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Abstract

In this master thesis, the posibility of a connection between spacetime
dynamics (driven by the Einstein equations) and thermodynamics is discussed.
Some known results, like the Raychaudhuri equation or the Unruh effect are
reviewed in order to make the presentation self-contained.

The Einstein equations are derived in two different ways from thermody-
namic arguments. The first one (Section ) uses the thermodynamic relation
0Q) = TdS, together with the proporionality of entropy and horizon area. In
the second derivation (Section @)), the Einstein equations are derived from an
hypothesis about entanglement entropy in a maximally symmetric spacetime.

Some questions regarding the implications of this thermodynamic interpre-
tation of spacetime are discussed as a conclusion of the thesis.
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1 Introduction

One of the most surprising results of Albert Einstein’s general theory of relativity
was the existence of black holes, regions of spacetime were gravity is so strong, that
nothing, even light, could escape. The interior of a black hole is separated from the
rest of the universe by an event horizon. This means that any particle, massive or
massless, that is located inside the black hole, will never be able to escape, and is
doomed to reach a singularity in its future, where its proper time suddenly ends and
the known theories of physics stop to work.

When Stephen Hawking studied black holes from a more mathematical point of
view, he found an interesting result: the area of the event horizon never decreases
with time and, in general, it will increase. This implies that, if two black holes collide
and merge, the area of the final black hole will be larger than the sum of areas of
the colliding black holes.

This behavior is analogous to the behavior of entropy in thermodynamic systems,
where the Second Law of Thermodynamics says that the entropy of a system can
never decrease, and that the total entropy of a system is larger than the entropy of
its subsystems:

Second Law of Black Hole Mechanics:
0A >0

Second Law of Thermodynamics:
08>0
This analogy is more evident with the First Law of Black Hole Mechanics, which
relates the change in mass of a black hole with the change in area of the horizon and
the change in angular momentum and electric charge. From here one can see that if
the area of the event horizon is analogous to the entropy, then the surface gravity s
is analogous to the temperature:

First Law of Black Hole Mechanics:
OF = %(514 + Q0J + D@

First Law of Thermodynamics:

OE =T0S + PoV

There is even a Zeroth Law of Black Hole Mechanics:



Zeroth Law of Black Hole Mechanics:

k is the same along the horizon in a time-independent black hole.

Zeroth Law of Thermodynamics:

Temperature is the same in all points in a system in thermal equilibrium.

Because of these similarities, Bekenstein proposed that the entropy of a black hole
should be proportional to the area of the event horizon, and proposed the Generalized
Second Law [1]: the sum of the entropy of the black hole and the entropy of the matter
outside the black hole never decreases.

The fact that black holes have temperature and entropy implies that they should
radiate, but this was completely against the classical picture of black holes. One of
the most important results in theoretical physics during the last century was the one
obtained by Stephen Hawking in 1974, when he found that, when quantum effects
around a black hole are considered, it radiates thermally at the so-called Hawking
temperature [2]:

1
8 M (1.1)
Another important result is that this thermal behavior is not exclusive of black
hole horizons. In 1976, W.G. Unruh demonstrated the following: the vacuum state,
defined by inertial observers, has a thermal character for uniformly accelerated ob-

servers with proper acceleration a (Rindler observers) at the Unruh temperature |3}
Z1

Ty =

ha
T or

This means that, around any event, in any spacetime, there is a class of observers
that will perceive the spacetime as hot. This thermal character of spacetime (not
only for black hole horizons) will be of great importance for the following sections.

Moreover, this thermodynamic interpretation of spacetime invokes some questions
about the structure of spacetime at smallest scales. From standard thermodynamics
it is known that a macroscopic system like, for example, a gas, can be described
with some thermodynamic variables, like the temperature or the entropy, but for
a long time, the real meaning of these variables was unknown. It was Boltzmann
who gave an explanation to these variables, essentially saying “if you can heat it, it
has microscopic degrees of freedom”. Before that, it was considered that matter was
continuous even at the smallest scales, and the concepts of heat and temperature were

T (1.2)



added “by hand”. Boltzmann used the discrete interpretation of matter and found
that the thermodynamic fenomena were related with the averages of the properties
of these microscopic degrees of freedom.

This is profound. It tells that the existence of microscopic degrees of freedom
leaves a signature at macroscopic scales, in the form of temperature and heat. Then,
if spacetime is seen as hot by some observers, what are the microscopic degrees of
freedom that give raise to the temperature and the entropy? There are many ap-
proaches that try to give an interpretation to these microscopic degrees of freedom
[5, 6], but there is not a clear answer yet. What seems reasonable is that, if spacetime
is, at its deepest level, a thermodynamic entity, we should be able to derive the equa-
tions that drive its evolution (the Einstein equations) from a purely thermodynamic
point of view.

This is what we will do in Sections and . In Section , the Einstein
equations are derived from the thermodynamic relation 6¢) = T'dS and the propor-
tionality of the entropy and horizon area, working from the point of view of a Rindler
observer in the neighbourhood of the causal horizon of the Rindler space.

In Section , an alternative derivation of the Einstein equations will be given,
based in the assumption that the entanglement entropy in a geodesic ball is maximal
when the geometry and the quantum fields are varied from maximal symmetry.

Section includes some of the conceptual ideas and equations that will be
necessary for the two derivations.

In Section , some comments about the derivations and some questions about
the implications of them are considered, while Section @ contains the main conclu-
sions of the thesis.



2 Basic previous topics

This section contains some topics that will be necessary to have in mind during the
two derivations of the Einstein equations in the following sections. Here we will
briefly talk about the Raychaudhuri equation, Rindler space, the Unruh effect, and
entanglement entropy.

2.1 Raychaudhuri equation

The Raychaudhuri equation is an evolution equation for what is called the expansion
of a congruence of geodesics. In order to understand the meaning of the expansion
(and two more quantities that appear in the equation, the shear and rotation), it is
useful to think first about the kinematics of a deformable medium.

Suppose, in a purely Newtonian context, a two-dimensional medium, with some
internal motion whose dynamics are not of our interest. From a purely kinematic
point of view, we can always write that, for an infnitesimal displacement £ from a
reference point O,

a

B e+ o) (2.)

for some tensor B% , which depends on the internal dynamics of the medium. For
short intervals of time,

§°(t1) = " (to) + A& (o) (2.2)

where

A& (to) = B (to)€"(to) At + O(AL) (2.3)

and At = t; —ty. To describe the action of B% we will consider the situation that
£%(tg) = ro(cos ¢, sin ¢); that is, a circle of radius ry in the two-dimensional medium.

Expansion
Suppose that B% is a pure-trace matrix, i.e., proportional to the identity, with

the form
19 0
a _ (2
Bb(o 30

In this case, Ag* = %QTOAt(COS ¢,sin ¢), which corresponds to a change in the
circle’s radius by an amount %QTOAt. The correspoonding change in area is given by
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AA = Al - A() = WT%@A'[I (24)
This means that

1 AA
T Ao At

6 measures the fractional change of area per unit time, and is called the ezpansion
parameter.

0 (2.5)

Shear
Suppose now that B¢ is symmetric and trace-free:

o o
a + X
B =

O—X _O-JF

In this case, AL® = roAt(oy cos ¢+ oy sin g, —o, sinp + o cos@). If o =0, we
have an ellipse with the major axis oriented in the ¢ = 0 direction. If o, = 0, what
we have is an ellipse oriented in the ¢ = 7/4 direction. The general situation is an
ellipse oriented along an arbitrary direction. The area of the figure is not affected by
the action of B%. What we have is a shearing of the figure, and the parameters o
and o are called the shear parameters.

Rotation
Finally, if B%, is antisymmetric,

o 0 w
7= ()

we have that AL* = rowAt(sin ¢, — cos ¢), and %(t1) = ro(cos¢’,sin¢’), with
¢' = ¢ —wAt. This corresponds to an overall rotation of the original figure, keeping
the area fixed. w is called the rotation parameter.

The most general decomposition of this tensor into algebraically irreducible com-
ponents under rotations is

19 0 o o 0 w
a _— [ 2 + X
Bb—(O 16 + oy —04 w0
which can also be expressed as
1
Bab = 505ab + Oab + Wab (26)
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where 6 = B, (the expansion scalar) is the trace part of B, 04, = B, — 166,
we and w,, = By (the
rotation tensor) is the antisymmetric part of B,,. For a three-dimensional medium,
the decomposition is the same, but with a prefactor of 1/3 instead of 1/2 in the trace
term, and the interpretation of the expansion, shear and rotation are the same, but
changing the area by the volume.

Once the classical 2-dimensional medium has been introduced, we can move now
to the study of congruences of (for now, timelike) geodesics.

Let O be an open region of spacetime. A congruence of geodesics in O is a family
of geodesics such that through each point in O passes one and only one geodesic
from this family. We will assume that the geodesics are timelike. We are interested
in the evolution of the deviation vector £* between two neighbouring geodesics in the
congruence as a function of the proper time 7 (see Figure (|1))).

(the shear tensor) is the symmetric-tracefree part of B

Ea
[ —

I
T 0

Figure 1: Two neighboring geodesics, with a deviation vector £* as a function of 7.

Let u® be the (timelike) tangent vector to the geodesics. Then, the spacetime

metric g, can be decomposed in a longitudinal part —u,u, and a transverse part
h

ab’

hab =9 + U Up, (27)

The transverse metric h,, is purely spatial, in the sense that it is orthogonal to
u®. We introduce now the tensor field

Bab = Vbua (28)
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This tensor determines the evolution of the deviation vector £*. To see this, note
that from u’V,£% = £°V,u® we obtain

u’V, £ = B € (2.9)

That is, B% measures the failure of £* to be parallel transported along the con-
gruence. Equation is analogous to , and therefore we can decompose the
tensor B in the same way as before, with the same interpretation for the diffrent
terms that appear:

1
3

In order to find the evolution equation for the expansion 6, we can start by finding
an evolution equation for B ,;:

Bab = ehab + Oab + Wap (210)

u’V_ B, =u‘V_ V,u,
= u’ (vaaua - Radbcud)
= uV,V,u, — R, uu’ (2.11)
=V, (uV.u,) — (Vyu) (Veu,) — Radbcucud

_ c c, . d
=-B bBac - Radbcu’ u

Taking the trace of this equation, we obtain

do
= -B*B,, — R u"u’ (2.12)
Now, from the definition of B,,, we find that B,, B® = 10% + 00, — w™w,,, so
(2.12) becomes
do 1
o= —56’2 — %0, + wPw,, — Ryutu’ (2.13)

which is kown as the Raychaudhuri equation, and gives the evolution of the
expansion parameter 6 for a congruence of timelike geodesics. For the case of null
geodesics, which is the one that will be of interest in the following sections, the line
of argument is the same as for timelike geodesics, but the calculation is a bit more
tedious because of the difficulty to precisely define the transverse spacetime. In the
above case it was simply the spatial components, but in the case of null geodesics, if
k® is the (null) tangent vector to the geodesics, the orthogonal space to k% includes
k* because it is orthogonal to itself. Once this technical part is solved, the logic



of the derivation and the result are very similar. The Raychaudhuri equation for a
congruence of null geodesics reads:

1
% = —502 — %0, + wPw,, — R, kK (2.14)

2.2 Rindler space

The Rindler space is introduced when one is interested in the motion of an accelerated
observer in flat spacetime. This will be necessary in Section (3)), where the whole
argumentation line will be centered from the perspective of an accelerated observer
in an approximately flat region of spacetime.

For simplicity, let’s consider the 2-dimensional Minkowski space, whose metric,
in the usual (¢, z) coordinates is

ds* = —dt* 4 dz? (2.15)
An observer moving at a uniform acceleration a will follow the trajectory x*(7)
given by
L.
t(r) = — sinh(a7) (2.16)
o

1
x(1) = — cosh(ar) (2.17)
«Q
This can be checked taking into account that the components of the 4-acceleration
D2zt Pat
a,LL = — =
dr? dr?

where the covariant derivative is equal to the ordinary derivative because the
Christoffel symbols vanish in these coordinates, are given by

(2.18)

a' = asinh(ar) (2.19)
a® = acosh(art) (2.20)

In this way, the magnitude of the acceleration is

Va0 = \/—@2 sinh®(ar) + a2 cosh?(at) = (2.21)
Thus, this trajectory corresponds to a uniformly accelerated observer. The tra-
jectory of this observer obeys

10



22(7) = 2(7) + % (2.92)

which is an hyperboloid asymptoting to null paths x = —t in the past and z =1
in the future (see Figure (2)).

4+t

I

[

- i
) I \
\

e
—
—

H-
Figure 2: Minkowski spacetime in Rindler coordinates. An observer with constant

acceleration in the +x direction follows the hyperbolic trajectories dranw in region
I. The patches H* and H~ act as horizons for this class of observers.

Notice from ([2.22)) that the larger the acceleration «, the closer the trajectory is
to the patches x = —t and x = t. This fact will be important in Section .
We can define new coordinates (7, &) in the following way:

1 1
t = —e" sinh(an), r = —e* cosh(an), (x > |t]) (2.23)
a a

which cover the wedge = > |t| (region I in Figure (2))). Although these are not
the usual Rindler coordinates, they are the most appropiate for the derivation of the
Unruh effect, which is the purpose of the next section. Notice that an accelerated
observer with acceleration o = a follows a world line that is given by £ = const and
n=r.

In these coordinates, the metric is given by

11



ds® = e (—dn* + d&?) (2.24)

Region I, with these coordinates, is known as Rindler space (although it is only a
part of Minkowski space). A Rindler observer is an observer moving along a constant
acceleration path (in the diagram, this corresponds to the hyperbolic trajectories).

Because the metric components are independent of 7, the vector 9, is a Killing
vector. In the (¢, ) coordinates, this Killing vector is

ot Ox

9, = 6’_7]at + o

= ¢ [cosh(an)d, + sinh(an)d,]
= a (z0, +t0,)

ax
(2.25)

Notice that the patches = —t and x =t (H~ and H™") act as Killing horizons
for this vector field, because its norm vanishes (only) there:

0 0
V=a (xa + t%) = V,Vi= @’ (t* —2*) = at +z)(t — z) (2.26)

The surface gravity of this Killing horizon is

k= ,/—%wgvvugu =a (2.27)

Although there is no gravitational field (we are in flat spacetime), the surface
gravity characterizes the acceleration of the Rindler observers.

It will be convenient for the Unruh effect to define coordinates (7, £) for the region
IV, by flipping the signs of those defined in region I:

1 1
t = ——e“sinh(an), r = ——e® cosh(an), (x < |t]) (2.28)
a a

2.3 The Unruh effect

The basic statement of the Unruh effect is that an accelerating observer in flat space
will observe the Minkowski vacuum as a thermal spectrum of particles. The basic
idea of this result is the fact that observers with different notions of positive and
negative frequency modes will disagree on the particle content of a given state.

12



In flat spacetime, this problem does not arise for non-accelerated (inertial) ob-
servers. For inertial observers, we introduce a set of positive and negative frequency
modes, and the fields are expressed as a combination of these modes, interpreting
the operator coefficients as creation and annihilation operators. In flat spacetime we
can choose a natural set of modes by demanding that they are positive-frequency
modes with respect to the time coordinate. Obviously, the time coordinate is not
unique, because we can perform Lorentz transformations, but the vacuum state and
the number operators are invariant under these transformations.

In curved spacetime (or accelerated observers) we can find a set of modes, but
we can find many other sets that are equally good, and the notion of vacuum and
number operators will be very sensitive to the set we choose.

We can always find a set of orthonormal modes f;, and expand the fields in terms
of these modes:

o= Z (difi + dif;") (2.29)

where the operators a; and dj» obey the usual commutation relations. We can
define a vacuum state |0f), which will be annihilated by all the annihilation operators,

a;[0;) =0, Vi (2.30)

From this vacuum we can define an entire Fock basis, defining the excitations as
the states created by the action of a;r. The number operator can be defined too,

iy, = ala; (2.31)
where the subscript f makes reference to the fact that this operator is defined

with respect to the set of modes f;. But we can find another complete basis with
respect to which expand the fields,

b=> (big: + Blo;) (2.32)

where, again, b; and ZA)I obey the usual commutation relations. The vacuum state,
the Fock basis, and the number operator for the b; operators are defined in the same
way as for the operators of the f; modes:

b;10,) = 0 Vi; fig, = b, (2.33)

If one observer defines particles with respect to the set of modes f; and a different
observer defines particles with respect to the set of modes g;, in general they will

13



disagree on the number of particles they observe. To see this, we can expand each
set of modes in terms of the other:

9i = Z (Oéz‘jfi + ﬁijf;) (2.34)

J

fi= Z (aig; — Biig;) (2.35)

J

The transformation that allows to write one set of modes in terms of the other is
called Bogoliubov transformation, and the coefficients «;;, B8;; are called Bogoliubov
coefficients, which satisfy the normalization conditions

Z (Oéija;k - ﬁzkﬁjk) = 0; (2.36)
> (B — Biwoy) = 0 (2.37)

and can be used to relate not only the modes, but also the operators:

a; = Z (aijl;j + 5;@) (2.38)

J

b= (a5 - Byal) (2.39)
J
The discrepancy on the number of particles can be seen from the following cal-
culation: imagine that the system is in the f-vacuum (in which the observer using
the f; modes would not see any particle). We want to know the number of particles
that an observer using the g-modes will observe. Then, we compute the expectation
value of the g number operator in the f-vacuum:

14



07} = {0y Jb |0y)
= (0y] Z (O‘w j 6@3%) (aikdk - 5;}{&]1) 0y)
jk

:ZEE:/%jﬁﬁk<0f\&j&L!0f>

<0f| ﬁgi

= Zﬁw e (O (akaj + 5Jk> )

(2.40)
—Z%%kww
:Zﬁij ij
ZZ%F
= (05| 72y, [05) = Zlﬂw (2.41)

In general, this coefficient does not vanish: an observer that defines particles with
respect to the g-modes will detect particles where the observer that defines particles
with respect to the f-modes will see the vacuum.

This can be applied to the case of an accelerated observer in flat spacetime
(Rindler observer). For simplicity, we will consider a massless Klein-Gordon field
in 2 dimensions. The Klein-Gordon equation in Rindler coordinates takes the form

O¢ =e > (=0, + 0) ¢ = (2.42)
which admits as solutions normalized plane waves of the form
L ontike

Viarw

with w = |k|. Because the choice of coordinates for regions I and IV needed a
difference of sign between them, we need to define two sets of modes, one for each of
the two regions |7]:

g(l) \/;Tue—iwn-i-ik& I
k 0 I\Y

15



@ 0 o 1
g, = leﬂwe—&-zwn—i—zkf v

In this way, each set of modes is positive-frequency with respect to the corre-
sponding future-directed timelike Killing vector,

gy = —iwg,” (2.44)
Angy = —iwg,” (2.45)

Introducing the corresponding creation and annihilation operators for each region,
the field can be expressed as

¢ = / dk gDy pht g 4 j2) +13,<f”g,§2>*) (2.46)

The modes to which we will compare them will be the usual Minkowski modes,
which expand the field as

b= / ak (anfi+ L f7) (2.47)

The Minkowski vacuum state |057) and the Rindler vacuum state |0g) are defined
as usual:

g, [0as) =0 (2.48)
V10g) =52 [05) =0 (2.49)

The next step now is to compute the Bogoliubov coefficients relating both sets
of modes, and compute the expectation value of the Rindler number operator in the
Minkowski vacuum. This is a bit tedious, and the usual procedure is the followm%;
instead of using the previously defined Rindler modes, we will take a set of modes h

hk () that share the same vacuum state as the Minkowski modes (but the excited states
are different). The way to do this is to start with the Rindler modes, analytically
extend them to the entire spacetime, and express them in terms of the orignal Rindler
modes.

Then, the field will be expanded as

b= / dk (a,(j)h,ﬁ” + &+ éPnd + é,(f”h;”*) (2.50)

The properly normalized version of these modes is [7]

16



1 %
h](cl) _ (emu/2a,g](€1) + e—ﬂw/2ag£2]z ) (251)
2 sinh (%)

1 *
hlgz) — <e7rw/2agl(€2) _|_ e—ﬂw/Qaggllg ) (252)
2 sinh (%)

Just like before, the Bogoliubov coefficients allow to relate also the creation and
annihilation operators:

~ 1

blil) _ <€7wJ/2aél(€1) + e—ﬂ'w/Qaé(_Q;T) (253)
2sinh (%)

A 1

b](€2) — (eﬂw/Qaél(f) + e*ﬂ’w/Qaé(_llij) (254)

2 sinh (%)
In this way, the Rindler number operator in region I,

A (k) = bMTpLY (2.55)
can be expressed in terms of the new operators é,(ﬁl’z), and because they share the

same vacuum state as the Minkowski modes, we have that

e 04) = e 0a) = 0 (2.56)

The fact that the excited states do not coincide is not a problem, because we are
only interested in what the Rindler observer sees when the state is the Minkowski
vacuum. For a Rindler observer in region I, the expectation value of the number
operator will be

(O] 2% () |0ar) = (Onr| BVTBL [04)
B 1
~ 92ginh (%)
_ efmu/a <0 |é(1)é(1)T |O > (257)
2sinh (m) M TIRTR T
B 1
- e2rw/a _ 1

(Oar] /2 )10,

This result corresponds to a Planck spectrum with temperature

17



7=2 (2.58)
2m
Thus, a uniformly accelerated observer through the Minkowski vacuum will detect

a thermal flux of particles.

2.4 Entanglement entropy

In order to conceptually understand entanglement entropy, it is useful to first take
a look to the following discrete problem [8]: imagine a lattice model, with discrete
degrees of freedom located at the lattice sites, which are separated a distance € (see
Figure (3)). At each site (labeled by ) we have a finite-dimensional Hilbert space
H, (for instance, a qubit per site). A pure quantum state of the system can be
written as

V) € ®aMa (2.59)
€
e
& L L] @ ) L ] -] L ]
Ar‘
@ & L] @ ® ® LJA. L ]
L] L] e & o ® L
L] L ] & ? .A a & ] a8
L] L ] & @ @ & L ] L ]

Figure 3: Discrete lattice system, with a Hilbert space at each place. The grey
region is called A, while A° is its complementary, separted by the boundary 0A.
The distance between places is €.

We can divide the lattice system into two complementary subsystems, namely A
and A°, separated by the boundary 0.4, which we shall call the entangling surface,

18



as can be seen in Figure (3). The Hilbert space of the total system has been split
into the direct product of two Hilbert spaces,

Ra Ho = Ha @ Hoae (2.60)

Now, one can construct the reduced density matriz of the subsystem A, which is
constructed by tracing out the degrees of freedom of A°:

pa = Trae(|0) (W) (2.61)

If the state | W) is factorized when the system is split, then we will have a pure state
in H 4. However, if the state can not be written as a direct product of states from the
two subsystems, the state is entangled and the density matrix gives the probabilities
for the ocurrence of the states in H 4. The amount of entanglement that exists in [¥)
when the system is split is quantified by the Von-Neumann entropy of the reduced
density matrix, or entanglement entropy, which is given by

Sa=—Tra(palogpa) (2.62)

In a discrete system, this can be computed diagonalizing the density matrix and
obtaining its eigenvalues \;. Then, the entanglement entropy is simply

Sa=—=Y Ailog) (2.63)

Because | V) is a pure state, it can be decomposed via the Schmidt decomposition,
|WU) = > Ai|ai) 4 |Bi) 4c- This tells us that non-trivial eigenvalues of p 4 are the same
as those of A¢. Then, the traces are the same, and the entanglement entropies are
also the same:

S, =S4 (2.64)

The fact that the entropy is the same for both regions means that it can not
depend on the size of each region, but only on the degrees of freedom shared by
the two regions. That is, it must be proportional to the area of the boundary 0.A
instead of being proportional to the volume of the regions, as it would be expected
in classical thermodynamic systems.

The continuum limit of this system can be defined as taking the limit ¢ — 0.
When this is done, the result for the entropy is sensitive to the ultra-violet (UV)
physics, as we should expect.

For a d-dimensional free field theory, the entropy is a UV-divergent quantity, with
the leading term being proportional to the area of the entangling surface [8]:
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SszArej—(?A)jt... (2.65)
where 7 is a constant that depends on the model used. This quantity is divergent
when ¢ — 0 unless there is some physical UV cutoff (presumably, of the order of
the Planck scale), with which the entropy would be finite and proportional to A/ L;,
matching with the Bekenstein-Hawking entropy for black holes [9-12]. Thus we shall
assume in all cases that due to the UV physics, the entanglement entropy is finite in
small regions, with a leading term given by S=nA.
Another important quantity that will be useful is the relative entropy. Given two
density matrices p and o we can define the relative entropy,

S(pllo) = Tr(plog p) — Tr(plogo) (2.66)

which gives information about the distinguishability between the two density
matrices. An important property of the relative entropy is that it is always positive
or equal to zero, being equal to zero only when the two density matrices are the
same. We can define the modular hamiltonian as

K,=—logp (2.67)

and rewrite the relative entropy as

S(pllo) = Tr(plog p) — Tr(plog o) + Tr(olog o) — Tr(o log o)
=-S(p)+ Tr(pK,) — Tr(c K,) + S(0) (2.68)
=A(K)—AS

where AS = S(p) — S(o) is the entropy difference between the states, and
A(K) = Tr(pK,)—Tr(c K,) is the difference in the expectation values of the modular
hamiltonian K, for p and o.

If we consider o to be a reference state o = pg, and p a state close to it, we can
expand the latter in a power series in a parameter \, p(\) = pg + Ap1 + A2py + ... in
such a way that p(0) = py = 0. The relative entropy can be expanded as

S(pMllo) = S(p(0)llo) + dilAS(p(A)HU)}A:OA +0(X) (2.69)

The first term is zero because of the definition of the relative entropy. The term
of order X is also zero, because the relative entropy is a monotonically increasing
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function around o. Thus, the relative entropy is at least quadratic in the deviation
parameter. This means that, for first-order variations, we have that

58 = 6(H,) (2.70)

This is known as the first law of entanglement entropy.
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3 First derivation. Equilibrium thermodynamics
in Rindler space

In this approach, Einstein’s equations are derived from the proportionality of entropy
and horizon area, together with the thermodynamic relation 6QQ = T'dS, relating
heat, temperature and entropy (and area, due to the relation entropy ~ area).

In standard thermodynamics, heat is defined as energy that flows from, or to
a thermodynamic system. Here, we shall define heat as energy that flows across a
causal horizon (not necessarily a black hole horizon).

In the relation 6Q) = T'dS, we associate () with an energy flux across the horizon,
and we shall use that the entropy is proportional to the area of this horizon. It
remains to identify the temperature T'. Using Unruh’s results, we can take 7" to be the
Unruh temperature if we consider that the observer is in accelerated motion. Then,
for consistency, the heat flow must be defined as the energy flux that this observer
measures. In order to apply local equilibrium thermodynamics, two conditions must
be imposed in the construction of our system:

e We need the observer to be as near as possible to the horizon. In the limit that
the accelerated worldine approaches the horizon, the acceleration diverges, and
so do the temperature and the energy flux, but their ratio remains finite.

e In general, the horizon will be expanding, contracting or shearing. In order to
impose equilibrium, we need the expansion, shear and rotation to be zero at
first order in a neighbourhood of the horizon.

The introduction of an accelerated observer gives as a natural choice for the
horizon the Rindler horizon associated to this accelerated observer.

The key idea to be shown can be expressed as [13]:

“In order to satisfy the thermodynamic equilibrium relation 60Q) = TdS, in-
trepreted in terms of the energy flux and area of local Rindler horizons, the grav-
itational lensing by matter energy must distort the causal structure of spacetime in a
way that the Finstein equation holds.”

The next step is to define precisely this local causal horizon. It can be done as
follows:

By means of the equivalence principle, the neighbourhood of any point p can be
thought as a piece of flat spacetime. Around p we consider a 2-dimensional surface
P. As usual, this 2-surface will be represented as a point in the conformal diagram.
The boundary of the past of P has two components, each of which is a null surface
generated by a congruence of null generators k% orthogonal to P. The local causal
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horizon is defined as one of these two components. We take A as the affine parameter
for k%, in such a way that \ vanishes at P and is negative to the past of P (see Figure

1)

Figure 4: Rindler horizon H of a 2-sphere P. The accelerated observer follows the
trajectory of the Killing vector x*. k® is the generator of the horizon.

In order to define the temperature and the heat, note that in the approximately
flat region around p the usual Poincaré symmetries hold. In particular, there is an
approximate Killing field x* generating boosts orthogonal to P and vanishing at P.
Because we are at very short distances, the Minkowski vacuum state (or any other
state) is a thermal state with temperature T = ha/27 with respect to the boost
hamiltonian, where a is the acceleration of this orbit. The heat flow is then defined
through the boost-energy current of matter, 7, x*, where 7, is the stress-energy
tensor.

The Killing field defining the orbits of Rindler observers coincides at the null
surface with the generators for sufficiently accelerated observers. Then, in the limit
that the observer is sufficiently close to the horizon, the Killing field y* is parallel
to the horizon generator k%, and, at first order, we have that y* = —kAk® and
d>¥® = k*dM\dA, where dA is the area element on a cross section of the horizon [6}
13} 114].

Then, the heat flux is given by
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5Q = / T, X%d¥’ = —k / AT, k°kPd)\d A (3.1)
H H

Assuming that the entropy is proportional to the area, we have that dS = ndA,
where 0.4 is the area variation of a cross section of a pencil of generators of H. For
now, the constant 7 is left undetermined. The area variation is given by

§A = / fdrd A (3.2)
H

where 0 is the expansion of the horizon generators.

The expression 6Q) = TdS « 0A is telling that the presence of the energy flux
is associated with a focussing of the horizon generators. Then, the Raychaudhuri
equation enters in the game, because it tells precisely the rate of focussing of
the generators. The stationarity conditions imposed above imply that, at p, both
the expansion and the shear VanishEL and the Raychaudhuri equation simplifies to

de

— = —R, kK’ 3.3

d\ ab ( )
where the 6% and o2 are higher-order contributions that can be neglected when

integrating to find # around P. For a small interval of A, this integration is simply

0 = —\R,_,k°k". Then,

§A = — / AR, k“kPd)\d A (3.4)
H
Now, from 1' and l , we see that 60Q) = T'dS = 2—277514 is valid if
hay
T, kK = — R, k"k" 3.5
ab o ab ( )
is valid for all null vectors £%. This is equivalent to the tensorial equation
2w
h_T]Tab - Rab + fgab (36)

for some undetermined function f. The stress-energy momentum is divergence-
free, which means that the rhs of (3.6) must also be divergence-free. This gives the
constraint f = —% + A for some undetermined constant A. Then, we find:

Tt is always possible to find a 2-surface P so that both the expansion and shear vanish in a first
order neighbourhood of p.
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1 27
Rab - éRgab + Agab = h_T]Tab (37)
Iftn= ﬁ, as the Bekenstein-Hawking entropy formula tells, we recover the
Einstein equation:
1
Ry — §Rgab + Agy, = 87GT, (3.8)

Thus, the Einstein equation appears from the relation 0Q) = T'dS, from a purely

thermodynamic point of view.

25



4 Second derivation. Entanglement entropy

In this derivation, the Einstein equation appears as a consequence of a maximal
vacuum entanglement hypothesis in a small region of spacetime. The main hypothesis
can be expressed as [15]:

“When the geometry and quantum fields are simultaneously varied from mazimal
symmetry, the entanglement entropy in a small geodesic ball is mazximal at fized
volume.”

The system to consider now can be defined as follows:

Consider any point o of a spacetime of dimension d. If we choose a timelike unit
vector u®, we can generate a (d — 1)—dimensional spacelike ball 3 of radius [ if we
consider all the geodesics of length [ that leave p in all directions orthogonal to u®.
The point p is located at the center of the ball, and we call the surface of the ball
0%.. The region causally connected to the sphere ¥ is called the causal diamond (see
Figure (f])). We will consider that the radius { of the ball is much smaller than the
characteristic radius of curvature of the spacetime in that region: | < Leypp.

Figure 5: Causal diamond associated to a geodesic ball centered at o and geodesic
radius /.

It is known that, at sufficiently short distances, all the fields look like the vacuum

state. Moreover, if the condition [ < L., is satisfied, the spacetime around p can be
treated as flat. Then, when we perform the variations with respect to the geometry
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and the quantum states, we will perform them with respect to flat space, and to the
vacuum state.

A way of interpreting geometrically the Einstein equation is the following: in
classical vacuum (without any matter source), any small geodesic ball of given volume
has the same area as in flat spacetime. However, when there is a source of matter
or energy (given by some expectation value of the stress-energy tensor), curvature
causes a spatial ball of given volume to have a smaller surface area than it would
have in flat spacetime. This area deficit can be computed at fixed geodesic radius,
or at fixed volume. The expressions are given by [15]

Qg_ol?
0A|, = ———— 4.1
=5~ (4.1)

Qd_gld
SAl = —_td=2 4.2
‘V 2(d? — I)R (42)

where R = R, R is the spatial Ricci scalar at p. Note that
d+1

For convenience, as will be seen at the end, we will take the variations to be at
fixed volume. To connect this expression with the Einstein equation, note that the
spatial Ricci scalar can be related to the 00-component of the Einstein tensor as
follows:

1 1 1, 1
Goo = Ry — 53900 ) (R - QROO) = §Rik = 573 (4.4)
Then, we can write
Qd_gld
5A|V - —mGOO (45)
and, by virtue of the Einstein equation,
STGQ_ol?
(5A‘V - _ﬁTOO (46)

Under a simultaneous variation of the geometry and the quantum fields, the
variation of the entanglement entropy will have two contributions: a UV-contribution
0Syy from the area change when the metric is varied with respect to flat spacetime
(0g,,), and an IR-contribution 0S5z due to the variation of the fields (4 [¢)), so we
can write
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§S = 6Syy + 0Six (4.7)

We shall assume that the UV-part of the entanglement entropy is finite at leading
order, and is proportional to the area variation computed above. That is, dSyy =
ndA. As in the previous derivation, the constant 7 is left undetermined until the
end.

In order to compute 0S7g, we take into account that the vacuum state of any
QFT, when restricted to the diamond, can be written as a thermal density matrix,

1
p= Ee’K/T (4.8)

where T'= h/27, and K is the modular hamiltonian. From this thermal density
matrix, the entropy variation can be computed and it is given by dS;r = 0(K).
In general, K is not a local operator, and there is not a general expression for it.
However, in the case of the vacuum of a conformal field theory (CFT), the situation
is different. The diamond has a conformal boost Killing vector generating it (see
Figure (j5))), given by

(=5 [ =) 0, (= 4?) 0 (4.9)

in null coordinates u, v, or

R R B
¢ = 5 (P = 7% —17) 0, — 2rt9,] (4.10)

in the usual t,r coordinates. For the vacuum of a CFT, there is a conformal
transformation relating the diamond to Rindler space and, in this case, K is equal
to H¢, the Hamiltonian generating the flow of the above Killing vector [9, |10, |16],
which means that

2
He = % / T¢,dS, (4.11)
by
With the previous Killing vector on the ¢t = 0 surface, we obtain [10]
2 2 12 —r?
S(K) = %/6(Tab>§“d2b — %/dd_lx QZT §(Tyy ) (4.12)

If we consider that 0(7},) is constant within the ball, it can be taken out of the
integral, and we have
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2 2 _ .2
S(K) = —7T5(T00>/dd_1xl—r

h 2l
2 l l2 2
= %5<T00>/d9d2/ Td_zz—lrdr (4.13)
0
2 Qd_gld
= fm(;@oo)

This result, together with the one providing the area variation at fixed volume,
gives

0S|, = ndA + §(K)
C Qgol? o (4.14)

&2 —1 —nGoy + 35<Too>

Now, imposing the assumption that the entanglement entropy is maximal at fixed
volume (that is, 0.5 |V:O), we obtain the relation

2
h_775<T00> (4.15)

If we require this variation to vanish at all points and with all timelike unit
vectors, we obtain a tensor equation,

Goo =

2m
hn
This is the Einstein equation, provided we define the constant 1 to be n = ;11%,
which is the precise value required by the Bekenstein-Hawking entropy formula.
For the non-CFT case, K is not given by (4.11)), and some assumptions must be

made in order to find an expression for 6(K). The main conjecture [15] is to consider
that §(K) is given by

Gab = 5<Tab> (416)

Qdfgld
8K = = (6(Ty ) +6X) (4.17)

where 0.X is a spacetime scalar, maybe related to the trace of T, . Calculations
[17, [18] support this assumption, although it is still being investigated.
When the maximization of entropy is considered, one obtains
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2m
Gab = h_n (5<Ta > - 5<X>gab) (418)

This result has a problem, because from the Bianchi identity, the lhs of is
divergence-free, and so is the term (7, ) because of energy-momentum conservation.
This implies that V,d(X) = 0 and, if it is related to the trace of T,,, it is a too
strong constraint.

This problem can be solved if, instead of comparing it to the Minkowski vacuum,
the variations are compared to some other maximally symmetric spacetime (MSS),
because any MSS seems as good candidate for the vacuum as flat spacetime. The
Einstein tensor in a MSS of curvature scale X is given by GM55 = —)\g_,. When the
area variation is compared to this MSS, the area variation at fixed volume is given
by the same expression as before, but replacing Gy, by Goy — G359, The variation
of entropy reads now

2w
55“/ = 775A|V + ?5(1()

Qe [
A2 —1

(4.19)

27
1 (Goo + Agoo) + T (6(Thg) +0X)

Again, when we consider that the variation vanishes at all points and with all
timelike unit vectors, the equation becomes a tensorial equation,

2
Gab + Agab - h_n (5<Tab> - 5Xgab) (420)

Taking the divergence of this equation, the term of the Einstein tensor and the

term of the stress-energy tensor vanish, because of the Bianchi identity and the con-
servation of energy-momentum, respectively. Then, we obtain a constraint between

A and 6.X:
21
hn

where A is a spacetime constant. When this relation is plugged into (4.20]), we
obtain

A=226X+ A (4.21)

2
Gab + Agab = h_775<Tab> (422)
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This is the Einstein equation with a cosmological constant A, provided that,
again, n = %%, in agreement with the Bekenstein-Hawking entropy. Thus, the
Einstein equations have been derived from an entanglement entropy hypothesis.
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5 Comments and discussion

This section contains a discussion about some issues related to the derivations, to-
gether with some of the main questions that arise from this new interpretation of
spacetime, and the possible answers (more or less satisfactory) that can be given
with the current knowledge of physics.

¢ Why are the variations taken at fixed volume instead of at fixed
geodesic radius?

In the derivation based on entanglement entropy, we have taken the variations at
fixed volume “for convenience”. We argue here why this has been done.

First of all, notice that we have obtained the desired result because the geometric
term Q4 50?/(d?> — 1) that appears as a prefactor in both variations is the same for
0Spyy and 0Srg, and it can be factorized. Had we taken the variations at fixed
geodesic radius instead of fixed volume, the terms would have not been the same.

But there are other arguments to take the variations at fixed volume. The first law
of causal diamonds is a variational identity, analogous to the first law of black hole
mechanics, which relates variations, away from flat spacetime, of the area, volume,
and cosmological constant inside the diamond. The first law reads [19]

kk Ve

——)
rG V+ G

where k is the surface gravity of the Killing horizon, k is the trace of the outward
extrinsic curvature of the boundary 0% when embedded in ¥, and V; = [ [¢|dV.
A is the cosmological constant, T is minus the Hawking temperature, and Sy, is
defined as the sum of the horizon entropy and the entanglement entropy of matter.
At fixed volume and fixed cosmological constant, the first law of causal diamonds
implies that the entropy is stationary when varied away from the vacuum, as it has
been considered in the derivation.

SA = T6S,en (5.1)

e What is the best way to proceed if we want to find a quantum theory
of gravity?

The fact that spacetime dynamics can be derived from thermodynamic arguments
suggests the possibilty that gravity is not a fundamental force, but a macroscopic
result of some microscopic degrees of freedom of spacetime [20-22]. These degrees of
freedom have been called by some authors as “Atoms of Spacetime”, in analogy to
the standard relation between thermodynamics and statistical mechanics.
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If this is the case, it explains why the quantization of General Relativity has
shown to be much more problematic than for other microscopic forces.

In [21] 22], some properties that these atoms of spacetime should have are dis-
cussed, and with a particular model of atoms of spacetime for the geometric part
of the action, the Einstein’s equations are recovered from a purely thermodynamic
argument. Other works [23, 24] have used particular models of microstructure to
recover the Hawking temperature and entropy for black holes.

e Could we obtain higher-curvature corrections to the Einstein’s equa-
tions with the thermodynamic interpretation?

The classical Einstein’s equations,

1
RNV — §ngj = SWGTMV (52)

are derived from the Einstein-Hilbert action,

= T6- G/\/_Rd4 (5.3)

However, the Einstein-Hilbert gravity can be treated as a low-energy effective
theory, so we should expect to have corrections to this action, of the form

nypo

e / V=9 (R+ oA+ aaR* + a3R,,R" + auR,, R + ..) d'z (5.4)

and the field equations arising from this action would contain higher-curvature
terms. These terms include higher derivatives of the metric, which correspond to
terms with higher and higher curvature (and a lower and lower associated curvature
radius). At some point, this curvature radius is of the order of the Planck length.
Thus, in a theory of quantum gravity, we expect these terms to be important. The
question that arises now is: we have obtained the classical Einstein’s equations from
a thermodynamic point of view. If the spacetime is really a thermodynamic entity,
should we be able to obtain these higher-curvature terms in the field equations with
a similar argument?

There is not a clear answer to this question. In the derivation of Section (4)), in
the expression for the area deficit we have neglected terms of order [/ L,;.,, while the
next-higher-curvature correction to the field equations might be of order (I1/Leym)?,
with [; a length scale appearing in the corresponding term in the action. To obtain
this next-order term in the field equations, we need I/ Loy < (I1/Lewrs)* = /11 <
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l1/Leurs- The rhs must be smaller than 1 (otherwise, the higher-order terms would
dominate), which means that we need [ < ;. That is, the diamond must be smaller
than [y. If [; is, for instance, the Planck length, the diamond should be smaller than
the Planck length, and the classical geometry and quantum field theory used in the
derivation would not work in that regime.

There have been some attempts to find the field equations when these corrections
are considered [25-27], but because of the presence of these terms, some technical
difficulties appear and it is required to use non-equilibrium thermodynamics.

However, an interesting result has been found in [28]. There, they show that, for
spherically symmetric systems with a horizon, the Einstein equations arising from
the Einstein-Hilbert action can be put in the form of the relation T'dS = dE + PdV,
matching the entropy S and the energy E with the already know expressions. They
go one step beyond, and do the same for the first correction to the Einstein-Hilbert
action, the so-called Gauss-Bonnet correction:

1 4 2 v vpo
S = m/\/ —g (R+ CKEGB)d Z, EGB = R* — 4RMVRN -+ RIW/)O,RM P (55)

finding again that, once the field equations are written in the form 7dS =
dE + PdV, the entropy and the energy match with the expressions obtained by
other authors. Finally, they generalize this result to the complete Lanczos-Lovelock
action in D dimensions, matching again the results for S and E with independent
calculations.

These results suggest that the thermodynamic route to obtain the field equations
also works for higher-curvature theories of gravity, and the quantum corrections
to the Einstein-Hilbert action appear as quantum corrections for the entropy and
the energy [11]. However, the microscopic structure beyond this thermodynamics
remains mysterious.

e Is it appropiate to consider the entanglement entropy to be finite at
UV scales?

As we have seen, for a d-dimenional free field theory the entanglement entropy
is a UV-divergent quantity, with the leading term being proportional to the area of
the entangling surface, which we rewrite here for convenience:

Area(0.A)
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where € is the cutoff length that is sent to 0 in the continuum limit and originates
the divergences. But, because of the fact that the fields that contribute more to
the entanglement entropy are those of high energy, we expect to have modifications
to the background geometry. This backreaction of spacetime may lead to a finite
entropy. Susskind and Uglum show in [29] that when these are considered, the
divergences that appear are the same ones that appear in the renormalization of the
gravitational constant G. When this renormalization process is done, one obtains a
finite result for the entanglement entropy, with the leading term coinciding with the
Bekenstein-Hawking entropy [30} 31:

5, = 1 Area(0.A)
AT 4T Grh

where Gi is the renormalized gravitational constant. Again, in order to un-
derstand the microscopic origin of the entanglement entropy and its divergences, a
microscopic understanding of the theory is needed.

The great similarity between the entanglement entropy and the Bekenstein-Hawking
entropy suggests that, maybe, black hole entropy can be originated purely from en-
tanglement |5, [11]. This identification, however, can only be done once the diver-
gences of entanglement entropy are properly solved, because the Bekenstein-Hawking
entropy has no divergences.

(5.7)
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6 Conclusions
After the realization of the thesis, some conclusions can be extracted:

e The analogy between thermodynamics and black holes found by Bekenstein and
Hawking 50 years ago can be extended to spacetime itself. That is, spacetime
is a thermodynamic entity.

e Given this thermodynamic nature of spacetime, one should be able to derive
the Einstein equations from thermodynamic arguments. This has been done
in two different ways: in Section , the Einstein equations have been derived
from the thermodynamic relation Q) = T'dS near a Rindler horizon, and in
Section they have been derived from an hypothesis about entanglement
entropy.

e This thermodynamics suggests some kind of microstructure of spacetime at
smallest scales. Although there is not fully satisfactory explanation of what
this microstructure is, it seems reasonable that it will be important when trying
to find a complete quantum theory of gravity.
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