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ABSTRACT: Photoswitchable neurotransmitters of ionotropic kainate 

receptors were synthesized by tethering a glutamate moiety to 

disubstituted C2-bridged azobenzenes, which were prepared through a 

novel methodology that allows access to diazocines with higher yields 

and versatility. Because of the singular properties of these 

photochromes, photoisomerizable compounds were obtained with 

larger thermal stability for their inert cis isomer than for their 

biologically activity trans state. This enabled selective neuronal firing 

upon irradiation without background activity in the dark. 

 

By enabling remote manipulation of neuronal signaling with 

light, optogenetics1 and photopharmacology2 have revolution-

ized neuroscience and neurobiology. Neural receptors re-

sponding to glutamate (GluRs), the primary excitatory neuro-

transmitter, are one of the major targets in these fields, since 

they regulate several key processes in the nervous system and 

are related to numerous diseases.3 As such, a plethora of pho-

topharmacological tools have been developed for light-gating 

GluRs,4 among which photochromic ligands (PCLs)5-12 are 

often preferred because they combine (a) the advantages of 

small-molecule, freely diffusing drugs with (b) the capacity 

for reversibly photoswitching their activity without by-product 

generation nor modification of native receptors.2,4 

The major strategy employed to derive PCLs relies on intro-

ducing an azoaromatic photoswitch into the structure of well-

known, biologically-active ligands.2,4 Upon trans-cis photo-

isomerization,13 a geometrical change is induced in these com-

pounds that alters their interaction with the receptor. Typical-

ly, the more extended configuration of the trans isomer favors 

such interaction, while affinity is reduced for the folded cis 

state due to steric effects (i.e. trans-active PCLs).2,4 Because of 

the inherent photochemical properties of azo-aromatic com-

pounds,13 this imposes a severe limitation to most PCLs de-

veloped to date for GluRs5-11 (and other receptors2): they are 

active in the dark, where they lie in the more stable trans state. 

Consequently, these compounds elicit strong tonic responses 

in the absence of illumination (e.g. when acting as receptor 

agonists), which drastically hampers their use. This is the case 

of GluAzo (Figure 1a), which is a trans-active, trans-stable 

partial agonist of ionotropic kainate receptors GluK1 and 

GluK2,5,14,15 two of the principal GluRs mediating excitatory 

neurotransmission in the central nervous system.3 

To overcome this obstacle while preserving the main design 

principles behind azo-based PCLs, bridged azobenzenes 

(brAzo) such as diazocines (C2 bridge, Figure 1b) could be 

used as photochromes, since they (a) should also favor trans-

active behavior by switching between extended trans and bent 

cis configurations, but (b) exhibit cis thermal stability.16-23 This 

combination of properties should therefore allow direct 

administration of the inert cis form of the PCL, which could 

then be selectively photoactivated. In addition, diazocines 

isomerize with visible light,16-23 which is a further advantage 

with respect to common UV-responding azoaromatic 

compounds.13 However, the limited synthetic accessibility and 

versatility of these photochromes has so far limited their 

application to the photocontrol of biological systems.22,23b 

Actually, their use in photopharmacology to modulate the 

activity of N-methyl-D-aspartate (NMDA) receptors and 

potassium ion channels has only been reported very recently,24 

for which a low-yield 4-mono-substituted diazocine previously 

described was employed.23 
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Figure 1. (a) Structure of GluAzo.5 (b) Strategy proposed to 

prepare trans-active, cis-stable PCLs based on C2-bridged azo-

benzenes for the light-control of neuronal membrane receptors 

GluK1 and GluK2. (b) Photoisomerization of Glu_brAzo1-2. 

In this work we aim to apply this strategy to photocontrol 

GluK1 and GluK2, while broadening its scope by developing 

diazocine-based PCLs with larger yields and multiple func-

tionalization sites to favor chemical versatility. To reach this 

goal our attention focused on 3,3’-disubstituted diazo-

cines,17,18,21 because very inefficient syntheses have been re-

ported to date for 4,4’-disubstituted analogues (< 1% yield22). 

Based on these photochromes and the structure of GluAzo,5 

we designed Glu_brAzo2 as the first trans-active, cis-stable 

agonist of GluK1 and GluK2 by tethering a diazocine unit to a 

biologically active glutamate moiety through a vinyl linker 

(Figure 1c). In addition, we took advantage of the disubstitu-

tion pattern of the photochrome to introduce a lateral ionic, 

bulky group for (a) enhancing solubility in aqueous media, and 

(b) further hindering the interaction of the cis isomer with the 

receptor by increasing the steric congestion around the gluta-

mate moiety. The latter should boost the difference in activity 

between the two states of the PCL, a required feature given the 

moderate photoconversions of most functionalized diazo-

cines.17,18,20-23 To evaluate this effect, Glu_brAzo1 lacking the 

additional bulky substituent was also synthesized (Figure 1c). 
 

To validate our design principles, we conducted molecular 

docking simulations for the two isomers of Glu_brAzo1-2 on 

kainate receptors. Our attention particularly focused on 

GluK2, since (a) it presents a narrower binding cavity that 

imposes larger steric constraints to ligands,25 and (b) the crys-

tallographic structure of its ligand-binding domain after com-

plexation with trans-GluAzo is available.15 Dockings were 

computed on this structure keeping the protein rigid, while the 

initial geometries of the PCLs were optimized at the 

B3LYP/6-31G(d) level. In all the cases, the best docking solu-

tions placed the glutamate moiety of the ligands in a very 

similar position as with trans-GluAzo,26 thus suggesting anal-

ogous interaction with the receptor via hydrogen bonds. How-

ever, clear differences were observed for the binding arrange-

ment of each ligand (Figure 2 and S1), which led to different 

complexation energies (in Chemscore units27): 41.2, 37.0, 48.0, 

37.3 for trans-Glu_brAzo1, cis-Glu_brAzo1, trans-

Glu_brAzo2 and cis-Glu_brAzo2 respectively. Importantly, 

these figures indicate larger affinity of the trans isomers of 

Glu_brAzo1-2 to GluK2, thus preserving the targeted trans-

active behavior of GluAzo. By contrast, they do not support 

our hypothesis that the introduction of an ionic, bulky group in 

Glu_brAzo2 should decrease the binding efficiency of the cis 

isomer with respect to less hindered Glu_brAzo1. It must be 

noted, however, that this is compensated by the higher com-

plexation energy calculated for trans-Glu_brAzo2 relative to 

trans-Glu_brAzo1, which arises from the additional attractive 

hydrogen bonding and lipophilic interactions formed between 

its bulky group and the receptor. Therefore, an enhanced con-

trast in biological activity is indeed to be expected between the 

two states of Glu_brAzo2, as originally designed. 

Based on our experience in the synthesis of C2-bridged azo-

benzenes16-21 and light-responsive glutamate ligands,28-30 we 

devised a linear sequence to prepare Glu_brAzo1-2 by Heck 

coupling reaction between their constituting units: a 3,3’-

disubstituted diazocine and previously reported, protected 

glutamate derivative 129 (Scheme 1). The preparation of the 

photochromic unit started from commercially available 4-

bromo-2-nitrotoluene, 3, which was subjected to deprotonation 

with potassium tert-butoxide and further oxidation with bro-

mine to afford dinitro derivative 4. When attempting common 

reductive ring-closing conditions on this intermediate that had 

been previously reported for the synthesis of diazocines (e.g. 

Zn, Ba(OH)2),16-21 formation of the desired bridged azoben-

zene was only observed with very low yields (< 14%). This 

prompted us to develop a new methodology for the azocy-

clization process, for which we explored Mills coupling reac-

tion. With this aim, we first reduced the nitro groups of 4 

using sodium sulphide,3 1 which delivered diamine 5 in 90% 

yield. Then, oxidative coupling of 5 was undertaken in the 

presence of Oxone®3 2 in glacial acetic acid3 3  at room temper-

ature for 1 h, which nicely furnished dibromosubstituted di-

azocine 6 in good yield (40%). According to this result, Ox-

one®-mediated oxidation of one of the aniline moieties to 

provide the corresponding nitrosoarene followed by condensa-

tion with the other, unaltered aniline emerges as a novel one-

pot synthesis of diazocines with reproducible yields. 

Azobenzene 6 was next monocyanated under standard 

Rosenmund-von Braun conditions3 4  to obtain common 

asymmetric diazocine 7 in 78% yield  (based on recovered 6).  

This 

 

Figure 2. Best docking solutions for trans-Glu_brAzo2 (orange) 

and cis-Glu_brAzo2 (green) in GluK2. The protein residues 

interacting with the glutamate group of both ligands are also 

indicated. Oxygen, nitrogen and hydrogen atoms are depicted in 

red, blue and white, respectively. 



 

Scheme 1. Synthesis of Glu_brAzo1 and Glu_brAzo2 

 

compound was directly coupled to glutamate 1 under Palladi-

um catalysis, for which proper selection of the base and the 

solvent was found to be fundamental. After several tests, the 

reaction was performed with K3PO4 and N,N-

dimethylacetamide3 5 at 140 °C under argon in the presence of 

0.1 mol% Pd(OAc)2, which delivered 8 in 61% yield. Finally, 

acid removal of the protecting groups gave the target com-

pound Glu_brAzo1 as its monotrifluoroacetate salt in good 

yield. For Glu_brAzo2, intermediate 7 was hydrolyzed in 

basic medium to give the corresponding acid, which was then 

tethered to previously prepared amine 2 using carbodiimide 

coupling reagent EDCl·HCl along with HOBt to afford 9 in 

74% yield for the two steps. Heck reaction of this compound 

with 1 under the aforementioned conditions and subsequent 

removal of the protecting groups finally delivered the target 

PCL. It must be noted that, despite its larger structural com-

plexity, Glu_brAzo2 was obtained with an overall yield that is 

ca. 2- to 10-fold larger than those recently reported for diazo-

cine-based PCLs,24 thus paving the way for the general appli-

cation of this strategy in photopharmacology. 

By comparison with previous data reported for diazocines,16-21 

NMR and UV-vis absorption analysis confirmed obtainment 

of the cis isomer of Glu_brAzo1-2 due to their larger stability. 

In addition, upon irradiation of their n-π* absorption band with 

violet light (abs,max
  395 nm, exc

 = 405 nm), spectral changes 

were observed indicative of cis-trans isomerization (Figures 

3a and S2-S4). This is the case of the new red-shifted absorp-

tion band found at abs,max
  480 nm, which is distinctive of the 

trans isomer of diazocines16-18,20-23 and allowed reverting the 

isomerization process by green light illumination (exc
 = 532 

nm, Figure 3a and S2-S3 and S5). Further characterization of 

Glu_brAzo1-2 revealed that they undergo cis-trans photo-

isomerization with moderate quantum yields (cis-trans
  0.1) 

and efficiencies in aqueous media (Table S1), which resulted 

in photostationary state mixtures (PSScis-trans) containing 47% 

and 60% of their trans isomer, respectively. By contrast, 

trans-cis photoconversion proceeded quantitatively with high 

quantum yields (trans-cis  0.9), thus ensuring fast light-induced 

recovery of cis-Glu_brAzo1-2 (Table S1) and repetitive photo-

switching without degradation (Figure S6). Back-isomerization 

of the trans state of these compounds was also found to occur 

in the dark, though at a very much longer time scale (t1/2  4 h 

at 298 K in aqueous media, Figure S7 and Table S1). 

To assess the capacity of Glu_brAzo1-2 to light-gate GluRs, 

whole-cell voltage clamp recordings were conducted on 

HEK293 cells expressing GluK1 or GluK2, whose activation 

causes channel opening and ion flux across the membrane 

(Figure 1b).3,5 After perfusion of Glu_brAzo1-2, clear chang-

es in the currents evoked in these cells were observed upon 

irradiation, which were consistent with the different absorption 

properties of their cis and trans isomers (Figure 3b and S8-

S10).  In  particular,  maximal  inward  currents  arising  from  

 

Figure 3. (a) Absorption spectra of both isomers of Glu_brAzo1 

and Glu_brAzo2 in PBS:DMSO 1:1, as well as of the PSS mix-

tures obtained under cis-trans (exc = 405 nm) and trans-cis (exc = 

532 nm) photoisomerization. (b) Activation and deactivation 

spectra of GluK2 in HEK293 cells after perfusion of Glu_brAzo1 

or Glu_brAzo2 and irradiation to induce cis-trans (for activation) 

and trans-cis (for deactivation) photoisomerization. 



 

 

Figure 4. Whole-cell current clamp recordings of rat hippocampal 

neurons in culture after perfusion of Glu_brAzo2 (30 μM) and 

irradiation at exc = 390 (purple) and 530 nm (green). Successful 

neuron activation was observed with 390 nm light pulses of (a) 5 

s, (b) 1s, and (c) 0.5 s (1 Hz stimulation), while it was inhibited 

upon perfusion of DNQX (10 μM). Neurons were current 

clamped at -60 mV and, to truly report on their GluK2-mediated 

gating and connectivity, no Concanavalin A was used to prevent 

receptor desensitization after activation. 

receptor activation were measured at exc
 = 390-400 nm (i.e. 

when inducing cis-trans photoisomerization of the PCLs). 

Minimal signals due to receptor deactivation were instead 

detected in the dark (i.e. for cis-Glu_brAzo1-2) and at exc
 > 

450 nm (i.e. upon trans-cis photoisomerization). As predicted 

by our molecular docking calculations, preferential interaction 

between the glutamate agonist ligand and GluK1/GluK2 was 

therefore observed for the trans state of Glu_brAzo1-2, which 

allowed light-induced manipulation of these receptors. 

The trans-active behavior of Glu_brAzo1-2 was further 

demonstrated when measuring their dose-response curves with 

GluK1 and GluK2 in the dark and at exc
 = 390 (10-300 μM, 

Figure S11). In all the cases, larger inward current signals 

were retrieved for the PSScis-trans mixture generated upon irra-

diation of the initial cis isomer, though with (a) low-to-

moderate photoinduced modulation (ca. 10-35% current in-

crease with respect to the dark) and (b) maximal values that 

were only about 20-40% of those evoked by free glutamate at 

300 μM. Three main factors should account for these results: 

incomplete photoconversion into the active trans isomer, as 

observed in solution (< 60%, Table S1); limited modification 

of the glutamate-binding site affinity upon cis-trans isomeriza-

tion; and the steric effects imparted by the appended diazocine 

group with respect to free glutamate even in its less-hindered 

trans configuration, which are of especial importance for 

GluK2 interaction owing to its narrower ligand binding cavi-

ty.25 Actually, the latter accounts for the lower inward current 

signals with higher light-induced selectivity obtained for this 

receptor. However, it did not prevent Glu_brAzo2 bearing a 

bulkier terminal group to (a) show higher activity (ca. 2-fold 

increase with respect to Glu_brAzo1 for GluK2), as anticipat-

ed by our molecular docking simulations, which (b) is further 

modulated upon photoisomerization, as pursued in our initial 

design. 

Glu_brAzo1-2 were finally tested as photoswitchable neu-

rotransmitters in hippocampal neurons where GluK2 is highly 

expressed.36 Because of their trans-active, cis-stable behavior, 

physiological behavior was not altered upon perfusion of 

Glu_brAzo1-2 in the dark, a clear advantage over most PCLs 

reported for GluRs to date such as GluAzo.5-11 Neuronal firing 

was instead selectively induced upon cis-trans photoisomeri-

zation of Glu_brAzo2 at relatively low concentrations (30 

μM, Figure 4a-c) and weak light intensities (22.0 and 47.4 μW 

mm−2 at exc
 = 390 and 530 nm, respectively). As a result, 

sequential and sustained trains of action potentials could be 

triggered with Glu_brAzo2 by consecutively switching be-

tween violet and green light illumination, even at low irradia-

tion powers and high excitation frequencies (up to 1 Hz, Fig-

ure 4c). Interestingly, this photoinduced behavior was inhibit-

ed by addition of DNQX,37 a well-known antagonist of kainate 

and AMPA GluRs (Figure 4d), which further demonstrates 

that the efficient photoactivation of hippocampal neurons 

accomplished with Glu_brAzo2 arose from its light-

dependent interaction with GluK2. Noticeably, this clean 

physiological effect was achieved despite the limited activity 

modulation measured upon Glu_brAzo2 photoisomerization 

in GluK2-expressing HEK293 cells (ca. 20% at 30 M con-

centration), while it could not be reproduced with the slightly 

less efficient Glu_brAzo1 agonist (Figure S12). We ascribe 

this situation to the well-known nonlinear behavior of neu-

ronal signaling, since ligand interaction with a minimum frac-

tion of glutamate receptors is needed to overcome the depolar-

ization threshold required to initiate an action potential.5 In 

our case, such threshold was only surpassed with trans-

Glu_brAzo2, probably due to its larger affinity for GluK2, as 

suggested by our measurements in cultured cells. 

In conclusion, we demonstrated in this work the potential of 

C2-bridged azobenzenes for the preparation of azo-based 

photochromic ligands capable of light-controlling neural re-

ceptors, which preserve the larger activity typically observed 

for their trans state while ensuring larger stability for the inert 

cis isomer. By introducing a novel synthetic methodology for 

the preparation of 3,3’-disubstituted diazocines based on an 

Oxone®-mediated intramolecular azocyclization reaction, the 

desired ligands could be obtained with higher yields and larger 

versatility, thus enabling fine-tuning of their light-dependent 

biological response. As a proof of concept, this strategy was 

applied to the preparation of new photoswitchable neuro-

transmitters for the light-induced operation of kainate gluta-

mate receptors, with which we achieved selective neural firing 

upon irradiation without background activity in the dark. 
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Höppner, R.; Herges, R. J. Am. Chem. Soc. 2016, 138, 13111−13114. 

(20) Moormann, W.; Langbehn, D.; Herges, R. Synthesis 2017, 49, 

3471-3475. 

(21) Moormann, W.; Langbehn, D.; Herges, R. Beilstein J. Org. Chem. 

2019, 16, 727-732. 

(22) Samanta, S.; Qin, C. G.; Lough, A. J.; Woolley, G. A. Angew. 

Chem. Int. Ed. 2012, 51, 6452−6455. 

(23) (a) Joshi, D. K.; Mitchell, M. J.; Bruce, D.; Lough, A. J.; Yan, H. 

Tetrahedron 2012, 68, 8670-8676. (b) Eljabu, F.; Dhruval, J.; Yan, H. 

Bioorg. Med. Chem. Lett. 2015, 25, 5594-5596; (c) Jun, M.; Joshi, D. K.; 

Yalagala, R. S.; Vanloon, J.; Simionescu, R.; Lough, A. J.; Gordon, H. L.; 

Yan, H. ChemistrySelect 2018, 3, 2697−2701. 

(24) Thapaliya, E. R.; Zhao, J.; Ellis-Davies, G. C. R. ACS Chem. Neu-

rosci. 2019, 10.1021/acschemneuro.8b00734. 

(25) Mayer, M. L. Neuron, 2005, 45, 539-552. 

(26) Guo, Y.; Wolter, T.; Kubar, T.; Sumser, M.; Trauner, D.; Elstner, 

M. PLoS One 2015, 10, e0135399. 

(27) Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, 

R. P. J. Comput.-Aided Mol. Des. 1997, 11, 425–445.. 

(28) Izquierdo-Serra, M.; Gascón-Moya, M.; Hirtz, J. J.; Pittolo, S.; 

Poskanzer, K. E.; Ferrer, È.; Alibés, R.; Busqué, F.; Yuste, R.; Hernando, 

J.; Gorostiza, P. J. Am. Chem. Soc. 2014, 136, 8693-8701. 

(29) Gascón-Moya, M.; Pejoan, A.; Izquierdo-Serra, M.; Pittolo, S.; 

Cabré, G.; Hernando, J.; Alibés, R.; Gorostiza, P.; Busqué, F. J. Org. 

Chem. 2015, 80, 9915-9925. 

(30) Cabré, G.; Garrido-Charles, A.; Moreno, M.; Bosch, M.; Porta-de-

la-Riva, M.; Krieg, M.; Gascón-Moya, M.; Camarero, N.; Gelabert, R.; 

Lluch, J. M.; Busqué, F.; Hernando, J.; Gorostiza, P.; Alibés, R. Nat. 

Commun. 2019, 10, 907. 

(31) Mourot, A.; Kienzler, M. A.; Banghart, M. R.; Fehrentz, T.; 

Huber, F. M. E.; Stein, M.; Kramer, R. H.; Trauner, D. ACS Chem. Neu-

rosci. 2011, 2, 536–543. 

(32) Yu, B. C.; Shirai Y.; Tour, J. M. Tetrahedron, 2006, 62, 10303-

10310. 

(33) Davey, H. H.; Lee R. D.; Marks, T. J. J. Org. Chem. 1999, 64, 

4976-4979. 

(34) Friedman, L.; Shechter, H. J. Org. Chem. 1961, 26, 2522-2524. 

(35) Yao, Q.; Kinney, E. P.; Yang, Z. J. Org. Chem. 2003, 68, 7528-

7531. 

(36) Carta, M.; Fièvre, S.; Gorlewicz, A.; Mulle, C. Eur. J. Neurosci. 

2014, 39, 1835-1844. 

(37) Honore, T.; Davies, S. N.; Drejer, J.; Fletcher, E. J.; Jacobsen, P.; 

Lodge, D.; Nielsen, F. E. Science 1988, 241, 701-703. 

 


