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ABSTRACT

Complex networks are essentially heterogeneous not only in the basic properties of the constituent nodes, such as their degree, but also
in the effects that these have on the global dynamical properties of the network. Networks of coupled identical phase oscillators are good
examples for analyzing these effects, since an overall synchronized state can be considered a reference state. A small variation of intrinsic node
parameters may cause the system to move away from synchronization, and a new phase-locked stationary state can be achieved. We propose a
measure of phase dispersion that quantifies the functional response of the system to a given local perturbation. As a particular implementation,
we propose a variation of the standard Kuramoto model in which the nodes of a complex network interact with their neighboring nodes,
by including a node-dependent frustration parameter. The final stationary phase-locked state now depends on the particular frustration
parameter at each node and also on the network topology. We exploit this scenario by introducing individual frustration parameters and
measuring what their effect on the whole network is, measured in terms of the phase dispersion, which depends only on the topology of the
network and on the choice of the particular node that is perturbed. This enables us to define a characteristic of the node, its functionability, that
can be computed analytically in terms of the network topology. Finally, we provide a thorough comparison with other centrality measures.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5099621

Identical coupled Kuramoto oscillators tend to synchronize in
the stationary state. This means that they will run with exactly
the same phase and the same frequency. However, the introduc-
tion of a common forced phase difference, also called a frustra-
tion parameter, results in the phases of neighboring oscillators
repelling each other, and in the long run, new configurations of
partially synchronized oscillators become stable. Here, we make
use of this mechanism to show that individual frustration param-
eters are crucial in generating different functional structures
and allow us to define a new centrality measure, which we call
“functionability.” The practical meaning of this measure can be
important in complex networks such as the brain or power grids.

I. INTRODUCTION

Synchronization has become one of the most paradigmatic
examples of emergent properties in complex systems,1,2 since the
degree of interaction between the oscillatory units of a discrete sys-
tem shows that a variety of macroscopic states are available. Among
the most studied such systems, because of its inherent simplicity,
is the Kuramoto model (KM), in which phase oscillators interact
continuously with other units through a sine function of the phase
difference.3–5 In all-to-all models, there is a transition from an inco-
herent state to a coherent one that depends only on the relative
strength of the two competing forces: the dispersion of intrinsic
frequencies and the intensity of the coupling between units.
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Over the last four decades, the KM has been thoroughly studied
in regular lattices, and, with the sudden interest in complex net-
works, its role in irregular connectivity patterns has been heavily
exploited.6 This has been achieved not only by analyzing synchro-
nization properties (order parameters, control parameters, time to
synchronize, etc.) but also through the use of the path to syn-
chronization of neighboring units in order to identify higher-order
connectivity patterns, for instance, in communities that form com-
plex networks at different hierarchical levels.7–9 As already stated,
in the original KM, the emphasis is on the relative strength in the
two antagonistic contributions: frequency dispersion and coupling
strength. However, when complex topologies are considered, it is
important to disentangle these effects; for this reason, special inter-
est has been arisen concerning the evolution of identical oscillators.
In particular, a simple change in the coupling function, by inserting
a phase frustration in the argument of the sine function, results in
identical oscillators now being unable to synchronize, and it gener-
ates complex patterns of phase differences, which have been related
to topological symmetries of the network.10,11

The introduction of an identical frustration parameter in all the
coupling terms produces a global effect on the network.10 However,
in complex network science, there is a special interest in understand-
ing what role the individual nodes play in the behavior of the overall
network. Many centrality measures that are key to this field have
been considered for many years in the social sciences, and there are
more recent proposals such as Google Search PageRank as well as
other measures related to the concept of controllability. However, to
the best of our knowledge, there is no measure of the effect that a
given node can have on the range of states a network can achieve
which, in terms of phase oscillators, is measured in the different
phase-difference patterns a network can traverse. Precisely, our pro-
posal is to characterize the effect that a node can have on the global
asynchronous state.

Among the systems where this new concept that we name
“functionability” has an immediate application is the rapidly evolv-
ing field of brain networks.12 The molecular and cellular mecha-
nisms of synapse formation and plasticity shape and guide the devel-
opment and change of synaptic connections in the long run.13–15

Therefore, brain networks, on a short time scale, are considered
to be static. Such structural networks are the substrate on which
different temporal coactivation patterns can occur, also known as
functional networks.16–21 All the functionalities of the brain, at either
the low or the high level, are captured by different networks which
nonetheless occur within the same physical medium. How does this
essential feature of the brain arise? What mechanisms are responsi-
ble for a static network undergoing many different states? Are there
specialized brain regions that are better at this job? Are they easy to
identify?

Higher functionability may be positive for the system, as it
reflects the capacity of a node to be involved in different tasks and
can result in the network state shifting into one involving more
complex temporal relationships between modules. However, highly
functional nodes can also be potentially dangerous in systems where
tiny perturbations can produce cascadelike effects that completely
disrupt the network dynamics. An example of this is offered by
the transfer networks of power grids, which have been widely stud-
ied in the field of complex networks, focusing on their structure to

assess the damage of failures.22,23 However, power grids are highly
sensitive to oscillatory dynamics and the synchronization of AC
power24 and hence to perturbations of the phase lags between indi-
vidual agents. Other such examples include the synchronization in
heartbeats,25 multiprocessors and multicore processors,25 and traffic
signal synchronization.26

We are specifically interested in detecting the nodes that have
a major impact on the network by enabling a broader spectrum of
states or a larger dispersion from the “ground” state. Many centrality
measures have been developed and defined over the years,27 some of
them are even related to the dynamical properties of the nodes;28 but
we specifically target a measure of variability or functionability that
can be associated with the physical phenomenon of synchronization
in order to provide it with meaning.1 Hence, we base a great deal of
our work on an oscillatory dynamical model; but we aim to arrive at
a compact mathematical expression that emerges from it.

The structure of the paper is as follows: in Sec. II, we provide
a brief description and the main results of Kuramoto and frus-
trated Kuramoto oscillatory models. In Sec. III, we introduce a new
oscillatory model based on the previous one: the general frustrated
Kuramoto model (GFKM) as well as a measure to quantify the
phase dispersion of the system when a perturbation is produced.
This model is the building block of our main contribution, that
is, the definition of a new centrality measure: functionability. Its
mathematical expression and interpretation are provided in Sec. IV.
Section V then presents a comparison between other well-known
centrality measures, in order to stress the novelty of functionabil-
ity, and Sec. VI considers weighted functionability. Finally, Sec. VII
closes the paper with our conclusions. Further details concerning the
validity of the model, as well as an example of a toy network, can be
found in the Appendix.

II. OSCILLATORY MODELS

A. The Kuramoto model

The phenomenon of synchronization in complex networks has
been widely studied in recent decades, and several models have been
designed to reproduce and help us understand the behavior of real
oscillatory systems.1,29,30 In 1975, Kuramoto presented one of the
best-known and most compact models:31 a set of N phase oscilla-
tors characterized by their phase, θi(t), coupled by the sine of their
phase differences. Each unit is explicitly influenced by its nearest
neighbors, j ∈ 0i, with coupling strength Kij. When oscillators are
connected in a particular topology, the set of nearest neighbors is
defined by the adjacency matrix of the network, G(V, E), A. The
set of nodes comprising the network, V(G), consists of the oscilla-
tors, and the links between oscillators are represented by the set of
network edges, E(G).27

Kuramoto further assumed homogeneous interactions:
Kij = K∀(i, j). Therefore, considering both the topology of the net-
work that maps the connectivity between oscillators and the cou-
pling strength, the dynamics of the system can be written as

dθi

dt
= ωi + K

∑

j

Aij sin(θj − θi), i = 1, . . . , N, j ∈ 0i, (1)

where ωi represents the natural frequency of each oscillator.
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Previous studies5 show that the long-time properties of the
population of oscillators, in the absence of noise, are determined by
the coupling strength, K, and the distribution of natural frequencies.

We consider that two nodes are phase synchronized when their
phases have the same value,

θi(t) − θj(t) = 0 ∀ t > t0. (2)

When the phase difference has a constant value, that is,
θi(t) − θj(t) = c ∀ t > t0, we say there is phase locking between
nodes i and j. Similarly, we consider that two nodes are frequency
synchronized when their frequencies have the same value:

dθi(t)

dt
− dθj(t)

dt
= 0 ∀ t > t0. (3)

When two nodes are both phase and frequency synchronized, we say
these nodes are completely synchronized.

What is the effect of the K and ωi parameters in Eq. (1)?
An increase of the coupling strength accelerates the move toward
closer phases and, hence, promotes the synchronization of the sys-
tem. Conversely, a broader spectrum of natural frequencies, that is,
larger differences within the set {ωi}, tends to cause the phases of the
oscillators to diverge (see Fig. 1).

In this paper, we assume that the network forms a single con-
nected component. This ensures that when all the oscillators have
the same natural frequency, ω0, there is only one attractor of the
dynamics: the completely synchronized regime, dθi(t)/dt = ω0 ∀i.7,8

In the case of unimodal distributions of the natural frequency, the
system becomes synchronized as long as the coupling parameter, K,
is larger than a threshold value, KC.5 The particular evolution to such
a state depends strongly on the connectivity structure or the network
topology.32

B. The frustrated Kuramoto model (FKM)

In Sec. II A, we stated that a connected system described by
a KM reaches complete synchronization when all the oscillators
are identical, ωi = ω0 ∀i. Besides tuning the natural frequency of
each oscillator, is there an alternative way of breaking the natu-
ral synchrony of the system? Previous studies10,33,34 have suggested
the introduction of a phase “frustration” parameter, α, into the
dynamics of the system as follows:

dθi

dt
= ω0 + K

∑

j

Aij sin(θj − θi − α) j ∈ 0i. (4)

It has been shown that, as long as α < π/2, the system becomes syn-
chronized to a resulting frequency �, where dθi(t)/dt = � 6= ω0 ∀i.
Nevertheless, α forces connected nodes to be locked in phase and
hence breaks the phase synchronization. The magnitude of such
locking is determined by both the network topology and the param-
eters of the dynamics, α. However, complete synchronization is
conserved for topological symmetric nodes, a phenomenon that has
been called remote synchronization. As the frustration increases,
the asynchronous groups move away from each other. In order to
quantify the level of synchronization between pairs of oscillators, we

FIG. 1. For each node in the network (upper figure), we see the temporal evolution
of the Kuramotomodel defined in Eq. (1) with a unimodal normal distribution of nat-
ural frequencies g(ω) = N(3, 1) and random initial phases f(θ0) = N(0, 0.5).
The lower panels correspond to 2 different values of the coupling strength:
K = 0.2 (middle) and K = 10 (bottom).

define a local order parameter between oscillators based on7

ρij = cos(θi(t) − θj(t)). (5)

Equation (5) measures the correlation between pairs of oscilla-
tors under the stationary regime, which is invariant under temporal
translation.35
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FIG. 2. Upper panel: Evolution of the dynamics (4) of the oscillations for the nodes
of the network in Fig. 1. The parameters are set toK = 1,ωi = 0∀i, and the initial
phases follow a normal unimodal distribution N(0, 0.5). The frustration parame-
ter, α, is set to 0.1 (upper), 0.5 (middle), and 0.8 (lower). Lower panel: Matrix
showing the local order parameter defined in Eq. (5) between oscillators.

In Fig. 2, 4 groups are internally synchronized but asyn-
chronous between the 4 groups. The groups obtained capture the
natural symmetries of the network: nodes 1 and 2, nodes 3 and 6,
nodes 4 and 5, and node 0, isolated.

III. MOVING AWAY FROM SYNCHRONIZATION

In Sec. II, we explore two oscillatory models. An oscillatory sys-
tem described by KM can always achieve complete synchronization,

regardless of its topology and frequency distribution (see conditions
in Sec. II A). In contrast, an equivalent system described by FKM can
always achieve frequency synchronization but, generally, not phase
synchronization. The phase locking is completely determined by the
symmetry of the network, if it exists (Sec. II B)

However, KM and FKM do not provide information on spe-
cific nodes, only on the network as a whole. We seek an intrinsic
parameter that features each oscillator that could move the system
away from its natural synchronized state. What would the effect of a
phase frustration parameter that characterizes each such oscillator
distinctly be? Several studies have focused on the effect of differ-
ent natural frequencies of the oscillators; but we may be concerned
with other types of natural properties connected to the phase shift
between oscillators.

We would like to identify the nodes that have the largest effect
in leading the whole system away from complete synchronization.
To do so, we need to establish which nodes have the greatest capac-
ity, with only a small perturbation, to produce a large dispersion
in the phases of the population. In the next paragraphs, we build a
model that is capable of breaking the natural phase synchronization
and search for central nodes that are best suited to doing this. To
this end, we introduce a dynamic model based on FKM: the general
frustrated Kuramoto model (GFKM), which enables us to charac-
terize each node individually by means of an intrinsic frustration
parameter.

A. The general frustrated Kuramoto model

In the present work, we consider the natural generalization
of the FKM by considering the frustration phase parameter to be
intrinsic to each oscillator, αi, rather than a homogeneous prop-
erty of the population. This assumption may depict a more realistic
scenario, in which oscillators represent real systems with individual
properties that are determined by the nature of each oscillator. The
more general model, which we call the GFKM, is determined by the
dynamics

dθi

dt
= ω0 + K

∑

j

Aij sin(θj − θi − αi) j ∈ 0i, (6)

where αi is an intrinsic parameter of each oscillator. Other consid-
erations regarding the model can be found in Refs. 36 and 37.

B. Finding the most functional nodes

We may find very distinct distributions of g(α), each of them
providing the system with different behaviors. As our main goal is to
localize the nodes that are most likely to move the system away from
synchronization, we consider two possible distributions, although
other interesting insights may be derived from different possibilities.
We seek analytical results in order to gain a better understanding of
the model and the effect of an intrinsic phase frustration parameter.
Hence,

• αi = αh ∀i. This is a homogeneous phase frustration parameter
and so GFKM turns out to be FKM, as previously described.
Remote synchronization comes out in symmetric nodes.

• αi = α 6= 0; αj = 0 ∀i 6= j, hence only node i has a value different
from zero for the phase frustration parameter. In this way, we
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break the overall problem into many individual problems. Here
the question that normally arises is: how can a single node lead
the system further away from complete synchronization?

Let us first suggest a simple way to measure phase dispersion
between oscillators.

C. Measuring perturbations in oscillatory systems

Consider a system that consists of a network of coupled oscilla-
tors. Suppose that a mechanism moves the system from an initial
parameter configuration, p, to a new parameter configuration, q.
Since each oscillator is characterized by a phase, θi(t), the phases in
configuration p, Eθ(p), will transform to updated phases in configura-
tion q, Eθ(q). We assume that configurations p and q are two possible
stationary states characterized by a set of values for the phase lock-
ing between the oscillators. In this situation, we define the effect on
nodes (i, j), εij, generated by the configuration shifting from p to q as

εij(p → q) ≡ 1 − cos(1φij)

2
, (7)

where φij ≡ θj − θi and 1φij ≡ φij(q) − φij(p).38 Therefore, it is a
measure of the change in phase difference between nodes i and
j that, as defined in the stationary regime, is time independent.
Equation (7) has the following properties: εij(p → q) = εji(p → q),
εii(p → q) = 0, and εij(p → p) = 0. Moreover, εij(p → q) ∈ [0, 1].
In other words, if nodes (i, j) were initially in phase and they change
to be in antiphase, the effect or the change in phase difference
would be the largest possible: εij(1φ = π) = 1. When no changes
are produced due to the change of configuration, that is, the phase
difference between nodes i and j remains unchanged, the value of
the effect is zero: εij(1φ = 0) = 0.

Further considerations regarding the properties of εij as a
distance metric can be found in the Appendix, Subsection 3.

IV. FUNCTIONABILITY: A NEW CENTRALITY MEASURE

In order to assess the impact on the whole system of a node
being perturbed, we make use of the GFKM described in Eq. (6) and
the effect measure defined in Eq. (7). As stated in Sec. III B, we will
consider that the change in the configuration is produced by just
one single node, C, called the control node. We will compute the
functionability, Fi, of C. Then by performing the same procedure
for each node, we will obtain a vector with the functionability of each
of them: EF.

The control node, C The initial configuration of the system, p,
is such that all the oscillators are completely synchronized at
the stationary state. The system then switches to configura-
tion q, which is determined by the control node. This change is
enacted by setting the set of frustration parameters, Eα, in Eq. (6)
as follows:

αi(p) = 0∀ iαi(q) =
{

0 if i 6= C,

α if i = C,
(8)

where C is the label of the control node, the effect of whose
perturbation on the whole system we will assess.

Functionability, F We define the functionability of node C as

FC(α) ≡
∑

i

∑

j

εij(p → q(α)), (9)

where p and q are defined in Eq. (8), εij is defined in Eq. (7)
and the state of the system is obtained from the dynamics
of Eq. (6) with the aforementioned configurations. As already
seen, the initial configuration, p, corresponds to full locked syn-
chronization. Therefore, the functionability measures the total
dispersion of the phases from this ground state due to the per-
turbation of a single node. The larger the dispersion, the more
functionability a node has.

In Fig. 3, we can observe that, regardless of the control node
selected, if the frustration parameter is set to α = 0, then the sys-
tem is fully synchronized. Conversely, when α 6= 0, in the exam-
ple considered, α = 0.5, the system becomes asynchronous. Here,
the effect of the frustration depends on the control node selected.
As explained, the quantification of this effect is captured by the
functionability of the nodes.

A. Mathematical expression of functionability

Equation (6) is a set of N coupled nonlinear differential equa-
tions whose solution, in general, cannot be derived analytically.
However, if the system reaches a frequency synchronized state (see
the Appendix, Subsection 2),39 that is, dθ(t)i/dt = � ∀i, t, and the
argument of the sine is small enough, we can linearize it as follows:

θ̇i ≈ ω + K

N
∑

j=1

Aij(θj − θi − αi) i = 1, . . . N. (10)

We can expand Eq. (10),

θ̇i ≈ ω + K

N
∑

j=1

Aijθj − K(θi + αi)

N
∑

j=1

Aij

= ω + K

N
∑

j=1

Aijθj − K(θi + αi)di

= ω + K

N
∑

j=1

Aijθj − Kθidi − Kαidi

= ω − K



−
N
∑

j=1

Aijθj + diθi + αidi



 , (11)

where di ≡ ∑

j Aij is the degree of the ith node of the undirected
network defined by the adjacency matrix, A. We define the Laplacian
matrix, L, as follows:40

[L]ij ≡ diδij − [A]ij. (12)

Using Eq. (12), Eq. (10) can be written as

θ̇i ≈ ω − K





N
∑

j=1

Lijθj + αidi



 . (13)
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FIG. 3. Polar representation of the final phases of the oscillators of the network in Fig. 1 obtained from the dynamics described by Eq. (6) and conditions (8). Upper left panel:
The frustration parameter is set to α = 0. The upper right and lower panels show the dispersion caused by nodes 1 and 6, respectively, when α = 0.5.

Without loss of generality, we can set ω = 0 and K = 1. If the system
is synchronized, then θ̇i = � ∀i. A nonzero shared natural frequency
does not affect the synchronization of the system, and the coupling
strength plays a role in the time scale of the path to synchronization.

Equation (13) is then written as

� ≈ −





N
∑

j=1

Lijθj + αidi



 ∀i. (14)

We can compute the summation of Eq. (14) along all i indices,
∑N

i ,

�N ≈ −
N
∑

i

diαi,

where we have used the fact that the Laplacian matrix is defined from
an odd function, or a zero-sum row, and hence,

N
∑

i,j

Lij = 0. (15)
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Finally,

� = − 1

N

N
∑

i

diαi ≡ −
〈

αd
〉

∀i. (16)

Introducing Eqs. (16) to (14), we obtain

−
〈

αd
〉

≈ −





N
∑

j=1

Lijθj + αidi



 ⇒
N
∑

j=1

Lijθj

=
〈

αd
〉

− αidi =
〈

αd
〉

− αidi. (17)

In the matrix form

LEθ =
〈

αd
〉 E1 − Eαd, (18)

where [ Eαd]i = αidi.
In a connected graph, the Laplacian matrix, L, has one null

eigenvalue, which corresponds to the eigenvector E1, and hence the
system of linear equations to solve Eθ in Eq. (18) is singular. Intu-
itively, we are left with one free parameter which depends on the
initial phase conditions, Eθ(t = 0). However, as we will see, the phase
differences between oscillators are well determined.

The reference node, R. As the solution of the set Eθ given by
Eq. (18) is undetermined, we need to work with phase dif-
ferences, instead of absolute phases. We, therefore, define the
reference node, R, as the node to which the phase of all other
nodes is compared,

φi(R) = φiR ≡ θi − θR φR(R) = 0. (19)

The reduced Laplacian matrix, L̃(C, R). Given an undirected net-
work and its Laplacian N × N matrix (12), we define the
reduced Laplacian (N − 1) × (N − 1) matrix for a pair of con-
trol (8) and reference (19) nodes as follows:

L̃(C, R) ≡ L − {Cth row, Rth column}. (20)

We can define the selection matrix, Jn,m, which is an N × N
identity matrix after the removal of the nth column and the mth
row. Using this notation, Eq. (20) can be written as

L̃(C, R) = JC,K · L · JT
C,K. (21)

With the aforementioned consideration (that is, when the lin-
earization requirements are met), we can compute the results of
the phase differences analytically, Eφ(R), with respect to a particu-
lar reference node, R. This result represents a key finding for Secs. V
and VI.

Considering the configuration defined in Eq. (8), Eq. (16) leads
to

� = − 1

N

N
∑

i

diαi = −αdC

N
∀i, (22)

where C is the label of the control node. The stable state of the sys-
tem when linearization conditions hold described in Eq. (14) then

becomes

− αdC

N
= −





N
∑

j=1

Lijθj + αidi



 ∀i. (23)

The unequivocal solution of phase differences for a given reference
node, Eφ(R), is given by

Eφ(C, R) =
[

−L̃(C, R)
]−1 E� =

[

−L̃(C, R)
]−1

(

−αdC

N

)

E1

=
[

L̃(C, R)
]−1

(

αdC

N

)

E1. (24)

Hence,

Eφ(C, R) =
[

L̃(C, R)
]−1

(

αdC

N

)

E1. (25)

In order to calculate the matrix ε, whose elements are defined in
Eq. (7),

εij(p → q) ≡ 1 − cos(1φij)

2
,

if 1φij(p → q) ∼ 0, we can linearize the cosine and write εij as

εij(p → q) ≈
(

1φij

)2

4
. (26)

To compute the functionability of a control node, C, as it is defined
in Eq. (9), we use Eqs. (25) and (26), where node R and node j are
equivalent,

εiR(p → q) ≈
(

αdC

2N

)2
(

∑

l

[

L̃−1(C, R)
]

il

)2

, (27)

FC ≡ ∑

i

∑

j εij(p → q) or FC ≡ ∑

i

∑

R εiR(p → q) can be
expanded in order to obtain a more compact expression. Using
Eq. (27) and rearranging summations

FC =
(

αdC

2N

)2
∑

i

∑

R

(

∑

l

[

L̃−1(C, R)
]

il

)2

=
(

αdC

2N

)2
∑

R

∑

i

(

∑

l

[

L̃−1(C, R)
]

il

)2

. (28)

Let us compute

∑

i

(

∑

l

[

L̃−1(C, R)
]

il

)2

=
∑

i

∑

l

[

L̃−1(C, R)
]

il

∑

m

[

L̃−1(C, R)
]

im

=
∑

l

∑

m

∑

i

[

L̃−1(C, R)
]

il

[

L̃−1(C, R)
]

im

=
∑

l

∑

m

∑

i

[

(

L̃−1(C, R)
)T
]

li

[

L̃−1(C, R)
]

im

=
∑

l

∑

m

∑

i

[

(

L̃T(C, R)
)−1
]

li

[

L̃−1(C, R)
]

im
. (29)
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FIG. 4. Network with the nodes characterized by its radius, which is proportional
to the value of functionability. The frustration parameter is set to α = 0.2.

Therefore,

FC =
(

αdC

2N

)2 N
∑

R

N−1
∑

ij

[

(

L̃(C, R)L̃T(C, R)
)−1
]

ij
, (30)

where we have used the matrix property: A−1B−1 = (BA)−1. Finally,
Eq. (30) can be normalized by 1/N2,

F̂C ≡ 1

N2

(

αdC

2N

)2 N
∑

R

N−1
∑

ij

[

(

L̃(C, R)L̃T(C, R)
)−1
]

ij
. (31)

The values of functionability for the network in Fig. 1 taking
α = 0.2 are EF = {0.34, 0.43, 0.43, 0.18, 0.36, 0.36, 0.18}. As we can
see from Fig. 4, nodes 1 and 2 obtain the highest scores, while nodes
3 and 6 have the lowest. The ranking of nodes is preserved regardless
of the value of the frustration parameter, since all the dependence in
α is a quadratic prefactor. Final phases of nodes 1 and 6 in the case
α = 0.55 are shown in polar coordinates in Fig. 3.

B. Interpretation of functionability

In Sec. IV, we define the functionability of node C, FC, as a
measure of the effect that a forced-delay parameter introduced in
the intrinsic properties of such node has on the synchronized state
of reference of the network. That is, the potential of a single node
to switch the network to an asynchronous state, as shown in Fig. 3.
Despite the fact that the general definition of functionability is built
from a dynamical model, as described by Eqs. (6), (8), (9), and (27),
we have derived a very compact mathematical expression that is

equivalent to that given by Eq. (30). Moreover, precisely because
of the physical meaning of the measure, the interpretation of the
final analytical expression is conserved: high values of FC reflect the
structural importance of the corresponding node. That is to say, the
position where such nodes are located within the network has the
potential to shift the state into more possible configurations with the
same perturbation of their intrinsic dynamics. As already pointed
out, this effect may be either beneficial or disruptive for a given
system, depending on its nature and functions.

Moreover, we can take a closer look at the analytical expression
of functionability, in Eq. (30), in order to understand the building
blocks of it. On the one hand, for fixed values of the network size, N,
and the frustration parameter, α, we can identify two contributions
to FC

1. The square of the degree of the node, d2
C and

2. The reduced Laplacian contribution, which we call L-Periphery.

L-Periphery=
N
∑

R

N−1
∑

ij

[(L̃(C, R)L̃T(C, R))
−1

]ij.

The first term stands for the importance of the degree of the node
(see the first column in Fig. 5). The more neighbors a node has, the
more likely it is to be a more functional node. Moreover, this effect
is enhanced by the square of the degree.

Conversely, if we locate all the nodes using the Fruchterman-
Reingold force-directed algorithm available at NetworkX python
library, which considers an attractive spring force between adjacent
nodes and a repulsive electrical force between any pair of nodes,
and use the second contribution of functionability as an attribute for
size and color, we obtain an intuitive and qualitative meaning for it.
Nodes that have higher values of the former contribution are located
at the periphery of the visual representation of the network (see
the second column in Fig. 5). Note also that L-periphery is largely
negatively correlated with betweenness centrality, as can be seen in
Fig. 7.

Hence, higher values of functionability correspond to nodes
that are both well connected and peripheral. Therefore, functionabil-
ity provide us with more information than other classic measures
of node importance (see the third column in Fig. 5). Function-
ability and its two contributions are depicted in Fig. 5. Note that
the product of the squared degree and the L-periphery results in
functionability.

V. NEW INSIGHTS FROM FUNCTIONABILITY

Section IV B provides us with a thoughtful analysis of function-
ability, considering both its interpretation and usefulness. This new
centrality measure turned out to be unique in its analytic expression
and definition when we compared it with other centrality measures,
as we will see in Ref. 41

To this end, we provide an example of the computation of func-
tionability centrality for the nodes of a well-known real network:
the frontal cortex network of the Caenorhabditis elegans worm42

(see Fig. 6). Our aim is not to examine the details of the interpre-
tation of the results but rather to compare functionability with other
well-known centrality measures.
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FIG. 5. 4 different networks with the
nodes characterized by its radius, which is
proportional to the value of node degree
(first column), L-Periphery (second col-
umn), and functionability (third column).

More classic centrality measures, such as node degree,
betweenness, closeness, the eigenvector, and other spectral based
centralities, have different outcomes and rankings for nodes
from those of functionability, even if they are similar (see
the Appendix, Subsection 5). Other centrality measures also
have different meanings.43–48 As can be seen in Fig. 7, func-
tionability has a positive correlation with degree, betweenness

and the eigenvector centralities, although all the Pearson coeffi-
cient values are below 0.5. Figure 6 shows that the nodes that
have the highest values of functionability correspond to neu-
rons that do not usually appear as neurons with the high-
est degree, betweenness, or eigenvector centralities; and hence,
functionability gives us additional information concerning such
nodes.
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FIG. 6. 131 nodes of the C. elegans frontal cortex network characterized by their
radius, which are proportional to the functionability values,F. The top 10 neuron
labels are shown in descending order.

We recall that nodes with higher values of functionability are
more peripheral, as well as having higher degrees.

We may also wish to consider whether our newly-created
functionability would be equivalent to other alternative centrality
measures that have been developed recently, such as controllability,

FIG. 7. Correlation matrix, using the standard Pearson correlation coefficient,
between 5 centrality measures: functionability, L-periphery, degree, eigenvector,
and betweenness, from left to right. Correlations are computed from the centrality
values of the nodes in the C. elegans frontal cortex network.

the core score, and collective influence. These measures target spe-
cific properties of the network and have not yet been incorporated
into standard network libraries. For this reason, we cannot provide a
quantitative comparison, but a close look at their definitions should
shed some light on their relevance and will help to understand the
meaning of functionability:

Controllability, C Within the framework of control theory,49–51

special attention is paid to possible applications to complex net-
works, particularly brain networks.52,53 The term control refers
to the ability of nodes to perturb the system in such a way that
it reaches a desired state.54 In order to assess controllability, sev-
eral methods have been developed; all of them assume a linear
response dynamical model.55 We highlight two of them that
were specifically designed to evaluate regional controllability,
rather than as a global measure of the network.
• Average controllability: As defined in Ref. 53, the average

controllability identifies the nodes that can steer the network
to many easily reachable states. The result that we are most
interested in concerns the mathematical expression of the
particular case when the set of control nodes reduces to one
node at a time, and hence, provides a measure of the average
controllability of each node of the network. It can be proved
that

Ca(K) ≡ Trace(W−1

K
) =

∑

i

[

(I − A2)
−1
]

Ki
. (32)

Equation (32) resembles the well-known Katz centrality
measure, considering only odd length walks. Moreover, if we
expand it and we keep the second-order dependency on the
adjacency matrix, we recover a measure that is proportional
to the degree of the node K.

• Modal controllability: A node that has large modal control-
lability is one that participates in most of the dynamical
modes of the linear system. In other words, it is a node that
is able to access states that are difficult to reach.53,56 Modal
controllability is defined as

Cm(K) ≡
N
∑

j=1

(

1 − λj(A)2
)

v2
ij, (33)

where λ(A)j is the eigenvalue of the jth mode and vij is the
contribution of node i to the eigenvector of the jth mode.
Other definitions can similarly be compared to function-
ability, but their meaning moves away from a measure of
the effect on the states of a network, for example, bound-
ary controllability. Equations (32) and (33) are mathematical
expressions which differ from Eq. (30) and have a different
meaning.57 However, by looking at them, we can also find
similarities regarding dependence on the adjacency matrix.
In general, many centrality measures tend to be partially
correlated.

Core score, CS. Despite much attention having been paid to com-
munity detection algorithms, another well-known mesoscale
property of a network is its core–periphery structure: which
nodes are part of a more densely connected core and which
are part of a sparsely connected periphery.58–62 Rombach et al.58
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proposed a continuous measure of a node’s closeness to the
core, called “coreness.” The algorithm is based on an optimiza-
tion procedure that considers cores with different sizes and
boundaries, according to a transition function, and assesses to
what extend a node matches this. In order to compute coreness,
the authors define the core quality as

Rγ =
∑

i,j

AijCij, (34)

where γ is a vector that parametrizes the core quality. The ele-
ments Cij are normally computed as Cij = CiCj, where Ci are
the elements of the local core values. The aim is to find a core
vector, EC, that maximizes Rγ and is a normalized shuffle of the
vector EC∗, which is determined using a transition function, pro-
viding a shuffled list of possible core vector values.
For a given set of parameters that determine the transition
function of the core, γ (α, β), they define the aggregate core
score of each node i as

CS(i) = Z
∑

γ

Ci(γ ) × Rγ , (35)

where Z is a normalization factor.
The aim of developing the core score measure differs from
that behind functionability in many aspects. Nevertheless, the
L-periphery centrality, which is one of the contributors to the
former, may resemble the inverse core score outcome when the
network is characterized by a clear core–periphery structure.
Note that the aim of functionability is not related to finding
communities or the core of a network.

Collective influence, CI. A subset of measures aim to detect the
most influential nodes in an adaptive way. Each method con-
siders a different heuristics to rank all nodes, determine which
node is ranked as the greatest spreader, and remove it. Scores
are recomputed and the procedure is repeated iteratively until
no nodes are left in the network. The simplest approach is done
by the highly degree adaptive (HDA) method.63 Other collec-
tive influence (CI) tries to fill the gap left by the fact that the
preceding set of methods does not optimize an objective global
function. In contrast, CI is defined in such a way that it poten-
tially identifies the minimal set of nodes that, if removed, would
cause the network to become disconnected, understood in the
framework of network percolation theory. It does this, further-
more, by means of an energy cost function.64–66

If G(q) represents the probability of the existence of a giant
component63,67,68 in the limit of N → ∞, then the problem
reduces to finding the minimum fraction qc such that

qc = min{q ∈ [0, 1] : G(q) = 0}. (36)

CI is computed by considering balls of different radius, l,
whereby each size captures a different influence scale across
the network. In Ref. 64, the authors show that the problem is
equivalent to minimizing the cost function,

El(n) =
N
∑

i=0

zi

∑

j∈∂Ball(i,l)





∏

k∈Pl(i,j)

nk



 zj, (37)

where zi ≡ di − 1 and di stands for the degree of node i. The
vector En represents whether a node, in the final configuration,
belongs to the set of “influencers” or not. Then, the collective
influence strength at level l of node i is

CIl(i) = zi

∑

j∈∂Ball(i,l)





∏

k∈Pl(i,j)

nk



 zj, (38)

and Eq. (37) becomes

El(n) =
N
∑

i=1

CIl(i). (39)

Therefore, in order to minimize Eq. (39), we need to remove
the node with the greatest CIl value and iterate until a score is
assigned to each node.
Functionability is not obtained from an optimization algorithm
or any iterative procedure. However, the physical interpre-
tation of the measure does also have a global scope in the
following way: the mathematical definition of FC for a node
C is computed considering the effect that a local perturbation
has on the whole network.

We have compared the proposed functionability centrality with
two sets of measures of node importance. On the one hand, a cor-
relation matrix between the built-in L-periphery centrality, degree,
the eigenvector, and betweenness centralities, as benchmark refer-
ences, has been presented for 4 different networks (see Fig. 7). As can
also be stated from Eq. (30), functionability provides us with unique
insight into the network, since it cannot be reproduced by other
centralities. Note that the defined L-periphery centrality is highly
negatively correlated with betweenness centrality. Moreover, both
functionability and L-periphery are algorithmic-free, parameter-
free, and deterministic centralities; all of these properties being
highly beneficial for network analysis. One the other hand, three
more recently developed measures, C, CS, and CI have been explored
in order to compare the definition of importance, and its com-
putation as well as mathematical resemblance with functionability.
We conclude that CS and CI aim to determine a more structural
type of centrality, like revealing the participation of a node in the
core or the set of nodes which would break the giant component
apart. Hence, they may correlate in some ways with L-periphery.
Conversely, controllability seeks the nodes which mostly enable the
system to move toward a particular state, either those which are easy
to access (Ca) or more modelike ones (Cm). Average controllability
resembles the intuitive motivation of functionability, although it is
neither mathematically equivalent nor does it have a similar physical
interpretation or building blocks [see Eqs. (30) and (32)].

In addition, we should point out that functionability central-
ity does not rely on optimization procedures nor is it bound to the
values of the parameters. Actually, we have proved that Eq. (30) is
a compact mathematical expression for the measure. The value of
the frustration parameter, α, does not influence the ordering of the
nodes (see the Appendix, Subsection 2 for more details).

Thereby, functionability is a unique measure of the effect of per-
turbing a node on the whole network by means of shifting the system
to an asynchronous state. The final expression is a deterministic,
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FIG. 8. In the upper panel, the nodes of the network are characterized by its
radius which is now proportional to the value of the weighted functionability,FW,
which corresponds to the weighted network shown below.

parameter-free, and nonalgorithmic measure of centrality, with an
underlying physical model to support it and enable an intuitive
interpretation of it.

VI. WEIGHTED FUNCTIONABILITY, FW

Both the dynamic model and the analytic expression of
functionability can easily be extended to weighted networks. A

weighted network is defined by the elements of the adjacency matrix,
W, thus,

{

[W]ij = wij if i ↔ j,

[W]ij = 0 otherwise ,
(40)

where wij ∈ R.
In a general setting, the intensity of the connections in a net-

work vary. Considering these weights, the GFKM in Eq. (6) can be
rewritten as

dθi

dt
= θ̇i = ω + K

N
∑

j=1

Wij sin(θj − θi − αi) i = 1, . . . , N, (41)

and the analytical expression of functionability for weighted net-
works is an extension of Eq. (30),

FC =
(

αdC

2N

)2 N
∑

R

N−1
∑

ij

[

(

L̃W(C, R)L̃T

W
(C, R)

)−1
]

ij

, (42)

where

[LW]
ij

≡ siδij − [W]ij. (43)

We present a simple example of a weighted version of the 7-node
network in Fig. 1. Note the difference in the color scale and size
between Figs. 4 and 8.

VII. CONCLUSIONS

In the present work, we define functionability, a new central-
ity measure of the nodes in a network, in order to address the issue
of which nodes, when perturbed, move the system from a synchro-
nized state to one that is more asynchronous? In fact, we aim to
sort the nodes by their potential effect on the whole network when
one specific change to the intrinsic dynamics of the node spreads
over the entire oscillatory system, thereby disrupting the initial syn-
chronized state. This issue may be relevant for the identification
of critical nodes that are either beneficial, by enabling access to a
broader spectrum of states, or harmful, by destroying overall syn-
chronization. Hence, depending on the system we are considering,
the most functional nodes have to be considered when looking for
a potential enhancement of the diversity of attainable states or the
inhibition of risky instabilities in the system.

We propose to resolve the issue by defining a new centrality
measure, called functionability, and symbolized as F. F is a prop-
erty that can be computed for each node and depends only on the
structural connectivity of the network and the position or role of the
node within it.

The system is considered to be made up of as many oscillators
as the network has nodes. The dynamics that rules the evolution of
the system is based on that of the well-known Kuramoto phase oscil-
lators. The functionability of a node measures the dispersion of the
phases generated by the induction of a phase frustration parame-
ter in the corresponding node. Despite F being defined in terms
of the phase differences between nodes coming from a dynamic
model, in the present work, we derive a mathematical expression
for centrality only in terms of the network structure, and hence,
we avoid a large demand for computing power. Therefore, our
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F measure is parameter-free, algorithm-free, and deterministic. In
addition to functionability being determined by network structure,
the definition based on the dynamic model keeps the rank ordering
of the nodes invariant.

Moreover, the physical meaning of the measure remains valid
and, hence, provides the centrality with an easy-to-handle interpre-
tation of the results obtained. In order to assess the novelty and
potential new insight, functionability offers into the nodes in a net-
work, we compare our results with other centrality measures in
the cases of different simple network topologies. This comparison
enables us to provide an intuitive explanation of the question: What
do nodes with large values of F have in common? We show that
nodes that have both a large number of neighbors, and hence a high
degree, but are also outside the main core of the network, that is, they
are peripheral nodes, also have higher functionability scores. Because
of this, F may deliver nontrivial results regarding the importance of
each node. To sum up, the nodes that enable the largest shifts from
the synchronized state of a network are those which are both periph-
eral and also have a high degree. The magnitude of this effect can be
quantified via the analytical expression of functionability.

Many real systems that are commonly modeled as a set of cou-
pled oscillators may be assessed by our centrality functionability. We
are usually concerned about such systems moving away from their
stable synchronized state. Alternatively, we may wish for other sys-
tems to stay away from such complete synchronicity. Power grids
and brain networks are examples of the former and latter situations.
Functionability enables us to detect the nodes that are most central
or relevant for moving the overall system away from synchroniza-
tion. Epileptic attacks or power grid collapses may be derived from
single nodes that, even if not located in the main core, change their
intrinsic properties and spread asynchrony rapidly to the network,
leading to potentially fatal states. It may be helpful to target such
nodes in order to control both synchrony and asynchrony.
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APPENDIX: VALIDITY AND CALCULATIONS OF THE

LINEAR MODEL

1. An example of the functionability of a simple

network

The Laplacian matrix of the network in Fig. 1 is

L =



















4 −1 −1 −1 0 0 −1
−1 2 −1 0 0 0 0
−1 −1 2 0 0 0 0
−1 0 0 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1

−1 0 0 0 0 −1 2



















. (A1)

To calculate functionability, we then need to compute the reduced
Laplacian matrix of the network in Fig. 1, taking node 0 as control
and node 1 as reference, L̃(0, 1), which is

L̃ =















−1 −1 0 0 0 0
−1 1 2 0 0 0
−1 0 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1

−1 0 0 0 −1 2















. (A2)

Note that matrix (A2) corresponds to matrix (A1), with the removal
of the 0th row and the 1st column.

2. The linear model: Assumptions and validity

The final definition and usage of functionability centrality, in
Eq. (30) or (31) if we are interested in the normalized definition,
is based on nonlinear oscillatory dynamics, as explained in Sec. IV.
However, several assumptions have been made in order to obtain a
more compact and useful expression of it. The more restrictive one
is the linearization of the model. However, this assumption relies on
the fact that we are concerned with the state when nodes are syn-
chronized in frequency and, therefore, dispersion comes from the
breaking of the in-phase synchronized state. For a set of coupled
oscillators in a network which follow the conditions described in
Secs. II B and III A, this condition is broken when the frustration
parameter, α, becomes too large (see Fig. 2). In Fig. 9, the 2 methods
of computing F are compared for different values of α. Regardless
of the type of network topology, there is a threshold value at which
the 2 methods diverge. This value changes from one network to
another, as well as from size to size. However, it is important to note
that when we enable enough simulation time steps, the approaches
become even more similar because, as the network grows in its num-
ber of nodes, the time needed to reach the stable state increases too.
Nevertheless, our interest is the usage of the analytical expression of
functionability, rather than that obtained from the results of the sta-
ble state of a dynamic system, which enables us to make a physical
interpretation of the measure. Moreover, the validity of the former
has a large variability, even from node to node, that is, the dynam-
ics may easily achieve chaotic behavior that is difficult to control
and interpret, and hence, it may lead to different results, depend-
ing on the frustration parameter and initial conditions. In addition,
Eq. (30) is proportional to α, and, therefore, the ranking of nodes
does not depend on this parameter but only on the connectivity
structure. To conclude, if we set the value of the frustration parame-
ter small enough, the two approaches are equivalent. However, as we
move to larger values, the dynamic system approach will converge
with a chaotic state for all nodes, while the analytical expression of
functionability will be robust in the ranking of nodes. Moreover,
the interpretation of the measure is still valid because it keeps rank
ordering.

3. Is phase distance a proper metric?

In Eq. (7), we define a measure of the distance between two
nodes or oscillators after a perturbation is made on the system. Our
system consists of a set of phase oscillators, that is, oscillators whose
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FIG. 9. Comparison of the results obtained from the computation of functionabil-
ity, F, both by means of the dynamical model (dotted lines) and the analytical
expression in Eq. (30) (continuous lines). Functionability is calculated for differ-
ent values of the frustration parameter, α ∈ [0,π/2], and all the nodes in the 4
different networks (see references in Fig. 7).

main and only variable is phase, and not amplitude. Hence, the dis-
tance between two nodes is a rather simpler function of an angular
argument, symmetric with respect to π and bounded between 0
and 1. In this section, we will comment on the mathematical impli-
cations of this definition. Namely, the distance we are using is not
a proper metric, because it does not meet the triangle inequality, as
we will see. Nevertheless, we will prove that it can be easily related
to the Euclidean distance, which it is so. However, as we are not
concatenating or adding different distances, this drawback will not
be a problem. There are many optimization algorithms that use
nonmetric distances without modifying the expected results.

In order to make an intuitive description of the distance εij, we
will consider each oscillator to lay on a two-dimensional plane. Each
oscillator is characterized by a phase, which evolves in time, and a
radius, which is equally set to one (see Fig. 3, for example).

The Euclidean distance of two vectors, Ea and Eb, in an
n-dimensional space is defined as

dE(Ea, Eb) =
√

‖Ea − Eb‖2

=
√

(

a1 − b1

)2 +
(

a2 − b2

)2 + · · · +
(

aN − bN

)2
. (A3)

The squared Euclidean distance can be expanded as follows:

d2
E(Ea, Eb) = ‖Ea − Eb‖2 = ‖Ea‖2 + ‖Eb‖2 − 2Ea · Eb

= 2
(

1 − cos(Ea, Eb)
)

, (A4)

where we have considered that vectors Ea and Eb are normalized, that
is, ‖Ea‖ = 1 and ‖Eb‖ = 1.

If we go back to the definition of the used distance between
nodes, εij in Eq. (7), we notice that the functional form is the same
as the cosine distance between two vectors, albeit in one dimension.
Looking at Eq. (A4), we can rewrite cosine distance as

dC(Ea, Eb) ≡ 1 − cos(Ea, Eb)
2

= d2
E(Ea, Eb)

4
(A5)

From the former equality, Eq. (A5), we can state that, although, in
general, cosine distance is not a proper metric, as it does not meet
the triangle inequality, it can be easily interpret by means of the
Euclidean distance between both vectors.

The four properties a metric defined by a distance function

d(Ea, Eb) should satisfy are

1. d(Ea, Eb) ≥ 0,
2. d(Ea, Eb) = 0 ↔ Ea = Eb,
3. d(Ea, Eb) = d(Eb, Ea), and
4. d(Ea,Ec) ≤ d(Ea, Eb) + d(Eb,Ec).

Considering cosine distance, dC(Ea, Eb), condition 4 can be written as

dC(Ea,Ec) ≤ dC(Ea, Eb) + dC(Eb,Ec)

⇒ 1 − cos(Ea,Ec)
2

≤ 1 − cos(Ea, Eb)
2

+ 1 − cos(Eb,Ec)
2

⇒ cos(Ea, Eb) + cos(Eb,Ec) − cos(Ea,Ec) ≤ 1. (A6)

Chaos 30, 013105 (2020); doi: 10.1063/1.5099621 30, 013105-14

© Author(s) 2020

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Equation (A6) is, in general, not satisfied. Let us provide a coun-
terexample by considering 3 two-dimensional normalized to unity

vectors, Ea = (1, 0), Eb = (
√

2/2,
√

2/2), and Ec = (0, 1),

0.76 + 0.76 − 0 ≈ 1.52 � 1. (A7)

Nevertheless, we are interested in small phase differences, and

hence, small angular arguments. In this situation, if ∠(Ea, Eb) = θ1,

∠(Eb,Ec) = θ2, and ∠(Ea,Ec) = θ3 = θ1 + θ2, Eq. (A6) can be approxi-
mated to

1 − θ 2
1

2
+ 1 − θ 2

2

2
−
(

1 − θ 2
3

2

)

≤ 1 ⇒ −|θ1||θ2| ≤ 0. (A8)

Condition in Eq. (A8) is always true and, therefore, Eq. (7) is a
proper distance for our purpose.

4. Example of the calculation for a 4-nodes network

In Sec. IV A, we derive the analytical expression of function-
ability for the case linearity conditions that are satisfied and under
the considerations as described in Sec. IV.

In order to understand the mathematical derivation of the cen-
trality, we are going to go through a simple example on a 4-nodes
network by solving step by step the linear system arising from the
problem stated.

Let us consider the following network. The adjacency and
degree matrices of Fig. 10 are

A =







0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0






, D =







3 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1







such that [D]ii = di.

(A9)

Using Eq. (A9), the Laplacian matrix is

L ≡ D − A =







3 −1 −1 −1
−1 2 −1 0
−1 −1 2 0
−1 0 0 1






. (A10)

Going back to the definition of the reference node and the con-
trol node, and considering the definition of the Reduced Laplacian
matrix, in Eq. (21), we can write it down for the case of the wineglass
network. As an example, we calculate L̃(C, R) for C = 0, R = 0, and
R = 1.

L̃(0, 0) =





2 −1 0
−1 2 0
0 0 1



 , L̃(0, 1) =





−1 −1 0
−1 2 0
−1 0 1



 . (A11)

Functionability is defined through the configuration described in
Eq. (8). Thus, Eq. (16) for the control node C leads to

� = − 1

N

N
∑

l

dlαl = −αdC

N
∀i. (A12)

FIG. 10. The 4-nodes network considered for the derivation of a particular case
for functionability. We call it the wineglass network.

Let us derive Eq. (10) for the wineglass network. The more general
(linearized) system of equations for such a network is



















θ̇0 = θ1 + θ2 + θ3 − 3θ0 − 3α0,

θ̇1 = θ0 + θ2 − 2θ1 − 2α1,

θ̇2 = θ0 + θ1 − 2θ2 − 2α2,

θ̇3 = θ0 − θ3 − α3.

(A13)

FIG. 11. Same as Fig. 6 for the values of L-periphery.
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FIG. 12. Same as Fig. 6 for the values of degree centrality.

In the stable state, for a given control node, θ̇i = � ∀i,


















� = θ1 + θ2 + θ3 − 3θ0 − 3α0,

� = θ0 + θ2 − 2θ1 − 2α1,

� = θ0 + θ1 − 2θ2 − 2α2,

� = θ0 − θ3 − α3.

(A14)

We then immediately calculate the phase differences generated
when each of the nodes is the control node, C. To do so, we need to
compute the differences with respect to all nodes, that is, considering
each of the nodes as the reference node, R.

• Control node 0 (C = 0)

Eα = (α, 0, 0, 0)� = −3α

4
. (A15)

(1) Reference node 0 (R = 0)










� = φ20 − 2φ10,

� = φ10 − 2φ20,

� = −φ30,




−2 1 0
1 −2 0
0 0 −1



 ·





φ10

φ20

φ30



 =





�

�

�



 ,





2 −1 0
−1 2 0
0 0 1



 ·





φ10

φ20

φ30



 =













3α

4
3α

4
3α

4













, (A16)

L̃(0, 0) Eφ(0, 0) = 3α

4
E1,

Eφ(0, 0) =
[

L̃(0, 0)
]−1 3α

4
E1,

φ10 = 3α

4
φ20 = 3α

4
φ30 = 3α

4
. (A17)

(2) Reference node 1 (R = 1)











� = φ01 + φ21,

� = φ01 − 2φ21,

� = φ01 − φ31,




1 1 0
1 −2 0
1 0 −1



 ·





φ01

φ21

φ31



 =





�

�

�



 ,





−1 −1 0
−1 2 0
−1 0 1



 ·





φ01

φ21

φ31



 =













3α

4
3α

4
3α

4













, (A18)

L̃(0, 1) Eφ(0, 1) = 3α

4
E1,

Eφ(0, 0) =
[

L̃(0, 0)
]−1 3α

4
E1,

φ01 = −3α

4
φ21 = 0φ31 = 0. (A19)

(3) Reference node 2 (R = 2)











� = φ02 − 2φ12,

� = φ02 + φ12,

� = φ02 − φ32,




1 −2 0
1 1 0
1 0 −1



 ·





φ02

φ12

φ32



 =





�

�

�



 ,





−1 2 0
−1 −1 0
−1 0 1



 ·





φ02

φ12

φ32



 =













3α

4
3α

4
3α

4













, (A20)

L̃(0, 2) Eφ(0, 2) = 3α

4
E1,

Eφ(0, 2) =
[

L̃(0, 2)
]−1 3α

4
E1,

φ02 = −3α

4
φ12 = 0φ32 = 0. (A21)

(4) Reference node 3 (R = 3)
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FIG. 13. Same as Fig. 6 for the values of betweenness centrality.











� = φ03 + φ23 − 2φ13,

� = φ03 + φ13 − 2φ23,

� = φ03,




1 −2 1
1 1 −2
1 0 0



 ·





φ03

φ13

φ23



 =





�

�

�



 ,





−1 2 −1
−1 −1 2
−1 0 0



 ·





φ03

φ13

φ23



 =













3α

4
3α

4
3α

4













, (A22)

L̃(0, 3) Eφ(0, 3) = 3α

4
E1,

Eφ(0, 3) =
[

L̃(0, 3)
]−1 3α

4
E1,

φ03 = −3α

4
φ13 = 0φ23 = 0. (A23)

• Control node 1 (C = 1)

Eα = (0, α, 0, 0)� − 2α

4
= −α

2
. (A24)

(1) Reference node 0 (R = 0)










� = φ10 + φ20 + φ30,

� = φ10 − 2φ20,

� = −φ30,




1 1 1
1 −2 0
0 0 −1



 ·





φ10

φ20

φ30



 =





�

�

�



 ,





−1 −1 −1
−1 2 0
0 0 1



 ·





φ10

φ20

φ30



 =













α

2
α

2
α

2













, (A25)

L̃(1, 0) Eφ(1, 0) = α

2
E1,

Eφ(1, 0) =
[

L̃(1, 0)
]−1 α

2
E1,

φ10 = −5α

6
φ20 = α

6
φ30 = α

2
. (A26)

(2) Reference node 1 (R = 1)










� = φ20 + φ30 − 3φ01,

� = φ01 − 2φ21,

� = φ01 − φ31,




−3 1 1
1 −2 0
1 0 −1



 ·





φ01

φ21

φ31



 =





�

�

�



 ,





3 −1 −1
−1 2 0
−1 0 1



 ·





φ01

φ21

φ31



 =











α

2
α

2
α

2











, (A27)

L̃(1, 1) Eφ(1, 1) = α

2
E1,

Eφ(1, 1) =
[

L̃(1, 1)
]−1 α

2
E1,

φ01 = 5α

6
φ21 = 2α

3
φ31 = 4α

3
. (A28)

(3) Reference node 2 (R = 2) We can proceed as in previous cases
and obtain

Eφ(1, 2) =
[

L̃(1, 2)
]−1 α

2
E1,

L̃(1, 2) =





3 −1 −1
−1 −1 0
−1 0 1



 , (A29)

φ02 = α

6
φ12 = −2α

3
φ32 = 2α

3
.
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(4) Reference node 3 (R = 3)

Eφ(1, 3) =
[

L̃(1, 3)
]−1 α

2
E1,

L̃(1, 3) =





3 −1 −1
−1 −1 2
−1 0 0



 ,

φ03 = −α

2
φ13 = −4α

3
φ23 = −2α

3
.

(A30)

• Control node 2 (C = 2)

Eα = (0, 0, α, 0)� − 2α

4
= −α

2
. (A31)

(1) Reference node 0 (R = 0)

Eφ(2, 0) =
[

L̃(2, 0)
]−1 α

2
E1,

L̃(2, 0) =





−1 −1 −1
2 −1 0
0 0 1



 ,

φ10 = −α

6
φ20 = −5α

6
φ30 = α

2
.

(A32)

(2) Reference node 1 (R = 1)

Eφ(2, 1) =
[

L̃(2, 1)
]−1 α

2
E1,

L̃(2, 1) =





3 −1 −1
−1 −1 0
−1 0 1



 ,

φ01 = α

6
φ21 = −2α

3
φ31 = 2α

3
.

(A33)

(3) Reference node 2 (R = 2)

Eφ(2, 2) =
[

L̃(2, 2)
]−1 α

2
E1,

L̃(2, 1) =





3 −1 −1
−1 2 0
−1 0 1



 ,

φ02 = 5α

6
φ12 = 2α

3
φ32 = 4α

3
.

(A34)

(4) Reference node 3 (R = 3)

Eφ(2, 3) =
[

L̃(2, 3)
]−1 α

2
E1,

L̃(2, 3) =





3 −1 −1
−1 2 −1
−1 0 0



 ,

φ03 = −α

2
φ13 = −2α

3
φ23 = −4α

3
.

(A35)

• Control node 3 (C = 3)

Eα = (0, 0, 0, α)� = −α

4
. (A36)

FIG. 14. Same as Fig. 6 for the values of the eigenvector centrality.

(1) Reference node 0 (R = 0)

φ10 = α

4
φ20 = α

4
φ30 = −3α

4
. (A37)

(2) Reference node 1 (R = 1)

φ01 = −α

4
φ21 = 0φ31 = −α. (A38)

(3) Reference node 2 (R = 2)

φ02 = −α

4
φ12 = 0φ32 = −α. (A39)

(4) Reference node 3 (R = 3)

φ03 = 3α

4
φ13 = αφ23 = α. (A40)

Once, we have computed φiR(C) for all possible control and
reference nodes, we write down the matrix of phase differences,
18(C), for each control node,

18(C = 0) =







0 −3α/4 −3α/4 −3α/4
3α/4 0 0 0
3α/4 0 0 0
3α/4 0 0 0






, (A41)

18(C = 1) =







0 5α/6 −α/6 −α/2
−5α/6 0 −2α/3 −4α/3
α/6 2α/3 0 −2α/3
α/2 4α/3 2α/3 0






, (A42)

18(C = 2) =







0 α/6 5α/6 −α/2
−α/6 0 2α/3 −2α/3
−5α/6 −2α/3 0 −4α/3
α/2 2α/3 4α/3 0






, (A43)

18(C = 3) =







0 −α/4 −α/4 3α/4
α/4 0 0 α

α/4 0 0 α

−3α/4 −α −α 0






. (A44)
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Using the distance matrix, Eq. (7), its approximation, in Eq. (26),
and the analytical expression of functionability, in Eq. (30), we
compute for each control node,

εij(p → q) ≈
(

1φij

)2

4
,

FC ≡
∑

i

∑

j

εij(p → q).

Therefore, if we sum all the elements of the 18 matrix, after
squaring them, for each control node and divide the result by 4, we
obtain

EF =
(

27

32
α2,

131

72
α2,

131

72
α2,

43

32
α2

)

, (A45)

which has the same result as Eq. (30) and can be checked through
simulation of the dynamical system. If the frustration parame-
ter is small enough, all of the expressions are equivalent. As α

increases, the dynamical system may achieve a chaotic regime or
shift the system out of frequency synchronization (see the Appendix,
Subsection 2).

Functionability can be normalized in several ways, as we sug-
gest in Eq. (31), but we stay with the most general result for this
case.

5. Classic centralities in C. elegans network

We provide the figures corresponding to the 131 nodes of the
C. elegans frontal cortex network characterized by color and radius,
which is proportional to the values of the L-periphery, degree,
betweenness, and eigenvector centralities. Nodes are located at their
real xy position. The top 10 neuron labels are shown in descending
order (Figs. 11–14).
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