Duals of N = 1 three-dimensional gapped non-confining theories

addressed in eleven dimensions. The eleven-dimensional geometries end smoothly at
a non-zero value of the holographic coordinate, thus leading to a mass gap. However,
no confinement arises. The reason is that, in M-theory, the quark-antiquark potential
is calculated from the action of a membrane wrapped on the M-theory circle, which
is just the uplift of the corresponding string calculation in ten dimensions. This is
illustrated in fig. 2.2.

Figure 2.2.: (Left) Connected membrane configuration in the calculation of the quark-antiquark
potential in M-theory. The projection of the membrane onto the non-compact directions is
represented by the thick, red curve. The M-theory circle at each point is represented next to
it by the black circles. The top, continuous, black, horizontal line represents the boundary on
which the gauge theory resides. The bottom, dashed, black, horizontal line is the place where
the geometry ends smoothly. (Right) Disconnected membrane configuration allowed by charge
conservation, since the membrane closes off smoothly at the bottom of the geometry and hence
it has a cigar-like topology with no boundary.

In the geometries in question this circle shrinks smoothly to zero size in the infrared,
leading to a cigar-like topology. A membrane wrapped on this cigar has no boundary
and is thus compatible with charge conservation. In other words, an isolated quark or
antiquark is an allowed configuration. As a consequence, a configuration consisting of
two cigar-like membranes hanging from the quark and the antiquark at the boundary
competes with the connected configuration and is in fact energetically preferred for
a sufficiently large separation. It follows that there is a phase transition from the
connected to the disconnected configuration at a critical quark-antiquark separation
that cuts-off the linear growth of the potential.
The geometries that realize the physics above consist of a one-parameter family

of supergravity solutions dual to a one-parameter family of three-dimensional gauge
theories. We emphasize that these supergravity solutions themselves are not new [13],
but we present them in what we hope is a user-friendly, comprehensive treatment.
Throughout the chapter we will find it useful to switch back and forth between the
descriptions in ten and eleven dimensions. All solutions preserve two supercharges,
corresponding to N = 1 supersymmetry in three dimensions. Because of the small
amount of supersymmetry it is difficult to determine the precise details of the dual gauge

14



2.1. Introduction

theories. Nevertheless, they are presumably quiver-like, super Yang–Mills (SYM)
gauge theories with a product gauge group of the form U(N + M) ×U(N) and possible
additional Chern-Simons-Matter terms (CSM) [14, 15]. For brevity, we will refer to
these as SYM-CSM theories.
Each of the eleven-dimensional solutions is based on an eight-dimensional transverse

geometry of Spin(7) holonomy,1 as we will review in section 2.4. Given the transverse
geometry, the two additional ingredients needed to obtain the corresponding eleven-
dimensional solution are appropriate fluxes through the transverse geometry and a
warp factor. If the ranks of the two gauge groups are the same, i.e. if M = 0, then
the resulting warp factor is singular, and so is the eleven-dimensional solution, as we
explain in section 2.4. In order to have M , 0 one must add fractional branes to the
system, as we review in section 2.5, which results in additional fluxes. Under these
circumstances it is then possible to construct completely regular eleven-dimensional
solutions, as we show in section 2.6. This configuration is reminiscent of the Klebanov–
Strassler solution [16] but with a three-dimensional gauge dual and a better behaved
UV.
The set of solutions is pictorially summarized in fig. 2.3. Each curve or straight

line running downwards represents an eleven-dimensional solution labelled by its cor-
responding eight-dimensional transverse geometry. The arrows indicate the direction
of the Renormalization Group (RG) flow from the ultraviolet (UV) to the infrared
(IR). In the UV all solutions1 are dual to a SYM-CSM theory, as described above.
Asymptotically, the corresponding ten-dimensional geometries are those of D2-branes
placed at a cone over CP3, hence the label at the top vertex of the figure. These
geometries are accompanied by two types of fluxes. First,1 an ABJM-like [17] flux of
the Ramond-Ramond (RR) two-form proportional to the Kähler form on CP3. As in
ABJM, we expect this to indicate the presence of CSM interactions and to determine
the CS level. Second, fluxes associated to the presence of fractional branes that render
the IR metrics regular and shift the rank of one of the two gauge groups.
The family of supergravity solutions is parametrized by a constant that we call y0

and that takes values between −1 and ∞. We expect this parameter to be related to
the difference between the couplings of the two factors in the gauge group, as we will
comment further in section 2.6. All the transverse eight-dimensional geometries can
be foliated by squashed seven-spheres viewed as an S 1 fibration over an S 2 base that
is itself fibered over an S 4. Thus one can also view these geometries as a squashed
S 3 fibered over S 4, or as an S 1 fibered over a squashed CP3. Following the original

1Except for the one labelled Bconf
8 , see below.
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2. Duals of N = 1 three-dimensional gapped non-confining theories

SYM-CSM | D2

Mass gap | R4 × S 4

OP | CFT

Conf. | R3 × S 1 × S 4

B+
8 B−8B8

B∞8

Bconf
8

BOP
8

y0

−1 1 ∞

Figure 2.3.: Pictorial representation of the different solutions (see main text).

references, we refer to solutions with y0 ∈ (−1, 1) as the B+
8 family [13], to the solution

with y0 = 1 as B8 [18], and to solutions with y0 ∈ (1,∞) as the B−8 family [13]. Despite
this technical distinction, the physics is continuous as a function of y0 for y0 ∈ (−1,∞).
In this set of solutions the S 3 shrinks smoothly to zero size in the IR, whereas the size
of the S 4 remains non-zero. The IR transverse geometry is thus R4 × S 4. We will see
that this leads to a mass gap but no confinement.
For y0 = −1 the IR physics is radically different. The transverse geometry was found

and dubbedB∞8 in [15]. In this case the entire S 7 shrinks to zero size in the IR, but once
the warp factor is taken into account the resulting geometry is AdS4 times a squashed
seven-sphere of non-zero size. This fixed point is dual to the so-called Ooguri–Park
(OP) conformal field theory (CFT) [19], which is an N = 1 deformation of the ABJM
theory [17]. Remarkably, the OP fixed point admits a relevant deformation that drives it
to an IR theory with a mass gap but no confinement. The eleven-dimensional solution
describing this flow is based on a transverse geometry found in [20, 21] that we call
BOP

8 . As we will explain in section 2.7.2, solutions with y0 close to −1 describe RG
flows that approach the concatenation of the B∞8 and the BOP

8 flows. These solutions
exhibit “walking” or quasi-conformal behavior in a certain range of energies, as we
will confirm in section 2.8 with a calculation of the potential between an external
quark-antiquark pair.
If the RR two-form is set to zero, one obtains a solution based on an internal geometry
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2.2. Preliminaries

found in [20, 21] that we call Bconf
8 . The eleven-dimensional solution flows to an IR

theory that exhibits both a mass gap and confinement. The geometric reason is that,
in this case, the S1 is trivially fibered over the rest of the geometry and it remains
non-contractible along the entire flow; in particular, the IR transverse geometry is
R3 × S 1 × S 4. This implies that a membrane wrapped on this S1 cannot end anywhere
in the bulk since it would have a cylinder-like geometry and hence a boundary, which
is not allowed by charge conservation. On the gauge theory side, the existence of
confinement seems to be a consequence of the absence of CSM interactions (we will
come back to this point in section 2.9). We will confirm the presence of an asymptotic
linear potential for an external quark-antiquark pair in section 2.8. We will also show
in section 2.7.1 that the Bconf

8 can be obtained as the y0 → ∞ limit of the B−8 solutions.

2.2. Preliminaries

As explained in section 2.1, the type IIA solutions of interest in this chapter describe
RG flows that start from a D2-brane-like asymptotic geometry in the UV. Some of these
flows end at AdS4 geometries in the IR. Moreover, throughout the chapter we will be
switching between the type IIA description of these solutions in ten dimensions and
their M-theory description in eleven dimensions. We therefore begin by reviewing a
few facts about the simplest examples of these kinds of solutions.
The metric and dilaton of the type IIA solution describing N D2-branes at the tip of

a manifold of G2 holonomy take the form

ds2
st = h−

1
2 dx2

1,2 + h
1
2 ds2(M7),

eΦ = h
1
4 . (2.1)

The requirement of G2 holonomy guwarantees that the solution preserves N = 1
supersymmetry in three dimensions, i.e. two supercharges. If the transverse seven-
dimensional space is a cone then the base must be a nearly-Kähler six-dimensional
manifold (NK6):

dds2(M7) = dr2 + r2 ds2 (NK6) . (2.2)

In terms of the radial coordinate on the cone, the warp factor in (2.1) behaves as

h ∼
N
r5 . (2.3)

17



2. Duals of N = 1 three-dimensional gapped non-confining theories

In the particular case that the NKmanifold is S6 the supersymmetry is enhanced toN =

8 (i.e. sixteen supercharges) and the gauge theory dual is maximally supersymmetric
YM in three dimensions [12]. In the present work the NK manifold of interest is CP3,
in which case the gauge theory dual is expected to be a quiver YM-type theory with
gauge group U(N) × U(N) [14].
The uplift of theD2-brane solution to eleven dimensions is straightforwardly obtained

via the usual ansatz

ds2
11 = e−

2
3 Φ ds2

st + e
4
3 Φ `2

p (dψ + C1)2 , (2.4)

where ψ parameterizes the M-theory circle, `p is the eleven-dimensional Planck length
and C1 is the RR one-form potential of type IIA. Since the D2-brane solution has
C1 = 0, the result is the M2-brane-type metric

ds2
11 = H−2/3 dx2

1,2 + H1/3 ds2
8, (2.5)

with

H = eΦ h3/4 = h, ds2
8 = dr2 + r2ds2 (NK6) + `2

p dψ2. (2.6)

We see that the fact that in the D2-brane solution the RR two-form vanishes implies
that the M-theory circle is trivially fibered over the rest of the directions, and that it has
constant size in the eight-dimensional transverse metric.
Let us contrast this with the uplift of theAdS4×CP

3 solution of type IIA supergravity,
whose gauge theory dual is the ABJM CSM theory [17]. In this case we view CP3

as a Kähler manifold instead of as a NK manifold (see below for more details on
this distinction). The RR two-form is proportional to the Kähler form, the dilaton is
constant and the warp factor scales as h ∼ r−4, which results in the uplift

H = h3/4 ∼ r−3, ds2
8 = dr2 + r2ds2(CP3) + r2 (dψ + C1)2 . (2.7)

It can be checked that the metric in eleven dimensions contains again an AdS4 factor.
We see how the M-theory circle is non-trivially fibered over, and that its size grows as
that of the other directions.
The solutions of interest in the rest of the chapter are based on the eight-dimensional

Spin(7)-holonomy metrics of [13], which combine ingredients of the two cases above.
On the one hand, the M-theory circle is non-trivially fibered over the rest of the
coordinates. On the other hand, its size does not grow asymptotically with the other
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2.3. Geometry of CP3

directions but approaches a constant. In the type IIA description this means that the
metric and the dilaton behave asymptotically as in the D2-brane solution (2.1) but,
unlike in the pure D2-brane solution, the RR two-form does not vanish. For these
reasons we expect the dual gauge theory in the UV to be a quiver SYM theory with
gauge group U(N) × U(N) and additional CSM terms.

2.3. Geometry of CP3

Since this manifold will play a crucial role in our solutions, we will discuss some of
its properties in this section. For our purposes, a useful way to describe CP3 is as the
twistor space over the four sphere, or in other words, as an S2 fibration over S4:

S 2 ↪→ CP3 = Tw
(
S 4

)
↓

S 4
(2.8)

This non-trivial fibration allows us to consider deformations in which we squash the
fiber with respect to the base. A convenient set of coordinates was introduced in [22],
and we follow their notation with slight differences. In terms of the vielbeins Ei to be
defined below, the metric can be written as

ds2
6 = α2

[(
E1

)2
+

(
E2

)2
]

+ dΩ2
4, (2.9)

where the metric in brackets is the metric on a round S2 and E1, E2 describe the non-
trivial fibration (i.e. they contain coordinates of S4). We have included the squashing
parameter α that controls the size of the fiber with respect to the base. There are two
special values of this parameter for which the metric becomes Einstein: α2 = 1 and
α2 = 1/2. If α2 = 1 we recover the unsquashed CP3 with the Fubini–Study metric,
which is Kähler. This is the metric appearing in the ABJM construction [17]. If
α2 = 1/2, the metric admits instead a nearly Kähler structure, as in (2.2). This is the
metric that was used in the construction of [23], where unquenched flavour was added
to three-dimensional SYM.
There is another special point, α2 = 1/5, for which the metric, despite it not being

Einstein, supports a minimally supersymmetric AdS solution. Its uplift to M-theory
corresponds to the squashed seven-sphere, and the dual gauge theory is an N = 1
deformation of ABJM [19].
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2. Duals of N = 1 three-dimensional gapped non-confining theories

Two more important facts about this geometry are the following. First, the isometry
group of the metric (2.9) is generically Sp(2) ∼ SO(5), which is enhanced to SU(4) ∼
SO(6) at the special point α2 = 1. This means that it will be convenient to describe
CP3 as the coset Sp(2)/U(2), since we are interested in solutions preserving these
isometries. Second, the non-vanishing Betti numbers are

b0 = b2 = b4 = b6 = 1, (2.10)

meaning that CP3 possesses non-trivial two- and four-cycles.
In constructing the solutions, an important ingredient is the set of Sp(2)-left-invariant

forms on the coset SpS p(2)/U(2). We will be using the coordinate system in [22] to
facilitate the comparison, although a coordinate system is not indispensable. Given the
SU(2)-left-invariant forms ωi, verifying

dωi =
1
2
εi jkω

j ∧ ωk, (2.11)

the metric of the four-sphere can be written as

dΩ2
4 =

4(
1 + ξ2)2

(
dξ2 +

ξ2

4
ωiωi

)
, (2.12)

with ξ a non-compact coordinate. If the S 2 fiber is parameterized by the usual angles
θ and ϕ, then the non-trivial fibration is described by the vielbeins

E1 = dθ +
ξ2

1 + ξ2

(
sinϕω1 − cosϕω2

)
,

E2 = sin θ
(
dϕ −

ξ2

1 + ξ2ω
3
)

+
ξ2

1 + ξ2 cos θ
(
cosϕω1 + sinϕω2

)
. (2.13)

For our purposes, it is convenient to consider a rotated version of the vielbeins on the
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2.3. Geometry of CP3

four-sphere that read2

S1 =
ξ

1 + ξ2

[
sinϕω1 − cosϕω2

]
,

S2 =
ξ

1 + ξ2

[
sin θ ω3 − cos θ

(
cosϕω1 + sinϕω2

)]
,

S3 =
ξ

1 + ξ2

[
cos θ ω3 + sin θ

(
cosϕω1 + sinϕω2

)]
,

S4 =
2

1 + ξ2 dξ. (2.14)

Despite the fact that these forms depend on the S 2 angles, it is easily checked that

SnSn = dΩ2
4. (2.15)

In terms of these, the left-invariant two-forms on the coset are

X2 = E1 ∧ E2, J2 = S1 ∧ S2 + S3 ∧ S4. (2.16)

Similarly, the globally defined, left-invariant three-forms are:

X3 =E1 ∧
(
S1 ∧ S3 − S2 ∧ S4

)
− E2 ∧

(
S1 ∧ S4 + S2 ∧ S3

)
,

J3 = − E1 ∧
(
S1 ∧ S4 + S2 ∧ S3

)
− E2 ∧

(
S1 ∧ S3 − S2 ∧ S4

)
. (2.17)

Finally, the invariant four-forms are the wedges of the two-forms

X2 ∧ J2, J2 ∧ J2 = 2ε(4), (2.18)

where ε(n) denotes the volume-form of the n-sphere. Left-invariance ensures that this
system of forms closes under exterior differentiation and Hodge duality. In particular
we have

dX2 = dJ2 = X3, dJ3 = 2 (X2 ∧ J2 + J2 ∧ J2) ,

? X2 =
1

2α2 J2 ∧ J2, ? J2 = α2X2 ∧ J2, (2.19)

? X3 = −J3. (2.20)

2With respect to [22], we are taking Sξthere = S4
here and S

3
there = −S3

here.
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2. Duals of N = 1 three-dimensional gapped non-confining theories

From these forms it is easy to construct both the Kähler and the nearly Kähler structures
on CP3. When the squashing in (2.9) is fixed to α2 = 1 the metric admits a Kähler
structure, whose Kähler form is

JK = X2 − J2, (2.21)

which is closed by virtue of (2.19). If instead the squashing is α2 = 1/2, the almost-
complex structure associated to the NK structure reads

JNK =
1
2

X2 + J2. (2.22)

This shows that the set of Sp(2)-invariant forms is general enough for our purposes.
In the following we will use them to construct solutions of type IIA supergravity with
CP3 as their internal geometry.

2.4. Singular flows

As explained in section 2.1, in this section we will construct type IIA solutions de-
scribing RG flows from a D2-brane-like asymptotic geometry in the UV to a singular
geometry in the IR. The uplifts of these solutions to M-theory are also singular in the
IR. In the following sections we will modify these solutions in such a way that their
eleven-dimensional description is completely regular.
The transverse, seven-dimensional geometries that we will employ are the dimen-

sional reduction of the eight-dimensional metrics found in [13], with which we will
make contact below. Despite the fact that our UV asymptotic geometries are different
from those in [22], which focused on AdS4 solutions, the metrics that we are interested
in fall within the ansatz studied in [22], which we therefore follow.
The ten-dimensional string-frame metric and dilaton take the form

ds2
st = h−

1
2 dx2

1,2 + h
1
2 ds2

7,

eΦ = h
1
4 eΛ, (2.23)

with the transverse geometry given by

ds2
7 = dr2 + e2 f dΩ2

4 + e2g
[(

E1
)2

+
(
E2

)2
]
. (2.24)

The warp factor h, the squashing functions f , g and the dilaton function Λ depend only
on the radial coordinate r. Note that r, e f and eg have dimensions of length, whereas
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2.4. Singular flows

h is dimensionless. The D2-brane solution (2.1), to which our more general solutions
will asymptote, is recovered setting

h ∼
N
r5 , e2 f =

1
2

r2, e2g =
1
4

r2, eΛ = 1. (2.25)

The metric and dilaton (2.23) will be supported by the fluxes

F2 = QkJK, (2.26)

F4 = d3x ∧ d
(
h−1e−Λ

)
, (2.27)

where we recall that JK is the Kähler form of CP3 given in (2.21). The fact that F4 does
not involve any new functions beyond those appearing in the metric and the dilaton is
a reflection of supersymmetry. Closure of F2 implies that Qk is a constant.
The first-order BPS equations ensuring N = 1 supersymmetry follow from the

results in [22] and read

Λ′ = 2Qk eΛ−2 f − Qk eΛ−2g,

f ′ =
Qk

2
eΛ−2 f −

Qk

2
eΛ−2g + e−2 f +g, (2.28)

g′ = Qk eΛ−2 f + e−g − e−2 f +g.

The warp factor can be expressed in terms of the other functions as [22]

h = e−Λ

[
h0 − Qc

∫ r
e2Λ(z)−4 f (z)−2g(z)dz

]
. (2.29)

The constant Qc is related to the number of D2-branes, as we will see below, and
has dimensions of (length)5. The integrand has dimensions of (length)−6 and h is
dimensionless. The integration constant h0 can be shifted by changing the lower limit
of the integral, so we will henceforth set h0 = 0 without loss of generality.
The usual quantization condition for the RR fluxes takes the form∫

Σ8−p

F8−p = 2κ2
10TDp Np, (2.30)

where Σ8−p is an appropriate cycle. In the case p = 6 this cycle is a CP1 ⊂ CP3 given
by constant coordinates on the S 4 and we get

Qk =
`sgs

2
k. (2.31)
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2. Duals of N = 1 three-dimensional gapped non-confining theories

As in [17, 19], we expect k to be the CS level of the dual gauge theory. This can
be inferred from a D4-brane probe in our background extending in the gauge theory
directions and wrapping the two-cycle in the internal geometry. The Wess–Zumino
part of its action includes the term

TD4 (2πα′)2

2

∫
CP1×R1,2

C1∧F∧F =
TD4 (2πα′)2

2

∫
CP1×R1,2

F2∧A∧F =
k

4π

∫
R1,2

A∧F,

(2.32)
where A and F are the gauge field on the D4-brane and its field strength respectively.
This is precisely a Chern–Simons interaction at level k in the gauge theory dual.
In the case p = 2 the cycle is the entire CP3 and we find

Qc = 3π2`5
s gs N, (2.33)

where N is the number of D2-branes and the rank of the field theory gauge group.
In order to make contact with [13], let us uplift our ansatz to eleven dimensions. The

Kähler form (2.21) can be written as JK = dC1 with the potential

C1 = −
(
cos θ dϕ − ξS3

)
. (2.34)

This means that in terms of the vielbein

E3 = dψ − cos θ dϕ + ξS3, (2.35)

with ψ ∈
[
0, 4π

k

)
, the eleven-dimensional metric can be written in the M2-brane form

(2.5) with

ds2
8 = e−Λ

{
dr2 + e2 f dΩ2

4 + e2g
[(

E1
)2

+
(
E2

)2
]}

+ eΛQ2
k

(
E3

)2
(2.36)

and
H = heΛ. (2.37)

Comparing with the ansatz in [13] we see that the functions a, b, c used there are related
to ours through

a2 = e2g−Λ, b2 = Q2
keΛ, c2 = e2 f−Λ, (2.38)

and that their equations for special holonomy are equivalent to the BPS system (2.28).
To be precise, in order to recover the results of [13] we should set Qk = −1. Presum-
ably, the sign is a choice of radial coordinate, and absolute values different from one
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2.4. Singular flows

correspond to orbifolds of the construction in [13]. In most of this chapter we will
focus on the case with negative Qk. We conclude that all the solutions of [13] are also
solutions of our equations and that we have directly constructed their ten-dimensional
description.
Before we describe the family of metrics that will be our main interest, let us point

out two particularly simple solutions that are dual to superconformal theories. If Qk > 0
there is the ABJM fixed point [17] described by

e2 f = r2, e2g = r2, eΛ =
r

Qk
. (2.39)

The supersymmetry of this solution is enhanced generically to N = 6. If Qk < 0 there
is the OP fixed point [19] at

e2 f =
9
5

r2, e2g =
9
25

r2, eΛ =
3r

5|Qk|
. (2.40)

The theory dual to the OP fixed point is anN = 1 deformation of the ABJM model. It
is easy to show that in both cases the coefficients of the three vielbeins Ei in the uplift
coincide and that altogether they parameterize a round three-sphere fibered over S 4.
Thus in the ABJM case the eleven-dimensional geometry is AdS4 times a round S 7

(orbifolded by Zk), whereas in theOP case the sphere is not round but squashed. For this
reason, upon reduction to ten dimensions the internal metric involves the unsquashed
CP3 in the ABJM case, corresponding to α2 = 1 in (2.9), whereas for OP it involves
the squashed CP3 with α2 = 1/5.

We now proceed to describe the family of metrics that will be our main interest. The
general solution to our BPS system can be found using the tricks developed in [13, 18].
First we define the master function

P(r) = e2 f−Λ, (2.41)

which verifies the third-order equation(
P′ − Qk

)
T = PT ′, (2.42)

where

T = 2PW′ +
(
P′ + 3Qk

)
W, W = P′ + Qk. (2.43)
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2. Duals of N = 1 three-dimensional gapped non-confining theories

Note that P has dimensions of (length)2. We now change to a radial coordinate % and
a function γ(%) defined by the conditions

P′ = %, P′′ = −
γ

P
. (2.44)

With this we reduce the system to the first-order equation

γ

(
2

dγ
d%
− 6Qk

)
= (% + 3Qk)

(
%2 − Q2

k

)
. (2.45)

The final change of variables to a new radial coordinate y and a new function v(y)
defined through

y =
2
(
Q2

k − γ + Qk%
)

(Qk + %)2 , % = −Qk (v + 1) , (2.46)

linearizes the equation to
2
(
1 − y2

) dv
dy

= yv + 2. (2.47)

Note that y and v are both dimensionless. This equation can be solved in terms of
generalized hypergeometric functions, as we will explain below. Going back to (2.44),
we see that the master function satisfies the equation

1
P

dP
dy

=
v + 1

v
(
1 − y2) . (2.48)

The rest of the functions are determined in terms of P as

eg =
2P (2 − v)

Qk (1 + y) v2 , eΛ =
4P (v − 2)

Q2
kv3 (1 + y)

. (2.49)

Following the chain of definitions, we see that the r and y coordinates are related
through

dr = −
P

Qkv
(
1 − y2)dy, (2.50)

and hence that the eight-dimensional, Spin(7)-holonomy metric takes the form

ds2
8 =

v P (1 + y) dy2

4 (v − 2)
(
1 − y2)2 + P dΩ2

4 +
P (v − 2)
v (1 + y)

[(
E1

)2
+

(
E2

)2
]

+
4P (v − 2)
v3 (1 + y)

(
E3

)2
.

(2.51)
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2.4. Singular flows

The general solution of (2.47) splits into several families depending on the initial
conditions for the “flow” v(y). We are particularly interested in the families denoted
B+

8 and B−8 in [13, 18]. Both are characterized by the fact that there is a value of the
radial coordinate, y = y0, such that

v (y0) = 2. (2.52)

At this point the three-sphere parametrized by Ei in (2.51) shrinks smoothly to zero
size, whereas the size of the four-sphere remains finite. We will see that, in both
families, the IR region lies at y → y0 and the UV at y → 1. Since the allowed values
of y0 are different in each case, we will consider each family separately.

Let us finally mention that, aside from the solutions ofB8-type that we are discussing
in this thesis, the only other solution to the system (2.28) that provides a physically
acceptable metric is the one dubbedA8 in [13]. This geometry, which exists for Qk > 0,
describes a flow that starts at the same UV theory as the B8 metrics, but that in the IR
flows to the ABJM fixed point. The rest of the solutions of (2.28) are either singular
and/or produce signature changes in the metric.

2.4.1. B+
8 family

In this case the range of the radial coordinate is

− 1 ≤ y0 ≤ y <, (2.53)

and the solutions of (2.47) and (2.48) are

v = v+(y) =
1(

1 − y2)1/4

(
v+

0 + y F2 1

[
1
2
,

3
4

;
3
2

; y2
])
, (2.54)

P = P+(y) = P+
0

(1 + y)3/4

(1 − y)1/4 v+(y), (2.55)

where v+
0 is a dimensionless integration constant and P+

0 is an integration constant
with dimensions of (length)2. Although P+

0 sets the scale of the entire internal metric
(2.51), we will show below that it can be completely eliminated from the full, eleven-
dimensional metric once the warp factor is included. Nevertheless, we will need to fix
the precise value of P+

0 in order to ensure the same value of the dual gauge coupling
for all solutions. We will come back to this at the end of section 2.6.1.
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2. Duals of N = 1 three-dimensional gapped non-confining theories

Given y0, the condition (2.52) fixes v+
0 and vice versa. Hence we will think of y0

as the parameter labelling the different solutions in the B+
8 family. The presence of

1 − y2 in the denominators of the expressions above indicates that regular solutions
correspond to y0 ∈ [−1, 1) or equivalently to v+

0 ∈ (−vc, vc], where

vc =
Γ [1/4]2

√
8π

(2.56)

is the value of v+
0 that can be read off from (2.54) by setting v = 2 and taking the limit

y2 → 1. Looking at (2.55) and (2.49), and noting that v ≥ 2, we see that in order for P
and eg to be positive we must have P+

0 > 0 and k < 0. As we will see, the negative sign
of k is consistent with the fact that the B+

8 family contains a flow to the OP solution
(2.40).
As we mentioned above, the UV corresponds to the region y → 1, in which the

behavior of the metric is universal for the entire family. In this region we can integrate
the change of coordinates (2.50) to leading order to obtain

Qk (1 − y)1/4 r = 27/4P+
0 . (2.57)

With this result we can write the transverse metric (2.51) at leading order as

ds2
8 ∝ dr2 +

1
2

r2
{

dΩ2
4 +

1
2

[(
E1

)2
+

(
E2

)2
]}

+

 4P+
0

Qk
(
v+

0 + vc
)2

(E3)2 . (2.58)

Since the size of the E3 circle becomes constant, we recognize this as the uplift of the
D2-brane metric whose internal space in ten dimensions, given above between square
brackets, is precisely the squashed CP3 at the NK point, corresponding to α2 = 1/2 in
(2.9). Given our parametrization of the dilaton in (2.23), in order for the solution to
asymptote to the D2-brane solution (2.1) with the correct normalization of the gauge
coupling we must impose the boundary condition eΛ → 1. This fixes the dimensionful
constant P+

0 to the value

P+
0 =

Q2
k

(
v+

0 + vc
)

4
, (2.59)

which, in particular, depends on y0 through v+
0 . Since ψ has period 4π/|k|, this is

equivalent to normalizing the asymptotic radius of the M-theory circle in the eight-
dimensional transverse metric to the usual result

R(11) =
2Qk

k
= gs`s. (2.60)
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2.4. Singular flows

Note that eΛ → 1 actually implies that we are setting gs = 1. Nevertheless, we will
keep explicit factors of gs in our formulas in order to facilitate comparison with the
literature.
For the B+

8 family we have v+
0 , vc and so the IR is located at y → y0, where the

geometry ends. In a suitable radial coordinate ρ defined through

4P+
0 (y − y0) = (1 − y0)5/4 (1 + y0)1/4 ρ2, (2.61)

the transverse metric at small ρ approaches

ds2
8 = dρ2 +

1
4
ρ2

[(
E1

)2
+

(
E2

)2
+

(
E3

)2
]

+
2P+

0 (1 + y0)(
1 − y2

0

)1/4 dΩ2
4. (2.62)

Since the Ei describe a three-sphere fibration over S 4, we find that in the IR the
metric approaches locally R4 × S 4, where the four-sphere has a finite radius squared
proportional to P+

0 . However, solving for the warp factor with this transverse space we
find an IR singularity, since near y0 we have that

H =
Qc|Qk| (1 − y0)7/4

4
(
P+

0

)3
(1 + y0)5/4

 1
y − y0

+
1

8
(
1 − y2

0

) log (y − y0) + O (y − y0)0

 , (2.63)

which diverges as y → y0. A singularity in the warp factor is also present for the rest
of the solutions that we will discuss in this section. We will see in subsequent sections
that this singularity can be removed by turning on appropriate additional components
of F4 corresponding to fractional M2-branes [24].

2.4.2. B∞8 solution

In the particular case v+
0 = vc, corresponding to y0 = −1, after changing variables

through
P+

0 (1 + y)3/4 =
9

211/4 × 5
ρ2, (2.64)

one discovers that the transverse space in the IR corresponds to the OP solution

ds2
8 = dρ2 +

9
20
ρ2

{
dΩ2

4 +
1
5

[(
E1

)2
+

(
E2

)2
+

(
E3

)2
]}
, (2.65)

since one can recognize the metric inside the square brackets as the squashed seven-
sphere. The full geometry was denoted B∞8 in [15] and its significance had been
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2. Duals of N = 1 three-dimensional gapped non-confining theories

overlooked in studies prior to this reference. It interpolates between the theory on the
D2-branes on the squashedCP3 and the OP fixed point, so it can be seen as an irrelevant
deformation of the OP CFT whose UV completion is a SYM-CSM theory.

2.4.3. BOP
8 solution

Remarkably, the OP fixed point also admits a relevant deformation that can be solved
for analytically. In our variables, the metric functions and dilaton are

e2 f =
9
5

r2
[
1 −

(r0

r

)5/3
]
, e2g =

9
25

r2
[
1 −

(r0

r

)5/3
]2

, eΛ =
3r

5|Qk|

[
1 −

(r0

r

)5/3
]
,

(2.66)

with the radial direction ending at r = r0, which plays a role analogous to that of P+
0 in

the B+
8 family. Changing coordinates from r to % through

20|Qk|r = 3%2 (2.67)

we see that this solution corresponds to the original Spin(7) manifold of [20, 21], whose
metric is

ds2
8 =

d%2[
1 −

(
%0
%

)10/3
] +

9
20

%2dΩ2
4 +

9
100

%2

1 − (
%0

%

)10/3 [(E1
)2

+
(
E2

)2
+

(
E3

)2
]
.

(2.68)
The UV of this flow is of course the OP fixed point while the IR, which lies at % = %0,
is precisely of the form (2.62), with the four-sphere radius proportional to %0.

2.4.4. B8 solution

At the other end of the allowed values for v+
0 , i.e. when v+

0 → −vc, corresponding to
y0 → 1, the coordinate y ceases to be appropriate to describe the geometry. Instead, in
the original radial coordinate r the solution takes the simple form

e2 f =
1
2

r2 (r − 2r0)
(r − r0)

, e2g =
1
4

r2 (r − 2r0)2

(r − r0)2 , eΛ =
r0

2|Qk|

r (r − 2r0)
(r − r0)2 , (2.69)

where one has to assume again that k < 0 and

r0 = 2|Qk|, (2.70)
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2.4. Singular flows

so that eΛ → 1 asymptotically. Note that the space ends at r = 2 r0. Again, r0 plays
a role analogous to that of P+

0 in the B+
8 . Uplifting to eleven dimensions we get the

transverse space

ds2
8 =

(r − r0)2 dr2

r (r − 2r0)
+

r
2

(r − r0) dΩ2
4+

r
4

(r − 2r0)
[(

E1
)2

+
(
E2

)2
]
+

r2
0

4
r (r − 2r0)
(r − r0)2

(
E3

)2
.

(2.71)
This metric was dubbed B8 in [13, 18]. The geometry ends smoothly at r = 2r0 and
has the same asymptotic behavior as the B+

8 family.

2.4.5. B−8 family

Pushing further the values of y0 one arrives to the B−8 family of metrics, as described
in [13, 18]. In our radial coordinate, they are defined in the range

1 < y ≤ y0 < ∞, (2.72)

where again v(y0) = 2. The functions in the solution can be written as

v = v− =
1(

y2 − 1
)1/4

(
v−0 +

2
√

y
F2 1

[
1
4
,

3
4

;
5
4

;
1
y2

])
,

P = P− = P−0
(y + 1)3/4

(y − 1)1/4 v−, (2.73)

where v−0 ∈
(
−
√

2 vc,∞
)
is a dimensionless integration constant and P−0 is an integration

constant with dimensions of (length)2 that sets the scale of the entire internal metric
(2.51). To fix the correct asymptotics, eΛ → 1, we must choose

P−0 =
Q2

k

(
v−0 +

√
2 vc

)
4

. (2.74)

Both the UV and IR behavior of the B−8 metrics, located respectively at y → 1 and
y→ y0, coincide with those of the B+

8 family.

2.4.6. Bconf
8 solution

In all the solutions above we assumed that k < 0. We close this section with the case
k = 0. Changing coordinates through

dr =

1 − ρ4
0

ρ4

−1/2

dρ (2.75)
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2. Duals of N = 1 three-dimensional gapped non-confining theories

the BPS solution takes the form

eΛ = 1, e2 f =
1
2
ρ2, e2g =

1
4
ρ2

1 − ρ4
0

ρ4

 . (2.76)

Since k = 0 the RR two-form vanishes. This translates into the fact that the M-theory
circle is trivially fibered and hence the eight-dimensional transverse metric in eleven
dimensions is a direct product of the form M7 × S 1, where M7 is the G2-manifold
found in [20, 21]. The UV corresponds again to D2-branes on the NK CP3. It can be
seen that in the IR, located at ρ → ρ0, the local geometry approaches R3 × S 4, with a
finite radius for the S4. Again there is a singularity in the warp factor that can be cured
with additional fluxes corresponding to fractional D2-branes [25], as we describe in
the following sections.
The uplift of this metric is very simple and its transverse part reads

ds2
8 =

dρ2(
1 −

ρ4
0
ρ4

) +
1
2
ρ2 dΩ2

4 +
1
4
ρ2

1 − ρ4
0

ρ4

 [(E1
)2

+
(
E2

)2
]

+ `2
pdψ2. (2.77)

The IR limit corresponds now to R3 × S 1 × S 4, since the circle that before was fibered
over S 2 to form the three-sphere in R4 is now trivial and remains of finite size in the
IR. As we will see, this change in topology has dramatic consequences in the dual field
theory.

2.5. Adding fractional branes

The transverse geometries presented in the previous section are suitable to support
D2-brane solutions in ten dimensions or M2-brane solutions in eleven dimensions
preserving N = 1 supersymmetry in three dimensions. However, the corresponding
warp factors diverge in the IR, thus rendering the full metrics singular. Fortunately,
these singularities can be removed by the standard procedure of adding new fluxes to
the system. This mechanism was dubbed “transgression" in [25]. As usual in this type
of constructions, the new fluxes can be interpreted as resulting from the addition of
fractional branes and can be chosen so that supersymmetry is preserved.
We start by reviewing the transgression mechanism as used for instance in [25].

Imagine that one starts with the solution for a D2-brane preserving N = 1 supersym-
metry, that is, a solution of the form (2.1) where the transverse space is a (non-compact)
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2.5. Adding fractional branes

G2-holonomy manifold. Since manifolds with special holonomy are Ricci-flat the only
equation that needs to be solved is that for the warp factor,

�h = 0, (2.78)

with � the Laplacian of the seven-dimensional transverse metric. Now suppose that
we modify the ansatz for the four-form to include a new piece

F4 = d3x ∧ d
(
h−1

)
+ G4, (2.79)

whereG4 is a closed four-formon the transverse seven-dimensional space. The equation
of motion for the NSNS three-form is then solved provided we also turn on

H3 = ?7 G4, (2.80)

where the Hodge dual is taken with respect to the transverse metric. Closure of H3
then implies that G4 is harmonic with respect to the G2-holonomy metric. With this
ansatz, all the equations of motion and Bianchi identities are satisfied as long as the
warp factor obeys the inhomogeneous equation

�h = −
1
24

G2
4. (2.81)

The key point of this construction is that the transverse geometry is not modified.
The solutions that we are interested in include a non-zero RR two-form, since they

correspond to deformation of the field theory by the addition of CS terms. This means
that the transgression mechanism above must be generalized as follows.
Suppose that we have a solution of type IIA supergravity preserving at least N = 1

supersymmetry with metric and dilaton given by (2.23), with a four-form given by
(2.27), and with a non-zero F2 with components only along the compact directions.
We also assume that the dilaton depends only on the non-compact coordinates in ds2

7.
These conditions are satisfied by the solutions that we discussed in section 2.4 and
by all the solutions of [14, 17, 19, 22, 23]. Under these assumptions the only non-
trivial equations to solve are those that determine the dilaton and the warp factor or,
equivalently, Λ and h, and the equation of motion for h can be derived from that for F4.
Nowwewould like to turn on additional fluxeswith the purpose of resolving potential

singularities as those that we encountered in the warp factor in section 2.4 or, more
generally, in order to add fractional branes to the system. Consider therefore the
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2. Duals of N = 1 three-dimensional gapped non-confining theories

following modification of the fluxes

H3 = dB2,

F4 = d3x ∧ d
(
h−1 e−Λ

)
+ (G4 + B2 ∧ F2) , (2.82)

where G4 is closed and the following duality condition on the transverse space is
satisfied

eΛ (G4 + B2 ∧ F2) = ?7 H3. (2.83)

Under these circumstances the metric ds2
7 and the function Λ are left unchanged by the

addition of the new fluxes. The only modified equation is that for the warp factor h.
This can be derived from the equation for F4 and becomes inhomogeneous because it
is sourced by the new fluxes. We emphasize that the only assumptions about F2 are
that it does not contain components along non-compact directions and that it verifies
its Bianchi identity. We will now implement this generalized transgression for the
solutions of section 2.4.
The first task is to construct closed forms G4 and H3 on the metric (2.24) satisfying

the duality condition (2.83). We start from the most general left-invariant ansatz using
the forms defined on the coset:

B2 = bXX2 + bJ J2,

H3 = dB2,

G4 = d (aXX3 + aJ J3) + qc (J2 ∧ J2 − X2 ∧ J2) . (2.84)

Note that H3 must be exact because it must be closed and CP3 has no non-trivial three-
cycles —see (2.10). In contrast, G4, which is also closed, can contain a non-exact
piece along the non-trivial four-cycle of CP3. This non-trivial flux is a constant with
dimensions of (length)3 that we have called qc and that, as we will see, is related to the
number of fractional branes. The rest of the coefficients bX , bJ , aX , aJ are functions of
the radial coordinate that we will determine below.
The duality condition (2.83) leads to the following set of equations

a′X = 0,

a′J = e−Λ (bX + bJ) ,

b′X = 2e−4 f +2g+Λ (qc + 2aJ − QkbJ) ,

b′J = e−2g+Λ [
Qk (bJ − bX) + 2 aJ − qc

]
. (2.85)
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2.5. Adding fractional branes

Given the first equation and the closure of X3, we see that the term aXX3 does not
contribute to G4, and therefore we will henceforth set aX = 0. In addition, the
requirement that G4 be normalizable in the UV implies the relation

aJ =
e2g (QkbJ − qc) − 2e2 f +g−Λ (bJ + bX) + e2 f [qc + Qk (bX − bJ)

]
2
(
e2 f + e2g) . (2.86)

Moreover, the equation that is obtained by differentiating (2.86) is automatically satis-
fied by virtue of the equations for bJ , bX in (2.85). We thus conclude that the system
(2.85) can be reduced to two equations for the two functions bJ and bX .
Finally, as anticipated, the equation for the warp factor acquires additional terms due

to the flux sources and reads

H′ =
(
eΛ h

)′
= −e2Λ−4 f−2g [

Qc + Qk bJ (bJ − 2bX) + 2qc (bX − bJ) + 4aJ (bX + bJ)
]
,

(2.87)
wherewe recall that the eleven- and the ten-dimensionalwarp factors are related through
(2.37). Remember that the equations (2.28) for the background are not modified by the
new sources. This will allow us in the next section to solve the system sequentially:
First we will solve for the background functions (2.28), then we will use that solution
in (2.85) and we will solve for the fluxes, and finally we will integrate the warp factor
(2.87). As we will see, in some cases we will be able to find fully explicit analytic
solutions.
Again there is a correspondence between our functions and the ones used in [13] (see

also [15]) to construct a self-dual four-form in the eight-dimensional Spin(7) space.
Specifically, the functions ui used in [13] are given by3

u1 = 4e2Λ−4 f
(
2aJ − Qk bJ + Q2

k qc
)
,

u2 = 2Qke2Λ−2 f−2g [
Qk (bX − bJ) − 2aJ + qc

]
, (2.88)

u3 = −
2eΛ−2 f−g

Qk
(bX + bJ) .

In order to interpret the additional fluxes as fractional branes we need to properly
quantize them. From the different notions of charge that may be defined in supergravity
[26], the one that is quantized and conserved and counts the number of branes is the
Page charge. We begin with the D2-brane charge. Following [15] we compute the

3As explained below (2.38) we must set Qk = −1 in order to reproduce [13] exactly.
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number of D2-branes, which sets the rank of the dual gauge group, as

N =
1

2κ2
10TD2

∫
CP3

(
−? F4 − B2 ∧ F4 +

1
2

B2 ∧ B2 ∧ F2

)
. (2.89)

Note that in the presence of the additional fluxes this equation replaces (2.30), since
it is not just ∗F4 but the full integrand above that is a closed form. Nevertheless, the
result is the same relation (2.33) between Qc and N, thus confirming that the new fluxes
have not modified the number of non-fractional D2-branes.
In the case of the D6-brane charge measured by the flux of F2 through the CP1,

equation (2.30) with p = 6 is unmodified by the new fluxes, since F2 is closed. Hence
the relation (2.31) between Qk and k is also unmodified.
Finally, the new fluxes induce D4-brane charge that is interpreted as M fractional

D2-branes. The quantization condition reads

M̄ =
1

2κ2
10TD4

∫
CP2

(F4 − B2 ∧ F2) =
1

2κ2
10TD4

∫
CP2

G4, (2.90)

where
M̄ = M −

k
2
. (2.91)

In the coordinates introduced in (2.13) the CP2 four-cycle is characterized by θ = ϕ =

π/2, so we get the relation

qc =
3π`3

sgs

4
M̄. (2.92)

Here M represents the shift in the gauge group due to the fractional branes, while the
k/2 shift was argued in [27] to be needed to account for the Freed–Witten anomaly.
We thus expect the gauge group of the dual quiver to be U(N)k × U(N + M)−k, where
the subindices indicate the CS levels. In the next section we will construct the regular
backgrounds that are dual to this theory.
For completeness, we also quote here the value of the D4 and D2 Maxwell charges

[26]:

QMax
4 = −

1
3

(
M̄2 + 2|k|N

)1/2
(BX + 2BJ) , (2.93)

QMax
2 = −

(
M̄2 + 2|k|N

)
6|k|

[
B2

J + 2BXBJ + 12AJ(BJ − BX) − 3
]
, (2.94)
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where BX ,BJ and AJ are the fluxes once the brane charges have been factorized, as
defined in the next section (see (2.97)). The Maxwell charges run with the radial
coordinate or, equivalently, with the energy scale. The differences between their UV
and IR values are

∆QMax
4 =

(
M̄2 + 2|k|N

)1/2
(1 − b0), (2.95)

∆QMax
2 =

(
N +

M̄2

2|k|

)
(1 − b2

0), (2.96)

where the parameter b0 controls the asymptotic value of the fluxes in the UV and again
will be defined in the next section (see (2.102)). We will come back to these differences
in section 2.6.1, once we have determined the dependence of b0 with y0.

2.6. Regular flows

We will now solve the equations that we introduced in the previous section in order
to obtain regular geometries. Recall that we must solve for two fluxes bJ , bX in (2.85)
and for the warp factor H in (2.87). The dependence on the different charges can be
factored out of the equations by writing them in terms of four dimensionless functions
BJ , BX ,AJ andH defined through

bJ = −
2qc

3|Qk|
−

(
4q2

c + 3Qc|Qk|
)1/2

3|Qk|
BJ ,

bX =
2qc

3|Qk|
+

(
4q2

c + 3Qc|Qk|
)1/2

3|Qk|
BX ,

aJ = −
qc

6
+

(
4q2

c + 3Qc|Qk|
)1/2
AJ , (2.97)

H =

(
4q2

c + 3Qc|Qk|
)

P3
0

H .

Note that, although the constant terms in bJ and bX combine to give a closed form that
does not contribute to H3, they do contribute to B2. In the expression for the warp
factor, by P0 we mean P±0 for the B±8 family and the corresponding analogous scale for
the other metrics discussed in section 2.4. At this point we can already see why these
scales of the internal metric could be eliminated from the full, eleven-dimensional
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2. Duals of N = 1 three-dimensional gapped non-confining theories

solution. Indeed, we see from (2.97) that H ∼ P−3
0 and from (2.51) that ds2

8 ∼ P0. As
a consequence, P0 cancels out in the H1/3ds2

8 term of the eleven-dimensional metric
(2.5), and its contribution to the first term can be eliminated by rewriting the metric in
terms of rescaled gauge theory coordinates defined through

x̃µ =
P0(

4q2
c + 3Qc|Qk|

)1/3 xµ. (2.98)

It follows that P0 also cancels out in the ten-dimensional metric and dilaton, since
these are directly read off from the eleven-dimensional metric. The RR-forms are also
independent of P0, since all the components (2.84) are manifestly P0-independent, and
the same rescaling (2.98) eliminates P0 from the first term in F4 in (2.82).

Substituting (2.97) in (2.85) we find that the dimensionless functions obey the
equations

B′J =
6AJ + BJ + BX

(v − 2) (y − 1)
,

B′X =
2 (v − 2) (BJ − 6AJ)

v2 (y − 1) (1 + y)2 , (2.99)

H ′ =
BJ (BJ + 2BX) + 12AJ (BJ − BX) − 3

36 (1 − y)1/4 (1 + y)5/4 (v − 2)2 ,

whereAJ is understood to be given by (2.86) as

AJ =
(1 + y) v2 − y v − 2

6 (y + 2) v − 12
BJ −

v (1 + y) (1 + v)
6 (y + 2) v − 12

BX . (2.100)

BJ , BX , AJ and H are functions only of y and a given solution is labelled only by
the parameter y0, since all the dependence on the charges has been factored out. This
makes these functions ideally suited for numerical integration. In order to do so, we
first solve (2.99) perturbatively around the IR and around the UV.
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2.6. Regular flows

2.6.1. B+
8 family

In the IR, defined by the condition v(y0) = 2, we find

BJ = 1 −
1

2
(
1 − y2

0

) (y − y0) +
2 − 3y0

8
(
1 − y2

0

)2 (y − y0)2 + O (y − y0)3 , (2.101)

BX = 1 −
3

4
(
1 − y2

0

)2 (y − y0)2 + O (y − y0)3

H = HIR −
7 (y − y0)

48 (1 + y0)3
(
1 − y2

0

)1/4 −
77(y0 − 2) (y − y0)2

576 (1 + y0)3
(
1 − y2

0

)5/4 + O (y − y0)3 ,

wherewe have already imposed regularity of thewarp factor, which fixes the integration
constants in BJ and BX . The only undetermined constant in the IR expansion is HIR,
which will be fixed in the full numerical solution by requiring D2-brane asymptotics
in the UV with the correct normalization.
In the UV, located at y→ 1, we find the expansions

BJ = b0

1 +
29/4

w+
0

∆y1/4 +
27/2(
w+

0

)2 ∆y1/2 −
219/4(
w+

0

)3 ∆y3/4 +
b4(

w+
0

)4 ∆y + O(∆y)5/4

 ,
BX = b0

1 +
29/4

w+
0

∆y1/4 +
3 × 25/2(

w+
0

)2 ∆y1/2 +
223/4(
w+

0

)3 ∆y3/4 −

(
128 +

b4
2

)
(
w+

0

)4 ∆y + O(∆y)5/4

 ,
H = HUV +

(
1 − b2

0

)
15 × 23/4

(
w+

0

)2 ∆y5/4 +
23/2

(
1 − 2b2

0

)
9
(
w+

0

)3 ∆y3/2 + O(∆y)7/4, (2.102)

with w+
0 =

(
v+

0 + vc
)
∈ (2vc, 0) and ∆y ≡ 1 − y. The undetermined constants in the UV

are thus b0, b4 and HUV. The latter must vanish in order to have the correct D2-brane
asymptotics in the decoupling limit, i.e. in order for H → 0 in the UV. Through the
numerical integration, this requirement fixes the value ofHIR. Once this is done there
is a unique solution for each value of y0 and the UV constants b0, b4 can be simply read
off from the solution. The result is displayed in Fig. 2.4, whereas Fig. 2.5 shows the IR
value of the warp factor. The full solution is perfectly regular despite the fact thatHIR
diverges as y0 → −1.
We see from Fig. 2.4(left) that there is a one-to-one correspondence between y0 and

the values of b0 in the interval (0, 1). This is a nice consistency check of the fact that
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Figure 2.4.: Values of the UV parameters b0 (left) and b4 (right) from the numerical integration.

y0 is related to the difference between the gauge couplings of the two gauge groups.
The reason is that varying b0 corresponds to varying the UV asymptotic flux of the
NSNS two-form through the CP1 ⊂ CP3. Since this asymptotic flux is expected to
specify the difference between the gauge theory couplings [15], the fact that b0 can be
mapped to y0 in a one-to-one manner supports the idea that the family of theories under
consideration are indeed parametrized by the difference between the gauge couplings.
Moreover, we now see that this information is partially encoded in the constant P0

introduced in section 2.4, since this is determined by y0 and the CS level through
e.g. Eq. (2.59). Finally, we note that the dependence of b0 on y0 displayed in
Fig. 2.4(left) immediately determines the differences between the UV and the IR
values Maxwell charges (2.95).
Presumably, b4 is related to the vacuum expectation value of some operator in the

gauge theory.

2.6.2. B∞8 solution

When y0 → −1 the IR expansions above are not well defined, reflecting the dramatic
change in the IR, which in this case is a fixed point instead of a gapped phase. Indeed,
we have that the fluxes are constant

bJ = −
2qc

3|Qk|
, bX =

2qc

3|Qk|
, aJ = −

qc

6
. (2.103)
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Figure 2.5.: Values of the parameterHIR from the numerical integration.

Using this, it is easy to find the expansions for the warp factor. In the IR, around
y = −1, we get

H = HIR + (y + 1)−9/4 5
9 × 25/4

[
5
3
−

13
8

(y + 1) +
815
1664

(y + 1)2 + O (y + 1)3
]
.

(2.104)
Notice that the constant term HIR is not the leading term in this case and this causes
the metric to be AdS. On the other hand, the UV expansion gives again D2-brane
asymptotics, as can be obtained from the general expansion of theB+

8 family, specifying
to w+

0 = 2vc and b0 = 0.
The only parameter to be found from the numerics is HIR such that the warp factor

has no constant piece in the UV. From our results we findHIR ' −0.0087.

2.6.3. BOP
8 solution

The RG flow that connects the OP fixed point to the gapped phase can also be solved
for analytically. In terms of a dimensionless coordinate

ρ =
r
r0

(2.105)
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the fluxes are simply

BJ =
1
ρ1/3 , BX =

6ρ5/3 − 1
5ρ2 , (2.106)

and the regular warp factor is

H =
5

243

[
1
ρ2 −

9
ρ1/3 − 3

ρ4/3 − ρ1/3

ρ5/3 − 1

]
+

+
4
√

2
81


√

5 +
√

5 arctan


√

10 + 2
√

5

4ρ1/3 + 1 −
√

5

 +

√
5 −
√

5 arctan


√

10 − 2
√

5

4ρ1/3 + 1 +
√

5


 .

(2.107)

2.6.4. B8 solution

In this case a complete analytic solution can be found. In terms of a dimensionless
coordinate

ρ =
r
r0
, (2.108)

with r0 given by (2.70), the fluxes take the form

BJ =
2
(
ρ4 + ρ3 − 4 ρ + 4

)
5ρ3 (ρ − 1)

, BX =
2
(
ρ5 − 10 ρ + 8

)
5ρ3 (ρ − 1)2 , (2.109)

where one integration constant was fixed to have D2-brane asymptotics in the UVwhile
the other two were fixed by regularity. The M2-brane warp factor can be found again
in closed form and is simply

H =

(
1323ρ6 + 924ρ5 + 963ρ4 + 510ρ3 − 1340ρ2 − 4340ρ + 2800

)
47250 ρ9 (ρ − 1)2 , (2.110)

which is perfectly regular at ρ = 2. Notice that the boundary conditions have fixed all
the integration constants, the only parameters being the quantized charges.
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2.6.5. B−8 family

For y0 > 1 the equations admit expansions similar to those of the B+
8 family. Around

the end of the geometry, imposing regularity, we find

BJ = 1 +
1

2
(
y2

0 − 1
) (y − y0) +

2 − 3y0

8
(
y2

0 − 1
)2 (y − y0)2 + O (y − y0)3 ,

BX = 1 −
3

4
(
y2

0 − 1
)2 (y − y0)2 + O (y − y0)3 , (2.111)

H = HIR +
7(y − y0)

48 (y0 + 1)3
(
y2

0 − 1
)1/4 −

77(y0 − 2)(y − y0)2

576 (y0 + 1)3
(
y2

0 − 1
)5/4 + O (y − y0)3 .

Again, we have HIR as the only undetermined constant in the IR, which will be fixed
in the numerics by the UV conditions. Similarly, for y → 1 we have expansions
identical to those in (2.102) with the replacements (1 − y) → (y − 1) and w+

0 → w−0 =(
v−0 +

√
2 vc

)
∈ (0,∞). The equations are solved using these expansions, withHUV = 0

for D2-brane asymptotics, as boundary conditions.

2.6.6. Bconf
8 solution

In this case it is convenient to change from the ρ coordinate in (2.77) to a dimensionless
coordinate

z =
ρ

ρ0
. (2.112)

The fluxes regularizing the solution are

bJ =
Qc

4qc
+

2qc

3ρ0

z
√

z4 − 1 −
(
3z4 − 1

)
U(z)

z4 − 1

 ,
bX = −

Qc

4qc
−

2qc

3ρ0

z
√

z4 − 1 −
(
3z4 − 1

)
U(z)

z4

 , (2.113)

where the dimensionless function U is defined as

U(z) =

∫ z

1

(
σ4 − 1

)−1/2
dσ. (2.114)
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The warp factor, both in ten and eleven dimensions, is given by

h = H =
128q2

c

9ρ6
0

∫ ∞

z

 2 − 3σ4

σ3 (
σ4 − 1

)2 +

(
4 − 9σ4 + 9σ8

)
U(σ)

σ4 (
σ4 − 1

)5/2 +
2
(
1 − 3σ4

)
U(σ)2

σ5 (
σ4 − 1

)3

 dσ.

(2.115)

2.6.7. Range of validity

We now turn to the determination of the range of validity of the supergravity solutions
above. Since in the UV the dilaton goes to zero, the correct description is the ten-
dimensional one. This one extends up to the UV scale at which the curvature ceases to
be small in string units. The Ricci scalar of the ten-dimensional solutions grows in the
UV as

`2
sR ∼ `2

s

 |Qk|

4q2
c + 3Qc|Qk|

r(
1 − b2

0

)1/2

. (2.116)

Requiring this to be small and translating to a gauge theory energy scale U via the
usual relation U = r/`2

s [12] we find the condition

U � λ

(
1 +

M̄2

2N |k|

) (
1 − b2

0

)
, (2.117)

where we recall that λ is the ’t Hooft coupling with dimensions of energy. We observe
that the usual result U � λ for the D2-branes gets modified due to the presence of
the fractional branes. We have included the dependence on y0 through the coefficient
1 − b2

0, which vanishes as y−1/2
0 when y0 → ∞. This is a manifestation of the fact

that, in the limit y0 → ∞, Qk must scale as Qk ∼ k ∼ y−1/2
0 in order to obtain a valid

supergravity description. The origin of this scaling together with more details will be
given in the next section.
In the IR the ten-dimensional metrics are singular, so the correct description is given

in terms of the eleven-dimensional solutions, in which the IR value of the Ricci scalar
in units of the eleven-dimensional Planck length `p = g2/3

s `s is finite and scales as

`2
p R ∼

(
M̄2

2
+ N |k|

)−1/3

. (2.118)

In order for this to be small we simply need to require that the combination

M̄2

2
+ N |k| � 1. (2.119)
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Figure 2.6.: Kretschmann scalar K = RµνρσRµνρσ as a function of y for B+
8 solutions (left, red

curves) with y0 = −0.9,−0.3, 0.3, 0.9 from left to right, and forB−8 solutions (right, blue curves)
with y0 = 2, 3, 4, 5 from left to right. We see that at y = 1 all curves approach the same value
since they all share the same UV asymptotics, whereas the curvature at the IR endpoint (y = y0)
diverges as y2

0 as y0 → ∞.

For large y0, however, the IR value of the Kretschmann scalar, K = RµνρσRµνρσ, shown
in fig. 2.6, grows as

`4
p K ∼

(
M̄2

2
+ N |k|

)−2/3

y2
0. (2.120)

Thus in the limit y0 → ∞ we must impose the additional condition that

|k|6
(

M̄2

2
+ N |k|

)
� 1, (2.121)

where again we have assumed that k ∼ y−1/2
0 .

2.7. Limiting dynamics

In this section we will study the limits of the above metrics as y0 → ∞ and as y0 → −1.
In the first case the solution approaches Bconf

8 everywhere except in the deep IR. In the
second case the solution approaches the combination of the B∞8 flow followed by the
BOP

8 flow. In this sense the solutions with generic y0 continuously interpolate between
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quasi-confining and quasi-conformal dynamics. We will verify this with an explicit
calculation of the quark-antiquark potential in section 2.8.

2.7.1. Quasi-confining dynamics

Consider the limit y0 → ∞ of the B−8 solutions. Expanding the functions of the internal
metric for large y0 we find

e2 f =
4
(
P−0

)2

|Qk|
2

(
y + 1
y − 1

)1/2
1 −

(
y2 − 1

)1/4

√
y0

+ O
(
y−1

0

) ,
e2g =

4
(
P−0

)2

|Qk|
2

1(
y2 − 1

)1/2

1 − 2
(
y2 − 1

)1/4

√
y0

+ O
(
y−1

0

) . (2.122)

Performing the change of variables

y =
ρ4 + ρ4

0

ρ4 − ρ4
0

(2.123)

we see that, to leading order, we recover the confining metric (2.77) with an internal
scale given by

ρ2
0 =

8
(
P−0

)2

|Qk|
2 . (2.124)

Given that P−0 was fixed by the UV condition eΛ → 1 as in (2.74), to leading order in
y0 we have

ρ2
0 = 2 |Qk|

2 y0. (2.125)

Note that, since y0 → ∞, ρ0 seems to grow without bound. Wemay think of the limit in
two (equivalent) ways. One is simply to keep all charges fixed as we take y0 → ∞ but
to rescale the gauge theory coordinates as in (2.98) with P0 replaced by ρ0, since this
cancels all the dependence of the solution on ρ0. The other is to keep the gauge theory
coordinates fixed but to scale Qk ∼ y−1/2

0 as we take y0 → ∞. This is intuitive since
we know that the Bconf

8 solution has k = 0. By comparing with the analytic confining
solution (2.77) it is possible to deduce how the parameters b0, b4 and HIR must scale
for large y0, with the result(

1 − b2
0

)
∼

6K (−1)
√

2
y−1/2

0 , b4 ∼ −27/2 K (−1) y3/2
0 , HIR ∼

hconf

256
y−3/2

0 , (2.126)
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where K(m) is the complete elliptic integral of the first kind and hconf is the IR value
of the warp factor for the confining solution given by Eq. (2.115) with z = 1. We have
verified these scalings with our numerical solutions. One way to see that both ways of
taking the limit are equivalent is to note that in both cases the y0-dependent coefficient
in front of the dx2

1,2 term in (2.23) attains a finite limit as y0 → ∞.
In terms of the ρ coordinate, the first correction in (2.122) (the second term inside

the square brackets) takes the form

ρ0

ρ

1
√

y0

(
1 −

ρ4
0
ρ4

)1/2 . (2.127)

We see that, no matter how large y0 is, this first correction competes with the leading
term (the 1 in (2.122)) sufficiently close to ρ0. This was expected because we know
that, sufficiently deep in the IR, the B−8 and the Bconf

8 metric differ dramatically from
one another: in B−8 the M-theory circle shrinks to zero size whereas in Bconf

8 it does not.
The intuitive picture is therefore that, by taking y0 large enough, one can make the B−8
and the Bconf

8 metrics arbitrarily close to one another on an energy range that extends
form the UV down to an IR scale arbitrarily close to the mass gap. Throughout this
range the S 1 of the internal metric has a constant and identical size in both metrics.
Sufficiently close to the mass gap, however, the B−8 metric abruptly deviates from the
Bconf

8 metric and the internal S 1 closes off. Presumably this fast change of the size of
the circle is related to the fact that the curvature in the deep IR diverges as y0 → ∞, as
shown in fig. 2.6.

2.7.2. Quasi-conformal dynamics

The B∞8 and the BOP
8 solutions arise as two different limits of the B+

8 metrics. If the
limit y0 = −1 of the B+

8 is taken at fixed y then the result is the B∞8 solution, as we saw
in section 2.4.2.
Instead, if we first focus on the IR of B+

8 by expanding around y − y0, so that we
see the R4 × S 4 region, and afterwards take the y0 → −1 limit, then the BOP

8 metric is
reproduced. Indeed, for the size of the four-sphere in the eight-dimensional transverse
space we have in the strict IR

e2 f−Λ = 23/4 P0 (y0 + 1)3/4 + O (y0 + 1)7/4 . (2.128)
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Comparing with the IR expansion for BOP
8 suggests the relation

r0 =
23/4P0

3|Qk|
(y0 + 1)3/4 . (2.129)

As in the previous subsection, we may take the limit in two ways, either by rescaling the
gauge theory directions or by rescaling Qk. In the latter case, in order for r0 to be finite,
we must scale Qk as (y0 + 1)−3/4 when y0 → −1. Moreover, using this identification of
parameters and integrating the change of coordinates (2.50) in the IR and around y0 + 1
we get

y − y0 =

4 (r − r0)
3r0

+
2 (r − r0)2

9r2
0

+ O (r − r0)3

 (y0 + 1)−

−

5 (r − r0)
6r0

+
5 (r − r0)2

6r2
0

+ O (r − r0)3

 (y0 + 1)2 + O (y0 + 1)3 .

(2.130)

Finally, substituting this expansion together with (2.129) for the metric functions in the
IR of the B+

8 family and taking the y0 → −1 limit we arrive at

e2 f = 3r0 (r − r0) + 2 (r − r0)2 −
(r − r0)3

9r0
+ O (r − r0)4 ,

e2g = (r − r0)2 −
2 (r − r0)3

3r0
+ O (r − r0)4 , (2.131)

which coincides, to this order, with the corresponding expansions for BOP
8 .

The intuitive picture is therefore thatB+
8 solutions with y0 & −1 flow very close to the

OP fixed point but eventually deviate from it and develop a mass gap. The mass scale
M∗ at which the deviation occurs can be estimated from the behavior of the dilaton,
which is plotted in fig. 2.7. The mass scale M on the horizontal axis is the mass of a
membrane stretched from the bottom of the geometry until the position y at which the
dilaton is evaluated (see section 2.8). The normalization factor is

M0 =
|Qk|

2π`2
s

=
λ |k|
4πN

. (2.132)

We define M∗ as the position of the maximum of each curve. We see that curves with
y0 → −1 tend to the B∞8 curve but eventually deviate from it around the scale M∗ and
approach zero at the end of the geometry, instead of approaching the OP value as B∞8
does.
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Figure 2.7.: Dilaton as a function of the energy scale for several B+
8 solutions.

2.8. Quark-antiquark potential

We will now present a computation of the potential between an external quark and
an external antiquark separated by a distance L in the gauge theory directions. In the
string description this would be extracted from the action of a string hanging from the
quark and the antiquark. Instead, in M-theory we must consider a hanging membrane.
Although the membrane is asymptotically wrapped on the M-theory circle, namely
on the S 1 fiber of the internal geometry, as the membrane penetrates into the bulk
geometry the circle wrapped by the membrane may vary. In particular, since the S 1

fiber is contractible inside the S 7, the circle wrapped by the membrane may shrink to
zero size at some value of the holographic coordinate, even if at that point the entire
S7 has finite size. All in all this means that, in order to find the membrane with
the minimum energy, strictly speaking we would need to solve a problem involving
partial differential equations (PDEs) for the membrane embedding as a function of
two worldspace intrinsic coordinates. Since this calculation is beyond the scope of
this thesis, we will perform a simpler one that nevertheless is expected to capture the
qualitative physics. We will therefore assume that the circle wrapped by the membrane
is the S 1 fiber at all values of the holographic coordinate. This reduces the problem to
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2. Duals of N = 1 three-dimensional gapped non-confining theories

that of solving ordinary differential equations. We will come back to this simplification
in section 2.9.
An important point in the calculation is that, generically, the membrane action is

UV divergent. We will renormalize away this divergence by subtracting the action
of two disconnected membranes extending from the UV all the way to the IR end of
the geometry. For all metrics except for Bconf

8 this is in itself a physically acceptable
configuration that competes with the connected configuration. In the case of Bconf

8 the
disconnected configuration is not a physically acceptable configuration to which the
connected one can transition, but it can still be used as a mathematical well defined
quantity that can be used to regularize the membrane action.
The results for the quark-antiquark potential V as a function of the separation L for

the B+
8 and B−8 solutions are shown in Figs. 2.8(left) and 2.8(right), respectively, where

M0 is given by (2.132) and

L0 =

(
4q2

c + 3Qc|Qk|
)1/2

|Qk|
2 =

6πN
√

M̄2 + 2|k|N
λ |k|2

. (2.133)

The behavior of these curves can be understood as follows. In the UV, i.e. in the
limit L→ 0, the behavior is the same for all curves, since it is dictated by their common
D2-brane asymptotics, which implies VL ∼ −L1/3. Thus, as L begins to increase from
zero, the curves first go down (VL becomes more negative) until they reach a turning
point and start going up.
This happens at the energy scale at which the Yang–Mills interaction ceases to

dominate the dynamics and the CS interactions take over. This scale can be estimated
from the radial position at which the first correction to the D2-brane metric is of the
same order as the leading term, which yields

λ
|k|
N

2b2
0 − 1

1 − b2
0

 . (2.134)

This is the usual result dressed with a function of the dimensionless parameter y0
through the dependence on b0. After this point all curves except for the one corre-
sponding toB∞8 reach V = 0 and cross the horizontal axis at a separation that we call L∗.
When this happens the disconnected configuration becomes energetically preferred. In
the case of B∞8 the product VL asymptotically approaches a negative constant corre-
sponding to the OP fixed point, as expected form the fact that this is the endpoint of
the B∞8 flow. In this case the preferred configuration is always the connected one. We
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Figure 2.8.: (Up) Quark-antiquark potential for several B+
8 solutions and for the B∞8 solution,

shown as a continuous black curve. M0 and L0 are given in (2.132) and (2.133), respectively.
The red, dashed horizontal line at the bottom of the plot corresponds to the value of VL for
the OP fixed point. (Down) Quark-antiquark potential for several B−8 solutions with Qk scaled
as Q2

k = ρ2
0/2y0, as dictated by (2.125), where ρ0 is the scale of the Bconf

8 solution, whose
quark-antiquark potential is shown as a continuous black curve.
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Figure 2.9.: Comparison of the emergent IR scales extracted from the behavior of the dilaton
and of the quark-antiquark potential.

see from Fig. 2.8(left) that curves with y0 closer and closer to −1 become flatter and
flatter and cross the horizontal axis at a larger and larger L∗. These curves cross the OP
horizontal line at a smaller value L′∗ < L∗. In this way we see that two IR mass scales
emerge for flows that come close to the OP fixed point:

ML = 1/L∗, M′L = 1/L′∗. (2.135)

In fig. 2.9 we compare these scales to the scale M∗ that we determined in fig. 2.7 from
the behavior of the dilaton. Although it is difficult to push the numerics to arbitrarily
small values of y0 +1, the plots in the figure suggest that, in the limit y0 → −1, M′L is of
the same order as M∗ (at least over a large range of values of y0), whereas ML/M∗ goes
to zero. In other words, the theory first deviates from the quasi-conformal behavior at
the scale M∗ ∼ M′L but the membrane becomes disconnected at a lower scale ML < M∗.

In the opposite limit, as y0 → ∞, we see from fig. 2.8(right) that the curves approach
that of theBconf

8 solution, as expected from the discussion in section 2.7.1. This suggests
that these theories exhibit quasi-confining dynamics. We will come back to this point
in section 2.9.
At distances L slightly larger than L∗ all curves but Bconf

8 reach a cusp and “turn
back”, thus making the plots multivalued. The reason for the cusp is that, as the
penetration depth of the hanging membrane inside the bulk increases beyond the point
corresponding to the cusp, L begins to decrease. This kind of behavior also appears

52



2.9. Discussion

in e.g. calculations of the quark-antiquark potential in solutions with horizons, i.e. in
gauge theories at non-zero temperature. As in those cases, the part of the curve beyond
the cusp is always energetically disfavored.

2.9. Discussion

The solutions that we have presented here provide a counterexample to the expectation
that holographic duals of gauge theories with a mass gap also exhibit confinement.
The key point is that, geometrically, this intuition is based on thinking of the quark-
antiquark potential in string theory, where it is computed by a hanging string. In this
case the smooth capping off of the geometry associated to the mass gap, together with
charge conservation, which prevents the string from becoming disconnected, lead to
a linear quark-antiquark potential at large distances, as illustrated in fig. 2.1. In our
examples, however, the ten-dimensional description is singular and one must resort to
eleven-dimensional M-theory in order to have a regular description. In this context
the potential is computed from a hanging membrane which is allowed to become
disconnected because the M-theory circle on which it is wrapped shrinks to zero size
in the IR, as shown in fig. 2.2. This cuts off the linear growth of the potential at long
distances. A necessary condition for the consistency of these arguments is that the
ten- and eleven-dimensional solutions are not simultaneously reliable in the IR, since
otherwise they would have led to contradictory conclusions regarding the presence of
confinement.
As we explained in section 2.8, a priori the quark-antiquark potential that we com-

putedwas a simplification becausewe did not allow the circlewrapped by themembrane
to vary inside the S 7. However, the two key qualitative conclusions that we reached do
not rely on this simplification. Indeed:

1. The exact calculation of the minimum-energy configuration of the membrane,
involving PDEs, would exhibit no confinement except for theBconf

8 solution. This
follows simply from the topology of the solutions in eleven dimensions, which
allow for an isolated membrane with no boundary in all cases except Bconf

8 .

2. The exact calculation of the minimum-energy configuration of the membrane,
involving PDEs, would yield a quark-antiquark potential that exhibits quasi-
conformal and quasi-confining behaviour in the limits y0 → −1 and y0 → ∞,
respectively. The reason for this is that, as we showed in section 2.7, in these
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2. Duals of N = 1 three-dimensional gapped non-confining theories

limits the entire eleven-dimensional metrics on which the calculation would
performed approach B∞8 and Bconf

8 , respectively.

In summary, the conclusions that our family of solutions exhibit (1) a mass gap but no
confinement (except for Bconf

8 ), and (2) quasi-conformal and quasi-confining behaviour
in the appropriate limits, are independent of the simplification that we used to compute
the quark-antiquark potential.

We have seen that the presence of confinement in the Bconf
8 solution seems to be

associated with the absence of CSM terms in the dual gauge theory. Confinement in
a theory with CS terms has been previously considered in [28, 29] in the case of a
single gauge group, as opposed to the product gauge group of our model. Despite this
difference, our results are compatible with those of [28, 29]. Both of these references
distinguish between the bare CS level occurring in the microscopic Lagrangian and the
effective IR CS level, and both of them claim that confinement appears only when the
latter is zero, i.e. when no CS terms are present in the IR theory. This suggests that,
in our model, we should think of k as the effective IR CS level, which is consistent
with our identification of this parameter based on the analogy with the ABJM IR fixed
point.
Both the arguments of section 2.7 and the quark-antiquark potential of section 2.8 sug-

gest that the solutions we have discussed exhibit quasi-conformal and quasi-confining
behavior in the appropriate limits. The latter deserves some further discussion. Indeed,
looking at fig. 2.8(right) we see that the curves corresponding to solutions with y0 → ∞

approach the curve for the Bconf
8 metric. The latter shows the expected linear behavior

V ∼ L at asymptotically large distances, which appears as a parabola in the figure since
we are plotting VL ∼ L2. Although the curves with large y0 reproduce this behavior,
we must remember that the connected configuration ceases to be preferred once the
curves cross the horizontal axis at L = L∗. Therefore, strictly speaking, the potential
becomes constant at distances beyond this crossing point. However, the transition from
the connected to the disconnected configuration is a semiclassical one, since it requires
a fluctuation of the membrane in such a way that the circle transitions from non-zero
to zero size. We expect that these fluctuations are exponentially suppressed provided
the size of the circle is large in Planck units. For B−8 solutions this can be achieved up
to arbitrarily long distance scales by taking y0 and the appropriate charges to be large
enough. For these solutions connected configurations with VL > 0 can be arbitrarily
long lived, thus leading to an effective confining potential up to distance scales longer
than L∗.

Interestingly, some of the features discussed above are shared by four-dimensional
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Quantum Chromodynamics (QCD) if we think of the quark masses as adjustable
parameters. Indeed, if all quarks are massive then QCD exhibits a mass gap but no
confinement, since the growth of the potential between an external quark-antiquark
pair is cut off by the breaking of the flux tube caused by the nucleation of a dynamical
quark-antiquark pair. However, if the mass of the quarks is much larger than the QCD
scale, then these nucleation is exponentially suppressed and the potential is effectively
confining over a large range of distances.
It would be interesting to explore the analogies between the solutions that we have

described and QCD further. For this purpose it would be useful to construct a four-
dimensional analogue of our solutions. We leave these issues for future work.
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3. Mass spectrum of gapped,
non-confining theories with multi-scale
dynamics

3.1. Introduction

Strongly coupled field theories in which more than one characteristic energy scale is
dynamically generated allow for a rich set of phenomena due to observables developing
dependences on ratios of such scales. Within the framework of gauge-gravity duality
[4, 5, 6], there exists a number of examples constructed in string theory that exhibit
non-trivial renormalization group (RG) flows leading to multi-scale dynamics [30, 31,
32, 33]. The reformulation of strongly coupled gauge theories in terms of classical
higher-dimensional gravity provides a powerful tool with which analytical progress can
be made.
A particularly interesting class of theories with multi-scale dynamics is that in which

the RG flows come close to an infrared (IR) fixed point. As we will see, in the cases
that we will consider this leads to quasi-conformal behaviour over a range of energies.
Moreover, this IR fixed point corresponds to a supersymmetric conformal field theory
(CFT)with amoduli space. The existence of an exactmoduli space raises the possibility
of the spontaneous breaking of scale invariance, suggesting the possible presence of a
light dilaton in the spectrum, as emphasized in e.g. [34].
Using gauge-gravity duality, the spectra of composite states in the field theory can be

found by studying fluctuations around backgrounds in the dual supergravity description.
When the supergravity admits a consistent truncation to a sigma model composed of a
number of scalar fields coupled to gravity in d+1 dimensions (where d is the number of
field theory dimensions), there exists a powerful gauge-invariant formalism to treat the
fluctuations in the bulk developed in [35, 36, 37, 38, 39], allowing for the calculation
of spin-0 and spin-2 glueball spectra. This has been used to compute spectra for a
number of backgrounds with quasi-conformal dynamics obtained as deformations of
the Maldacena-Nunez [40, 41] and Klebanov-Strassler [16] backgrounds, leading to
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the identification of a light state when there is an operator that acquires a VEV that
is parametrically larger than the scale of confinement [42, 43, 44, 45, 46]. Quasi-
conformal dynamics has also been explored holographically in a top-down context in
[47, 48, 49].
In chapter 2 we studied a class of three-dimensional gauge theories that are dual to

a one-parameter family of solutions in M-theory [13, 18]. In terms of ten-dimensional
type-IIA supergravity, the asymptotic UV behaviour of the solutions corresponds to
placing a stack of D2-branes at a cone over CP3 and turning on additional fluxes.
The dual is expected to be a quiver-type Chern–Simons Matter (CSM) gauge theory
with gauge group U(N)k × U(N + M)−k, with k the Chern–Simons level. From the
eleven-dimensional point of view, the solutions are all regular in the IR with an end-of-
space leading to a mass gap. Despite this, the geometries describe non-confining field
theories [1]. In this chapter, we compute the spectrum of spin-0 and spin-2 glueballs
in those theories.
The parameter τ∗, related to the previously defined y0 through equation (3.1), la-

belling the backgrounds controls, in the gauge dual, the difference between the mi-
croscopic couplings of each of the two factors in the gauge group [15]. By varying
its value, it is possible to construct RG flows that come arbitrarily close to the IR
fixed point given by the supersymmetric Ooguri–Park (OP) CFT [19], hence exhibiting
quasi-conformal dynamics over a range of energies.
The moduli space of the OP theory is the same as that of the ABJM theory [17],

namely C4/Zk. In the opposite limit, the solutions are quasi-confining, coming close to
a confining solution [25] denoted as B conf

8 . Moreover, the system admits a consistent
truncation to a sigma model composed of six scalar fields coupled to gravity in four
dimensions, allowing us to make use of the aforementioned gauge-invariant formalism
to compute the spectrum as a function of τ∗.

In order to gain insight into the physics underlying the various features of the
spectrum, we also perform a study in which we introduce a hard-wall cutoff in the
IR. Varying the energy scale at which the geometry is thus cut off, we are able to
interpolate between the results obtained from a hard-wall IR cutoff and a smooth end
of the geometry. We find that there are different regions of parameter space for which
there is a light dilaton in the spectrum, and that, in the case of the geometry ending
smoothly, the mass of such state is lifted by deep-IR effects. We will show that this
result can be understood from the fact that the explicit and the spontaneous breakings
of scale invariance that trigger the RG flow that starts directly at the OP fixed point and
ends smoothly in the IR are of comparable magnitude and cannot be parametrically
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separated.
In section 3.2, we summarize the type-IIA supergravity and M-theory solutions and

their description in terms of a four-dimensional sigma model, as well as review the
gauge-invariant formalism for the computation of spectra. Section 3.3 contains the
numerical computation of the spin-0 and spin-2 glueball spectra. Finally, we conclude
with a discussion of our results in section 3.4.

3.2. Summary of known results

3.2.1. Type IIA/M-theory solutions and their field theory duals

In this section we review some basic features of the ten and eleven-dimensional su-
pergravity solutions that we described in chapter 2 in order to set a starting point and
redefine some notation more suitable for the numerical computations. The starting
point is a stack of N D2-branes at the tip of a cone over CP3, supported by a Ramond–
Ramond (RR) four-form flux proportional to N.1 In the decoupling limit, this solution
is expected to be dual to a three-dimensional quiver-type Yang–Mills theory with gauge
group U(N) × U(N) preserving minimal supersymmetry [14].

The backgrounds considered asymptote to this metric in the UV.2 The internal
manifold, CP3, can be seen as an S 2 fibration over S 4, so the D2-brane solution can be
generalized by allowing the relative size of the fiber and the base to change with the
radial coordinate and consequently along the RG flow of the dual theory. In particular,
solutions exist in which the size of S 4 inside CP3 remains finite at the end of the
geometry, that is, the deep IR, providing an additional scale in the gauge theory and
pointing towards a mass gap. However, the ten-dimensional metric is singular in the
IR. To be able to interpret these geometries as duals for gauge theories we need to
regularize them.
The first step is to include additional two- and four-form RR fluxes as well as

turning on the NS three-form. The two-form is proportional to the Kähler form of
CP3, as in ABJM [17], so it will induce Chern–Simons (CS) interactions in the gauge
theory dual. The new three- and four-form components can be seen to be sourced by
fractional D2-branes [15], so similarly to [16] we expect a shift in the rank of one of
the gauge groups proportional to the number M of such fractional branes. Thus, the

1This CP3 is not endowed with the usual Fubini–Study metric, but with a different Einstein metric
admitting a Nearly Kähler structure.

2With the exception of what we call BOP
8 , which is AdS in the UV.
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conjectured dual would be an N = 1 quiver-type Yang–Mills theory with gauge group
U(N)k × U(N + M)−k, with k the level of the supplementary CS interactions.
The solutions with all these features are still singular in ten dimensions, so a further

uplift to eleven-dimensional supergravity is needed. The non-vanishing type-IIA two-
form induces a non-trivial fibering of the M-theory circle that combines with the
S 2 to produce a (squashed) three-sphere. At the same time, this S 3 is fibered over
the remaining internal four-sphere to give a (squashed) seven-sphere. The eleven-
dimensional geometry obtained in this way corresponds to M2-branes in the Spin(7)
holonomy manifolds B±8 , first found in [13, 18], and is perfectly regular. These special
holonomy manifolds appear in a one-parameter family. We denote this parameter by
y0. As argued in [15, 1], we expect it to control the difference between the microscopic
couplings of each of the two factors in the gauge group.
In figure 2.3 we represent pictorially the set of solutions as a function of such

parameter, which ranges from −1 to +∞, together with the dual interpretation. The
gauge theories exhibit different physics varying continuously with y0. This can be
understood in terms of the geometry of the supergravity solutions. For the values
y0 ∈ (−1,+∞), describing the solutions B±8 (and the special case B8 for which y0 = 1),
the S 3 shrinks to zero size smoothly in the IR, whereas the size of the S 4 remains
finite. The IR transverse geometry is thus R4 × S 4. In the dual theories, this implies
the existence of a mass gap without confinement. The argument for this is that a
quark-antiquark pair is represented by a couple of membranes wrapped around the
M-theory circle. This S 1 ⊂ S 3 shrinks smoothly in the IR, so that each independent
membrane can extend from the boundary to the bottom of the geometry ending in a
cigar-like shape, as depicted to the right in figure 2.2. As the separation between the
quark-antiquark pair is made large, this configuration is preferred over the connected
one to the left in Figure 2.2.
When the parameter takes the value y0 = −1, the physics is completely different.

The whole S 7 shrinks to zero size in the IR (solution B∞8 ), but when taking the warp
factor into account, the IR geometry becomes AdS4 times a squashed seven-sphere of
finite size. This fixed point is dual to the OP CFT [19]. The OP fixed point admits a
relevant deformation (BOP

8 ) that drives it to an IR with the transverse geometry R4 × S 4

as in the previous case, leading again to a mass gap but no confinement. Solutions with
y0 close to −1 describe RG flows that approach the concatenation of the B∞8 and the
BOP

8 flows. These solutions exhibit quasi-conformal dynamics, remaining close to the
OP fixed point over a tuneable range of energies.
In the case of vanishing RR two-form, one obtains a solution based on an internal
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geometry found in [20, 21] that we call Bconf
8 . The eleven-dimensional solution flows

to an IR theory that exhibits both a mass gap and confinement. The geometric reason
is that, in this case, the M-theory circle is trivially fibered over the rest of the geometry
and it remains non-contractible along the entire flow; in particular, the IR transverse
geometry is R3 × S 1 × S 4. This implies that a membrane wrapped on this S 1 cannot
end anywhere in the bulk since it would have a cylinder-like geometry and hence a
boundary, which is not allowed by charge conservation. The disconnected, deconfined
configuration is thus not admissible. On the gauge theory side, the existence of
confinement appears to be a consequence of the absence of CSM interactions [1]. This
solution can also be recovered as a limit of the B−8 solutions when y0 → +∞, implying
that for large values of y0 the solutions exhibit quasi-confining behavior.

Finally, it will be convenient to work with the redefined parameter

τ∗ =
1
2

log (1 + y0) , (3.1)

whose range is τ∗ ∈ (−∞,∞). The physical results in the next sections are presented in
terms of it.

3.2.2. Four-dimensional description

Holographic spectra are conveniently computed using the gauge-invariant formalism
discussed in [36, 39]. This requires the existence of a lower-dimensional sigma model
containing at least all the modes that are excited in the background solutions. Moreover,
it must be a consistent truncation of ten or eleven-dimensional supergravity in order
to ensure that the set of fields that one retains is closed, that is, they do not source
additional modes outside the truncation.

Fortunately, all the backgrounds of interest can be obtained as a solution to a four-
dimensional supergravity. The details of the full reduction from ten dimensions can be
found in [50], from which we will keep only the scalars and follow the notation of [1].
The resulting sigma model contains gravity plus six scalars, three of which, {Φ,U,V},
come from the metric together with the dilaton, while the rest, {aJ , bJ , bX}, descend
from the forms. The four-dimensional action is given by

S4 =

∫
dρ d3x

√
−g

(
R
4
−

1
2

Gab(Φa)gMN∂MΦa∂NΦb −V(Φa)
)
, (3.2)

where gMN is the four-dimensional metric (M,N = 0, 1, 2, 3), Gab is the sigma-model
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metric (a, b = 1, · · · , 6), whose explicit form is given by

Gab∂MΦa∂NΦb =
1
4
∂MΦ∂NΦ + 2∂MU∂NU + 6∂MV∂NV + 4∂MU∂NV

+ 16e−2U−4V+ Φ
2 ∂MaJ∂NaJ + 2e−4V−Φ (∂MbJ∂NbJ + 2∂MbX∂NbX) ,

(3.3)

and the potentialV can be written in terms of a superpotentialW as follows

V =
1
2
WaW

a −
3
2
W2,

W = Qke−U−4V+ 3Φ
4 − Qke−3U−2V+ 3Φ

4 − 2e−2U−2V − e−4V

+ 4e−3U−6V−Φ
4
[
4aJ (bJ + bX) + 2qc (bX − bJ) + bJQk (bJ − 2bX) + Qc

]
,

(3.4)

where
Wa = GabWb = Gab ∂W

∂Φb (3.5)

The constant parameters Qk, Qc and qc appearing in the potential are two- and four-form
charges. They are proportional respectively to the CS level k, the number of colours N
and the shift in the rank of one of the gauge groups M due to the fractional branes.

All the solutions preserve Poincaré invariance in three dimensions, so we restrict
ourselves to backgrounds that only depend on a radial coordinate ρ, for which the
metric has the form of a domain wall

ds2
4 = dρ2 + e2A(ρ)dx2

1,2. (3.6)

Moreover, they areN = 1 supersymmetric, so as usual they can be obtained from a set
of BPS equations that read

Φ′a = Gab ∂W

∂Φb , A′ = −W, (3.7)

where prime denotes derivatives with respect to ρ. It can be seen that the equations for
U, V , Φ and A found in this way decouple from the rest. It is convenient to write the
scalars in terms of new functions H(y), P(y) and v(y) as3

Φ =
3
4

log

4H1/3P(v − 2)
v3(y + 1)Q2

k

 , U =
9
16

log
(

4H1/3P(v − 2)
v11/9(y + 1)|Qk|

2/9

)
,

V =
1

16
log

1024H3P9(v − 2)
v3(y + 1)Q2

k

 , A =
3
4

log
(
21/38H1/3P7/3(v − 2)

v5/3(y + 1)|Qk|
2/3

)
,

(3.8)

3Note that for all backgrounds in this section Qk < 0.
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and change the radial coordinate from ρ to y defined as

dρ = dy
2
√

2H3/4P9/4(v − 2)1/4

|Qk|
1/2v3/4(1 − y)(y + 1)5/4 . (3.9)

As a consequence, the BPS equations for Φ, U, and V following from Eq. (3.7) are
solved provided

∂yP
P

=
v + 1

v
(
1 − y2) , ∂yv =

vy + 2
2
(
1 − y2) . (3.10)

After the shifts and rescalings of the fluxes

aJ = −
qc

6
+

√
4q2

c − 3QcQkAJ , bJ =
2qc

3Qk
+

√
4q2

c − 3QcQk

3Qk
BJ ,

bX = −
2qc

3Qk
−

√
4q2

c − 3QcQk

3Qk
BX , H =

4q2
c − 3QcQk

P3
0

H ,

(3.11)

where P0 is a yet undetermined constant, the remaining BPS equations reduce to

∂yAJ =
v2 (BJ − BX)

12(v − 2)(y − 1)
,

∂yBJ =
(6AJ + BJ + BX)

(v − 2)(y − 1)
,

∂yBX =
2(v − 2) (BJ − 6AJ)

v2(y − 1)(y + 1)2 ,

∂yH = −
P3

0v3(y + 1) (12AJ (BJ − BX) + BJ(BJ + 2BX) − 3)

36P3(v − 2)2(y − 1)
.

(3.12)

Contrary to the previous ones, these cannot be solved analytically, so we will resort to
numerical calculations. In the following, we also fix

AJ =
v2 + (v − 1)vy − 2

6v(y + 2) − 12
BJ −

v(v + 1)(y + 1)
6v(y + 2) − 12

BX , (3.13)

which automatically solves Eq. (3.12) forAJ .
Depending on the range of the radial coordinate y, the backgrounds that we will

study fall into two families, B±8 , parameterized by y0. For the B+
8 family, the range of y
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3. Mass spectrum of gapped, non-confining theories with multi-scale dynamics

is given by −1 < y0 ≤ y < 1 with the IR located at y = y0 and the UV at y = 1. These
backgrounds have

v =
1

(1 − y2)1/4

(
v+

0 + F2 1

[
1
2
,

3
4

;
3
2

; y2
]

y
)
, P = P0

(1 + y)3/4

(1 − y)1/4 v, (3.14)

where P0 =
Q2

k (v+
0 +vc)
4 , vc ≡

Γ[1/4]2
√

8π
, and v+

0 is fixed by the requirement that v(y0) = 2.
For the B−8 family, the range of y is given by 1 < y ≤ y0 < ∞ (as before the IR is

located at y = y0 and the UV at y = 1), and the backgrounds have

v =
1

(y2 − 1)1/4

(
v−0 +

2
√

y
F2 1

[
1
4
,

3
4

;
5
4

;
1
y2

])
, P = P0

(y + 1)3/4

(y − 1)1/4 v, (3.15)

where P0 =
Q2

k (v−0 +
√

2 vc)
4 and v−0 is again fixed by the requirement that v(y0) = 2.

In order to construct the backgrounds numerically, we set up the boundary conditions
in the IR and evolve Eq. (3.12) towards the UV, checking that we obtain the correct
D2-brane asymptotics. It is convenient to work in the radial coordinate τ defined by

y =
1 + y0

2
+

1 − y0

2
tanh(τ), (3.16)

in terms of which the IR (UV) is located at τ = −∞ (τ = +∞) for both B±8 families. We
define α ≡ e2τ∗ ≡ 1 + y0, such that −∞ < τ∗ < +∞. The IR expansions are given by

BJ = 1 −
1

2α
e2τ +

α + 5
8α2 e4τ −

α(5α + 22) + 75
80α3 e6τ + O(e8τ),

BX = 1 −
3

4α2 e4τ +
α + 19

8α3 e6τ −
α(3α + 34) + 387

64α4 e8τ + O(e10τ),

H = HIR −
7|2 − α|3/4

48α13/4 e2τ +
7(|2 − α|3/4(α + 33)

576α17/4 e4τ + O(e6τ).

(3.17)

We determine the integration constant HIR by requiring that H = 0 in the UV, corre-
sponding to the decoupling limit of the D2-branes. All in all, once the charges Qc, Qk

and qc are fixed, the backgrounds are labelled by a single parameter τ∗. This means
that once we select the gauge theory dual, with given gauge group and CS level, this
parameter characterises completely the solution. As we already mentioned, it controls
the difference between the microscopic couplings of each of the two factors in the
gauge group.
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3.2. Summary of known results

Finally, let us consider the solutions far in the UV, where the asymptotic expansions
are given by (z ≡ e−τ/2)

BJ = b0

(
1 +

4z
β

+
8z2

β2 −
16z3

β3 + b̃4z4
)

+ O(z5),

BX = b0

(
1 +

4z
β

+
12z2

β2 +
32z3

β3 −

(
b̃4

2
+

64
β4

)
z4

)
+ O(z5),

H = −
2
(
β
(
b2

0 − 1
)

P3
0

)
z5

15γ3 +
8
(
1 − 2b2

0

)
P3

0z6

9γ3 +
32

(
9 − 28b2

0

)
P3

0z7

63βγ3 + O(z8).

For B+
8 backgrounds,

β =
v+

0 + vc

(4 − 2α)1/4 , γ =
2P0(v+

0 + vc)

(4 − 2α)1/2 , (3.18)

while for B−8 backgrounds,

β =
v−0 +

√
2vc

(2α − 4)1/4 , γ =
2P0(v+

0 +
√

2vc)

(2α − 4)1/2 . (3.19)

The constants b0 and b̃4 are both determined in terms of τ∗. Note that in the UV limit
the four-dimensional metric becomes proportional to

ds2
4 ∼

4(1 − b2
0)(4q2

c − 3QcQk)β

15z5/2 dz2 +
γ2

z7/2 dx2
1,2 , (3.20)

which under a rescaling x→ λx, z→ λ2/3z exhibits hyperscaling violation ds2
4 → λθds2

4
with hyperscaling violation coefficient θ = −1/3.
.
Figure 3.1 shows the background functions for a few values of τ∗. For large τ∗

(corresponding to large y0) the backgrounds approach that of the confining solution
B conf

8 described in section 2.6.6. For small τ∗ (corresponding to y0 approaching −1),
the solutions flow close to the OP fixed point. Notice from the bottom-right panel that,
for these solutions, ∂ρA becomes nearly constant over a range of the radial coordinate,
indicating that the backgrounds indeed are close to AdS in this region. A relevant
deformation of the OP CFT makes these solutions exit the AdS region and develop a
mass gap in the deep IR. This part of the RG flow is well approximated by the metric
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Figure 3.1.: Background functions for τ∗ = −4.5,−4, . . . , 5.5. Lower (higher) values of τ∗
correspond to black (blue). We have put Qc = 1/3, Qk = −1, qc = 0 (the reason for this choice
is explained in Section 3.3).
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B OP
8 [20, 21]. From the explicit form of the B OP

8 solution given in section 2.6.3, it can
be seen that the source for the relevant deformation is of the same order as any of the
VEVs present.4 This will be important for the physical interpretation of our results
regarding the spectrum of composite states.

3.2.3. Fluctuations

In this section, we summarize the gauge-invariant formalism thatwewill use to compute
the spin-0 and spin-2 glueball spectra of the dual theory. We follow closely [36, 39] to
which the reader is referred for further details.
Spectra are obtained by studying small fluctuations of the scalar fields and the metric

around a given background. The fluctuations are taken to depend on both the radial
coordinate ρ as well the boundary coordinates xµ. After going to momentum-space
(defining m2 = −qµqνηµν where qµ is the three-momentum and ηµν = diag(−1, 1, 1)
is the boundary metric), one expands the equations of motion to linear order in the
fluctuations and imposes the appropriate boundary conditions in the IR and UV. The
spectrum is then given by those values of m2 for which solutions exist.

More precisely, we expand in fluctuations {ϕa, ν, νµ, eµν, h,H, εµ} as

Φa = Φ̄a + ϕa,

ds2
4 = (1 + 2ν + νσν

σ)dρ2 + 2νµdxµdρ + e2A(ηµν + hµν)dxµdxν,

hµν = e
µ
ν + iqµεν + iqνεµ +

qµqν
q2 H +

1
2
δ
µ
νh,

(3.21)

where eµν is transverse and traceless, εµ is transverse, and the three-dimensional indices
µ, ν are raised and lowered by the boundary metric η.
The spin-2 fluctuation eµν satisfies the linearized equation of motion[

∂2
ρ + 3A′∂ρ + e−2Am2

]
e
µ
ν = 0. (3.22)

After forming the gauge-invariant combination [36, 38]

a
a = ϕa −

Φ̄′a

4A′
h, (3.23)

4The mode proportional to r̃−1/3 in BJ and BX corresponds to turning on a source for an operator of
dimension 8/3. The spectrum of scalars around the OP fixed point together with the dimension of the
dual operators can be found in Table 1 of [1].
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3. Mass spectrum of gapped, non-confining theories with multi-scale dynamics

the linearized equation of motion for the spin-0 fluctuations can be written as[
D2
ρ+3A′Dρ+e−2Am2]aa−

[
Va
|c−R

a
bcdΦ̄′bΦ̄′d+

2(Φ̄′aVc +VaΦ̄′c)
A′

+
4VΦ̄′aΦ̄′c

A′2
]
a

c = 0.
(3.24)

The different quantities involved in this expression are

Gabc =
1
2

(∂bGca + ∂cGab − ∂aGbc) , Φ̄′a = Gab∂ρΦ̄
b,

Ra
bcd = ∂cG

a
bd − ∂dG

a
bc + Ga

ceG
e
bd − G

a
deG

e
bc, V

a
|b =

∂Va

∂Φb + Ga
bcV

c,

(3.25)

that is, Ra
bcd is the Riemann tensor corresponding to the sigma model metric. On the

other hand, the background covariant derivative is defined asDρa
a = ∂ρa

a +Ga
bcΦ̄

′bac.
In order to obtain the spectrum, we first introduce IR (UV) cutoffs at ρI (ρU). For

backgrounds with an end-of-space in the IR located at ρ = ρo, the physical spectrum
is obtained in the limit of ρI → ρo, while similarly taking the limit of ρU towards
the location of the UV boundary. The boundary conditions at ρI and ρU are obtained
by requiring that the variational problem be well-defined. This necessitates adding
localized boundary actions in the IR and UV, which up to quadratic order in the
fluctuations are determined by symmetry and consistency, except for a term quadratic
in the scalar fluctuations. Taking the limit of this term corresponding to adding infinite
boundary-localized mass terms for the scalar fluctuations, we obtain the boundary
condition

ϕa|ρI,U = 0, (3.26)
which in terms of the gauge-invariant variable aa becomes

−
e2A

m2

Φ̄′a

A′

Φ̄′bDρ −
2VΦ̄′b

A′
−Vb

 ab∣∣∣∣
ρi

= aa
∣∣∣∣
ρI,U

. (3.27)

Similarly, the boundary condition for the tensor fluctuations becomes

∂ρe
µ
ν|ρI,U = 0. (3.28)

These boundary conditions assure that subleading modes are selected in the limit of
taking ρI towards the end-of-space and ρU towards the UV boundary, in accordance
with standard gauge-gravity duality prescriptions.
Finally, we note that after a general change of radial coordinate from ρ to τ, Eq. (3.24)

can be conveniently written as[
δa

b∂
2
τ + S a

b∂τ + T a
b + (∂τρ)2e−2Am2δa

b

]
a

b = 0, (3.29)
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where the matrices S a
b and T a

b are defined by

S a
b = 2Ga

bc∂τΦ̄
c +

[
3∂τA − ∂τ log(∂τρ)

]
δa

b ,

T a
b = ∂bG

a
cd∂τΦ̄

c∂τΦ̄
d − (∂τρ)2

[ (
2(Va∂τΦ̄

c +Vc∂τΦ̄
a)

∂τA
+

4V∂τΦ̄a∂τΦ̄
c

(∂τA)2

)
Gcb + ∂bV

a
]
.

(3.30)

3.3. Mass spectrum

In this section, we numerically compute the spectrum of spin-0 and spin-2 glueballs in
the theories dual to the backgrounds of Section 3.2.2. We start by making a number of
points common to both the spin-0 and spin-2 calculations.
The sigma-model action S4 defined by Eq. (3.2), Eq. (3.3), and Eq. (3.4) depends

explicitly on the charges Qc, Qk, and qc. However, after the redefinitions

Φ = Φ̃ +
1
2

log(X|Qk|
−3), A = Ã +

1
2

log(X3|Qk|
−1)

U = Ũ +
1
8

log(X3|Qk|
−1), V = Ṽ +

1
8

log(X3|Qk|
−1),

dρ =
√

X3|Qk|
−1dρ̃, X ≡

√
4q2

c − 3QcQk,

(3.31)

together with the analogous ones for aJ , bJ , and bX in Eq. (3.11), S4 factorizes into a
functional of the fields and an overall factor that only depends on the charges. Since
we are only interested in ratios of masses, we can therefore put in the numerical
computations Qc = 1/3, Qk = −1 and qc = 0 without loss of generality.

The second point concerns the boundary conditions used for the fluctuations. Fol-
lowing Section 3.2.3, we will impose Eq. (3.27) and Eq. (3.28) for the spin-0 and spin-2
modes, respectively, at an IR cutoff τ = τI , and make sure that the calculation of the
spectrum converges to the physical result in the limit τI → −∞. In principle, one
should follow the analogous procedure in the UV, introducing a UV cutoff at τ = τU ,
and study the limit τU → ∞. However, we found that reaching high enough values of
the UV cutoff is numerically challenging, and because of this we took a different ap-
proach, namely to make use of the explicit UV expansions of the fluctuations, selecting
the subdominant modes. As noted in section 3.2.3, the two approaches agree in the
limit τU → +∞.
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3. Mass spectrum of gapped, non-confining theories with multi-scale dynamics

3.3.1. Tensor modes

In terms of the radial coordinate y, the equation of motion for the spin-2 fluctuations
Eq. (3.22) becomes[

∂2
y +

v(y − 2) − 6y
2(v − 2)

(
y2 − 1

)∂y +
HPv

4(v − 2)(y − 1)2(y + 1)
m2

]
e
µ
ν = 0. (3.32)

As promised, the dependence on Qk, Qc, qc enters only as a multiplicative factor in the
term containing m2 (through H and P).
In order to understand the boundary conditions in the UV, we expand the general

solution to Eq. (3.22) in the UV as

e
µ
ν(τ) = c̃µν ẽ

(UV)(τ) + cµν e
(UV)(τ),

ẽ
(UV)(τ) = 1 −

2β
(
b2

0 − 1
)

m2e−3τ/2

45γ2 +
4
(
2 − 7b2

0

)
m2e−2τ

45γ2

−
8
(
21b2

0 − 1
)

m2e−5τ/2τ

315βγ2 + O(e−3τ),

e
(UV)(τ) = e−5τ/2 +

20e−3τ

3β
+

240e−7τ/2

7β2 + O(e−4τ),

(3.33)

where c̃µν and cµν are constants associated with the dominant and subdominant modes,
respectively. Imposing the boundary condition Eq. (3.28) at finite cutoff τ = τU leads
to

c̃µν =
75γ2e−τU

2β
(
b2

0 − 1
)

m2
cµν + O(e−3τU/2), (3.34)

and hence in the limit of τU → ∞, the subdominant modes are automatically selected.
In the numerical computation, we thus impose directly

e
µ
ν(τU) = cµν e

(UV)(τU) (3.35)

as the boundary condition in the UV. Conversely, in the IR we impose Eq. (3.28) at
τ = τI . Next, we evolve Eq. (3.22) from the IR and UV, and match the solutions (and
their derivatives) at an intermediate value of τ = (τI + τU) /2. The values of m2 for
which the solutions can be matched give us the spectrum. As a final step, we make
sure that the spectrum converges as τI → −∞ and τU → +∞.
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Figure 3.2.: Mass spectrum m of spin-2 states as a function of τ∗ normalized to the heaviest
state included in the plot, compared to the spin-2 spectrum of B OP

8 (red, left) and B conf
8 (blue,

right).

The resulting spectrum as a function of τ∗ is shown in Figure 3.2. For the numerics,
we used τI = min(−2, τ∗ − 6), τU = max(5, τ∗ + 7). We have checked that these
IR (UV) cutoffs are sufficiently low (high) for the spectrum to have converged to the
physical result. As can be seen, there is a mass gap above which a tower of states
appears. We have chosen to normalize the plot in such a way that the spacing of the
heaviest modes remains the same as τ∗ is varied in order to reflect the fact that the UV
physics is the same for all the solutions. Conversely, the lowest lying states, which
are sensitive to IR physics, show a slight dependence on τ∗, becoming lighter as it is
increased. In the limits of τ∗ → ±∞, the spectra corresponding to the B OP

8 and B conf
8

backgrounds are recovered.
In order to gain further intuition, let us rewrite Eq. (3.22) so that it takes the

Schrödinger form. After a change of radial coordinate dρ = eAdz̃ and a rescaling
e
µ
ν = e−Aeµν, we obtain(

∂2
z̃ −Vs(z̃) + m2

)
eµν = 0, Vs(z̃) = (∂z̃A)2 + ∂2

z̃ A. (3.36)

In Figure 3.3, we plot the potentialVs as a function of z̃ for a few different backgrounds,
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3. Mass spectrum of gapped, non-confining theories with multi-scale dynamics

compared to the result obtained for the B conf
8 and B OP

8 . Note that to make this compar-
ison in the τ∗ → ±∞ limits, one has to take care to rescaleVs and z̃ by multiplying by
α ≡ e2τ∗ to the appropriate power (effectively choosing the units in which to measure).5
As can be seen, the resulting potentials are box-like, leading to a gapped and discrete
spectrum.
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Figure 3.3.: The Schrödinger potential for a few different values of τ∗ compared with the result
for B OP

8 (red) and B conf
8 (blue).

3.3.2. Scalar modes

The scalar fluctuations satisfy the linearized equation of motion given in Eq. (3.29).
The general solution can be expanded in the UV as

a
a(τ) = c̃i ã

(UV)a
i (τ) + ci a

(UV)a
i (τ) . (3.37)

Here, c̃i and ci are constants (i = 1, · · · , 6) associated with six dominant modes ã(UV)
i (τ)

and six subdominant modes a(UV)
i (τ). Out of the dominant modes, there is one that

starts at order z−5, one at order z−4, two at order z0, and two at order z, while the six
subdominant modes start at orders z3, z4, z5, z6, z8, and z10, respectively. In order to
select the subdominant modes, we hence impose the UV boundary condition

a
a(τU) = ci a

(UV)a
i (τU) . (3.38)

After incorporating the boundary conditions — Eq. (3.27) in the IR and Eq. (3.38)
in the UV — we evolve Eq. (3.29) from both sides and match at an intermediate value
5See also Section 7 of [1].
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of τ. In order to perform this matching, we use the midpoint determinant method [36].
More precisely, we form the 12 × 12 matrix

M(τ; m2) =

(
a(IR)(τ) a(UV)(τ)
∂τa

(IR)(τ) ∂τa
(UV)(τ)

)
, (3.39)

where a(IR) (a(UV)) is a 6 × 6 matrix obtained by putting next to each other the column
vectors corresponding to six linearly independent solutions that satisfy the boundary
conditions in the IR (UV). The spectrum is given by those values of m2 for which
detM(τ; m2) = 0, in which case there exists a solution which can be written both as a
linear combination of the solutions evolved from the IR and the UV. For the purpose of
the numerics, we chose to evaluate detM at an intermediate value of τ = (τI + τU)/2.
Finally, we make sure that the spectrum converges in the limits τI → −∞ and τU → ∞.

Figure 3.4 shows the scalar spectrum as a function of τ∗. The normalization is the
same as that for the spin-2 spectrum in Figure 3.2, and we have also used the same
values of the IR and UV cutoffs, namely τI = min(−2, τ∗−6) and τU = max(5, τ∗+7).
For large values of τ∗, the spectrum approaches that of the B conf

8 background. It is
interesting that the heavier states in this limit seem to come in groups of six. This may
be due to the fact that these states are mostly sensitive to the UV D2-brane geometry,
which is simpler than the full solution. Conversely, for small values of τ∗, the spectrum
approaches the one corresponding to the B OP

8 solution. In this case, the theory flows
close to the OP fixed point, and hence the B OP

8 background is valid as an effective
theory up to high energy scales. In this limit we observe that certain low-lying states
become approximately degenerate. Presumably, this is due to an enhancement of
symmetry that takes place in the IR of these flows. Indeed, the S 3 of the internal
geometry is not squashed in the B OP

8 solution, which leads to an approximate S O(4)
symmetry enhancement in the IR of flows that pass very close to the OP fixed point.
This same symmetry is the one that allows for a consistent truncation of the sigma
model from six to four scalars that admits the B OP

8 background as a solution. This
truncation is described in Section 7.2 of [51], when the internal manifold is taken to
be the seven-sphere. Finally, we note that despite the fact that the theory can be made
to flow arbitrarily close to the IR fixed point of OP as τ∗ → −∞, there is never a
parametrically light state in the spectrum. We will explore this issue further in the
following sections.
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Figure 3.4.: Mass spectrum m of spin-0 states as a function of τ∗ with the same normalization as
for Figure 3.2. Also shown is the spin-0 spectrum of B OP

8 (from left: in green for four scalars,
in red for six scalars) and B conf

8 (blue, right).

74



3.3. Mass spectrum

3.3.3. Hard-wall cutoff in the IR

In this section, we perform a numerical study of the scalar spectrum as a function
of the IR cutoff τI , focusing in particular on when a light state is present and which
dynamics is responsible for lifting its mass. A similar study investigating cutoff effects
was carried out in [52], where it was argued that gauge-gravity duality can be used to
facilitate the interpretation of lattice data.

Figure 3.5 shows the dependence of the scalar spectrum as a function of τI for a
few different backgrounds. Consider first the top-left panel, for which τ∗ = −4, hence
describing a flow that comes close to the OP fixed point. As τI is varied, there are three
different behaviours.

• For small values of τI , the spectrum coincides with the physical spectrum ob-
tained in the limit τI → −∞.

• As τI is increased such that the IR cutoff is within the region close to AdS, there
is a state whose mass decreases and becomes light.

• Increasing τI further such that the IR cutoff is located within the far-UV region
of the background, corresponding to the D2-branes, the mass of the light state
again is lifted. However, it is still parametrically light compared to the mass of
the second lightest state.

There are a number of examples in the literature analogous to the second case.
In these examples an RG flow that passes near an IR fixed point is modelled by the
introduction of a hard-wall in an AdS geometry, which typically leads to the presence
of a light state in the spectrum [47, 39]. As can be seen in our model, when τ∗ is
increased, the effect becomes less pronounced. Indeed, in the bottom-right panel for
which τ∗ = 3, describing a flow that is close to the B conf

8 background, the intermediate
region with a light state disappears altogether.
It may seem puzzling that in the third case, when τI is located in the far-UV region of

the background, there is also a parametrically light state. This is due to the fact that in
this region the four-dimensional metric exhibits hyperscaling violation with coefficient
θ = −1/3, as demonstrated by Eq. (3.20). Since AdS corresponds to θ = 0, we expect
that for small |θ| there will be a light dilaton which becomes exactly massless in the limit
θ → 0. In appendix A, we study a simple toy model consisting of a single scalar field
with a potential chosen in such a way that there exist hyperscaling violating solutions
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(see also [53]). Performing a perturbative analysis of the spin-0 spectrum, we find that
there is a light state whose mass m0 is given, to leading order in θ, by

m0

m1
=

1
π

√
−3θ

2
, (3.40)

where m1 is the mass of the lightest spin-2 state. This estimate agrees well with the
numerical result for the relevant case θ = −1/3 (see Figure A.1 of appendix A). As can
be seen in Figure 3.5, for large τI , the mass of the lightest spin-0 state approaches the
value captured by this toy model (the dashed blue line).
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Figure 3.5.: Mass spectrum m of spin-0 states as a function of the IR cutoff τI , for a few
backgrounds with different values of τ∗. The top-left panel has τ∗ = −4, the top-right panel
has τ∗ = −3, the bottom-left panel has τ∗ = −2, and the bottom-right panel has τ∗ = 3. The
dashed blue line corresponds to the mass of the lightest state in the hyperscaling violating toy
model of appendix A. All the plots are normalized to the mass of the lightest spin-2 state.
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3.4. Conclusions and Discussion

We performed a numerical study of the spectrum of spin-0 and spin-2 glueballs in
a one-parameter family of three-dimensional theories by making use of their dual
supergravity descriptions. Working within a consistent truncation to a sigma model
coupled to four-dimensional gravity allowed us to utilize the gauge-invariant formalism
to treat the scalar and tensor fluctuations in the bulk. As the parameter τ∗ is varied, the
spectrum interpolates between the two limiting cases corresponding to the confining
solution B conf

8 (for large τ∗) and the solution given by B OP
8 (for small τ∗).

The OP fixed point possesses an exact moduli space [19], and small-τ∗ flows exhibit
quasi-conformal behaviour. Nevertheless, we did not find a light pseudo-dilaton in the
physical spectrum. This can be understood as follows. The geometry of small-τ∗ RG
flows consists of three parts. The first part takes the theory from the UV corresponding
to the D2-branes down to the vicinity of the OP fixed point, following closely the
solution B∞8 . The second part consists of a region where the geometry is approximately
AdS, and the dual theory remains close to the OP fixed point. From the point of view
of this fixed point, how long it stays close is determined by the size of an irrelevant
operator. The smaller τ∗ is, the smaller this irrelevant operator is. The third and final
part describes the flow from the vicinity of the OP fixed point to the deep IR where the
theory develops a mass gap. For small τ∗, this final part of the RG flow is very well
captured by the B OP

8 solution. The key point is that, as mentioned in the last paragraph
of Sec. 3.2.2, the RG flow described by the B OP

8 solution is triggered by both sources
and VEVs of comparable sizes. In other words, the magnitudes of the explicit and
the spontaneous breakings of scale invariance are similar. It would be interesting to
investigate whether more general flows exist that start at the OP fixed point and for
which the ratio between the spontaneous and the explicit breakings of scale invariance
can be made arbitrarily large.
The above interpretation is further supported by the study of the spectrum as a

function of the location of a hard-wall IR cutoff. As long as this IR cutoff remains
inside the AdS region corresponding to the OP fixed point, there is a light state (for
small τ∗) in the scalar spectrum. However, when the IR cutoff is taken to be close to
the end-of-space, this state ceases to be light, hence showing that it is the physics of
the deep IR that lifts its mass.
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4. Two-dimensional gauge theories with
unquenched flavour

4.1. Introduction

The gauge theory living on a stack of D-branes in flat space, as reviewed in section 1.2,
contains exclusively fields transforming in the adjoint representation. Substituting the
flat transverse space by more complicated geometries diversifies the possible gauge
theory duals, for instance changing the gauge group to a quiver and including new
degrees of freedom transforming in more complicated representations. Examples of
this phenomenon are the models studied in the previous chapters, conjectured to be
dual to a two-sites quiver with fields transforming in the bifundamental representation.
One of the main purposes of the holographic program is to learn about the properties

of gauge theories at strong coupling, most notably QCD. Even if an exact gravitational
dual ofQCD seems out of reach, it is desirable that the holographicmodel studied shares
as many properties as possible with it. In particular, quarks are an essential piece in
our understanding of the strong interaction. These transform in the fundamental
representation of the gauge group, so the simplest D-brane constructions discussed
above do not contain degrees of freedom that could be interpreted as such. To remedy
this situation, new stacks of branes with their respective modes need to be included
[54].
The simplest constructions involve intersecting stacks of Dp and D(p + 4)-branes.

The strings attached between both sets transform in the fundamental representation of
the group, so they can act as the quarks (or electrons in lower dimensions) of the gauge
theory. Unfortunately solutions describing brane intersections of this type are difficult
to find due to the Partial Differential Equations involved.1 A possible way out is to treat
the additional stack of N f D(p+4)-branes in the probe approximation, that is, to ignore
their effect in the underlying geometry generated by the Nc colour Dp-branes. In the

1A notable exception is the solution in [55]. This is however very difficult to generalise in terms of
temperature, chemical potentials etc.
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4. Two-dimensional gauge theories with unquenched flavour

gauge theory dual this would mean ignoring the quantum effects involving the quarks,
since we are keeping N f finite in the large-N limit. This is the quenched approximation,
in which N f /Nc → 0.
Even if we were not interested in the physics not captured by this approximation,

in some circumstances this simplification is not even consistent, as emphasized for
instance in [56, 23]. We should therefore consider the full backreacted system, so that
in the gauge dual the flavour degrees of freedom are unquenched. This corresponds to
the Veneziano limit, in which the ratio N f /Nc is kept finite.

To circumvent technical difficulties, inmany studies the flavour branes are distributed
or smeared along some of the directions transverse to the colour branes. This approach,
reviewed in detail in [57], retains at least part of the symmetries already present in
the geometry, reducing the Partial to Ordinary Differential Equations. In this way,
unquenched flavour was incorporated to four-dimensional gauge theories in [58] as a
D3/D7 system. Similarly, flavoured three-dimensional gauge theories were constructed
in [23] in the form of a D2/D6 arrangement. In this chapter, we will find the gravity
duals to two-dimensional gauge theories in the presence of flavour by solving the
smeared D1/D5 intersection.
In all these constructions, the geometric properties of the internal geometry play

an important role. Among other things they control the amount of supersymmetry
preserved by the solution. The flavoured backgrounds found in [58] and [23] preserve
minimal supersymmetry in their respective dimensions. For the D1/D5 system the
internal geometries are seven-dimensional so, as we will see, we have at our disposal
several types on manifolds respecting different amounts of supersymmetries, giving
rise to a rich set of solutions.
Gauge theories in dimensions lower than four are superrenormalizable and asymp-

totically free, so their UV can be studied perturbatively. On the other hand, these
models are generically strongly coupled in the IR and frequently the endpoint of the
RG flow is a conformal field theory. This was the case for the three-dimensional gauge
theories in [23] at it is also the case here. Thus, the solutions we construct describe
RG flows from a (super)Yang–Mills gauge theory in the UV to a fixed point in the IR,
triggered by the inclusion of fundamental degrees of freedom.
The IR fixed points can of course be detached from the rest of the flow and studied

independently. On the gravity side these points correspond to AdS geometries, so as
a byproduct of our analysis we have found infinite new families of AdS3 solutions in
type IIB supergravity in the presence of D5-brane sources, supported exclusively by
three-form flux.
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4.2. Internal geometries

There are several possibilities for the space transverse to theD1-branes depending on the
amount of supersymmetry that one aims to preserve. This is analogous to the situation
for the space transverse to M2-branes (see [59]) in eleven-dimensional supergravity
and is due ultimately to various types of seven-dimensional geometries admitting
the Killing spinors that are mandatory for supersymmetry. The possible internal
geometries, together with the supersymmetry they preserve and their corresponding
cones (acting as transverse spaces) with their holonomy is reflected in the following
table:

Geometry Supersymmetry Cone Holonomy

Round sphere (8, 8) R8 I

Tri-Sasakian (0, 3) hyperKähler Sp(2)

Sasaki–Einstein (0, 2) Calabi–Yau SU(4)

Weak-G2 (0, 1) Spin(7) Spin(7)

Table 4.1.: Possible internal geometries and some of their properties.

Placing a stack of D1-branes at the tip of these cones and taking the decoupling limit
as in [12] one obtains a two-dimensional gauge dual preserving the corresponding
amount of supersymmetry. The gauge coupling in two dimensions has dimensions
of energy, so these gauge theories are superrenormalizable and asymptotycally free.
Perturbative methods apply in the far UV. The D1-brane solution is a faithful gravity
dual in the energy interval

√
λN−5/6

c � U �
√
λ. Below this range the dilaton grows

large and we need the S-dual description in terms of F1-strings. All this was explained
in more detail in section 1.6.

We present in this section some details of the internal geometries involved in our
construction. We begin with a study of tri-Sasakian manifolds, the most prominent
example being S 7, since as we will explain the weak-G2 and Sasaki–Einstein cases can
be recovered as special limits of the former.
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4. Two-dimensional gauge theories with unquenched flavour

4.2.1. Tri-Sasakian manifold

Consider a seven-dimensional Riemannian manifold admitting a tri-Sasakian structure
[60]. This means that we can write the metric as an SO(3) fibration over a four-
dimensional quaternionic Kähler base,

ds2
7 = ds2

4(QK) +

3∑
i=1

ηi ⊗ ηi . (4.1)

The vielbeins ηi parametrising the fiber can be seen as globally-defined one-forms
satisfying the differential conditions

dηi = 2Ji − εi jkη j ∧ ηk, dJi = 2εi jkJ j ∧ ηk. (4.2)

Here, Ji is a triplet of globally defined two-forms such that g−1Ji is a triplet of almost
complex structures on the quaternionic Kähler base.
For our purposes, the crucial property of a seven-dimensional tri-Sasakian manifold

is that it admits three Killing spinors solving the equation

∇Xψ =
1
2

X · ψ, (4.3)

where the 1/2 factor comes from normalizing the metric in such a way that the scalar
curvature is R = 42, and X ·ψ is a Clifford product. These spinors can be used to build
ten-dimensional spinors in type IIB supergravity and find supersymmetric solutions.
Let us characterise them in more detail. We introduce vielbeins ds2

7 = ẽAẽBη̃AB on
the tri-Sasakian manifold and split them according to the base and fiber

ẽa = êa, (a = 1, 2, 3, 4)

ẽi = ηi, (i = 5, 6, 7)
(4.4)

where êa are vielbeins on the quaternionic Kähler. The associated spin connection is

ω̃abc = ω̂abc, ω̃aib = ω̃iab = −Ji
ab, ω̃i jk = −εi jk. (4.5)

Using this, one finds that Killing spinors ψ on a tri-Sasakian manifold satisfy

∂̃aψ +
1
4
ω̂abcγ̃

bcψ =
i
2
γ̃aψ +

1
2

Ji
abγ̃

ibψ, (4.6a)

∂̃iψ =
i
2
γ̃iψ +

1
4

Ji
abγ̃

abψ +
1
4
εi jkγ̃

jkψ, (4.6b)

where γ̃A are the gamma matrices of the seven-dimensional Clifford algebra.
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4.2.2. Sasaki-Einstein manifold

A (2n + 1)-dimensional manifold is Sasaki-Einstein if it is endowed with a single
Sasakian structure (instead of three, in contrast with the tri-Sasakian case). As a
consequence, it can bewritten as aU(1)fibration over a 2n-dimensional Kähler-Einstein
base. In particular, for seven dimensions

ds2
7 = ds2

6(KE) + η2, (4.7)

where
dη = 2J (4.8)

corresponds to theKähler form in theKähler-Einstein base. A Sasaki-Einsteinmanifold
possesses additionally a globally defined holomorphic three-form Ω satisfying

dΩ = 4iη ∧Ω. (4.9)

The volume form of the manifold can be written as

Ω7 =
1
3!
η ∧ J ∧ J ∧ J =

i
8
η ∧Ω ∧ Ω̄. (4.10)

We can build a Sasaki-Einsten manifold from a tri-Sasakian one by focusing on a
single Sasakian structure from the triplet it has. This can be achieved with a suitable
selection of the globally defined forms. A possible choice is

η = −η1, (4.11)
J = −J1 + η2 ∧ η3, (4.12)
Ω = J2 ∧ (η2 + iη3) − J3 ∧ (η3 − iη2). (4.13)

The desired properties (4.8) and (4.9) then follow straightforwardly from (4.2). Let
us stress that not every seven-dimensional Sasaki–Einstein manifold descends form a
tri-Sasakian parent through this construction.

4.2.3. Weak-G2 manifold

It is known that every tri-Sasaki admits ametric that does not have tri-Sasakian structure
but weak-G2. That metric is

ds2
7 =

9
5

ds2
4(QK) +

9
25

3∑
i=1

ηi ⊗ ηi. (4.14)
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The main difference with respect to (4.1) is the squashing factor of 1/5 between the
fibre and the base, while the overall factor is adjusted so that the scalar curvature is
R = 42.
A seven-dimensional manifold with G2 structure is distinguished by the existence of

a globally defined three-form, called the associative form, that (at least locally) can be
written as

ϕ3 = −e125 − e345 − e136 + e246 − e147 − e237 + e567. (4.15)

This form defines a calibration. Its Hodge dual ?7 ϕ3, called the coassociative form,
also provides a calibration. If both are closed then the manifold has G2 holonomy. The
failure in closing defines the torsion classes and weak-G2 is selected by the requirement

dϕ3 = 4?7 ϕ3 ≡ 4ϕ̃4. (4.16)

When the weak-G2 structure is inherited from the tri-Sasakian one, the associative form
can be written as

ϕ3 =
27
25

(
J1 ∧ η1 + J2 ∧ η2 + J3 ∧ η3

)
+

27
125

η1 ∧ η2 ∧ η3, (4.17)

so that the crucial property (4.16) again follows from (4.2).
The eight-dimensional cone over a weak-G2 manifold,

ds2
8 = dr2 + r2ds2

7(WG2), (4.18)

has Spin(7) holonomy. These kind of manifolds possess a calibration four-form called
Cayley form, that is closed and selfdual. It can be built from the associative form in
the weak-G2 base as

Ψ4 = r3dr ∧ ϕ3 + r4ϕ̃4. (4.19)

Every weak-G2 manifold admits a single Killing spinor (instead of three, as the
tri-Sasaki). When descending from a tri-Sasaki as detailed, the Killing spinor equation
becomes

∂̃aψ +
1
4
ω̂abcγ̃

bcψ =
i
2
γ̃aψ +

1
6

Ji
abγ̃

ibψ, (4.20a)

∂̃iψ =
i
2
γ̃iψ +

1
12

Ji
abγ̃

abψ +
5

12
εi jkγ̃

jkψ, (4.20b)

with the same notation as above. Again, we should mention explicitly that not every
weak-G2 is the result of squashing a tri-Sasakian metric.
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4.3. D1-branes on a tri-Sasakian manifold

Let us now consider a generic tri-Sasakianmanifold as the internal space for a D1-brane
ansatz. The SO(3) fibration allows us to introduce different squashing modes. In string
frame, we take the following ansatz for the metric2

ds2
10 = h−1/2dx2

1,1 + h1/2

dr2 + e2gds2
4(QK) +

3∑
i=1

e2 fiηi ⊗ ηi

 . (4.21)

The solution is also endowedwith a Ramond-Ramond three-form supporting themetric

F3 = Qc ?Ω7, (4.22)

being Ω7 the volume form of the internal manifold. The constant Qc is the Page charge
associated to the D1-branes. It is therefore quantised and related to the number of
branes Nc as

Qc =
(2π`s)6gs

V7
Nc, (4.23)

with V7 =
∫

Ω7 the volume of the internal manifold. The parameter Nc is also expected
to give the rank of the gauge group in the field theory dual.
To obtain supersymmetric solutions we must force the variations of the fermions in

type IIB supergravity, that is, dilatino and gravitino, to vanish. In our conventions (see
appendix B) these variations read

δλ =
i
2

ΓA∂AΦεc −
1
4

eΦ /F3ε, (4.24a)

δΨA = ∇Aε +
i
8

eΦ /F3ΓAε
c, (4.24b)

where the slash notation means contracting all indices with gamma matrices. The
ten-dimensional gamma matrices ΓA are built from the seven-dimensional ones as

Γµ = γµ ⊗ 18 ⊗ σ
1, (µ = 0, 1, 2)

Γa = 12 ⊗ γ̃
a ⊗ σ2, (a = 3, 4, 5, 6)

Γi = 12 ⊗ γ̃
i ⊗ σ2. (i = 7, 8, 9)

(4.25)

2From the six possible squashings respecting the structure, S i jη
i ⊗ η j with S i j = S (i j), we have chosen

to keep just the diagonal part for simplicity. Including off-diagonal terms is straightforward and has
interesting geometric consequences, for instance the construction of new Spin(7) manifolds. See [61]
for the case of the seven-sphere.

85



4. Two-dimensional gauge theories with unquenched flavour

Here γµ verify a three-dimensional Clifford algebra and σI are the Pauli matrices. A
ten-dimensional chiral spinor ε can be built from the chiral Killing spinors ψ on the
tri-Sasaki as

ε = ξ ⊗ ψ ⊗ (1, 0), (4.26)

where ξ is a three-dimensional spinor in the external directions. In order to determine
the covariant derivative of ε we need to compute the spin connection. Introducing the
vielbeins

Eα = h−1/4dxα, E2 = h1/4dr, Ea = h1/4egẽa, Ei = h1/4e fi ẽi (4.27)

the spin connection is

ωα2 = −h−1/4 h′

4h
ηαβEβ,

ωa2 = −h−1/4
(

h′

4h
+ g′

)
δabEb,

ωab = ω̂ab − h−1/4e fi−2gJi
abEi,

ωi2 = −h−1/4
(

h′

4h
+ f ′i

)
δi jE j,

ωia = h−1/4e fi−2gJi
abEb,

ω jk = h−1/4εi jk
(
e fi− f j− fk − e f j− fk− fi − e fk− fi− f j

)
Ei.

(4.28)

with α = 0, 1 and the rest as in (4.25). Taking the variation of the dilatino and one
of the components of the gravitino along the D1-brane we find that they vanish if the
following differential equations hold

Φ′ =
h′

2h
, (4.29)

h′ = −Qce− f1− f2− f3−4g, (4.30)

together with the projector
Γ01ε = iεc, (4.31)

characteristic of the D1-brane. Notice that we can integrate equation (4.29), giving

eΦ = h1/2, (4.32)
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where we fixed gs = 1. Using these results in the base and fiber components of
the gravitino together with the Killing spinor conditions (4.6), we find the following
equations

g′ = e−2g
(
α1e f1 + α2e f2 + α3e f3

)
− e−g(α1α2α3 + α1 + α2 + α3), (4.33)

f ′1 = −2α1e f1−2g + α1α2α3
(
e f1− f2− f3 − e f2− f3− f1 − e f3− f1− f2

)
+ 2α1e− f1 , (4.34)

f ′2 = −2α2e f2−2g + α1α2α3
(
−e f1− f2− f3 + e f2− f3− f1 − e f3− f1− f2

)
+ 2α2e− f2 , (4.35)

f ′3 = −2α3e f3−2g + α1α2α3
(
−e f1− f2− f3 − e f2− f3− f1 + e f3− f1− f2

)
+ 2α3e− f3 , (4.36)

where we have imposed the projectors

Γ2734ε = α1ε, Γ2835ε = α2ε, Γ2936ε = α3ε, Γ3456ε = −ε. (4.37)

The constants must satisfy α2
i = 1 for consistency. After plugging these equations in

the second order equations of motion coming from type IIB supergravity, we find that
they are solved if

α1α2α3 + α1 + α2 + α3 = 0. (4.38)
A possible choice is α1 = α2 = −α3 = 1, to which we will stick in the following. This
yields the final BPS equations

g′ = e−2g
(
e f1 + e f2 − e f3

)
, (4.39)

f ′1 = −2e f1−2g −
(
e f1− f2− f3 − e f2− f3− f1 − e f3− f1− f2

)
+ 2e− f1 , (4.40)

f ′2 = −2e f2−2g −
(
−e f1− f2− f3 + e f2− f3− f1 − e f3− f1− f2

)
+ 2e− f2 , (4.41)

f ′3 = 2e f3−2g −
(
−e f1− f2− f3 − e f2− f3− f1 + e f3− f1− f2

)
− 2e− f3 , (4.42)

supplemented by the projectors (4.31) and (4.37). These five projectors reduce the
amount of preserved supercharges to 32/25 = 1 for each spinor of the form (4.26).
Since there are three chiral Killing spinors ψ on the tri-Sasakian manifold the resulting
supersymmetry is the expected (0, 3) stated in Table 4.1.

A particular solution to these equations is

eg = e f1 = e f2 = e f3 = r, h =
Qc

r6 (4.43)

corresponding to the decoupling limit of the D1-brane on a hyperKähler cone. When
the tri-Sasaki is taken to be the seven-sphere, this solution describes D1-branes in flat
space and supersymmetry is enhanced to (8, 8).

Before discussing how the Sasaki–Einstein and weak-G2 cases can be recovered from
these results, let us incorporate flavour into the system.
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4.4. N = (0, 3) theories with flavour

The procedure to add flavour to our theories involves a new set of branes, in this case a
stack of N f D5-branes. These share the gauge directions with the D1-branes, extending
in the radial coordinate and wrapping three directions of the internal manifold. We
will take into account the backreaction of these flavour branes into the geometry,
corresponding to the Veneziano limit of the gauge theory dual. Moreover, the branes
will be smeared along some of the internal directions so that the distribution preserves
(part of) the original symmetries of the background. In this way the resulting problem
involves Ordinary instead of Partial Differential Equations.
The presence of the brane sources is described through the DBI plus Wess-Zumino

(WZ) action (we work in string frame)

S sources = −TD5

∫
e−Φ(K −C6) ∧ Ξ, (4.44)

where C6 is the gauge potential dual to C2 according to F7 = −? F3, K is a suitable
calibration form and Ξ is the smearing form describing the continuous distribution of
branes. The only efect of the WZ piece, that describes the magnetic coupling of C2 to
the D5-branes, is to modify the Bianchi

dF3 = H ∧ F1 + 2κ2TD5Ξ. (4.45)

In addition the DBI term modifies the dilaton and Einstein’s equations. The whole
problem then reduces to find the correct smearing and calibration forms. For that we
can exploit the results in the previous section.
First of all, we can write the Ramond-Ramond three-form sourced by the D5 branes

as
Ff

3 = Q1J1 ∧ η1 + Q2J2 ∧ η2 + Q3J3 ∧ η3 + Qη η
1 ∧ η2 ∧ η3, (4.46)

where the superindex ‘f’ stands for flavour. This is the most general three-form that
can be constructed from the available globally defined forms and compatible with the
symmetries of the metric.3 The constants Qi and Qη are Page charges associated to
the D5-branes and should be quantised, counting the number of flavours in the gauge
theory dual. Furthermore, we rename the three-form sourced by the D3-branes to

Fc
3 = Qc ?Ω7, (4.47)

3Had we allowed for non-diagonal squashing, additional terms would have appeared.
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4.4. N = (0, 3) theories with flavour

indicating that this piece comes from colour branes. Then the whole system consists
of the metric (4.21), the dilaton Φ and the three-form F3 = Fc

3 + Ff
3. The smearing

form is then dictated by the violation of the Bianchi identity for Ff
3,

2κ2TD5Ξ =

3∑
I=1

QI JI ∧ JI + (−Q1 + Q2 + Q3 + Qη)J1 ∧ η
2 ∧ η3+

+ (Q1 − Q2 + Q3 + Qη)J2 ∧ η
3 ∧ η1 + (Q1 + Q2 − Q3 + Qη)J3 ∧ η

1 ∧ η2.

(4.48)

On the other hand, the calibration form can be constructed from the supersymmetry
spinors as

K =
1
6!
ε†ΓA1···A6εEA1 ∧ · · · ∧ EA6 , (Ai = 0, . . . , 9) (4.49)

Using the projectors it is simple to identify which of the components are non-vanishing.
The calibration form must satisfy the calibration condition

d(e−ΦK) = −? Ff
3. (4.50)

Incorporating the new flavour piece in F3 into the fermionic variations we can deduce
a new set of BPS equations

Λ′ = eΛ
[
−2e−2g

(
Q1e− f1 + Q2e− f2 − Q3e− f3

)
+ Qηe− f1− f2− f3

]
, (4.51)

h′ = eΛ
{
−Qce− f1− f2− f3−4g + h

[
2e−2g

(
Q1e− f1 + Q2e− f2 − Q3e− f3

)
− Qηe− f1− f2− f3

]}
,

g′ = e−2g
(
e f1 + e f2 − e f3

)
−

eΛ

2

(
Q1e− f1−2g + Q2e− f2−2g − Q3e− f3−2g − Qηe− f1− f2− f3

)
,

f ′1 = 2e− f1 − eΛ−2g
(
Q2e− f2 − Q3e− f3

)
− 2e f1−2g +

(
−e f1− f2− f3 + e f2− f3− f1 + e f3− f1− f2

)
,

f ′2 = 2e− f2 − eΛ−2g
(
Q1e− f1 − Q3e− f3

)
− 2e f2−2g +

(
e f1− f2− f3 − e f2− f3− f1 + e f3− f1− f2

)
,

f ′3 = −2e− f3 − eΛ−2g
(
Q1e− f1 + Q2e− f2

)
+ 2e f3−2g −

(
e f1− f2− f3 + e f2− f3− f1 − e f3− f1− f2

)
,

where eΦ = h1/2eΛ. The projectors coincide with those in the absence of flavour,
equations (4.31) and (4.37). Using them, it is possible to deduce the calibration form
and write it in terms of the globally defined forms

K = −E01 ∧ Φ4, (4.52)
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4. Two-dimensional gauge theories with unquenched flavour

where

Φ4 =
1
2
α1α2α3e4gJ1 ∧ J1 + e f1+ f2+ f3dr ∧ η1 ∧ η2 ∧ η3+

+
1
2
εi jk

(
α jαke fi+2gdr ∧ Ji ∧ ηi + αie f j+ fk+2gJi ∧ η j ∧ ηk

)
.

(4.53)

This intimidating set of equations has a particular truncation in which the system
is integrable. Fixing f1 = f2 = f3 = g, which requires the charges to be related as
Q1 = Q2 = −Q3 = −Qη, we get the equations

Λ′ = 7QηeΛ−3g, (4.54)
g′ = e−3g(e2g + 2QηeΛ), (4.55)
h′ = −eΛ−7g(Qc + 7Qηe4gh). (4.56)

The system can be analytically solved in a new radial coordinate ρ defined as

− Qηe3g d f
dr
≡

d f
dρ
, (4.57)

the solution being

eΛ =
1

7ρ + c1
, (4.58)

e2g =
3Qη

2
[
(7ρ + c1) − c2(7ρ + c1)4/7] , (4.59)

h =
Qc

9Q3
η

(7ρ + c1)
[
9c3 + 4c2

2(7ρ + c1)1/7 − 2c2(7ρ + c1)4/7 +
4
7

(7ρ + c1)
]
. (4.60)

The three arbitrary constants can be fixed by imposing D1-brane UV asymptotics, in
the decoupling limit, at ρ→ 0 (r → ∞)

c1 = 1, c2 = 1, c3 = −
2
7
. (4.61)

On the other end of the radial direction, corresponding to the infrared of this flow
(ρ→ ∞, r → 0), we recover an AdS solution

eΛ =
1

7ρ
, e2g =

3Qη

14ρ
, h =

28Qc

9Q3
η

ρ2, eΦ =

Qc

Q3
η

1/2 2

3
√

7
. (4.62)

Thus, this gravitational background describes, in the dual field theory, an RG flow
from a Yang–Mills type gauge theory in the UV to an IR fixed point, triggered by the
inclusion of fundamental degrees of freedom.
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4.5. Theories with less supersymmetry

As explained, it is possible to reduce the amount of preserved supersymmetry by
changing the internal manifold. In this section we will examine the cases of Sasaki-
Einstein manifolds, that gives N = (0, 2) supersymmetry, and weak-G2 manifolds,
preserving the minimal N = (0, 1).

4.5.1. N = (0, 2) theories and Sasaki-Einstein manifolds

As explained in section 4.2.2, a Sasaki-Einstein manifold admits three globally defined
forms η, J and Ω. Starting from our system describing D1-branes with a tri-Sasakian
internal manifold, we can build the structure by means of the identifications (4.11).
This allows us to deduce the desired results as a suitable limit of the equations already
obtained for the tri-Sasakian case. An appropriate ansatz for the metric is now

ds2
10 = h−1/2dx2

1,1 + h1/2
[
dr2 + e2gds2

6(KE) + e2 f η ⊗ η
]

(4.63)

which we can recover from (4.21) by setting f2 = f3 = g and f1 = f . Moreover, the
three-form sourcing the flavour branes has only one piece compatible with the current
Sasaki–Einstein structure, which is

Ff
3 = −Q f J ∧ η. (4.64)

We can restrict the ansatz for the tri-Sasakian case (4.46) by setting Q2 = Q3 = 0 and
Qη = −Q1 = −Q f . Then the smearing form (4.48) becomes

2κ2TD5Ξ = −Q f J ∧ J. (4.65)

Similarly, the calibration form reads

K = −E01 ∧

(
1
2

e4gJ ∧ J + η ∧ J
)
. (4.66)

The BPS equations can be derived from (4.51) by doing the aforementioned identi-
fications, yielding

h′ = −QceΛ− f−6g + 3Q f heΛ− f−2g, (4.67)
Λ′ = −3Q f eΛ− f−2g, (4.68)
g′ = e f−2g − Q f eΛ− f−2g, (4.69)
f ′ = 4e− f − 3e f−2g. (4.70)
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Figure 4.1.: RG flows in the system (4.67), in terms of the combinations Σ = Λ − 2g and
∆ = 2 f − 2g. The D1-brane corresponds to the horizontal line at ∆ = 0 while the AdS solution
is located at the green dot. The desired flows starts from ∆ = 0 at Σ → −∞ and ends at the
fixed point.

The projectors are the same, (4.31) and (4.37), but now the internal Killing spinors at
our disposal are restricted to two, so the supersymmetry preserved is just (0, 2). Notice
that even if these equations were derived as a limiting case of those in section 4.4, they
are valid for arbitrary seven-dimensional Sasaki-Einstein manifolds, including those
that cannot be obtained from a tri-Sasakian structure.
The simplest solution to these equations is an AdS geometry given by

eg =
√

6r, e f = 2r, eΛ =
8r2

Q f
, h =

Qc

108Q f r4 . (4.71)

This fixed point can act as the IR of an RG flow that starts from the D1-brane, exactly
as in the analytic solution described in the previous section, as seen in figure 4.1. The
gauge theory in the UV of this flow can be taken to be one of the quivers considered in
[62], modified with new couplings to fundamental matter that drive the flow towards
an IR conformal field theory.

92



4.5. Theories with less supersymmetry

4.5.2. N = (0, 1) theories and weak-G2 manifolds

Weak-G2 manifolds can be obtained by squashing a tri-Sasakian structure. This restricts
the supersymmetry to N = (0, 1) and modifies the equations characterising Killing
spinors from (4.6) to (4.20). It is a simple exercise to track the consequence of this in
the fermionic variations, resulting in the replacement of (4.33) by

g′ = e−2g(α1e f1 + α2e f2 + α3e f3) + e−g
(
α1 + α2 + α3

3
− α1α2α3

)
(4.72)

and

f ′1 = −2α1e f1−2g + α1α2α3
(
e f1− f2− f3 − e f2− f3− f1 − e f3− f1− f2

)
+

+
2
5

(α1 + 4α1α2α3)
(4.73)

and cyclic permutations. Condition (4.38) for the projectors is now

1
3

(α1 + α2 + α3) − α1α2α3 = 0, (4.74)

which is solved by α1 = α2 = α3 = ±1. The sign can be reabsorbed in the radial
coordinate, so we will chose without loss of generality +1.
The simplest solution to this system is the D1-brane over a weak-G2 manifold (which

can be taken to be for instance the squashed seven-sphere), with metric functions

eg =
3r
√

5
, e f1 = e f2 = e f3 =

3r
5

r, h =
3125Qc

13122 r6 . (4.75)

Remarkably, if instead we set

e f1 = a1, e f2 = a2, e f3 = a3, eg = 2b, (4.76)

we recover the equations labelled (8) in [63] describing Spin(7) eight-dimensional
manifolds, generalized to arbitrary weak-G2 manifolds as principal orbits. Indeed, the
BPS equations can be also obtained by imposing Ricci-flatness of the metric

ds2
8 = dr2 + e2gds2

4(QK) +

3∑
i=1

e2 fiηi ⊗ ηi (4.77)

together with closure and selfduality of the suitable Cayley form. This ensures that the
eight-dimensional manifold has Spin(7) holonomy.
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4. Two-dimensional gauge theories with unquenched flavour

Suppose that the weak-G2 manifold is taken to be the (squashed) seven-sphere.
There is a particular truncation to these equations, setting for instance f1 = f2, which
describes the seven-dimensional manifold as a S 3 fibered over a S 4, where the S 3 is
in turn seen as a S 1 fibered over a S 2. These are the metrics that we use in chapter
2, described by equations (2.28). This result can be recovered from the system we are
considering via the redefinitions

dr̄ = −(2Qk)−1e f3dr, e2g = 4e2 f̄−Λ, e2 f1 = e2 f2 = 4e2ḡ−Λ, e2 f3 = 4Q2
keΛ, (4.78)

with Qk < 0, where r̄, Λ, f̄ and ḡ here are to be identified with the radial coordinates
and functions there.
The equations in the presence of flavour can be found by repeating the process of

section 4.4 while using the new projectors (4.74). The resulting equations are

Λ′ = eΛ
[
2e−2g

(
Q1e− f1 + Q2e− f2 + Q3e− f3

)
+ Qηe− f1− f2− f3

]
, (4.79)

h′ = eΛ
{
−Qce− f1− f2− f3−4g − h

[
2e−2g

(
Q1e− f1 + Q2e− f2 + Q3e− f3

)
+ Qηe− f1− f2− f3

]}
,

g′ = e−2g
(
e f1 + e f2 + e f3

)
−

eΛ

2

(
Q1e− f1−2g + Q2e− f2−2g + Q3e− f3−2g + Qηe− f1− f2− f3

)
,

f ′1 = 2e− f1 + eΛ−2g
(
Q2e− f2 + Q3e− f3

)
− 2e f1−2g +

(
e f1− f2− f3 − e f2− f3− f1 − e f3− f1− f2

)
,

f ′2 = 2e− f2 + eΛ−2g
(
Q1e− f1 + Q3e− f3

)
− 2e f2−2g +

(
−e f1− f2− f3 + e f2− f3− f1 − e f3− f1− f2

)
,

f ′3 = 2e− f3 + eΛ−2g
(
Q1e− f1 + Q2e− f2

)
+ 2e f3−2g +

(
−e f1− f2− f3 − e f2− f3− f1 + e f3− f1− f2

)
.

Notice that this system corresponds to manifolds that descend from a parent tri-
Sasakian structure and thus inherit all the possible squashings. However, generically
a weak-G2 manifold is not necessarily given as a fiber over a base, so it would not
admit any squashing. Therefore, a generic weak-G2 manifold would verify equations
in which such squashings are suppressed. This is achieved by truncating the modes
and charges as

e f1 = e f2 = e f3 =
1
√

5
eg, Q1 = Q2 = Q3 = 5Qη, (4.80)

reducing the equations to

h′ = −5
√

5Qc eΛ−7g − 7
√

5Q1h eΛ−3g, (4.81a)

Λ′ = 7
√

5Q1eΛ−3g, (4.81b)

g′ =
3
√

5
e−g + 2

√
5Q1eΛ−3g. (4.81c)
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This has the advantage of the system being integrable. Defining a new radial coordinate

−
(
Q1
√

5
)−1

e3g d f
dr
≡

d f
dρ
, (4.82)

the general solution is

eΛ =
1

7ρ + c1
, (4.83a)

e2g =
5Q1

2
[
(7ρ + c1) − c2(7ρ + c1)4/7] , (4.83b)

h =
Qc

5Q3
1

(7ρ + c1)
[
5c3 + 4c2

2(7ρ + c1)1/7 − 2c2(7ρ + c1)4/7 +
4
7

(7ρ + c1)
]
. (4.83c)

D1-brane asymptotics (4.75) in the UV (r → ∞, ρ→ 0) fixes the integration constants
to

c1 = 1, c2 = 2, c3 = −
18
35
. (4.84)

In the infrared this solution reaches an AdS geometry

eΛ =
1

7ρ
, e2g =

5Q1

14ρ
, h =

28Qc

5Q3
1

ρ2, eΦ =

Qc

Q3
1

1/2
2
√

35
, (4.85)

and the physics is equivalent to the solutions discussed in previous sections, with the
particularity that the preserved supersymmetry is (0, 1).

4.6. Conclusions

In this chapter we have studied a system of Nc D1-branes with N f D5-branes sharing
the gauge directions in a space whose transverse manifold has special holonomy. The
reason for that was to build holographic duals to theories with less than maximal
supersymmetry containing flavoured degrees of freedom.
The D1-branes act as colour branes defining the gauge group of the theory in the

ultraviolet. In absence of flavour the gauge theory is just an SU(Nc) super Yang-Mills.
The amount of supersymmetry of the theory depends on the holonomy of the eight-
dimensional transverse manifold, which is also related to the number of Killing spinors
admitted by the seven-dimensional internal space.
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4. Two-dimensional gauge theories with unquenched flavour

In particular we have studied three kinds of internal spaces, these are tri-Sasaki,
Sasaki-Einstein and weak-G2. They admit three, two and one Killing spinors respec-
tively. The resulting super Yang-Mills theories preserve N = (0, 3), N = (0, 2) and
N = (0, 1).
The inclusion of flavoured degrees of freedom is done by considering additional N f

D5-branes sharing the gauge directions with the D1-branes. In order to avoid Partial
Differential Equations we smear the D5-branes along the transverse directions. This
allows us to include the backreaction of the branes, corresponding to the Veneziano
limit of the gauge theory. In the case of the tri-Sasaki space there are several cycles
around which branes can be wrapped, For this reason there are several Page charges
(Q1, Q2, Q3 and Qη) associated to the number of branes around each cycle.
The presence of the D5-branes excites new modes corresponding to relevant defor-

mations of the gauge theory, controlled by the number of these branes. For each of the
three cases studied, there is a particular flow whose infrared fate is an AdS3 solution,
dual to a two-dimensional Conformal Field Theory.
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The AdS/CFT correspondence is a conjecture that establishes an equivalence between
a gravitational theory in a hyperbolic space and a gauge quantum field theory living
on the boundary of the former. This duality, also known as holography, is a great
tool to study strongly coupled quantum field theories in situations in which the usual
perturbative techniques are not useful.
The duality is formulated in the framework of (super)string theory and its original

motivation comes from the study of some solitonic objects existing in the theory,
the D-branes. We can understand the D-branes as hypersurfaces where boundary
conditions to open strings can be imposed. Upon quantisation this gives a gauge
quantum field theory living on the brane. On the other hand, we can consider the
gravitational effect of the brane on the initially flat spacetime. The low energy limit
(taking as characteristic energy scale the inverse of the string length) of this effect
is a supergravity solution called black brane. The fact that both theories, gauge and
gravity, are different descriptions of the same physical reality, a set of D-branes, is the
motivation to postulate that they are equivalent or dual.
The first realisation of this duality was developed by studying D3-branes, that is,

branes with three spatial dimensions and one temporal dimension. The theory living
on these branes is a supersymmetric gauge theory with conformal symmetry, also
known as conformal field theory or CFT. On the other hand, the gravitational effect
of the branes deforms the spacetime to have an anti-de Sitter metric, or AdS. Thus
the name of the correspondence. But this duality is not only about conformal theories
and AdS spaces. For instance, if we consider D-branes with different dimensions,
we get different field theories (not conformal) dual to different supergravity solutions
(not AdS). Moreover, if instead of placing the branes in flat space we consider another
background spacetime the properties of the dual field theory also change. This allows
us to construct supergravity solutions dual to field theories with different properties
such as confinement, baryonic charge or finite temperature.
In particular, the presence of confinement in a field theory is typically manifested in

the holographic dual by the existence of a cycle in the spacetime manifold that ends
regularly before reaching the horizon. In the string theory picture, a quark-antiquark
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pair (quarkmeaning particle in the fundamental representation) is represented by strings
attached to the boundary. If the geometry ends smoothly, there is no surface where
we can impose boundary conditions for the strings and they must end at the boundary.
This gives a potential that scales linearly with the distance between quarks, typical of
confined systems.
In chapter 2 of this thesis we show, however, a counterexample to this. There a

one-parameter family of supergravity solutions is described, obtained as a deformation
of a D2-branes system. These solutions are dual to a family of field theories in 2 + 1
dimensions. All the backgrounds in this family present a geometry that ends smoothly.
But, except in a particular case, there is no confinement. The reason for this is that
the string theory description of these solution is not valid and they are only regular
solutions in the context of M-theory. In this description quarks are represented by
membranes wrapped around a circle that can end smoothly in a cigar-like tip. This
allows a disconnected configuration. Consequently, in the field theory there exists a
mass gap due to the end of the geometry at a finite value of the radial coordinate, but
there is no confinement.
This unexpected lack of confinement is not the only remarkable feature of this family

of solutions. One of the dual theories has a renormalization group (RG) flow that ends
in a fixed point, that is, a conformal theory. Varying slightly the parameter that labels
the solutions we end in solutions dual to theories whose RG flow passes near the fixed
point, thus exhibiting a quasiconformal behaviour. All these theories also flow to the
gapped phase at lower energies.
The existence of a quasiconformal regime in a RG flow implies that there is an

approximated conformal symmetry. When the flow leaves the quasiconformal region
this approximated symmetry is broken and this breaking can be either spontaneous
or explicit. By the Goldstone’s theorem, when a symmetry is spontaneously broken a
massless scalarGoldstone bosonmust appear for each of the generators of the symmetry.
If the symmetry is not exact, the Goldstone boson is not massless but light. In the
case of the conformal symmetry, the Goldsonte boson associated to its spontaneous
breaking is a dilaton, a light pseudo-dilaton for the approximated symmetry.
In chapter 3 we compute the spectra of spin-0 and spin-2 states. The result is that we

did not find such pseudo-dilaton. The reason for this is that the spontaneous breaking
of the symmetry is of the same order than the explicit breaking, Nevertheless, it is
possible to simulate a spontaneous breaking of the conformal symmetry by putting a
hard-wall cut-off in the infrared. By tuning the energy scale at which we impose the
cut-off we can explore different energy regions of the flow, finding the quasiconformal
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behaviour in the appropriate solutions.
Finally, in chapter 4 we consider a new system, consisting in D1-branes in a space

that has as transverse manifold a space with special holonomy. This implies that the
maximal supersymmetry corresponding to theD1-branes in flat space is partially broken
and reduces to a number of supercharges that depends on the particular holonomy of the
space considered. The internal manifolds that we study are tri-Sasaki, Sasaki-Einstein
and weak-G2, that reduce supersymmetry from N = (8, 8) to N = (0, 3), (0, 2) and
(0, 1) respectively. Furthermore, we introduce D5-branes sharing the gauge directions
with the D1-branes, which in the gauge theory translates into the presence of matter
in the fundamental representation. For this reason they are called flavour branes. In
these flavoured supersymmetric theories we have found renormalization group flows
that connect the brane-like ultraviolet with a fixed point. Also, we have been able to
connect the equations describing the weak-G2 manifold with the equations describing
the internal space of the family of solutions in chapter 2.
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6. Resumen en castellano

La correspondencia AdS/CFT es una conjetura que establece una equivalencia entre
una teoría gravitacional en un espacio hiperbólico y una teoría cuántica de campos
gauge que vive en la frontera de la primera. Esta dualidad, también conocida como
holografía, es una gran herramienta que nos permite estudiar las teorías cuánticas de
campos con acoplamiento fuerte cuando las técnicas de cálculo perturbativas habituales
en teorías de campos no son viables.
La dualidad se formula en el marco de la teoría de (super)cuerdas y su motivación

original viene del estudio de unos objetos solitónicos presentes en ella llamados D-
branas. Podemos entender las D-branas como una hipersuperficie sobre la que las
cuerdas abiertas tienen condiciones de contorno, lo que al cuantizar da lugar a una
teoría cuántica de campos gauge. Pero, por otro lado, podemos considerar el efecto
gravitatorio que tienen en el espaciotiempo. En el límite de bajas energías (en com-
paración con la energía característica de la teoría de cuerdas dada por la longitud de la
cuerda) este efecto es una solución de supergravedad conocida como brana negra. El
hecho de que, por un lado, la teoría de campos gauge, y por el otro, la teoría de gravedad,
sean dos descripciones de una misma realidad física (un conjunto de D-branas) nos
hace postular que sean dos teorías equivalentes o duales.
La primera realización de esta dualidad se desarrolló estudiando D3-branas (branas

de tres dimensiones espaciales y una temporal). La teoría contenida en estas branas
es una teoría gauge supersimétrica con simetría conforme, también llamada teoría de
campos conforme, o CFT por sus siglas en ingles. Por otro lado, el efecto gravitatorio
de las branas hace que el espaciotiempo tenga una métrica anti-de Sitter, o AdS.
Esto es lo que da nombre a la correspondencia. Sin embargo, ésta no se limita a la
equivalencia de teorías conformes y espacios AdS. Por ejemplo, al considerar branas
de otras dimensiones obtenemos diferentes teorías de campos duales (sin invariancia
conforme) y otros espacios distintos. Además, el hecho de poner las branas en un
espacio que no sea el espacio plano también modifica la teoría dual. Esto nos permite
construir soluciones de supergravedad duales a teorías con diferentes propiedades como
pueden ser la presencia de confinamiento, carga bariónica o temperatura finita.
En particular, la presencia de confinamiento en una teoría de campos típicamente
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viene indicada en el dual holográfico por la existencia de un ciclo en la variedad del
espaciotiempo que se cierra de manera regular (matemáticamente hablando) antes de
llegar al horizonte del mismo. Desde el punto de vista de la teoría de cuerdas, esto
es porque un par quark-antiquark (donde quark significa partícula en la representación
fundamental) viene dado por cuerdas que terminan en la frontera. El hecho de que
la geometría termine de forma regular implica que no existe una superficie donde
imponer condiciones de contorno a las cuerdas, lo que significa que solo pueden estar
unidas a la frontera. Entonces, los pares quark-antiquark tienen una energía potencial
de separación que escala linealmente con la distancia de separación, que es típico de
los sistemas confinantes.
En el capítulo 2 de esta tesis exponemos, sin embargo, un contraejemplo a esto. En él

describimos una familia uniparamétrica de soluciones de supergravedad, obtenidas al
modificar un sistema de D2-branas, que son duales a una familia de teorías de campos
en 2 + 1 dimensiones. Todas las soluciones de esta familia presentan una geometría
que termina de forma suave. Sin embargo, salvo para un caso particular, no existe
confinamiento. La razón de que esto ocurra es que la descripción en términos de
teoría de cuerdas no es válida porque las soluciones no son regulares, sino que han
de ser descritas en el contexto de la teoría M. En esta descripción los quarks están
representados por una membrana enrollada en un círculo, que puede acabar en una
forma de punta de cigarro sin necesidad de tener que definir condiciones de contorno,
lo que permite la configuración desconectada. Por tanto, en la teoría de campos existe
un salto o “gap” de masa (es decir, una energía mínima accesible por las partículas
finita) sin la existencia de confinamiento.
Esta inesperada falta de confinamiento no es la única característica notable de esta

familia de soluciones. Una de las teorías duales tiene un flujo de grupo de renormal-
ización que pasa por un punto fijo, es decir, una teoría conforme. Al variar ligeramente
el parámetro que caracteriza las soluciones obtenemos soluciones duales a teorías cuyo
flujo de renormalización pasa cerca del punto fijo, exhibiendo un comportamiento cua-
siconforme. Tanto estas teorías como la que pasa exactamente por el punto fijo, fluyen
a más bajas energías a la fase con “gap”.
El hecho de que exista un flujo que saque la teoría de un punto fijo implica la

rotura de la simetría conforme. Esta rotura puede ser explícita o espontánea. Si la
rotura es espontánea debería existir un bosón de Goldstone sin masa asociado a la
simetría que, en el caso de la simetría conforme, es el dilatón. En las teorías que tienen
comportamiento cuasiconforme la simetría es aproximada y el bosón no necesariamente
ha de tener masa exactamente nula, lo que llamamos un pseudo-bosón Goldstone o, en
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este caso particular, pseudo-dilatón. En el capítulo 3 calculamos el espectro de estados
de spin 0 y spin 2. El resultado es que no existe tal pseudo-dilatón ligero. Esto es debido
a que la rotura espontánea de la simetría es del mismo orden que la rotura explícita.
No obstante, es posible simular una rotura espontánea introduciendo un cut-off the
tipo hard-wall en el infrarrojo. Aplicando este cut-off a diferentes escalas de energía
podemos explorar las diferentes regiones del grupo de normalización, encontrando así
la región cuasiconforme en las soluciones pertinentes.
Por último, en el capítulo 4 consideramos un nuevo sistema, consistente en D1-

branas en las que el espacio tiene como variedad transversa espacios de holonomía
especial. Esto implica que la supersimetría maximal correspondiente a la solución
de D1-branas en espacio plano se rompe parcialmente y se reduce a un número de
supercargas que depende de la holonomía del espacio que estemos considerando. Las
variedades internas estudiadas son tri-Sasaki, Sasaki-Einstein y weak-G2, que hacen
que la supersimetría pase de ser N = (8, 8) (espacio plano) a (0, 3), (0, 2) y (0, 1)
respectivamente. Además introducimos D5-branas, lo que en la teoría dual significa
incluir materia en la representación fundamental. Por ello se llaman también branas de
sabor. En estas teorías supersimétricas con sabor hemos conseguido encontrar flujos de
renormalización que pasan por un punto fijo, o una soluciónAdS en el dual gravitatorio.
Además hemos podido relacionar las ecuaciones que describen la métrica weak-G2 con
las ecuaciones que describen la variedad interna de las soluciones de D2-branas en el
capítulo 2.
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A. Hyperscaling violating toy model

Consider a (d + 1)-dimensional model consisting of a single scalar field χ coupled to
gravity with the action

S =

∫
dρ dd x

√
−g

(
R
4
−

1
2
∂Mχ∂

Mχ −V(χ)
)
, (A.1)

where

ds2 = e2δχ(ρ)dρ2 + e2A(ρ)dx2
1,d−1 ,

V(χ) = −
(d − θ)(d − θ − 1)

4
e−2δχ , (A.2)

and we have defined

θ =
(d − 1)2δ2

(d − 1)δ2 − 2
. (A.3)

The model admits solutions

χ =
δ

2
(d − θ − 1)ρ ,

A =
d − θ − 1

d − 1
ρ . (A.4)

Under a scale transformation x→ λx, ρ→ ρ − log λ, the metric transforms as

ds2 → λ
2θ

d−1 ds2 . (A.5)

This shows that the solutions are hyperscaling violating with hyperscaling violation
coefficient θ.
For θ close to 0, the background metric is close to AdS, and because of this there

should be a light state in the spectrum. In order to understand how its mass depends
on θ, we now perform a perturbative analysis. The equation of motion and boundary
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A. Hyperscaling violating toy model

condition for the spin-0 fluctuation are given by

∂2
ρa + (d − θ)∂ρa + e−2ρm2

a = 0 ,

e2ρ

d − 1
θ

m2 ∂ρa|ρI,U = a|ρI,U . (A.6)

Consider the expansion (perturbative in θ)

a = a0 + θ a2 + O(θ2) ,

m2 = θ m̃2 + O(θ2) . (A.7)

At leading order in θ, the general solution of the equation of motion in eq. (A.6) is
given by

a0 = c1 + c2e−d ρ , (A.8)

where c1 and c2 are constants. After imposing the boundary conditions in the IR (UV),
and solving for m̃2, we obtain that the mass m0 of the lightest spin-0 state is given by

m2
0 =

d θ
d − 1

ed ρU − e2ρU

ed ρU − 1
, (A.9)

where we have fixed ρI = 0 without loss of generality. Finally, as long as d > 2, the
limit of ρU → ∞ leads to

m2
0 =

d θ
1 − d

. (A.10)

The spin-2 fluctuations satisfy the same equation of motion as the spin-0 fluctuations

∂2
ρe
µ
ν + (d − θ)∂ρe

µ
ν + e−2ρm2

e
µ
ν = 0 , (A.11)

the general solution of which is given by

e
µ
ν = e

(θ−d)ρ
2 md/2

(
cµνJ d−θ

2
(e−ρm) + dµνJ θ−d

2
(e−ρm)

)
, (A.12)

where cµν and dµν are constants. After imposing the boundary condition

∂ρe
µ
ν|ρI,U = 0 , (A.13)

and taking the limit ρU → ∞, one can show that for θ < d − 2, the spin-2 states have
masses given by the positive roots of the equation

J d−θ−2
2

(m) = 0 . (A.14)
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Figure A.1.: Mass spectrum of spin-0 states normalized to the mass of the lightest spin-2 state
for the hyperscaling violating toy model with d = 3, ρI = 0, ρU = 50. The dashed blue line is
the perturbative result to leading order in θ given in Eq. (A.15).

For d = 3, one obtains that to leading order in θ, the ratio between the masses of the
lightest spin-0 and spin-2 states is given by

m0

m1
=

1
π

√
−3θ

2
(A.15)

In Figure A.1, we show the spin-0 spectrum for d = 3 as a function of θ compared to
the perturbative result.
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B. Conventions for the supersymmetric
analysis

We will use conventions analogous to those in [64] but adapted to a 3 + 7 splitting
instead of 5 + 5. The ten-dimensional gamma matrices satisfy

{ΓA,ΓB} = 2ηAB (B.1)

with a mostly plus signature. The chirality projector is then taken to be

Γ(11) = Γ0Γ1 · · · Γ9. (B.2)

We decompose Cliff(1,9) into

Γµ = γµ ⊗ 18 ⊗ σ
1,

Γm = 12 ⊗ γ̃
m ⊗ σ2,

(B.3)

where µ and m are respectively external and internal flat indices. The corresponding
gamma matrices thus verify

{γµ, γν} = 2ηµν, {γ̃m, γ̃n} = 2δmn. (B.4)

The chiral matrices can be taken to be −12 for the external part and i18 for the internal
one, in such a way that

Γ11 = 12 ⊗ 18 ⊗ σ
3. (B.5)

A ten-dimensional Majorana–Weyl spinor ε̂ can the be decomposed into

ε̂ = ψ ⊗ χ ⊗ θ , (B.6)

withψ and χ spinors living in the external and internal spaces respectively. The chirality
condition is

Γ11ε̂ = ε̂, (B.7)
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B. Conventions for the supersymmetric analysis

while charge conjugation is done with the help of D-intertwiners verifying(
ΓA

)∗
= D−1ΓAD , DD∗ = 1 . (B.8)

Thus, for a ten-dimensional spinor ε̂ we have

ε̂c ≡ Dε̂∗. (B.9)

Now, type IIB supersymmetry is parametrized by two Majorana-Weyl spinors εi,
each with 16 real components, and we take

εi = ψ ⊗ χi ⊗ θ + ψc ⊗ χc
i ⊗ θ . (B.10)

Finally, we complexify to

ε ≡ ε1 + iε2 ≡ ψ ⊗ ξ1 ⊗ θ + ψc ⊗ ξc
2 ⊗ θ , (B.11)

with the combinations ξ1 = χ1 + iχ2 and ξc
2 = χc

1 + iχc
2. In this way

εc = ψ ⊗ ξ2 ⊗ θ + ψc ⊗ ξc
1 ⊗ θ . (B.12)

In terms of these spinors, the supersymmetric variations read as in (4.24).
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