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Abstract 

 
 

ABSTRACT 

Using RBNS (Reported But Not Settled) claims data from an accident business portfolio with 11 

accident years and 5 development years, this paper conducts a case study that attempts to 

establish a comparison of the goodness of fit of Chain Ladder and Generalised Linear Mixed 

Models made with their mean squared errors once outstanding claim payments are estimated with 

R software and, afterwards, show a pricing strategy for a quota share, excess and at-the-money 

adverse development cover (ADC) types of finite risk reinsurance contract. In this thesis, finite 

risk treaties are disclosed putting the focus on LPT and ADC transactions. 

Keywords: traditional reinsurance, ART, finite risk, Chain Ladder, GLMM, LPT, ADC, 

regulation, reserving, pricing 

 

 

RESUMEN 

Mediante datos RBNS (Reported But Not Settled) de una cartera de accidentes con 11 años de 

ocurrencia y 5 de desarrollo, este artículo realiza un caso práctico que trata de comparar la 

bondad de ajuste de los modelos Chain Ladder y GLMM con sus errores cuadráticos medios 

después de estimar los pagos pendientes con el programa R a fin de mostrar una estrategia de 

tarificación para la modalidad de reaseguro financiero de cobertura de desarrollo adverso (ADC) 

en forma de cuota parte, exceso de pérdidas y stop-loss. Esta tesis también tiene como objetivo 

divulgar información sobre los contratos de reaseguro financiero, centrándose en las 

transacciones LPT y ADC. 

Palabras clave: reaseguro tradicional, ART, reaseguro financiero, Chain Ladder, GLMM, LPT, 

ADC, regulación, cálculo de reservas, tarificación 
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0. Introduction 

Insurers’ reserves could be insufficient to cover risks such as natural disasters (earthquakes, 

hurricanes, floods…), nuclear accidents or the asbestos consequences to human health. The 

reinsurer comes up to provide protection against those large possible claims. 

A reinsurance is a contract or agreement that allows an insurer (the ceding company) to totally or 

partially transfer risk in order to reduce greater losses derived from an insurance claim. Pricing a 

reinsurance is a complex task that can be done following different types of methods. The aim of 

this dissertation is to provide a pricing strategy for a quota share, an excess and an at-the-money 

adverse development cover (ADC) with the Generalised Linear Mixed Model’s (GLMM) mean 

squared error (MSE) using RBNS (Reported But Not Settled) claims data. However, RBNS 

future claim payments are estimated using both Chain Ladder (CL) and GLMM methods in order 

to see the differences between each model results and discard the method which does not fit 

properly the claims data (in this case, the CL). Nevertheless, before this, the traditional general 

framework of reinsurance is exposed. Afterwards, alternative risk transfer (ART) mechanisms are 

introduced by reviewing its origin and their purpose. Finally, to end the theoretical part, finite risk 

reinsurance are explained putting the focus on loss portfolio transfer (LPT) and ADC schemes. 

The literature reviewed for this study is composed by journal articles, books, news and seminars.  

The reason why I chose this topic is due to the attractive new shapes reinsurance is adopting and 

the need to disclose information about retrospective reinsurance practices that occur nowadays in 

the current world. The ability to make a structured coverage reinsurance product against extra-

large losses that already occurred due to natural catastrophes, extraordinary accidents or human 

ignorance consequences about hazardous materials such as asbestos sheds a light of calmness 

over the financial markets which are usually closely related to the insurance world. 

I would like to express thanks to my tutors, Dr Francisco Javier Sarrasí Vizcarra and Dr Eva Boj 

del Val, whose implication in this project has been relentless, indispensable and very treasured. 

On the one hand, Dr Francisco Javier Sarrasí Vizcarra is an expert in the reinsurance field and his 

extent knowledge has guided me through the lines of traditional reinsurance and innovative ART 

techniques. On the other hand, Dr Eva Boj del Val possesses the brain of a GLMM modeller who 

envisions the results interpretation long before she finishes the model, an intrinsic trait of an 

RBNS claims data dealing mastermind. To both of them, thank you. 
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1. Traditional general framework of reinsurance 

From Rückversicherung eine Einführung (Grossmann), the Mapfre Dictionary, the History of 

Reinsurance book (Golding), the German Commercial Code and the law firm Garrigues; the 

concept of reinsurance has been extensively defined as the contract or instrument aiming to 

transfer the total risks or part of them from a primary insurer (the ceding company) to the 

reinsurer in order to homogenise and reduce portfolio risks so as to diminish losses from 

insurance claims and strengthen the insurer’s solvency and its credibility to meet future payments 

in the original business-to-consumer contract (Sarrasí, 2017). For this reason, the reinsurer’s 

client is an insurer or another reinsurer; but not the general public. 

The transfer of risks from the primary insurer to the reinsurer allows the ceding company to 

embrace higher than usual risks and increase its underwriting capacity, attending clients’ risks 

who in the first instance would be directly rejected. There are different paths and methodologies 

to transfer risks between these two parties.  

Looking at a legal perspective, reinsurance can be grouped into obligatory, facultative or mixed. 

The obligatory reinsurance targets the entire insurer’s portfolio or just a specific line of insurance 

making both parties bind together to accept and cede the agreed risks, guaranteeing the reinsurer a 

certain amount of premiums and reducing administrative costs because of the automatically 

recurring obligation to accept all those future risks taken on by the insurer which obey the agreed 

reinsurance contract. However, the obligatory reinsurance distances the reinsurer from accepting 

those risks which go beyond the agreed limits of the contract. In this way, the facultative 

reinsurance allows both the ceding company and the reinsurer to freely accept an agreement on 

transferring an individual risk that may hold or may not hold the same original contractual 

conditions between the insurer and its insured. Examples of enforcing this type of contract are 

those excluded risks or geographical zones from the obligatory reinsurance or great sums that 

exceed the limits stipulated in obligatory contracts and that can be individually transferred with a 

facultative contract. Finally, the mixed or obligatory-facultative contract consists of that case 

where one party (usually the reinsurer) is bound to accept, within a few limits, those individually-

selected risks that the ceding company wants to transfer in order to enhance its underwriting 

capacity with greater covered sums (Sarrasí, 2017). 

Focusing on a technical point of view, reinsurers use two main methods to offer their coverage: 

the proportional and the non-proportional reinsurance. On one hand, in the proportional 

reinsurance, which is direct-proportional between ceded risks and premiums, the reinsurer takes a 

proportion of the sum insured which reveals its liability in case of insurance claims and also finds 

the percentage of the premium that corresponds to it: 

 

Sum reinsured

Total sum insured
 = 

Reinsurer's loss

Total loss
 = 

Reinsurance premium

Total insurance premium
  

 

Within this method, a reinsurance commission goes to the ceding company in order to 

compensate those administrative costs it will continue to incur. There are three subgroups in this 

method: the quota share, the surplus and the mixed reinsurance (Minzoni, 2009). Below, there are 

their respective mathematical formalisations (Sarrasí, 2017). In the first one, the reinsurer fixes a 
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percentage on all the ceding company’s portfolio risks or just a chosen line of business to assume 

responsibility for the losses occurring during the contract period. It is easy to manage, saves costs 

and is adequate for brand-new insurers but its main disadvantage is that it does not homogenise 

the portfolio, leaving aside those top risks with the highest sums insured and ceding away 

profitable business (little losses still will cost the same premium percentage compared to larger 

ones).  

 

Quota share reinsurance mathematical formalisation 

 

S = Sc + Sr 

Sc = k · S 

Sr = (1 - k) · S 

 

X = Xc + Xr 

Xc = k · X 

Xr = (1 - k) · X 

 

Legend 

S:    Policy total sum insured 

Sc:    Policy sum insured by the ceding company 

Sr:    Policy sum reinsured by the reinsurer 

k:    Quota rate that the ceding company retains 

1 – k: Remaining quota rate taken by the reinsurer 

X:    Policy total loss 

Xc:    Policy Insured loss 

Xr:    Policy reinsured loss 

 

The second method, the surplus reinsurance, consists in fixing a retention (or a net line) on a 

policy sum insured from a certain line of insurance making the reinsurer responsible for the 

amount that exceeds that retention within the pre-established contract limits (cases that exceed 

contractual limits shall be dealt with a facultative reinsurance). Therefore, the quota rate is not 

constant and depends on the policy sum insured (S) and the ceding company’s net line (M), 

which is the maximum loss quantity the insurer can assume for the policy. This method allows 

k = 
Xc

X
    ;    1 - k = 

Xr

X
 

k = 
Sc

S
    ;    1 - k = 

Sr

S
 

0 < k < 1 

X ≤ S 
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the reinsurer to limit the excessive risk and correctly homogenises its portfolio but it is more 

difficult to manage (Macedo, 2010). 

 

Surplus reinsurance mathematical formalisation 

 

S = Sc + Sr      ;       X = Xc + Xr 

Sc = k · S        ;       Xc = k · X 

 

k =                                           Sc =                                           Xc = 

 

 

Sr = k · S        ;       Xr = k · X 

 

1 – k =                                     Sr =                                           Xr =  

 

 

Legend 

S:    Policy total sum insured 

Sc:    Policy sum insured by the ceding company 

Sr:    Policy sum reinsured by the reinsurer 

k:    Quota rate that the ceding company retains 

1 – k: Remaining quota rate taken by the reinsurer 

M:    Ceding company’s net line 

X:    Policy total loss 

Xc:    Policy Insured loss 

Xr:    Policy reinsured loss 

 

Finally, the mixed reinsurance is a combination of the previous, operating a quota share until it 

reaches the retention and operating a surplus from then on. This type of contracts are mostly used 

when the insurer is in solid financial conditions and their advantage relies on the surplus coverage 

that offers protection and lets property portfolios grow faster (Méndez, 2005). 

1        if        S ≤ M 

M

S
        if        S ˃ M 

M        if        S ˃ M M

S
· X        if        S ˃ M 

X              if        S ≤ M S        if         S ≤ M 

0        if        S ≤ M 

1 −
M

S
   if    S ˃ M 

S – M   if      S ˃ M 

0        if        S ≤ M 

S – M

S
· X    if     S ˃ M 

0              if        S ≤ M 
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On the other hand, the non-proportional reinsurance is based on fixing a maximum loss quantity 

that the ceding insurer will be able to pay leaving the reinsurer what remains, within the pre-

established contract limits. Due to the fact this method is not ceding a proportional part of the 

primary insurer’s portfolio but just the excess-loss from the pre-established limit upwards, there 

is no sense to talk about a reinsurance commission as it does not apply (Minzoni, 2009). 

According to Macedo (2010), two types of non-proportional contracts can be distinguished: the 

excess-loss (and its Catastrophe version or Cat XL) and the stop-loss. The first one covers the 

insurer from those losses that go over the limit, retention or “priority” established by the ceding 

company. The Cat XL version focuses on the sum of the losses occurred by one identical incident 

(for example, an earthquake) and establishes the priority on this sum. Finally, in the stop-loss 

reinsurance the primary insurer fixes a percentage on the total loss that it is able to absorb for a 

specific line of business in an entire fiscal year (Alegre et al., 2017), leaving what remains to the 

reinsurer (for example, if the loss ratio priority is 110% and the actual loss ratio has been 130%, 

the reinsurer will pay those 20 points above the priority). 

 

Excess-loss (XL) reinsurance mathematical formalisation 

  

Xc =                                                    Xr =  

 

 

Legend 

X:    Claim amount of a policy 

Xc:    Policy insured loss 

Xr:    Policy reinsured loss 

M:    Priority 

 

Stop-loss reinsurance mathematical formalisation 

 

Zc =                                                    Zr = 

 

 

 

 

M        if        X ≥ M X – M        if        X ≥ M 

X        if         X ˂ M 0        if         X ˂ M 

M        if        Z ≥ M Z – M        if        Z ≥ M 

Z        if         Z ˂ M 0        if         Z ˂ M 
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Legend 

Z:    Total portfolio loss of a specific line of business in an entire fiscal year 

Zc:    Total portfolio insured loss 

Zr:    Total portfolio reinsured loss 

M:    Priority 

 

Ultimately, the traditional reinsurance encompasses all these types of contracts and usually lasts 

one year. It can be prospective (covering future losses) or retrospective (covering past losses) and 

it only takes into account the underwriting risk. The general formulation when a reinsurance is 

introduced to the ceding company is obtained as follows: 

 

Z = Zc +Zr = 

where 

 

Zc =          c,i  .                               Zr =         r,i  . 

 

 

When investment risk and timing risk are added to the reinsurance layout, it comes up the 

financial reinsurance, an alternative risk transfer which is gaining popularity over the past few 

years. Financial reinsurance contracts are multiyear, which is why the moment of time where 

claims are paid is considered to calculate the premium, contrary to traditional reinsurance 

contracts which do not give that much importance to this variable as they are short-term annually 

renewable treaties. Considering the moment of time where claims are expected to be paid and the 

interest rates of the financial returns, the mathematical formalization of the financial reinsurance 

would be: 

 

Zc =         c,i   c (Ti,0) .          Zr =        r,i   r (Ti,0) . 

 
 

Legend 

Z Total portfolio loss 

Zc Total portfolio insured loss 

Zr Total portfolio reinsured loss 

∑ 𝑋

𝑁

𝑖=1

     

∑ 𝑋

𝑁

𝑖=1

     𝑓 ∑ 𝑋

𝑁

𝑖=1

        𝑓 (X1, X2,…, XN, T1, T2,..., TN, N) 

 

∑ 𝑋

𝑁

𝑖=1

     (X1, X2,…, XN, N) 

 

∑ 𝑋𝑖

𝑁

𝑖=1
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N: Number of losses occurring in the interval [0, t] 

Ti: Moment of the ith loss payment in years 

Xc,i: Insured loss at the ith accident 

Xr,i: Reinsured loss at the ith accident 

𝑓c (Ti,0) Ceding company’s discount factor. The interest rate is based on the financial returns that 

the ceding company obtains from the retained premium. 

𝑓r (Ti,0) Reinsurer’s discount factor. The interest rate is based on the financial returns that the 

reinsurer obtains from the collected premiums. 
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2. Alternative risk transfer mechanisms 

2.1 Origin 

Innovative opportunities of cost effective techniques that appear when traditional reinsurance 

cover becomes expensive due to new emerging risks such as cyber, terrorism and liability risks 

that change the insurance prices over the course of the cycles are the alternative risk transfer 

(ART) mechanisms (Sibindi, 2015a). 

The first time an ART technique popped up in the market was in the 1960s when organisations 

began to fully focus on risk management designing systems for loss prevention (Doherty, 2000; 

Giddy, 2006; Dionne, 2013) such as captive insurance companies and risk retention groups 

(Schanz, 1999). Captives are self-insurance programs developed in order to reduce transactions 

costs from the insurance industry (caused by adverse selection, moral hazard, credit risk, basis 

risk, etc) and to obtain more investment control of premiums (Dionne, 2013). If located in 

offshore domiciles, they can have tremendous tax-advantages. In 2012, the world's three largest 

captive domiciles were Bermuda with 856 captives, the Cayman Islands with 741 and Vermont 

with 586 (Zolkos, 2013). According to Dionne (2013), “risk retention groups (RRG) are a special 

type of group captive authorized by Congress in response to the liability insurance crisis of the 

1980s to provide additional liability insurance capacity to businesses”. They account for only a 

small proportion of the US liability market and their main lines of insurance are liability coverage 

for professionals, the healthcare industry and educational institutions. 

According to Ostaszewski (2006), the field of ART grew out when insurance capacity was not 

sufficient and in the 1970s through 1990s insurers were driven from looking for traditional 

coverage to seek alternative ways to buy protection. Most of these techniques permit investors in 

the capital markets to take a more direct role in providing insurance and reinsurance protection, 

hence bringing up a convergence of insurance and financial markets. An ART form which 

reduces moral hazard and passes the risk to the financial market is through securitization such as 

reinsurance sidecars (financial structures that allow external market investors to take on the risk 

and benefit from the return of specific insurance or reinsurance active business), swaps and 

catastrophe bonds. Catastrophe bonds (CAT bonds), linked to a catastrophic-loss index, are 

insurance-linked securities that appeared first in 1992 on the Chicago Board of Trade ready to be 

launched (Minzoni, 2009; Dionne, 2013). 

Some key market participants in ART operations are investment banks such as Goldman Sachs 

and Citibank; insurers such as AIG, Zurich and XL; reinsurers such as Munich Re, Hannover Re, 

Swiss Re; brokers like AON, Willis Towers Watson or Marsh and consultants such as Deloitte 

and ABS Consulting (Ostaszewski, 2006). Ultimately, the alternative risk transfer market has 

grown an average of 6% per year since the mid-1980s, about twice the growth rate in the 

commercial insurance market (Andre and Sodowsky, 1997). 
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2.2 Definition and purpose of ART mechanisms 

Recently, ART has acquired a broader meaning and blends risk retention and risk transfer at the 

lowest total cost of risk resulting in mutually aligning the financial interests of both the insurer 

and the insured (Giddy, 2006). Today, there exist two broad segments to the ART market: risk 

transfer through alternative carriers, such as self-insurance, pools, captives and RRGs; and risk 

transfer through alternative products such as insurance-linked securities or CAT bonds, credit 

securitization, committed capital, weather derivatives and finite risk products, which include loss 

portfolio transfers (LPT) as a retrospective cover. Schanz (1999) describes ART mechanisms as 

tailored solutions to specific problems, multi-year and multi-line cover, a diversification and 

spread of risk over time that allows to insure those traditionally uninsurable risks and, finally, a 

way to transfer risk to non-(re)insurers (to investors in stock markets). Dionne (2013) states that 

reinsurance prices are highly volatile over the course of the cycle especially for reinsuring 

catastrophic losses. Rohe et al. (1998) also explains ART activity has developed in the property 

and casualty industry because of the very cyclic reinsurance marketplace. When a large event 

occurs, capacity dries up and makes pricing more expensive. Later, as time goes by and capacity 

recovers, reinsurance pricing becomes more competitive again. Therefore, ART products 

concentrate on obtaining an efficient form of capital for the insurance industry, soaring 

shareholders’ value and solving specific industry issues such as the above-mentioned shortage of 

capacity, uninsurable risks, asbestos and environmental reserve increases (Shepley, 2002). 

Graph 1 represents the rate on line index evolution year over year as historical events occurred, 

considering 1990 as the base year. As stated by the International Risk Management Institute, the 

rate on line is the ratio or percentage derived by dividing the reinsurance premium by the 

reinsurance limit or loss recoverable and the inverse is known as the payback period. The higher 

rate on line, the higher reinsurance premium to be paid. In 1992, Hurricane Andrew wiped out 

Florida escalating the insured losses to astronomical levels, larger than any model had predicted 

before. The industry experienced losses of $26 billion (Gonzalez and Sparrow, 2012; Artemis, 

2015) and the models had predicted that a bad hurricane would cause $2 billion in claims. As 

everyone was reconsidering their pricing strategy, reinsurance rates became more expensive and 

insurance companies realized that they needed much more coverage than they ever thought about 

(Rohe et al., 1998). Later, as time passed reinsurance prices became more competitive until 

another big event took place (i.e. 9/11 terror attacks, Hurricane Katrina, 2011 Japan Earthquake, 

Hurricane Sandy…) which would trigger another big increase in the rate on line index making 

reinsurance premiums more expensive and thereby strengthening the cyclic feature of the 

reinsurance pricing. 
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Finite risk reinsurance, as an alternative risk transfer mechanism, can provide capital coverage 

without these traditional reinsurance pricing market fluctuations that make it difficult for insurers 

to satisfy their capacity needs and also to reinsurers who do not offer coverage due to lack of 

capacity and risk-layering (Rohe et al., 1998). Nevertheless, Sibindi (2015b) concludes in his 

study that ART techniques “must be understood as complements rather than substitutes to 

traditional insurance products” and the underlying reason for this argument could be their 

complexity and, sometimes, their controversy over possible misuses.

Graph 1. Global property catastrophe rate-on-line index evolution.

Source: Guy Carpenter, Morgan Stanley Research, Artemis.bm (Evans, 2015a; Evans, 2015b)
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3. Finite risk reinsurance 

3.1 Concept definition and types 

One of the several ART tools companies use to increase their capacity and transfer high risks 

when natural disasters and traditional insurance losses escalate in times of uncertainty (Zolkos, 

2003; Minzoni, 2009) is the finite risk reinsurance, which made the first scene in 1960s’ 

insurance marketplace and peaked its popularity in the late 1990s (Wiggins, 2004). Some authors, 

such as Culp and Heaton (2005) prefer to differentiate finite risk and financial reinsurance. They 

state that corporate uses of risk finance and risk transfer are finite risk transactions and 

applications within the reinsurance industry (reinsurance or retrocession transactions for 

insurance companies) are financial reinsurances. However, not everyone follows this terminology 

since for example Fitch Ratings published a critical assessment titled Finite Risk Reinsurance 

despite describing reinsurance applications and not corporate uses. The present work does not 

apply the different terminologies used by Culp and Heaton (2005) which only differ on whether 

this ART tool is used by reinsurers for corporations or reinsurers for insurers. 

Contrary to traditional reinsurance, as Table 2 shows, finite risk transactions can be defined as 

multi-line, multiyear contracts where the reinsurer offers the insurer a coverage on a limited 

amount of risk relative to the aggregated premiums (Dahlen, 2007). This coverage extends to 

investment risk (i.e. real investment return resulting lower than expected), credit risk (i.e. the 

ceding company cannot pay the reinsurer the premiums), underwriting risk (uncertainty on the 

final cost of an insurance claim) and timing risk, which is the uncertainty on the period of time 

where the insurance claims must be paid off (Méndez, 2005; Minzoni, 2009). These contracts are 

based on assembling an account or fund, called experience fund, in which the reinsurance 

premium, which takes into account interest rates, is put in there as well as its investment return 

and as time goes by, insurance claims and administrative costs from the reinsurer are paid off 

through the experience fund (Sarrasí, 2017). At the end of the contract, in case there is a positive 

balance in the fund due to the fact that the reinsurer has obtained an investment return higher than 

expected since time series of losses occurred slower than expected, the reinsurer usually gives 

back 100% of the remaining amount (Culp and Heaton, 2005; Sarrasí, 2017). 
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Table 2. Differences between finite risk and traditional reinsurance 

Traditional reinsurance Finite risk reinsurance 

Annual and single line contracts Multiyear and multiline contracts 

Does not take into account interest rates to 

calculate the reinsurance premium 

Takes into account interest rates to calculate 

the reinsurance premium. 

Premium is pre-fixed and is not returned 
Premium is usually returned if there are no 

losses 

Covers underwriting risk 
Covers underwriting, investment, credit and 

timing risk 

No experience fund There is an experience fund 

Combination of risks Risks treated individually during a few years 

Limited lines of business covered 
Covers lines of business that traditional 

reinsurance cannot 

Focuses on the risk transfer and reducing 

underwriting risk 

Focuses on obtaining an investment return, 

managing liquidity and long-term planning 
 

Source: Sarrasí (2007), Álvarez (1995) 

 

Finite structures can be prospective (deals with future losses), taking the forms of spread loss 

cover and financial quota share, or retrospective (deals with past losses that have already 

occurred), in which time and distance policy, loss portfolio transfer (LPT) and adverse 

development cover (ADC) can be distinguished as the most relevant actual retrospective forms 

(Greig, 2005; Sarrasí, 2007; Minzoni, 2009). 

The spread loss cover is a prospective contract that affects an entire risk portfolio and is based on 

spreading losses over several earnings reporting periods in exchange of the ceding premium 

which is put in an experience fund to obtain an investment return (Álvarez, 1995; Minzoni, 

2009). It provides financing, liquidity management and long-term planning. 

The financial quota share is another prospective contract where the reinsurer agrees to take a 

percentage of the cedent’s premiums, which is the potential loss limit the reinsurer is going to be 

liable to, in exchange for a ceding commission that enables the cedent to increase its writing 

capacity as it arises surplus relief from transferring a portion of its risk to the reinsurer (Greig, 

2005). 

The time and distance policy is a retrospective contract where the reinsurer guarantees the cedent 

specific payments at pre-established future periods of time which are funded with the initial 

cedent’s premium and the return on capital the reinsurer expects from its investments, therefore, 

timing risk could be a threat in this case (Minzoni, 2009). 

The loss portfolio transfer (LPT) is a retrospective reinsurance transaction in which cedent’s 

remaining unclaimed loss obligations associated with a previously incurred liability are partially 
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or totally transferred to the reinsurer (Culp and Heaton, 2005; Minzoni, 2009; Partlow, 2012; 

Ingram, 2018). That is to say, reported but not settled (RBNS) liabilities are transferred. When the 

deal includes incurred but not reported claims (IBNR) or reinsurance above net carried reserve 

level (future payments cover), it is known as an Adverse Development Cover (ADC) which may 

work like a stop-loss or excess-loss treaty (Sarrasí, 2007; Loeffler, 2019). The main difference 

between LPT and ADC is that the first one involves a total or partial cession of a company’s 

reserves to the reinsurer who assumes financial responsibility for the ceded reserves (similar to a 

quota share treaty) while the second one provides reinsurance cover above net carried reserve 

level without involving any transfer of existing reserves (Mishra et al., 2005; Loeffler, 2019). 

Figure 3 shows the ADC can take the form of “at-the-money” cover, making the reinsurer assume 

the excess loss above a fixed limit on the cedent’s net reserves; “excess” cover, fixing a limit plus 

a retention on the cedent’s net reserves; or “hybrid options”, attaching cover within net reserves 

with the possibility to incorporate additional retentions or loss corridors (Mounty, 2016). 

Figure 3. Types of ADC covers 

 

Source: Willis Towers Watson (Mounty, 2016) 

3.2 An insight in LPT and ADC 

In retrospective finite risk products, apart from paying an arrangement fee to the reinsurer, the 

ceding insurer also pays a premium where the time value of money or net present value of 

reserves related to the transferred liabilities is considered plus a premium to compensate the 

reinsurer for the underwriting and other risks assumed (Koegel, 2003; Culp and Heaton, 2005; 

Palmer et al., 2015). LPT contracts, designated by Giddy (2006) as the most used finite product, 

can be used to exit a line of business, to transfer risk, to eliminate long-term liabilities from a 

company during merger and acquisition activities or transfer historical losses of the parent 

company to a captive where tax advantages appear in the form of deductible reimbursement 

programs, making the LPT formal legal transaction require sometimes the approval from the 

regulator and triggering a public debate on whether the finite risk scheme purpose is to transfer 

risk or to keep a company afloat by “making-up” its balance sheet losses (Quane et al., 2002; 

Zolkos, 2003). In any case, used correctly, LPT contracts are frequently combined with ADC 

defined as a “hybrid LPT-ADC” by WillisRe (2017) or a “Retrospective Aggregate Loss Cover” 

(RAL) by Culp (2002). This combination allows the time value of money to be embedded in the 

ceded carried reserves from the LPT contract funding the ADC layer (Loeffler, 2019). LPT 

treaties bear timing, investment, credit and reserving risks (Culp, 2002; Shepley, 2002; Sarrasí, 
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2007; Mlej, 2015), while ADCs deal more with underwriting risk than timing risk. According to 

Culp (2002), the risk premium charged by the reinsurer is higher in an ADC treaty than in an LPT 

due to greater residual underwriting risk arising from the possibility that the ceding insurer has 

underestimated its reserves. In Figure 4, Culp (2002) schematises how LPTs and ADCs can be 

considered as synthetic hybrid debt and equity securities where ADCs have a greater equity 

component than LPTs. Hybrid options (RALs) are in between these two treaties and the 

proportion of LPT versus ADC can be chosen by the cedent. 

Figure 4. Retrospective Finite Risk Products and Synthetic Capital 

 

Source: Culp (2002) 

Table 5 does a similar description for ADC treaties. Contracting an ADC with a loss retention or 

“buffer” has less effective coverage and is cheaper (Loeffler, 2019), although Collins (2016) 

argues that “companies that did this in the past paid the price when losses came in and they lost 

market capitalisation many multiples of the ‘savings’ they achieved”. 

Table 5. AON’s ADC Structure Options Summary 

 

Source: AON (Loeffler, 2019) 
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It is important to remember that with this retrospective reinsurance solution, which does not 

require the approval of a supervisory authority, the insurer keeps its legal obligations towards the 

policyholders (who do not detect the reinsurance operation) and, hence, the risk of default 

entailed by the reinsurer should be considered by hedging and backing it by capital according to 

Solvency II (Eling and Schaper, 2016). Besides, it is also possible to lift the reinsurance cover in 

exchange for a settlement, known as commutation and usually available after a couple of years 

(Mlej, 2015), and does not require the approval of a supervisory authority either. Commutation 

can reduce run-off portfolios on the contractual level before the final winding up (Eling and 

Schaper, 2016) and it could be settled, for instance, on the payment of shares in profits equal to 

100% of the assets value in the experience fund to the ceding company, releasing the reinsurer 

from past, present and future liabilities. Culp and Heaton (2005) declare that the principal risk for 

reinsurers is that losses or claims arrive faster than expected, triggering lower realised returns on 

investment from reserves (investment risk) and perhaps inadequate amounts of reserves to offset 

losses (reserving or underwriting risk). If the assets value in the experience fund is negative, 

commutation will occur with another kind of mutual agreement (Sarrasí, 2017). 

Finally, according to Margraf (2017), regarding the designing of an ADC contract it is necessary 

first to do the estimation of future claim payments to provide a pricing strategy based on future 

costs for reported claims that have not yet been settled (reported but not settled or RBNS). The 

following case study deals with RBNS data and, therefore, LPT contracts are considered to be 

applicable for settled claims but not yet paid and ADC contracts are applicable to open claims 

that have not yet been settled. Therefore, on one hand, the classic Chain Ladder (CL) framework 

will be put into practice to estimate the aggregate ultimate amount of claims and set the total 

future claim payments for a portfolio and on the other hand, a Generalised Linear Mixed Model 

(GLMM) will be considered to estimate individual ultimate amount of claims, following the steps 

of Boj and Esquinas (2016), in order to, finally, price three ADC treaties for those not-yet settled 

claims with the best fitting model between CL and GLMM according to their respective mean 

squared errors. 
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4. Case study: Designing a pricing strategy for ADC treaties 

In this section, used data is disclosed, presented and structured with R (see Annex 7.1). Then, the 

loss reserving methods (CL and GLMM) are described and the estimation of ultimate incurred 

claim payments follows afterwards using R software tools (see Annex 7.2 and 7.3). Finally, the 

pricing strategy is defined and enforced under either CL or GLMM models because depending on 

their goodness of fit one of them will be dismissed. 

4.1 Data structuring and characteristics 

The excel data file used in the case study is anonymous and contains only RBNS accident and 

liability portfolio claims data. It is divided in columns representing Valuation year, Line of 

business, Claim ID, Accident date, Reported date, Settlement date, Amount paid to date and 

Outstanding case estimate. Later, Reported claim cost, Number of claims, Valuation year, 

Accident year, Reported year, Settlement year, Accident to reporting delay, Reporting to 

valuation delay, Accident to valuation delay, Reporting to settlement delay and Claim Settled 

(yes or no) are added. Table 6 summarises the number of claims by reporting year and line of 

business. After the deaccumulation process of the Amount-paid-to-date variable, the claim 

occurrence year predictor is built and for RBNS claims this is the same as the Reported year. 

There are 13,662 accident claims and 2,911 liability claims, therefore, the total sum of reported 

claims is 16,573 for the 1996-2008 period.  

Table 6. Number of claims during 1996-2008 

 

Source: Own elaboration 

In this case study, the focus is put on the accident business portfolio. The dataset has an intrinsic 

characteristic that is worth to stand out. The reported claim quantity is not the same for all the 

payments of the same group of claims. That is to say, it can be found that the same claim ID 

which has different claim payments also may have different reported claim quantities, whether it 

Reported year Accident Liability Total

1996 2,309 40 2,349

1997 2,340 184 2,524

1998 2,059 280 2,339

1999 2,155 320 2,475

2000 1,529 336 1,865

2001 1,168 344 1,512

2002 801 280 1,081

2003 520 246 766

2004 354 241 595

2005 287 263 550

2006 140 200 340

2007 0 134 134

2008 0 43 43

TOTAL 13,662 2,911 16,573

Number of claims
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is in a different year or in the same one. One could argue this is an inconsistency but the reason 

behind this might be due to a constant process that the whole file must incur occasionally, without 

a specific declared period of time, to update reported claim quantities when the insurance 

company requires to do so due to judicial claims (i.e. the insured is required to attend a legal trial 

whose costs will be summed to the previous reported claim, hence, updating the RBNS claim). 

Therefore, after a linear predictor is built to indicate the Claim ID, the risk factor linear predictor 

is also built. This risk factor is the reported claim cost in the reported year and not always 

coincides with the sum of every payment made and, in addition, it can be different for each claim 

payment as discussed in the previous lines. 

Next, unnecessary payment observations recorded as zeroes are deleted as they only indicate 

there was no payment at that period of time but the claim was still open. Thus, the development 

period will be 5 years, summing up 2,759 claim payments which have at least one payment in the 

period 1996-2006, instead of 13,662, as shown in Table 6, which includes zero payments for the 

whole period 1996-2008. Furthermore, one deliberate assumption is made in order to simplify the 

outstanding claim payments prediction process. It is assumed that there is only one payment per 

year for each claim ID in order to end up with a single unique outstanding claim payment every 

future development year. This is done by aggregating all payments from the same claim ID 

incurred in the same year. 

Finally, by means of run-off triangles, the insurer’s data for the number of claims settled every 

development year is shown in Figure 7 and the settled claim payments evolution is depicted in 

Figure 8. Each triangle has a run-off period of 10 years, from 1996 to 2006, in which at least one 

claim is counted (Figure 7) and one claim payment is made (Figure 8). 

Figure 7. Run-off triangle representing incremental number of payments 

 
Source: Own elaboration 

Figure 8. Run-off triangle representing incremental claim payments 

 
Source: Own elaboration 

0 1 2 3 4 5 6 7 8 9 10

1996 230 47 3 2 0 0 0 0 0 0 0

1997 287 49 5 1 0 0 0 0 0 0

1998 251 45 5 0 0 5 0 0 0

1999 310 52 4 0 1 0 0 0

2000 305 39 5 0 0 0 0

2001 226 45 2 6 3 1

2002 172 52 1 0 0

2003 167 37 4 0

2004 122 36 1

2005 135 20

2006 83
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0 1 2 3 4 5 6 7 8 9 10

1996 28,376,529 4,850,687 1,966,969 255,010 0 0 0 0 0 0 0

1997 36,800,164 7,218,619 1,173,907 45,766 0 0 0 0 0 0

1998 41,167,372 9,890,777 6,242,820 0 0 351,810 0 0 0

1999 46,348,883 6,499,309 2,202,034 0 6,000 0 0 0

2000 43,066,179 7,282,026 265,030 0 0 0 0

2001 24,009,189 4,676,347 855,771 5,071,813 117,373 6,250

2002 20,135,397 3,389,023 545 0 0

2003 19,920,216 4,545,188 43,144 0

2004 21,391,683 3,163,574 1,130

2005 15,711,704 1,862,858

2006 7,175,067
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4.2 Loss reserving methods 

Through the use of two actuarial loss reserving methods, ultimate incurred claims will be 

estimated. These methods are the Chain Ladder and Generalised Linear Mixed Models.  

The Chain Ladder (CL) method is a particular case of the Generalised Linear Models (GLM) 

reproduced as the maximum likelihood estimation in a Poisson model (Kuang et al., 2009; Boj 

and Esquinas, 2016). It is a deterministic approach which assumes that claim patterns observed in 

the past will go on for future payments which will follow the same development pattern by delay 

year, and suggests that forthcoming settlement-amounts estimates will be more solid if all 

available data is used in the estimation (Verrall, 1994; Weindorfer, 2012), relying then on the use 

of all past years with cumulative claims loss settlement data rather than taking into account just 

the latest claims occurrence year (Schmidt, 2006). In Neuhaus’ (2014) words, CL “grosses up” 

observed claim number in proportion with the estimated delay probabilities (related to 

development patterns and factors) which may come from estimates from the observed data, expert 

assessment and/or industry statistics. In CL methodology, development patterns are needed to 

estimate outstanding claims within run-off triangles where the development of settled claims 

losses follows the same pattern for every claims occurrence year (Schmidt, 2006) and insurers 

tend to use the development factors for that purpose (Weindorfer, 2012; Neuhaus, 2014). These 

development factors (δd) or cumulative claims loss settlement factors are defined as the relative 

increase in the reported proportion from a development period to the next one, that is, the 

following ratio: 

δd =  
Expected cumulative claims losses settled up to and including the development year

Expected cumulative claims losses settled up to and including the previous development year
  . 

Non-life insurance companies usually divide portfolios into correlated subportfolios with 

particular satisfied homogeneous properties in order to, thereafter, apply CL method to each one 

of them and present a single run-off triangle (see Figure 9), ignoring the correlations among these 

subportfolios (Peremans et al., 2018). CL predictions for an aggregate portfolio (sum of 

subportfolios) are different from the aggregate sum of CL predictions for each separated 

subportfolio (Ajne, 1994). 

Figure 9. Typical representation of subportfolio m as a run-off triangle 

 
Source: Adapted from Peremans et al. (2018) 

Figure 9 shows a run-off triangle where i is the accident year of occurrence (going from 0 ≤ i ≤ I), 

m denotes a specific subportfolio (1 ≤ m ≤  M), k is the development year (0 ≤ k ≤  K) and 
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𝐶𝑖,𝑘
(𝑚)

represents cumulative claims amount of accident period i and development period k of 

subportfolio m. Note that other literature use “j” to represent the development year (Neuhaus, 

2014; Boj and Esquinas, 2016). Depending on the size of K, long or short tail business are 

indicated and but for simplicity it is assumed that K = I. Hence, at time I the claims 𝐶𝑖,𝑘
(𝑚)

with i + 

k – 1 ≤ I are observed, while the claims 𝐶𝑖,𝑘
(𝑚)

with i + k – 1 > I are unobserved and must be 

predicted. The triangle shows the development of claims for each accident period (usually on a 

yearly, quarterly or monthly basis) on the rows and the development years on the columns 

whereas payments in the same calendar year are presented on the diagonal. 

The outstanding reserve Q required to be paid in the future is defined as 

𝑄 = ∑ ∑( 𝐶𝑖,𝐼
(𝑚)

−  𝐶𝑖,𝐼−𝑖+1
(𝑚)

𝐼

𝑖=1

) .

𝑀

𝑚=1

 

Q depends on the ultimate incurred claim values 𝐶𝑖,𝐼
(𝑚)

, which are the sum of past payments on the 

claim and its outstanding case estimate (Neuhaus, 2014). Claims reserving pursuits to complete 

the run-off triangles into squares and to that end it is needed to forecast the future claims in the 

bottom right corner of the run-off triangles in order to estimate the overall outstanding reserves 

and get the ultimate incurred claims estimate (Peremans et al., 2018). 

The advantage of the CL technique is that its predicted claims are highly responsive to changes in 

the observed claims, there is a positive relationship between observed (past) claim numbers and 

predicted (future) claim numbers. In her model study, Schiegl (2013) shows that the structure or 

symmetry of claim payments elects the 2D CL method as an appropriate estimation for reserves, 

even though the author develops a 3D stochastic model for claim reserving that finds useful for 

lines of business with long reporting and/or run-off periods. 

The main disadvantage of the CL technique is its sensitivity (Neuhaus, 2014), due to misleading 

CL predictions of unreported claims in long-tail lines of business. These predictions omit possible 

random fluctuations in the future of the newer reported claims that have usually been recorded 

small (bottom-left position in the triangle). And a small number will destabilise a heavy tail. 

Schiegl (2013) examines the correlations among CL reserves and finds out that CL estimates tend 

to forecast a large (small) reserve when the reserve is really large (small), another revealing proof 

that CL method does not suit for long-tail business reserves estimation. Besides, the CL model 

does not contain a priori information such as factors like trends or patterns in development 

factors, trends across accident years and trends across payment years and assumes that these 

factors are unrelated, putting them in different levels which according to Zehnwirth (1997) is 

absurd. The assumption on homogeneity in development patterns or, in other words, unrelated 

claim frequencies is strongly refused by reviewed contemporaneous authors (Zehnwirth, 1997; 

Neuhaus, 2014; Peremans et al., 2018) and  one of them publicly states that homogenous 

development patterns where variance is 0 or very close to it do not exist in the real world 

(Zehnwirth, 1997). The reasons behind why the observed claims loss settlement patterns might 

vary over time are enumerated by Weindorfer (2012) as changes in product design and 

conditions; changes in the claims reporting, assessment and settlement processes; changes in the 

legal environment; and abnormally large or small claim settlement amounts, which in turn lead to 

overestimation or underestimation of claim reserves predictions. Therefore, CL should only be 
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considered when the company’s past experience data is accurate and error-free and the insurer 

should always look at the fact that its experience does not contradict the assumptions under this 

technique, otherwise data should be adjusted accordingly or an alternative method should be used 

(Weindorfer, 2012) such as Generalised Linear Mixed Models. 

The Generalised Linear Mixed Model (GLMM) is a multilevel GLM that incorporates fixed 

effects from systematic variables and random effects from group or temporal variables in the 

linear predictor (Klinker, 2010; Boj and Esquinas, 2016) used to deal with a wide range of 

actuarial applications detailed by McCullagh and Nelder (1989), McNail and Wendin (2005), 

Antonio et al. (2005, 2006), Boucher and Denuit (2006), Boucher et al. (2008), Frees (2010), 

Verrall et al. (2010), Antonio and Valdez (2012), Kroon (2012), Pigeon et al. (2013, 2014), Frees 

et al. (2014),  Godecharle and Antonio (2014) and Boj and Esquinas (2016). The fixed effect is a 

classification variable with some few levels in which we are interested in and random effect is a 

classification variable with many levels which only some of them appear in the sample dataset. 

According to Klinker (2010), fixed and random effects can vary among different contexts of 

study and, for instance, fixed effects of one study can be random in another. 

A GLMM is fully specified by the link function (normally, but not necessarily logarithmic in loss 

reserving), the structure of covariates and the probability distribution, whose parameters are 

estimated by numerical likelihood maximisation (Booth and Hobert, 1998; Verbeke and 

Molenberghs, 2000; Molenberghs and Verbeke, 2005; Jiang, 2007). Following the definition 

scheme from Boj and Esquinas (2016), suppose the random variable 𝒀𝑖 and individual or group-

of-similar-individuals observations i = 1, ... , N gathered by 𝑌𝑖1, … , 𝑌𝑖𝑛𝑖, the general expression of 

GLMM is: 

𝒀𝑖 = 𝑔−1(𝑿𝑖𝜷 + 𝒁𝑖𝒃𝑖 + 𝜺𝑖 ), i = 1, ... , N 

with 

𝝁𝑖 = E [𝒀𝑖 |𝒃𝑖] = 𝜓′(𝜽𝑖) y Var [𝒀𝑖 |𝒃𝑖] = ∅ 𝑉(𝝁𝑖 ) = ∅ 𝜓′′(𝜽𝑖). 

Where: 

𝒀𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑛𝑖
) is the observations vector for the i-th indivual (ni x 1), 

ni is the observations number for the i-th individual, 

N is the total different individuals number of the sample (1 ≤ i ≤  N), 

𝜷 (p x 1) is the vector of fixed effects which contains the p fixed parameters, unknown and 

common for all sample individuals, 

𝒃𝑖 (q x 1) is the vector of random effects with q random parameters for the i-th individual, and 

therefore, different for each individual i, 

𝑿𝑖 (ni x p) is the design matrix for fixed effects for each individual i,  

𝒁𝑖 (ni x q) is the design matrix for random effects for every individual i, 

𝜺𝑖 (ni x 1) is the vector that contains the residuals for each individual i, 
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g(∙) is the link monotonous and differentiable function  

g-1 (∙) is the inverse of the linking function, 

∅ is the dispersion parameter, 

𝑉 (𝝁𝑖) is the variance function of the freely chosen distribution (usually an exponential family 

one) 

It is worth mentioning that the GLMM linear predictor contains the sum of the systematic 

component 𝑿𝑖𝜷 which includes the fixed effects and the random component 𝒁𝑖𝒃𝑖 which includes 

the random effects. On this matter, GLMM can be considered as a multilevel GLM that provides 

a multilevel part (or mixt) with respect to GLM classic approaches. 

Similar to Boj and Esquinas (2016), the assumed hypothesis are the following: 

1) Given the vector 𝒃𝑖, it is assumed that 𝒀𝑖 observations are independent with an 

exponential-family density: 

 
(𝑦𝑖𝑗 |𝒃𝑖 , 𝜷, ∅) = exp ((𝑦𝑖𝑗𝜃𝑖𝑗−(𝜃𝑖𝑗))/ ∅ + 𝑐(𝑦𝑖𝑗,∅)), 𝑗 = 1, … , 𝑛𝑖. 

 

The answer is linked with the linear predictor by the link function like in GLM: 
 

g(𝝁𝑖)=𝑿𝑖𝜷+𝒁𝑖𝒃𝑖 . 

 

2) 𝒃𝑖 and 𝜺𝑖 are also independent and normally distributed with a vector whose mean is 0 and 

variance and covariances matrixes are 𝑫 (𝑞×𝑞) and Σ𝒊 (𝑛𝑖×𝑛𝑖), respectively. Thus, 𝒃𝑖 ~ 𝑁 
(0, D) and 𝜺𝑖 ~ 𝑁 (0, Σ 𝑖). 

Using the quasi-likelihood function defined for the fixed and random effects, the model is 

estimated. The estimator , known as BLUE (Best Linear Unbiased Estimator), for the fixed 

effects and once maximised the quasi-likelihood function is expressed as: 

 = (∑ 𝑿′𝑁
𝑖=1 𝑖𝑽’𝑖-1𝑿𝑖)-1  ∑ 𝑿′𝑁

𝑖=1 𝑖𝑽’𝑖-1𝒀𝑖 . 

And in the same way, random effects, 𝒃𝑖, are estimated with  expressed as: 

 = 𝑫𝒁𝑖′𝑽𝑖
−1 (𝒀𝑖−𝑿 ) . 

In general, the estimation needs likelihood or numerical integration techniques. In the case study, 

R package lme4 is used to estimate and adjust the GLMM with its glmer function (Kaas et al., 

2008; Bates et al., 2019a). With this package, one can calculate everything, including the 

bootstrap-adjusted forecasting distributions (Boj et al., 2014). For the bootstrap process 

calculations, lme4’s simulate and refit functions are very helpful (Bates et al., 2019b). However, 

the present case study does not contemplate the bootstrap procedure. 

The choice of GLMM instead of just GLM would rely on the fact that, as mentioned before, this 

model has a part of fixed effects constituted by accident years and development years (until here 

is the same as the linear predictor of a GLM) and, in addition, a risk factor is added to the fixed 
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part (which collects the effect of the expert’s report of the claim for every period). After that, a 

part of random effects is also included in the model. This part defines what payments belong to 

the same claim using claim IDs. On the whole, the model becomes a fully specified GLMM. 

Figure 10 portrays a diagram of the GLMM effects. 

Figure 10. Diagram of GLMM effects 

 

Source: Own elaboration 

4.3 Estimating future incremental claim payments with R 

4.3.1 Chain Ladder approach results 

Using the glm function from R stats package (see Annex 7.2) to model a GLM defined with the 

quasipoisson family which has a logarithmic link function by default and reproduces the Chain 

Ladder method including two predictor binary variables which refer to occurrence years and 

development years, the run-off triangle representing incremental claim payments (therefore, non-

cumulative) from Figure 8 is completed with the future payment estimates as it is shown in the 

blue zone from Figure 11. 

Figure 11. Run-off triangle representing original and CL estimated incremental claim payments 

 
Source: Own elaboration 

The GLM adjustment formula instruction is set with a “aoglm” defined nominal variable as R 

factor which contains 11 occurrence years enumerated from 1 to 11 (1996-2006 in triangles), a 

“adglm” defined nominal variable as R factor which contains 11 development years enumerated 

from 1 to 11 (0-10 in triangles) and a “cij” variable which contains the original claim payment 

quantities aggregated in each year (coordinates i and j represent occurrence and development 

years, respectively), forming the so-called aggregated GLM. The instruction looks as follows: 

0 1 2 3 4 5 6 7 8 9 10

1996 28,376,529 4,850,687 1,966,969 255,010 0 0 0 0 0 0 0

1997 36,800,164 7,218,619 1,173,907 45,766 0 0 0 0 0 0 0

1998 41,167,372 9,890,777 6,242,820 0 0 351,810 0 0 0 0 0

1999 46,348,883 6,499,309 2,202,034 0 6,000 0 0 0 0 0 0

2000 43,066,179 7,282,026 265,030 0 0 0 0 0 0 0 0

2001 24,009,189 4,676,347 855,771 5,071,813 117,373 6,250 0 0 0 0 0

2002 20,135,397 3,389,023 545 0 0 30,257.52 0 0 0 0 0

2003 19,920,216 4,545,188 43,144 0 10,019.19 31,535.48 0 0 0 0 0

2004 21,391,683 3,163,574 1,130 411,095.80 10,206.81 32,126.00 0 0 0 0 0

2005 15,711,704 1,862,858 673,514.90 305,489.10 7,584.77 23,873.13 0 0 0 0 0

2006 7,175,067 1,289,857.00 324,403.60 147,141.20 3,653.26 11,498.68 0 0 0 0 0
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glm1<-glm(formula = cij ~ aoglm + adglm, family = quasipoisson) 

 

The resulting model where the first R factor from the occurrence year and the development year 

is included in the independent term 𝛽̂0 is: 

µ̂ =  𝑒(𝛽̂0+𝛽̂𝑎𝑜2+⋯+𝛽̂𝑎𝑜11+𝛽̂𝑎𝑑2+⋯+𝛽̂𝑎𝑑11) . 

This GLM-Poisson model can be found in Annex 7.2, together with its coefficients, whose most 

significant values are found in the intercept (at 0.1% level), the 11th occurrence year (at 1%) and 

from the 2nd to the 6th development year. The Mean Squared Error (MSE) is also calculated 

within the disaggregated (aggregated) GLM and its value is 941,829,257,933 monetary units 

(1.656742e+12), a very high amount that will be compared to the GLMM’s MSE. 

4.3.2 GLMM approach results 

As mentioned earlier, the GLMM adjustment is done using R package lme4 and its glmer 

function (Kaas et al., 2008; Bates et al., 2019a). After calling lme4 package from the library, the 

instruction to put in R to estimate the GLMM is 

 

glmm1 <- glmer(pagos~ao+ad+fr+(1|siniestro), family = poisson) 

 

where 

pagos = fixed effect predictor representing aggregated payment quantities every year. 

ao = fixed effect predictor representing occurrence or accident year. 

ad = fixed effect predictor representing development year. 

fr = fixed effect predictor performing the risk factor which in turn represents the reported claim 

quantity in each reported year, as it does not always coincide with the sum of all settled claim 

payments and besides it can be different for every claim payment. 

(1|siniestro) = random effect predictor representing payments that refer to the same claim (in 

Spanish, siniestro = claim). 

The building process of these variables can be found in Annex 7.3. 

The resulting model where the first R factor from the occurrence year and the development year 

is included in the independent term 𝛽̂0 is: 

µ̂𝑖 =  𝑒(𝛽̂0+𝛽̂𝑎𝑜2+⋯+𝛽̂𝑎𝑜11+𝛽̂𝑎𝑑2+⋯+𝛽̂𝑎𝑑11+𝛽̂𝑓𝑟𝑖
+𝑏̂𝑠𝑖𝑛𝑖

 ) . 
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The estimates from the random part, 𝑏̂𝑠𝑖𝑛𝑖
, are displayed with the ranef(glmm1) instruction. 𝑏̂𝑠𝑖𝑛𝑖

 

symbolises the random effect predictor which takes into account what group of claims each 

payment belongs to and this deviation correction is individual for each payment i. 

This GLMM model can be found in Annex 7.3, together with its coefficients, whose most 

significant values are found in the intercept, the occurrence years 3, 4, 6 and the risk factor (at 

0.1% level); at 5th occurrence year (1% level) and at the 2nd occurrence year (10% level). The 

Mean Squared Error (MSE) is also calculated within the disaggregated (aggregated) GLMM and 

its value is 79,709,894,341 (3.0734) monetary units (m.u.), 862,119,363,592 m.u. lower than 

CL’s MSE (941,829,257,933 m.u.) and, therefore, GLMM is a lot more accurate than CL 

classical methodology (see Table 12). 

Table 12. CL and GLMM’s disaggregated and aggregated MSE comparative table 

 
Source: Own elaboration 

The run-off triangle representing incremental claim payments (therefore, non-cumulative) from 

Figure 8 is completed with the future payment GLMM estimates as it is shown in the blue zone 

from Figure 13. 

Figure 13. Run-off triangle representing original and GLMM estimated incremental claim payments 

 
Source: Own elaboration 

Thus, the CL model will be rejected in the pricing study but it is still going to be visible in the 

present value estimation of future payments to see by how much the reinsurer would be 

underestimating future payments. 

4.4 Estimating present value future payments 

Due to the fact that it is unknown the exact time when claims are going to be paid, beginning in 

2006 (ao = 11), the cedent’s future payments (𝐶11𝑗) are supposedly valued at the middle of the 

year (assuming a uniform distribution of the claims), hence, it is calculated, considering the UK’s 

risk-free rate (r) of 2%, simplified from 2.1% (Cherowbrier, 2019), the present value (PV) of the 

future payments (R), a variable that the reinsurer will use for pricing: 

R = ∑𝑗=1
5 𝐶11𝑗 ∗ (1 + 0.02)−𝑗+

1

2 .  

Disaggregated Aggregated Disaggregated Aggregated

941,829,257,933.00 1.66E+18 79,709,894,341.00 3.0734

Chain Ladder GLMM

0 1 2 3 4 5 6 7 8 9 10

1996 28,376,529 4,850,687 1,966,969 255,010 0 0 0 0 0 0 0

1997 36,800,164 7,218,619 1,173,907 45,766 0 0 0 0 0 0 0

1998 41,167,372 9,890,777 6,242,820 0 0 351,810 0 0 0 0 0

1999 46,348,883 6,499,309 2,202,034 0 6,000 0 0 0 0 0 0

2000 43,066,179 7,282,026 265,030 0 0 0 0 0 0 0 0

2001 24,009,189 4,676,347 855,771 5,071,813 117,373 6,250 0 0 0 0 0

2002 20,135,397 3,389,023 545 0 0 17,355,896.18 0 0 0 0 0

2003 19,920,216 4,545,188 43,144 0 13,862,587.70 18,193,416.61 0 0 0 0 0

2004 21,391,683 3,163,574 1,130 56,415,734.86 13,778,069.00 18,082,493.32 0 0 0 0 0

2005 15,711,704 1,862,858 11,234,605.71 40,258,887.02 9,832,181.12 12,903,865.51 0 0 0 0 0

2006 7,175,067 6,362,869.86 4,525,458.57 16,216,850.88 3,960,542.05 5,197,860.11 0 0 0 0 0

O bserved and estimated 

incremental claim 

payments

Development year
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Table 14 depicts the estimated incremental claim payments from development year 1 to 5, as for 

both models from the 6th to the 10th development year zero-quantity incremental payments are 

recorded. The total PV of future payments for CL and GLMM is visible at the bottom of the 

table. 

Table 14. Present value of estimated future payments under Chain Ladder and GLMM methods 

 
Source: Own elaboration 

The Chain Ladder’s PV of future payments is very low compared to GLMM’s. Looking at both 

models’ MSE, choosing Chain Ladder would mean incurring a high risk of underestimating the 

PV of future payments by 32,830,776.01 m.u.. These results would make substantial differences 

on the pricing results under each model and it would be very risky to use Chain Ladder as an 

option to price reinsurance policies so it is completely discarded. 

4.5 Pricing ADC treaties using GLMM’s MSE 

The pricing strategy for this case study is based on relating the safety loading factor with the 

Mean Squared Error (MSE) by means of fluctuation bands, in other words, the total reinsurance 

premium will depend on the MSE and, in consequence, on the applied model to estimate future 

payments (in this case, GLMM). However, Mlej (2015) suggests conducting a bootstrapping of 

triangles procedure to estimate variability of reserves but in the present case this is not 

contemplated. It is neither taken into consideration the tax implication, cost of allocated capital, 

the quality of data and Bornhuetter Fergusson model as a method to look for “best estimates” 

liabilities. 

The MSE measures the average squared error of the predictions calculating for each point the 

square difference between estimates and targets and then dividing by the total number of 

observations, hence, making the average of those squared-differenced values. In Zhu’s et al. 

(2019) words, the MSE “measures the forecasting power of the models” or “assesses the in-

sample prediction ability”. This indicator is generally defined by: 

MSE =  
1

𝑁
 ∑𝑖=1

𝑁  (𝑦𝑖 − 𝑦̂𝑖)2 . 

Nonetheless, in this case study the formula varies to the same one as Boj and Esquinas (2016) 

apply in theirs: 

Development 

year

Estimated future 

claim payments

Present Value 

with r = 2%

Estimated future 

claim payments

Present Value 

with r = 2%

1 1,289,857.00 1,277,148.74 6,362,869.86 6,300,179.96

2 324,403.60 314,909.24 4,525,458.57 4,393,011.46

3 147,141.20 140,034.12 16,216,850.88 15,433,559.26

4 3,653.26 3,408.63 3,960,542.05 3,695,336.81

5 11,498.68 10,518.34 5,197,860.11 4,754,707.60

Total PV of 

future payments
1,746,019.08 34,576,795.09

Chain ladder GLMM
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MSE =
∑𝑖=1

𝑁 ∑𝑗=1

𝑛𝑖  (𝑌𝑖𝑗−µ̂𝑖𝑗)
2

∑𝑖=1
𝑁 𝑛𝑖

 . 

This is because occurrence years (i) and development years (j) are taken into account. 

Nevertheless, the interpretation of this indicator does not vary: The lower the MSE value, the 

better fitting the model is. For a perfect fitting model, MSE = 0. MSE is never negative due to the 

squared difference. Sometimes, analysts study the Root Mean Squared Error (RMSE) to make the 

scale of the errors equal to the scale of the actual quantity values (Drakos, 2018) and it is the 

distance of a data point from the fitted line, comparable to the observed variation in 

measurements of an actual point (Vernier, 2018). Its interpretation is the same as the MSE as the 

square root is a non-decreasing function and the analyst will look for the lowest possible value 

and Vernier (2018) affirms it might be a better measure of goodness of fit than a correlation 

coefficient. An estimation of the pure premium using RMSE in Property and Casualty 

reinsurance modelling can be seen at Chasseray et al. (2017). 

MSE is considered to be a simple metric for regression evaluation and this is its main advantage. 

However, the disadvantage of MSE is that it is too sensitive to individual predictions and, hence, 

a single extremely bad prediction will worsen the error and the model’s badness will be 

overestimated due to an undesired skewness of the metric (Drakos, 2018). With noisy data it may 

be difficult to measure the fitness of a model. And, on the other hand, if all errors are small or 

smaller than 1 there could be an underestimation of the model’s badness. 

Part of the definition of the loading factor could be considered as the main reason to choose to 

equate the MSE to it. The reinsurance loading factor depends on the individual circumstances of 

each business case and, according to Carter (1983), it can be broken down into three components: 

(1) a fee to cover the reinsurer’s acquisition and administrative costs; 

(2) a safety loading to cover the risk accepted by the reinsurer (the fluctuations in claim 

costs); and 

(3) a contribution to profit. 

The following study only focuses on the second component, the safety loading, as it is the one 

that justifies the relationship between the disaggregated MSE with the whole premium loading 

factor. Fluctuation bands based on the value of the CL and GLMM’s MSE are assumed in order 

to provide cover to fluctuations in claim costs (see Table 15). In this case, GLMM has a safety 

loading equal to 0.2 whilst CL’s is equal to 0.8, making the reinsurance more expensive as the 

reinsurer incurs much more risk if it considers the CL’s estimated future payments. 

Table 15. Assumed fluctuation bands for the value of disaggregated MSE 

 
Source: Own elaboration 

 

Fluctuation bands Safety loading

MSE < 100 x 10^9 0.2

100 x 10^9 < MSE < 500 x 10^9 0.5

MSE > 500 x 10^9 0.8
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The reinsurance premium calculation is managed without considering expenses loading for the 

expected total administrative costs of the treaty (1), the reinsurer’s gross net premium income 

derived by the contribution to profit (3), inflation, volatility charge (Mlej, 2015), exchange rate 

risk and the so-called “superimposed inflation”, a concept proposed by Benktander (1974) and 

defined by Carter (1983) as the combination disproportionate increases in a reinsurer’s liability 

caused not only by inflation. Examples of causes for these increases are higher compensations for 

personal injury related to earnings during expansionary economic times even yet prices remain 

stable, the worldwide tendency for courts to be more generous towards claimants at the expense 

of the (re)insurance system and the increasing costs of medical treatments that keep alive more 

seriously injured individuals. Carter (1983) stands out that inflation, changes in law and other 

developments need to be accounted for when adjusting premiums accordingly. Excess-loss 

reinsurers should also consider this, but it is difficult enough to apply such parameters for direct 

insurers and even more for reinsurers (Belloy and Gabus, 1976). The problem gets worse for 

long-tail business as claims remain outstanding for five or more years increasing the probability 

that potential costs rise through inflation. Carter (1983) states that reinsurers prefer to adjust the 

treaty limits according to the inflation in an annual basis, hence, indexing their retention limit to 

the annual inflation rate. Should the reader be interested in the index clause, defined by Schiffer 

(2010) as the distribution of the effects of inflation on reinsured claims costs frequently 

developed in excess-loss reinsurance contracts (XL contracts) covering long-tail risks, Carter 

(1983) shows an example of indexing the reinsurer’s retention at p. 207. 

All in all, in this study, the technical reinsurance premium which is equal to the pure premium 

(amount related to claim losses excluding any profit margin or administrative expenses) plus the 

GLMM’s safety loading is computed in order to set an example of a reinsurance pricing strategy 

with the GLMM’s MSE. Due to the fact this case study tackles RBNS claims data, three ADC 

treaties (quota share, excess-loss and at-the-money types) issued on 31/12/2006 are enforced to 

provide three types of retrospective reinsurance cover to possible incremental future payments 

coming from those reported claims that have not been settled yet to the contract’s issue date. 

Finally, it is assumed that the reinsurer sets an upper limit of loss coverage for every contract 

defined as the maximum amount of estimated future payments for every development year, and 

that the technical interest rate assumed by the reinsurer and used to calculate the present value of 

future payments (R) is equal to the UK’s risk-free rate (r) of 2%, simplified from 2.1% 

(Cherowbrier, 2019). 

4.5.1 Pricing a quota share ADC 

The reinsurance technical premium for the ADC in the form of quota share loss portfolio 

arrangement can be formulated similarly to the classic quota share reinsurance. 

Firstly, the reinsurance pure premium (𝜋𝑝
𝑅) must be obtained exposing the quota share rate (𝑘) of 

the present value (PV) of the future claim payment amounts (𝑅) that the insurance ceding 

company will retain: 

𝜋𝑝
𝑅 = (1 − 𝑘) · 𝑅 . 

The PV of future claim payments R is that one obtained for the GLMM in Table 14 from section 

4.4 with the formula: 
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R = ∑𝑗=1
5 𝐶11𝑗 ∗ (1 + 0.02)−𝑗+

1

2 =  34,576,795.09 m.u. 

Eventually, the loading factor –from now on “the safety loading” (𝛾𝑅) due to the assumptions 

made before– is added to the pure premium to get the reinsurance technical premium (𝜋𝑡
𝑅) which 

will be charged to the cedent (in monetary units or m.u.): 

𝜋𝑡
𝑅 = 𝜋𝑝

𝑅 · (1 + 𝛾𝑅) . 

Putting it into numbers, suppose the ceding company wants to retain 40% of its accident business 

future payment liabilities. The quota share contract will cover the remaining 60%. Therefore, the 

reinsurer will be liable to 60% of those future incremental payments that are estimated to occur in 

the run-off period. So, 𝑘 = 0.4 and 𝛾𝑅 = 0.2 (as GLMM’s MSE are lower than 100 x 109) 

Under the GLMM model, the pure and technical premium are: 

𝜋𝑝
𝑅 = (1 − 𝑘) · 𝑅 = (1 − 0.4) ·  34,576,795.09 = 20,746,077.05 m.u. 

𝜋𝑡
𝑅 = 𝜋𝑝

𝑅 · (1 + 𝛾𝑅) = 20,746,077.05 · (1 + 0.2) = 24,895,292.47 m.u. 

The results, portrayed in Table 16, show that in order to cover a maximum of 34,576,795.09 of 

possible future payments, the insurer will have to pay 24,895,292.47 m.u., from which 

4,149,215.41 m.u. account for the reinsurer’s safety loading. 

Table 16. Recalculated PV of estimated future payments and technical premium under GLMM model 

for the quota share ADC 

 
Source: Own elaboration 

4.5.2 Pricing an excess ADC 

In order to price an excess ADC, the total present value of future payments must be recalculated 

(R′) as the aim of this contract is to cover future payments subtracting a retention (𝑀) on each of 

the cedent’s n-numbered estimated incremental claim payments (𝐶11𝑗
𝑛 ) in each development year, 

Development 

year

Estimated future 

claim payments

Present Value 

with r = 2%

1 6,362,869.86 6,300,179.96

2 4,525,458.57 4,393,011.46

3 16,216,850.88 15,433,559.26

4 3,960,542.05 3,695,336.81

5 5,197,860.11 4,754,707.60

Total PV of 

future payments
34,576,795.09

Technical 

premium
24,895,292.47

GLMM
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from the first (j = 1) to the fifth (j = 5), caeteris paribus (r = 2% and MSE fluctuation bands kept 

equal): 

R′ = ∑𝑛=1
83 ∑𝑗=1

5 (𝐶11𝑗
𝑛 − 𝑀𝑗) ∗ (1 + 0.02)−𝑗+

1

2 . 

Remembering Sarrasí (2017), the mathematical formalisation for the policy insured (𝐶𝑐
𝑛) and 

reinsured (𝐶𝑟
𝑛) loss in an excess-loss treaty goes as follows: 

 

𝐶𝑐
𝑛 =                                                    𝐶𝑟

𝑛 =  

 

Therefore, if 𝐶11𝑗
𝑛 − 𝑀𝑗 < 0, then Cr = 𝐶11𝑗

𝑛 − 𝑀𝑗  = 0. The reinsurance will cover the excess above 

M of the individual estimated future payments for each development year. 

In this case, the amount of retention (𝑀) is chosen to be the average of all 83 individual 

incremental claim estimates (maximum n = 83) for each development year after accident year 

2006 (ao = 11) from the GLMM model estimation. Table 17 depicts each M based on the average 

of incremental claim estimates for each development year under GLMM approach. Annex 7.4 

shows all individual claim estimates for every development year and claims from accident year 

2006 (ao = 11) computed under GLMM method. 

Table 17. Estimated future payments and retention limits on each development year under GLMM 

 
Source: Own elaboration 

Under the GLMM model, the recalculated PV of future payments amount (R’) and the ADC’s 

pure and technical premium are: 

R′ = ∑𝑛=1
83 ∑𝑗=1

5 (𝐶11𝑗
𝑛 − 𝑀𝑗) ∗ (1 + 0.02)−𝑗+

1

2 =  16,793,665.62 m.u. 

𝜋𝑝
𝑅′ = R′ = 16,793,665.62 m.u. 

𝜋𝑡
𝑅′ = 𝜋𝑝

𝑅′ · (1 + 𝛾𝑅) = 16,793,665.62 · (1 + 0.2) = 20,152,398.74 m.u. 

These results, displayed in Table 18, show that the technical premium of the excess ADC treaty is 

a lower than quota share one due to lower total present value of future claim payments that the 

reinsurer will be entitled to once the different retentions are applied.  

 

GLMM ad1 ad2 ad3 ad4 ad5

Total estimated          

Claim payment
6,362,869.86 4,525,458.57 16,216,850.88 3,960,542.05 5,197,860.11

Retention (M) 76,661.08 54,523.60 195,383.75 47,717.37 62,624.82

M        if        𝐶𝑛 ≥ M 𝐶𝑛 – M        if        𝐶𝑛 ≥ M 

𝐶𝑛        if        𝐶𝑛 < M 

 

0        if        𝐶𝑛 < M 
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Table 18. Recalculated PV of estimated future payments and technical premium under GLMM model 

for the excess ADC 

 
Source: Own elaboration 

4.5.3 Pricing an at-the-money ADC 

As for excess ADC, the total PV of future payments for an at-the-money adverse development 

cover must be recalculated (R′′) once again. An at-the-money ADC works like a stop loss 

contract. All claims in each development year are added up (𝐶11𝑗 =  ∑𝑛=1
83 𝐶11𝑗

𝑛  where C is the 

total portfolio loss of a specific line of business in an entire development year) and then a 

retention (M) is subtracted for each development year. In this particular case, there will be 

exposed five different present values of future payments, that is, five different reinsurance pure 

and technical premiums with five different retentions (x = 1, 2, 3, 4 and 5), caeteris paribus: 

𝑅𝑥
′′ = ∑𝑗=1

5 (𝐶11𝑗 − 𝑀𝑥) ∗ (1 + 0.02)−𝑗+
1

2 .   

Remembering Sarrasí (2017), the mathematical formalisation for the total portfolio insured (Cc) 

and reinsured (Cr) loss in a stop-loss treaty goes as follows: 

 

 

Cc =                                                    Cr = 

 

 

Therefore, if 𝐶11𝑗 − 𝑀𝑥 < 0, then Cr = 𝐶11𝑗 − 𝑀𝑥 = 0. The relationship between the excess and 

the at-the-money (or stop loss) ADC is that 𝐶11𝑗 =  ∑𝑛=1
83 𝐶11𝑗

𝑛 . If M is subtracted from the total 

portfolio insured loss (𝐶11𝑗), an at-the-money ADC treaty is taking place. If M is subtracted from 

each policy insured loss (𝐶11𝑗
𝑛 ), an excess ADC is being enforced.  

 

Development 

year

Estimated future 

claim payments

Present Value 

with r = 2%

1 3,090,393.67 3,059,945.70

2 2,197,978.09 2,133,649.61

3 7,876,391.39 7,495,953.08

4 1,923,602.77 1,794,794.76

5 2,524,558.00 2,309,322.46

Total PV of 

future payments
16,793,665.62

Technical 

premium
20,152,398.74

GLMM

M        if        C ≥ M C – M        if        C ≥ M 

C        if         C ˂ M 0        if         C ˂ M 
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The random amounts of Mx are: 

M1 = 20,000 M2 = 40,000 M3 = 60,000 M4 = 80,000 M5 = 200,000 

Under the GLMM model, the recalculated PV of estimated future payments (𝑅𝑥
′′) and the ADC’s 

pure and technical premium using five different retention schemes are as follows: 

𝑅1
′′ = ∑𝑗=1

5 (𝐶11𝑗 − 20,000) ∗ (1 + 0.02)−𝑗+
1

2  =  34,481,587.88   

𝜋𝑝
𝑅 = R′′1 = 34,481,587.88 m.u. 

𝜋𝑡
𝑅 = 𝜋𝑝

𝑅 · (1 + 𝛾𝑅) = 34,481,587.88 · (1 + 0.2) = 41,377,905.45 m.u. 

𝑅2
′′ = ∑𝑗=1

5 (𝐶11𝑗 − 40,000) ∗ (1 + 0.02)−𝑗+
1

2  =  34,386,380.66  

𝜋𝑝
𝑅 = R′′2 =  34,386,380.66 m.u. 

𝜋𝑡
𝑅 = 𝜋𝑝

𝑅 · (1 + 𝛾𝑅) = 34,386,380.66 · (1 + 0.2) =  41,263,656.79 m.u. 

𝑅3
′′ = ∑𝑗=1

5 (𝐶11𝑗 − 60,000) ∗ (1 + 0.02)−𝑗+
1

2  =  34,291,173.45  

𝜋𝑝
𝑅 = R′′3 =  34,291,173.45 m.u. 

𝜋𝑡
𝑅 = 𝜋𝑝

𝑅 · (1 + 𝛾𝑅) = 34,291,173.45 · (1 + 0.2) =  41,149,408.13 m.u. 

𝑅4
′′ = ∑𝑗=1

5 (𝐶11𝑗 − 80,000) ∗ (1 + 0.02)−𝑗+
1

2  =  34,195,966.23   

𝜋𝑝
𝑅 = R′′4 =  34,195,966.23 m.u. 

𝜋𝑡
𝑅 = 𝜋𝑝

𝑅 · (1 + 𝛾𝑅) = 34,195,966.23 · (1 + 0.2) =  41,035,159.48 m.u. 

𝑅5
′′ = ∑𝑗=1

5 (𝐶11𝑗 − 200,000) ∗ (1 + 0.02)−𝑗+
1

2  =  33,624,722.94   

𝜋𝑝
𝑅 = R′′5 =  33,624,722.94 m.u. 

𝜋𝑡
𝑅 = 𝜋𝑝

𝑅 · (1 + 𝛾𝑅) = 33,624,722.94 · (1 + 0.2) =  40,349,667.53 m.u. 

As it is observed in the results exhibited in Table 19, the technical premium of an at-the-money 

ADC treaty is the most expensive compared to the previous two treaties’ premiums. This 

confirms Loeffler’s (2019) statement saying that "this option will have good coverage but will 

have the most immediate cost impact”. Besides, the premium decreases as M increases. By 

adding up all claim costs and subtracting a retention or priority from the total sum of future 

payments (which is going to be the amount the ceding company will cover), the reinsurer is 

bearing a higher underwriting risk than if it had decided to apply an excess ADC treaty. Besides, 

it is noticeable that increasing 10 times the retention M (from 20,000 to 200,000), does not make 

a big difference on the technical premium, which is just 2.48% cheaper, because the reinsured 
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future payments still amount to a very large quantity. Graph 20 portrays, within the GLMM 

framework, the different technical premiums the reinsurer could offer to the cedent when 

increasing M ten times 200,000 up to 2,000,000; and this last quantity five times more (up to 

10,000,000). As it can be seen, the technical premium diminishes as the retention increases. 

Table 19. Recalculated PVs of estimated future payments and technical premiums under GLMM 

model for the at-the-money ADC 

 
Source: Own elaboration 

Graph 20. Technical premiums of GLMM-based at-the-money ADCs for different M values 

 
Source: Own elaboration 

Development 

year
M = 20,000 M = 40,000 M = 60,000 M = 80,000 M = 200,000

1 6,280,377.01 6,260,574.06 6,240,771.11 6,220,968.16 6,102,150.45

2 4,373,596.80 4,354,182.14 4,334,767.49 4,315,352.83 4,198,864.88

3 15,414,525.29 15,395,491.31 15,376,457.33 15,357,423.35 15,243,219.48

4 3,676,676.05 3,658,015.28 3,639,354.52 3,620,693.76 3,508,729.18

5 4,736,412.73 4,718,117.87 4,699,823.00 4,681,528.14 4,571,758.94

Total PV of 

future payments
34,481,587.88 34,386,380.66 34,291,173.45 34,195,966.23 33,624,722.94

Technical 

premium
41,377,905.45 41,263,656.79 41,149,408.13 41,035,159.48 40,349,667.53

GLMM

Recalculated present value of reserves with r = 2% and M as…
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5. Conclusion 

The present thesis has defined the traditional reinsurance concept expressing it with words and 

mathematical formulation. On one hand, the theoretical part surrounding the topic about 

alternative risk transfer (ART) mechanisms has been introduced to finally break down the finite 

risk reinsurance schemes focusing on loss portfolio transfer (LPT) and adverse development 

cover (ADC) transactions. LPT is the one of the most finite risk reinsurance transactions and 

involves a total or partial cession of a company’s reserves to the reinsurer who assumes financial 

responsibility for the ceded reserves (similar to a quota share treaty). These contracts bear timing, 

investment, credit and reserving risks. ADC treaties provide reinsurance cover above net carried 

reserve level without involving any transfer of existing reserves and have greater underwriting 

risk. In order to go further with the case study aiming to price retrospective finite risk transactions 

possessing only RBNS (Reported But Not Settled) claims data, a new definition assumption of 

LPT and ADC has been introduced. This assumption dictates that LPT is applicable to settled yet 

not totally paid claims and ADC is applicable to unsettled claims. Therefore, the case study has 

focused on three types of ADC transactions (quota share, excess and at-the-money ADC) that 

estimate those future payments from reported unsettled past claims within 5 years’ time. 

After using R software to structure the available data and estimate future payments under Chain 

Ladder (CL) and Generalised Linear Mixed Models (GLMM) approaches, the mean squared 

errors (MSE) of both methodologies have been calculated and show that CL must be strongly 

rejected and GLMM has a robust accuracy which strengthens its goodness of fit to the data. When 

the individual claim amount is known and identified to a specific claim ID, the GLMM takes on 

special relevance as actuaries can incorporate individual information in the form of risk factors to 

the adjusted model and enhance its efficiency. Examples of risk factors are the insured’s age, 

gender, residence, etc; but the project’s original data did not have these variables. The only risk 

factor added to the GLMM was the one representing the reported claim quantity in each reported 

year because it varies for every claim payment and this fact makes the sum of all settled claim 

payments not to be equal to the reported claim quantity. All in all, with RBNS data it is possible 

to know the individual claims it contains, unlike IBNR (Incurred But Not Reported) data in which 

no information is disclosed about the future individual claim amount. 

When pricing the three contracts after estimating the present value of future payments, at-the-

money ADC contracts’ prices are consistent to what literature argues (they are more expensive 

than other types of ADCs). However, the limitations of this paper are that important variables 

such as expenses and profit loading for the expected total administrative costs, inflation, volatility 

charge and the exchange rate risk have been omitted. More research on other models such as 

Bornhuetter Ferguson or Benktander’s should be done in order to compare their MSEs to CL’s 

and analogous GLMM’s using other error distributions, link functions or risk factors to increase 

the accuracy of the MSE indicator. Additionally, more investigation into hybrid LPT-ADC 

reinsurance options would be recommended as they are increasing their popularity year over year 

because of its competitive combination of price and coverage of RBNS and IBNR claims, as this 

work has not been able to do it due to lacking of IBNR data. Lastly, despite its simplicity, relating 

the MSE with the safety loading factor might lead to some big overestimated or underestimated 

pricing effects that could affect the reinsurance business, that is why further research should be 

done in other types of pricing strategies which include tax implications, cost of allocated capital, 

analyses on the quality of data and bootstrapping of triangles to get the “best estimate liabilities” 

(BEL). 
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In a world where climate change is affecting the metrics of reinsurance modelling and threatening 

the insurance industry with protection capacity shortages, finite risk transactions appear to 

retaliate against unexpected volatility within the reinsurance prices marketplace covering startling 

catastrophic events such as earthquakes, hurricanes or floods even when claims have already been 

reported in the past waiting to be completely settled and paid, determining their possible run-offs 

and adjusting reinsurance pricing procedures. However, ART techniques seem to be still acting as 

complements rather than substitutes due to their complexity and widespread distrust. For this 

reason, reinsurers should place great importance on the understanding and justification of the 

price for their offered coverages. 
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7. Annex 

7.1 Data reading and assembling process  

# Reading the data 

datos <- read.csv("Datos.csv",header=TRUE,dec=".",sep = ";") 

names(datos) 

 

> names(datos) 

[1] "Valuation.date"                "Line.of.business"              "Claim.ID"                      

[4] "Accident.date"                 "Reported.date"                 "Settlement.date"               

[7] "Paid.to.date"                  "Outstanding.case.estimate"     "Reported.claim.cost"           

[10] "Number.of.claims"              "Valuation.year"                "Accident.year"                 

[13] "Reported.year"                 "Settlement.year"               "Accident.to.reporting.delay"   

[16] "Reporting.to.valuation.delay"  "Accident.to.valuation.delay"   

"Reporting.to.settlement.delay" 

[19] "Settled"                       "Last.column.for.pivot..table"  

 

table(datos$Number.of.claims) 

> table(datos$Number.of.claims) 

1  

16573  

 

table(datos$Line.of.business) 

> table(datos$Line.of.business) 

        Accident   Liability  

48962     13662      2911  

 

table(datos$Reported.year) 

> table(datos$Reported.year) 

 

1 996 1 997 1 998 1 999 2 000 2 001 2 002 2 003 2 004 2 005 2 006 2 007 2 008  

 2349  2524  2339  2475  1865  1512  1081   766   595   550   340   134    43  

 

table(datos$Reported.year[datos$Line.of.business=="Accident"]) 

> table(datos$Reported.year[datos$Line.of.business=="Accident"]) 

 

1 996   1 997   1 998   1 999   2 000   2 001   2 002   2 003   2 004   2 005   2 006   2 007   2 

008   

2309    2340    2059    2155    1529    1168     801     520     354     287     140       0       0  
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datosAccident <- subset(datos,datos$Line.of.business=="Accident") 

as.numeric(datosAccident$Claim.ID) 

min(datosAccident$Claim.ID) 

max(datosAccident$Claim.ID) 

dim(datosAccident) 

 

> min(datosAccident$Claim.ID) 

[1] 5023 

> max(datosAccident$Claim.ID) 

[1] 30627 

> dim(datosAccident) 

[1] 13662    20 

 

# Deaccumulation of Paid.to.date variable to a new “pagos” (payments) variable 

 

pagos <- datosAccident$Paid.to.date 

for (i in 5023:30627) { 

ini <- 0   

for (j in 1:13662) { 

if (datosAccident$Claim.ID[j]==i) {pagos[j] <- pagos[j] - ini; 

  ini <- datosAccident$Paid.to.date[j]} 

}   

} 

 

pagos <- as.numeric(pagos) 

sum(is.na(pagos)) 

 

> sum(is.na(pagos)) 

[1] 0 

 

# Building the occurrence year (ao) predictor (which for RBNS claims is the reported 

year) 

 

table(datosAccident$Reported.year) 

> table(datosAccident$Reported.year) 

 

1 996 1 997 1 998 1 999 2 000 2 001 2 002 2 003 2 004 2 005 2 006 2 007 2 008  

0  2309  2340  2059  2155  1529  1168   801   520   354   287   140     0     0 

 

sum(datosAccident$Reported.year=="1 996") 

> sum(datosAccident$Reported.year=="1 996") 
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[1] 2309 

sum(datosAccident$Reported.year=="2 006") 

> sum(datosAccident$Reported.year=="2 006") 

[1] 140 

 

ao <- as.numeric(datosAccident$Reported.year) 

table(ao) 

 

> table(ao) 

ao 

2    3    4    5    6    7    8    9   10   11   12 # Empezará en 1996 

2309 2340 2059 2155 1529 1168  801  520  354  287  140  

 

ao <- ao -1 # Empezará en 1996 hasta 2006 

table(ao) 

 

> table(ao) 

ao 

1    2    3    4    5    6    7    8    9   10   11  

2309 2340 2059 2155 1529 1168  801  520  354  287  140  

 

# Building the development year (ad) predictor 

 

table(datosAccident$Valuation.year) 

 

> table(datosAccident$Valuation.year) 

 

1 996 1 997 1 998 1 999 2 000 2 001 2 002 2 003 2 004 2 005 2 006 2 007 2 008  

0   207   411   656   929  1170  1344  1510  1660  1787  1929  2059     0     0  

 

ad <- as.numeric(datosAccident$Valuation.year) 

table(ad) 

 

> table(ad) 

ad 

2    3    4    5    6    7    8    9   10   11   12  

207  411  656  929 1170 1344 1510 1660 1787 1929 2059  

 

ad <- ad -1  # Empezará en 1996 hasta 2006 

table(ad) 
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> table(ad) 

ad 

1    2    3    4    5    6    7    8    9   10   11  

207  411  656  929 1170 1344 1510 1660 1787 1929 2059  

 

for (j in 1:13662) { 

  for (i in 2:11) { 

    if (ao[j]==i) ad[j] <- (ad[j] - (i-1)) 

  }} 

 

table(ad) 

 

> table(ad) 

ad 

1    2    3    4    5    6    7    8    9   10   11  

1927 1919 1784 1671 1540 1372 1167  948  677  447  210  

 

# Building the claim ID indication predictor (siniestro= claim) 

 

siniestro <- datosAccident$Claim.ID 

 

# Building the risk factor (fr), representing the reported claim quantity in each reported 

year because it does not always coincide with the sum of all settled claim payments and 

besides it can be different for every claim payment. 

 

fr <- as.numeric(datosAccident$Reported.claim.cost) 

 

# Deleting unnecessary observations (zeroes indicating that the claim is not closed yet) 

 

ao <- ao[pagos>0] 

ad <- ad[pagos>0] 

siniestro <- siniestro[pagos>0] 

fr <- fr[pagos>0] 

pagos <- pagos[pagos>0] 

length(pagos) 

>  length(pagos) 

[1] 2759  

 

table(ao) 

> table(ao) 

ao 
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1   2   3   4   5   6   7   8   9  10  11  

282 342 306 367 349 283 225 208 156 157  84  

 

table(ad) 

> table(ad) 

ad 

1    2    3    4    5    6    7    8    9   10  

1657  651  179  119   65   38   23   13    9    5  

 

 

# Aggregating claim quantities inside each year from the same claim ID 

 

datosAccidenttotal <- cbind(pagos,ao,ad,siniestro,fr) 

length(pagos) # 2759 

 

> siniestro[1] 

[1] 5023 

1997 Levels: 5023 5024 5025 5026 5027 5028 5029 5030 5032 5033 5035 5036 5038 5039 

5040 5041 5042 5043 5044 5045 ... 30626 

 

datosAccidenttotalintermedio <- datosAccidenttotal 

a<-1 

for (i in 1:11) {print(i); 

  for (j in 1:11){ 

    for (k in 5023:30626){ 

      if (sum((siniestro == k)&(ao==i)&(ad==j))>=1) 

      {datosAccidenttotalintermedio[a,] <- 

c(pagos[siniestro==k][1],ao[siniestro==k][1],ad[siniestro==k][1],siniestro[siniestro==k][1],fr[

siniestro==k][1]); 

      datosAccidenttotalintermedio[a,1] <- sum(pagos[((siniestro == k)&(ao==i)&(ad==j))])   

      a<-a+1} 

       

    } 

  } 

} 

 

datosAccidenttotalintermedio <- datosAccidenttotalintermedio[1:(a-1),] 

dim(datosAccidenttotalintermedio) # [1] 2759    5 

pagos <- datosAccidenttotalintermedio[,1] 

ao <- datosAccidenttotalintermedio[,2] 

ao <- as.factor(ao) 
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ad <- datosAccidenttotalintermedio[,3] 

ad <- as.factor(ad) 

table(ao,ad) 

 

# Obtaining the following number of claims 

 

> table(ao,ad) 

ad 

ao     1   2   3   4   5   6 

1    230  47   3   2   0   0 

2    287  49   5   1   0   0 

3    251  45   5   0   0   5 

4    310  52   4   0   1   0 

5    305  39   5   0   0   0 

6    226  45   2   6   3   1 

7    172  52   1   0   0   0 

8    167  37   4   0   0   0 

9    122  36   1   0   0   0 

10   135  20   0   0   0   0 

11    83   0   0   0   0   0 

siniestro <- datosAccidenttotalintermedio[,4] 

siniestro <- as.factor(siniestro) 

fr <- datosAccidenttotalintermedio[,5] 

 

# Building the claim payments run-off triangle to sum up the case study information 

 

triangle <- matrix (0, nrow =11, ncol =11) 

for (i in 1:11) { 

  for (j in 1:11) { 

    triangle[i,j]=sum(pagos[(ao==i)&(ad==j)]) 

  } 

} 

triangle 

> triangle 

       [,1]    [,2]    [,3]     [,4]      [,5]  [,6]  [,7] [,8] [,9] [,10] [,11] 

[1,] 28376529 4850687 1966969  255010      0      0    0    0    0     0     0 

[2,] 36800164 7218619 1173907   45766      0      0    0    0    0     0     0 

[3,] 41167372 9890777 6242820       0      0 351810    0    0    0     0     0 

[4,] 46348883 6499309 2202034       0   6000      0    0    0    0     0     0 

[5,] 43066179 7282026  265030       0      0      0    0    0    0     0     0 

[6,] 24009189 4676347  855771 5071813 117373   6250    0    0    0     0     0 



Modelling a Pricing Strategy for ADC Finite Risk Reinsurance Treaties with GLMM Approach 

Annex 
 

52 
 

[7,] 20135397 3389023     545       0      0      0    0    0    0     0     0 

[8,] 19920216 4545188   43144       0      0      0    0    0    0     0     0 

[9,] 21391683 3163574    1130       0      0      0    0    0    0     0     0 

[10,] 15711704 1862858       0      0      0      0    0    0    0     0     0 

[11,]  7175067       0       0      0      0      0    0    0    0     0     0 

 

7.2 Modeling a Chain Ladder with glm function from stats R package 

# GLM estimation 

cij <- rep(0, 66); cij 

a=0 

for (i in 1:11) { 

  for ( j in 1:(11-i+1) ) { 

    a=a+1 

    cij[a]=triangle[i,j] 

  } 

} 

cij 

 

aoglm <- rep(1:11, times = 11:1)  

adglm <- c(1:11,1:10,1:9,1:8,1:7,1:6,1:5,1:4,1:3,1:2,1) 

aoglm <- as.factor(aoglm) 

adglm <- as.factor(adglm) 

 

# family=quasipoisson has logarithmic link function by default and reproduces Chain 

Ladder 

glm1<-glm(cij~aoglm+adglm,fam = quasipoisson) 

summary(glm1) 

anova(glm1) 

> summary(glm1) 

 

Call: 

  glm(formula = cij ~ aoglm + adglm, family = quasipoisson) 

 

Deviance Residuals:  

  Min       1Q   Median       3Q      Max   

-1453.6   -380.2     -3.4      0.0   3626.7   

 

Coefficients: 

  Estimate Std. Error t value Pr(>|t|)     

(Intercept)    17.1624     0.1923  89.249  < 2e-16 *** 

  aoglm2          0.2439     0.2538   0.961  0.34174     

aoglm3          0.4863     0.2415   2.014  0.05000 .   

aoglm4          0.4402     0.2436   1.807  0.07744 .   

aoglm5          0.3561     0.2478   1.437  0.15758     

aoglm6         -0.0203     0.2701  -0.075  0.94041     
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aoglm7         -0.4088     0.3009  -1.359  0.18105     

aoglm8         -0.3674     0.2972  -1.236  0.22284     

aoglm9         -0.3488     0.2972  -1.174  0.24661     

aoglm10        -0.6457     0.3304  -1.955  0.05687 .   

aoglm11        -1.3763     0.4641  -2.966  0.00482 **  

  adglm2         -1.7161     0.1682 -10.203 2.76e-13 *** 

  adglm3         -3.0964     0.3239  -9.561 2.08e-12 *** 

  adglm4         -3.8870     0.4930  -7.885 5.07e-10 *** 

  adglm5         -7.5827     3.2217  -2.354  0.02302 *   

  adglm6         -6.4361     1.8921  -3.402  0.00142 **  

  adglm7        -26.7674 31859.4539  -0.001  0.99933     

adglm8        -26.7546 35558.7851  -0.001  0.99940     

adglm9        -26.7046 41005.7044  -0.001  0.99948     

adglm10       -26.5845 50562.1863  -0.001  0.99958     

adglm11       -26.4650 71858.5353   0.000  0.99971     

--- 

  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

(Dispersion parameter for quasipoisson family taken to be 1279941) 

 

Null deviance: 1001475914  on 65  degrees of freedom 

Residual deviance:   38929340  on 45  degrees of freedom 

AIC: NA 

 

Number of Fisher Scoring iterations: 7 

 

> anova(glm1) 

Analysis of Deviance Table 

 

Model: quasipoisson, link: log 

 

Response: cij 

 

Terms added sequentially (first to last) 

 

 

Df  Deviance Resid. Df Resid. Dev 

NULL                      65 1001475914 

aoglm 10  29062830        55  972413084 

adglm 10 933483743        45   38929340 

 

 

# MSE calculation for the “aggregated” GLM 

 

cij 

cijest<-predict(glm1,type="response"); cijest 

sum((cij-cijest)^2)/66 
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> sum((cij-cijest)^2)/66 

[1] 1.656742e+12 

 

 

# Total run-off triangle (original data + future estimates) 

 

coefs<-exp(as.numeric(coef(glm1))) 

alpha<-c(1,coefs[2:11])*coefs[1] 

beta<-c(1,coefs[(11+1):(2*11-1)]) 

orig.fits<-alpha%*%t(beta)  

future<-row(orig.fits)+col(orig.fits)-1>11 

triangleglm <- triangle 

triangleglm[future] <- orig.fits[future]; triangleglm 

 

 

[,1]    [,2]      [,3]      [,4]       [,5]      [,6]         [,7]         [,8]         [,9]        [,10] 

[1,] 28376529 4850687 1966969.0  255010.0      0.000      0.00 0.000000e+00 0.000000e+00 

0.000000e+00 0.000000e+00 

[2,] 36800164 7218619 1173907.0   45766.0      0.000      0.00 0.000000e+00 0.000000e+00 

0.000000e+00 0.000000e+00 

[3,] 41167372 9890777 6242820.0       0.0      0.000 351810.00 0.000000e+00 0.000000e+00 

0.000000e+00 1.316003e-04 

[4,] 46348883 6499309 2202034.0       0.0   6000.000      0.00 0.000000e+00 0.000000e+00 

1.114459e-04 1.256733e-04 

[5,] 43066179 7282026  265030.0       0.0      0.000      0.00 0.000000e+00 9.745781e-05 

1.024523e-04 1.155316e-04 

[6,] 24009189 4676347  855771.0 5071813.0 117373.000   6250.00 6.603898e-05 6.688699e-

05 7.031480e-05 7.929133e-05 

[7,] 20135397 3389023     545.0       0.0      0.000  30257.52 4.478148e-05 4.535652e-05 

4.768095e-05 5.376799e-05 

[8,] 19920216 4545188   43144.0       0.0  10019.190  31535.48 4.667288e-05 4.727221e-05 

4.969480e-05 5.603894e-05 

[9,] 21391683 3163574    1130.0  411095.8  10206.805  32126.00 4.754685e-05 4.815740e-

05 5.062536e-05 5.708830e-05 

[10,] 15711704 1862858  673514.9  305489.1   7584.770  23873.13 3.533250e-05 3.578621e-

05 3.762017e-05 4.242284e-05 

[11,]  7175067 1289857  324403.6  147141.2   3653.263  11498.68 1.701817e-05 1.723670e-

05 1.812005e-05 2.043329e-05 

[,11] 

[1,] 0.000000e+00 

[2,] 1.163697e-04 

[3,] 1.483039e-04 

[4,] 1.416246e-04 

[5,] 1.301956e-04 

[6,] 8.935551e-05 

[7,] 6.059258e-05 

[8,] 6.315178e-05 
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[9,] 6.433432e-05 

[10,] 4.780743e-05 

[11,] 2.302682e-05 

 

 

# Original run-off triangle (only original data) 

 

triangleestglmorig <- orig.fits 

triangleestglmorig[future] <- 0; triangleestglmorig 

triangleestglmorigind <- triangleestglmorig; triangleestglmorigind 

 

> triangleestglmorigind <- triangleestglmorig; triangleestglmorigind 

[,1]    [,2]      [,3]     [,4]      [,5]     [,6]         [,7]         [,8]         [,9]        [,10] 

[1,] 28413889 5107944 1284666.7 582691.8 14467.240 45535.76 6.739344e-05 6.825885e-

05 7.175696e-05 8.091759e-05 

[2,] 36260357 6518498 1639426.1 743601.6 18462.354 58110.41 8.600408e-05 8.710846e-

05 9.157258e-05 1.032629e-04 

[3,] 46210913 8307302 2089316.9 947660.5 23528.788 74057.05 1.096053e-04 1.110127e-

04 1.167019e-04 0.000000e+00 

[4,] 44129677 7933160 1995218.7 904980.0 22469.104 70721.69 1.046689e-04 1.060130e-

04 0.000000e+00 0.000000e+00 

[5,] 40568449 7292961 1834206.3 831948.8 20655.866 65014.51 9.622222e-05 

0.000000e+00 0.000000e+00 0.000000e+00 

[6,] 27842832 5005286 1258847.6 570981.0 14176.480 44620.59 0.000000e+00 

0.000000e+00 0.000000e+00 0.000000e+00 

[7,] 18880414 3394118  853633.2 387186.1  9613.168     0.00 0.000000e+00 0.000000e+00 

0.000000e+00 0.000000e+00 

[8,] 19677849 3537473  889687.3 403539.3     0.000     0.00 0.000000e+00 0.000000e+00 

0.000000e+00 0.000000e+00 

[9,] 20046326 3603714  906347.1      0.0     0.000     0.00 0.000000e+00 0.000000e+00 

0.000000e+00 0.000000e+00 

[10,] 14896609 2677953       0.0      0.0     0.000     0.00 0.000000e+00 0.000000e+00 

0.000000e+00 0.000000e+00 

[11,]  7175067       0       0.0      0.0     0.000     0.00 0.000000e+00 0.000000e+00 

0.000000e+00 0.000000e+00 

[,11] 

[1,] 9.11882e-05 

[2,] 0.00000e+00 

[3,] 0.00000e+00 

[4,] 0.00000e+00 

[5,] 0.00000e+00 

[6,] 0.00000e+00 

[7,] 0.00000e+00 

[8,] 0.00000e+00 

[9,] 0.00000e+00 

[10,] 0.00000e+00 

[11,] 0.00000e+00 
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# Chain Ladder’s “disaggregated” MSE calculation with observed claim numbers 

 

triangleestglmorigindmed <- triangleestglmorig[,1:6]/table(ao,ad)    

triangleestglmorigindmed 

 

> triangleestglmorigindmed  

ad 

ao            1          2          3          4          5          6 

1  123538.649 108679.665 428222.222 291345.898        Inf        Inf 

2  126342.709 133030.574 327885.225 743601.573        Inf        Inf 

3  184107.225 184606.719 417863.386        Inf        Inf  14811.410 

4  142353.795 152560.768 498804.685        Inf  22469.104        Inf 

5  133011.308 186998.990 366841.254        Inf        Inf        Inf 

6  123198.370 111228.570 629423.824  95163.492   4725.493  44620.586 

7  109769.850  65271.507 853633.183        Inf        Inf            

8  117831.430  95607.367 222421.825        Inf                       

9  164314.150 100103.154 906347.136                                  

10 110345.254 133897.632                                             

11  86446.590   

 

glmestindividual <- matrix (0, nrow =2759, ncol =6) 

for (i in 1:2759) { print(i); 

  for (j in 1:6) {   

    glmestindividual[i]<-triangleestglmorigindmed [ao[i],ad[i]]  

  } 

} 

 

 

sum((pagos-glmestindividual)^2)/2759 

 

> sum((pagos-glmestindividual)^2)/2759 

[1] 941829257933 

 

 

 

7.3 Modeling a GLMM with glmer function from lme4 R package 

library(lme4) 

glmm1 <- glmer(pagos~ao+ad+fr+(1|siniestro),family = poisson) 

 

summary(glmm1) 

 

> summary(glmm1) 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

Family: poisson  ( log ) 

Formula: pagos ~ ao + ad + fr + (1 | siniestro) 



Modelling a Pricing Strategy for ADC Finite Risk Reinsurance Treaties with GLMM Approach 

Annex 
 

57 
 

AIC        BIC     logLik   deviance   df.resid  

307809680  307809787 -153904822  307809644       2741  

 

Scaled residuals:  

  Min       1Q   Median       3Q      Max  

-1471.64    -0.46     0.00     0.00  3145.01  

 

Random effects: 

  Groups    Name        Variance Std.Dev. 

siniestro (Intercept) 4.177    2.044    

Number of obs: 2759, groups:  siniestro, 1997 

 

Fixed effects: 

  Estimate Std. Error z value Pr(>|z|)     

(Intercept)  9.373e+00  1.436e-01  65.264  < 2e-16 *** 

  ao2          3.690e-01  1.936e-01   1.906 0.056610 .   

ao3          7.166e-01  1.954e-01   3.668 0.000245 *** 

  ao4          7.261e-01  1.882e-01   3.859 0.000114 *** 

  ao5          5.972e-01  1.972e-01   3.028 0.002466 **  

  ao6          8.316e-01  2.017e-01   4.124 3.73e-05 *** 

  ao7          4.903e-01  2.125e-01   2.307 0.021037 *   

  ao8          3.176e-01  2.267e-01   1.401 0.161128     

ao9         -8.687e-03  2.372e-01  -0.037 0.970782     

ao10        -5.173e-01  2.306e-01  -2.243 0.024901 *   

  ao11        -1.528e-01  2.667e-01  -0.573 0.566597     

ad2         -1.201e-01  1.264e-01  -0.951 0.341795     

ad3         -4.609e-01  5.338e-01  -0.863 0.387901     

ad4          8.154e-01  9.183e-01   0.888 0.374557     

ad5         -5.942e-01  1.185e+00  -0.502 0.616009     

ad6         -3.224e-01  1.185e+00  -0.272 0.785527     

fr           2.468e-06  1.644e-07  15.012  < 2e-16 *** 

  --- 

  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Correlation matrix not shown by default, as p = 17 > 12. 

Use print(x, correlation=TRUE)  or 

vcov(x)        if you need it 

 

fit warnings: 

  Some predictor variables are on very different scales: consider rescaling 

convergence code: 0 

unable to evaluate scaled gradient 

Model failed to converge: degenerate  Hessian with 2 negative eigenvalues 

 

 

print(glmm1) 
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> print(glmm1) 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

Family: poisson  ( log ) 

Formula: pagos ~ ao + ad + fr + (1 | siniestro) 

AIC        BIC     logLik   deviance   df.resid  

307809680  307809787 -153904822  307809644       2741  

Random effects: 

  Groups    Name        Std.Dev. 

siniestro (Intercept) 2.044    

Number of obs: 2759, groups:  siniestro, 1997 

Fixed Effects: 

  (Intercept)          ao2          ao3          ao4          ao5          ao6          ao7          ao8          ao9   

9.373e+00    3.690e-01    7.166e-01    7.261e-01    5.972e-01    8.316e-01    4.903e-01    

3.176e-01   -8.687e-03   

ao10         ao11          ad2          ad3          ad4          ad5          ad6           fr   

-5.173e-01   -1.528e-01   -1.201e-01   -4.609e-01    8.154e-01   -5.942e-01   -3.224e-01    

2.468e-06   

fit warnings: 

  Some predictor variables are on very different scales: consider rescaling 

convergence code 0; 2 optimizer warnings; 0 lme4 warnings  

 

names(ranef(glmm1)) 

ranef(glmm1)$siniestro[1:3,] 

 

> names(ranef(glmm1)) 

[1] "siniestro" 

> ranef(glmm1)$siniestro[1:3,] 

[1] 2.3535320 0.3375364 1.8264290 

 

# Estimations for ad2, ad3, ad4, ad5, ad6 under GLMM as of ao7 (2002) 

 

glmmestfuture <- matrix (0, nrow =2759, ncol =5) 

for (i in 1:2759) { print(i); 

  for (j in 1:5) {   

    aof<-ao[i] 

    aon<-as.numeric(ao[i]) 

    aof<-as.factor(aof) 

    adf<-j+1 

    adf<-as.factor(adf) 

    siniestrof<-siniestro[i] 

    siniestrof<-as.factor(siniestrof) 

    frf<-fr[i] 

    dades <- data.frame(ao=aof,ad=adf,siniestro=siniestrof,fr=frf) 

    if (((aon>=7)&((aon+j+1-1)>11))=="TRUE") glmmestfuture[i,j]<-

predict(glmm1,dades,type="response") 

    } 
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} 

 

# MSE Calculation under “disaggregated” GLMM 

 

glmm1est <- predict(glmm1,type="response") 

sum((pagos-glmm1est)^2)/2759 

 

> sum((pagos-glmm1est)^2)/2759 

[1] 79709894341 

 

# Save the results  

 

write.csv2(siniestro, file = "siniestro.csv",row.names = FALSE) 

Resultado <- cbind(siniestro,fr,ao,ad,pagos,glmmestfuture) 

write.csv2(Resultado, file = "Resultado.csv",row.names = FALSE) 

 

trianglepredglmm <- matrix(0,nrow =11, ncol =11) 

for (i in 1:2759) { print(i); 

  for (j in 1:5) {   

    trianglepredglmm[ao[i],j+1]<-trianglepredglmm[ao[i],j+1]+glmmestfuture[i,j] 

   } 

} 

trianglepredglmm 

 

[,1]    [,2]     [,3]     [,4]     [,5]     [,6] [,7] [,8] [,9] [,10] [,11] 

[1,]    0       0        0        0        0        0    0    0    0     0     0 

[2,]    0       0        0        0        0        0    0    0    0     0     0 

[3,]    0       0        0        0        0        0    0    0    0     0     0 

[4,]    0       0        0        0        0        0    0    0    0     0     0 

[5,]    0       0        0        0        0        0    0    0    0     0     0 

[6,]    0       0        0        0        0        0    0    0    0     0     0 

[7,]    0       0        0        0        0 17355896    0    0    0     0     0 

[8,]    0       0        0        0 13862588 18193417    0    0    0     0     0 

[9,]    0       0        0 56415735 13778069 18082493    0    0    0     0     0 

[10,]    0       0 11234606 40258887  9832181 12903866    0    0    0     0     0 

[11,]    0 6362870  4525459 16216851  3960542  5197860    0    0    0     0     0 

 

 

triangleglmm <- triangle 

triangleglmm[future] <- trianglepredglmm[future]; triangleglmm 

 

> triangleglmm[future] <- trianglepredglmm[future]; triangleglmm 

[,1]    [,2]     [,3]     [,4]     [,5]     [,6] [,7] [,8] [,9] [,10] [,11] 

[1,] 28376529 4850687  1966969   255010        0        0    0    0    0     0     0 

[2,] 36800164 7218619  1173907    45766        0        0    0    0    0     0     0 

[3,] 41167372 9890777  6242820        0        0   351810    0    0    0     0     0 

[4,] 46348883 6499309  2202034        0     6000        0    0    0    0     0     0 
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[5,] 43066179 7282026   265030        0        0        0    0    0    0     0     0 

[6,] 24009189 4676347   855771  5071813   117373     6250    0    0    0     0     0 

[7,] 20135397 3389023      545        0        0 17355896    0    0    0     0     0 

[8,] 19920216 4545188    43144        0 13862588 18193417    0    0    0     0     0 

[9,] 21391683 3163574     1130 56415735 13778069 18082493    0    0    0     0     0 

[10,] 15711704 1862858 11234606 40258887  9832181 12903866    0    0    0     0     0 

[11,]  7175067 6362870  4525459 16216851  3960542  5197860    0    0    0     0     0 

 

# MSE Calculation under “aggregated” GLMM 

 

trianglepredglmmorig <- matrix(0,nrow =11, ncol =11) 

for (i in 1:2759) { print(i); 

    trianglepredglmmorig[ao[i],ad[i]]<-trianglepredglmmorig[ao[i],ad[i]]+glmm1est[i] 

  } 

trianglepredglmmorig 

sum((trianglepredglmmorig-triangle)^2)/66 

 

> trianglepredglmmorig 

[,1]    [,2]         [,3]       [,4]       [,5]       [,6] [,7] [,8] [,9] [,10] [,11] 

[1,] 28376532 4850683 1966969.4862  255010.58      0.000      0.000    0    0    0     0     0 

[2,] 36800167 7218616 1173907.0534   45765.99      0.000      0.000    0    0    0     0     0 

[3,] 41167377 9890773 6242818.7278       0.00      0.000 351809.593    0    0    0     0     0 

[4,] 46348885 6499308 2202033.1508       0.00   6000.196      0.000    0    0    0     0     0 

[5,] 43066180 7282025  265029.8743       0.00      0.000      0.000    0    0    0     0     0 

[6,] 24009188 4676348  855770.4773 5071812.43 117372.803   6250.407    0    0    0     0     0 

[7,] 20135390 3389029     545.7424       0.00      0.000      0.000    0    0    0     0     0 

[8,] 19920214 4545189   43144.4264       0.00      0.000      0.000    0    0    0     0     0 

[9,] 21391680 3163576    1131.0598       0.00      0.000      0.000    0    0    0     0     0 

[10,] 15711702 1862860       0.0000       0.00      0.000      0.000    0    0    0     0     0 

[11,]  7175067       0       0.0000       0.00      0.000      0.000    0    0    0     0     0 

 

> sum((trianglepredglmmorig-triangle)^2)/66 

[1] 3.073374 
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7.4 Individual incremental claim estimates from accident year 11 under GLMM 

n 
Claim 

ID 
fr 

Pagos 

ao11 
ad1 ad2 ad3 ad4 ad5 

1 30247 220155 155 138.4549 98.47315 352.8757 86.18067 113.1045 

2 30250 990900 900 799.1547 568.3821 2036.781 497.4305 652.8334 

3 30254 1430655 655 582.1857 414.0674 1483.799 362.3791 475.5904 

4 30339 220450 450 399.8367 284.3755 1019.052 248.8767 326.6286 

5 30348 660605 605 537.459 382.2565 1369.805 334.5391 439.0529 

6 30352 1285 1285 1139.98 810.7869 2905.432 709.5758 931.2552 

7 30362 13013 13013 11539.92 8207.526 29411.44 7182.975 9427.017 

8 30370 42660 42660 37830.73 26906.32 96418.01 23547.58 30904.11 

9 30415 74305 74305 65893.5 46865.38 167940.7 41015.14 53828.73 

10 30429 660740 740 657.1348 467.3734 1674.819 409.0308 536.8167 

11 30433 36727 36727 32569.35 23164.27 83008.51 20272.66 26606.07 

12 30437 20574 20574 18244.94 12976.33 46500.32 11356.49 14904.38 

13 30443 89333 89333 79220.34 56343.82 201906.5 49310.38 64715.49 

14 30455 106829 106829 94735.82 67378.88 241450.3 58967.92 77390.16 

15 30456 101630 79630 70615.73 50223.96 179976.1 43954.47 57686.34 

16 30457 165948 110948 98388.58 69976.83 250760 61241.57 80374.12 

17 30459 522460 522460 463318.5 329525.6 1180846 288390.7 378487.2 

18 30464 43043 43043 38170.37 27147.88 97283.65 23758.99 31181.57 

19 30481 660605 605 537.459 382.2565 1369.805 334.5391 439.0529 

20 30483 157843 157843 139975.1 99554.39 356750.3 87126.94 114346.4 

21 30487 21132 21132 18739.77 13328.27 47761.48 11664.49 15308.61 

22 30492 245 245 218.0555 155.0874 555.7513 135.7277 178.1306 

23 30495 605 605 537.1133 382.0107 1368.924 334.324 438.7706 
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24 30496 11258 11258 9983.609 7100.634 25444.92 6214.256 8155.66 

25 30497 25305 3305 2931.134 2084.708 7470.49 1824.472 2394.458 

26 30498 225063 5063 4490.147 3193.524 11443.9 2794.874 3668.024 

27 30505 88680 88680 78641.26 55931.96 200430.6 48949.93 64242.44 

28 30510 220605 605 537.2286 382.0926 1369.218 334.3957 438.8647 

29 30511 220605 605 537.2286 382.0926 1369.218 334.3957 438.8647 

30 30515 1147779 738981 655330.1 466089.9 1670220 407907.5 535342.5 

31 30518 220605 605 537.2286 382.0926 1369.218 334.3957 438.8647 

32 30524 220605 605 537.2286 382.0926 1369.218 334.3957 438.8647 

33 30526 32309 32309 28651.48 20377.77 73023.15 17834 23405.54 

34 30533 127347 127347 112931.2 80319.97 287824.3 70293.57 92254.07 

35 30534 226573 226573 200925 142903.7 512091.5 125065 164136.7 

36 30535 292036 72036 63881.47 45434.36 162812.7 39762.75 52185.09 

37 30540 552976 805 714.7027 508.3174 1821.541 444.8637 583.8442 

38 30542 16080 16080 14259.7 10141.91 36343.26 8875.891 11648.82 

39 30543 52292 52292 46372.37 32981.38 118187.8 28864.29 37881.82 

40 30544 89940 89940 79758.63 56726.66 203278.4 49645.43 65155.22 

41 30546 220605 605 537.2286 382.0926 1369.218 334.3957 438.8647 

42 30548 32386 32386 28719.77 20426.34 73197.19 17876.5 23461.32 

43 30549 168806 168806 149697.1 106469 381528.5 93178.36 122288.3 

44 30550 397880 177880 157744.1 112192.2 402037.5 98187.16 128861.9 

45 30551 183319 183319 162567.3 115622.6 414330.3 101189.3 132802 

46 30552 26433 26433 23440.67 16671.69 59742.51 14590.55 19148.8 

47 30554 216058 216058 191600.3 136271.7 488325.8 119260.8 156519.3 

48 30555 62872 62872 55754.71 39654.38 142100.3 34704.29 45546.3 

49 30556 93933 93933 83299.63 59245.12 212303.2 51849.51 68047.88 
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50 30558 26561 26561 23554.18 16752.42 60031.81 14661.2 19241.53 

51 30559 221055 1055 936.1722 665.8329 2385.993 582.7165 764.7637 

52 30561 253006 253006 224365.9 159575.6 571834.5 139655.6 183285.6 

53 30563 272688 272688 241819.9 171989.4 616319 150519.8 197543.9 

54 30565 62304 62304 55251.01 39296.13 140816.6 34390.76 45134.83 

55 30566 8067 8067 7153.89 5088.055 18232.9 4452.91 5844.049 

56 30568 59055 59055 52369.8 37246.93 133473.3 32597.36 42781.15 

57 30569 125151 125151 110983.8 78934.91 282861 69081.4 90663.22 

58 30571 262343 262343 232646 165464.6 592937.6 144809.5 190049.6 

59 30572 220070 70 63.24294 44.98022 161.1853 39.36531 51.66347 

60 30573 288396 288396 255749.8 181896.7 651821.7 159190.4 208923.3 

61 30574 69181 69181 61349.54 43633.58 156359.7 38186.76 50116.74 

62 30576 65450 65450 58040.88 41280.37 147927 36127.31 47413.89 

63 30577 220605 605 537.2286 382.0926 1369.218 334.3957 438.8647 

64 30584 25555 25555 22662.06 16117.92 57758.1 14105.91 18512.75 

65 30585 221055 221055 196031.7 139423.4 499619.9 122019.1 160139.2 

66 30591 166705 166705 147834 105143.8 376779.9 92018.64 120766.3 

67 30592 73031 73031 64763.72 46061.84 165061.3 40311.91 52905.8 

68 30593 111214 111214 98624.44 70144.58 251361.1 61388.38 80566.8 

69 30594 273805 273805 242810.5 172693.9 618843.7 151136.4 198353.1 

70 30601 64104 64104 56847.25 40431.42 144884.8 35384.34 46438.8 

71 30602 290349 70349 62385.43 44370.34 158999.8 38831.56 50962.97 

72 30604 220605 605 537.2286 382.0926 1369.218 334.3957 438.8647 

73 30605 220605 605 537.2286 382.0926 1369.218 334.3957 438.8647 

74 30606 220680 680 603.714 429.379 1538.667 375.7793 493.177 

75 30610 72437 72437 64236.96 45687.2 163718.8 39984.03 52475.49 
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76 30612 477841 477841 423750.2 301383.5 1079999 263761.6 346163.6 

77 30613 220605 605 537.2286 382.0926 1369.218 334.3957 438.8647 

78 30617 220605 605 537.2286 382.0926 1369.218 334.3957 438.8647 

79 30618 120162 120162 106559.5 75788.25 271585 66327.55 87049.02 

80 30620 220605 12954 11487.71 8170.392 29278.37 7150.476 9384.365 

81 30623 97035 97035 86050.49 61201.61 219314.2 53561.77 70295.07 

82 30624 22605 605 537.1248 382.0189 1368.954 334.3311 438.78 

83 30626 137060 137060 121544.7 86446.15 309777.3 75655.01 99290.49 

 

 

 


