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Many tasks require synchronizing our actions with
particular moments along the path of moving targets.
However, it is controversial whether we base these
actions on spatial or temporal information, and whether
using either can enhance our performance. We
addressed these questions with a coincidence timing
task. A target varying in speed and motion duration
approached a goal. Participants stopped the target and
were rewarded according to its proximity to the goal.
Results showed larger reward for responses temporally
(rather than spatially) equidistant to the goal across
speeds, and this pattern was promoted by longer motion
durations. We used a Kalman filter to simulate time and
space-based responses, where modeled speed
uncertainty depended on motion duration and positional
uncertainty on target speed. The comparison between
simulated and observed responses revealed that a single
position-tracking mechanism could account for both
spatial and temporal patterns, providing a unified
computational explanation.

Introduction

In many daily life situations we need to interact with
moving objects. Suppose we want to hit the skeet in a
skeet-shooting game. A successful shot often involves

syncing our actions (pulling the trigger) with particular
positions or times of the moving object (skeet), so that
we anticipate the future position where we want the
target to be hit. But which information do we use to
decide when to pull the trigger? And which information
will maximize our performance? Traditionally, it has
been hypothesized that we use optical variables (e.g.,
Lee, 1976, Bootsma & Oudejans, 1993) to time our
actions, allowing our responses to be time-invariant
across conditions (e.g., same timing across target
speeds). However, the difficulty to reconceal various
response patterns (i.e., including position-based re-
sponses) from a single framework has led to other
proposals. These ones resort to using kinematic
variables estimated from the target’s movement (e.g.,
distance/position, speed, see Kwon & Knill, 2013;
López-Moliner, Field, & Wann, 2007; Tresilian, 1999;
Wann, 1996). Here, we propose a tracking model that
can account for these different response patterns and
that predicts performance across different conditions.

In an example like skeet shooting, we need to localize
the (changing) position of the target, which does not
only depend on retinotopic maps but also on other
effects (Schlag & Schlag-Rey, 2002), like motion signals
(De Valois & De Valois, 1991; Linares, López-Moliner,
& Johnston, 2007; Maus, Fischer, & Whitney, 2013;
Whitney, 2002). Position and motion interactions can
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be complex. Recently, Kwon, Tadin, and Knill (2015)
put forward a model that tries to unify visual motion
and position perception. The model implements an
optimal object tracking system in which speed is
integrated to update the position. The computational
principle is based on a Kalman filter (Kalman, 1960)
that couples position and motion information esti-
mates. Measured sensory signals (of position or speed)
and internal estimates based on past signals are
optimally combined according to their respective
uncertainties. If sensory signals are very reliable, they
would be weighted more than the internal model, and
vice versa. This unified tracking model successfully
predicts many phenomena, such as perceptual biases
like the motion-induced position shift (MIPS, De
Valois & De Valois, 1991). Such a model is not only
relevant to explain perceptual effects, but can also have
consequences for sensoriomotor actions as well. Sen-
sorimotor situations involving moving objects require
that an action is made relative to the course of the
object. Actions are planned to obtain a certain
outcome, as defined by the situation’s reward function.
Due to the spatiotemporal nature of that course,
though, the action may be planned by relying more on
either temporal or spatial information. For example,
when positional uncertainty is high, on a foggy day, a
skeet shooter may rely more on motion information. A
position-motion coupled model (Kwon et al., 2015)

would make different predictions for conditions in
which measured positional noise or speed noise are
affected differently. For example, it would predict that
measured position would be more variable for faster
speeds (see Figure 1A), due to the limited visual
temporal resolution (Linares, Holcombe, & White,
2009). In that case, the model would favor the use of
motion information. On the other hand, motion
duration could affect the reliability of speed measure-
ments (Burr & Santoro, 2001; Neri, Morrone, & Burr,
1998), with shorter presentation times leading to noisier
speed estimates. In such a case, the model would favor
position measurements.

Up to date, it has not been examined how the use of
positional or temporal cues determines performance
when people interact with moving targets. This is what
we aimed at in the present study. Specifically, we
wanted to investigate whether responses (i.e., motor
actions) based on one type of information enhance
performance, compared to responses based on the
other. The task we used in our study was similar to
those commonly referred to as coincidence action (CA)
timing task (López-Moliner et al., 2007; Tresilian,
1995). As seen in Figure 1B, in every trial a target
underwent constant rightward motion toward a vertical
line (goal), and participants had to press a button to
stop the target. This task requires a timed response and
therefore shares some similarities with an interceptive

Figure 1. (A) Spatial variability as a function of the temporal resolution for two different speeds (denoted by the oriented line in the

space-time plot). Speed 2 is faster than speed 1 (shallower slope). When sampling the position at a given temporal resolution

(illustrated by the Gaussian width on the x axis), the spatial variability of the sampled position will depend on the speed of the

moving target. As a consequence, variability increases for faster speeds. (B) Representation of the stimuli seen in every trial. A circle

appears at a starting position and moves rightward toward a vertical line (goal). The circle stops when the participant presses a

button. (C) Example of reward function used in the experiment, corresponding to the temporal reward condition, where reward is

given as a function of the time remaining to the goal. (D) The schematics on the left presents two sets of hypothetical average

response across speeds (each dot corresponding to an average for one speed). The purple responses are closely aligned in time, but

not space, what would be an example of overt time-invariant responses. The green responses are aligned in space but not in time,

and thus close to overt space invariance. The right part of the figure shows how the slopes ratio is calculated. First, for each speed the

average time of the observed responses is plotted against the inverse of that speed. Then a slope is obtained from those three values

(observed slope). Two different observed slopes can be seen as the purple and green lines. Then a slope corresponding to pure space-

invariance (sspat) is calculated, and the observed slope is divided by it, with the result being the slopes ratio. Slopes ratio closer to 1

denote overt space-invariance, while if they are close to 0 that denotes overt time-invariance.
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action (IA). However there are important differences
too that might affect the generalization of our results.
We will address some of these limitations in the
discussion. However, we allowed that participants did
not have to merely synchronize their response with a
visual event (e.g., alignment with the goal), but to
decide how to respond based on a reward function. A
numerical reward in points was given according to how
close the target was to the goal when the button was
pressed. In different conditions though, the reward was
given as a function of the temporal proximity to
alignment, or as a function of spatial proximity to the
goal. Thus, we defined performance as the reward that
participants accumulated in a series of trials where they
received positive or negative feedback as a function of
their responses. Reward increased exponentially as a
function of the time or the spatial distance left for the
target to align with the goal, with the maximum reward
given if the participant pressed the button at the
moment of alignment (see Figure 1C). However, any
response after alignment was penalized. Participants
were instructed to accumulate as many points as
possible across trials. From trial to trial, the target
could change its speed. We identified time-based or
overt time-invariant response distributions as those
where the target at the moment of response was at a
similar remaining time to alignment across all speeds.
Alternatively, position-based or overt space-invariant
response distributions are those where responses across
speeds are at a similar spatial distance from the goal.
Then, unlike previous studies in which responses could
only be planned by using timing information (Ma-
massian, 2008; Ota, Shinya, & Kudo, 2015) or in which
performance depended on correctly hitting a series of
spatially-defined reward or penalty areas (Gepshtein,
Seydell, & Trommershäuser, 2007; Hudson, Wolfe, &
Maloney, 2012; Neyedli & Welsh, 2013; O’Brien &
Ahmed, 2013; Trommershäuser, Gepshtein, Maloney,
Landy, & Banks, 2005; Trommershäuser, Landy, &
Maloney, 2006; Trommershäuser, Maloney, & Landy,
2003), here we could distinguish whether participants
were aiming at responding when the target was at a
given temporal or spatial distance from the goal and
whether any of these modes led to a higher overall
reward than the other. Introducing trial-to-trial
changes in initial time to alignment enabled us to
determine whether the information used changed
across the different motion durations. We also wanted
to know whether impairing the processing of motion
information would affect performance, as predicted by
a position-motion coupled model. Thus, we included a
condition in which the target moved under Second
Order motion. Finally, to compare the behavioral
performance in our different conditions with the model
predictions, we implemented the Kalman filter model

and conducted simulations with similar stimulus
manipulations as in the experiments.

To anticipate, our results confirmed the predictions
of the model: Longer motion durations promoted more
overt time-invariant responses across speeds and
enhanced performance, probably by refining speed
estimates, while spatially-aligned responses were dom-
inant for shorter motion durations and Second Order
motion. In the latter cases, penalizations increased for
faster speeds. The comparison with the model predic-
tions shed further light into the response mechanism: a
single one based on position tracking could account for
the observed pattern across the different conditions,
including both time and spatial invariant responses.

Model

The tracking model closely resembles the model
presented in Kwon et al. (2015). However, it is simpler
in the sense that we do not account for any pattern
motion within the object (for instance, the changing
texture within the retinal image of a ball as a product of
rotational motion). The state vector xt contains the
position and speed of the object xt; vt½ �0 at time t. The
model assumes that the motion in the world is governed
by the following process (or model) equation:

xt ¼ Axt�1 þ w; w;N 0;Qtð Þ ð1Þ
Where A ¼ 1 Dt; 0 1½ �. This equation denotes the
internal model of the position and speed of the moving
object and states that the next value of position is
predicted as the previous positional value plus the time
step multiplied by the previous value of speed. Q is the
process covariance matrix and is defined as Q ¼ q3 qT

with q ¼ qxqv ¼� ½0:9 1:5½ �, where qx and qv are positional
and speed process variance (Gaussian noise with zero
mean). Model performance was unaffected by Dt across
values smaller than 20 ms. We set Dt¼ 2 ms, which is
the temporal resolution at which the object position
was updated in the simulations. The position is updated
based on first order information (target speed) without
including an acceleration term in Equation 1. The
reason for this is that our target stimuli moved at
constant speed. The observer samples (or measures) the
world’s object position and speed, which are specified
by the observation equations of a Kalman filter:

yxt ¼ xt þ zx; zx ;N 0; rxt
� �

ð2Þ

yvt ¼ vt þ zv; zv ;N 0; rvt
� �

ð3Þ
Where yxt is the measurement of world position at time
t and zx is the measurement Gaussian noise of the
position which has zero mean and variance rx. yvt is the
corresponding speed measurement at time t and rv is
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the measurement variance of the object speed. In vector
notation, like Q, the measurement noise covariance
matrix R is defined as R ¼ r3 rT , with r ¼ rxrv½ �:
Importantly, the observer continuously updates the
estimates of position and speed of the object in the
world through the noise measurement of these two
variables. We assume, like in Kwon et al. (2015), and as
a consequence of using a Kalman filter, that the
measurement at time t (yt ¼ yxt y

v
t

� �T
) is combined with

the current internal estimate (prior) (bx�t ) to update the
model to produce a posterior estimate (bxt) at time t.

bxt ¼ bx�t þK yt � bx�t� �
ð4Þ

The difference yt � bx�t is called residual or innova-
tion and reflects the discrepancy between the prediction
from the prior (bx�t Þ and the actual measurement.
Usually a measurement matrix (e.g., H) is used that
multiplies the prior. Since we are using the identity
matrix we have ommited this term in Equation 4.

How much weight (K) is given to the current
observation depends on its reliability. The higher the
reliability of the observation, the larger the K (Kalman
gain). As in the standard Kalman filter, the Kalman
gain matrix was chosen so that it minimizes the
posterior error covariance: P ¼ E e3 eT½ �, where
e ¼ x� bx. A specific form that minimized the posterior
error covariance is:

K ¼ P� P� þ Rð Þ�1 ð5Þ
where P� is the a priori estimate error covariance in
which the error is e ¼ x� bx�. The a priori uncertainty
at time t is estimated from the a posteriori uncertainty P
at time t� 1 by adding the process noise: P� ¼ PþQ.

The resulting posteriors (see Equation 4) of position
and speed would correspond to the perceived position
and speed, respectively.

Different experimental conditions should affect the
measurement noise of position and speed differently.
We can simulate these different conditions and see how
well they can explain the observed human pattern of
responses.

To conduct the simulations we make two assump-
tions based on previous literature. These concern
measurement noise of position and speed, as well as the
initial estimates of these two state variables. The first
assumption concerns positional noise: We assume that
uncertainty about the object position will scale with
object speed. This has been reported in Linares et al.
(2009) and in Brenner, van Beers, Rotman, and Smeets
(2006). We modeled measured positional uncertainty
the following way:

rx ¼ ðdt3 vÞ2 ð6Þ
Where v is the physical speed of the object and dt is the
temporal resolution of the sampling, which was set to 10,

18, and 22 ms in different sets of simulations (Brenner et
al., 2006). The positional variability cannot be disen-
tangled from a timing variability (Brenner & Smeets,
2009) in our experiment. Additional timing cues,
however, have been shown to increase temporal
precision when available (Chang & Jazayeri, 2018). The
second assumption refers to the speed measurement
uncertainty. Based on the motion integration literature
(Burr & Santoro, 2001; Neri et al., 1998) we assume that
uncertainty decreases with longer presentation times:

rv ¼ a=Tð Þ2 ð7Þ
where T is the motion duration in a given condition
(T ¼ 0:8; 1; 1:2). In different sets of simulations we set a
to 1.5, 2, and 3.

Methods

Participants

Twenty-one participants (11 women, all right-hand-
ed, age range 18–32) took part in the condition in which
reward was defined in the temporal domain (temporal
reward condition). Twenty-one participants of a
completely new sample (nine women, all right-handed,
age range 18–40) took part in the spatial reward
condition. Twelve completely new participants (six
women, all right-handed, age range 18–31) participated
in the Second Order motion condition. All had normal
or corrected-to-normal vision and were naı̈ve about the
aim of the experiment. In all cases, participants gave
their informed consent. The study complied with the
local ethics guidelines, in accordance with the Decla-
ration of Helsinki, and was approved by the University
of Barcelona’s Bioethics Commission.

Apparatus and stimuli

Participants sat in a dimly lit room, approximately 50
cm in front of a Samsung SyncMaster 1100MB CRT
monitor (Samsung, Cambridge, UK; 21-in., 1,0243 768
resolution, 120 Hz refresh rate). They responded by
pressing the button of an ancillary input device sampled
at 120 Hz refresh rate with their dominant hand. The
experiment was run on a Mac Pro 4.1 Quad-Core Intel
Xeon at 2.66 GHz (Apple, Inc., Cupertino, CA).

Temporal and spatial reward conditions

The simplest way to give reward is as a function of
only one variable: for instance, temporal proximity to
alignment. However, if we found higher performance
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for time-based responses, it could be argued that this
was determined by the fact that the reward function
was fostering responding as a function of time. Thus,
we included both a condition where reward was given
as a function of the temporal proximity to alignment,
and one where it was given as a function of spatial
proximity.

A trial started with both a white vertical line (goal)
and a white circular target appearing on a black
background (shown white in Figure 1B). The goal line
(10 cm tall, 1 px width) was positioned 15 cm to the
right of the center of the screen. The target had a radius
of 0.3 cm (0.348) and travelled from left to right. In
each trial, the target constantly moved at one of three
possible speeds (19.5 cm/s, 25 cm/s and 32 cm/s) (228/s,
288/s, and 35.58/s). The chosen speeds followed a
geometric progression to compensate for a constant
Weber fraction, so that the discriminability between the
slowest and mid speeds was presumably similar to the
discriminability between the mid and fastest speeds. At
every trial, the target also had one of three possible
motion durations (0.8 s, 1 s, 1.2 s), where motion
duration is defined as the time from motion onset until
the target and the goal were aligned. The moment when
the center of the target and the goal are at the same
lateral position will henceforth be referred to as
alignment. Motion durations were clearly discriminable
from each other (Regan & Hamstra, 1993), while at the
same time all were above the 500 ms over which basic
temporal recruitment is built up (Krekelberg & Lappe,
1999, 2000). The combination of speeds and motion
durations, which was random for each trial, resulted in
nine different initial distances from the goal (15.6, 19.5,
23.4, 20, 25, 30, 25.6, 32, and 38.4 cm, in ascending
order for speeds and motion durations). The target
disappeared when the participant pressed the button or
at a random point between 1.3 s and 1.4 s after
movement onset, when the target had already com-
pletely crossed the goal. Visual feedback was given
when required (see the following material). Note that
interleaving different initial times to alignment with
speeds made more difficult that participants could use a
time-based response on a specific stimulus duration
(e.g., 0.85 s) from motion onset rather than aiming at
some temporal (or other type of) distance to alignment.
Temporal reward: The reward given after each response
was a function of the response time t. Reward increased
exponentially and the reward function u(t) was such
that pressing the button at alignment, centered at t¼ 1,
was rewarded with 100 points. Responding after that
was penalized with the subtraction of 200 points
(Figure 1C). Thus, for time-defined rewards:

u tð Þ ¼ b 3 exp atð Þ; if t � 1
�200; if t. 1

�
ð8Þ

Where the linear parameter b ¼ 0:1008 acted as a

scaling parameter and the non-linear parameter a ¼ 6:9
defined the slope or rate of change of the reward as a
function of time. Note that, for the motion durations of
0.8 s and 1.2 s, to make alignment be always at t¼ 1 we
simply shifted the reward function so that the same
reward was given across motion durations when the
response was made at the same time to alignment.
Spatial reward: The reward given after each trial was
based on the remaining spatial distance to alignment.
The reward function was:

u sð Þ ¼ b 3 exp asð Þ; if s � 15
�200; if s. 15

�
ð9Þ

And the corresponding parameters were b ¼ 1:1109
and a ¼ 0:3, so that the reward was also 100 points at
alignment that was centered at position s¼ 15 (for the
goal was positioned 15 cm right of the center of the
screen). Later responses were penalized with �200
points. The value of these parameters was selected so
that, for the medium speed, both the time and space
condition had the same mapping between time/space
and reward.

Second Order motion condition stimuli

In this condition the reward was temporally defined,
with the only difference from the temporal reward
condition being the visual stimuli presented to the
participant. The target’s lateral displacement was
produced over a horizontal stripe (30 cm width and 3
cm height) (33.48 3 3.448) consisting of a contrast-
defined random dot texture (black and white dots) as in
(Seiffert & Cavanagh, 1998). The size of the texture
elements was 0.12 3 0.12 cm2 (0.13 deg2) and the dots
were updated every 80 ms. The moving target (circle of
1 cm diameter; 1.158) was also composed of the same
texture elements and updated at the same rate. With
such stimuli, participants had to obtain motion
information from a change in contrast, not in
luminance.

Procedure

Participants completed two blocks of practice trials
(90 trials per block including all speeds and motion
durations). In these practice trials, if their response time
was within a temporal window of 200 ms centered on
the goal, visual feedback was provided. The aim of the
baseline session was to familiarize participants with the
experimental paradigm, especially with the timing until
alignment.

After the practice trials, the main part of the
experiment started. Everything remained the same
except for the feedback after each trial. Reward was
introduced, so that each trial was rewarded according
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to the response and condition (see the aforementioned
material). After a nonpenalized trial, the reward won in
that trial appeared on the screen, as well as the total
reward won in that block until the moment. After a
penalized trial, ‘‘�200’’ appeared next to the total
reward. As before, blocks had 90 trials. Participants
completed 12 blocks. They started each block with
5,000 points, and they were instructed to finish each
block with as many points as possible. They were told
that their final payoff would depend on the total points
they accumulated throughout the experiment. When
receiving the initial instructions, participants were
shown a graphical depiction of the reward function,
similar to Figure 1C. However, no reference was made
to reward being related to time or space.

Data analysis

A trial was identified as an outlier if the moment of
the response was above or below three standard
deviations for that particular participant, block,
motion duration, and target speed. These outliers were
removed before proceeding with the analyses.

Temporal and spatial distributions of responses

We looked first at whether response times were
temporally or spatially equidistant to the goal across
speeds. We did this for each participant, block and
motion duration. Figure 1D shows the main rationale
based on how the response times and target position at
the response time are distributed for the different target
speeds.

A pure temporal invariance of responses would
consist in, for all target speeds, aiming at responding
when the time left to the goal is very similar (e.g., points
vertically aligned in Figure 1D). On the contrary, a
pure spatial invariance of responses would result in
responding, for all speeds, in similar spatial distances to
the goal (points aligned horizontally in Figure 1D).
One can think of a tau-based response (Bootsma &
Oudejans, 1993; Lee, 1976) when responses are time-
invariant across speeds. Note, however, that we want to
capture to which degree overt responses are temporally
or spatially distributed across speeds. For example,
suppose that one participant responds at a similar
spatial distance to the goal across different speeds. We
do not require this distance to be stable in absolute
terms. For instance, this same participant may respond
when the target is 1 cm away from the goal, and
eventually shift to when it is 2 cm away, without her
pattern being affected as long as this difference remains
the same across speeds. Our experimental design
allowed to determine the extent to which participants

exploited more temporal or spatial cues in this way.
This is described as follows.

To estimate the trend of the response distribution,
we just fitted a linear model to the response times as a
function of the reciprocal of the speed:

tresp ¼ s3 v�1 þ b ð10Þ
Where the slope s would provide an indicator of a time-
invariant response pattern (s very close to zero). b
would account for a speed-independent temporal
constant and would include the sensorimotor delays.
We used the reciprocal of the speed because then the
slope has a meaningful interpretation in spatial terms (s
would correspond to the remaining distance to the goal
at the time of the response).

We calculated s (the observed slope, see also Figure
1D) for each participant, block and motion duration.
Although values of s closer to 0 informed us time-based
responses, we did not know which range of s values
could be related to mainly temporal information being
used to plan responses—and the same for spatial
information. That is why, for each participant and
motion duration, and using her own data, we obtained
the expected slope, as a function of response time,
corresponding to a pure spatial arrangement of
responses (i.e., as if the same spatial distance to the goal
was used across speeds), that is the slope sspat in Figure
1D. For this purpose, we took the mean of the
responses in space (i.e., spatial position of the response)
for the whole experiment, and divided it by each speed,
thus obtaining the three expected response times that
would correspond to a pure spatial alignment. Those
were fitted to Equation 10 to estimate the slope sspat
that would correspond to an entirely positional
response pattern. This slope (sspat) was compared to s,
the slope obtained from the observed data. More
specifically we used the slopes ratio s=sspat (shown in
Figure 1D). Then, a perfect spatial arrangement of
responses across speeds would correspond to a ratio of
1, while a ratio of 0 would denote an invariant temporal
distance to the goal. This single value allows us to
summarize the response behavior of each individual
participant within a continuum capturing temporal and
spatial invariant responses across speeds.

Some of the analyses relied on grouping participants
depending on whether they exploited more temporal or
spatial cues. We used a cutoff point. Our compromise
choice was the value halfway (0.5) between a purely
spatial (ratio ¼ 1) and a purely temporal (ratio¼ 0)
pattern. Thus, if the ratio was smaller than 0.5, the
participant was considered to favor a time-based
response. Otherwise, her pattern was categorized as
space-based. In addition, by calculating a ratio between
s and sspat, we also obtained a value that was used as an
indicator of how time or space-based responses were
along a continuum. Note the fact that each partici-
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pant’s responses were split by motion duration. Thus, a
participant’s data could fall within both the temporal
and spatial groups, depending on the main cue used to
plan responses for a particular motion duration. We
followed this grouping procedure for every group
analysis detailed in the results section.

Comparison between conditions

Statistical testing was conducted with the behavioral
and simulated response time distributions to see
whether the different stimuli conditions (e.g., motion
duration and target speed) produced similar effects in
both types of distributions. One of the hypotheses that
we had concerning response time distributions or the
associated spatial position is the predicted larger spatial
variability for faster speeds, that in our task would lead
to a higher number of penalized trials. Concerning the
slopes ratios, we expected them to reflect more spatial
invariance across speeds in the Second Order motion
condition or in conditions where speed estimations
become more difficult (e.g., short motion durations).

Finally, we also looked at history effects. On a
longer timescale, we examined possible learning effects
across blocks. On a shorter timescale, we analyzed
whether the time of the response was affected by the
previous target speed, or by whether the previous trial
had been penalized (response after the goal).

To make the comparisons, we used Linear Mixed
Models (LMM) and ran analyses of variance (AN-
OVAs) on the output of the LMM. Since every
condition was run with a different sample, participants
are nested in conditions and LMMs allow us to specify
the participant random effects in the nested design very
easily. Target speed and motion duration were treated
as fixed effects. We conducted the LMM and corre-
sponding ANOVAS on response times and the spatial
standard deviation. We used the lmer function imple-
mented in the lme4 R package (v.1.0-6) (Bates,
Maechler, Bolker, & Walker, 2015). Similarly we used a
Generalized LMM with the same structure for the
analysis of the fraction of penalized trials. To compare
slopes ratios distributions, we used a different approach
(see the following material).

Simulations

To test whether human performance could be
predicted by the perceptual or posterior estimates of
position and speed generated by the Kalman filter, we
simulated data under different conditions of target
speed and motion duration. The position and speed
measurement noise was set according to the simulated
conditions following Equations 6 and 7. The measure-
ment noise was added to the physical position and

speed in each simulated trial. The process noise was set
to 0.9 and 1.5, respectively, for position and speed. We
ran 1,000 trials for each combination of speed, motion
duration, the scaling factor of the speed’s measurement
noise (a in Equation 7) and the scaling factor of the
position’s measurement noise (dt in Equation 6). The
initial state of the position estimate was the actual
physical initial position, and the initial state for the
speed estimate was set to 0 cm/s. The initial variances
for these initial estimates were 2 and 7, respectively, for
position and speed. Performance was not affected by
these initial values of state uncertainty.

Once all these parameters were set, and we obtained
the input signal with the corresponding measurement
noise, we ran the Kalman filter and, for each simulated
trial, we obtained the posterior estimate for both
position and speed. The filtered signal (posterior) was
then used to simulate time-invariant and space-
invariant responses in each trial, with its corresponding
reward. For example, for time-invariant responses, we
computed the time to the goal based on the ratio
between posterior position and speed estimates and
used a constant temporal distance to the goal across all
simulated conditions. We added a zero mean Gaussian
noise (SD¼ 10 ms) to simulate execution noise.

We then computed the slopes ratio (as explained in
the data analysis section) and compared the respective
distributions between simulated and behavioral data.

To compare both simulated and behavioral distri-
butions we used a two-sample Kolmogorov-Smirnov
(KS) test. The KS allowed to test whether two
histograms are samples from the same (null hypothesis)
or different distributions. We used the ks.test function
implemented in R. In addition we also compared the
join slopes ratios-reward bivariate distributions be-
tween behavioral and simulated data. We performed a
multivariate two-sample E test for equal (bivariate)
distributions (Székely & Rizzo, 2004) based on the
distance between behavioral and simulated distribu-
tions. To calculate the distances between the two
distributions and conduct the test we used the R
package energy and p values were computed from
bootstrap replicates (Székely & Rizzo, 2013). By
comparing the behavioral bivariate distributions
against simulated ones based on time- or space-
invariant responses we can know which response
mechanism explains the behavioral data better.

Results

The raw data and the code for generating the posterior
postion and posterior speed using the Kalman filter
simulations are available at the following link: https://osf.
io/vmjne/?view_only¼8e30e81e8e4f4c4c9fe5b257ca65f503

Journal of Vision (2018) 18(12):12, 1–19 Aguilar-Lleyda, Tubau, & López-Moliner 7
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Response times and position

All values referring to temporal responses reported
henceforth are scaled so that alignment occurs at 0.
Negative values indicate responses before alignment,
and positive values indicate responses after align-
ment.

Outliers accounted for 0.348% of behavioral trials.
These were removed from subsequent analyses. We
first show results based on raw response times. Figure
2 shows the distributions of response times and
positions of the target at the time of the response. The

panels show the raw data points oriented in space (y-
axis) and time (x-axis). The different target speeds
result in three different orientations (speed is color-
coded). How time and position are distributed in each
oriented line is shown by the marginal histograms for
each speed. By eye analysis, important differences can
be seen between the different motion durations within
each condition. For example, responses tend to be
spatially aligned (same distance to the goal across
speeds) for motion durations of 0.8 in the temporal
and spatial reward conditons. Therefore, the resulting
positional histograms for each speed overlap to a
larger extent (closer means) than for longer motion

Figure 2. Position of the target at the moment of response, as a function of the response time, both expressed relative to the moment

of alignment with the goal. Each panel shows, for a particular condition (rows) and motion time (columns), the full dataset of

responses for all participants. Each data point, depicting a trial, is colored according to the target speed. Bigger hollow dots represent

the mean of the responses for that speed, with vertical and horizontal lines helping visualize the average response time and position,

respectively. Histograms of both response time and positions are displayed at the top and right borders, respectively, and color-coded

by target speed.
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durations (1 and 1.2 s), for which the positional
histograms per each speed are further away from each
other. Following the rationale shown in Figure 1D
and explained in the Methods section, this trend will
result in slopes ratios close to 1. Alternatively, longer
motion durations (1 and 1.2 s) elicit more temporally
aligned responses across speeds (marginal temporal
histograms at the top overlap more). For these cases,
the slopes ratio will be close to 0. Note that a different
pattern arises for the Second Order motion. In this
condition, the responses are spatially aligned for the
two longer motion durations.

Figure 3A shows the average data (in the form of
boxplots) across participants (or repetitions for the
simulated data) split by motion duration for the
different conditions, while Figure 3B shows it split by
target speed. As can be noted, response times were on
average before alignment (temporal reward:�40 ms,
spatial reward:�43 ms, Second Order motion:�87 ms),
as expected if participants wanted to avoid penaliza-
tions (a more thorough analysis of reward will be
presented as follows). In all behavioral conditions there
was the same pattern for motion duration and target
speed. Longer durations led to earlier responses and
faster speeds to later responses. These main effects were
significant for both variables (duration: F ¼ 452, p ,
0.001; speed: F ¼ 1,509, p , 0.001), as yielded by an
ANOVA on the output of the LMM (as described in

the Methods section). Motion duration interacted with
target speed (F¼ 76.30, p , 0.001): the later responses
for faster speeds were modulated by motion duration
(shorter durations produced later responses than longer
durations). When exposed to Second Order motion,
participants responded earlier on average (47 ms) than
in the temporal reward condition), but differences
between conditions were not significant (F ¼ 0.13, p ¼
0.88).

More importantly, simulated data based on an
spatial responses were able to reproduce the main
trends of the behavioral data. The ANOVA con-
ducted on a linear model on the simulated response
times yielded the same significant effects of motion
duration (F ¼ 1,620, p , 0.001), target speed (F ¼
2,030, p , 0.001), and their interaction (F ¼ 29, p ,
0.001). This pattern (Figure 3) is based on simulating
a space-invariant response across target speeds on the
output of the Kalman filter (posterior estimate of
position). However, the same pattern (i.e., same
statistical differences among conditions) was obtained
by simulating time-invariant responses, but only for
the different motion durations. Importantly, the
simulation of time-invariant resposnes could not
capture the trend of the mean differences across target
speed. Only the space-invariant responses could do
so, as shown in Figure 3B. Therefore, simulations
based on a single spatial response strategy were able

Figure 3. Boxplots of simulated (based on temporal and spatial invariance across speeds) and behavioral response times for the

different conditions (0 corresponds to perfect alignment of target and goal at the moment of response; negative times denote

responses before alignment). Boxes are split per motion duration (A) and target speed (B), color-coded accordingly. The central line,

lower bound, and upper bound of the box represent the median, Q1 and Q3, respectively. The lower whisker corresponds to the

smallest observation greater than or equal to the lower bound minus 1.5 times the interquartile range (IQR). The upper whisker

corresponds to the largest observation less than or equal to the upper bound plus 1.5 times the IQR.
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to reproduce the same trend as the behavioral data,
both across motion durations and target speeds. This
ability to capture the response patterns across all the
different stimulus conditions initially favors a space-
based mechanism.

History effects

We looked first at the effect of block number to test
whether there were learning effects. We included block
number and condition as fixed-effects in the linear
model and participant as random effects. Although
there were changes in response time across blocks (less
than 1 ms/block in all conditions), the effect of block
failed to reach significance (F , 1, p ¼ 0.77), with the
interaction between block and condition also being
nonsignificant (F , 1, p¼ 0.66). Only condition had a
significant effect in this model (F¼ 4.47, p¼ 0.016) in
which target speed and motion duration were not
included. Previous work have shown effects of target
properties of previous trials (e.g., target speed in de
Lussanet, Smeets, & Brenner, 2001). We set up another
linear model with previous speed and condition as fixed
effects and participants as random effects. Both
previous target speed (F ¼ 26.6, p , 0.001) and
condition (F ¼ 14.7, p , 0.001) had significant effects
on response times as well as their interaction (F¼ 4.9, p
, 0.001). Interestingly, however, the effect of the
previous speed was opposite to the effect reported
already for the current target speed: that is, for larger
previous speeds the response in the next trial was earlier
(e.g., about 8 ms earlier for 32 cm/s than for 19.5 cm/s).
Since this may denote some correction after penalized
trials for faster speeds (as reported later in the Results
section), we had a closer look and introduced in the
model whether the previous trial was penalized.
Although reduced, the effect of the previous speed
remained significant (F¼ 3.23, p¼ 0.038). Importantly,
this effect was mainly caused by the correction (about
16 ms earlier) after the faster speed (32 cm/s) when the
previous trial was penalized. This was the parameter
that contributed most in the model. The penalization
factor as a main effect did not reach significance (F , 1,
p¼ 0.33).

We will next look at the reward and slopes ratio in
order to shed light on the underlying mechanism.

Response pattern across speeds

As explained in the Methods section and Figure
1D, we obtained the slope of response times against
the reciprocal of the target speed (slope s) and also the
slope that, for each participant, motion duration and
block, would correspond to a pure spatial arrange-

ment of responses (slope sspat). The ratio of these two
slopes would denote whether a set of response times
are overt time-invariant (slopes ratio ¼ 0) or overt
space-invariant (slopes ratio ¼ 1) across the different
target speeds. Figure 4 shows the histograms of the
resulting slopes ratio for each motion duration and
condition, together with the density of the slopes ratio
obtained from the simulations based on spatial (solid
green) and temporal (dotted purple) responses. The
slopes ratio values contained in the histograms
corresponding to experimental conditions are ob-
tained per each participant and block. As can be seen,
the slopes ratio obtained from simulating time-
invariant responses fails to capture the change of
location of the distributions obtained in the different
motion durations and conditions. However, when the
response is based on invariant positions across
speeds, the resulting distributions are shifted in the
same direction as the experimental distributions:
leftward shifts (toward zero or more temporal
responses) for longer motion durations. Densities
obtained from the simulated spatial responses were
not different from the histograms in the different
experimental conditions (p values of the KS statistic
shown in Figure 4).

The means across blocks of the slopes ratio are also
shown in Figure 5 for the different conditions
(different panels). Note that target speeds are used to
compute the slopes ratios and cannot be used as
grouping variable. Now it can be more clearly seen
that different motion durations produced different
kind of responses (equivalent to the shifts of the
histograms in Figure 4). Larger durations promoted
more time-invariant responses across speeds. Confi-
dence intervals of the experimental slopes ratios
included the zero for 1.2 and 1.0 s of motion duration
in the temporal and spatial reward conditions,
whereas the shortest duration (0.8) in these two
conditions elicited responses that are consistent with
constant spatial distance to the goal across speeds
(slopes ratio very close to 1). As expected, the values
of the slopes ratio are shifted rightwards in the Second
Order motion condition, where luminance-based
motion is impaired. The two longer durations now
yield a perfect space-invariant pattern, while the ratio
is very close to two for the 0.8 s duration. These larger
ratios denote closer spatial positions to the goal for
the fastest speed (32 cm/s) and farther distances to the
goal for the slowest speed (19.5 cm/s).

Interestingly, the average simulated ratios based on
the spatial response also depended on the motion
duration (0.8 s: 1.054, 1 s: 0.583, and 1.2 s: 0.363).
These means lie along the green solid lines in Figure 5.
Note that this was only a consequence of lowering the
noise in the measurement of the speed with longer
motion durations, resulting in producing more similar
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response times across speeds without changing the
response mechanism. The same pattern was obtained
irrespective of whether the reward is temporally or
spatially defined. Thus, the domain of the reward does
not seem to affect the structure of the response
distributions (i.e., temporal or spatial invariance across
speeds). However, motion duration seems to be an
important factor. We next need to know how the type
of response (time or space-invariant) affected the
accumulated reward and whether the model based on
the Kalman filter can predict the reward across the
different conditions and motion durations.

Reward and loss fraction

Figure 5 also shows that longer motion durations
produced larger average rewards. The effect of motion
duration on the reward was very significant (F¼ 163.9,
p , 0.001), but the differences between conditions
failed to reach significance (F¼ 2.47, p¼ 0.094). There
was a significant interaction (F¼ 6.63, p , 0.001) as a
consequence of the differential reward between the two
longer motion durations in the different conditions
(i.e., very similar for the Second Order motion). The

Figure 4. Histograms of observed slopes ratios, split per condition (rows) and motion times (columns and color-coded). Histograms

are built from the slopes ratio for each participant and block. The densities of the corresponding distributions of simulated time-

invariant (dotted blue) and space-invariant (solid green) slopes ratios are superimposed. P-values on each panel correspond to a two-

sample Kolmogorov-Smirnov (KS) test, where the null hypothesis is that the distribution of temporal (purple) and spatial (green)

simulated slopes ratios is no different from the histograms of the observed slopes ratios (i.e., both density and histogram belong to

the same distribution).
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black solid line in Figure 5 shows the overall relation
between slopes ratio and reward. The average reward
has a maximum, which is very close to a slopes ratio of
zero in the temporal and spatial reward conditions.
This is also so for the Second Order motion, in which
reward is on average larger for slopes ratios close to
zero. However, due to the overall rightwards shift of
the slopes ratio we cannot observe the same non-
monotonic pattern of the reward.

To explain why more overt time-invariant responses
across speeds enhanced performance, we explored a
hypothesis already mentioned in the introduction: that
participants whose response distribution was consistent
with time invariance dealt better with faster target
speeds. The precision by which we acknowledge the
change of position of a moving object is limited by the
temporal resolution of the visual system, with spatial
uncertainty being larger for faster speeds. Thus, spatial
variability increases for faster speeds, as depicted in
Figure 1A. The amount of penalized trials should thus
be larger for faster speeds when the response pattern is
consistent with spatial invariance. To test this, we
grouped the whole dataset, split by the slopes ratio:
slopes ratios smaller than 0.5 were considered to have
more time-invariant patterns across speeds (i.e., more
constant temporal distance to the goal), while slopes
ratios larger than 0.5 included more space-invariant
patterns (i.e., similar positions to the goal across
speeds). Note, however, that negative slopes ratios do
not correspond to temporal invariance across speeds
but to earlier responses for faster target speeds.

We calculated the loss fraction for the different
target speeds (Figure 6). For each speed, the loss
fraction was simply the proportion of trials for which
responses were made after alignment, and thus were
penalized. We conducted a general linear mixed model
(binomial responses) with the loss fraction as depen-
dent variable, target speed and response type (spatial or
temporal invariance) as dependent variables (fixed
effects) and participants as random effects (we allowed
both intercept and slope to vary). Temporal responses
did not lead to a significant rise of penalized trials with
increasing speed (average slope¼ 0.008, p¼ 0.27), while
spatial responses did result in a significant increase of
penalized trials (slope¼ 0.062, p , 0.001). These slopes
correspond to the average values of the slopes across
conditions, since the different conditions did not have a
significant effect (F , 1).

Response mechanism

As mentioned already, the same data pattern across
motion durations revealed by the behavioral response
can be reproduced by both types of invariances across
speeds. However, only the space-invariant response
mechanism could capture the trend across target speeds.
Furthermore, the same participants could produce
responses that were consistent with either pattern,
depending on the motion duration (e.g., longer duration
generally leading to more time-invariant responses
across speeds). As shown in Figure 5, the average reward
seems to have a maximum at about a slopes ratio of

Figure 5. Average reward per trial (in points) as a function of the slopes ratio (0 ¼ perfect temporal invariance across speeds; 1 ¼
perfect spatial invariance across speeds; both denoted by gray vertical lines). Each participant is included in each panel with three

data points; each point corresponding to her responses within a certain motion duration (shape- and color-coded). Bigger points

represent the mean of each motion duration’s distribution, with associated error bars that show 95% confidence intervals. The black

solid lines denote a (Gaussian) smoothed version of the data points. Green and blue lines denote the pattern from the simulated data

and what the model would predict based on space-invariant (green solid) or time-invariant (blue dotted) responses. Since we

simulated different factors of speed measurement noise, we plot the predictions from the simulated condition that was closer to the

behavioral data, according to the KS statistic value (see Methods).
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zero, and it drops as the slopes ratio deviates from this
value. This trend is very well captured by simulating
space-invariant responses and their corresponding re-
ward (purple solid line in Figure 5). The maximum
predicted reward for the two response mechanisms is
denoted in Figure 5 by a vertical line. For the temporal
and spatial reward conditions, the predicted maximum
reward is very close to the observed maximum reward
(undistinguishable in the temporal reward condition).
The maximum reward predicted by simulated time-
invariant responses deviates from the observed reward
and is expected to peak at a lower (smaller then zero)
slopes ratio. For the three conditions, the closest
simulated distribution (minimum distance) to the
behavioral data was obtained by simulating a space-
invariant response (dist¼ 1.72, p¼ 0.93; dist¼ 3.28, p¼
0.55; dist¼ 2.5, p¼ 0.81, respectively for the temporal
reward, spatial reward and Second Order motion
conditions). The best predictions obtained by simulating
a time-invariant response on the output of the Kalman
filter deviated more from the behavioral data (dist¼
10.64, p¼ 0.16; dist¼ 16.33, p¼ 0.03; dist¼ 6.1, p¼ 0.38
respectively for the temporal reward, spatial reward and
Second Order motion conditions). Despite the larger
deviation between the simulated time-invariant and the
behavioral distributions, we cannot reject the null
hypothesis (i.e., not different from a time-invariant
pattern) in the temporal reward and Second Order
motion conditions.

The fact that aiming at similar (perceived) positions
across speeds can also generate overt time-invariant
responses is a new finding. Note that the mechanism to
simulate the response is based on the posterior
(perceived) position obtained by the Kalman filter, with
the only difference between the critical conditions that
yield different patterns (motion duration) being the
measurement noise variance of the target position and
speed. To further strengthen the bigger plausibility of a

spatial mechanism, we simply took the slopes ratios
obtained in the simulated trials with both response
mechanisms (temporal and spatial invariance) and
plotted them as a gradient as a function of the different
simulated positional and speed measurement noise
variances (Figure 7A). This figure shows that there is a
clear dependency of the slopes ratio on both types of
measurement noise variance. However, more impor-
tantly, it also shows that aiming at similar perceived
positions across speeds (i.e., spatial invariance) covers a
larger spectrum of the slopes ratio (left panel of Figure
7A), which is consistent with the observed slopes ratios
in the behavioral data. As a consequence, an optimal
balance between positional and speed uncertainty is
observed when the slopes ratio is about 0. This is the
situation with the least temporal variability across
target speeds. This, and not a different mechanism, is
why in our experiment overt time-invariant responses
(slopes ratio close to 0) lead to the highest reward.
Finally, if positional uncertainty increases too much,
position would be further extrapolated for faster
speeds, increasing response variability across speeds,
and affecting the reward.

Discussion

Due to the spatiotemporal nature of interacting with
moving objects, people can plan their actions by basing
responses on temporal and/or spatial information. The
specific information that we may use in different
situations has been a long-standing debate in the visual
control of timed actions. Our main finding suggests that
a single response mechanism based on position tracking
can account for both overt spatial and temporal
response distributions. That is, temporal and spatial
physical arrangements of targets at the time of the

Figure 6. Average loss fractions between response pattern groups (green: mostly space-invariant overt responses; blue: mostly time-

invariant overt responses) as a function of target speed, with a different for each condition. Error bars represent binomial 95%

confidence intervals.
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response would originate from the same spatial mech-
anism. This can be concluded from simulated space-
invariant responses on the output of the Kalman filter
model being able to reproduce the different arrangement

of overt responses (i.e., spatial and temporal alignments
to the goal) across different motion durations. Simulated
time-invariant responses failed to reproduce the same
response pattern across motion durations.

Figure 7. (A) Mean of slopes ratio obtained from the simulated data (color gradient) as a function of the speed measurement SD (x-

axis) and the positional measurement SD (y-axis). The two panels denote the simulated response mechanism: spatial invariance

(aiming at the same position across speeds) and temporal invariance (aiming at the same temporal distance from the goal across

speeds). The white color in the gradient corresponds to the slopes ratio of zero (observed time-invariant distribution across speeds),

which would correspond to an optimal balance between positional and speed uncertainties. Slopes ratios for values of measurement

variability that were not included in the simulations were linearly interpolated. (B) Simulated temporal variability of response

initiation as a function of the time of action initiation relative to the alignment between target and goal (earlier responses correspond

to larger values). The color denotes the simulated response (spatial or temporal). (C) The same as in B, but with the spatial variability

at response initiation.
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Response mechanism and response criteria

Responses consistent with a constant temporal
criterion to the region of interest have been tradition-
ally explained through people using specific combina-
tions of optical variables (e.g., tau), which can predict
an invariant response pattern across different target
speeds (Bootsma & Oudejans, 1993; Lee, 1976; López-
Moliner & Bonnet, 2002; Smith, Flach, Dittman, &
Stanard, 2001; Marinovic, Plooy, & Tresilian, 2010). In
these situations, using some informational variable that
carries temporal structure (e.g., rate of expansion in
computing tau) would be necessary to generate
invariant responses across speeds. However, depending
on task constraints (e.g., range of target speeds), people
can use variables of spatial nature, like visual angle, to
solve a collision task while ignoring other variables that
increase temporal precision. This would result in spatial
response patterns (Smith et al., 2001). Similarly,
response control based on spatial information has also
been proposed in other past studies (Brenner et al.,
2006; López-Moliner & Keil, 2012; Wann, 1996). This
diversity of response patterns makes it difficult to
reconcile most empirical findings into a general model
of interceptive timing. This is mainly, but not the only
reason, why timing has been regarded functionally
separable from positioning (Tresilian, 1999b; Brenner
& Smeets, 2015). In this sense, the Kalman filter model
provides an implementation in which positional and
temporal information (with the latter provided by
speed) are coupled and the use of either of them alone is
meaningless.

In addition to the nature of the relevant informa-
tional variable (or variables) that characterizes the
mechanism, there is the issue of the response criterion
or value along the relevant variable the triggers the
response. Admittedly, we have simulated an invariant
criterion (spatial and temporal). However, rather than
assuming an invariant criterion, our simulations aim at
capturing the main trends by focusing on either type of
information (position or temporal). In this sense the use
of an invariant criterion should be regarded as a
simplification in our implementation but not as a
fundamental feature of the model. It has been reported
that different criteria of an informational variable can
be used in different task conditions or target properties
(e.g., different thresholds of rate of expansion for
different target sizes, e.g., López-Moliner et al., 2007;
Smith et al., 2001). Here, we have shown that the
reward function can affect the response criteria. As
reported in the Results section, earlier responses were
recoded after a penalization irrespective of stimulus
condition. Also, Figure 3B may give some evidence that
participants are not using a unique criterion. A
comparison between the boxplots of observed and
simulated responses shows that, although the pattern

and the average across speeds are the same, the
boxplots of the simulated responses are more spread
out. This may be a hint that participants are actually
changing their spatial criterion to respond earlier for
the fastest speed and later for the slowest one.

Also for the sake of simplicity we have conducted the
simulation based on metrical units. However, in our
task, for instance, participants could have used optical
variables like the rate of contraction of the visual angle
between the target and the goal (Bootsma & Oudejans,
1993; Tresilian, 1999b). The Kalman filter model could
operate with these variables as well. The reason we
have not used optical information is because models
based on optical variables do not normally make
predictions on the measured uncertainty of these
optical variables: the trade-off of the sampling noise
with the internal uncertainty since neural processing,
for example, is less emphasized. This means that the
differences across motion durations cannot easily be
accommodated by using optical variables alone without
resorting to their sampling variability. Models that
currently only combine optical variables, then, should
be reformulated, either by including uncertainty
measures or an active role of internal models in
interceptive tasks (Kwon & Knill, 2013). In line with
our findings, this has already been proposed in optical
models for catching within the context of the outfielder
problem (Belousov, Neumann, Rothkopf, & Peters,
2016) or estimating collision avoidance (Keil & López-
Moliner, 2012).

Positional and speed uncertainty balance

The Kalman filter model finds an optimal balance
between position and speed measurement uncertainty.
In addition, these can be weighted differently depend-
ing on the stimulus’ conditions or task constraints,
something not addressed in our study. In one of our
conditions we hampered the motion system by remov-
ing luminance-based motion as a main source for speed
estimation. By doing this we supposedly increased the
speed measurement noise, which in turn made the
tracking favor positional information. When this
happened, the distribution of target positions at the
time of response became more position- (or space)
invariant even for the longest motion durations.
However, we claim that this distributional change is not
caused by a different response mechanism, but it arises
as a consequence of the internal balance of uncertain-
ties in the system. More specifically, we propose that
while the balance between position and speed uncer-
tainties may change the overt distribution of responses,
the mechanism would still be based on continuously
sampling the target’s position in space until it reaches a
spatial distance that triggers the response. The simi-
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larity in performance between simulations and exper-
imental responses supports this claim, since the
similarity of the shifts observed in Figure 4 is well
predicted by the expected uncertainties of position and
speed.

The sampling error of position increases with faster
speeds, but this error can be ameliorated by prediction
and temporal integration from speed. We found that
the more overtly time-invariant responses were, the
larger the average reward in our task. We claim that
this enhanced performance is a consequence of an
optimal ratio between position and speed uncertainties,
with lower speed measurement noise favoring the
predictive and integrative properties of speed. As a
consequence, a more stable performance across speeds
is achieved. This is shown in Figure 6. In contrast, more
overt spatial invariance increases the number of
penalized trials as target speed becomes faster. This
pattern is predicted by the model due to larger speed
measurement noise or smaller positional noise. Our
results can be consistent with the recent finding that
additional cues to timing (e.g., auditory signal) increase
precision in a time-to-contact task (Chang & Jazayeri,
2018). It has been shown that people integrate estimates
from timing and time-to-contact based on speed. In our
model, we suggest that by adding further timing cues
the positional measurement variance would be reduced.

When more emphasis is put on the predictive side
(relatively more reliance on speed to predict future
positions), it is then more likely to circumvent the
constraints of the visual system (i.e., temporal resolu-
tion). This results in monitoring high speeds not leading
to an increase in spatial variability and error (Brenner
et al., 2006). This explanation is also consistent with
previous findings on motion detection. Spatial dis-
placements or speed thresholds have been both revealed
to drive discrimination performance depending on the
conditions. Nakayama and Tyler (1981) reported that
minimum displacement was used when the object could
be easily tracked, while for gratings it depended on the
temporal frequency (TF), with TFs smaller than one
being consistent with using a speed threshold. This was
replicated by de la Malla and López-Moliner (2010), in
addition to revealing the use of distance-based thresh-
olds in expanding/contracting stimuli. Seiffert and
Cavanagh (1998) also identified position displacement
as the crucial variable for Second Order motion,
consistent with our findings.

We used the slopes ratio to characterize how space-
or time-invariant overt responses were, where a slopes
ratio of 1 would correspond to responses purely aligned
in space, while 0 would correspond to complete
alignment in time. However, it needs to be explained
why we identified slopes ratios smaller than 0 in our
data. This can be linked to a response pattern where
participants would respond earlier (both in time and in

space) for faster speeds. This is consistent with motion
extrapolation (Linares et al., 2007; Nijhawan, 1994),
and would be predicted by smaller values of target
speed measurement noise (or, equivalently, larger
values of measured positional noise).This finding is in
accordance with the account that the position tracking
model of Kwon et al. (2015) gives of the motion-
induced position shift (MIPS).

Pursuit and saccadic eye movements in
interceptive timing

Although we have not recorded eye movements, we
think that eye movements can play an important role in
determining the uncertainties of target speed and
position of the moving target. Not only do eye
movements affect perceived speed (Turano & Heiden-
reich, 1999; Goettker, Braun, Schutz, & Gegenfurtner,
2018), but also, and more importantly, eye movements
help to avoid systematic biases caused by texture
motion within the target in hitting (de la Malla, Smeets,
& Brenner, 2017). In interception tasks people tend to
pursuit the target until about 100 to 150 ms before the
hitting (period the would correspond to sensorimotor
delays) and make a saccade to the hitting position (de la
Malla et al., 2017, Cámara, de la Malla, Lopez-
Moliner, & Brenner, 2018). Smooth pursuit might help
to refine target speed estimates based on first-order
information for time-to-contact, while neglecting pos-
sible accelerations (Benguigui & Bennett, 2010). How-
ever, improving speed estimates might not be the only
benefit of smoothly pursuing the target. Consistently
with our model, positional input appears to be also
relevant for the pursuit system (Blohm, Missal, &
Lefevre, 2005), showing a coupling between the
saccadic (based on position error) and smooth pursuit
systems that parallels the coupling between position
and speed in our Kalman filter model.

Task limitations

The model has been compared with results obtained
in a coincidence action (CA) timing task, which differs
in some aspects from a fast interception action (IA)
task (see Tresilian, 1995, for a comparison of different
type of tasks). One important difference is related to
the viewing time. Usually, targets are visible for shorter
durations in fast interception than in our experiments.
This might have promoted a stronger reliance on
planning with no chance to exert online control (i.e.,
movement time virtually null in CA). Since we try to
characterize the initiation of responses, we conducted
additional simulations with earlier action onset times
(from 150–400 ms prior to contact with the goal) or
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equivalently with further spatial positions that would
elicit the same average onset times. We then looked at
the response variability (both temporal and spatial).
The results are plotted in Figure 7B and 7C,
respectively, for temporal and spatial variability at
action onset. It can be seen that only the simulated
spatial responses allow to keep both variabilities at
reasonable values with earlier action onsets. This
denotes that a spatial response mechanism could at
least be applied in faster actions without incurring in
large behavioral variability, specially if errors at action
onset cannot be corrected online. Importantly, it has
been repeatedly observed that actions are initiated
earlier for targets moving more slowly, and later (but
executed more quickly) for faster targets (e.g., Bootsma
& van Wieringen, 1990; Laurent, Montagner, &
Sevelsbergh, 1995; Wallace, Stevenson, Weeks, &
Kelso, 1992). Our simulations, but only those based on
spatial responses, are able to reproduce the action
initiation pattern.

Another important difference between IA and CA
tasks is the variability of response times, with the
temporal standard deviation being about five times
larger in CA than in IA tasks under the same conditions
(McLeod et al., 1985; Tresilian, 1994). This is probably
due to the more specific feedback available in fast IA
that may allow the ability to refine temporal precision. If
so, this component is missing in our modelling of
response initiation. Finally, related to the type of task,
fast IA are not affected by cognitive factors. In this
sense, we avoided using occlusions which, when longer
than sensorimotor delays, tend to make the task
permeable to cognitive processes (Tresilian, 1995).

Trial-to-trial corrections and penalized trials

Our results suggest that reward might not only
depend on the participants’ slopes ratio. An obvious
factor is where exactly people aim at responding. Aiming
at earlier positions would lead to less reward when the
response was before the goal, but also to reducing the
chances of being penalized. An element directly related
to this is how participants corrected their responses on a
trial-to-trial basis. For instance, after a penalty (response
after the goal), some participants may have decided to
shift their aimpoint earlier so as to avoid future
penalizations. This particular behavior was proven to be
significant for trials where the last one had featured the
fastest target speed. It could also happen that, after a
series of nonpenalized responses, participants may be
slowly responding later, to win more. These different
dynamics are not analyzed here or incorporated in the
model, but are important to characterize the nature of
the responses and could represent an interesting future
direction.

Conclusion

In a coincidence timing task with a moving object,
overt responses across speeds can be aligned in time or
in space, with the former leading to enhanced
performance. We present a model that samples and
updates the target’s position by combining positional
and speed information optimally according to their
uncertainties. This model shows how a common spatial
mechanism could account for both temporal and
spatial patterns responses, with one or the other pattern
arising from different balances between position and
speed uncertainties. Thus, performance would be better
for time-invariant overt responses due to an optimal
balance of the uncertainties, not because of a different
underlying mechanism.

Keywords: decision-making, position-tracking, visual
motion, Kalman filter, coincidence timing, timed actions
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Downloaded from jov.arvojournals.org on 02/18/2019

https://doi.org/10.1167/15.3.8
https://doi.org/10.1167/15.3.8
https://www.ncbi.nlm.nih.gov/pubmed/25767094
https://jov.arvojournals.org/article.aspx?articleid=2213289
https://doi.org/10.1167/7.5.13
https://doi.org/10.1167/7.5.13
https://www.ncbi.nlm.nih.gov/pubmed/18217853
https://jov.arvojournals.org/article.aspx?articleid=2193030
https://doi.org/10.1167/9.13.9
https://www.ncbi.nlm.nih.gov/pubmed/20055542
https://jov.arvojournals.org/article.aspx?articleid=2193411
https://doi.org/10.1167/7.7.1
https://www.ncbi.nlm.nih.gov/pubmed/17685797
https://jov.arvojournals.org/article.aspx?articleid=2192996


tion task reflects the use of g. Vision Research, 42,
2419–2430.
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