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Resumen en Español

La matriz de Jones y la matriz de Mueller-Jones (es decir la matriz de Mueller no despo-
larizante) son los elementos matemáticos centrales del cálculo de óptica de polarización.
En esta tesis discutimos otras formas que pueden usarse para representar las propiedades
de polarización de los sistemas deterministas. Investigamos cuatro formas diferentes que
interpretamos como los estados de los sistemas ópticos deterministas. El estado vectorial |h⟩
es el elemento central de nuestro formalismo. La combinación paralela coherente de sistemas
ópticos deterministas puede expresarse, más convenientemente, como una combinación lineal
de estados vectoriales. En otras palabras, cualquier sistema óptico no despolarizante puede
considerarse como una combinación coherente de otros sistemas deterministas que sirven
como sistemas basé. Sin embargo, los estados vectoriales no son adecuados para representar
la combinación en serie de sistemas ópticos, porque los vectores |h⟩ no se pueden multiplicar
como |h1⟩|h2⟩|h3⟩. Observamos que existe un estado de matriz complejo Z que imita todas
las propiedades de las matrices de Jones, incluida la propiedad de multiplicación de estados.
Las matrices Z también son similares a las matrices de Mueller no despolarizantes por la
relación M = ZZ∗. Mostramos que las matrices Z transforman la matriz de Stokes S en otra
matriz de Stokes S′ de acuerdo con la relación S′ = ZSZ†, donde la matriz S corresponde al
vector Stokes |s⟩ y S′ corresponde al vector Stokes transformado |s′⟩ (|s′⟩= M|s⟩).

Las matrices Z también transforman los vectores de Stokes, |s⟩, en vectores complejos
|s̃⟩ según |s̃⟩ = Z|s⟩. Se puede demostrar que, a diferencia de un vector |s⟩, un vector |s̃⟩
contiene la fase introducida por el sistema óptico. Además observamos que los vectores |h⟩
y las matrices Z son representaciones diferentes de estados cuaternión, hhh. Los estados de
cuaternión se pueden agregar o multiplicar para producir nuevos estados de cuaternión, por lo
tanto, son adecuados para representar cualquier combinación coherente de sistemas ópticos
deterministas. Los resultados muestran que los estados de cuaternión transforman cuaternion
de Stokes, sss, en un cuaternión de Stokes, sss′′′, de acuerdo con el esquema sss′′′ = hhhssshhh†. Las
formulaciones de matriz Z y cuaternión son especialmente útiles para describir la aparición
de efectos de despolarización. El enfoque de matriz de densidad es más conveniente cuando
queremos encontrar los componentes originales de una matriz de Mueller despolarizante.
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Las matrices de densidad asociadas con los sistemas ópticos deterministas (puros) se definen
en términos de vectores |h⟩ como H = |h⟩⟨h|. Una matriz de Mueller despolarizante puede
escribirse como una suma convexa de matrices de Mueller no despolarizantes. La matriz
H asociada (matriz de densidad de la mezcla) también se puede escribir como una suma
convexa de matrices de densidad correspondientes a los sistemas de componentes puros. Se
puede demostrar que si existe algún conocimiento sobre las propiedades de anisotropía de
los sistemas de componentes, es posible encontrar las matrices de Mueller no despolarizantes
de los componentes originales únicamente mediante las condiciones de clasificación de las
matrices H. Aplicamos nuestro formalismo a varios fenómenos, en particular estudiamos
por ejemplo los efectos de interferencia en un experimento de doble rendija de Young con
métodos polarimétricos completos. También demostramos que nuestro formalismo puede ser
útil para la formulación analítica de sistemas dipolo interactivos. Finalmente, aplicamos el
método de descomposición del estado vectorial para analizar la hibridación de plasmones,
resonancias de Fano y efectos circulares en geometrías quirales y aquirales.



Summary

The Jones matrix and the nondepolarizing Mueller matrix are the basic mathematical objects
of polarization optics calculus. In this thesis we discus other forms that can be used to
represent optical properties of deterministic systems. We investigate four different forms
that we interpret as the states of deterministic optical systems. Vector state |h⟩ is the central
element of our formalism. Coherent parallel combination of deterministic optical systems
can be most conveniently expressed as a linear combination of vector states. In other
words, any nondepolarizing optical system can be considered as a a coherent combination of
other deterministic systems that serve as basis systems. Nevertheless, vector states are not
suitable for representing serial combination of optical systems, because |h⟩ vectors cannot be
multiplied as |h1⟩|h2⟩|h3⟩. We observe that there exists a complex matrix state Z that mimics
all properties of Jones matrices, including the multiplication of states property. Z matrices
are also akin to the nondepolarizing Mueller matrices by the relation M = ZZ∗. We show
that Z matrices transform the Stokes matrix S into another Stokes matrix S′ according to the
relation S′ = ZSZ†, where S corresponds to the Stokes vector |s⟩ and S′ corresponds to the
transformed Stokes vector |s′⟩ (|s′⟩= M|s⟩).

Z matrices also transform Stokes vectors, |s⟩ into complex vectors |s̃⟩, according to
|s̃⟩= Z|s⟩. It can be shown that |s̃⟩ vectors bears the phase introduced by the optical system.
We observe that |h⟩ vectors and Z matrices are different representations of quaternion states,
hhh. Quaternion states can be added or multiplied to yield new quaternion states, therefore they
are suitable for representing any coherent combination of deterministic optical systems. It can
be shown that quaternion states transform the Stokes quaternion, sss, into a Stokes quaternion,
sss′′′, according to the scheme sss′′′ = hhhssshhh†. The Z matrix and the quaternion formulations are
especially useful for describing the emergence of depolarization effects. The density matrices
that associated with deterministic (pure) optical systems are defined in terms of |h⟩ vectors
as H = |h⟩⟨h|. However, since a depolarizing Mueller matrix can be written as a convex
sum of nondepolarizing Mueller matrices, the associated H matrix (density matrix of the
mixture) can also be written as a convex sum of density matrices corresponding to the pure
component systems. It can be shown that if there exists some knowledge about the anisotropy
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properties of component systems it is possible to find the nondepolarizing Mueller matrices
of original constituents uniquely by means of the rank conditions of H matrices. We apply
our formalism to several phenomena, for example we study the interference effects in a
Young’s double slit experiment with complete polarimetric methods. Moreover, we show
that our formalism can be useful for the analytic formulation of interacting dipole systems.
Finally, we apply the vector state decomposition method to analyze plasmon hybridization,
Fano resonances and circular effects in chiral and achiral geometries.



Preface

In this thesis we propose an alternative point of view to the Jones-Mueller formalism that is
based on vector/matrix states or, alternatively, on quaternion states. Our new formalism is
ultimately equivalent to the combination of Jones and Mueller formalisms and it is possible
to shift from one formalism to another. Nevertheless, our method is not redundant, we think
that it is a step towards the unification of the formalism and it permits a better understanding
of some aspects of the optical phenomena. In particular, we will present its applications
to the description of coherent, partially coherent and incoherent combinations of optical
systems, decomposition of depolarizing Mueller matrices, interactions between nanoparticles
that lead to interesting phenomena such as hybridization of energies, Fano resonances and
circular effects in achiral and chiral configurations. We believe that every mathematical tool
brings new potential perspectives of its own. There are many examples in the history of
science that a new point of view introduces new perspectives. The Lagrangian formulation of
classical mechanics is basically equivalent to the Newtonian formulation, but it has provided
a new point of view for the universal stationary action (least action) formulation of physical
laws. The Hamiltonian formalism is still another form of the Lagrangian formalism with
the Poisson brackets (prototypes of quantum mechanical commutators), and constitutes the
backbone of quantum mechanics and quantum field theories. Similarly, the vector/matrix
and quaternion states formalism of polarization optics may suggest new perspectives that
allow new conception of optical phenomena.

In classical mechanics the state of the physical system is represented by a point in the
phase space. In quantum mechanics the state of the system is a vector, or, strictly speaking,
a ray in the Hilbert space. Quantum mechanical state vector contains all information that
can be retrieved about the physical system. Jones formalism is about the interaction of light
with the optical medium. In polarization optics, Jones matrix is considered as a mathematical
tool that represents the scattering properties of a deterministic optical system. Jones matrix
can be formulated in terms of the basic spectroscopic parameters that characterize the effect
of the optical system on the state of light. Accordingly, the Jones matrix transforms the
polarization state of incoming light into a new polarization state, but, the Jones matrix itself
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is not considered as a state of the optical system. In this thesis we suggest that the Jones
matrices, and all other alternative forms, can be considered as the state of the optical system.
System state contains all the information about the optical system besides its scattering
properties. Significance of the state representation approach becomes more apparent when
the system state is represented by a vector state.

This thesis consists of four main chapters. The first chapter includes the history and the
background material for the foundations of Jones-Stokes-Mueller formalism. The second
chapter presents the original work that has been studied in seven sections with the references
to the published papers. First three sections are about the vector and matrix states of
optical media and their coherent linear combinations. The fourth section attempts to unify
several alternative state representations by means of the quaternion state concept. Next
section is about the outer product of vector states and the density matrix formalism of
polarization optics, in a very similar way to the formalism of quantum mechanics of mixtures.
Applications of the vector/matrix state formalism to various phenomena, such as dipole-
dipole interaction between nano particles, plasmon hybridization, Fano resonances, circular
effects in chiral and achiral configurations, and depolarization effects due to the incoherent
combination of deterministic optical systems are investigated in the last two sections. The
published papers are presented in the third chapter in a chronological order and last chapter
contains a short discussion and conclusions of the thesis, followed by an appendix and the
bibliography.



Chapter 1

Background

Polarimetry is the technique that works on the measurement and interpretation of the polar-
ization of transverse waves [1]. The instruments used are called polarimeters. Polarimetry
itself is a very broad field and it includes many other more specific techniques or methods.
Thus, the application as a technique to extract information about the physical properties of
thin films or bulk materials from the changes in the polarization of light is usually known as
ellipsometry. In a similar way, the polarimeter that is used to determine the concentration of
sugar in a solution is called saccharimeter, etc.

Generally speaking, we can distinguish two basic forms of polarimetry: when the goal is
to characterize the polarization of light detected, Stokes polarimeters are used, for example,
we can highlight the wide application of these insturments in astronomy [2]. On the other
hand, when the goal is to measure optical properties of a material medium one uses polarime-
ter that generate and detect polarized light and that, in their most general form, are called
Mueller matrix polarimeters (or Mueller matrix ellipsometers) [3, 4]. This thesis is focused
on this second form of polarimetry.

A quasi-monochromatic beam of light is said to be polarized when both, the relative
amplitudes and the relative phase between the different components of the electromagnetic
field remain related to each other in a deterministic and predictable way. If for some reason
for example the phase relation is perturbed, light will become partially polarized. Besides its
polarization properties light is an electromagnetic wave in the usual sense which is described
by Maxwell’s equations [5].

A plane wave is a constant frequency wave whose wavefronts are infinite planes perpen-
dicular to the propagation axis. For a plane wave propagating along the z-axis, the electric
field vector can be written as

E = (Ex0eiδx x̂+Ey0eiδy ŷ)ei(ωt−kz), (1.1)
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where Ex0, Ey0 and δx, δy are the amplitudes and phases along the x and y directions.

Within this assumption, the polarization state of light is given by the relations between
the relative magnitudes and phases of the x and y components of the electric field vector
E. For a quasi-monochromatic light E0x

E0y
and δx - δy are constants, hence E is completely

polarized and it can be described by a Jones vector which contains all the information about
the polarization of the wave. The Jones vector can be written as a column vector [1]:

|E⟩=
(

E0xei(ωt−kz+δx)

E0yei(ωt−kz+δy)

)
= ei(ωt−kz)

(
E0xeiδx

E0yeiδy

)
. (1.2)

In some parts of this Thesis we will use Dirac’s Bra-Ket notation [6], as you can see in Eq.
(1.2) . This notation is not very extended in polarization optics, but it will be adopted for
convenience because it eases some of the calculations.

The intensity of light can be obtained by multiplying the Jones vector |E⟩ by its Hermitian
adjoint,

I = ⟨E|E⟩= E∗
0xE0x +E∗

0yE0y, (1.3)

The effect that a deterministic optical element has on the polarized light is described by a
2×2 complex Jones matrix J [8, 9](

Eout
0x

Eout
0y

)
=

(
J00 J01

J10 J11

)(
E in

0x

E in
0y

)
. (1.4)

The Jones matrix describing the net effect of a series of optical elements is obtained by
the matrix product of Jones matrices of the optical elements. The total effect of N optical
elements is described by

J = JNJN−1 · · ·J2J1. (1.5)

In this scheme the incident Jones vector interacts with the optical element J1 first, then with
element J2, etc.

Jones matrices are described in terms of the basis of a particular coordinate system. If we
want to use a rotated coordinated system, the Jones matrix expressed in the new coordinate
system can be obtained as follows:

J′ = R(α)JR(−α), with R(α) =

(
cos(α) sin(α)

−sin(α) cos(α)

)
. (1.6)

where α is the orientation of the axis of the new coordinate system with respect to old
coordinate system and J′ is the Jones matrix expressed in terms of the new coordinate system.
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The Jones vector is an efficient way of describing completely polarized light. But
unpolarized or partially polarized light can not be expressed by a Jones vector. In order to
describe a general polarization state, a Stokes vector, |s⟩, is introduced in terms of the Stokes
parameters s0, s1, s2 and s3 [10]:

|s⟩=


s0

s1

s2

s3

=


⟨E∗

0xE0x +E∗
0yE0y⟩

⟨E∗
0xE0x −E∗

0yE0y⟩
⟨E∗

0yE0x +E∗
0xE0y⟩

⟨i(E∗
0yE0x −E∗

0xE0y)⟩

 , (1.7)

which includes unpolarized states as well as completely polarized states. The expressions
in the brackets denote time averages in order to account for the variations in the amplitude
and phase. The Stokes parameters satisfy the following inequality:

s2
0 ≥ s2

1 + s2
2 + s2

3. (1.8)

The equality is only satisfied in case of completely polarized light. The equation, s2
0 =

s2
1+s2

2+s2
3, represents a sphere of three dimensions s1, s2, s3 with a radius s0, which is called

the Poincare sphere. For an unpolarized or partially polarized light equality is not satisfied.
In this case, the degree of polarization p is defined in terms of the Stokes parameters,

p =

√
s2

1 + s2
2 + s2

3

s0
. (1.9)

For completely polarized light p = 1, for unpolarized light p = 0, and for partially polarized
light 0 < p < 1. Partially polarized light can be written as a sum of two components: an
unpolarized component and a completely polarized component,

The matrix method which manipulates Stokes vectors was developed and popularized
by Hans Mueller [11] after the pioneering contributions of Paul Soleillet and Francis Perrin
[12–14]. The Mueller formalism has a direct connection with experiment, because it works
with real and measurable intensities instead of complex amplitudes. Therefore, Stokes vector
and Mueller matrices are much convenient for experimental work in polarimetry. The effect
of an optical element on the polarization state of incident light is described by a 4×4 Mueller
matrix. A Mueller matrix M consists of 16 real elements and connects the input and output
Stokes vectors:

|s′⟩= M|s⟩, (1.10)
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where

M =


M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

 . (1.11)

For every Jones matrix there exists a corresponding Mueller-Jones matrix (also known as
nondepolarizing Mueller matrix or pure Mueller matrix) which can be found by means of the
following relation:

M = A(J⊗J∗)A−1, (1.12)

where ⊗ is the the Kronecker product and A is a unitary matrix,

A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 , A−1 =
1
2

A† =
1
2


1 1 0 0
0 0 1 −i
0 0 1 i
1 −1 0 0

 , (1.13)

the superscript † indicates conjugate transpose.

A beam of light is said to be polarized when the relative phase between the different
components of the electromagnetic field remain related to each other in a definite way. If for
some reason the phase relation is perturbed, light will become partially polarized. In practice
as the light passes through a medium, phase correlations may be destroyed or the relative am-
plitudes of the electric field vector may be affected due to selective absorption of polarization
states. Hence, polarized light becomes partially depolarized, i.e., the degree of polarization
is reduced. In polarimetry experiments the depolarization usually can be due to incoherent
scattering introduced by the sample or the incoherent superposition of the light interacting
with different materials. Another source of depolarization is the limited spectral resolution of
the instruments. In general, optical elements are not perfectly monochromatic; they integrate
over a range of wavelengths and can cause depolarization. Isotropic depolarizing samples
depolarize all input polarization states equally; on the other hand, anisotropic depolarizing
samples depolarize particular polarization states but may not depolarize other polarization
states. To quantify the depolarization effect of a medium, the depolarization index (DI) of
a Mueller matrix was introduced by Gil and Bernabeu [15, 16]. The DI is defined as the
Euclidian distance of the normalized Mueller matrix from the ideal depolarizer:

DI =

√
(∑i j M2

i j)−M2
00√

3M00
. (1.14)
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DI varies from zero to the unity. For an ideal depolarizer DI= 1, for a non-depolarizing
medium DI= 0, and intermediate values correspond to partial depolarization.

We can associate a complex 4×4 covariance (coherency) matrix, H, to any Mueller
matrix [18, 17],

H =
1
4

3

∑
i, j=0

Mi jA(σσσ i ⊗σσσ∗
j)A

−1, (1.15)

σσσ i are the Pauli matrices with the 2×2 identity in the following order:

σσσ0 =

(
1 0
0 1

)
, σσσ1 =

(
1 0
0 −1

)
,

σσσ2 =

(
0 1
1 0

)
, σσσ3 =

(
0 −i
i 0

)
.

(1.16)

The matrix H given in Eq.(1.15) is named in many works as coherency matrix and
identified with the letter C, as it was given by Cloude [19]. This is done to distinguish it
from a different definition of H that does not include the matrix A (note that as A is only a
unitary matrix, it does not add or remove any polarimetric information). However, in all the
published works associated with this thesis we always denote H as the covariance matrix
and it must be understood according to the definition given in Eq.(1.15).

H matrix is very useful for eigenanalysis. Most importantly, for a physical Mueller matrix
(either depolarizing or nondepolarizing) the eigenvalues of H must be non-negative (i.e. H
must be a positive semidefinite Hermitian matrix). The rank of H is also informative about
the depolarization. If the Mueller matrix of a system is non-depolarizing (alternatively, pure
or deterministic), then the rank of the associated covarience matrix is one. In practice, due
to the unavoidable noise, one finds that experimental Mueller matrices are never strictly
non-depolarizing.





Chapter 2

Introduction

The Jones and Mueller formalisms that we have introduced in the previous section may not
be regarded as two competing formalisms but, instead, as two complementary formalisms.
For example, addition of Stokes vectors represents an incoherent combination (intensity
superposition) of beams while addition of Jones vectors represents a coherent superposition
(amplitude superposition). Therefore, with the combination of both formalisms, something
we will generally refer as Jones-Mueller formalism, one can get a complete and consistent
framework for the phenomenological study of interaction of light with optical material media
[4].

As stated by Parke [7] scattering properties of a coherent parallel combination of optical
systems can be expressed as a linear combination of Jones matrices of individual systems,

J = J1 +J2 +J3 + · · · (2.1)

Jones matrices are complex 2×2 matrices. It will be shown that it is also possible to define
complex 4×4 matrices (Z matrices) which are equivalent to Jones matrices, and the coherent
linear combination of states can be written in terms of Z matrices [20–24]:

Z = c1Z1 + c2Z2 + c3Z3 + · · · (2.2)

where Z is the matrix associated with the coherently combined system, Zi denote the matrices
associated with subsystems and ci are complex coefficients. We also argue that the Jones and
Z matrices are more than scattering matrices, they can be considered as matrix states that
define all optical properties of deterministic optical systems. This coherent linear combination
of states principle brings the formalism of polarization optics more closer to the formalism of
quantum mechanics. But, when expressed in terms of Jones or Z matrices the power of the
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coherent linear combination principle may not be fully appreciated. There exists one more
mathematical object that may be used for representing the state of a deterministic optical
systems. The vector state |h⟩ is more suitable for representing linear combination of states,

|h⟩= c1|h⟩1 + c2|h⟩2 + c3|h⟩3 + · · · (2.3)

where |h⟩ and |h⟩i are vector states associated with the combined system and subsystems,
respectively, and each vector state can be represented by a four component complex vector. In
Eq.(2.3) ci play the role of probability amplitudes of quantum mechanics, but for macroscopic
optical systems, including systems at the nano scale, such as nanoantennas, ci cannot be
interpreted as probability amplitudes. Nevertheless, the analogy with the quantum mechanical
state superposition is more clear in terms of vector states.

To our knowledge, Z was first introduced by Chipman [26]. But, the significance of the
Z matrix becomes more apparent when we make the connection with the nondepolarizing
Mueller matrix. We observe that every nondepolarizing Mueller matrix, M, can be written as
M = Z∗Z = ZZ∗. This observation allows us to interpret Z matrix (or |h⟩ vector) as the state
of an optical system analogous to the state vector of quantum mechanics, |ψ⟩. At first sight, it
may be plausible to interpret M = Z∗Z = ZZ∗ as an analogue of the expression for quantum
mechanical probability in terms of probability amplitudes: probability = ψ∗ψ = ψψ∗. But
unfortunately, this analogy cannot be pursued too far [27–29].

2.1 Representations of deterministic optical media states
and their properties

We write the Jones matrix in terms of the parameters τ,α,β and γ:

J =

(
τ +α β − iγ
β + iγ τ −α

)
. (2.4)

The corresponding nondepolarizing Mueller matrices can be obtained from the Jones matrices
by a transformation, M = A(J⊗J∗)A†, where A is a unitary matrix given by Eq.(1.13).

We introduce, Z matrix, written in terms of τ,α,β and γ as follows:

Z =


τ α β γ
α τ −iγ iβ
β iγ τ −iα
γ −iβ iα τ

 , (2.5)
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where τ,α,β and γ are complex numbers, and they are closely related with the real valued
anisotropy coefficients defined by Arteaga et al. [30]. α is related with linear horizontal
anisotropy, β is related with linear 45◦ anisotropy and γ is related with circular anisotropy.
[20]. τ can always be chosen as real and positive if the overall phase is not taken into account.
In terms of spectroscopic parameters [31] isotropic phase retardation (η), isotropic amplitude
absorption (κ), circular dichroism (CD), circular birefringence (CB), horizontal and 45◦

linear dichorism (LD and LD’), horizontal and 45◦ linear birefringence (LB and LB’), τ , α ,
β and γ can be written as:

τ = e−
iχ
2 cos

(
T
2

)
,

α =−e−
iχ
2

iL
T

sin
(

T
2

)
,

β =−e−
iχ
2

iL′

T
sin
(

T
2

)
,

γ = e−
iχ
2

iC
T

sin
(

T
2

)
(2.6)

where χ = η − iκ , L = LB− iLD, L′ = LB′ − iLD′, C = CB− iCD, T =
√

L2 +L′2 +C2

[20, 32, 33].

In all respects, the Z matrix is equivalent to the Jones matrix, and the Z matrix transforms
the Stokes vector representing complete polarization state of light, |s⟩= (s0,s1,s2,s3)

T , into
a complex vector, |s̃⟩= (s̃0, s̃1, s̃2, s̃3)

T :

Z|s⟩= |s̃⟩. (2.7)

It can be shown that |s̃⟩ bears the relevant phase introduced by the optical system,

⟨s|Z|s⟩= 2⟨E|J|E⟩= 2⟨E|E ′⟩, (2.8)

where |E⟩ and |E ′⟩ are input and output Jones vectors. Z matrix also transforms the Stokes
matrix, S [34], into a complex matrix, S̃, which is the matrix analogue of |s̃⟩,

ZS = S̃, (2.9)
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where S is defined as

S =


s0 s1 s2 s3

s1 s0 −is3 is2

s2 is3 s0 −is1

s3 −is2 is1 s0

 . (2.10)

The vector state |h⟩ can be written as a column vector,

|h⟩=


τ
α
β
γ

 . (2.11)

|h⟩ vectors are generators of nondepolarizing Mueller matrices. It is possible to define and
classify the Mueller matrix symmetries according to nonzero components of |h⟩ vectors [20].

The appendix contains a tabulated list of |h⟩ vector states, Z matrix states and their corre-
sponding Mueller matrix M for the most common optical components used in polarimetry.

2.2 Coherent linear combination of states

The representation of an optical system with a vector state becomes more prominent when we
want to study coherently combined optical systems. When analyzed in terms of vector/matrix
states, analytic formulas become very similar to the quantum mechanical formulas [35].
But, it is worth noting that linear combination of two or more vector/matrix states should
not be understood in the sense of quantum superposition. The vector/matrix states are
mathematical objects that describe properties of optical systems (including nano systems).
We never suggest a superposition of states belonging to the same optical system. Linear
combination of states of optical systems means that associated deterministic physical systems
are combined in parallel coherently so that they are illuminated by the same coherent wave
front simultaneously. The combined system’s state, in general, can be associated with a single
new optical system endowed with optical properties that may be different from the optical
properties of its constituents. Conversely, we may consider any deterministic optical system
as a coherent parallel combination of two or more deterministic optical systems in the physical
sense described above. For example, physically, a quarter-wave plate can be considered as a
coherent parallel combination of two orthogonal linear polarizers and, mathematically, the
state of the combined system (QWP) can be written as a linear combination of orthogonal
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linear polarizer states:

|hQWP⟩=
1+ i

2
|hHP⟩+

1− i
2

|hV P⟩, (2.12)

where |hHP⟩ is a linear horizontal polarizer state vector with τ = 1√
2
,α = 1√

2
,β = γ = 0,

|hV P⟩ is a linear vertical polarizer state vector with τ = 1√
2
,α =− 1√

2
,β = γ = 0 and |hQWP⟩

is a quarter-wave plate state vector with τ = 1√
2
,α = i√

2
,β = γ = 0. Here, |hHP⟩ and |hV P⟩

are the basis states that span the relevant vector space. Complex coefficients c1 = (1+ i)/2
and c2 = (1− i)/2 can be calculated in terms of scalar products of |h⟩ vectors,

c1 = ⟨hHP|hQWP⟩, c2 = ⟨hV P|hQWP⟩. (2.13)

In this example basis vectors are orthogonal. In general, they could be nonorthogonal states
as well, provided that they satisfy the completeness relation defined for nonorthogonal basis
system for a given vector space.

2.3 Coherent combinations of states in a Young’s double
slit experiment

In a separate paper [22] we investigate interference effects and Pancharatnam phase [36] for
several coherent combinations of Z matrices. We describe an experiment in which coherent
light is sent through a calcite crystal that separates the photons by their polarization (due
to its double refracting effect), which is an analog of Young’s double slit experiment with
polarizers [37, 38]. Calcite crystal can be considered as a coherent linear combination of two
orthogonal linear polarizer states [25],

Z =
1√
2
(ZH + eiφ ZV), (2.14)

where c1 =
1√
2
,c2 =

eiφ√
2

and ZH and ZV are matrix states corresponding to horizontal and
vertical linear polarizers, respectively. Separated beams are then let to superpose, and
the recombined beam is used to measure the Mueller matrix of the system, which is also
calculated by the relation M = ZZ∗. The results are interpreted according to Z matrix
formulation of coherent linear combination. When φ is zero or it is a multiple of 2π the
result is an identity Mueller matrix, while for other values, M progressively evolves between
a horizontal quarter-wave plate (φ =−π/2), a vertical quarter-wave plate (φ = π/2), and
a half-wave plate (φ = π) Mueller matrices. This work can be considered as the first
experimental implementation of a Young’s experiment with complete polarimetry, which
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demonstrates that our method can be used for the experimental synthesis of optical devices
with on demand optical properties.

2.4 Quaternion formulation of optical media states

When the light interacts with two or more optical systems (J1,J2,J3 · · ·JN) sequentially,
Jones matrix of the overall process can be written as a product of Jones matrices,

J = JNJN−1 · · ·J3J2J1. (2.15)

A similar algebra is also possible with Z matrices,

Z = ZNZN−1 · · ·Z3Z2Z1. (2.16)

But, it is not possible to define multiplication of |h⟩ vectors that give a similar expression.
Nevertheless, |h⟩ vectors are the representatives of nondepolarizing states and in the paper
entitled, “Quaternion algebra for Stokes Mueller formalism” [39] we show that calculus of
polarization optics can be reformulated in terms of quaternion states so that the vector and
matrix states are different forms of the same quaternion state, hhh.

The quaternion state, hhh, is also defined in terms of τ,α,β and γ ,

hhh = τ111+ iαi+ iβ j+ iγk, (2.17)

where 111, i, j and k are the quaternion basis [40]. In this work, we study the properties of hhh
quaternion and its applications to polarization optics. Quaternion multiplication of hhhi states
that results in a new quaternion state hhh is feasible:

hhh = hhhNhhhN−1 · · ·hhh333hhh222hhh111. (2.18)

Quaternion states can also be linearly combined to yield a new quaternion state, hence,
coherent parallel combinations of nondepolarizing optical systems can be reformulated in
terms of quaternion states. It is also shown that quaternion state, hhh, turns out to be the rotator
of the Stokes quaternion:

sss′′′ = hhhssshhh†, (2.19)

where sss is the quaternion form of Stokes vector (sss = s0111+ is1i+ is2j+ is3k), hhh† is the Her-
mitian conjugate of hhh and sss′′′ is the transformed (rotated) Stokes quaternion that corresponds
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to the output Stokes vector |s′⟩ of Stokes-Mueller formalism,

|s′⟩= M|s⟩, (2.20)

where |s⟩ is the usual Stokes vector.

In this thesis it is shown that Z matrix can be written in an exponential form, so as the
quaternion state hhh,

hhh = eh̄,

h̄ =− i
2
(χ1+ iLi+ iL′j− iCk). (2.21)

When we differentiate hhh with respect to ℓ (distance along the direction of propagation of
light) we get

dhhh
dℓ

=
dh̄
dℓ

hhh =
h̄
ℓ

hhh. (2.22)

This equation is a reformulation of the Stokes–Mueller differential formalism, and it can be
compared with the well-known quaternion differentiation formula:

q̇qq =
1
2

ωqqq, (2.23)

where ω is the angular velocity. Hence, 2h̄/ℓ can be interpreted as the angular velocity
of rotation by an angle θ(= T/2) of the quaternion state through the medium, where h̄
describes the changing rate of hhh along the pathlength. Since, the vector state |h⟩ and matrix
state concepts (Jones and Z matrices) are different forms of the same quaternion state, hhh,
quaternion state may serve as a key element for the unification of all formalisms developed
thus far at different stages by many contributors. [4, 5, 7–13, 15, 16, 18, 26, 32, 36, 38, 41–
44]

2.5 Outer product of vector states and the density matrix

Linear combination and multiplication of Jones matrices, Z matrices and hhh quaternions are
feasible and these forms are suitable to represent parallel and serial combinations of optical
systems. Multiplication of |h⟩ vectors in the form |h⟩|h⟩|h⟩ · · · is not defined, therefore they
are not suitable to represent serial combinations. But, inner product and cross product (and
even tensor product) of |h⟩ vectors can be defined and vector states are suitable for all familiar
vector operations. |h⟩ vectors have one more advantage over the other state representations:
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outer product of |h⟩ vectors can also be defined [34, 46]:

H = |hi⟩⟨h j|. (2.24)

If i = j, H is a 4×4 Hermitian matrix. In this case, H has a special meaning and it is called
covariance matrix (also known as coherency matrix or C matrix) in polarization optics. But,
we have a tendency to interpret H as a density matrix, similarly with the density matrix of
quantum mechanics. In fact, H matrix can be considered as another form of optical media
states. If there is only one deterministic system H matrix represents a pure system. When two
or more optical systems are combined incoherently H matrix of the combined system will be
a mixed state. H matrix becomes more important in case of depolarization. H matrix and the
associated Mueller matrix can be converted into each other by a one-to-one transformation
[20], and H matrix is very useful for analyzing depolarizing Mueller matrices.

2.6 Applications of the formalism: Interacting optical sys-
tems at the nano scale

In a coherent linear combination given by Eq.(2.3) we assume that the subsystems do not
interact with each other. Coherent linear combination of interacting optical systems is another
issue that we have analyzed in detail [21, 45]. In case of interaction, the combined state
is no more a simple linear combination of the original constituents, now it contains a new
ingredient: the interaction state contribution, |h⟩interaction,

|h⟩= c1|h⟩1 + c2|h⟩2 + cint |h⟩interaction. (2.25)

Advantages of vector/matrix state formalism becomes more prominent in describing optical
behaviour of interacting nanoparticles (nanoantennas) that scatter light [47, 50]. Scattering
characteristics of rod shaped nanoparticles can be modelled as linear polarizer states. A rod
shaped particle can be viewed as an oriented dipole endowed with a Lorentzian polarizability.
When we consider two or more nanoparticles we have to take into account two basic
processes: coherent parallel combination and coherent serial combination. In a coherent
parallel combination wavefront of an incident plane wave interacts with the nanoparticles
simultaneously, whereas, in a serial combination several successive coherent interaction
stages are applied. In general, due to the mutual dipole-dipole interactions between the
nanoparticles the system responds to the incident light as a whole, and the state of the
combined system can be described by a single vector/matrix state. From the holistic point
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of view it would be rather complicated to analyze the phenomenological behaviour of
the coupled system. However, applying the state decomposition procedure could be of
considerable help. It can be shown that the state of the coupled system can be written as a
linear combination of several states: state vectors of individual (noninteracting) subsystems
and mutual interaction states. We call this procedure “decomposition of state of interacting
systems” and we apply it to several configurations of coupled nanoantenna systems. The first
stage of the decomposition procedure can be carried out in terms of Jones matrices. In fact,
Jones matrices are more appropriate for this purpose, because dipole-dipole interactions can
be more conveniently worked out by means of the dyadic Green functions [47]. However,
when we try to analyze the measured or simulated scattering matrix (Jones matrix or Mueller
matrix) of the coupled system it is much more easier to work with vector states in order to
exploit conventional methods of vector algebra.

Our first example is a coherent combination of two interacting coplanar nanoantennas.
It is shown that the state of the coupled system can be written as a linear combination of
three states: states for individual (noninteracting) nanoantennas and a state for the mutual
interaction,

J = g[α1J1 +α2J2 +(α1α2∆)Jint], (2.26)

where α1 and α2 are the Lorentzian polarizabilities of particles, ∆ is the interaction coefficient,
g is the overall factor which is also a function of α1,α2 and ∆, J is the Jones matrix of the
coupled system, J1 and J2 are Jones matrices of noninteracting individual systems and Jint is
the Jones matrix of the interaction contribution. The isolation of the interaction part from
other states is very important for the analytical investigation of various phenomena such as
plasmon hybridization, Fano resonances and circular effects.

Plasmon hybridization is well known in nano optics [48]. When two systems interact
with each other via an interaction potential the individual resonance energy levels get shifted.
These hybridized energy levels depend on in-phase and out-of-phase vibrational modes and
they are very sensitive to the geometry. Even for the simplest geometries, the problem of
plasmon hybridization cannot be easily tackled without an analytic approach based on the
proposed decomposition of the coupled state into more basic states.

We study the case of two coupled nanoantennas [45, 49]. One antenna is oriented with
an angle of 45◦ with respect to the other one. It is possible to isolate the effect of interaction
mathematically as a separate state, and the contribution of this state to the whole process
can be figured out by an interaction coefficient which can be calculated from the observed
or simulated scattering matrices. We work on simulated scattering matrices[50]. Our first
observation is that the interaction coefficient depends on the wavelength (energy) of the
incident light and it diminishes by increasing distance between the particles. We also show
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that the state of the coupled system has an overall coefficient, g, that also depends on energy,
interaction coefficient ∆ and the Lorentzian polarizabilities:

g ∝
1

1−α1α2∆2 . (2.27)

Hybridized energies, ω±, can be calculated from the harmonic oscillator model for the
coupled system,

ω± =

√√√√ω2
1 +ω2

2 ±
√
(ω2

1 −ω2
2 )

2 +4ω2
1 ω2

2 η1η2∆2

2
, (2.28)

where ω is the frequency of the incoming radiation (driving force), ωi are the individual
resonance frequencies of particles, ηi are the corresponding amplitudes of oscillations that
depend on the size of the particles. Eq.(2.28) reduces to a simple equation for identical
particles (α1 = α2,η1 = η2,ω1 = ω2 = ω0),

ω± = ω0
√

1±η∆. (2.29)

The overall coefficient, g, is in general a complex number. From the roots of the denominator
of g it is possible to calculate the peaks of the spectra that correspond to hybridized energies,
ω±. Derivation of the hybridized energies from the vector/matrix state formalism of interact-
ing particles shows how powerful can be the proposed analytic approach when applied to a
complicated problem of coupled nanoparticles. Vector form is more flexible than the other
forms when we want to play with the basis states. We first write Eq. (2.26) in terms of vector
states:

|h⟩= g1|h⟩1 +g2|h⟩2 +gint |h⟩int , (2.30)

where g1 = gα1,g2 = gα2, and gint = gα1α2∆ are complex coefficients that can be determined
algebraically from the results of the measurement [45]. It can be shown that the state of the
coupled system can be written in an alternative way by applying the following change of
basis:

|h±⟩= g1|h⟩1 +g2|h⟩2

2
√

g1g2
± |h⟩int

2
. (2.31)

We may call |h±⟩ as hybrid basis, and in terms of hybrid basis, |h⟩ can be written as a linear
combination of two hybrid modes, so that it is no longer necessary to make an explicit
reference to the interaction term. In terms of hybrid basis Eq.(2.30) can be written as

|h⟩= ν+|h+⟩+ν−|h−⟩, (2.32)
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where ν± =
√

g1g2 ±gint . The maxima of g (i.e., the resonant conditions for the hybridized
modes) occur when either ν+ = 0 or ν− = 0. In general g1 and g2 may vary with energy,
and hybrid basis are energy dependent. If g1 = g2 hybrid basis become merely geometrical
and energy independent:

|h±⟩= |h⟩1 + |h⟩2

2
± |h⟩int

2
. (2.33)

Resolution of the hybridized energies by the proposed analytic method becomes important
when the hybridized peaks cannot be clearly identified in the scattering spectra. Strength of
the interaction between the nano systems mainly depends on the orientations of the particles
and the separation between the particles. If the interaction between the particles is weak the
hybridized energy peaks cannot be clearly distinguished and they manifest themselves only
as peak-broadening. As the interaction gets weaker peak broadening diminishes, but, with the
proposed analytic method it is still possible to resolve the hybridized energy contributions.

Another interesting phenomena that our decomposition scheme can provide a clear
explanation is the Fano resonances [51, 52]. In certain conditions coupled oscillators show
interesting characteristics due to the interference effects between the hybrid modes. In
order to observe interference effects at least two overlapping states are needed. Since the
interference effects between hybrid modes stem from the linear combination of states, without
the decomposition theorem Fano resonances in coupled systems cannot be analyzed. Our
formulation is also in accordance with the coupled oscillator model for Fano resonances and
experimental observations.

Besides all other interesting phenomena, circular polarization effects may emerge from
the interaction between nano systems [53]. We have taken nanoantennas as basic constituents
of more complex nanosystems and macrosystems, and we modelled the optical response
of nanoantennas as oriented dipoles that behave as linear polarizers. Hence, we assume
that the state of a nanoantenna oriented in a certain direction in space can be represented
by a linear polarizer state. To be more specific, a linear polarizer state is characterized
by a vector with real valued τ,α and β with γ = 0. Parameter γ is associated with the
circular response of the system. Without accounting the interaction effects it is not possible
to obtain a linearly combined system state of noninteracting linear polarizers with a nonzero
γ parameter. Mathematically this means that any linear combination of linear polarizer states
in the form of |h⟩= α1|h⟩1+α2|h⟩2+ · · · cannot yield circular effects without an interaction
term that couples the individual states. Therefore, when we consider parallelly combined two
or more nanoantennas circular effects could only emerge if there are mutual dipole-dipole
interactions and there are path differences to the observation point. In fact results show that,
even for interacting coplanar nanoantennas, circular effects are mostly observed at the near
field where phase differences between the component nanoantennas are more prominent. In
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a serial coherent combination of dipoles, it can be shown that decomposition of the state of
the combined system yields two more terms that account for the circular effects due to the
phase and sequential field transactions [54].

2.7 Depolarization effects and decomposition of depolariz-
ing Mueller matrices

Up to now, we have encountered various forms of deterministic optical media states (M,
J, Z, |h⟩, hhh). Some of them have advantages over the other forms in some cases. But, Z
matrix formulation is still has a distinguished property that M = ZZ∗ = Z∗Z. In other words,
Z matrix is very akin to the nondepolarizing Mueller matrix, M. This property becomes
important when we begin to study depolarization effects.

Let us consider the simplest case and let Z1 and Z2 be two matrix states that combined
coherently with complex coefficients c1 and c2 with the normalization condition, c1c∗1 +
c2c∗2 = 1,

Z = c1Z1 + c2Z2. (2.34)

Corresponding nondepolarizing Mueller matrix can be written as

M = ZZ∗ = c1c∗1Z1Z∗
1 + c2c∗2Z2Z∗

2 + c1c∗2Z1Z∗
2 + c2c∗1Z2Z∗

1. (2.35)

First two terms correspond to nondepolarizing Mueller matrices, M1 and M2,

M = ZZ∗ = c1c∗1M1 + c2c∗2M2 + c1c∗2Z1Z∗
2 + c2c∗1Z2Z∗

1. (2.36)

Last two terms in the expansion are not Mueller matrices, and if the optical systems are
combined incoherently these coherency terms vanish,

Mdep = w1M1 +w2M2, (2.37)

where w1 = c1c∗1, w2 = c2c∗2 and Mdep is a depolarizing Mueller matrix. In general, any
depolarizing Mueller matrix can always be written as a convex sum of at most four nondepo-
larizing Mueller matrices [18].

If the Mueller matrix of a depolarizing optical system is given it can be decomposed into
its arbitrary nondepolarizing constituents; but, arbitrary decompositions will not be unique,
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in general, there will be infinitely many equivalent decompositions,

Mdep = w1M1 +w2M2 = w′
1M′

1 +w′
2M′

2 = w′′
1M′′

1 +w′′
2M′′

2 = · · · (2.38)

In the paper entitled, “Decomposition of a depolarizing Mueller matrix into its nondepolariz-
ing components by using symmetry conditions”, 1[56] we show that, in case of a two-term
combination, depolarizing Mueller matrix of the combined system can be decomposed into
its original nondepolarizing components uniquely if one of the component systems has a
symmetry, i.e., if one of the parameters (τ,α,β ,γ) of one component system is zero, and
if the symmetries of two component systems do not overlap completely. Decomposition
procedure makes use of outer products of |h⟩ vectors. Each nondepolarizing component of a
depolarizing Mueller matrix can also be expressed as an outer product of |hi⟩ vectors;

Hi = |hi⟩⟨hi|, (2.39)

where Hi is the complex-Hermitian matrix (density matrix) associated with the nondepolar-
izing Mueller matrix, Mi. Since, all M and H are linked with each other by a one-to-one
transformation, Eq.(2.37) can be written in terms of H matrices also:

Hdep = w1H1 +w2H2, (2.40)

where Hi are rank = 1 density matrices (pure states) and in case of a two-term combination
Hdep is a rank = 2 density matrix (mixed state). Hence, original component Mueller matrices
and their weights w1 and w2 can be solved uniquely from the rank conditions [55–57].

To conclude, in this thesis we investigate different forms of optical system states and we
try to introduce a complete mathematical framework. We apply our formalism to several
phenomena such as coherent linear combination and decomposition of deterministic optical
systems, plasmon hybridization, Fano resonances and circular effects observed in different
configurations of interacting nanoantennas, depolarization effects and resolution of a mixed
state into its pure components by the density matrix approach.

1Note that this paper does not make use of vector and matrix states formalism that is used in the other
publications discussed this thesis. At the time this paper was published (chronologically it was the first) the
formalism was not yet developed.
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A procedure for the parallel decomposition of a depolarizing Mueller matrix with an associated rank 2 covariance
matrix into its two nondepolarizing components is presented. We show that, if one of the components agrees with
certain symmetry conditions, the arbitrary decomposition becomes unique, and its calculation is straightforward.
Solutions for six different symmetries, which are relevant for the physical interpretation of polarimetric measure-
ments, are provided. With this procedure, a single polarimetric measurement is sufficient to fully disclose the
complete polarimetric response of two different systems and evaluate their weights in the overall response. The
decomposition method we propose is illustrated by obtaining the ellipsometric responses of a silicon wafer and a
holographic grating from a single measurement in which the light spot illuminates sectors of both materials. In a
second example, we use the decomposition to analyze an optical system in which a polarizing film is partially
covered by another misaligned film. © 2016 Optical Society of America

OCIS codes: (260.2130) Ellipsometry and polarimetry; (260.5430) Polarization; (290.5855) Scattering, polarization.
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1. INTRODUCTION

Many polarimetric measurements lead to depolarizing Mueller
matrices. The analysis and interpretation of a depolarizing
Mueller matrix tends to be more difficult than the nondepola-
rizing case because it is not possible to directly identify the basic
polarimetric properties (different forms of diattenuation and
retardance) characteristic to the material sample or remote sens-
ing target. From an experimental point of view, it is of great
interest to identify and calculate, if possible, the nondepolariz-
ing (pure) components included in a depolarizing polarimetric
measurement.

In general a depolarizing Mueller matrix can be considered
as a parallel combination (convex sum) of two or more non-
depolarizing Mueller (or Mueller–Jones) matrices [1,2]. The
minimum number of pure components to describe a Mueller
matrix depends on the rank of its covariance matrix, H. The
rank of H ranges between 1 (for a nondepolarizing system)
and 4. Therefore, at most four nondepolarizing components
are sufficient to describe any depolarizing Mueller matrix.
This work deals with the case in which the covariance matrix
H has rank 2, and the depolarizing Mueller matrix arises from
the parallel combination of two pure components:

M � α1M1 � α2M2; (1)

where the weights satisfy α1 � α2 � 1 and M1 and M2 are
nondepolarizing Mueller matrices.

From an experimental perspective, this two-term parallel de-
composition is quite relevant because it corresponds to the case
in which the light beam interacts with two different types of
optical media and then the emerging beams recombine inco-
herently at the detector. This often happens in finite spot size
measurements when the light spot impinges on two spatially
distributed areas of the sample with distinct optical properties.
The objective of this work is to determine the individual optical
response of these two areas (i.e.,M1 andM2) and their weights
from a single measurement of M. The only additional a priori
knowledge required is that one, and only one, of the compo-
nent matrices has a certain symmetry.

In a recent publication [3], Ossikovski et al. provided a
method for such decomposition and applied it to finite spot
size measurements when one of the two Mueller matrices
has block-diagonal symmetry. This work offers an alternative
solution to calculate the pure components and generalizes
the result to six different types of symmetries of a nondepola-
rizing state. Even if the optical properties of a material, optical
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system, or target are not known in detail, it is often possible to
anticipate the Mueller matrix symmetry of at least one of the
constituents because it is tightly related to its crystallographic,
mesoscopic or macroscopic structure [4].

The manuscript is organized as follows: in Section 2, we
review the Cloude (spectral) and arbitrary decompositions.
Section 3 introduces the three fundamental symmetries in
M and H for basic nondepolarizing states. The analytic equa-
tions of our two-term decomposition for each fundamental
symmetry are given in Section 4. In Section 5, we study three
additional symmetry cases and provide their decomposition.
The decomposition procedure is illustrated with numerical
and experimental examples in Sections 6 and 7, respectively.

2. CLOUDE DECOMPOSITION AND THE
ARBITRARY DECOMPOSITION

Every physically acceptable Mueller matrix M with elements
mij is associated to a positive semi-definite Hermitian
matrix, H:

H � 1

4

X3
i;j�0

mij�σi ⊗ σj�; (2)

which is known as the covariance matrix. σk are the set com-
posed by the Pauli matrices and the 2 × 2 identity matrix. ⊗
stands for the Kronecker product. All over this work, we assume
that Mueller matrices are normalized to their elementm00. This
brings also the condition trH1 � trH2 � trH � m00 � 1.
The elements mij of M can be calculated from H by

mij � tr��σi ⊗ σj�H�: (3)

The Cloude decomposition [5] (also known as the spectral
decomposition) shows that anyHmatrix can be considered as a
combination of up to four nondepolarizing components:

H �
X3
i�0

λiui ⊗ u†i �
X3
i�0

λiHi ; (4)

in which the weights λi are the non-negative eigenvalues of H
and ui are the normalized eigenvectors. The superscript † in-
dicates the conjugate transpose. Hi are rank 1 covariance ma-
trices. Due to the equivalency between H and M, this can also
be expressed as

M �
X3
i�0

λiMi : (5)

The Cloude decomposition is, in fact, a particular case
among many different possible parallel combinations of a de-
polarizing system into pure components that are, in general,
referred as the arbitrary decomposition of a Mueller matrix
[1–3]. The arbitrary decomposition of M into a linear combi-
nation of pure states can be expressed as convex sum of
Mueller–ones matrices:

M �
X3
i�0

piMi;
X3
i�0

pi � 1; pi > 0: (6)

In this work, we will deal with a particular case of the
arbitrary decomposition in which M has a rank 2 covariance
matrix, and the decomposition has only two terms.

3. SYMMETRIES OF THE THREE
FUNDAMENTAL PURE STATES

The identification of the three distinct forms of anisotropy of a
Mueller matrix leads to the definition of three possible funda-
mental pure states [6]. Each one of them is characterized by a
simple symmetry. We organize them as follows.

A. Type 1

ML �

2
664

1 m01 0 0
m01 1 0 0
0 0 m22 m23

0 0 −m23 m22

3
775; (7)

with m2
01 � m2

22 � m2
23 � 1. Type 1 symmetry leads to a block

diagonal Mueller matrix. In this case, the retardation and/or
diattenuation anisotropies of the optical wave coincide with the
two orthogonal axes that define the laboratory plane of refer-
ence. This symmetry is, for example, typical of ellipsometry
measurements at a certain angle of incidence on isotropic ma-
terials.

B. Type 2

ML 0 �

2
664

1 0 m02 0
0 m11 0 m13

m02 0 1 0
0 −m13 0 m11

3
775; (8)

with m2
02 � m2

11 � m2
13 � 1. Type 2 symmetry corresponds to

a situation in which the directions of retardation and/or dia-
ttenuation of the optical wave are aligned with the bisectors
of the coordinate axes. This is a nonreciprocal symmetry.

C. Type 3

MC �

2
664

1 0 0 m03

0 m11 m12 0
0 −m12 m11 0
m03 0 0 1

3
775; (9)

with m2
03 � m2

11 � m2
12 � 1. Type 3 symmetry corresponds to

a system in which the anisotropy occurs between left- and right-
handed circular polarization states. In this case, there is rota-
tional symmetry.

All these three types of nondepolarizing Mueller matrices
contain only two independent parameters. The covariance
matricesH associated to these highly symmetric pure states also
exhibit some characteristic symmetries. They are presented in
Table 1 together with equations that add constraints between
the differentHmatrix elements. Note that each one of the three
covariance matrices shown contains only two independent
parameters, as ML, ML 0 and MC .

4. CALCULATION OF THE TWO-TERM
DECOMPOSITION

This section shows how to calculate the two nondepolarizing
terms of the decomposition M � α1M1 � α2M2. Due to the
equivalence between M and H, this factorization can be also
written as H � α1H1 � α2H2. Now it has to be assumed that
H1 has one of the symmetries shown in Table 1, whileH2 has a
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different symmetry or no specific symmetry. The symmetricH1

will be indicated as H1S .
The pure component α2H2 can be written:

α2H2 � H − α1H1S ; (10)

then, if H1S is a type 1 matrix:

α2H2 �

2
664

h00 − α1P h01 h02 h03 − α1W
h10 h11 h12 h13
h20 h21 h22 h23

h30 − α1W � h31 h32 h33 − α1P

3
775; (11)

where hij are the elements of H. As H2 is nondepolarizing, this
matrix should be of rank 1. For a rank 1 matrix, the determi-
nant of any 2 × 2 submatrix must be zero; otherwise, the matrix
would have rank 2 or higher.

Let us consider the following determinants:����
h00 −α1P h01

h10 h11

�����0;
����
h00 −α1P h03 −α1W

h10 h13

�����0: (12)

From these two equations, it is possible to calculate α1P and
α1W . α1P is calculated from the additional condition P �
W �W ∕P that warrants that the calculated H1S will also be
a rank 1 matrix. Finally, α1 can be determined from the trace
of α1H1S [α1 � tr�α1H1S�].

Note thatA, B, andC are always real parameters whileG,H ,
M , and Y can be complex. � denotes the complex conjugate.

The determinants in Eq. (12) are not the only possible al-
ternatives to calculate the unknown parameters; in fact, there
are many options. For example, P andW can also be calculated
from the following determinants:����

h00 −α1P h02
h20 h22

�����0;
����
h00 −α1P h03 −α1W

h20 h23

�����0: (13)

Interestingly, the unknown parameters cannot be calculated
when central 2 × 2 submatrix of H (i.e., the elements h11, h12,
h21, and h22) vanishes. This clearly occurs when H2 has the
same symmetry as H1S , i.e., when it has type 1 symmetry,
too. Such an overlap makes the decomposition impossible.
In all the other situations, i.e., when H2 is of type 2 or 3,
or a combination between different types, will lead to a non-
vanishing 2 × 2 central submatrix.

A calculation similar to Eq. (11)–(13) can be repeated when
H1S is assumed to have type 2 or type 3 symmetry. Table 2
summarizes the solutions for all three types. The equations pre-
sented there can be directly used to calculate H1S from H for a
given symmetry in H1S.

In Table 2, the symmetries 2 and 3 are split in two different
cases (a and b). Cases labeled as a offer a solution based on the
most outer determinant, i.e.:

DetA �
����
h00 h03
h30 h33

����; (14)

Table 1. Three Fundamental Pure States Expressed in Terms of M and H

Case Mueller Matrix M Covariance Matrix Ha

Type 1

2
664

1 m01 0 0
m01 1 0 0
0 0 m22 m23

0 0 −m23 m22

3
775

2
664

P 0 0 W
0 0 0 0
0 0 0 0

W � 0 0 P

3
775
P � �1� m01�∕2
W � �m22 � im23�∕2
P � 1 − P
PP � W �W

Type 2

2
664

1 0 m02 0
0 m11 0 m13

m02 0 1 0
0 −m13 0 m11

3
775

2
664

K N N K
N � K K N �

N � K K N �

K N N K

3
775
K � �1� m11�∕4
N � �m02 � im13�∕4
K � 0.5 − K
K K � N �N

Type 3

2
664

1 0 0 m03

0 m11 m12 0
0 −m12 m11 0
m03 0 0 1

3
775

2
664

E V −V E
V � E −E V �

−V � −E E −V �

E V −V E

3
775
E � �1� m11�∕4
V � �m12 � im03�∕4
E � 0.5 − E
EE � V �V

a*denotes the complex conjugate.

Table 2. Equations That Solve the Two-Term Parallel
Decomposition for H1S Having Type 1, 2, or 3 Symmetry

Symmetry Equations

Type 1

α1P � �h11h00 − h10h01�∕h11
α1W � �h10h03 − h13�h00 − α1P��∕h10
α1P � α1WW �∕P
alternatively,
α1P � �h22h00 − h20h02�∕h22
α1W � �h20h03 − h23�h00 − α1P��∕h20

Type 2a

α1K � h30h03−h00h33
h30�h03−h33−h00

α1N � h30h01−h00h31�α1K �h31−h01�
h30−h00

α1K � α1NN �∕K

Type 2b

α1K � h21h12−h11h22
h21�h12−h22−h11

α1N � h11h02−h12h01�α1K �h01−h02�
h11−h12

α1K � α1NN �∕K

Type 3a

α1E � h30h03−h00h33
h30�h03−h33−h00

α1V � � h10h03−h00h13�α1E�h13−h10�
h03−h00

α1E � α1V V �∕E

Type 3b

α1E � h11h22−h21h12
h21�h12�h22�h11

α1V � h01h12−h11h02�α1E�h01�h02�
h11�h12

α1E � α1V V �∕E

In all cases α1 is determined from α1 � tr�α1H1S�
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while cases labeled as b offer a solution based on the central
determinant,

DetB �
����
h11 h12
h21 h22

����: (15)

When dealing with experimental data and to avoid numeri-
cally ill conditions, it is advisable to calculate the unknowns us-
ing determinants that do not lead to divisions by small numbers.
Therefore, we should choose the solution based on the determi-
nant that contains elements with larger values because it is nu-
merically more stable and noise robust. Moreover, in some
particular situations, only one of the two sets of solutions
may be applicable. For example, if H is a combination between
type 1 and type 2,DetBwill vanish, and only solutions based on
DetAwill work. Likewise, ifH is a combination between types 2
and 3, then solutions based on DetA need to be avoided.

Instead of using different sets of solutions, one for every matrix
type, it is also possible to use a unique set if columns and rows
permutations are used to transform the symmetry type. For ex-
ample, a Mueller matrix with type 2 symmetry can be reduced to
a type 1 by permuting the second and third rows and columns,
and one with type 3 symmetry can be reduced to a type 1 by
cyclically permuting the second, third, and fourth rows and col-
umns. This operation is geometrically equivalent to relabeling the
axes of the Poincaré sphere. Thus, after applying these permuta-
tions, the equations corresponding to type 1 symmetry could be
used to study all three matrix types. If this approach is used to
calculate the decomposition, it is then necessary to undo the
permutations to recover the original symmetry type.

5. OTHER SYMMETRIC PURE STATES

The three fundamental symmetries defined in the previous sec-
tion are not the only cases in which a pure state exhibits sym-
metries in its Mueller matrix. The anisotropies corresponding
to symmetry types 1, 2, and 3 can appear combined one with
another, thus generating pure states that are less simple than
those given in Table 1 but still highly symmetric. We identify
these symmetries as types 1-2, 1-3, and 2-3. The type 1-2

symmetry has no circular anisotropy, the type 1-3 symmetry
has no linear anisotropy along the bisectors of the coordinate
frame and the type 2-3 has no linear anisotropy aligned with
the axes of the reference frame.

Table 3 shows the parameterization of the Mueller matrices
and their equivalent covariance matrices for these three addi-
tional symmetry cases. The two-term parallel decomposition
given in Eq. (1) also has a solution when one of the components
has symmetry type 1-2, 1-3, or 2-3. The only additional re-
quirement is that the other component of the factorization
must include some anisotropy of the missing type. For example,
if one of the components has a known symmetry type 1-2, the
decomposition is solvable as long as the other term has some
circular anisotropy (i.e., of type 3).

The procedure to calculate the terms of decomposition is
analog to the one in the previous section. The elements of
the covariance matrix can be calculated from zeroing the deter-
minant of every 2 × 2 submatrix of the matrix given by
Eq. (10). The analytic equations that permit the decomposition
for these symmetry cases are summarized in Table 4. All covari-
ance matrix elements not listed in this table can be directly cal-
culated using the additional relations between parameters given
in the last column of Table 3.

6. NUMERICAL EXAMPLE

Consider the two pure states given by the Mueller matrices:

M1 �

2
664

1 0 0 0.1489
0 0.9108 0.3851 0
0 −0.3851 0.9108 0

0.1489 0 0 1

3
775; (16a)

M2 �

2
664

1 0.0544 0.6124 0.2719
0.2502 0.7064 0.2447 0.2273
0.6124 −0.2146 0.8118 0.4669
−0.1196 −0.0768 −0.4519 0.5935

3
775: (16b)

M1 has type 3 symmetry, while M2 contains all types of
anisotropy and offers no evident symmetry. For this example,

Table 3. Three Additional Symmetry Cases for Pure States

Case Mueller Matrix M Covariance Matrix Ha

Type 1-2

2
664

1 m01 m02 m03

m01 m11 m12 m13

m02 m12 m22 m23

−m03 −m13 −m23 m33

3
775

2
664

A G G M
G� B B H�

G� B B H�

M� H H C

3
775
AB � GG�

GH� � MB
BC � HH�

Type 1-3

2
664

1 m01 m02 m03

m01 m11 m12 m13

−m02 −m12 m22 m23

m03 m13 −m23 m33

3
775

2
664

A G −G M
G� B −B H�

G� −B B −H�

M� H −H C

3
775
AB � GG�

GH� � MB
BC � HH�

Type 2-3

2
664

1 m01 m02 m03

−m01 m11 m12 m13

m02 −m12 m22 m23

m03 −m13 m23 m33

3
775

2
664

A G H A
G� B Y G�

H� Y � C H�

A G H A

3
775
AB � GG�

HG� � AY
AC � HH�

aNote that A, B and C are always real parameters while G, H, M and Y can be complex. * denotes the complex conjugate.
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we take the weights α1 � 0.3 and α2 � 0.7 to generate a combined state given by M � α1M1 � α2M2. The covariance matrix
associated with this combined Mueller matrix is

H �

2
664

0.4952 0.1789� 0.0985i 0.0407� 0.0232i 0.3892� 0.0161i
0.1789 − 0.0985i 0.0923 0.0315 − 0.0026i 0.1736 − 0.0037i
0.0407 − 0.0232i 0.0315� 0.0026i 0.0238 0.0355� 0.0190i
0.3892 − 0.0161i 0.1736� 0.0037i 0.0355 − 0.0190i 0.3886

3
775: (17)

In this example, DetA clearly involves larger values than DetB; thus, it is advisable to chose type 3a equations of Table 2 to solve
this particular case. However, there is enough numerical precision in this example to use any of the two sets of equations (3a or 3b) to
obtain α1H1S successfully.

In the given numerical example, the parameters are found as follows:

Eα1 � 0.1433; (18)

V α1 � 0.0289� 0.0112i; (19)

Eα1 � 0.0067; (20)

and α1 is calculated as α1 � tr�α1H1S� � 2�Eα1 � Eα1� � 0.3. Finally, we obtain the following covariance matrix:

H1 �

2
664

0.4777 0.0962� 0.0372i −0.0962 − 0.0372i 0.4777
0.0962 − 0.0372i 0.0223 −0.0223 0.0962 − 0.0037i
−0.0962� 0.0372i −0.0223 0.0223 −0.0962� 0.0372i

0.4777 0.0962� 0.0372i −0.0962 − 0.0372i 0.4777

3
775; (21)

and H2 will be trivially recovered from α2H2 � H − α1H1.
In summary, only with the information given by Eq. (17) and the a priori knowledge about type 3 symmetry, we have recovered

the two covariance matrices of the original pure states.

7. EXPERIMENTAL EXAMPLES

To demonstrate the applicability of the decomposition with a real experiment, we have considered two different examples.

Fig. 1. Spectroscopic ellipsometry measurement in the boundary
between a Si wafer and a holographic grating. The light spot was care-
fully placed so that it impinged simultaneously on both materials, as is
shown in the top photo. The angle of incidence was 60°.

Table 4. Equations That Solve the Two-Term Parallel
Decomposition for Types 1-2, 1-3, and 2-3

Symmetry Equations

Type 1-2

α1B � h21h12−h11h22
h21�h12−h22−h11

α1G � h02h11−h01h12�α1B�h01−h02�
h11−h12

α1H � h31h22−h21h32−α1B�h31−h32�
h22−h21

Type 1-3

α1B � h11h22−h21h12
h11�h22�h21�h12

α1G � h01h12−h11h02�α1B�h01�h02�
h11�h12

α1H � h31h22−h21h32−α1B�h31�h32�
h22�h21

Type 2-3

α1A � h30h03−h00h33
h30�h03−h33−h00

α1G� � h10h03−h00h13−α1A�h10−h13�
h03−h00

α1H� � h20h03−h00h23−α1A�h20−h23�
h03−h00

In all cases α1 is determined from α1 � tr�α1H1S�
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A. Combined Measurement of a Silicon Wafer and a
Holographic Grating
Here, we used a holographic reflection grating (1800 lines/mm)
and studied its ellipsometric specular reflection (zeroth order
diffraction) at an angle of incidence of 60°. A silicon wafer
was placed on top of the grating so that the light spot (of
around 2 mm in diameter) impinged simultaneously on the
two different media: silicon and grating. Spectroscopic mea-
surements were created with the homemade Mueller matrix
ellipsometer based on four photoelastic modulators described
in [7]. Figure 1 shows the Mueller matrix measurement of
the combined Si + grating system as the light beam illuminates
a region that includes both materials.

Silicon has a cubic crystal structure, and measurement on a
Si wafer leads to a type 1 Mueller matrix that is typical of el-
lipsometry measurements. With this a priori knowledge, and by
using the decomposition procedure we have described, we will
be able to obtain the polarimetric responses of Si and the gra-
ting from the “mixed” measurement given in Fig. 1. In prin-
ciple, this decomposition will be possible if the grating does not
exhibit a Mueller matrix symmetry that coincides with the one
of Si. The diffraction grating is sensitive to the polarization of
the incoming radiation, and it is well-known that, when the
direction of the grooves is not parallel or perpendicular to
the plane of incidence, the characteristic Mueller matrix of the
grating differs considerably from type 1 symmetry. The accu-
racy and validity of the decomposed data (i.e., the retrieved

Mueller matrices of Si and the grating) is going to be checked
with independent measurements made on silicon and on the
grating at the same orientations that were used for the com-
bined measurement.

The covariance matrices H associated to the experimental
depolarizing Mueller matrices of Fig. 1 should have rank 2,
as we know that the studied optical system consists of two spa-
tially distributed nondepolarizing components. However, in
practice, due to the unavoidable noise and other experimental
nonidealities, it is possible that the other two eigenvalues of H
are small but not strictly zero. To amend this, we imposed the

Fig. 2. Solid lines show the calculated ellipsometric response for the silicon wafer (blue) and the grating (red) from the “mixed” Si-grating mea-
surement. The experimental spectroscopic Mueller matrix measured for Si (circles) and the grating (squares) are also shown for comparison.

Fig. 3. Calculated weight of Si (α1) for the combined Si-grating
measurement.
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rank 2 condition by Cloude-decomposing the experimental
data and truncating the summation in Eq. (4) to only two
terms, those associated to the two largest eigenvalues. Once
the rank 2 condition is warranted, the equations shown in the
first entry of Table 2 can be used to decompose H into the two
nondepolarizing components corresponding to Si (H1S ) and
the grating (H2).

Figure 2 shows the resulting Mueller matrices for the Si wa-
fer and the grating. This figure compares the data calculated
from the combined measurement with the independent mea-
surements made on both materials. The agreement with the
experimental data shows that the decomposition is physically
meaningful because it recovers the true optical response of
the two components. In addition to the data included in
Fig. 2, the decomposition also provides the weights. Figure 3
shows the spectroscopically determined α1. In the UV region of
the spectra, α1 takes larger values because silicon has a higher
reflectivity than the grating. In fact, it is possible to distinguish
two peaks at around 275 and 360 nm, which are characteristic
of the reflectance spectra of silicon. However, above 500 nm,
the contribution of the grating is clearly dominant (α1 < 0.3),
and, because of its smaller weight, there is slightly more uncer-
tainty in the determination of the polarimetric response of
silicon.

Fig. 4. Spectroscopic transmission measurement in which a portion
of the beam goes through two superposed polarizing films; the other
portion only goes through one.

Fig. 5. Solid lines show the calculated transmission Mueller matrix for the single polarizing film (red) and the superposed films (blue) from the
“mixed” measurement. The experimental Mueller matrices measured for single film (circles) and the superposed films (squares) are also shown for
comparison.
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B. Measurement of a Polarizer Film Partially
Covered by Another Misaligned Polarizing Film
In this example, we studied a randomly oriented polarizing film
that was partially covered by another misaligned polarizing
film, as is shown in the photo in Fig. 4. This second polarizing
film had nonideal characteristics and exhibited some remark-
able retardance below 500 nm. The light spot was placed so
that a portion of the beam transmitted only through the first
polarizing film, while the other portion of the beam transmitted
through the two superposed films. This combined system was
measured in transmission, and we obtained the Mueller matrix
spectra, as shown in Fig. 4.

The effect of a randomly oriented polarizing film is de-
scribed by a type 1-2 Mueller matrix because it has no circular
anisotropy (the change in polarization is the same effect for left-
and right-circular polarization states). The region with the two
superposed and misaligned films does not have any particular
symmetry in the Mueller matrix because it contains all three
types of anisotropy.

The same approach as in the previous example was used: we
independentlymeasured theMuellermatrix of every component
of system and compared these values with the data extracted
from the combined measurement after imposing the rank 2
condition using the Cloude decomposition. Experimental
and calculated results from the combined measurement in
the spectral range from 400 to 600 nm are presented together
in Fig. 5. The agreement between both sets of data shows, here,
too, that the decomposition is capable of calculating the optical
response of the two components from a single Mueller matrix
measurement.

8. CONCLUSION

We have shown that, for depolarizing polarimetric experiments,
which are a combination of two nondepolarizing states, it is
possible to analytically retrieve the individual polarimetric re-
sponse of each component. The decomposition of the com-
bined state into its pure constituents is possible if one of

them agrees to a certain symmetry pattern; no other specific
knowledge about the individual responses is required. We have
reviewed the three basic fundamental symmetries of a nonde-
polarizing system plus three additional symmetry cases that
arise when different types of anisotropy are combined. The ana-
lytic equations that solve the decomposition for each one of
these six cases have been provided so that the Mueller matrices
of the two pure components and their respective weight can be
directly calculated.

We believe that this two-term parallel decomposition can be
useful for the experimentalist dealing with depolarizing systems
because it offers insights about the depolarization mechanisms
and permits obtaining physical information about the constitu-
ents of complex optical media without any modeling effort.
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directly accessible for physical interpretation. This work shows that all the information contained in a nonde-
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1. INTRODUCTION

The 16 real elements of a Mueller matrix describe the transfor-
mation of the polarization of a beam when interacting with
an optical material or system. In absence of depolarization
the Mueller matrix contains only seven independent parameters
[1].

To study the properties of a Mueller matrix M (nondepola-
rizing or depolarizing), it is useful to transform M into a
Hermitian matrix H. This Hermitian matrix is sometimes
called the covariance matrix of M and is defined as

H � 1

4

X3
i;j�0

Mij�σi ⊗ σ�j �; (1)

where Mij are the elements of M, the superscript * indicates
conjugate, ⊗ is the Kronecker product, and σi are the
Pauli matrices with the 2 × 2 identity in the following order:

σ0 �
�
1 0
0 1

�
; σ1 �

�
1 0
0 −1

�
; (2)

σ2 �
�
0 1
1 0

�
; σ3 �

�
0 −i
i 0

�
: (3)

Here 4 × 4 matrices σi ⊗ σ�j form a complete basis for a
given M to H transformation. However, the representation of
H is not unique. Instead of the basis σi ⊗ σ�j , we can use

the transformed basis U�σi ⊗ σ�j �U−1, where U is any suitable
unitary transformation.

In this work we will let U � A, and we will use the follow-
ing transformed basis:

Πij � A�σi ⊗ σ�j �A−1; (4)

where

A �

0
BBBB@

1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0

1
CCCCA
;

A−1 � 1

2
A† � 1

2

0
BBBB@

1 1 0 0

0 0 1 −i

0 0 1 i

1 −1 0 0

1
CCCCA
; (5)

where the superscript † indicates the conjugate transpose. In
terms of the new basis Πij, the covariance matrix H becomes

H � 1

4

X3
i;j�0

MijΠij : (6)
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In an explicit matrix form,

H � 1

4

0
BBBBBBBBBBBBB@

M 00 �M 11 M 01 �M 10 M 02 �M 20 M 03 �M 30

M 22 �M 33 −i�M 23 −M 32� �i�M 13 −M 31� −i�M 12 −M 21�
M 01 �M 10 M 00 �M 11 M 12 �M 21 M 13 �M 31

�i�M 23 −M 32� −M 22 −M 33 �i�M 03 −M 30� −i�M 02 −M 20�
M 02 �M 20 M 12 �M 21 M 00 −M 11 M 23 �M 32

−i�M 13 −M 31� −i�M 03 −M 30� �M 22 −M 33 �i�M 01 −M 10�
M 03 �M 30 M 13 �M 31 M 23 �M 32 M 00 −M 11

�i�M 12 −M 21� �i�M 02 −M 20� −i�M 01 −M 10� −M 22 �M 33

1
CCCCCCCCCCCCCCA

: (7)

This form ofH was given by Cloude in 1986 [2]; he referred
to this matrix as the “coherency” matrix, and, while the matrix
in Eq. (1) seems to be more popular in the literature, he re-
served the name “covariance” matrix. However, posterior au-
thors have not necessarily kept the same naming distinction.
Here, to avoid confusion, we will refer to any representation
of H as a covariance matrix.

The inverse transformation from H to M is given by

Mij � tr�ΠijH� or M �
X3
i;j�0

HijΠij ; (8)

where Hij are the elements of the matrix H.

2. COVARIANCE VECTOR OF A
NONDEPOLARIZING MUELLER MATRIX

If and only if the Mueller matrix of the system is nondepola-
rizing, the associated covariance matrix H will be of rank 1. In
this case it is always possible to define a covariance vector jhi
such that

H � jhihhj; (9)

where the vector jhi is the eigenvector of H corresponding to
the single non-zero eigenvalue of H [3–5]. If M 00 � 1,
λ0 � tr�H� � 1, and all other eigenvalues being equal to zero,
hhjhi � 1. In general, if rank �H� � 1; λ0 � tr�H� � M 00;
λ1 � λ2 � λ3 � 0; hence, if M 00 > 0, H is positive semide-
finite.

In our preferred basis Πij, we will parametrize the dimen-
sionless components of jhi as τ, α, β, and γ and write

jhi �

0
BB@

τ
α
β
γ

1
CCA: (10)

If determined from a Mueller matrix, α, β, and γ will generally
be complex parameters, while τ can always be chosen as real and
positive because the Mueller matrix does not contain informa-
tion about the global phase.

In terms of the parameters τ, α, β, γ the covariance matrixH
takes its simplest form:

H � jhihhj �

0
BB@

ττ� τα� τβ� τγ�

ατ� αα� αβ� αγ�

βτ� βα� ββ� βγ�

γτ� γα� γβ� γγ�

1
CCA: (11)

Any nondepolarizing Mueller matrix can thus be written in
terms of τ, α, β, and γ as

M �

0
BBBBBBBBBBBBB@

ττ� � αα� τα� � ατ� τβ� � βτ� τγ� � γτ�

ββ� � γγ� �i�γβ� − βγ�� �i�αγ� − γα�� �i�βα� − αβ��
τα� � ατ� ττ� � αα� αβ� � βα� αγ� � γα�

−i�γβ� − βγ�� −ββ� − γγ� �i�τγ� − γτ�� �i�βτ� − τβ��
τβ� � βτ� αβ� � βα� ττ� − αα� βγ� � γβ�

−i�αγ� − γα�� −i�τγ� − γτ�� �ββ� − γγ� �i�τα� − ατ��
τγ� � γτ� αγ� � γα� βγ� � γβ� ττ� − αα�

−i�βα� − αβ�� −i�βτ� − τβ�� −i�τα� − ατ�� −ββ� � γγ�

1
CCCCCCCCCCCCCA

: (12)

From the diagonal elements of Eqs. (7) and (11), we can
write

ττ� � 1

4
�M 00 �M 11 �M 22 �M 33� ≥ 0; (13)

αα� � 1

4
�M 00 �M 11 −M 22 −M 33� ≥ 0; (14)
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ββ� � 1

4
�M 00 −M 11 �M 22 −M 33� ≥ 0; (15)

γγ� � 1

4
�M 00 −M 11 −M 22 �M 33� ≥ 0: (16)

And we can directly read from these expressions the trace of H:

tr�H� � ττ� � αα� � ββ� � γγ� � M 00: (17)

We note that, although the values of the parameters τ, α, β,
and γ depend on the system of basis used in the definition of
the covariance matrix H, the quantities ττ�, αα�, ββ�, and γγ�

are independent of any representation, i.e., they are invariants
of the formalism.

It is also worth noting that the above inequalities are also
true for depolarizing Mueller matrices, which can be written
as a convex sum of nondepolarizing Mueller matrices.
Therefore, these conditions are necessary for a real matrix to
be considered as a Mueller matrix.

Similarly, a Jones matrix also can be parameterized as

J � τσ0 � ασ1 � βσ2 � γσ3; (18)

so that

J �
�

τ� α β − iγ
β� iγ τ − α

�
: (19)

In this parameterization τ also can be a complex parameter
because the Jones matrix can contain the global phase.

A. Relation to the Anisotropy Coefficients

One particular advantage of the preferred basis defined in
Eq. (4) is that τ, α, β, γ can be closely related to the anisotropy
coefficients defined by Arteaga et al. [6]. It is also possible to
define and classify the Mueller symmetries in terms of the com-
ponents of the covariance vector jhi in a very concise form.

In [6] three anisotropy coefficients were defined:

αA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Σ
��M 01 �M 10�2 � �M 23 −M 32�2�

r
; (20)

βA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Σ
��M 02 �M 20�2 � �M 13 −M 31�2�

r
; (21)

γA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Σ
��M 03 �M 30�2 � �M 12 −M 21�2�

r
; (22)

where only the positive signs of the roots are considered and Σ
is given as

Σ � 3M 2
00 − �M 2

11 �M 2
22 �M 2

33�
�2�M 01M 10 �M 02M 20 �M 03M 30�
−2�M 23M 32 �M 13M 31 �M 12M 21�: (23)

The anisotropy coefficients satisfy the inequality

α2A � β2A � γ2A ≤ 1: (24)

Equality is satisfied only if the Mueller matrix is
nondepolarizing.

If the factor Σ becomes zero, the coefficients αA, βA, and γA
are undefined, and then they cannot be applied to the Mueller
matrices of the form diag�1; e1; e2; e1e2�, e21 � e22 � 1.

The different types of anisotropies defined in [6] lead to
three basic types of symmetry for nondepolarizing systems.

Type 1 symmetry: Linear horizontal anisotropy (αA � 1,
βA � 0, γA � 0):

ML �

0
BB@

1 M 01 0 0
M 10 1 0 0
0 0 M 22 M 23

0 0 M 32 M 33

1
CCA; (25)

where M 01 � M 10;M 22 � M 33; M 23 � −M 32, and M 2
01�

M 2
22 �M 2

23 � 1.
Type 2 symmetry: Linear 45° anisotropy (αA � 0, βA � 1,

γA � 0):

ML 0 �

0
BB@

1 0 M 02 0
0 M 11 0 M 13

M 20 0 1 0
0 M 31 0 M 33

1
CCA; (26)

where M 02 � M 20;M 11 � M 33; M 13 � −M 31, and M 2
02�

M 2
11 �M 2

13 � 1.
Type 3 symmetry: Circular anisotropy (αA � 0, βA � 0,

γA � 1):

MC �

0
BB@

1 0 0 M 03

0 M 11 M 12 0
0 M 21 M 22 0

M 30 0 0 1

1
CCA; (27)

where M 03 � M 30;M 11 � M 22; M 12 � −M 21, and M 2
03�

M 2
11 �M 2

12 � 1.
For a nondepolarizing Mueller matrix, we can define the

anisotropy parameters αA, βA, and γA in terms of the compo-
nents of the covariance vector. In order to do this, we first write
Σ in terms of τ, α, β, and γ:

Σ � 16jτj2�jαj2 � jβj2 � jγj2�: (28)

With this definition of Σ, it can be shown that the anisotropy
parameters can be written as follows:

αA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jαj2
jαj2 � jβj2 � jγj2

s
; (29a)

βA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jβj2
jαj2 � jβj2 � jγj2

s
; (29b)

γA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jγj2
jαj2 � jβj2 � jγj2

s
: (29c)

For depolarizing Mueller matrices, it is not possible to define
the anisotropy parameters in terms of the components of the
covariance vector in a simple way like this. But, for depolarizing
Mueller matrices, αA, βA, and γA still are, respectively, propor-
tional to the weighted average of the absolute values of α, β, and
γ associated with the covariance vectors that represent a depo-
larizing system.
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B. Covariance Vector and Mueller Matrix Symmetries

Different forms of the covariance vector translate in different
symmetries of the Mueller matrix. There are four main situa-
tions or classes that depend on the number of vanishing
component(s) of the covariance vector.

Class 1. Only one of the parameters τ, α, β, γ is non-zero.
There are four possibilities in this class. For a normalized
Mueller matrix, the vector generators are as follows:

generatorτ jhi � �1; 0; 0; 0�T ;
generatorα jhi � �0; 1; 0; 0�T ;
generatorβ jhi � �0; 0; 1; 0�T ;
generatorγ jhi � �0; 0; 0; 1�T :

(30)

These covariance vectors generate a Mueller symmetry
that corresponds to a diagonal matrix of the form
diag�1; e1; e2; e1e2�, where e21 � e22 � 1, i.e., all the possible
diagonal nondepolarizing Mueller matrices. This includes
the cases of a half-wave plate, a mirror reflection, and the
identity.

Class 2. Only two of the parameters τ, α, β, γ are non-zero.
There are six different possibilities in this class, which are given
by the following vector generators:

generatorτα jhi � �τ; α; 0; 0�T ;
generatorτβ jhi � �τ; 0; β; 0�T ;
generatorτγ jhi � �τ; 0; 0; γ�T ;
generatorαβ jhi � �0; α; β; 0�T ;
generatorαγ jhi � �0; α; 0; γ�T ;
generatorβγ jhi � �0; 0; β; γ�T :

(31)

The generating vectors labeled as generatorτα, generatorτβ,
and generatorτγ lead to the symmetries labeled type-1, type-
2, and type-3 in [7], respectively. The vectors generatorαβ,
generatorαγ , and generatorβγ correspond, respectively, to a
type-3 matrix multiplied by diag�1; 1; −1; −1�, a type-2 matrix
multiplied by diag�1; −1; −1; 1�, and a type-1 matrix multiplied
by diag�1; −1; 1; −1�.

Class 3. One of the parameters τ, α, β, γ is zero. There are
four possible generators in this class:

generatorαβγ jhi � �0; α; β; γ�T ;
generatorτβγ jhi � �τ; 0; β; γ�T ;
generatorταγ jhi � �τ; α; 0; γ�T ;
generatorταβ jhi � �τ; α; β; 0�T ;

(32)

where generatorτβγ , generatorταγ , and generatorταβ are, respec-
tively, generating the symmetries labeled type-23, type-13, and
type-12 in [7], while generatorαβγ generates either a type-23
symmetry multiplied by diag(1, 1, −1, −1) or a type-12 sym-
metry multiplied by diag(1, −1, −1, 1) or a type-13 symmetry
multiplied by diag(1, −1, 1, −1).

Class 4. None of the parameters τ, α, β, or γ vanish. This
class does not generate any particular symmetry in the Mueller
matrix.

The covariance vectors listed above can be alternatively clas-
sified according to the parameter τ: symmetries with τ � 0, and
the symmetries with τ ≠ 0. When τ � 0 the resulting nonde-
polarizing matrices have some particular properties, as, for ex-
ample, these matrices do not have a real logarithm, and they

cannot be decomposed with the differential decomposition
[8], although they can be still correctly treated with the analytic
method [9].

3. GENERATING MATRIX FOR
NONDEPOLARIZING OPTICAL MEDIA

A nondepolarizing optical media can either be described by a
covariance vector or by a Jones matrix. Here we introduce one
more mathematical object (Z) in matrix form, which is closely
related to the Mueller matrix:

Z �

0
BB@

τ α β γ
α τ −iγ iβ
β iγ τ −iα
γ −iβ iα τ

1
CCA: (33)

By direct matrix multiplication, it can be shown that the
Mueller matrix of any nondepolarizing optical media can be
written as

M � ZZ� � Z�Z: (34)

Formally, Z and Z� can be defined in terms of the Jones
matrix:

Z � A�J ⊗ I�A−1; Z� � A�I ⊗ J��A−1; (35)

where I is the 2 × 2 identity. With these definitions it is
straightforward to prove Eq. (34). It is also possible to show
that Z matrices mimic all properties of Jones matrices. For ex-
ample, if we consider a sequential product of Jones matrices

J � JN · JN−1…J2 · J1; (36)

then the definition of Z in terms of J, Eq. (35), leads to the
following sequential combination:

Z � ZN · ZN−1…Z2 · Z1: (37)

By direct matrix multiplication it can be shown that all Zi
and Z�

j matrices commute; then it is a simple exercise to find
the associated expression for the sequential product of nonde-
polarizing Mueller matrices:

M � �ZNZN−1…Z2Z1��Z�
NZ

�
N−1…Z�

2Z
�
1�

� �ZNZ�
N ��ZN−1Z�

N−1�…�Z2Z�
2��Z1Z�

1�
� MN ·MN−1…M2 ·M1: (38)

A. Differential Treatment: Z Matrix as a Matrix
Exponential

The differential analysis of the Z matrix can be treated analo-
gously to the Jones matrix [10] or to the Mueller matrix. The
equation

dZ
d l

� zZ (39)

introduces the differential matrix z, which relates the Z matrix
of a homogeneous anisotropic medium to its spatial derivative
along the direction of propagation of light (l ).

This differential equation has a solution of the form Z � ez

and, as Z � A�J ⊗ I�A−1, we can rely on the Jones matrix
exponential [11] to find the differential Z matrix:

Z � A�J ⊗ I�A−1;� A�eNl ⊗ I�A−1 � e�A�N⊗I�A−1�l ; (40)
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where N is the differential Jones matrix, which is given by [12]

N � −
i
2l

�
χ � L L 0 � iC
L 0 − iC χ − L

�
; (41)

where χ � η − iκ, L � LB − iLD, L 0 � LB 0 − iLD 0,
C � CB − iCD. Here we have introduced the spectroscopic
parameters [12], which are defined as follows: isotropic phase
retardation (η), isotropic amplitude absorption (κ), circular di-
chroism (CD), circular birefringence (CB), horizontal and 45°
linear dichorism (LD and LD’), and horizontal and 45° linear
birefringence (LB and LB’). Their relationship with τ, α, β, and
γ is

τ � e−
iχ
2 cos

�
T
2

�
α � −e−

iχ
2
iL
T

sin

�
T
2

�
; (42)

β � −e−
iχ
2
iL 0

T
sin

�
T
2

�
γ � e−

iχ
2
iC
T

sin

�
T
2

�
; (43)

where T �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � L 02 � C2

p
.

As

z � �A�N ⊗ I�A−1�l ; (44)

this differential Z can be written as

z � −i
2

0
BB@

χ L L 0 −C
L χ iC iL 0

L 0 −iC χ −iL
−C −iL 0 iL χ

1
CCA: (45)

Because z commutes with the complex conjugate of itself
(z�), the exponential form of Z leads immediately to the
exponential form of a nondepolarizing Mueller matrix:

M � ZZ� � Z�Z � ezez� � e�z�z�� � eL; (46)

where

L � z� z� �

0
BB@

−κ −LD −LD 0 CD
−LD −κ CB LB 0

−LD 0 −CB −κ −LB
CD −LB 0 LB −κ

1
CCA: (47)

One advantageous aspect of z and Z matrices is that, sim-
ilarly to Jones matrices, they can include the global phase (rep-
resented by η in the spectroscopic notation). This global phase
information is not allowed in M or L (only κ survives). In a
subsequent paper, we will show that this is useful in some
calculations.

B. Inverse of the Z Matrix

We first calculate the determinant of Z:

det�Z� � �τ2 − α2 − β2 − γ2�2 ≥ 0: (48)

Equality is satisfied for pure polarizers. If det�Z� is non-zero
there exists an inverse matrix Z−1 such that

ZZ−1 � Z−1Z � I4; (49)

where I4 is the 4 × 4 identity.
We also calculate the explicit form of the Z−1 matrix by

following the usual matrix inversion procedure:

Z−1 � 1

τ2 − α2 − β2 − γ2

0
BB@

τ −α −β −γ
−α τ iγ −iβ
−β −iγ τ iα
−γ iβ −iα τ

1
CCA: (50)

As it can be seen from Eq. (50), in order to obtain Z−1, it is
not necessary to follow the tedious matrix inversion procedure,
it is enough to reverse the signs of α, β, and γ, apart from the
factor 1∕�τ2 − α2 − β2 − γ2�. Once we get Z−1, it is straightfor-
ward to write the inverse of the associated Mueller matrix:

M−1 � Z−1�Z−1�� � �Z−1��Z−1: (51)

C. Hermitian Z Matrix

From the explicit form of the matrix Z, it can be directly ob-
served that, if and only if the parameters τ; α; β; γ are real, Z is
Hermitian and the associated nondepolarizing Mueller matrix
is also Hermitian. And because M is real, a Hermitian M is
symmetric. In this case the Mueller matrix takes the following
simple form:

Mh � ZhZ�
h � Z�

hZh; (52)

Mh �

0
BB@

M 00 2τα 2τβ 2τγ
2τα M 11 2αβ 2αγ
2τβ 2αβ M 22 2βγ
2τγ 2αγ 2βγ M 33

1
CCA; (53)

where the subscript h stands for Hermitian and

M 00 � τ2 � α2 � β2 � γ2;

M 11 � τ2 � α2 − β2 − γ2;

M 22 � τ2 − α2 � β2 − γ2;

M 33 � τ2 − α2 − β2 � γ2:

This Mueller matrix is equivalent to the general diattenua-
tion matrix MD given in [12].

D. Unitary Z Matrix

For Z to be unitary, by definition,

ZZ† � Z†Z � I4; hence Z−1 � Z†: (54)

If we choose τ to be real, this can be true if and only if α, β, and
γ are pure imaginary numbers. In this case, the term �τ2 − α2 −
β2 − γ2� becomes equal to tr�H�. If the Mueller matrix is nor-
malized tr�H� � M 00 � 1, then the inverse (or the Hermitian
adjoint) of a unitary Z matrix can be obtained by simply
inverting the signs of the three parameters α, β, and γ.

If we let α � iᾱ, β � iβ̄, γ � iγ̄ (ᾱ; β̄; γ̄ are pure real num-
bers), we can write a nondepolarizing unitary Mueller matrix
(and because M is real, a unitary M is orthogonal) as

Mu � ZuZ�
u � Z�

uZu; (55)

Mu �

0
BB@

M 00 0 0 0
0 M 11 2ᾱ β̄�2γ̄τ 2ᾱ γ̄ −2β̄τ
0 2ᾱ β̄ −2γ̄τ M 22 2β̄ γ̄�2ᾱτ
0 2ᾱ γ̄�2β̄τ 2β̄ γ̄ −2ᾱτ M 33

1
CCA;

(56)
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where the subscript u stands for unitary and

M 00 � τ2 � ᾱ2 � β̄2 � γ̄2;

M 11 � τ2 � ᾱ2 − β̄2 − γ̄2;

M 22 � τ2 − ᾱ2 � β̄2 − γ̄2;

M 33 � τ2 − ᾱ2 − β̄2 � γ̄2:

This Mueller matrix is equivalent to the general retarder
Mueller matrix MR given in [12].

E. Polar Decomposition of Z Matrix

Any complex matrixZ can be written as a product of Hermitian
and unitary matrices:

Z � ZhZu or Z � ZuZ 0
h; (57)

where Zh and Z 0
h are Hermitian matrices associated with the

amplitude anisotropy and Zu is a unitary matrix associated with
the phase anisotropy. Because of the noncomutativity of
Hermitian and unitary parts, Zh and Z 0

h are not identical,
and they are related to each other through the following rela-
tions:

Z 0
h � ZT

uZhZu and Zh � ZuZ 0
hZ

T
u : (58)

In the following we follow the other route. We assume that
Zh and Zu matrices are given, and we write the two alternative
ways of multiplying them:

Z � ZhZu; Z 0 � ZuZh: (59)

It can be shown that Z and Z 0 lead to the polar decompo-
sitions of the associated Mueller matrices

�ZhZu��ZhZu�� � �ZhZu��Z�
hZ

�
u�

� �ZhZ�
h ��ZuZ�

u� � MhMu � M; (60)

�ZuZh��ZuZh�� � �ZuZh��Z�
uZ�

h �
� �ZuZ�

u��ZhZ�
h � � MuMh � M 0; (61)

where we use the following commutation relations:

ZuZ�
h � Z�

hZu; ZhZ�
u � Z�

uZh: (62)

4. NUMERICAL EXAMPLE

We can illustrate the calculation of the covariance vector jhi
and the matrix Z with the following Mueller matrix:

M � 1

30

0
BB@

30 8 4 12
8 26 8 0
12 0 12 26
4 8 −22 12

1
CCA: (63)

M is nondepolarizing because it satisfies the trace condition
tr�MTM� � 4M 2

00 [13,14]. The corresponding covariance
matrix, given in Eq. (6), is

H � 1

30

0
BB@

20 4 − 12i 4 − 2i 4 − 2i
4� 12i 8 2� 2i 2� 2i
4� 2i 2 − 2i 1 1
4� 2i 2 − 2i 1 1

1
CCA: (64)

It can be shown that rank�H� � 1 and tr�H� � 1; hence, the
covariance vector jhi, i.e., the normalized eigenvector
corresponding to the nonzero eigenvalue, is

jhi �

0
BB@

τ
α
β
γ

1
CCA � 1ffiffiffiffiffiffiffiffi

600
p

0
BB@

20
4� 12i
4� 2i
4� 2i

1
CCA: (65)

With these values of the parameters, τ; α; β, and γ, we can find
the anisotropy parameters defined by Arteaga et al. [6]:

αA �
ffiffiffiffiffiffiffi
0.8

p
; βA �

ffiffiffiffiffiffiffi
0.1

p
; γA �

ffiffiffiffiffiffiffi
0.1

p
: (66)

BecauseM is nondepolarizing α2A � β2A � γ2A � 1, and because
the jhi vector is normalized,

jτj2 � jαj2 � jβj2 � jγj2 � 400� 160� 20� 20

600
� 1:

(67)

The corresponding Z matrix is

Z � 1ffiffiffiffiffiffiffiffi
600

p

0
BB@

20 4� 12i 4� 2i 4� 2i
4� 12i 20 2 − 4i −2� 4i
4� 2i −2� 4i 20 12 − 4i
4� 2i 2 − 4i −12� 4i 20

1
CCA:

(68)

By direct matrix multiplication it can be shown
that ZZ� � Z�Z � M.

5. CONCLUSIONS

In this work, we have shown how the information contained in
nondepolarizing Mueller matrices can be expressed in terms of a
covariance vector or a generating 4 × 4 matrix. These two rep-
resentations have in common that they are built around three
complex parameters (α, β, γ), which are unequivocally linked to
different forms of anisotropy and one additional parameter of
isotropy, τ, that is real if it is calculated from a Mueller matrix.
This representation is closely related to the coefficients of
anisotropy, which were identified with geometric arguments
in a previous paper, and provides a systematic classification
of all possible Mueller matrix symmetries.

The 4 × 4 Z matrix is a mathematical entity, intimately re-
lated to a nondepolarizing Mueller matrix, which preserves
many of its properties, and, with the advantage, it can deal with
a global phase. It acts as a matrix state generator for pure (i.e.,
nondepolarizing) Mueller matrices, much like jhi is the vector
state of a rank 1 H. In a subsequent paper, we will detail how
these mathematical tools turn out to be useful for the polari-
metric description of coherent or incoherent superposition
processes.

Funding. Ministerio de Economía y Competitividad
(MINECO) (CTQ2013-47401-C2-1-P, FIS2012-38244-
C02-02).
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The fluctuations or disordered motion of the electromagnetic fields are described by statistical properties rather
than instantaneous values. This statistical description of the optical fields is underlying in the Stokes-Mueller
formalism that applies to measurable intensities. However, the fundamental concept of optical coherence, which
is assessed by the ability of waves to interfere, is not treatable by this formalism because it omits the global
phase. In this work we show that using an analogy between deterministic matrix states associated with optical
media and quantum mechanical wave functions, it is possible to construct a general formalism that accounts
for the additional terms resulting from the coherency effects that average out for incoherent treatments. This
method generalizes further the concept of coherent superposition to describe how deterministic states of optical
media can superpose to generate another deterministic media state. Our formalism is used to study the combined
polarimetric response of interfering plasmonic nanoantennas.

DOI: 10.1103/PhysRevA.95.063819

I. INTRODUCTION

In optics, interference is the phenomena that occurs when
two coherent waves superpose. The celebrated example is
the Young’s double slit experiment with a beam of light, but
coherence and interference are not restricted to photons. Any
moving particle is susceptible to interference with another if
they keep a well-defined and constant phase relation, as it
can occur for example between two oscillating dipoles [1]. In
optics this is one of the most fundamental interactions. When
a material medium is irradiated by an electromagnetic wave,
molecular electric charges are set in oscillatory motion by the
electric field of the wave, producing secondary radiation in a
form of refracted, reflected, diffracted, or scattered light with
certain polarization attributes.

Polarized light was the only quantum phenomenon that
was understood quantitatively before the birth of quantum
mechanics in 1900. Many mathematical tools of quantum
mechanics appear in the classical description of a polarized
electromagnetic wave and, for example, Malus’s law, which
was postulated in 1809, is also obeyed at the single-photon
level and allows a quantum mechanical interpretation in terms
of probability amplitudes [2]. In quantum mechanics, the
observable values are the eigenvalues of Hermitian operators
associated with the observable quantity. The observable cor-
responding to the optical phenomena occurring in light-matter
interactions is the 4×4 scattering matrix with 16 real elements
also known as the Mueller matrix that describes the linear
transformation of the Stokes parameters of a light beam upon
interaction with a linear medium.

In this work, we first demonstrate how alternative repre-
sentations of nondepolarizing (deterministic) optical systems
that were recently presented [3] can be used to make the
analogy between the Mueller-Jones states of optical systems
and the quantum mechanical wave function. We also show

*oarteaga@ub.edu

that quantum coherence in material media can be represented
by a coherent linear superposition of matrix (or vector) states
associated with nondepolarizing Mueller matrices. This linear
combination is generally understood as a sum of Jones matrices
of nondepolarizing component systems [4,5]. But here, instead
of Jones matrices, we propose a linear combination of matrix
(or vector) states with complex coefficients that play the role
of probability amplitudes of quantum mechanics.

Even though the relationship between polarization optics
and quantum mechanics has been studied by several previous
authors [6–9], these works are mainly focused on the descrip-
tion of the polarization states of a light wave, and they do
not consider light-matter interactions through material media
states. Ossikovski et al. [10] recently presented a treatment
of spatial coherency in polarimetry and ellipsometry with
Mueller matrices, albeit their formulation is fully based on
classical electromagnetic tools. In general, available theories
about coherence and polarization [11–13] require a direct
consideration of electromagnetic fields. Nevertheless, our
formalism is entirely based on the description of material
media with Mueller-Jones states, and it provides a complete
analogy between the phenomenological Stokes-Mueller for-
malism describing the interaction of light with a material
medium and quantum mechanics.

The overall effect of the interaction of light with a
deterministic, i.e., nondepolarizing, medium or optical system
can be described by a 2×2 complex matrix J, referred to as
the Jones matrix [14]. The 4×4 real matrix for transforming
the Stokes vectors is the Mueller matrix M that is directly
connected with the experimental work in polarization optics. If
the medium is deterministic then the associated Mueller matrix
(also known as the Mueller-Jones matrix) can be analytically
obtained from the Jones matrix [15]. As opposed to the Jones
matrix, a Mueller matrix does not contain information about
the overall phase change introduced by a material medium,
because it is not an observable.

Sometimes it is convenient to study the properties of a
general Mueller matrix M (nondepolarizing or depolarizing)

2469-9926/2017/95(6)/063819(8) 063819-1 ©2017 American Physical Society
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by transforming M into a Hermitian matrix H which is called
the covariance matrix [16].1 If and only if the Mueller matrix
of the system is nondepolarizing, the associated covariance
matrix will be of rank 1. In this case, it is always possible to
define a covariance vector |h〉 such that

H = |h〉〈h|, (1)

where the vector |h〉 is the eigenvector of H corresponding to
the single nonzero eigenvalue [17–19].

As its mathematical form suggests, H = |h〉〈h| is an analog
of the pure state of quantum mechanics expressed in the density
matrix form, where the covariance vector |h〉 plays the role of
a quantum mechanical state vector |�〉. In a suitable basis
that we defined in a previous work [3], the dimensionless
components of |h〉 are τ, α, β, and γ :

|h〉 = (τ,α,β,γ )T , (2)

where α, β, γ are complex parameters and τ can be chosen
to be real because the global phase is not an experimental
observable.

A deterministic state can be alternatively given by a Jones
matrix J, a Mueller-Jones matrix MJ , covariance vector |h〉,
or a 4×4 complex matrix Z defined as [3]2

Z =

⎛
⎜⎝

τ α β γ

α τ −iγ iβ

β iγ τ −iα

γ −iβ iα τ

⎞
⎟⎠. (3)

This matrix has a remarkable property [3]:

MJ = ZZ∗ = Z∗Z, (4)

where MJ is a Mueller-Jones matrix.
Here, the analogy between the Z matrix and a quantum

mechanical wave function, usually denoted as ψ , is evident.
The Z matrix is a complex matrix state that, when multiplied
with its complex conjugate, gives a real valued Mueller-
Jones matrix with elements that are observable quantities in
experimental polarization optics. In the following, Z matrices
will be referred to as Mueller-Jones states, and we will show
that it is also possible to think of a linear superposition of Z
matrices in a way very similar to the superposition of quantum
mechanical wave functions.

II. COHERENT SUPERPOSITION
OF POLARIZATION STATES

The coherent superposition of polarization states of light
can be introduced with Young’s double slit experiment. The
wave function of the combined beam can be written as a linear
superposition of wave functions of light emerging from each
slit:

ψ = aψa + bψb. (5)

1Note we call this covariance matrix H while other authors use C.
Our notation is defined in detail in [3].

2This matrix was also defined in the Ph.D. thesis of R. Chipman
(University of Arizona, 1987) with the name of “polarization coupling
matrix,” but its properties were not studied.

The phenomenon of interference of light comes into play if
ψj are, in all respects, identical to each other except relative
phases. For example, if ψb = eiφψa (0 � φ < 2π ), and if we
let a = b = 1√

2
, then the probability distribution function at a

given detection point displays a typical cos φ dependence:

ψψ∗ = 1
2ψaψ

∗
a (1 + eiφ)(1 + e−iφ)

= ψaψ
∗
a (1 + cos φ). (6)

If we consider an extended detector, the probability density at
the detector will vary accordingly with the cosine term as a
function of position, because the optical path (and therefore
the value of φ) changes with the detection point. On the other
hand, if we set a vertical and a horizontal polarizer before
each slit, there will be no sign of interference at all. Thus, it
is worth remarking that the lack of visibility of interference
fringes does not necessarily indicate absence of coherence.

A. Superposition of Z matrices

A superposition of optical media states may take place
during a light-matter interaction experiment. When a light
beam simultaneously illuminates different parts of the material
medium, each part having different optical properties, the
light emerging from different parts, in general with different
polarizations, may coherently recombine into a single beam.
If the studied material medium is composed of several
nondepolarizing (deterministic) systems, each system with
a well-defined Jones matrix, then the Jones matrix of the
combined system is simply given by a linear combination of
the Jones matrices of the component systems [4,5,20]:

J =
∑

i

Ji . (7)

For the analogies with quantum mechanics that we are tracing
in this work it is more practical to rewrite Eq. (7) with
normalized Jones component matrices, so that each term of
the superposition is preceded by a complex coefficient that
accounts for the relative amplitude and phase:

J = aJa + bJb + cJc + · · · , (8)

and satisfies the normalization condition |a|2 + |b|2 + |c|2 +
· · · = 1. By means of definition Z = A(I ⊗ J)A−1 (where A is
a constant unitary matrix [3]), this coherent linear combination
can be directly translated to the Z matrix states with the same
complex coefficients:

Z = aZa + bZb + cZc + · · · . (9)

Complex coefficients a,b,c, . . . , here play the role of prob-
ability amplitudes of quantum mechanics. Obviously, this
is a coherent summation and the resultant matrix state Z
corresponds to the nondepolarizing Mueller matrix of the
combined system. The complex coefficients can generally be
functions of space, time, and frequency. These dependencies
can entail depolarization effects if the measurement system
cannot resolve these variations, as will be discussed later.

Without loss of generality we may restrict our presentation
to a two-term coherent parallel combination. It can be shown
that Eqs. (8) and (9) lead to the same Mueller-Jones matrix of
the combined nondepolarizing system, MJ . For instance, from
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Eq. (9), MJ can be written in terms of Z matrices as follows:

MJ = ZZ∗ = aa∗ZaZ∗
a+bb∗ZbZ∗

b+ab∗ZaZ∗
b + ba∗ZbZ∗

a.

(10)

In this expansion, ZaZ∗
a and ZbZ∗

b are the Mueller-Jones
matrices of the nondepolarizing component systems, whereas
ZaZ∗

b and ZbZ∗
a are the matrices resulting from coherence that

cannot be interpreted as Mueller matrices in the usual sense.
The combined term ab∗ZaZ∗

b + ba∗ZbZ∗
a turns out to be a

real matrix; but it still is not a Mueller matrix. The result
provided by means of Eq. (8) is mathematically equivalent
to Eq. (10) under the transformation A(Jm ⊗ J∗

n)A−1 = ZmZ∗
n

[3]. Besides rendering the mathematics compact and simple,
the advantage of the Z matrix approach is that, in contrast to
Jones formalism, it also permits treating incoherent or partially
coherent processes by, respectively, truncating or attenuating
the coherence terms ZaZ∗

b and ZbZ∗
a .

B. Superposition of |h〉 states

The Jones and the Z matrix approaches are equivalent de-
scriptions for a coherent parallel combination of deterministic
systems. However, sometimes it may be convenient to work
with vectors rather than matrices, and to formulate the coherent
parallel combination process in terms of the covariance vectors
of the associated systems:

|h〉 = a|ha〉 + b|hb〉 + c|hc〉 + · · · , (11)

where |a|2 + |b|2 + |c|2 + · · · = 1 and the complex vectors
|hi〉 are defined in Eq. (2).

For a two-term coherent parallel combination, the covari-
ance matrix H of the combined system can be written as

H = |h〉〈h|
= aa∗|ha〉〈ha| + bb∗|hb〉〈hb| + ab∗|ha〉〈hb|

+ ba∗|hb〉〈ha|, (12)

where |ha〉〈ha| and |hb〉〈hb| are the covariance matrices
corresponding to the Mueller-Jones matrices of the nonde-
polarizing component systems; |hb〉〈ha| and |hb〉〈ha| are the
mixed coherence terms which cannot be related to the usual
Mueller matrices. The covariance matrix H leads directly to
the Mueller-Jones matrix of the combined system.

In quantum mechanics, any state vector (pure state) can be
written as a linear combination of basis states (pure states)
which are, in general, a complete set of eigenvectors of a
Hermitian operator that corresponds to an observable quantity:

|�〉 =
N∑

i=1

ai |ψ〉i , (13)

where ai are complex numbers (amplitudes) and |ψ〉i are the
eigenvectors of a Hermitian operator that constitute a complete
set of basis system. The covariance vector |h〉 is the analog of
the quantum mechanical state vector |�〉, and it is also possible
to decompose a given vector |h〉 with respect to a complete
basis set of component systems. We simply apply the ordinary
vector decomposition procedure:

|h〉 = a1|h1〉 + a2|h2〉 + a3|h3〉 + a4|h4〉, (14)

where ai are complex coefficients and |hi〉 constitute a
complete set of basis vectors. The vectorial decomposition of
|h〉 is not unique: for a given |h〉 there may exist infinitely many
decompositions with respect to different sets of complete basis.
Basis vectors |hi〉 can define an orthogonal or nonorthogonal
basis. For example, if |h1〉 and |h2〉 correspond, respectively, to
orthonormal covariance vectors of a linear horizontal polarizer
and a linear vertical polarizer, then the following expansion of
|h〉 will correspond to a horizontal quarter-wave-plate state:

|h〉 = 1 + i

2
|h1〉 + 1 − i

2
|h2〉. (15)

The algebra of Mueller-Jones formalism admits a super-
position of |h〉 states as given in Eq. (14). Therefore, at least
mathematically, we can consider an ideal quarter-wave-plate
state as a coherent linear combination of two orthogonal linear
polarizer states. In practice, this means that it is possible
to combine two orthogonal polarizers coherently with the
associated complex coefficients as given in Eq. (15) to obtain
an “artificial” quarter wave plate that effectively responds to
the incident light just like a genuine one (e.g., a crystal plate).
In fact, this is intimately related to the common model for
an optical linear retarder which resolves a light wave into
two orthogonal linear polarization components and produces
a phase shift between them.

In general, we can use a nonorthogonal basis to decompose
a given covariance vector |h〉. However, decomposition with
respect to a nonorthogonal basis is more involved: we have to
take into account covariant and contravariant types of vectors
and expansion coefficients. As an example, the covariance
vector of an ideal partial polarizer can be decomposed into
nonorthogonal basis states, one of them being the direct beam
state which corresponds to the identity Mueller matrix, and the
other component being a horizontal linear polarizer state, with
suitable coefficients.

III. PARTIAL COHERENCE AND DEPOLARIZATION

In a real experiment, the measuring apparatus may be
unable to resolve the fluctuations in the phases of the
electromagnetic fields arising during the interaction of the light
beam with a sample, then the measured scattering matrix of
the combined system turns out to be a depolarizing Mueller
matrix that can be considered as a mixture of nondepolarizing
Mueller-Jones matrices. Kim et al. [21] consider an ensemble
average of Jones matrix realizations in order to explain de-
polarization. Gil gives a more detailed depolarization scheme
based on an incoherent convex sum of Mueller-Jones matrices
[4]: if we let I (i) be the intensity of the portion of light that
interacts with the i element, and denote J(i), M(i)

J the respective
Jones and Mueller-Jones matrices representing the i element,
the Jones vector ε of the light pencil emerging from each
element will be given by

ε′
i = J(i)[

√
piε], (16)

where pi = I (i)/I , I being the total intensity. The correspond-
ing Stokes vector s ′ of the complete emerging beam, obtained
through the incoherent superposition of the beams emerging

063819-3
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from the different elements s ′
i , can be written as

s ′ =
∑

i

s ′
i =

(∑
i

piM
(i)
J

)
s = Ms, (17)

where M is the depolarizing Mueller matrix of the incoherently
combined system.

In this result the system is considered as an ensemble,
so that each realization i characterized by a well-defined
Mueller-Jones matrix M(i)

J , occurs with probability pi ; hence,
the optical system can be considered as a proper mixture
of Muller-Jones realizations at the outset. However, even
when the fluctuations in phases in each of the elements
take place, instantaneous realizations are still deterministic.
In other words, at a given time, space, and frequency all
phases can be considered as constants, therefore the linear
superposition is instantaneously coherent and the Mueller
matrix of the combined optical system is instantaneously
nondepolarizing (here the adverb instantaneously does not
only imply a temporal meaning). Only when we begin to
take into account the statistical averages (time average, spatial
average, and/or frequency average), coherence terms will be
washed out and the result will be depolarizing. For example,
consider a simple case where the Z matrix of the combined
system is formed by a linear combination of Z matrices of two
subsystems at a given instant:

Z = 1√
2

Za + eiφ

√
2

Zb, (18)

where Za, Zb are the matrix states of the subsystems, and φ is
a constant phase angle. The nondepolarizing Mueller matrix
corresponding to Z will be

MJ = 1

2
Ma + 1

2
Mb + e−iφ

2
ZaZ∗

b + eiφ

2
ZbZ∗

a, (19)

where ZaZ∗
b and Z∗

aZb are the coherence terms.
Now consider another instance:

Z′ = 1√
2

Za − eiφ

√
2

Zb. (20)

In this case there is an additional phase, eiπ = −1. Then the
nondepolarizing Mueller matrix corresponding to Z′ is

M′
J = 1

2
Ma + 1

2
Mb − e−iφ

2
ZaZ∗

b − eiφ

2
ZbZ∗

a. (21)

In the arithmetic mean of MJ and M′
J ,

Maverage = 1
2 Ma + 1

2 Mb, (22)

the coherence terms are totally truncated, and the result is a
depolarizing Mueller matrix which turns out to be a convex
sum of nondepolarizing Mueller matrices of the component
systems.

The matrices M and M′ are the instantaneous (in the sense of
constant phase) realizations of the measurement process. Now
consider a continuum of similar instantaneous realizations
and assume that the phase relations between the component
systems change very rapidly during the exposure time T . For
example, let the phase angle φ be a function of time so that
the orientation of unit vector eiφ randomly fluctuates with a

vanishing integral
∫ T

0 eiφ dt , then, due to the temporal average
of the instantaneous realizations, the coherence terms will be
truncated in the case of incoherence or attenuated in the case of
partial coherence and depolarization effects will appear. Here
we have discussed temporal averaging in these two limiting
cases, but similar results would be obtained for spatial and
frequency averaging.

In general, when the phases of the complex coefficients
of a system with two components fluctuate we may replace
Eq. (10) by

M = |a|2ZaZ∗
a + |b|2ZbZ∗

b + 〈ab∗〉ZaZ∗
b + 〈ba∗〉ZbZ∗

a, (23)

where the brackets 〈...〉 denote averaging over space, time, or
frequency. Clearly, the degree of coherence is then controlled
by the terms 〈ab∗〉 and 〈ba∗〉. In the case of total coherence,
〈ab∗〉 = ab∗ and 〈ba∗〉 = ba∗, and there will be no depolar-
ization [the Mueller matrix will be given by Eq. (10)], while
for total incoherence 〈ab∗〉 = 〈ba∗〉 = 0. In between these two
limiting cases there will be partial coherence. It is therefore
possible to quantify the degree of coherence with the following
parameter:

p =
√

〈ab∗〉〈ba∗〉
|a|2|b|2 , (24)

where p takes values between 0 (total incoherence) and 1 (total
coherence). Note that p is similar but not exactly equal to the
Coherence Index proposed in [10].

Interference. Consider now the development of an interfer-
ence pattern on the screen of Young’s double slit experiment,
photon by photon. The arrival of each photon at a point detector
is an instantaneous realization of the superposed probability
waves. But, if the coherency of light cannot be preserved in a
long period of time, the interference pattern will be washed out,
in spite of the fact that the instantaneous detection of a single
photon still obeys the well-defined superposition principle of
quantum mechanics.

We may observe interference effects in the overall detected
intensity if in Eq. (18) Za = Zb:

Z = 1√
2

Za + eiφ

√
2

Za = 1√
2

Za(1 + eiφ). (25)

This is an analog of Young’s double slit with two equivalent
component systems with a relative phase between them. The
corresponding Mueller-Jones matrix is

MJ = ZaZ∗
a(1 + cos φ) = Ma(1 + cos φ), (26)

where Ma is the nondepolarizing Mueller matrix (Mueller-
Jones matrix) of the equivalent component systems. Note that
Eq. (26) is an analog of Eq. (6), but here the interference
is given in terms of Mueller-Jones matrices associated with
optical media.

Interference effects can only be observed if the value of
φ can be preserved during the measurement. If φ varies
drastically, on the average, the cos φ term will tend to vanish
but the Mueller-Jones matrix of the combined system will be
still equal to Ma . For depolarization effects, uncontrollable
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random fluctuations in the phases are not enough: at least two
systems with distinct states should be combined in parallel.

IV. EXAMPLE: COHERENT EFFECTS
BETWEEN DIPOLES

Superposition of distinct states can be illustrated by small
(much smaller than the wavelength of light) spherical particles
with isotropic polarizability that can be put in oscillatory
motion when they are placed in a periodic electric field,
producing secondary radiation. If, in an oriented material
medium, dipoles are constrained to vibrate only along a certain
direction, the forward-scattering matrix of the dipole coincides
with the Mueller matrix of a linear polarizer. Therefore, for
vertical and horizontal dipoles we have, respectively,

MV =

⎛
⎜⎝

1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠,

MH =

⎛
⎜⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠. (27)

The corresponding ZV and ZH Matrices are

ZV = 1√
2

⎛
⎜⎝

1 −1 0 0
−1 1 0 0
0 0 1 i

0 0 −i 1

⎞
⎟⎠,

ZH = 1√
2

⎛
⎜⎝

1 1 0 0
1 1 0 0
0 0 1 −i

0 0 i 1

⎞
⎟⎠. (28)

The superposed state is given by Z = aV ZV + aH ZH . If the
two particles are identical and with the same complex weights
aV and aH (aV = aH = a), the coherent superposed state will
be given by

Mcoh = |a|2(ZV Z∗
V + ZH Z∗

H + ZV Z∗
H + ZH Z∗

V ) = 2|a|2I,

(29)

where I is the 4×4 identity matrix, meaning that the coherent
superposed system is able to maintain the polarization state
of any incoming beam. In fact, this is a general result
when superposing Z matrices that correspond to orthogonal
directions of anisotropy. For example, the same identity matrix
is recovered when superposing left- and right-handed circular
polarizers. As discussed earlier, equivalent results for coherent
superposition are also obtained by the summation of Jones
matrices shown in Eq. (7), but that approach cannot describe
the incoherent or partially coherent cases discussed below.

If aV and aH have the same amplitude (|aV | = |aH | = |a|)
but different and fluctuating phases the coherence terms may
average to zero and an incoherent superposition will be

FIG. 1. (a) Surface charge distributions (positive charges in red
and negatives in blue) for the long and short nanoantennas at the
indicated wavelengths. (b) Calculated extinction and scattering cross
sections for the two types of nanoantennas. Due to the different aspect
ratio, the resonances occur at different wavelengths. (c) Normalized
Mueller matrix for each structure when the long axis is oriented
along y.

obtained:

Mincoh = |a|2(ZV Z∗
V + ZH Z∗

H ) = 2|a|2
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠.

(30)
Note that regardless of the characteristics of the component
particles, Mincoh will only be affected by the amplitudes
of aV and aH but not by their phases. Any intermediate
situation between the limiting cases of Eqs. (29) and (30)
can be represented by Eq. (23) and will correspond to partial
coherence.

The case of plasmonic nanoantennas. The coherent super-
position of dipoles can be well illustrated for visible or near-IR
light by analyzing the optical response of thin strips of gold
with the nanoantenna geometry shown in Fig. 1(a). These
metallic rectangular structures have a width and thickness of
50 nm and a length of 500 nm (for the long nanoantenna)
and 250 nm (for the short nanoantenna). The electromagnetic
response of such antenna-like particles is calculated using
the boundary element method (BEM) [22,23]. We used the
MATLAB implementation of the BEM method developed by
Hohenester et al. [23]. The optical constants of Au are taken
from Johnson and Christy [24] with the data extrapolated to
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FIG. 2. (a) Surface charge distributions for a cross made of two long nanoantennas at the indicated wavelengths. (b) Comparison between
the normalized Mueller matrix obtained from BEM simulation (red) of the structure in (a) and the calculation (black). (c) Surface charge
distributions for a cross made of a long and a short nanoantenna. (d) Comparison between the normalized Mueller matrix obtained from BEM
simulation (red) of (c) and the calculation (black).

the infrared range by the Drude model. The extinction spectra
of the long nanoantenna [Fig. 1(b)] shows a dipolar resonance
at 1560 nm and a secondary quadrupolar resonance around
640 nm, as it is shown by the surface charge distributions
of Fig. 1(a). The short nanoantenna [Fig. 1(b)] has a single
dipole resonance located at shorter wavelengths (960 nm),
corresponding to a smaller aspect ratio [25]. The simulated
Mueller matrices for the vertically oriented short and long
nanoantennas are shown in Fig. 1(c). At long wavelengths, the
Mueller matrix for both structures is very close to a vertical
polarizer [MV in Eq. (27)], while at the shortest wavelengths
energy of light is no longer confined in a dipolar resonance,
and the nanoantennas behave more like retarders.

In the next step, we analyze the superposed effect of
two combined nanoantennas that are not necessarily aligned.
This combined effect can be calculated from Eq. (10)
by using the component Z matrices derived from the
Mueller matrices of Fig. 1. We simply rotate the simu-
lated Mueller matrices of vertical nanoantennas to obtain
their Mueller matrix at an angle θ : R(−θ )MR(θ ). First we
consider two perpendicularly crossed nanoantennas, which
are illustrated by cross-like structures in Figs. 2(a) and 2(c).
For a cross formed by two equal nanoantennas, the complex
coefficients associated with each component antenna are the
same, then the coherent superposition of orthogonal Z matrix
states leads to an identity Mueller matrix [Fig. 2(b)], as it was
anticipated by Eq. (29). However, even if the Mueller matrices
of long and short nanoantennas are very similar [Fig. 1(c)], the
combined effect of perpendicularly crossed long and short

antennas strongly differs from the identity Mueller matrix
[Fig. 2(d)] because, in this case, the complex coefficients
are not the same. For any of these perpendicularly crossed
configurations, the Mueller matrices simulated by the BEM
method are in good agreement with the matrices calculated
from the data of component nanoantennas.

In a cross made by orthogonal nanoantennas there is no
significant electronic interaction between the dipole modes of
the antennas, and the extinction spectrum is, qualitatively, an
addition of the spectra of the individual antennas. However,
the situation can be different if the dipole moments of the
antennas are parallel or partially parallel because, in this case,
they can significantly couple to each other. According to the
plasmon hybridization theory of particle dimers, coupling of
the individual resonances results in a lower energy mode with
the dipole moments of the individual particles being in phase,
and results in a higher energy mode with the dipole moments
out of phase [26]. This second case has an overall lower dipole
moment and hence scatters less light. The surface charge distri-
bution calculated at the resonances confirms the nature of these
coupled modes (see Fig. 1 of the Supplemental Material [27]).

In Fig. 3 we consider the superposed effect of the
nanoantennas with a relative orientation of 45◦. Since in
this configuration the dipole moments are oblique, the cou-
pled modes substantially modify the individual responses
of the antennas. The intensity of the coupling depends
on the distance between the antennas (see Fig. 2 of the
Supplemental Material). When the coupling is significant,
the calculated Mueller matrices [with Eq. (10)] from the
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FIG. 3. (a) Surface charge distributions for crossed and distant
(1.5 μm of separation) oblique nanoantennas. (b) Extinction and
scattering cross section for the systems shown in (a). The strong
coupling in the oblique crosses results in low and high energy modes
that do not appear for the distant dipoles, when coupling is not
significant. (c) The calculated Mueller matrix from the component
nanoantenna states is in agreement with BEM simulation for distant
dipoles.

associated component nanoantenna matrix states do not match
the BEM simulations of the combined nanostructure. However,
instead of simulating crossed antennas, when we consider
separated antennas, as shown in Fig. 3, the results of the
BEM simulations show good agreement with the coherent
superposition calculations of Eq. (10), because the coupling
effects are minimized. Extending our interference formalism

by incorporating specific dynamical laws of interaction will be
the subject of future work.

V. CONCLUSIONS

In this work, it is shown that the coherent (constant
phase) parallel combination of deterministic systems can be
written as a linear combination of Z matrices with complex
coefficients. In practice this means that we can synthesize
any nondepolarizing optical system as a coherent linear
superposition of a complete set of nondepolarizing basis
systems. When the component Mueller-Jones states are the
same but have different relative phases, interference effects are
expected to be observed. It is also shown that depolarization
can arise from temporal, spatial, or frequency averaging over
fluctuating and distinct Mueller-Jones matrices. If the parallel
combination process is incoherent at the outset, this averaging
totally cancels out the coherence terms, and the Mueller matrix
of the combined system reduces simply to the convex sum of
Mueller-Jones matrix realizations.

The mathematical formalism we have described is based
on the linear light-matter interactions described in Mueller
matrices. It allows us to introduce the concept of “superpo-
sition of Mueller-Jones states” of optical media, and makes
an analogy between the quantum mechanical wave function
ψ and the matrix material media state Z. This constitutes
a theory of optical coherence that has the particularity that
is grounded on the 16 observable quantities (elements of
a Mueller matrix) that characterize an optical media, as
opposed to the single observable quantity (intensity of light)
around which other theories are built. Note that the analogy
with quantum mechanics allows us to directly formulate the
optical superposition of Mueller-Jones states pertaining to
optical media without need of an explicit consideration of the
superposition of electromagnetic fields, which is the starting
point of other formulations of optical coherence. We think
that this formalism introduces a unified theory of coherence
and polarization that can be specially useful for experimental
techniques that explore polarized light and material media
interactions such as polarimetry or ellipsometry. In these
techniques the polarization of light is affected by coherent,
partially coherent, and incoherent superposition processes
which often can coexist. In nanophotonic applications our
formalism may also provide theoretical means to tailor the light
emission of nanostructures embedded in large area domains
with the desired polarization response and functionality.
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Coupled modes in oblique nanoantennas

Figure 1. Low and high energy modes (λ=1640 nm and λ=1380, respectively) that appear due to the interaction between
oblique nanoantennas. The surface charge distributions show that the low energy scattering peak corresponds to an in-phase
coupled mode while the high energy peak corresponds to out-of-phase coupling.
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Coupling between plasmonic nanoantennas as function of their distance

Figure 2. Mueller matrix simulations using the BEM method for different geometrical configurations of two nanoantennas
that have a relative orientation of 45◦. Each simulated configuration is identified with a letter (A, B, C, D, E or F) and the
calculated Mueller matrix using each nanoantenna Mueller-Jones state (and neglecting interaction between antennas) is
indicated with a dotted line. Clearly, results A and B are those that differ more from the calculation because, in these
configurations, the interaction between nanoantennas is strong. As the distance between the antennas increases, the results of
the simulation re-conciliate with the non-interacting calculation.

2/3

3.3 Formalism of optical coherence and polarization based on material media states 55



Coupling between long and short nanoantennas

Figure 3. a, Surface charge distributions for crossed and distant (450 nm of separation) oblique long and short nanoantennas
b, Extinction and scattering cross section for the systems shown in a. c, The calculated Mueller matrix from the component
nanoantenna states is in agreement with the simulated Mueller matrix of distant dipoles.
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In this Letter we describe an experiment in which coherent
light is sent through a calcite crystal that separates the
photons by their polarization. The two beams are then let
to superpose, and this recombined beam is used to measure
the Mueller matrix of the system. Results are interpreted ac-
cording to our recent formalism of coherent superposition
in material media. This is the first experimental implemen-
tation of a Young’s experiment with complete polarimetry,
and it is demonstrated that our method can be used for
the experimental synthesis of optical devices with on-
demand optical properties. © 2017 Optical Society of America

OCIS codes: (260.3160) Interference; (260.5430) Polarization;

(260.2130) Ellipsometry and polarimetry.

https://doi.org/10.1364/OL.42.003900

Coherence is related to the ability of waves to interfere. Most
optical interference effects occur in the micro- or nano-scale
(e.g., thin films) and we do not have access to a macroscopic
control of the two or more beams that coherently superpose.
With the high temporal and spatial coherence of lasers it is easy
to merge two or more macroscopic beams in a well-controlled
manner in an interferometer. However, it is usually difficult to
have a precise control of the polarization state of light at the
different arms of an interferometer, because beam splitters tend
to produce some change in the polarization of light (even those
marketed as non-polarizing), making accurate polarimetric
measurements often problematic [1–3].

In this work we use a different approach to achieve the
superposition of two macroscopically distinguishable beams.
When light goes through a crystal slab of calcite, or any other
crystal with strong birefringence, it splits by polarization into
two rays that take slightly different paths in a phenomenon long
known as double refraction. If the two emerging beams, carry-
ing orthogonal polarizations, are not very distant one from the
other it is easy to merge them again (at least partially) by using a
lens that focuses the light on the exit window of the crystal that
makes the beams diverge afterwards. A scheme of the process is

shown in Fig. 1(a). Effectively, this method recombines two
beams that are juxtaposed in the space [4] avoiding the
non-idealities associated with beam splitters, and it allows us
to keep the experimental device simple, as it is not necessary
to consider multiple arms. Despite the fact that our experimen-
tal setup does not involve two slits, the optical outcome is ana-
log to the famous Young’s double-slit experiment when the slits
are covered by orthogonal polarizers as it was first suggested
in 1819 by Fresnel and Arago [5,6] and as we have recently
demonstrated [7]. Our experimental data was analyzed accord-
ing to a new formalism of optical coherence and polarization
[8] that is useful to describe superposition processes taking
place during a polarimetric experiment. It is based on a quan-
tum mechanical analogy and uses complex Mueller–Jones
matrix states, Z, that relate to Mueller–Jones matrices as
M � ZZ� or covariance vectors, jhi [8,9].

Measurements were done with the 4-PEMMueller polarim-
eter described in [10]. It uses four photoelastic modulators of
different frequencies to determine simultaneously all Mueller
matrix (MM) elements from frequency analysis of the intensity

(a)

(b)

Fig. 1. (a) Double refraction in the crystal generates two point-like
sources separated by a distance d with horizontal (H ) and vertical (V )
polarizations. A mobile pinhole is placed at a distance D to scan the
superposed beams. (b) Detail of the setup when mounted in the
4-PEM Mueller polarimeter.
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of light at the photomultiplier detector. Two basic modifica-
tions of the instrument (with respect to the basic description
of [10]) were required in this experiment. First, the incoherent
light source of the polarimeter was replaced by a He–Ne laser
(632.8 nm). Second, in front of the polarization state analyzer
(PSA) a pinhole of 20 μm (or 30 μm in other measurements)
has been inserted, as it is shown in Fig. 1(b). This pinhole,
which is displaceable with a motorized x–y translator, controls
the spatial resolution of the measurement.

With this method it is possible to obtain MM maps with
good spatial resolution. Displacing the pinhole is equivalent
to studying a different point of a hypothetical “measurement
screen” placed at position of the pinhole. When the distances
between the pinhole and the two emerging beams from the crys-
tal are exactly the same, the beams reach the pinhole with the
same phase, while for other positions of the pinhole there will
be a phase difference that will result in fringes in some MM el-
ements. The distance between two successive fringes is given by
Δx � Dλ∕d , where λ is the wavelength, d is the distance be-
tween two emerging beams in calcite, and D is the distance to
the pinhole. In our experiment d ≃ 1.5 mm andD ≃ 420 mm.

As a preliminary check, we measured the MM correspond-
ing to each individual beam (by blocking its partner). The crys-
tal behaves as a polarizer and the two beams carry orthogonal
polarizations. The crystal was then carefully rotated until the
MMs of horizontal and vertical polarizers, MH and MV , were
respectively obtained, within the experimental error. Then we
let the two diverging beams superpose and set the pinhole to
map, point-by-point, an area of 1 × 1 mm2. The result is pre-
sented in the color map of Fig. 2(a).

Fringes appear at particular MM elements approximately as
horizontal lines. This orientation is due to the experimental
configuration, because the two emerging beams appear one

in the top of the other and with H and V polarizations, as
it is shown in Fig. 1(a). The orientation of the fringes, as well
as the MM itself, rotates if the crystal is rotated. In Fig. 2(b), we
plot the evolution of the MM as a function of the vertical dis-
placement of the pinhole (1 mm in total). The central point
does not correspond exactly to the position where the distances
between the pinhole and the two beam spots are the same since
there is an initial phase shift caused by the different path lengths
of the two beams through the crystal [7].

The superposition shown in Fig. 2 can be mathematically
presented using Z matrices as [8]

Z0 �
1ffiffiffi
2

p ZH � eiϕffiffiffi
2

p ZV ; (1)

where the phase ϕ accounts for the phase difference between
the two beams. ϕ depends on the position of the pinhole be-
cause it is given by the difference in the optical path between
the two beams. As

ZV � 1ffiffiffi
2

p

0
BBBB@

1 −1 0 0

−1 1 0 0

0 0 1 i

0 0 −i 1

1
CCCCA
;

ZH � 1ffiffiffi
2

p

0
BBBB@

1 1 0 0

1 1 0 0

0 0 1 −i

0 0 i 1

1
CCCCA
; (2)

then

Z0 �
1ffiffiffi
2

p

0
BBB@

1� eiϕ 1 − eiϕ 0 0

1 − eiϕ 1� eiϕ 0 0

0 0 1� eiϕ −i�1 − eiϕ�
0 0 i�1 − eiϕ� 1� eiϕ

1
CCCA:

(3)

And the corresponding MM is

M0 � Z0Z�
0 �

0
B@

1 0 0 0
0 1 0 0
0 0 cos ϕ − sin ϕ
0 0 sin ϕ cos ϕ

1
CA; (4)

which is close to the experimental matrix of Fig. 2. When ϕ is
zero or is a multiple of 2π an identity MM is obtained while, for
other values, it progressively evolves between a horizontal
quarter-wave plate MM (ϕ � −π∕2), a vertical quarter-wave
plate (ϕ � π∕2), and a half-wave plate (ϕ � π).

The only significant difference between the results of Fig. 2
and Eq. (4) can be seen in the spatial dependence of elements
m01 and m10. This occurs when two beams are not balanced
and they do not superpose with exactly the same amplitude,
as it was assumed in our theoretical description [Eq. (1)]. In
fact, assuming Gaussian beams in the crystal, only when the
pinhole is equidistant from the two beams a superposition with
the same amplitude is expected.

The measured MMs are modified when other optical
elements are added in the experiment. In Fig. 3 we show three
color maps in which other optical elements are added in the
optical path. Figure 3(a) corresponds to a measurement in

Fig. 2. (a) Spatial evolution of the MM (in a region of 1 × 1 mm2

and with a pixel resolution of 20 μm). (b) The area boxed in (a) plotted
as a function of pinhole’s vertical displacement. In the point identified
with zero vertical displacement the identity MM is measured.
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which the two beams separated by the crystal have gone
through a film polarizer with the transmission axis at 45°. This
superposition can be mathematically presented as

Za �
1ffiffiffi
2

p Z45ZH � eiϕffiffiffi
2

p Z45ZV � Z45Z0: (5)

And, as Z matrices commute [9],

Ma � ZaZ�
a � M45M0 �

0
BB@

1 0 cos ϕ −sin ϕ
0 0 0 0
1 0 cos ϕ −sin ϕ
0 0 0 0

1
CCA; (6)

where M45 is the MM of the polarizer with the transmission
axis at 45°.

In Fig. 3(b) the vertically polarized beam emerging from the
crystal has traversed a quarter-wave plate with the fast axis at
−45°. This superposition can be presented as

Zb �
1ffiffiffi
2

p ZH � eiϕffiffiffi
2

p ZRZV ;

with ZR � 1ffiffiffi
2

p

0
BBB@

1 0 i 0

0 1 0 −1

i 0 1 0

0 1 0 1

1
CCCA; (7)

Mb �ZbZ�
b �

0
BBBB@

1 0 − sin ϕ∕
ffiffiffi
2

p
−cos ϕ∕

ffiffiffi
2

p

1∕2 1∕2 − sin ϕ∕
ffiffiffi
2

p
−cos ϕ∕

ffiffiffi
2

p

0 0 cos ϕ∕
ffiffiffi
2

p
−sin ϕ∕

ffiffiffi
2

p

−1∕2 1∕2 sin ϕ∕
ffiffiffi
2

p
cos ϕ∕

ffiffiffi
2

p

1
CCCCA
: (8)

In Fig. 3(c) the two beams emerging from the crystal have gone
though a quarter-wave plate with the fast axis at −45°. This
superposition can be presented as

Zc �
1ffiffiffi
2

p ZRZH � eiϕffiffiffi
2

p ZRZV � ZRZ0; (9)

and the Mueller matrix is

Mc � ZcZ�
c �MRM0 �

0
BB@

1 0 0 0
0 0 −sin ϕ −cos ϕ
0 0 cos ϕ −sin ϕ
0 1 0 0

1
CCA: (10)

All the above results concern the coherent superposition and
the measured MMs are, within the experimental uncertainty,
non-depolarizing. One way to reduce the coherence of these
measurements is to increase the size of the pinhole, so that
the fringes cannot be well resolved. To describe this partially
coherent case we may use Eq. (1) to write

M � 1

2
MH � 1

2
MV � he−iϕ�x;y�i

2
ZV Z�

H � heiϕ�x;y�i
2

ZHZ�
V ;

(11)

where ϕ�x; y� makes explicit the dependence of the phase with
the position in the space and

he�iϕ�x;y�i � 1

AP

Z
AP

e�iϕ�x;y�dS: (12)

This surface integral extends over the area of the pinhole, AP .
Small pinholes provide good spatial resolution that translate in
coherent measurements, but if the pinhole size increases, the
phase variations are averaged over the measurement area leading
to partially coherent or incoherent results that exhibit depolari-
zation effects [8]. In general, when the spatial resolution is
poor, several periods of fringes will be averaged thus giving
he�iϕ�x;y�i ≈ 0 and only the two first terms of Eq. (11) will
remain. The partially coherent experimental results can be like-
wise interpreted using the classic Jones and K-matrix formalism
from [4].

In Fig. 4 we study the variation of the measurement as a
function of the spatial resolution. The initial mapping was
made in the experimental setup of Fig. 1 with a 30 μm pinhole
over an area of 2.3 × 3.67 mm2 in order to collect several peri-
ods of fringes. No depolarization is observed (depolarization
index, DI , equal to 1 [11]) in this image. In the second
map, we have done 8 × 8 binning, which is approximately
equivalent to using a pinhole with a diameter of 240 μm.
With this lateral resolution it is no longer possible to resolve
the fringes and the depolarization is maximum in a rather thin
region at the middle of the image. In this region the intensity of
the two superposing beams is roughly the same (i.e., 50%–50%
superposition) while for points above and below this region one
of the beams clearly predominates over the other. In the last
map we have averaged all pixels of the map, which is roughly
equivalent to a measurement without a pinhole. The poor spa-
tial resolution (∼3 mm) leads to an incoherent result that
is approximately given by the convex sum of the MMs of a

Fig. 3. Color maps of the spatial evolution of the MM in a region of 1 × 1 mm2. In (a) the beams emerging from the crystal have gone through a
polarizer with transmission axis at approximately 45°. In (b) only the lower beam has gone through a quarter-wave plate with the fast axis at −45°. In
(c) both beams have gone through a quarter-wave plate with the fast axis at −45°.
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horizontal and vertical polarizer [Eq. (11) with truncated
coherence terms].

For the Mueller matrices displayed in Figs. 2 and 3, inter-
ference fringes will not be visible in the overall transmitted in-
tensity when illuminating with unpolarized light. This is in
agreement with the third Fresnel–Arago law of interference
[5,6]. However in [8] we showed that, when the two superpos-
ing Z matrix states are equal, the resulting MM will be globally
scaled by a factor that depends on their phase difference:

M 0 � ZZ��1� cos ϕ� � M�1� cos ϕ�; (13)

indicating that, in this case, interference fringes would be ob-
served for any incoming Stokes vector. To study this situation
we set a new experiment in calcite (outside of the polarimeter)
to image with a camera the interference fringes generated for
different superpositions of Z states. Here, to avoid the effects of
laser speckle in the captured images, we used a monochromat-
ized Xe lamp as a light source. The results are shown in Fig. 5.
In Fig. 5(a) (that corresponds to the same type of superposition
as in Fig. 2) no interference fringes are detected, but
they become visible [Fig. 5(b)] when two polarizers at 45° are
added at each side of the calcite crystal, because Z45ZHZ45 �
Z45ZVZ45 and Eq. (13) holds. This situation makes the
experiment completely analog to Young’s double-slit experi-
ment, as discussed in [7]. In Fig. 5(c) the first polarizer is
turned to −45° and, as in this configuration Z45ZHZ−45 �
−Z45ZV Z−45 the interference fringes are similar to those in
Fig. 5(b) but shifted by 180°. In this case, this additional phase
shift, which is different from ϕ, can be understood as a

Pancharatman phase [12], i.e., it is a geometrical phase that
depends on the trajectory of the polarization state in the
Poincaré sphere.

In this Letter we have described an alternative version of
Young’s experiment in which coherent light is sent through
a calcite crystal that separates the photons by their polarization.
The two beams are then let to superpose and this recombined
beam is used to measure the MM of the system. To our knowl-
edge this is the first time that a version of Young’s experiment
has been experimentally analyzed with Mueller polarimetry.
The experimental results are easily described by our recent for-
malism of coherence and polarization. This work demonstrates
that by using coherent light and having a macroscopic control
of the phase difference between two beams it is possible to ef-
fectively synthesize in the space Mueller–Jones matrices with
on-demand optical properties. This method provides a simple
pathway to control and modulate spatially the polarization of a
light beam from combinations of two basic optical elements
with a well-controlled phase difference.

Funding. Ministerio de Economía y Competitividad
(MINECO) (CTQ2013-47401-C2-1-P, FIS2012-38244-
C02-02).
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We study the optical response of two coupled oriented dipoles with the dimer axis perpendicular to the wave
vector of light by analyzing how their scattering matrix can be decomposed. The scattering matrix can be written
as a linear combination of three terms with a clear physical meaning: one for each particle and another that is
responsible for the coupling and that vanishes for noninteracting or distant particles. We show that the interaction
term may generate optical activity for certain scattering directions and that this effect manifests itself mostly in
the near field. This simple and intuitive theory based on matrix and vector states of oriented dipoles also describes
hybridization processes and Fano resonances. The decomposition method can be also formulated in terms of a
hybrid basis that allows us to quantitatively determine the individual contribution of the in-phase and out-of-phase
coupling modes to the overall intensity. Our method can help to understand the optical response of more complex
nanostructures that can be decomposed into dipole terms. The results are illustrated in gold nanoantenna dimers
which exhibit a strong dipolar resonance.

DOI: 10.1103/PhysRevB.98.045410

I. INTRODUCTION

Dipole interactions occur when two dipoles interact with
each other through the space. For example dipolar interactions
are responsible for electrostatic interactions inside molecules
or between molecules which have permanent dipole(s): The
partially negative portion of one polar molecule can be attracted
to the partially positive portion of a second polar molecule.
Dipole interactions are also very important for optical interac-
tions in nanoscale particles. Since the oscillating electric field
of a light wave acts on the charges of a particle, causing them
to oscillate at the same frequency, the particle becomes a small
radiating dipole whose radiation is seen as scattered light.

In optics, the interaction between induced dipoles is usually
treated considering their mutual interaction potential [1]. This
approach has also been generalized for the calculation of the
light scattering by arbitrarily shaped particles, as a numerical
technique known as the coupled dipole method or discrete
dipole approximation (DDA) [2–4]. The method is based on a
finite volume discretization of the scattering object, in which
each volume element is modeled by an oscillating electric
dipole that acts as receiver and emitter of electromagnetic
radiation. Each dipole of the collection interacts with all the
others, so that the fields at each dipole are determined by
the incident field and interactions among all the dipoles of
the collection. Similar approaches can also be used to study
radiative heat transfer in systems of multiple dipoles [5].

In this paper we study analytically the simpler but relevant
case of interaction between two oriented dipoles that form a
dipole dimer. Despite that there are in the literature several

*oarteaga@ub.edu

methods (both analytic and numeric) to predict the optical
response of coupled dipoles [2,6–9], usually these methods
provide the overall optical response and do not permit us to
distinguish the contribution of the individual dipoles from
the coupling contribution. We propose a study of the dipole
interaction based on a decomposition of the scattering matrix.
In our model the two dipoles are excited in phase by the
incident wave that drives the system and we consider that
the polarizabilities of the two particles are fully anisotropic,
i.e., they can only be polarized in a predefined direction, in
contrast to the classical consideration of a dimer made of
isotropic spherical particles [10–12]. The existence of well
defined directions of polarization brings our optical scattering
problem closer to real nanostructures or metamaterials, where
the direction of polarization is given by the morphology and
orientation of the objects. The simplest example perhaps is the
interaction between two plasmonic nanoantennas (a plasmonic
dimer). Dipolar nano-objects (e.g., nanoparticles, nanorods,
etc.) are generally regarded as most elementary components to
build more complex composite nanostructures [13–16]. They
are also the simplest “plasmonic molecules” and the possibility
of controlling and measuring their chiroptical properties has
created a growing interest in the usage of plasmonic dimers in
biological applications such as DNA based nanostructures [17]
or intracellular localization [18].

Our decomposition shows that the scattering matrix of
oriented dipole dimers can be written as a linear combina-
tion of three scattering matrix terms with a clear physical
meaning: one for each particle and the remaining one for
the interaction. Despite the simplicity of the theory, it allows
us to understand subtle effects such as the emergence of
optical activity in certain achiral dimer configurations. Our
decomposition method also allows for an easy representation of
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hybridization processes and of Fano resonances in anisotropic
plasmonic nanostructures. In particular we show that the
decomposition can be also formulated in terms of a hybrid
basis which allows us to determine the individual contribution
of each hybrid mode to the overall intensity. Finally, we apply
our decomposition method to study the scattering matrix of
oriented gold nanoantenna dimers in the spectral region where
they exhibit a strong dipolar resonance. With this method we
can quantify the relative contribution of coupled modes in the
nanoantenna dimer and analyze how the interaction modifies
the optical properties of the individual nanoantennas.

II. GENERAL FRAMEWORK

The induced electric dipole moment vector, p, on a particle
is proportional to the corresponding incident electric field,
E0(r):

p = εα̃Eo(r), (1)

where α̃ is the electric polarizability of the particle, and ε is the
permittivity of the medium where the dipole is located. When
we put two particles close to each other we have to consider
mutual interactions. In this case, each one of the dipoles will
experience the induced field of the other dipole. This coupling
effect can be taken into account to find the actual dipole of
each particle as follows [14]:

p1 = α̃1εEo(r1) + α̃1k
2 ¯̄GE(r1 − r2) · p2, (2)

p2 = α̃2εEo(r2) + α̃2k
2 ¯̄GE(r2 − r1) · p1, (3)

where ¯̄GE is the free-space electric dyadic Green’s function, k
is the wave number, and α̃1, α̃2 are the polarizability tensors
of the associated particles. Explicit form of dyadic Green’s
function is given by

¯̄GE(r) · p =
[(

1 + i

kr
− 1

k2r2

)
p

+
(

−1 − 3i

kr
+ 3

k2r2

)
(ur · p)ur

]
g(r), (4)

where ur is the unit vector along r and g(r) = eikr/4πr . The
notation can be simplified if we let:

A(r) ≡
(

1 + i

kr
− 1

k2r2

)
g(r), (5a)

B(r) ≡
(

−1 − 3i

kr
+ 3

k2r2

)
g(r). (5b)

Thus,

¯̄GE(r) · p = A(r)p + B(r)(ur · p)ur. (6)

Now let us consider the scattered far field at an observation
point z. The total scattered field can be considered as a sum of
the fields due to the interacting dipoles.

Escat,j = k2

ε
[( ¯̄GE(rf − r1) · p1)j + ( ¯̄GE(rf − r2) · p2)j ],

(7)

where j = x,y,z. Note, however, that the z component van-
ishes for a far-field detector in the z axis.

In the following we will show that, according to the above-
mentioned dipole-dipole interaction scheme, the total 2 × 2
scattering matrix (or Jones matrix) of the whole process can
be written as a linear combination of three Jones matrices,
two of them corresponding to the usual Jones matrices of
noninteracting dipoles and the third one being the Jones matrix
due to the interaction. The interaction Jones matrix is scaled
by a factor which is a function of the distance between the
interacting dipoles so that for distant dipoles this coupling term
consistently vanishes.

III. DECOMPOSITION OF THE SCATTERING MATRIX
OF THE COUPLED DIPOLE SYSTEM

Let us consider a coherent parallel combination of interact-
ing dipoles as given in Fig. 1. d is the distance between the
dipoles, which are located in the same z plane, and are excited
simultaneously by a plane wave. According to the figure the
unit vectors u(r2 − r1) and u(r1 − r2) will be

u(r2 − r1) = (0,−1,0), u(r1 − r2) = (0,1,0). (8)

We consider that the polarizability of the dipoles is fully
anisotropic, i.e., they can only polarize along a certain di-
rection. The polarizability tensor of each dipole, α̃1 and α̃2,
will be:

α̃ i = αi

(
ai bi

bi ci

)
(9)

with i = 1,2. α1 are α2 are the Lorentzian polarizabilities of
the dipoles and α̃1, α̃2 are given by the following rotation:

α̃ i = R(−φi)αi

(
1 0
0 0

)
R(φi), (10)

where

R(φ) =
(

cos φ sin φ

− sin φ cos φ

)
, (11)

and φ1 and φ2 are the rotation angles as defined in Fig. 1. Then

ai = cos2(φi), (12a)

bi = cos(φi) sin(φi), (12b)

ci = sin2(φi). (12c)

X

Y

Z

2

p1

p2

k
E0x

E0y

1

d

FIG. 1. Scheme of the geometry. Dimer axis and dipole vectors
are perpendicular to the direction of propagation of incident light.
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From Eqs. (2) and (3) we can calculate the dipole vectors,
whose components are given by:

p1x = εα1a1E1x + εα1b1E1y + α1a1δ1p2x + α1b1δ2p2y,

(13a)

p1y = εα1b1E1x + εα1c1E1y + α1b1δ1p2x + α1c1δ2p2y,

(13b)

p2x = εα2a2E2x + εα2b2E2y + α2a2δ1p1x + α2b2δ2p1y,

(13c)

p2y = εα2b2E2x + εα2c2E2y + α2b2δ1p1x + α2c2δ2p1y,

(13d)

where k2A ≡ δ1, k2(A + B) ≡ δ2. We can solve these coupled
equations for the components of the dipole vectors:

p1x = εα1C1
E1 + α2�E2

1 − α1α2�2
, (14)

p1y = εα1S1
E1 + α2�E2

1 − α1α2�2
, (15)

p2x = εα2C2
E2 + α1�E1

1 − α1α2�2
, (16)

p2y = εα2S2
E2 + α1�E1

1 − α1α2�2
, (17)

where

Ci = cos φi, Si = sin φi, (18)

Ei = CiEix + SiEiy, (19)

and

� = C1C2δ1 + S1S2δ2. (20)

Note that � is the only term that is related to coupling. A
far field detection point, z, has characteristic vector rf with
a module much larger than those of the dipole vectors: rf �
r1,r2. In these conditions rf will be perpendicular to r1 and r2,

( ¯̄GE(rf − ri) · pi)j = eikz

4πz
pij , (21)

where i = 1, 2 and j = x,y. If the detection point is equidistant
to the dipoles we simply get:

Escatx = β(p1x + p2x), (22a)

Escaty = β(p1y + p2y), (22b)

where

β = k2eikz

4πεz
. (23)

According to Fig. 1, it is reasonable to assume that E1(r1) =
E2(r2) = E0 as it corresponds to a plane wave propagating in
the z direction. Then the scattering problem can be directly
formulated with a 2 × 2 scattering matrix T that transforms
the fields as follows:(

Escatx

Escaty

)
=

(
T11 T12

T21 T22

)(
E0x

E0y

)
=

(
T11E0x + T12E0y

T21E0x + T22E0y

)
.

(24)

From Eqs. (22a) and (22b) we find that the 2 × 2 scattering
matrix T can be presented as:

T = γ [α1J1 + α2J2 + α1α2�Jint], (25)

where J1, J2, and Jint are Jones matrices given by

Ji =
(

C2
i CiSi

CiSi S2
i

)
, (26)

Jint =
(

2C1C2 C1S2 + C2S1

C1S2 + C2S1 2S1S2

)
, (27)

and

γ = εβ

1 − α1α2�2
. (28)

γ can be understood as an overall (polarization independent)
complex amplitude of scattering. Note that it is also affected
by the coupling term �.

In Eq. (25), J1 and J2 are the Jones matrices of the individ-
ual, noninteracting dipoles. As seen in Eq. (26), the scattering
matrix of a horizontal (φ = 0◦) or vertical (φ = 90◦) dipolar
particle is diagonal. Jint is a combined term that contributes
only when there is interaction (� �= 0). Therefore, whenever
the dipoles are sufficiently separated the contribution of the
interaction matrix Jint will be negligible. It is also possible that
still for small separations between the dipoles the system has
a vanishing � due to their particular orientations in the plane.
This happens whenever the dipoles are orthogonal and the line
joining the dipole centers is parallel to one of the dipole vectors
as, for example, when φ1 = 0◦ and φ2 = 90◦ in Eq. (20). This
situation will be discussed in more detail in Sec. III B.

Instead of using 2 × 2 scattering matrices it is sometimes
useful to rearrange the information contained in the scattering
matrix in a so-called four-component covariance vector. The
covariance vector that corresponds to a Jones matrix is defined
as follows:

|h〉J = 1

2

⎛
⎜⎝

J11 + J22

J11 − J22

J12 + J21

i(J12 − J21)

⎞
⎟⎠, (29)

where Jij are the elements of 2 × 2 the scattering matrix. We
use the standard bra-ket notation of quantum mechanics, where
the bra is the Hermitian conjugate of the ket and represented
by a row vector. As it was discussed in Refs. [19,20] the outer
product |h〉〈h| generates a 4 × 4 covariance scattering matrix
of rank 1 that can be considered as an analog of a pure state
in quantum mechanics. In terms of covariance vectors we can,
alternatively, write the decomposition in Eq. (25) as:

|h〉 = γ [α1|h〉1 + α2|h〉2 + α1α2�|h〉int], (30)

where:

|h〉i = 1

2

⎛
⎜⎝

1
cos2(φi) − sin2(φi)

2 sin(φi) cos(φi)
0

⎞
⎟⎠, (31)
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and

|h〉int =

⎛
⎜⎝

cos(φ1 − φ2)
cos(φ1 + φ2)
sin(φ1 + φ2)

0

⎞
⎟⎠. (32)

Note that because the matrices in Eqs. (26) and (27) are
symmetric, the fourth component of these covariance vectors
is always zero. This reads as an absence of circular polarization
effects [19,21].

IV. OPTICAL PROPERTIES OF DIMERS
OF ANISOTROPIC PARTICLES

The above presented decomposition of the scattering matrix
or the covariance vector allows us to study several relevant
optical properties characteristic of dipolar dimer systems.
In particular, in the next subsections we will use our de-
composition method to discuss circular polarization effects,
hybrid modes, and Fano resonances. All these are well-known
optical properties that have been previously analyzed in the
context of dimer systems [6–11,13,22–27]. The advantage of
the decomposition method that we have introduced is that it
distinguishes the contribution of the individual dipoles from the
coupling contribution and that works for dimers of anisotropic
particles at any relative orientation in the plane, allowing, for
example, the derivation of generalized analytic expressions for
the dipole coupling that are a function of the orientation angles.

A. Circular polarization effects

Chiroptical effects with plasmonic dimers have been con-
sidered in several recent publications [28–31] as they are rela-
tively easy to fabricate with modern techniques. The geometry
considered in most of these works is different from Fig. 1, as
they consider two misaligned dipoles in which the dimer axis
is completely parallel to the wave vector of light. This is a
chiral configuration that gives rise to optical activity in these
plasmonic samples. In essence, this corresponds to the coupled
oscillator model of Born and Kuhn (Born-Kuhn model) [31,32]
which, when applied to a chiral geometry, is the basis for the
classical theory of optical activity. This model provides an
intuitive way to understand the generation of optical activity
(circular dichroism and circular birefringence) in chiral media.

In general, the serial combination of two misaligned par-
ticles with a dipolar response leads to circular polarization
effects, or chiroptical effects in the far-field detection. This
can be intuitively seen by considering the Jones matrix product
associated to a sequence of dipolar elements, e.g., J2J1, and
transforming it into its associated covariance vector:

|h〉J2J1 =

⎛
⎜⎝

cos(φ1 − φ2)
cos(φ1 + φ2)
sin(φ1 + φ2)
i sin(φ1 − φ2)

⎞
⎟⎠, (33)

in which the fourth component, associated to these circular
effects or chiroptical effects [20,21], is nonvanishing. But this
case of serial (sequential) combination of elements is totally
different from the geometry given in Fig. 1. In Eqs. (31)
and (32) the fourth components of the vectors were zero, which

reads as an absence of circular effect as it could be expected
from the achiral geometry of the problem.

However, depending on the location of the observation
point, there may exist a varying phase difference between the
radiation fields of the dipoles. Earlier, in Eqs. (22a) and (22b)
we considered that both dipoles radiate to a point of the far field
with the same complex factor β [Eq. (23)], but if the detection
point is not equidistant from the dipoles, we have to consider
different phases.

Escatx = βp1x + β ′p2x, (34a)

Escaty = βp1y + β ′p2y, (34b)

where β ′ = βeiχ . χ is an additional phase term that ac-
counts for the different optical paths from each dipole to the
detector.

In this situation Eq. (25) must be replaced by

T = γ [α1J1 + eiχα2J2 + α1α2�J′
int], (35)

where

J′
int =

(
C1C2(1 + eiχ ) C1S2 + C2S1e

iχ

C1S2e
iχ + C2S1 S1S2(1 + eiχ )

)
. (36)

Then the covariance vector associated with this interaction
matrix is:

|h〉′int =

⎛
⎜⎜⎝

cos(φ1 − φ2)(1 + eiχ )
cos(φ1 + φ2)(1 + eiχ )
sin(φ1 + φ2)(1 + eiχ )

−i sin(φ1 − φ2)(1 − eiχ )

⎞
⎟⎟⎠, (37)

where the fourth component now is different from zero if the
dipoles are not parallel to each other (φ1 �= φ2). Note that when
χ = π only the fourth component of |h〉′int survives and the
interaction term displays pure circular effects.

This emergence of chiroptical signals from achiral systems
is an interferencelike phenomenon that arises when there is a
phase (path) difference to the observation point. Translating
the point of detection will also modify the values of optical
activity signals, eventually also switching their signs. There
are two other important aspects that need to be highlighted:

(i) The effect may manifest itself only for interacting
dipoles. In noninteracting systems (� = 0) with the geometry
of Fig. 1, the superposition of the dephased dipolar scattering
contributions is not sufficient to generate chiroptical effects in
the scattering matrix. Note that the only matrix modified in
Eq. (35) is the interaction matrix.

(ii) This effect is not observed in the far field unless large
scattering angles are considered. When the detection distance
is large compared to the separation of the dipoles d, the phase
difference will be given by χ = 2πdx/λD [33], where D is
the distance between the plane of the dipoles and the parallel
plane that includes the detector, λ is the wavelength, and x is
the position of the observation point along the axis parallel to
the line connecting the two point dipoles. As in the far field
D � d, this phase difference tends to be negligible in far field
realizations unless one considers sufficiently large scattering
angles (implying large x).

We believe that the progress in the near field microscopy
offers new perspectives for exploiting this effect for biosensing.
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FIG. 2. Simulated response of two equal gold nanoantennas forming a cross by 45◦. (a) shows the geometry and dimensions of the
cross structure, which has a thickness of 50 nm. (b) and (c) show the scattered field |E|2 in a plane at 10 nm above the cross when the
structure is illuminated with a plane wave of 1640 nm with right-and left-circular polarizations, respectively. In (d) we calculate the ratio
(ILCP − IRCP )/(ILCP + IRCP ).

For example, this means that the near-field scattering finger-
print for such an arrangement of dipoles can be drastically
modified by only adjusting the handedness of the incoming
polarization, but without substantially affecting the far-field
response. To illustrate this we have simulated the near field
scattering of two crossed thin strips of gold with the nanoan-
tenna geometry shown in Fig. 2(a). The simulation has been
made with the boundary element method (BEM) [34,35]
considering light with a wavelength that corresponds to the
dipolar resonance of nanoantennas with this geometry (1640
nm). The plane wave is polarized in thexy plane and propagates
along +z. The obvious differences between Fig. 2(b) and
Fig. 2(c) show that the near field response of the structure (the
figures show it in a plane 10 nm above the nanostructure) is
strongly sensitive to the handedness of the incoming circular
polarization, as it is anticipated by Eq. (37).

The ratio (ILCP − IRCP )/(ILCP + IRCP ), shown in
Fig. 2(c), quantifies the differential scattering between
left- and right-handed circular polarization. Note that it
vanishes along two well defined orthogonal lines that cross the
center of the nanostructure. These points correspond to zones
that are equidistant from both nanoantennas, and there is no
added phase χ (χ = 0). As we have previously pointed out,
the strong circular effects [Fig. 2(c)] wash out in the far field
because χ becomes negligible. In fact we already gave the far
field response for this nanostructure in terms of the Mueller
matrix in Ref. [19] and it was not sensitive to the handedness
of the incoming polarization.

The emergence of chiroptical signals in certain sys-
tems with achiral geometries has been previously consid-
ered in molecules [36,37], crystals [38], and metamateri-
als [39,40]. Perhaps the most paradigmatic example is the water
molecule [37] (point group C2v) where, due to the difference
in electronegativity between the oxygen (O) and hydrogen (H)
atoms, there is a dipole moment pointing from each H to the
O. These two permanent dipoles are misaligned by 104.45◦
and they are both in the same plane, so it is the same type of
geometry that we have considered. Our results can also be used
to understand, at least qualitatively, the emergence of chirop-
tical signals in such planar systems for certain directions of
observation. In fact optical activity in these achiral molecules
and crystals is determined by an optical activity tensor, that
when plotted, has the same twofold symmetry with alternating
signs as the one displayed in Fig. 2(d).

B. Hybrid modes

Let us consider a coupling process as given in Fig. 1.
Equations (13) can be rearranged as follows:

p1x − α1a1δ1p2x − α1b1δ2p2y = εα1a1E1x + εα1b1E1y

(38a)

p1y − α1b1δ1p2x − α1c1δ2p2y = εα1b1E1x + εα1c1E1y

(38b)

p2x − α2a2δ1p1x − α2b2δ2p1y = εα2a2E2x + εα2b2E2y

(38c)

p2y − α2b2δ1p1x − α2c2δ2p1y = εα2b2E2x + εα2c2E2y.

(38d)

Here we consider p1x,p1y,p2x , and p2y as independent vari-
ables. Right hand side of the equations are the external fields,
i.e., the driving forces of the dipoles, and we assume that the
dipoles can be described as Lorentzian oscillators with a profile
of the form:

αi(ω) = ηiωi

ω2
i − ω2 − i�iω

, (39)

where ω is the frequency of the incoming radiation, ωi is the
frequency of resonance, ηi is the amplitude of oscillation which
depends on the particle size, and �i is the damping. For the
analytical calculus of this section we will assume that there is
no damping (�i = 0).

The coupled Eqs. (38) can be written as a matrix equation:

AP = E, (40)

where P is a four-dimensional vector consisting of the com-
ponents of the dipole vectors p1 and p2, E is also a four-
dimensional vector associated with the right hand side of the
coupled equations, and A is the following matrix:

A =

⎛
⎜⎝

λ1 0 −δ1a1 −δ2b1

0 λ1 −δ1b1 −δ2c1

−δ1a2 −δ2b2 λ2 0
−δ1b2 −δ2c2 0 λ2

⎞
⎟⎠, (41)

where λ1 = 1/α1, λ2 = 1/α2. This problem can be treated as
the well known problem of coupled mechanical (harmonic)
oscillators [41]. Here the components of the electric dipole
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vectors play the role of position coordinates and the external
fields are associated with the driving forces. Normal modes
of the coupled system of oscillating dipoles can be found by
equating the determinant of matrix A to zero, which leads to
the equation:

λ2
1λ

2
2 − �2λ1λ2 = 0, (42)

where � is defined in Eq. (20).
There are four roots. Two of them are trivially given by

λ1λ2 = 0, i.e., either λ1 or λ2 is zero. Nonzero roots are

λ1λ2 = �2. (43)

Note that this is also the condition that makes the denominator
of γ [Eq. (28)] vanish, so that there is a resonance in the scat-
tering [Eq. (25)]. We can analytically examine the conditions
for this resonance if the Lorentzian profile given in Eq. (39)
(without damping) is assumed for the polarizabilities:

λ1λ2 =
(

ω2
1 − ω2

η1ω
2
1

)(
ω2

2 − ω2

η2ω
2
2

)
= �2. (44)

We solve now for ω. Roots with λ1λ2 = 0 give ω = ω1

and ω = ω2 that correspond to trivial cases with no interaction
between the dipoles. Nonzero roots give the frequencies for
two hybridized modes:

ω± =

√√√√ω2
1 + ω2

2 ±
√(

ω2
1 − ω2

2

)2 + 4ω2
1ω

2
2η1η2�2

2
. (45)

If the dipoles are identical (α1 = α2) we have

ω± = ω0

√
1 ± η�. (46)

For any pair of angles, φ1 and φ2, we always have two hybrid
modes. For example, if we choose φ1 = φ2 = 0

ω± = ω0

√
1 ± ηδ1, (47)

if we choose φ1 = φ2 = π
2

ω± = ω0

√
1 ± ηδ2. (48)

The strength of the coupling may be evaluated with the aid
of the parameter

ωcc =
√

η1η2ω1ω2�2. (49)

If the coupling is weak (ωcc 	 |ω1 − ω2|), the solutions of
Eq. (45) reduce to

ω+ ≈ ω1 + ω2
cc

4(ω1 − ω2)
, (50)

ω− ≈ ω2 − ω2
cc

4(ω1 − ω2)
, (51)

and in the case of strong coupling (ωcc � |ω1 − ω2|), the
approximate solutions are

ω± ≈ ω1 + ω2

2
± ωcc

2
. (52)

These formulas coincide with the resonances predicted by the
plasmon hybridization model for two plasmonic particles given
in Ref. [42], which the advantage that here we know how the
coupling parameter ωcc varies with the dipole orientation.

Figure 3 shows the switch of the energy of resonance for
two coupled dipoles with equal polarizabilities (α1 = α2) as a
function of the distance between them for six different geomet-
rical arrangements. Their hybridization can be evaluated with
Eq. (46). In both, a (φ1 = φ2 = 0◦) and b (φ1 = φ2 = 90◦),
particles oscillate in phase but a corresponds to a π -type
stacking (dimer axis perpendicular to the dipole direction),
while b is a σ -type stacking (dimer axis parallel to the dipole
direction). In this case the shift in energy is stronger than in
a and the resonance evolves to lower frequencies. Note that
for a and b, the incoming plane wave can only excite one of
the two hybrid modes, the in-phase mode. The energy splitting
of the in-phase and out-of-phase modes for these two cases
are schematically shown in Fig. 4. The scattering matrices
corresponding to these two cases (assuming the more general
case α1 �= α2) are:

(i) Case (a), dipoles perpendicular to the dimer axis:

Ta = εβ
α1 + α2 + 2α1α2δ1

1 − α1α2δ
2
1

(
1 0
0 0

)
, (53)

(ii) Case (b), dipoles parallel to the dimer axis:

Tb = εβ
α1 + α2 + 2α1α2δ2

1 − α1α2δ
2
2

(
0 0
0 1

)
. (54)

If only the near-field contribution of A and B (i.e., only the
d−3 term) is retained in the coupling parameters δ1 and δ2, we
have that δ1 ∝ −1/d3 and δ2 ∝ 2/d3, and we may define the
polarizabilities of the coupled systems for cases (a) and (b),
respectively, as follows:

αa = α1 + α2 − 2α1α2/d
3

1 − α1α2/d6
, (55a)

αb = α1 + α2 + 4α1α2/d
3

1 − 4α1α2/d6
, (55b)

that respectively correspond to π and σ type bonding/
antibonding. The polarizabilites for the coupled dimer system
were first defined in Ref. [43]. When α1 = α2 ≡ α and if only
the near-field contributions of δ1 and δ2 are considered, far field
scattering matrices given by Eqs. (53) and (54) simplify to:

Ta = εβ
2α

1 + α/d3

(
1 0
0 0

)
, (56a)

Tb = εβ
2α

1 − 2α/d3

(
0 0
0 1

)
. (56b)

Therefore for Ta only the in-phase mode that corresponds
to α/d3 = −1 (antibonding configuration) can be excited,
and the out-of-phase mode (bonding configuration) is dark.
Meanwhile, for Tb the in-phase mode corresponds to 2α/d3 =
1 and the out-of-phase mode (antibonding configuration) is
dark. Dark modes cannot be optically activated with a plane
wave, since it always generates an in-phase situation. Indeed,
an out-of-phase mode could be activated if the dipoles were
not located in the same z plane, so that the incident electric
field is not the same for both dipoles [44]. Another possibility
to excite the out-of-phase mode, even for dipoles located in
the same z plane, is using inhomogeneous excitation, such as
focused radiation [45].
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FIG. 3. Calculated intensity for the scattering of two coupled dipoles as a function of the distance between them. The dipoles can only
polarize along the orientations shown by the arrows drawn at the top of each panel. These calculations correspond to illumination with a
left-handed circularly polarized plane wave. The two particles were assumed to have polarizabilities of the same magnitude (α1 = α2) but
different orientation. The spectroscopic values of the polarizability that we have used in this example are those that result from applying
Clausius Mossotti relation to spherical silver particles in vacuum with a radii of 1 nm and using the Drude model of silver. Note that these
spectroscopic values of polarizability are chosen for illustration purposes only and that the calculation is not describing a coupled system of
spheres.

The remaining panels of Fig. 3 show misaligned dipoles. In
(c) (φ1 = 0◦ and φ2 = 90◦) there is no hybridization because
� = 0 due to the orthogonality. Panels (d) (φ1 = 0◦, φ2 = 45◦)
and (e) (φ1 = 90◦, φ2 = 45◦) show configurations which are,
respectively, rather close to (a) and (b), but here both hybrid
modes, in-phase and out-of-phase, can appear, despite that
the in-phase is still much more intense than the other. In
(f) (φ1 = −45◦, φ2 = 45◦) the directions of oscillation are
orthogonal, like in (c), but here both particles have dipolar

component parallel and perpendicular to the dimer axis and
� is no longer vanishing. Note also that a rotation of the
dipole arrows in (c) does not lead to the arrangement in (f).
In this arrangement the two hybrid modes have a very similar
intensity.

The availability of the scattering matrix together with the
knowledge of the geometry of the problem provides very valu-
able information for the study of the hybridization. Suppose
that we measure the transfer matrix of the whole system. Call
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FIG. 4. Energy splitting in hybrid modes for a dipole dimer
perpendicular (π -type stacking) and parallel (σ -type stacking) to the
dimer axis. Red and blue colors, respectively, indicate positive and
negative charge distribution.

this measured matrix, Tm, and let the associated covariance
vector be |t〉m. If the orientation of the interacting dipoles with
respect to the measurement coordinates are known then the
matrices J1, J2, and Jint are also known [defined by Eqs. (26)
and (27)], as well as their associated vectors |h〉1, |h〉2, and
|h〉int. Therefore, we can either decompose Tm or |t〉m:

Tm = g1J1 + g2J2 + gintJint, (57a)

|t〉m = g1|h〉1 + g2|h〉2 + gint|h〉int, (57b)

where g1,g2, and gint are complex amplitudes (expansion
coefficients) that can be determined algebraically. Note that
this three term decomposition of an interacting two-component
system was already suggested in Ref. [19]. Comparing with
Eq. (25) gives

g1 = γα1, g2 = γα2, gint = γα1α2�. (58)

Therefore,

g2
int

g1g2
= α1α2�

2. (59)

We can then rewrite γ in terms of the complex coefficients g1,
g2, and gint:

γ ∝ 1

1 −
(

gint

g1g2

)2 = g1g2

(
√

g1g2 − gint)(
√

g1g2 + gint)
, (60)

where we can define

ν± = √
g1g2 ± gint. (61)

The maxima of γ [i.e., the resonant conditions for the hy-
bridized modes given by Eq. (43)] occur when either ν+ = 0
or ν− = 0. Note that ν± are in general complex numbers and
their real and imaginary parts may not vanish simultaneously.
We assume in our analysis of hybridization that Re(ν±) = 0 is
a condition of resonance if at the same time Im(ν±) is small or
slowly varying.

We may now use ν+ and ν− to define a new basis, |h+〉 and
|h−〉, in which |t〉m can be formulated as

|t〉m = ν+|h+〉 + ν−|h−〉, (62)

where |t〉m is now written as a two term decomposition of
hybrid modes, so that it is no longer necessary to make an
explicit consideration of the interaction term. We may call |h+〉
and |h−〉 the hybrid basis.

From direct comparison between Eqs. (57b), (62), and (61)
we can find:

|h±〉 = g1|h〉1 + g2|h〉2

2
√

g1g2
± |h〉int

2
, (63)

where, as g1 and g2 can vary with frequency, the definition
of the basis is frequency dependent. Note however that when
g1 = g2 the definition of the hybrid basis becomes merely
geometrical and energy independent:

|h±〉 = |h〉1 + |h〉2

2
± |h〉int

2
. (64)

C. Fano resonances

Fano resonances in hybridized systems arise due to interfer-
ence effects between the radiating states of the system [25,26].
We have shown that our interacting dimer system can be
described as the superposition of three matrix or vector states.
The most favorable condition for interference occurs when
the superposed states are identical (fully overlapping), and
this occurs when the states are characterized by the same
normalized 2 × 2 scattering matrix or covariance vector.

Consider the case of dipoles parallel to the dimer axis,
already presented in Eq. (54), which can be now written as

Tb = γ

[
α1

(
0 0
0 1

)
+ α2

(
0 0
0 1

)
+ 2α1α2δ2

(
0 0
0 1

)]
,

(65)

to highlight that J1 = J2 = Jint. Alternatively, this can be also
presented by a covariance vector:

|h〉b = γ (α1 + α2 + 2α1α2δ2)

⎛
⎜⎝

1/2
−1/2

0
0

⎞
⎟⎠. (66)

The scattering intensity is given by

〈h|h〉b = |γ (α1 + α2 + 2α1α2δ2)|2/2. (67)

In the previous section we have shown that the denominator of
γ is a key to analyze the hybrid resonances, but γ is an overall
factor that is not taking into account interferences between
the states. Interference takes place in the superposition term
α1 + α2 + 2α1α2δ2 and, for example, one can expect a Fano dip
when the real part of this superposition term vanishes and the
imaginary part is small or slowly varying. This happens when
there is destructive interference between the states. Figure 5
shows an example of this effect by considering the same calcu-
lus as in Fig. 3(b) but know with α1 �= α2. One can observe dips
in the radiated intensity in between the two resonant modes.

Note that, in this configuration, no interference can occur if
α1 = α2 ≡ α because then the scattering matrix simplifies to:

Tb = εβα

1 − αδ2

(
0 0
0 1

)
, (68)

which does not allow interference because it contains just a sin-
gle state. Indeed, symmetry breaking between coupling dipoles
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FIG. 5. Scattering intensity as a function of the distance for
two parallel dipoles with different polarizabilities. Because of the
interference, there is Fano dip (dashed line) in between the two
resonant modes.

is a standard requirement for the generation of Fano reso-
nances [46,47]. A more in-depth analysis of Fano resonances in
other dimer configurations will be the subject of a future work.

V. APPLICATION TO PLASMONIC NANOANTENNAS

The analytic theory of light scattering by two coupled ori-
ented dipoles that we have developed thus far can be useful to
describe light-matter interaction processes which involve ma-
terial structures that have dipolar responses. One good example
is the case of plasmonic nanoantennas that we have already
used in Sec. III A. Of particular interest is studying how the
interaction affects the outcomes of optical measurements, since
this analytic method may eventually permit us to distinguish
the interaction contribution from the overall measured far-field
optical response. With modern Mueller matrix polarimetry
approaches it is possible to measure the complete scattering
matrix in different plasmonic systems [48,49], even for single
particles [50].

We apply this analytic method of the interaction to the far
field response of a nanoantenna dimer made of gold and we
analyze the same basic geometry as in Fig. 2, but for cases
that differ in the distance between nanoantennas, as shown in
Fig. 6(a). The far-field 2 × 2 Jones scattering matrix for these
six configurations is calculated with the BEM method and then
converted into a covariance vector to apply the decomposition
of Eq. (57b).

The covariance vectors |h〉1, |h〉2, and |h〉int are simply given
by the geometry of the considered nanoantenna dimer. As in
our example φ1 = 90◦ and φ2 = 135◦, the covariance vectors
[defined in Eqs. (31) and (32)] will be:

|h〉1 = 1

2

⎛
⎜⎝

1
−1
0
0

⎞
⎟⎠, |h〉2 = 1

2

⎛
⎜⎝

1
0

−1
0

⎞
⎟⎠, |h〉int = 1√

2

⎛
⎜⎝

1
−1
−1
0

⎞
⎟⎠.

(69)

FIG. 6. (a) Different geometries of nanoantenna dimers consid-
ered in the BEM simulations. The only difference between the consid-
ered cases is the distance between the center of the nanoantennas (d),
which is respectively set at 0 nm, 225 nm, 250 nm, 500 nm, 750 nm,
and 1500 nm in A, B, C, D, E, and F. (b) Spectroscopic values of
|g2

int/g1g2| for the six different configurations.

In this basis, Eq. (57b) leads to a system of three equations
and three unknowns (note that the fourth equation is trivial
because, for the present simulations of the nanoantennas, the
fourth component of the covariance vector |t〉m is always zero),
hence, it is possible to find g1, g2, and gint:

g1 = 2(h0 + h2), g2 = 2(h0 + h1),

gint = −
√

2(h0 + h1 + h2), (70)

where h0, h1, and h2 are, respectively, the first, second and third
complex elements of the covariance vector |t〉m corresponding
to the simulated scattering Jones matrix with the BEM method.

Therefore we can write:

g2
int

g1g2
= (h0 + h1 + h2)2

2(h0 + h1)(h0 + h2)
. (71)

The results of this analysis for the six cases presented in
Fig. 6(a) are given in Fig. 6(b). We plot |g2

int/g1g2| (where
the bars |...| denote the complex modulus) as a function of
the wavelength. The most obvious result is that |g2

int/g1g2|
diminishes as the distance between the nanoantennas increases.
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FIG. 7. Complex coefficients ν+ and ν− corresponding to simu-
lation A. The vertical lines indicate the position of the hybridization
resonances.

Note that for cases D, E, and F |g2
int/g1g2| is very small

across all the spectrum, which indicates that interaction is
weak. Only for cases A and B the interaction leads to a
marked hybridization in the overall scattering intensity. For the
remaining cases, hybridization mostly manifests itself as peak
broadening, and the two hybrid contributions are not clearly
distinguishable in the overall intensity unless ν+ and ν− are
calculated.

Hybridized frequencies can be calculated by analyzing
the complex amplitudes ν+ and ν− of the hybrid basis. As
discussed earlier, the resonances appear when the real part of
ν± is zero and the imaginary part is small or slowly varying
(i.e., maxima of gamma). This is illustrated in Fig. 7, which
displays the spectroscopic values of ν+ and ν− and the spectral
position of the resonances for Simulation A. The resonant
peaks found for all the simulated cases are summarized in
Table I.

The values in Table I show that the hybrid frequencies are
very sensitive to the distance between the nanoantennas. The
spectral response can be therefore analyzed and designed by
changing the interparticle distance, without need to modify
the particle shape and orientation. This could be important
for potential applications in near-field biosensing, in which
small changes of distance translate in abrupt changes of light
intensity. This is the basis of nanometrology tools such as
plasmon rulers [13,51,52]. In fact our analytic approach allows

TABLE I. Spectral position of the in-phase (λ+) and out-of-phase
(λ−) hybridization resonances for the considered cases.

Case λ+ (nm) λ− (nm) |λ+ − λ−| (nm)

A 1635 1360 275
B 1484 1828 344
C 1499 1692 193
D 1522 1620 98
E 1532 1614 82
F 1594 1545 49

(a)

(b)

FIG. 8. Comparison of the in-phase and out-phase calculated
intensities (I+ and I−, respectively) with respect to the overall
simulated scattering intensity (I ) for simulations A (a) and B (b).

us to determine the position of the hybrid frequencies and
study their intensity. The intensity of scattering for each hybrid
mode is

I± = ν±ν±∗〈h±|h±〉, (72)

where ∗ indicates the complex conjugate and

|h±〉 = 1

4
√

2

⎛
⎜⎜⎝

2
√

2 ± 2
−√

2 ± 2
−√

2 ± 2
0

⎞
⎟⎟⎠, (73)

corresponding to the basis in Eqs. (69). Note that for an
orthogonal hybrid basis like this one 〈h+|h−〉 = 0. In fact the
hybrid bases are orthogonal whenever g1 = g2, and when this
occurs:

I = I+ + I−, (74)

where I is the overall scattering intensity (I = 〈h|h〉). Figure 8
shows how the decomposition in the hybrid basis clearly dif-
ferentiates the contributions of the in-phase and out-of-phase
modes to overall scattered intensity. Notably, the amplitudes
I+ and I− can perfectly account for the position in energy
and amplitude of the in-phase and out-of-phase hybridized
peaks. This shows the usefulness of the proposed three term
decomposition method for dimer systems.
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VI. CONCLUSION

We have shown that the scattering matrix of a coupled
dipole dimer can be written as a linear combination of three
states which have a clear physical (and geometrical) meaning.
The study of the interaction term �Jint and the complex
factor γ permits a clear understanding of phenomena occurring
in some particle dimers, such as the emergence of optical
activity in certain achiral configurations, hybridization effects,
and Fano resonances. The application of the formalism has
been illustrated by studying the dipolar resonance of coupled
plasmonic nanoantennas which were simulated by elaborated
numerical methods. Some of the results given by our analytic
calculus are:

(i) The near-field scattering fingerprint for an achiral dipole
dimer can be drastically modified by only adjusting the handed-
ness of the incoming polarization, but this will not substantially
alter far-field response for small scattering angles.

(ii) We have obtained an analytic expression [Eq. (45)] that
provides the frequencies of the hybrid modes for any geometric
arrangement of dipoles in a plane. Fano-like resonances can be
also explained from the interference between the matrix states
of our decomposition.

(iii) We have shown that the hybridization-induced spectral
splitting in coupled oriented dimers can be well explained by
our decomposition method. The hybrid basis that we have
defined allows us to quantitatively distinguish the contribution
of the in-phase and out-of-phase modes to the overall scattering
intensity in particles with anisotropic polarizability, something
that, to our knowledge, has never been achieved with prior
descriptions of plasmonic hybridization processes. This is
possible even for weakly coupled particles, where no evident
peak splitting is observed in the scattering cross sections.

Our analytical model provides a simple framework to under-
stand and quantify the relative contribution of coupled modes
in complex nanostructures. We think that this analytic method
can be particularly useful in nanophotonic applications that
make use of small antennalike elements for controlling electro-
magnetic waves such as optical trapping, single-molecule lo-
calization, and recognition or surface-enhanced spectroscopy.
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In this paper, we show that the Stokes–Mueller formalism can be reformulated in terms of quaternions and that
the quaternion algebra is a suitable alternative presentation of the formalism of Mueller–Jones states that we have
recently described [J. Opt. Soc. Am. A 34, 80 (2017)]. The vector and matrix states associated with the Mueller
matrices of nondepolarizing optical systems are different representations that are isomorphic to the same
quaternion state, and this quaternion state turns out to be the rotator of the Stokes quaternion. In this work,
we study the properties of this general quaternion state and its application to the calculus of polarization effects.
We also show that the coherent linear combination of nondepolarizing optical media states and depolarization
phenomena can be reformulated in terms of quaternion states. © 2019 Optical Society of America

https://doi.org/10.1364/JOSAA.36.000492

1. INTRODUCTION

The formulation of the problem of interaction between polari-
zation devices/media and polarized light is usually made using
the Stokes–Mueller matrix formalism, but it is also possible to
use a more abstract, coordinate- and matrix-free algebraic for-
malism based on quaternions. The use of quaternions in polari-
zation optics is not common, but it was pioneered years ago by
Pellat-Finet [1,2] and, more recently, it has also been consid-
ered by other authors [3,4]. These works mainly focus on par-
ticular uses of quaternions in certain polarization calculus, for
example, to simplify the calculation of Jones matrix cascades of
birefringent systems, but they do not provide a quaternion rep-
resentation for the most general polarization operator having all
possible forms of birefringence and dichroism. In this work, we
show a complete formulation of polarization algebra in terms of
quaternions. Through isomorphic properties, it is shown that
such formulation is equivalent to other well-known represen-
tations given by the Jones calculus, Mueller–Stokes calculus,
covariance vectors, etc.

We start recalling several results from polarization theory.
The covariance matrix H associated with the Mueller matrix
M is [5]

H � 1

4

X3
i, j�0

MijΠij, (1)

where Mij�i, j � 0, 1, 2, 3� are the elements of the Mueller
matrix M, Πij � A�σi ⊗ σ�j �A−1:

A �

0
BBB@

1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0

1
CCCA,

A−1 � 1

2
A† � 1

2

0
BBB@

1 1 0 0

0 0 1 −i

0 0 1 i

1 −1 0 0

1
CCCA: (2)

The superscript † indicates the conjugate transpose (Hermitian
conjugate), the superscript � indicates complex conjugate, ⊗ is
the Kronecker product, and σi are the Pauli matrices with the
2 × 2 identity in the following order:

σ0 �
�
1 0
0 1

�
, σ1 �

�
1 0
0 −1

�
, (3)

σ2 �
�
0 1
1 0

�
, σ3 �

�
0 −i
i 0

�
: (4)

If and only if the Mueller matrix of the system is nondepola-
rizing (we can also call it pure or deterministic), the associated
covariance matrixH will be of rank one. In this case, it is always
possible to define a covariance vector jhi such that [5–10]

H � jhihhj, (5)

where jhi is the eigenvector of H corresponding to the single
nonzero eigenvalue.
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In previous works [9,10], we parameterized the dimension-
less components of jhi as τ, α, β, and γ:

jhi �

0
B@

τ
α
β
γ

1
CA, (6)

where τ, α, β, and γ are generally complex numbers. One of the
parameters can be chosen to be real and positive if the global
phase is not considered, as it is typically done in polarimetric
measurements because it is not accessible.

On the other hand, in [9], we introduced another object, Z,
that serves as a Mueller–Jones state in matrix form and that has
applications in many calculi [11,12]:

Z �

0
B@

τ α β γ
α τ −iγ iβ
β iγ τ −iα
γ −iβ iα τ

1
CA: (7)

By direct matrix multiplication, it can be shown that the
Mueller matrix of any nondepolarizing optical media can be
written as

M � ZZ� � Z�Z: (8)

The Mueller matrix transforms the Stokes vector jsi �
�s0, s1, s2, s3�T into another Stokes vector js 0i:

js 0i � Mjsi: (9)

Similarly, it can be shown that the Z matrix transforms the as-
sociated Stokes matrix according to the following scheme:

S 0 � ZSZ†, (10)

where the Stokes matrix, S, is defined as

S �

0
B@

s0 s1 s2 s3
s1 s0 −is3 is2
s2 is3 s0 −is1
s3 −is2 is1 s0

1
CA: (11)

We note that the term Stokes matrix has been used previously
[6,13] with a different meaning: to refer to 4 × 4 matrices that
transform Stokes vectors into Stokes vectors, so that the set of
Mueller matrices is constituted by those Stokes matrices that
satisfy the Cloude’s criterion. It should not be confused with
the different meaning that it has here.

The Stokes matrix S can also be defined in terms of the
polarization matrix Φ:

S � A�Φ ⊗ I�A−1, (12)

where

Φ � jEihE j, (13)

and jEi is the Jones vector:

jEi �
�
Ex
Ey

�
: (14)

The Z matrix can be written in terms of the Jones matrix, J, as
follows:

Z � A�J ⊗ I�A−1: (15)

Proof of Eq. (10) immediately follows from the definitions of Z
and S.

Similar to the Jones matrices, Z matrices can describe the
product state of the combined system associated with a serial
combination of nondepolarizing optical media:

Z � ZN · ZN−1…Z2 · Z1: (16)

However, such a product state is not possible with jhi vectors.
Therefore, jhi vectors and Z matrices (and by extension Jones
matrices), despite containing the same information, appear as
different algebraic entities.

In this work, it will be shown that Z matrices, Jones matri-
ces, and jhi vectors are actually different representations of the
same quantity, and they are isomorphic to the same h quatern-
ion. The development of this quaternion algebra is possible
thanks to the close relation of these two mathematical repre-
sentations to Pauli matrices, which are the basis matrices that
allow to construct the complex 2 × 2matrix operators in polari-
zation optics [14]. Before introducing the quaternion represen-
tation, we complete the formalism based on Z matrix states that
we have presented in [9] by describing how it handles optical
phases.

2. OPTICAL PHASES AND Z MATRICES

In addition to the intensity, the phase of the electromagnetic
waves plays an important role in optics. The Stokes vector,
jsi, and the Mueller matrix, M, are real; therefore, the trans-
formation js 0i � Mjsi cannot keep track of the phase of the
polarization state. The Jones formalism that is based on
Jones vectors, jEi, and Jones matrices, J, can represent optical
phases. For the transformation

jE 0i � JjEi, (17)

arg�hE jE 0i� is the total phase (geometric phase plus dynamic
phase) acquired.

In our formalism of Z matrix states, we can also consider the
following transformation:

S̃ � ZS, (18)

where S̃ is not a Stokes matrix. By using Eqs. (12), (15), and
(17), this identity can be rewritten explicitly as follows:

S̃ � A�jE 0ihE j� ⊗ I�A−1: (19)

Therefore S̃ is just the extension of the operator jE 0ihE j, and it
carries the same phase contained in jE 0i.

Similarly, the transformation Zjsi does not generate a Stokes
vector, but it leads to the following theorem:

hsjZjsi � 2hE jJjEi � 2hE jE 0i: (20)

According to this theorem, it is possible to read the phase ac-
quired by the polarization state from hsjZjsi. As it can be seen
from the left hand side of Eq. (20), since the Stokes vectors are
free from phase, all the additional phase comes from the Z
matrix.

Therefore, we conclude that the Z matrix can include opti-
cal phases information of the Jones formalism, and it can be
used as a bookkeeping device for the evolution of the phase.
For example, it is possible to keep track of the phase for suc-
cessive rotations of the polarization state on the Poincare
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sphere, and it is possible to calculate the Pancharatnam–Berry
phase for closed loops.

3. DEFINITION OF THE h QUATERNION STATE

First, we observe that the Z matrix can be written as a linear
combination of four matrices:

Z � τ1� iαI � iβJ � iγK , (21)

where

1�

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA, I �

0
BBB@

0 −i 0 0

−i 0 0 0

0 0 0 −1

0 0 1 0

1
CCCA,

J �

0
BBB@

0 0 −i 0

0 0 0 1

−i 0 0 0

0 −1 0 0

1
CCCA, K �

0
BBB@

0 0 0 −i

0 0 −1 0

0 1 0 0

−i 0 0 0

1
CCCA: (22)

These basis matrices have the following properties:

I 2 � J 2 � K 2 � I JK � −1,

I J � −J I � K , JK � −K J � I , K I � −IK � J :

(23)

We note that these basis matrices are isomorphic to the basis
quaternions defined by Hamilton [15]:

i2 � j2 � k2 � ijk � −1,

ij � −ji � k, jk � −kj � i, ki � −ik � j: (24)

Therefore, the Z matrix of Eq. (21) is isomorphic to the h
quaternion:

h � τ1� iαi � iβj � iγk, (25)

which is directly related with the covariance vector jhi. It is
worth noting that the Jones matrix, J, is also isomorphic to
the h quaternion. To show this, we write the Jones matrix
in terms of Pauli matrices [9,16]:

J � τσ0 � ασ1 � βσ2 � γσ3, (26)

which can be written as

J � τσ0 � iα�−iσ1� � iβ�−iσ2� � iγ�−iσ3�: (27)

The 2 × 2 matrices σ0, −iσ1, −iσ2, and −iσ3 are, respectively,
isomorphic to the quaternion basis, 1, i, j, and k. Therefore, we
can write the associated Jones quaternion, h, as follows:

h � τ1� iαi � iβj � iγk, (28)

which is identically equal to the quaternion state h defined for
the Z matrix and the jhi vector.

We therefore conclude that the vector state jhi, the matrix
state Z, and the Jones matrix J are isomorphic to the same
quaternion state, h.

4. PROPERTIES OF THE QUATERNION STATE

It is possible to define a polarization formalism based on the
quaternionic form of the nondepolarizing media states. The

algebra of this formalism is free from any matrix (or vector)
representation. The most relevant properties of the h quatern-
ion are described in this section, while other more particular
properties are discussed in Appendix A.

A. Multiplication of Quaternion States

We can multiply two (or more) h quaternions and those results
into another h quaternion:

h � h2h1 �

8>>><
>>>:

�τ2τ1 � α2α1 � β2β1 � γ2γ1�1
�i�τ2α1 � α2τ1 � iβ2γ1 − iγ2β1�i
�i�τ2β1 � β2τ1 − iα2γ1 � iγ2α1�j
�i�τ2γ1 � γ2τ1 � iα2β1 − iβ2α1�k

9>>>=
>>>;
: (29)

It is worth noting that the resultant h quaternion is not a four-
component column vector, but a single hypercomplex number
that corresponds to the covariance vector jhi with the following
components:

jhi �

0
BBB@

τ2τ1 � α2α1 � β2β1 � γ2γ1

τ2α1 � α2τ1 � iβ2γ1 − iγ2β1
τ2β1 � β2τ1 − iα2γ1 � iγ2α1
τ2γ1 � γ2τ1 � iα2β1 − iβ2α1

1
CCCA: (30)

The Z matrix serves as a short-hand multiplication table for jhi
vectors [17]:

jhi � Z2jh1i, (31)

where jhi,Z2, jh2i correspond to h quaternion, h2 quaternion,
and h1 quaternion of Eq. (29), respectively. The quaternion
multiplication algebra of Eq. (29), which exploits the multipli-
cation of two hypercomplex numbers, offers a compact and
simple alternative to the matrix–matrix multiplication Eq. (16)
or to the matrix–vector multiplication Eq. (31).

B. Transformation of a Stokes Quaternion

An ordinary three-dimensional vector v can be rotated about an
axis by an angle θ as follows:

v 0 � qvq̄, (32)
where q is a unit real quaternion, and q̄ is the Hamilton (qua-
ternion) conjugate of q:

q � q01� q1i � q2 j � q3k,

q̄ � q01 − q1i − q2 j − q3k, (33)

where q0, q1, q2, and q3 are real numbers such that
qq̄ � q̄q � q20 � q21 � q22 � q23 � 1.

From Eq. (10), it immediately follows that a very similar
transformation (rotation) applies to the Stokes quaternion
(see also Liu et al. [3]):

s 0 � hsh†, (34)
where h† is the Hermitian conjugate of the h quaternion:

h† � τ�1� iα�i � iβ�j � iγ�k: (35)
s is the Stokes quaternion that corresponds to the Stokes vector
jsi � �s0, s1, s2, s3�T :

s � s01� is1i � is2 j � is3k, (36)

and s 0 is the transformed (rotated) Stokes quaternion that cor-
responds to the transformed Stokes vector js 0i:
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js 0i � Mjsi, (37)

where M is a nondepolarizing Mueller matrix. The proof is
straightforward but tedious. By direct multiplication of three
quaternions in Eq. (34), it can be shown that the transformed
Stokes quaternion s 0 is isomorphic to the transformed Stokes
vector js 0i. The most general transformation of a Stokes vector
by a nondepolarizing optical system state is thus given by the
triple quaternion multiplication of Eq. (34).

It can also be shown that the theorem of Eq. (20) can be
written in terms of the quaternions as follows:

s · hs � hsjZjsi � 2hE jJjEi, (38)

where “·” indicates the quaternion dot product.

C. Rotation of the Quaternion State

The Mueller matrix of an optical element can be rotated by an
angle θ in a plane perpendicular the light propagation direction:

M�θ� � R�θ�MR�−θ�, (39)

where

R�θ� �

0
BBB@

1 0 0 0

0 cos�2θ� − sin�2θ� 0

0 sin�2θ� cos�2θ� 0

0 0 0 1

1
CCCA: (40)

Similarly, the covariance vector of a nondepolarizing Mueller
matrix can be rotated as follows:

jh�θ�i � R�θ�jhi, (41)

where jh�θ�i generates M�θ�.
The covariance vector of the matrix R�θ� is jr�θ�i �

�cos�θ�, 0, 0, − i sin�θ��T with the associated quaternion r:

r � cos�θ�1� sin�θ�k: (42)

The quaternion r is unitary, and it is the rotator for the
quaternion h:

h�θ� � rhr†, (43)

where r† � r̄ � cos�θ�1 − sin�θ�k.

5. APPLICATION TO THE REPRESENTATION OF
OPTICAL MEDIA

A. Superposition of Mueller–Jones States and
Depolarization

As we have shown before [10], the Mueller–Jones state of a
nondepolarizing optical medium can also be represented by a
covariance vector jhi or by a matrix state Z. Here we have
shown that these are isomorphic to the same quaternion state
h. Therefore, any coherent linear combination of quaternion
states is also a quaternion state that corresponds to a new
nondepolarizing optical medium state:

h � ah1 � bh2 � ch3…, (44)

where the coefficients a, b, c,… are, in general, complex
numbers.

In a coherent linear combination (superposition) process,
the Stokes quaternion is simply subjected to a rotation by
the combined quaternion state h. If the superposition process

is partially coherent or incoherent, we have to consider depo-
larization effects. In this case, the covariance matrix H associ-
ated with a depolarizing Mueller matrix will be of rank >1, and
any depolarizing Mueller matrix can be written as a convex sum
of at most four nondepolarizing Mueller matrices:

M � w1M1 � w2M2 � w3M3 � w4M4: (45)

This is known as the arbitrary decomposition of a Mueller ma-
trix [6,18,19]. M1,M2,M3, and M4 are nondepolarizing
Mueller matrices; w1,w2,w3, and w4 are real and positive num-
bers with the condition

w1 � w2 � w3 � w4 � 1: (46)

Decomposition of a depolarizing Mueller matrix into its non-
depolarizing components is not unique. In the spectral
(Cloude) decomposition [20], weights wi are the eigenvalues
of the covariance matrix, H, and the component matrices
Mi are the nondepolarizing Mueller matrices corresponding
to the associated eigenvectors of H.

For an incoherent combination, from the linearity of the
convex summation of Eq. (45), we can immediately write a
transformation formula for the Stokes quaternion:

s 0 �
X4
i�1

wihish
†
i : (47)

The same depolarization scheme given in [10] applies to the
quaternion formulation as well.

B. Nondepolarizing Mueller Matrix

The nondepolarizing Mueller matrix can be recovered by shift-
ing from the triple quaternion multiplication of Eq. (34) to
a matrix–matrix–vector multiplication. Consider the second
product (sh†) of the quaternion rotation in Eq. (34); it maps
to the following matrix–vector product:

sh† ↦ Sjh�i �

0
BBB@

s0 s1 s2 s3
s1 s0 −is3 is2
s2 is3 s0 −is1
s3 −is2 is1 s0

1
CCCA

0
BBB@

τ�

α�

β�

γ�

1
CCCA, (48)

where S is the matrix associated with the Stokes quaternion s.
It can be shown that the order of multiplication can be re-

versed by means of the Z� matrix:

Sjh�i � Z�jsi, (49)

where jsi is the Stokes vector (jsi � �s0, s1, s2, s3�T ).
Since quaternion h is associated with the Z matrix, the triple

quaternion product maps to the following matrix–matrix–vec-
tor product:

s 0 � hsh† ↦ js 0i � ZZ�jsi � �ZZ��jsi � Mjsi, (50)

whereM is the Mueller matrix. An explicit form of the Mueller
matrix in terms of the parameters τ, α, β, and γ can be found
in [9].

C. Exponential and Differential Forms of the
Quaternion State

Any quaternion, q � w1� xi � yj � zk, can be expressed in
an exponential form:

Research Article Vol. 36, No. 4 / April 2019 / Journal of the Optical Society of America A 495

76 List of Publications



q � jqj�cos θ� û sin θ� � jqjeûθ, (51)

where jqj � ffiffiffiffiffiffi
qq̄

p
, cos θ � w∕jqj, û � �xi � yj � zk�∕ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � y2 � z2
p

, and sin θ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2 � z2

p
∕jqj.

Similarly, the quaternion h � τ1� iαi � iβj � iγk can be
written in polar form using the expressions for τ, α, β, and γ in
terms of the spectroscopic parameters [9,21]: η (isotropic phase
retardation), κ (isotropic amplitude absorption), CD (circular
dichroism), CB (circular birefringence), LD (horizontal linear
dichroism), LB (horizontal linear birefringence), LD 0 (45°
linear dichroism), and LB 0 (45° linear birefringence):

τ � e−
iχ
2 cos

�
T
2

�
α � −e−

iχ
2
iL
T

sin

�
T
2

�
, (52)

β � −e−
iχ
2
iL 0

T
sin

�
T
2

�
γ � e−

iχ
2
iC
T

sin

�
T
2

�
, (53)

where χ � η − iκ, L � LB − iLD, L 0 � LB 0 − iLD 0,
C � CB − iCD, and T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � L 02 � C2

p
.

If we choose θ � T ∕2, then the quaternion h can be
written as

h � eℏ, (54)

where ℏ is another quaternion that can be written as

ℏ � −i
2
�χ1� iLi � iL 0j − iCk�: (55)

The quaternion ℏ corresponds to the differential z matrix [9]:

z � −i
2

0
BBB@

χ L L 0 −C

L χ iC iL 0

L 0 −iC χ −iL

−C −iL 0 iL χ

1
CCCA: (56)

Now we can differentiate h with respect to l (distance along the
direction of propagation of light):

dh
dl

� dℏ
dl

h � ℏ
l
h, (57)

where we have taken into account that all the parameters in ℏ
(χ, L, L 0, and C) are proportional to l for a nondepolarizing
medium [21]. This equation is a reformulation of the
Stokes–Mueller differential formalism [22], and it can be com-
pared with the well-known quaternion differentiation formula:

_q � 1

2
ωq, (58)

where ω is the angular velocity. Hence, 2ℏ∕l can be interpreted
as the angular velocity of rotation by an angle θ (� T∕2) of the
quaternion state through the medium. Therefore, ℏ describes
the changing rate of h along the pathlength.

6. CONCLUSION

The Stokes–Mueller formalism can be reformulated in terms of
quaternions. The vector state jhi, the matrix state Z, and the
Jones matrix J are isomorphic to the same quaternion state h.
We have shown how quaternion algebra can be used to replace,
or computationally simplify, the representation of optical media
states and their mathematical operations.

The transformation of a Stokes vector given by a nondepo-
larizing Mueller matrix can be expressed by quaternion rotation
that can be formally presented as the multiplication of three
quaternions. Particularly, if M is a unitary matrix, then α, β,
and γ are pure imaginary numbers, and the quaternion state,
h, becomes a real quaternion. In this case, the quaternion
rotation of the Stokes quaternion can be conceived as a three-
dimensional rotation on the Poincaré sphere.

In summary, quaternion algebra can embrace all aspects of
the Stokes–Mueller formalism, allowing for a synthetic repre-
sentation of the matrix algebra used for the description and
transformation of polarized light. This compact notation offers
practical advantages in computer calculations of polarization
effects, and it shows the straightforward connections between
different Mueller–Jones operators (jhi, Z, and J).

APPENDIX A: OTHER PROPERTIES OF THE h
QUATERNION AND SPECIAL CASES

1. The norm of the covariance vector is given by

hhjhi � ττ� � αα� � ββ� � γγ� � M 00: (A1)

In the quaternion language, this norm corresponds to the real
part of the quaternion h, multiplied by its Hermitian conjugate:

R�hh†� � ττ� � αα� � ββ� � γγ� � M 00: (A2)

2. The following property can be used to define successive
rotations:

�hihj�† � h†j h
†
i : (A3)

For example, if h1 and h2 are two quaternions corresponding to
two rotations, the transformed Stokes quaternion can be writ-
ten as

h2�h1sh†1�h†2 � �h2h1�s�h†1h†2� � �h2h1�s�h2h1�†, (A4)

which means that h2h1 is the combined rotator.
3. If τ is real, and α, β, and γ are pure imaginary, then

hh† � h†h � ττ� � αα� � ββ� � γγ� � hhjhi � M 00,

(A5)

and if jhi is normalized to unity, then

hh† � h†h � 1: (A6)

In this case, h† is the inverse of h, and the inverse rotation for
Stokes quaternion can be written as

s � h†s 0h: (A7)

This case corresponds to unitary Z and unitary M [9].
4. In general, inverse rotation is related to the Hamilton

conjugate of the quaternion h, which is defined as

h̄ � τ1 − iαi − iβj − iγk: (A8)

Since

hh̄ � τ2 − α2 − β2 − γ2, (A9)

if �τ2 − α2 − β2 − γ2� > 0, the inverse of h can be defined as

h−1 � h̄
τ2 − α2 − β2 − γ2

: (A10)

Similarly, the inverse of the Hermitian conjugate of h is
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�h†�−1 � �h†�
�τ��2 − �α��2 − �β��2 − �γ��2 , (A11)

where �h†� � h� � τ�1 − iα�i − iβ�j − iγ�k.
5. If τ, α, β, and γ are real,

h � h†: (A12)

In this case, transformation of the Stokes quaternion becomes

s 0 � hsh: (A13)

This case corresponds to Hermitian Z and Hermitian M [9].
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A typo has been noted in the paper reproduced above. Below Eq. (31) it should say
“where |h⟩, Z2, |h⟩2” instead of “where |h⟩, Z2, |h⟩1”.
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Chapter 4

Discussion and Conclusions

In classical mechanics the state of the system is represented by a point in the phase space.
In quantum mechanics state of the particle is a vector in the Hilbert space. In this thesis
we introduce a vector state |h⟩ that represents the state of the optical medium. |h⟩ is a four
component complex vector:

|h⟩=


τ
α
β
γ,

 (4.1)

Components of |h⟩ can be defined in terms of basic spectroscopic parameters, isotropic
phase retardation (η), isotropic amplitude absorption (κ), circular dichroism (CD), circular
birefringence (CB), horizontal and 45◦ linear dichorism (LD and LD’), horizontal and 45◦

linear birefringence (LB and LB’):

τ = e−
iχ
2 cos

(
T
2

)
,

α =−e−
iχ
2

iL
T

sin
(

T
2

)
,

β =−e−
iχ
2

iL′

T
sin
(

T
2

)
,

γ = e−
iχ
2

iC
T

sin
(

T
2

)
(4.2)

where χ = η − iκ , L = LB− iLD, L′ = LB′− iLD′, C =CB− iCD, T =
√

L2 +L′2 +C2.

The vector state is closely related with the matrix state Z. The matrix state, Z, is a 4×4
complex matrix which is isomorphic to the 2×2 Jones matrix. In this thesis we have shown
that there also exists a quaternion state representation of the optical medium. The Jones
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matrix and Z matrix are isomorphic matrix representations of the quaternion state hhh. It is also
worth to emphasize that the quaternion state has a similar structure with the |h⟩ vector, but,
the quaternion state has one more property. Multiplication of |h⟩ vectors as |h1⟩|h2⟩ · · · |hN⟩ is
not feasible, but, quaternion multiplication of quaternion states is feasible and yields another
quaternion state:

hhh = hhh111hhh222 · · ·hhhNNN (4.3)

Jones matrices and Z have the same property:

J = J1J2 · · ·JN

Z = Z1Z2 · · ·ZN (4.4)

But these state representations do not form a group under multiplication because multiplica-
tive inverse elements do not exist, in general.

|h⟩ vector, Jones matrix, Z matrix and hhh quaternion can be added by themselves to yield
states of the same kind:

|h⟩= c1|h1⟩+ c2|h2⟩+ · · ·cN |hN⟩, (4.5)

J = c1J1 + c2J2 + · · ·cNJN, (4.6)

Z = c1Z1 + c2Z2 + · · ·cNZN, (4.7)

hhh = c1hhh111 + c2hhh222 + · · ·cNhhhNNN . (4.8)

In order to make use of the usual vector and matrix manipulations, vector state, |h⟩, may
have several advantages over the other state representations. For example, it is possible to
define a scalar product, ⟨hi|h j⟩, and an outer product, |hi⟩⟨h j|, of |h⟩ vectors. Scalar product
of vector states is especially useful to implement the usual vector algebra for decomposition
of media states into more basic states that serve as basis states. Outer product of |h⟩ vectors
allows to define another matrix state, H:

H = |h⟩⟨h|. (4.9)

The matrix state H can be interpreted as a density matrix with an analogy with the quantum
mechanical density matrix. Density matrix interpretation becomes more significant when we
study depolarization. In case of depolarization, H matrix represents the mixed state of the
mixture.

2×2 complex Jones matrices are basic elements of the theory of deterministic optical sys-
tems. Addition and multiplication of two or more Jones matrices yields another Jones matrix,
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therefore, Jones matrices are suitable to represent coherent parallel and series combinations
of deterministic optical systems. For example, let J1 and J2 represent two deterministic
optical systems, and let J be the Jones matrix of the coherent parallel combination of two
systems:

J = c1J1 + c2J2. (4.10)

The associated nondepolarizing Mueller matrix of the combined system can be obtained from
the Jones matrices by the transformation, Mi = A(Ji ⊗J∗i )A†, where A is the unitary matrix
defined in Eq. (1.13):

M = A[(c1J1 + c2J2)⊗ (c1J1 + c2J2)
∗]A†, (4.11)

where c1 and c2 are generally complex coefficients. 4× 4 complex Z matrices have very
similar properties with Jones matrices. They can be added, they can be multiplied, hence
they are suitable for representing parallel and serial processes. Z matrices have a very
simple relation with nondepolarizing Mueller matrices, M = ZZ∗ = Z∗Z. This relation
considerably simplifies the algebra of Eq.(4.11). Let us consider a coherent combination of
two deterministic optical systems represented by Z matrices:

Z = c1Z1 + c2Z2, (4.12)

where Z1 and Z2 are the matrix states corresponding to component systems and Z is the matrix
state of the combined system. The associated nondepolarizing Mueller matrix can be found
without applying tedious steps of Kronecker matrix product and unitary transformations
performed by multiplying from left and right with A and A† matrices:

M = (c1Z1 + c2Z2)(c1Z1 + c2Z2)
∗. (4.13)

As it was shown in [22], Z matrix formalism is also very useful for formulating partial
coherence. It is possible to study interference effects in a complete polarimetric version of
Young’s double slit experiment with gradually diminishing coherence. As the pinhole size
increases, the phase variations are averaged over the measurement area leading to partially
coherent or incoherent results that exhibit depolarization effects. These effects can be clearly
observed in the elements of the Mueller matrix of the combined system.

A covariance matrix (density matrix), H, can be defined as an outer product of |h⟩ vectors:
H = |h⟩⟨h|. Here, we have a strong analogy with the state description of quantum mechanics
in terms of density operators (matrices). H matrix can be considered as a density matrix. If
rank of H matrix is one, i.e., H matrix has only one nonzero eigenvalue, H is a density matrix



84 Discussion and Conclusions

(density operator) representing a pure state (deterministic optical system). Analogy with
quantum mechanical density operator formalism can be made for mixed states also. If two or
more optical systems are incoherently combined Mueller matrix of the system becomes a
depolarizing Mueller matrix which can be written as a convex sum of its components:

M = w1M1 +w2M2 +w3M3 + · · · (4.14)

Rank of the H matrix associated with the depolarizing Mueller matrix, M, is greater than one
and, in general, it can be at most four. In other words, in case of depolarization, the matrix H
has two, three or four nonzero eigenvalues, and it represents a mixed state of a mixture:

H = w1H1 +w2H2 +w3H3 + · · · (4.15)

It is worth noting that, in quantum mechanics, a mixture does not have a vector state, |Ψ⟩,
it can only be represented by a density matrix, ρ . Similarly, in polarization algebra, a
depolarizing Mueller matrix cannot be associated with a vector state, |h⟩, i.e., a mixture does
not have a vector state.

H matrix formalism is especially useful in the decomposition procedure of depolarizing
Mueller matrices into their nondepolarizing components. It can be shown that, under certain
symmetry conditions, two-term combinations of nondepolarizing Mueller matrices can be
resolved, and the original component Mueller matrices can be retrieved uniquely by means
of the rank considerations of H matrices.

In this thesis it is shown that Jones matrices, Z matrices and |h⟩ vectors are just different
forms of the quaternion state, hhh. Quaternion states can be added, can be multiplied and they
transform (rotate) the associated Stokes quaternion, sss into sss′′′ by means of the triple quaternion
multiplication, sss′′′ = hhhssshhh†, where sss is the quaternion form of Stokes vector (sss = s0111+ is1i+
is2j+ is3k), hhh† is the Hermitian conjugate of hhh and sss′′′ is the transformed (rotated) Stokes
quaternion that corresponds to the output Stokes vector |s′⟩ of Stokes-Mueller formalism,

|s′⟩= M|s⟩, (4.16)

where |s⟩ is the usual Stokes vector.

The vector state |h⟩ does not have an exponential form, but the quaternion state hhh (and Z
matrix) can be written in an exponential form:

hhh = eh̄,
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h̄ =− i
2
(χ1+ iLi+ iL′j− iCk). (4.17)

When we differentiate hhh with respect to ℓ (distance along the direction of propagation of
light) we get

dhhh
dℓ

=
dh̄
dℓ

hhh =
h̄
ℓ

hhh. (4.18)

This equation is a reformulation of the Stokes–Mueller differential formalism, and it can be
compared with the well-known quaternion differentiation formula:

q̇qq =
1
2

ωqqq, (4.19)

where ω is the angular velocity. Hence, 2h̄/ℓ can be interpreted as the angular velocity
of rotation by an angle θ(= T/2) of the quaternion state through the medium, where h̄
describes the changing rate of hhh along the pathlength. Since, the vector state |h⟩ and matrix
state concepts (Jones and Z matrices) are different forms of the same quaternion state, hhh,
quaternion state may serve as a key element for the unification of all formalisms developed
thus far at different stages by many contributors.

The vector state approach is especially useful for the analysis of interacting systems. The
state of an interacting system can be resolved into its basic constituents and interaction states:

|h⟩= g1|h⟩1 +g2|h⟩2 + · · ·gint |h⟩int . (4.20)

In general, there may be more than one interaction state depending on the geometry and the
number of particles.

As an implementation of vector state formalism we study the scattering matrix of a
coupled dipole dimer and show that it can be written as a linear combination of three states
which have clear physical (and geometrical) meanings. The study of the interaction term
permits a clear understanding of several phenomena occurring in particle dimers, such as
the emergence of optical activity in certain achiral and chiral configurations, hybridization
effects and Fano resonances. As an example, we study the dipolar resonance of coupled
plasmonic nanoantennas which are simulated by elaborated numerical methods.

Given these results, the main conclusions of this work are:

• The coherent (constant phase) parallel combination of deterministic systems can be
written as a linear combination of Z matrices with complex coefficients. In practice
this means that we can synthesize any nondepolarizing optical system as a coherent
linear combination of a complete set of nondepolarizing basis systems. This leads to
the concept of “linear combination of states” of optical media, and allows us to make
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an analogy between the quantum mechanical wave function Ψ and Z matrix by means
of the relation, ZZ∗ = M.

• The analogy with quantum mechanics allows us to directly formulate the optical combi-
nations of optical media without need of an explicit consideration of the superposition
of electromagnetic fields, which is the starting point of other formulations of optical
coherence. We think that our formalism introduces a unified theory of coherence and
polarization that can be especially useful for experimental techniques that explore
polarized light and material media interactions such as polarimetry or ellipsometry.

• As an application of the formalism we study interacting dipole systems and we obtain
an analytic expression that provides the frequencies of the hybrid modes for any geo-
metric arrangement of dipoles in a plane. Fano-like resonances can be also explained
from the interference between the matrix states of our decomposition.

• The Stokes–Mueller formalism can be reformulated in terms of quaternions. The
vector state |h⟩, the matrix state Z, and the Jones matrix J are isomorphic to the
same quaternion state hhh. We have shown how quaternion algebra can be used to
replace, or computationally simplify, the representation of optical media states and
their mathematical operations.

• The hybridization-induced spectral splitting in coupled oriented dimers can be well
explained by our decomposition method. The hybrid basis that we have defined
allows to quantitatively distinguish the contribution of in-phase and out-of-phase
modes to the overall scattering intensity in particles with anisotropic polarizability,
something that, to our knowledge, has never been achieved with prior descriptions of
plasmonic hybridization processes. This is possible even for weakly coupled particles,
where no evident peak splitting is observed in the scattering cross-sections. Our
analytical model provides a simple framework to understand and quantify the relative
contribution of coupled modes in complex nanostructures. We think that this analytic
method can be particularly useful in nanophotonic applications that make use of small
antenna-like elements for controlling electromagnetic waves such as optical trapping,
single-molecule localization and recognition or surface-enhanced spectroscopy.

• Near-field scattering fingerprint for an achiral dipole dimer can be drastically modified
by only adjusting the handedness of the incoming polarization, but this will not
substantially alter far-field response for small scattering angles.
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• For depolarizing polarimetric experiments,which are a combination of two nondepolar-
izing states, it is possible to analytically retrieve the individual polarimetric response
of each component.

The nano scale, being an intermediate scale between the macroscopic and microscopic
systems, is an area of optical effects peculiar of its own. But, these effects still can be
described classically without making any reference to genuine quantum concepts such as
quantization. However, when we go to more smaller dimensions, nanoparticles will inevitably
begin to display quantum effects. In that limit we may expect that the analogy between the
vector/matrix states and the quantum state vectors may offer a starting point for foundation
of a new formalism that deals with quantized properties of nanoparticles.





Appendix: list of vectors and matrix
states

This appendix contains a tabulated list of |h⟩ vector states, Z matrix states and their corre-
sponding Mueller matrix M .
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Optical element |h⟩ Z M

Free space


1
0
0
0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Half-wave plate (Ideal mirror)


0
1
0
0




0 1 0 0
1 0 0 0
0 0 0 −i
0 0 i 0




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



Half-wave plate 45º fast axis


0
0
1
0




0 0 1 0
0 0 0 i
1 0 0 0
0 −i 0 0




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



Circular retarder (δ = π)


0
0
0
1




0 0 0 1
0 0 −i 0
0 i 0 0
1 0 0 0




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1



Horizontal Linear Polarizer


1√
2

1√
2

0
0




1√
2

1√
2

0 0
1√
2

1√
2

0 0

0 0 1√
2

−i√
2

0 0 i√
2

1√
2




1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



Vertical Linear Polarizer


1√
2

−1√
2

0
0




1√
2

−1√
2

0 0
−1√

2
1√
2

0 0

0 0 1√
2

i√
2

0 0 −i√
2

1√
2




1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0


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Optical element |h⟩ Z M

Linear Polarizer at 45º


1√
2

0
1√
2

0




1√
2

0 1√
2

0

0 1√
2

0 i√
2

1√
2

0 1√
2

0

0 −i√
2

0 1√
2




1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0



Linear Polarizer at 135º


1√
2

0
−1√

2
0




1√
2

0 −1√
2

0

0 1√
2

0 −i√
2

−1√
2

0 1√
2

0

0 i√
2

0 1√
2




1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0



Circular Polarizer (right handed)


1√
2

0
0
1√
2




1√
2

0 0 1√
2

0 1√
2

−i√
2

0

0 i√
2

1√
2

0
1√
2

0 0 1√
2




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1



Circular Polarizer (left handed)


1√
2

0
0
−1√

2




1√
2

0 0 −1√
2

0 1√
2

i√
2

0

0 −i√
2

1√
2

0
−1√

2
0 0 1√

2




1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1



QWP horizontal fast axis


1√
2

i√
2

0
0




1√
2

i√
2

0 0
i√
2

1√
2

0 0

0 0 1√
2

1√
2

0 0 −1√
2

1√
2




1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0



QWP vertical fast axis


1√
2

−i√
2

0
0




1√
2

−i√
2

0 0
−i√

2
1√
2

0 0

0 0 1√
2

−1√
2

0 0 1√
2

1√
2




1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0


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Optical element |h⟩ Z M

QWP fast axis 135º


1√
2

0
i√
2

0




1√
2

0 i√
2

0

0 1√
2

0 −1√
2

i√
2

0 1√
2

0

0 1√
2

0 1√
2




1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0



QWP fast axis 45º


1√
2

0
−i√

2
0




1√
2

0 −i√
2

0

0 1√
2

0 1√
2

−i√
2

0 1√
2

0

0 −1√
2

0 1√
2




1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0



Circular retarder (δ = π
2 )


1√
2

0
0
i√
2




1√
2

0 0 i√
2

0 1√
2

1√
2

0

0 −1√
2

1√
2

0
i√
2

0 0 1√
2




1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1



Circular retarder (δ =−π
2 )


1√
2

0
0
−i√

2




1√
2

0 0 −i√
2

0 1√
2

−1√
2

0

0 1√
2

1√
2

0
−i√

2
0 0 1√

2




1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1


QWP stands for Quarter Wave Plate.
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