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ABSTRACT
We characterize the dynamics of a z − z electrolyte embedded in a varying-section channel. In the linear response regime, by means of suitable
approximations, we derive the Onsager matrix associated with externally enforced gradients in electrostatic potential, chemical potential, and
pressure, for both dielectric and conducting channel walls. We show here that the linear transport coefficients are particularly sensitive to
the geometry and the conductive properties of the channel walls when the Debye length is comparable to the channel width. In this regime,
we found that one pair of off-diagonal Onsager matrix elements increases with the corrugation of the channel transport, in contrast to all
other elements which are either unaffected by or decrease with increasing corrugation. Our results have a possible impact on the design of
blue-energy devices as well as on the understanding of biological ion channels through membranes.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5110349., s

I. INTRODUCTION

Many biological systems1 and synthetic devices2 rely on
the dynamics of electrolytes confined within micropores and
nanopores.3–6 For example, ion channels,7,8 membranes,9,10 neuron
signaling,1 plant circulation,11 and lymphatic12 and interstitial13

systems rely on the transport of electrolytes across tortuous
micropores and nanopores. Recent technological advances have
led to the realization of nanotubes and nanopores of control-
lable shape14,15 that have been exploited to separate DNA,16 pro-
teins, or colloids.17 Likewise, resistive-pulse sensing techniques have
been developed to measure properties of tracers transported across
charged nanopores.18–21 Moreover, electrolyte-immersed electrodes
have been characterized22,23 and realized for novel energy-harvesting
devices.24 Recently, it has been shown that novel dynamical regimes
appear when the section of the confining vessel is not constant.
Indeed, asymmetric pores have been used to pump25 and to rec-
tify ionic currents.26–30 Moreover, recirculation has been reported

for electrolytes confined between corrugated walls,31–34 and the vari-
ation in the section of channels can tune their permeability.35,36

When an electrolyte is driven inside such conduits (see Fig. 1), the
local variations in the available space will couple to the local charge
and ionic density distribution leading to modulations in the meso-
scopic properties of the electrolyte such as the electrostatic decay
length.

In this article, we show that analytical insight into such correc-
tions can be obtained for smoothly-varying channel sections. In this
scenario, we exploit the lubrication approximation and we derive
closed expressions for the geometrically-induced corrections to the
local electrostatic potential, charge, and ionic density distributions,
and we identify the fluxes driven by weak external driving forces
through applied electric fields, pressure, or salt concentration dif-
ferences for both conducting and dielectric channel walls. While for
constant section channels the transport coefficients are unaffected
by the wall properties, for varying section channels, we show that
the transport coefficients are generally larger for dielectric walls.
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FIG. 1. Schematic view of the system. The green regions are the channel walls;
the red stripe represents the region, of size Debye length, where the electrostatic
potential decays; and the blue stripes represent the channel walls.

Moreover, upon increasing the corrugation of the channel, we show
that, as expected, the transport coefficients generally decrease. How-
ever, for some specific cases, we find an increase in the transport
coefficients upon increasing the corrugation of the channel. We
stress that our results strongly depend on the fact that the Debye
length is comparable to the channel section, i.e., on the entropic
electrokinetic regime. Indeed, in the case in which the channel sec-
tion is much larger than the channel section of previous results,37 the
phenomena that we observe are absent.

In order to properly cast our results, i.e., to show the relevance
of the entropic electrokinetic regime, and in particular of the shape
of the channel, we have decided to rederive some known results
about the transport of electrolytes by accounting, for the first time,
for both the varying section of the channel and the partial overlap
of the Debye double layers. This self-consistent derivation will allow
us to put our novel results in their natural context. The structure of
the text is as follows. In Sec. II, we introduce our model setup and
the framework of electrokinetic equations that we use to describe
solute and solvent fluxes. In Sec. III, we determine the reference
equilibrium scenario. In Sec. IV, we derive the linear transport coef-
ficients of a channel driven out of equilibrium and show that the
corresponding Onsager matrix is symmetric. The Onsager matrix
encodes for many physical scenarios of possible experimental inter-
est. We discuss several of those scenarios in Sec. V. In particular, in
Secs. V B 2 and V C 1, we discuss the enhancement of the trans-
port coefficients upon increasing the channel corrugation. Finally,
in Sec. VII, we present our conclusions.

II. MODEL
A. Setup

Throughout this article, we analyze a microfluidic channel filled
with a z − z electrolyte in a solvent of dielectric constant ε. The sol-
vent is incompressible and has a viscosity η. The channel of length
L along the x-direction is translationally invariant in the z-direction
and has a varying pore width in the y-direction: the channel half-
section h(x) depends solely on x. We write h̄ ≡ (1/L) ∫

L
0 h(x)dx for

the average pore section.
At x = 0 and x = L, the channel is in contact with two chemostats

at electrochemical potentials μ±(x = 0) and μ±(x = L), respectively.

Next to differences in these chemical potentials on either side of
the channel, also a pressure difference ΔP or a potential difference
ΔV can be applied. We only consider isothermal systems at tem-
perature T, which means that local heat generation38 is neglected.
Moreover, our model does not account for surface conduction in
the Stern layer.39

B. Electrokinetic equations
Under the above described conditions, the steady state of our

system can be modeled by the classical electrokinetic equations,

ε∇2ψ(x, y) = −zeq(x, y), (1a)

j±(x, y) = ρ±(x, y)[v(x, y) −Dβ∇μ±(x, y)], (1b)

∇ ⋅ j±(x, y) = 0, (1c)

η∇2v(x, y) = −Ftot(x, y) +∇Ptot(x), (1d)
∇ ⋅ v(x, y) = 0. (1e)

First, the electrostatic potential ψ inside the channel is determined
by the Poisson equation (1a) with e being the elementary charge and
with q(x, y) being the local charge number density (m−3), which is
nonzero whenever there is a difference between cationic and anionic
number densities (ρ+ and ρ−, respectively),

q(x, y) = ρ+
(x, y) − ρ−(x, y). (2)

Second, we model the ionic currents j± by the Nernst-Planck equa-
tion (1b), which accounts for ionic transport by advection, diffu-
sion, and electromigration. Equation (1b) describes the dynamics of
pointlike ions: this represents a fair approximation for dilute elec-
trolytes in small electric fields. Third, when the system is driven
by an external force such as a pressure drop or an electrostatic
field, the electrolyte solution will flow—at a low Reynolds number—
according to the Stokes equation (1d), with ∂xPtot(x) = ∂xP(x)
+ ΔP/L, where ∂xP is the x-component of the geometrically induced
local pressure gradient that is determined by the boundary condi-
tions and by fluid incompressibility and where

Ftot(x, y) = −zeq(x, y)∂xψ(x, y) (3)

is the x-component of the total electrostatic force density acting
on the fluid. Finally, Eqs. (1c) and (1e) represent the steady-state
continuity equation and the incompressibility equation, respectively.

Equations (1) are subject to the following boundary conditions
for conducting (cond) and dielectric (diel) walls:

ψ → {
ψ(x,±h(x)) = ζ cond,
n± ⋅ ∇ψ(x, y)∣y=±h(x) = ±eσ diel,

(4a)

n± ⋅ j±(x,±h(x)) = 0, (4b)
v(x,±h(x)) = 0, (4c)

where n± is the local normal at the channel walls. Concerning the
boundary conditions on the velocity, we assume no-slip. In the case
of water as a solvent, this amounts to considering hydrophilic sur-
faces. For hydrophobic surfaces, the partial slip can induce addi-
tional effects40,41 that we do not consider here. Here, the boundary
conditions on ψ(x, y) depend on the conductive properties of the
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channel walls. For dielectric channel walls, the case for pores made
from polymeric materials such as polydimethylsiloxane (PDMS), we
impose a constant surface charge eσ, whereas for conducting walls,
such as carbon nanotubes, we impose a constant ζ potential. We
denote the electrostatic potential in either case ψζ(x, y) or ψσ(x, y),
accordingly. Note that while for flat channels either choice is related
via the capacitance, in the corrugated case, a constant ζ potential
leads to an x-dependent surface charge eσ(x) [cf. Eq. (17)], while
a constant surface charge gives rise to a varying surface potential
ψσ(x, h(x)) [cf. Eq. (14)]. The same superscript notation is also used
for other variables whenever we specify quantities to either boundary
condition. Equations (4b) and (4c) represent the no-flux and no-slip
boundary conditions at the channel walls of the solute and solvent,
respectively.

C. Lubrication approximation
In the following, we restrict to pores whose section varies

smoothly. This allows us to identify a separation between longitu-
dinal and transverse length scales according to which changes in ψ
and vx along the x-direction are much smaller than those along the
y-direction. This facilitates an essential simplification of Eqs. (1a)
and (1d) where ∂2

x terms therein become negligible as compared
to ∂2

y terms. Thanks to this “lubricationlike” approximation, both
Eqs. (1a) and (1d) become analytically solvable. In order to apply
the lubrication approximation consistently to both the Stokes and
Poisson equations, we need to identify a common small parame-
ter. While the relevant longitudinal length scale of both the Stokes
equation and the Poisson equation is the channel length L, differ-
ent transverse length scales appear in these equations: the average
channel section h̄, for the Stokes equation, and the screening length
λ, for the Poisson equation. To proceed, we nondimensionalize the
length scales via x = x∗L and h(x) = h∗(x)h̄, while for the transverse
direction we use either y = y∗h̄ or y = y⋆λ. We then write the Stokes
equation as

h̄2

L2
∂2vx

∂x2∗
+
∂2vx

∂y2∗
=

h̄2

η
[−Ftot(x, y) + ∂xPtot(x)] (5)

and the Poisson equation as

λ2

h̄2

h̄2

L2 [
∂2ψ
∂h2∗

(
∂h∗
∂x∗

)

2

+
∂ψ
∂h∗

∂2h∗
∂x2∗

] +
∂2ψ
∂y2⋆

= −λ2 zeq
ε

. (6)

A first-order lubrication approximation to Eq. (5) in the small
parameter h̄/L ≪ 1 amounts to dropping the term of order
O(h̄2

/L2
) (first term on the left-hand side). Similarly, in Eq. (6),

we neglect the term of order O(λ2
/L2

) (first term on the left-hand

side), requiring the smallness of λ/L; hence, this term is of O(h̄/L)
2

as compared to the second one, provided that λ2
/h̄2

≲ O(1).
We have exploited the nondimensionalized equations (5) and

(6) to identify the magnitude of different terms when the pore sec-
tion is smoothly varying. However, since in the following we are
going to make expansions in several small parameters, we continue
our analysis with the dimensionful equations. This approach has the
advantage that it allows us to keep track of all these small parameters
on equal footing.

III. EQUILIBRIUM
At equilibrium, the electrochemical potential42 is constant,

βμ±eq = ln[Λ3
±ρ

±
(x, y)] ± βzeψ(x, y), (7)

with β = (kBT)
−1 being the inverse thermal energy and Λ± being

the cationic and anionic thermal de Broglie wavelengths, which we
consider to be equal, Λ+ = Λ− = Λ. This implies that

ρ±(x, y) = %±(x) exp [∓βzeψ(x, y)], (8)

with

%±(x) =
exp [βμ±eq]

Λ3 . (9)

In order to get analytical insight, we assume that the electrostatic
potential is weak, βzeψ(x, y) ≪ 1, i.e., we apply the Debye-Hückel
approximation. For later convenience, we retain contributions up to
second order in βzeψ(x, y); hence, the number densities of positive
and negative ions read

ρ±(x, y)
%±

= 1 ∓ βzeψ(x, y) +
1
2
(βzeψ(x, y))2 + O(ψ3

). (10)

In order to simplify the notation, we choose the zero of the elec-
trostatic potential such that we have μ+

eq = μ−eq ≡ μeq when the z − z
electrolyte is globally electroneutral in the reservoirs. Hence, we have

%+
= %− ≡ %. (11)

From here on, we denote the expansion of a general variable X(x, y)
in the small parameter h̄/L as X = X0 + X1 + O(h̄/L)2; hence, for
instance, ψ(x, y) = ψ0(x, y) + O(h̄/L)2 and ρ±(x, y) = ρ±0 (x, y)
+ O(h̄/L)2. Accordingly, at leading order in the lubrication expan-
sion, we retain only the first terms of the above expansions and
Eq. (1a) reads

∂2
yψ0(x, y) = k2

0ψ0(x, y) + O(ψ3
0), (12)

where k0 =
√
β(ze)2γ0/ε is the inverse Debye length and γ0 = 2%0 is

the salt number density. In order to keep the notation as simple as
possible, from here on, we omit O(ψn

0) and we reintroduce it only
when necessary. Finally, the electrostatic potential for conducting
channel walls reads

ψζ0(x, y) = ζ
cosh[k0y]

cosh[k0h(x)]
, (13)

while for dielectric walls it reads

ψσ0(x, y) =
eσ
εk0

cosh[k0y]
sinh[k0h(x)]

. (14)

While we enforced global electroneutrality [cf. above Eq. (11)], local
electroneutrality—the balance of the total ionic charge zeq̄(x) in
a slab located at x by a corresponding amount of opposite local
surface charge 2eσ(x)—can now be discussed. Here, q̄(x) is the
cross-sectional total unit charge,

q̄(x) = ∫
h(x)

−h(x)
q(x, y)dy. (15)
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For conducting walls, at lowest order in lubrication, this amounts
with Eqs. (10) and (13) to

q̄ζ0(x) = −2εk0ζ tanh[k0h(x)]. (16)

We remark that, at first order in lubrication, the surface charge at
each conducting wall can be obtained by

eσζ(x) = ±ε∂yψζ0(x, y)∣y=±h(x) = εk0ζ tanh[k0h(x)]. (17)

For dielectric walls, we have

q̄σ0(x) = −2eσ. (18)

Equations (16)–(18) show that local charge neutrality is attained.
The presented theory is thus not able to reproduce the recently
discovered electroneutrality breaking in narrow confinement.43 To
account for that, the authors of Refs. 43 and 44 had to include
additional interactions beyond the ones of our model.

IV. TRANSPORT
From here on, we characterize the electrolyte-filled corrugated

nanochannel driven out of equilibrium by applied external forces
ΔP/L, zeΔV/L, and Δμ/L. We assume these external forces to be
small, which means that βLLzh̄ΔP ≪ 1, βzeΔV ≪ 1, and βΔμ ≪ 1,
where Lz is the thickness of the channel along the z direction.

A. Stokes
At leading order in lubrication, the solution vx(x, y) of the

Stokes equation [Eq. (1d)] subject to no-slip boundary conditions
[Eq. (4c)] reads

vx(x, y) = uP(x, y) + ueo(x, y), (19a)

uP(x, y) =
∂xPtot(x)

2η
[y2

− h(x)2
], (19b)

ueo(x, y) = U(x, y) − U(x, h(x)), (19c)

U(x, y) ≡
ze
η ∫

dy∫ dy q(x, y)∂xψ(x, y), (19d)

where we partitioned the velocity vx(x, y) into a pressure-driven con-
tribution uP and an electroosmotic contribution ueo that arises when
ions in an electric field drag along the solvent. The local pressure gra-
dient appearing in Eq. (19b), ∂xPtot(x) = ∂xP(x) +ΔP/L, accounts for
both the pressure drop ΔP from x = L to x = 0 and for the local pres-
sure P(x), which ensures fluid incompressibility [Eq. (1e)]. Inserting
Eq. (19) into the volumetric fluid flow,

Q = ∫

h(x)

−h(x)
vx(x, y)dy, (20)

and performing the y-integral over uP leads to an expression for
∂xPtot(x),

2
3η

∂xPtot(x) =
1

h3(x)
[∫

h(x)

−h(x)
ueo(x, y)dy −Q]. (21)

Integrating the last expression over ∫
L

0 dx, imposing fluid incom-
pressibility ∂xQ = 0, and using

∫

L

0
∂xPtot(x)dx = ΔP, (22)

which follows from the boundary conditions on the pressure,
leads to

Q ≡ QP + Qeo, (23a)

QP = −
2

3H3

h̄3ΔP
ηL

, (23b)

Qeo =
h̄3

H3L ∫
L

0

dx
h3(x) ∫

h(x)

−h(x)
ueo(x, y)dy, (23c)

where QP is the pressure-driven volumetric fluid flow, Qeo is the
electroosmotic flow, and

H3 ≡
h̄3

L ∫
L

0

1
h3(x)

dx (24)

is a dimensionless geometrical measure for the corrugation of the
channel. We find H3 ≥ 1, with the equality holding when the channel
is flat [h(x) = h̄]. Hence, for a flat channel, Eq. (23b) simplifies to the
standard result QP = −2h̄3ΔP/(3ηL) of a Poiseuille flow between two
flat plates. Finally, in order to determine ueo (and Qeo), we need to
characterize the ionic transport.

B. Small-force expansions
Within the Debye-Hückel regime and at first order in lubrica-

tion, we expand the nonequilibrium electric potential, charge densi-
ties, and electrochemical potential, for weak external forces, f, about
their equilibrium values,

ψ(x, y) = ψ0(x, y) + ψ0,f (x, y) + O( f 2
) + O(ψ3

0), (25a)

ρ±(x, y) = ρ±0 (x, y) + ρ±0,f (x, y) + O( f 2
) + O(ψ2

0). (25b)

Here, both ψ0 and ρ±0 carry corrections of O(ψ3
0). Hence, this expan-

sion for small values of f about the Debye-Hückel solution is mean-
ingful provided that contributions of order O( f ) are larger than
those of order O(ψ3

0). For notation ease, in all O( f ) terms that we
write from here on, we drop mentioning the lubrication approxi-
mation, in particular ρ±0,f → ρ±f and ψ0,f → ψf . Inserting Eq. (25b)
into Eq. (7), we find an expansion of the chemical potential, μ±(x, y)
= μ±0 + μ±f (x, y) + O( f 2

), with

βμ±f (x, y) =
ρ±f (x, y)
ρ±0 (x, y)

± βzeψf (x, y). (26)

Assuming a small transverse Peclet number (h̄vy/D ≪ 1), the steady
state is achieved by systems that are in local equilibrium ∂yμ(x, y) = 0
in every section of the channel located at x. Accordingly, using
Eq. (10) leads, at linear order in ψ0, to the density profiles

ρ±f (x, y) = %0[βμ̄±f (x) ∓ βzeψf (x, y)][1 ∓ βzeψ0(x, y)]. (27)

With μ±f , we define the intrinsic (electro)chemical potential as
μ̄±f (x) ≡ μ±f (x, y). It is important to remark that the contribu-
tion contained in Eq. (27) is of lower order than those disre-
garded in Eq. (25b) and that those contributions disregarded in
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Eq. (27) are of the same (or higher) order as those disregarded in
Eq. (25b).

C. Transport equations
The steady-state continuity equation (1c), together with the no-

flux boundary condition [Eq. (4b)], implies the x-independence of
the following cross-sectional integrals:

J± = ∫
h(x)

−h(x)
j±x (x, y)dy, (28)

which represent the total ionic fluxes through a slab at x. In
Appendix A, we find expressions for the solute Jc = J+ + J−

and charge Jq = J+
− J− fluxes by inserting Eqs. (1b) and (27)

into Eq. (28),

Jc

D
=
γ0Q
D

+ βzeψ0(x)∂xξf (x) − 2h(x)∂xγf (x) + O( f 2
), (29a)

Jq

D
=
Jq(x)

D
+ βzeψ0(x)∂xγf (x) − 2h(x)∂xξf (x) + O( f 2

), (29b)

where γf (x), ξf (x),ψ0(x), and Jq(x)55 are defined as

γf (x) = %0β[μ̄+
f (x) + μ̄−f (x)], (30a)

ξf (x) = %0β[μ̄+
f (x) − μ̄−f (x)], (30b)

ψ0(x) ≡ ∫
h(x)

−h(x)
ψ0(x, y)dy, (30c)

Jq(x) ≡ ∫
h(x)

−h(x)
q0(x, y)vx(x, y)dy. (30d)

We now proceed as follows: from Eq. (29), we will derive expressions
for γf (x) and ξf (x) in terms of the fluxes Jc, Jq, and Q [cf. Eqs. (33)
and (34)]. Since γf (x) and ξf (x) are defined in terms of the intrinsic
chemical potentials μ̄±f (x), which must adhere to externally enforced
boundary values μ̄±f (0) and μ̄±f (L), these expressions can, in turn, be
inverted to yield the fluxes in terms of driving forces. To do all that,
we start by rewriting Eq. (29b),

∂xξf (x) =
βzeψ0(x)

2h(x)
∂xγf (x) +

Jq,f (x) − Jq,f

2Dh(x)
, (31)

where Jq = Jq,f +O( f 2
) and Jq = Jq,f +O( f 2

). With a slight abuse of
notation, we drop the subscript f in Jq ,f and Jq,f from here on, and
we will do the same for Jc ,f and Qf , which are defined analogously
to Jq ,f and Jq,f . As usual,46 instead of Jc, from here on we will con-
sider the “excess” solute flow not caused by advection, J′c = Jc − γ0Q.
Inserting Eq. (31) into Eq. (29a), we find

∂xγf (x) = −
1

2Dh(x)
[J′c + Jq

βzeψ0(x)
2h(x)

], (32)

which upon integrating yields

γf (x) = γf (0) −
J′c

2D ∫
x

0

dx′

h(x′)
−

Jq

4D ∫
x

0

βzeψ0(x′)
h2(x′)

dx′. (33)

Similarly, substituting Eq. (32) into Eq. (31) and integrating, at
leading order in ψ0, yields

ξf (x) = ξf (0) −
Jq

2D ∫
x

0

dx′

h(x′)
−

J′c
4D ∫

x

0

βzeψ0(x′)
h2(x′)

dx′

+
1

2D ∫
x

0

Jq(x′)
h(x′)

dx′. (34)

Evaluating the above two equations at x = L gives

Δγ
L

= −
H1

2Dh̄
[J′c + JqΦΥ1], (35a)

Δξ
L

= −
H1

2Dh̄
[Jq + J′cΦΥ1] +

ΦΥ3γ0

Dk2
0η

ΔP
L

, (35b)

where we defined Δγ = γf (L) − γf (0) and Δξ = ξf (L) − ξf (0), and
where we used the following new functions:

H1 ≡
h̄
L ∫

L

0

1
h(x)

dx, (36a)

Φ ≡ βze ×
⎧⎪⎪
⎨
⎪⎪⎩

ζ cond,
eσ
εk0

diel, (36b)

Υ1 ≡
h̄

H1L ∫
L

0
dx

βzeψ0(x)
2 h2(x)Φ

, (36c)

Υ3 ≡
h̄3

H3L ∫
L

0
dx

βze[2h(x)ψ0(x, h(x)) − ψ0(x)]
2 h4(x)Φ

. (36d)

First, similar to H3, H1 is a measure for the corrugation of the
channel. Second, Φ/(βze) equals the surface potential ψζ(x, h(x))
for conducting walls, while for dielectric surfaces it differs from
ψσ(x, h(x)) by a factor coth[k0h(x)] [cf. Eq. (14)]. Third, the Υ func-
tions are dimensionless and depend solely on the parameter k0h̄ and
the channel shape h(x). We report their functional dependence on
these parameters for both boundary conditions in Eq. (42). Finally,
the Υ3 term in Eq. (35b) stems from the Jq(x) term in Eq. (34) [see
Appendix B].

D. Onsager matrix
Reshuffling Eq. (35) gives

J′c = −JqΦΥ1 −
2Dh̄
H1

Δγ
L

, (37a)

Jq = −J′cΦΥ1,−
2Dh̄
H1

Δξ
L

+
2ΦΥ3

H1

γ0h̄
k2

0η
ΔP
L

. (37b)

Using the formalism developed in this section, in Appendix C, we
determine the missing piece of Q [Eq. (23)],

Q = QP − Jq
ΦΥ3

Dβηk2
0

, (38)
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for both electric boundary conditions [cf. Eqs. (C16a) and (C16b)],
provided that the channel satisfies h(0) = h(L). Inserting Eq. (37a)
into Eq. (37b), Eq. (37b) into Eq. (37a), and Eq. (37b) into Eq. (38),
at leading order in Φ, leads to

Jq = −
2Dh̄βγ0

H1

Δξ
βγ0L

+ 2ΦΥ1
Dh̄
H1

Δγ
L

+
2ΦΥ3

H1

γ0h̄
k2

0η
ΔP
L

, (39a)

J′c = 2ΦΥ1
Dh̄βγ0

H1

Δξ
βγ0L

−
2Dh̄
H1

Δγ
L

, (39b)

Q =
2ΦΥ3

H1

γ0h̄
ηk2

0

Δξ
βγ0L

−
2h̄3

3H3η
ΔP
L

. (39c)

In Eq. (39), we identify three effective force densities, namely,
Δξ/(βγ0L), Δγ/(βγ0L), and ΔP/L. We use Eq. (26) to rewrite
Δξ = β%0[Δμ̄+

f −Δμ̄
−
f ] = βγ0zeΔV and Δγ = β%0[Δμ̄+

f +Δμ̄−f ] = βγ0Δμ̄
in terms of the more familiar ionic chemical potential Δμ̄56 and
external potential drop ΔV.57 We can then relate the three fluxes
and three forces in Eq. (39) via a 3 × 3 conductivity matrix L, the
Onsager matrix of the out-of-equilibrium corrugated nanochannel,

⎛
⎜
⎜
⎝

Jq

J′c
Q

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

L11 L12 L13

L21 L22 0
L31 0 L33

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

zeΔV
Δμ̄
ΔP

⎞
⎟
⎟
⎠

1
L

, (40)

where the coefficients read

L11 = L22 = −2γ0
h̄

H1

μion

ze
, (41a)

L12 = L21 = −2γ0
h̄

H1

μion

ze
ΦΥ1, (41b)

L13 = L31 = −2γ0
h̄

H1

1
ηk2

0
ΦΥ3, (41c)

L33 = −
2

3H3

h̄3

η
, (41d)

where μion = Dβze is the ionic mobility. Clearly, the matrix L in
Eq. (40) is symmetric; hence, Onsager’s reciprocal relations are ful-
filled. While Eq. (40) is a well known result,47–49 the derivation
of Eq. (41) from a microscopic theory is, up to our knowledge,
unprecedented. We discuss properties of the Onsager matrix and its
coefficients in Sec. V.

V. RESULTS
A. General properties of the Onsager matrix

We list a few general properties of the Onsager matrix:
1. Equation (40) relates three fluxes (Jq, J′c , Q) to three thermo-

dynamic forces (zeΔV/L,Δμ̄/L,ΔP/L) via four independent
nonzero transport coefficients (L11,L12,L13,L33). Note that
the off-diagonal matrix elements vanish (L12 = L13 = 0)
when the channel walls are uncharged (Φ = 0). In that case,
the charge flow Jq, the solute flow J′c , and the flow of the
solution Q respond solely to the electrostatic potential drop,

chemical potential differences, and pressure differences,
respectively. Conversely, for Φ ≠ 0, the off-diagonal terms of
the Onsager matrix do not vanish (Li≠j ≠ 0) and Eq. (40)
encodes a rich nonequilibrium behavior.

2. In bulk electrolytes, a salt gradient does not drive fluid
flow. In the presence of a solid substrate, the interactions
between the ions and the surface drive a phoretic flow
v ∼∇μ∫dr r(exp[βU(r)] − 1) with U being the interaction
potential between the ions and the walls. Within the Debye-
Hückel approximation, the electrostatic potential is small.
Hence, reversing the sign of the interaction leads to a reversal
of the sign of the phoretic flow. This means that in the presence
of a gradient∇μ, the first nonzero contribution to the fluid flow
is of O( fψ2

), in agreement with Ref. 47.
3. Equation (41a) states that L11 = L22. This implies that pro-

vided our approximations are applicable, the knowledge of the
diagonal coefficient, L11, associated with the electric current
induced solely by an electrostatic potential drop, determines
the diagonal coefficient L22 associated with the ionic current
under the action of an ionic chemical potential imbalanceΔμ̄.58

4. The diagonal terms are controlled solely by H1 and H3. Since
these functions do not depend on the boundary conditions
(constant σ or constant ζ) on the electrostatic potential nor do
the diagonal terms.

5. In contrast to the diagonal elements, the off-diagonal terms
are sensitive to the electrostatic boundary conditions. This is
evident after inserting Eqs. (13) and (14) into Eqs. (36c) and
(36d),

Υζ1 =
h̄

H1L ∫
L

0
dx

G [k0h(x)]
h(x)

, (42a)

Υσ1 =
h̄

H1L ∫
L

0
dx

1
k0h(x)2 , (42b)

Υζ3 =
h̄3

H3L ∫
L

0
dx

1 − G [k0h(x)]
h3(x)

, (42c)

Υσ3 =
h̄3

H3L ∫
L

0
dx

L [k0h(x)]
h3(x)

, (42d)

where

G(x) =
tanh(x)

x
, L (x) = coth(x) −

1
x

, (43)

with L (x) known as the Langevin function.
6. According to our formulation, the entropy production Σ

reads

TΣ = −Jq × zeΔV − J′c × Δμ̄ −Q × ΔP (44)
in terms of the thermodynamics forces zeΔV, Δμ̄, and ΔP. This
expression is in agreement with Refs. 46 and 47.
In order to proceed with our analysis of the Onsager matrix

and the functions H1, H3, Υ1, and Υ3 appearing therein, we need to
restrict to a particular channel shape. Accordingly, we choose

h(x) = h̄ + Δh cos(2π
x
L
). (45)
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A more general shape of the channel may include a “phase” in the
argument of the cosine. However, Eqs. (41) and (36) show that the
transport coefficients depend solely on the integral of the channel
shape and are thus phase independent.59 While the dimensionless
combination Δh/h̄ already gives a sense of the channel corruga-
tion, in the following we prefer to use the related “entropic barrier”
defined as

ΔS ≡ ln[
h̄ + Δh
h̄ − Δh

] = 2 tanh−1
(Δh/h̄), (46)

which takes values between ΔS = 0 for flat channels and ΔS > 0
for corrugated channels. Inserting Eq. (45) into H1 [Eq. (36a)], H3
[Eq. (24)], and Υσ1 [Eq. (42b)] gives

H1 = cosh
ΔS
2

, (47a)

H3 = [
3
2

cosh2
(
ΔS
2

) −
1
2
] cosh3 ΔS

2
, (47b)

Υσ1 =
cosh2

(ΔS/2)
k0h̄

. (47c)

We plot H1 and H3 in Fig. 2.

1. Diagonal terms
As noted earlier, the diagonal matrix elements L11 ∼ 1/H1

and L33 ∼ 1/H3 depend on the shape of the channel but not on
the boundary conditions on the electrostatic potential at the chan-
nel walls, this is in agreement with Refs. 50–52. Because H1 and
H3 increase with ΔS, L11 and L33 decrease therewith. This implies
that the pressure-driven volumetric fluid flow Q and the chemical
potential-driven excess solute flow J′c diminish with increasing ΔS.

2. Off-diagonal terms
The off-diagonal terms in Eq. (40) are controlled by the func-

tions Υσ ,ζ and by H1. In the following, we will focus on the depen-
dence of L12 and L13 on Υσ,ζ

1 and Υσ,ζ
3 , respectively. Figure 3(a)

shows for conducting channel walls that Υζ1 (and thus Lζ
12) is almost

independent of ΔS, whereas Υσ1 (and thus Lσ
12) increases more dras-

tically as Υσ1 ∝ exp [ΔS] at large ΔS [cf. Eq. (47c)]. Hence, coun-
terintuitively, increasing the corrugation of the channel enhances

FIG. 2. Plots of the functions H1 [Eq. (36a)] (black line) and H3 [Eq. (24)] (gray
dashed line) as a function of ΔS for the channel shape given in Eq. (45).

FIG. 3. Plots of the functions Υζ1 (solid red), Υζ3 (solid blue), Υσ1 (dashed red), and
Υσ3 (dashed blue) as a function ofΔS [panel (a)] and k0h̄ [panel (b)] for the channel
shape given in Eq. (45).

some off-diagonal transport coefficients. Equation Eq. (40) shows
that this enhancement occurs for the electric current driven by a
chemical potential drop Δμ (with ΔP = ΔV = 0) and for the excess
solute flow J′c driven by an external electrostatic field ΔV/L (with
ΔP = Δμ = 0).

Figure 3(b) shows that the sensitivity of Υζ1, and hence L12, on
the boundary conditions disappears when the Debye length is much
smaller than the channel section, k0h̄ ≫ 1, whereas it becomes sig-
nificant when k0h̄ ≲ 1. In particular, Fig. 3(b) shows that in the latter
regime, Lζ

12 keeps the linear dependence on k0h̄ whereas Lσ
12 reaches

a plateau.
The dependence of L13, on the top of its H1-dependence, on

both ΔS and k0h̄ is encoded in Υσ,ζ
3 . Similar to L12, also L13 shows

an explicit dependence on the boundary conditions. In particular,
Fig. 3(a) shows that both Lσ,ζ

13 decrease with increasing ΔS, and for
large values of ΔS, we have Lσ

13 ∝ exp[−2ΔS] and Lζ
13 ∝ exp[−ΔS].

This means that the electric current induced by a pressure drop ΔP
and the electroosmotic flow induced byΔV decay exponentially with
ΔS. The dependence of Lσ,ζ

13 on k0h̄ is shown in Fig. 3(b). Inter-
estingly, for large values of k0h̄, both Lσ

13 and Lζ
13 reach a plateau,

whereas for smaller values of k0h̄ they grow monotonically with
Lσ

13 ∝ (k0h̄)2 and Lζ
13 ∝ k0h̄.

To understand the influence of the channel walls (i.e., conduct-
ing or dielectric) on the Υ functions, it is insightful to look at their
relative differences through the combination

ΔΥ1,3 = 2
Υσ1,3 − Υ

ζ
1,3

Υσ1,3 + Υζ1,3

. (48)
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Figure 4 shows that the functions Υ1,3 have a surprisingly simi-
lar sensitivity to the boundary conditions: whenever Υ1 changes
by switching from conducting to dielectric walls, so does Υ3 and,
remarkably, by almost the same amount. This means that there is
no regime in which some of the Onsager coefficients are more sen-
sitive than others upon changing the electrostatic properties of the
walls. Finally, we notice from Fig. 4 that ΔΥ1,3 > 0, which means
[cf. Eq. (48)] that the Onsager coefficients for dielectric walls are
always larger than their counterparts for conducting walls. This can
be understood by looking at the functional form of Υσ,ζ

1,3 ; see Eq. (36)
together with Eq. (30c). Concerning Υσ,ζ

1 , we notice that the inte-
grand is proportional to ψ0(x)/Φ. Interestingly, ψ0(x)/Φ is propor-
tional to the charge-to-surface potential ratio. Hence, the fact that
ΔΥ1 > 0 is associated with the fact that, per unit surface poten-
tial, dielectric walls can enclose a larger charge. Concerning Υσ,ζ

1 , we
notice that the integrand is proportional, 2h(x)ψ(x, h(x)) − ϕ0(x),
i.e., to the difference between the potential averaged over the chan-
nel section, ψ0(x), and the (maximum) value the average can attain,
namely, 2h(x)ψ(x, h(x)). In this regard, the fact that ΔΥ3 > 0 is a
reminder of the fact that, per unit surface potential, dielectric walls
lead to a large variation of the potential between the channel walls as
compared to conduction walls.

B. Single external force
So far, we have discussed the general properties of the Onsager

matrix and their relation to some relevant cases. In the follow-
ing, we discuss in detail several transport phenomena. In order to
emphasize the role of the geometry and the onset of the entropic

FIG. 4. Plots of the functions ΔΥ1 (downward triangles) and ΔΥ3 (upward trian-
gles), as a function of ΔS [panel (a)] and k0h̄ [panel (b)] for the channel shape
given in Eq. (45). In (a), we use k0h̄ = 0.1, 1, 10: larger points stand for larger
values of k0h̄. In (b), we use ΔS = 0, 1, 3: larger points stand for larger values of
ΔS.

electrokinetic regime,33–36 we normalize quantities by their corre-
sponding values in a plane channel geometry with equal average
section. Thanks to this procedure, once the dielectric or conducting
nature of the channel walls is specified, all quantities depend solely
on k0h̄ and ΔS.

1. Electrostatic driven flows
In the case that ΔP = Δμ̄ = 0, a potential difference

ΔV ≠ 0 drives an ionic current, salt flow, and electroosmotic fluid
flow. In particular, the electroosmotic flow (per unit length in the
z-direction) reads

Qeo = L13
zeΔV

L
=

2Φεh̄
η

ΔV
L

×
Υ3

H1
. (49)

This amounts to

Qζ
eo =

2ζεh̄
η

ΔV
L

×
Υζ3
H1

, (50a)

Qσ
eo =

2eσh̄2

η
ΔV
L

×
Υσ3

k0h̄H1
. (50b)

We note that Eq. (50b) coincides with Eq. (40) of Ref. 52 and that the
combination ζε/η is known as the “electroosmotic mobility.”51 For
the channel as specified in Eq. (45), we show Eq. (50) as a function of
ΔS in Fig. 5(a) and as a function of k0h̄ in Fig. 5(b). From this figure,
we see that both Qζ

eo and Qσ
eo vanish for highly corrugated chan-

nels (when ΔS ≫ 0). Meanwhile, both Qζ
eo and Qσ

eo diminish upon

FIG. 5. Electroosmotic flow Qeo [Eq. (50)] and streaming current Istr [Eq. (53)] for
conducting (red lines) and dielectric (blue lines) channel walls. Panel (a) shows
ΔS-dependence at k0h̄ = 1 (solid) and k0h̄ = 10 (dashed). Panel (b) shows
ΔV-dependence at ΔS = 1 (solid) and ΔS = 1 (dashed).
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decreasing kh̄. Interestingly, the transition between the two plateaus
occurs for k0h̄ ∈ [1 : 10], the entropic electrokinetic regime.33–36 For
a straight channel, the integrals in Υ [Eq. (42)] become trivial and
Eq. (50) simplifies to

Qζ
eo =

2ζεh̄
η

ΔV
L

× [1 − G(k0h̄)], (51a)

Qσ
eo =

2eσh̄2

η
ΔV
L

×
L(k0h̄)

k0h̄
. (51b)

We note that Eq. (51a) is in agreement with Eq. (50) of Ref. 53. More-
over, for a flat channel, ψζ(x, y) = ψσ(x, y) provided that the surface
potentials are the same: ψζ(x, h) = ψσ(x, h)⇒ ζ = eσ coth[k0h]/(εk0).
Inserting this into Eq. (51a), we confirm Eq. (51b).

2. Pressure driven flows
In the case that ΔV = Δμ̄ = 0, a pressure difference ΔP ≠ 0

drives a streaming current (per unit length in the z-direction),

Istr = L13ze
ΔP
L

=
2Φεh̄
η

ΔP
L
×
Υ3

H1
, (52)

which amounts to

Iζstr =
2ζεh̄
η

ΔP
L
×
Υζ3
H1

, (53a)

Iσstr =
2eσh̄2

η
ΔP
L
×

Υσ3
k0h̄H1

. (53b)

Clearly, Istr is governed by the same matrix element L13 as the elec-
troosmotic flow (its reciprocal phenomenon) discussed above. As
a consequence, Qσ and Iσstr share the same term Υσ3/(k0h̄H1) and,
hence, display the same ΔS and k0h̄ dependence (see Fig. 5).

From Eq. (52), it is easy to determine the streaming current
between two parallel plates and to check that this agrees with Eq. (37)
of Ref. 53.

3. Chemical potential steps Δμ̄
Finally, we consider the case in which flows are driven solely by

a chemical potential drop Δμ̄. Accordingly, the electric current reads

Jq = −2γ0h̄
μion

ze
ΦΔμ̄ ×

Υ1

H1
, (54)

which amounts to

Jζq = −2γ0h̄βμionζΔμ̄ ×
Υζ1
H1

, (55a)

Jσq = −2γ0h̄2βμion
eσ
ε
Δμ̄ ×

Υσ1
k0h̄H1

. (55b)

For dielectric channel walls, we find with Eq. (47c) that
Jσq (ΔS)/Jσq (ΔS = 0) = cosh[ΔS/2]; hence, this ratio grows mono-
tonically with increasing corrugation of the channel ΔS. Conversely,
for conducting channel walls, Fig. 6(a) displays that Jσq has a maxi-
mum for a finite value of ΔS. The ionic charge currents as discussed
in this section are the relevant physical phenomenon underlying

FIG. 6. Electric current Jq [Eq. (55)] driven by a chemical potential difference, as
a function of ΔS [panel (a)] and k0h̄ [panel (b)] for conducting (red lines) and
dielectric (blue lines) channel walls. Panel (a) shows ΔS-dependence at k0h̄ = 1
(solid) and k0h̄ = 10 (dashed). Panel (b) shows ΔV-dependence at ΔS = 1 (solid)
and ΔS = 1 (dashed).

reverse electrodialysis, whereby electrical energy is generated from
a salt concentration difference.49

C. Membrane
In the following, we characterize several cases in which the

channel is in series with a membrane that selectively impedes the
passage of (any combination of) solvent and ions. In this scenario,
we can control Q and the fluxes of positive, 2J+ = Jc + Jq, and neg-
ative, 2J− = Jc − Jq, ions. Due to its physical interest, in this sec-
tion, we focus on the full solute flow Jc = J′c + γ0Q rather than on
J′c . The general solution to Eq. (40), under the above constraints,
reads

Δμ̄ =
Jc − (L12 + γ0L13)zeΔV − γ0L33ΔP

L22
, (56a)

zeΔV =
L22Jq −L12Jc + (L12γ0L33 −L22L13)ΔP

L2
22

, (56b)

Q =
L13

L22
Jq + L33ΔP. (56c)

1. Electrodes
First, we consider a membrane that allows for a net electric cur-

rent, Jq ≠ 0, but not for mass fluxes, Q = Jc = 0. This looks like having
some electrodes that close the electric circuit at zero solvent and
ionic flow. When only ΔV is nonzero, Eqs. (56), at linear order in
Φ, give
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Δμ̄V =
L12

L22
zeΔV , (57a)

ΔPV =
L13

L33
zeΔV , (57b)

Jq = L22zeΔV , (57c)

or, likewise,

Δμ̄V = zeΔVΦ × Υ1, (58a)

ΔPV =
1
3

ε
βze

1
h̄2
ΔVΦ ×

H3

H1
Υ3, (58b)

Jq = −2
ε
βze

h̄
μion

ze
ΔV ×

1
H1

. (58c)

Figure 7(a) shows the dependence of Δμ̄V on ΔS. In particular, for
both conducting and dielectric channel walls, Δμ̄V increases with the
corrugation of the channel ΔS. In contrast, the dependence of Δμ̄V
on k0h̄ is more sensitive to the conductive properties of the channel
walls. While for dielectric walls Δμ̄V is independent on k0h̄, for con-
ducting walls it reaches a plateau for both k0h̄ ≪ 1 and k0h̄ ≫ 1
and it grows for k0h̄ ∈ [1 : 10] [see Fig. 7(b)]. Interestingly, the
very same behavior is observed for the electrostatic potential drop,
ΔVμ, induced by an applied chemical potential, Δμ̄, when the elec-
tric current is set to zero, Jq = 0. In this case, ΔVμ grows with ΔS for
both kinds of channel walls [see Fig. 7(a)]. Since both Δμ̄V and ΔVμ

FIG. 7. Chemical potential drop, Δμ [Eq. (58a)], as a function of ΔS [panel (a)] and
k0h̄ [panel (b)] for conducting (red lines) and dielectric (blue lines) channel walls.
Panel (a) showsΔS-dependence at k0h̄ = 1 (solid) and k0h̄ = 10 (dashed). Panel
(b) shows ΔV-dependence at ΔS = 1 (solid) and ΔS = 1 (dashed). The same
quantitative behavior holds for ΔV induced by an applied chemical potential, Δμ,
when the electric current is set to zero, Jq = 0 (see text).

are proportional to Υ1, they increase upon enlarging ΔS as already
shown in Fig. 6. Finally, we remark that ΔPv [Eq. (58b)] is also
known as the electroosmotic back/counter pressure.51

2. Open electric circuit
Second, we consider a membrane that allows for mass flows,

Q ≠ 0 and Jc ≠ 0, but not for electric current, Jq = 0. In this case, at
linear order in Φ, Eqs. (56) read

Δμ̄ =
Jc − (L12 + γ0L13)zeΔV − γ0L33ΔP

L22
, (59a)

zeΔV =
−L12Jc + (L12γ0L33 −L22L13)ΔP

L2
22

, (59b)

Q = L33ΔP. (59c)

In particular, for ΔV = 0, this amounts to

Δμ̄ = −
zeh̄2

μionη
ΔP ×

1
k2

0h̄2

Υ3

Υ1
, (60a)

Jc = −2
εh̄

β(ze)2η
ΔP × [

1
3

k2
0h̄2

H3
−

1
H1

Υ3

Υ1
], (60b)

Q = −
2
3

h̄3

η
ΔP ×

1
H3

. (60c)

As shown in Fig. 8(a), the solute current Jc decreases monotonically
for both dielectric and conducting channel walls upon increasing
the channel corrugation ΔS. More surprising is the dependence of

FIG. 8. Solute current, Jc [Eq. (60b)], as a function ofΔS [panel (a)] and k0h̄ [panel
(b)] for conducting (red lines) and dielectric (blue lines) channel walls. Panel (a)
shows ΔS-dependence at k0h̄ = 1 (solid) and k0h̄ = 10 (dashed). Panel (b)
shows ΔV-dependence at ΔS = 1 (solid) and ΔS = 1 (dashed).
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Jc on k0h̄. Indeed, Fig. 8(b) shows that Jc reaches a plateau for both
k0h̄ ≪ 1 and k0h̄ ≫ 1, and for k0h̄ ≃ 1, it displays a nonmonotonous
dependence on k0h̄.

3. Solvent permeable membrane
Third, we consider a membrane that selectively permits the flow

of solute but not of ions; hence, Jc = Jq = 0 and J′c = γ0Q. Accordingly,
we obtain

Δμ̄ = −
γ0L33

L22
ΔP, (61a)

zeΔV =
L12γ0L33 −L22L13

L2
22

ΔP, (61b)

Q = L33ΔP, (61c)

from Eq. (56). This amounts to

Δμ̄ = −
1
3

h̄2

η
ze
μion

ΔP ×
H1

H3
, (62a)

zeΔV =
h̄2

η
ze
μion

ΦΔP × [
1
3

H1

H3
Υ1 −

1
k2

0h̄2
Υ3], (62b)

Q = −
2
3

h̄2

η
ΔP ×

1
H3

. (62c)

Interestingly, in order to sustain a nonvanishing fluid flow, Q ≠ 0,
the system will excite all three external forces, i.e., we have ΔV ≠ 0,
ΔP ≠ 0, and Δμ̄ ≠ 0. In particular, when ΔP is the only exter-
nally applied force, then from Eq. (62b) we can read off the induced
streaming potential. Figure 9(a) shows thatΔV decays monotonically
with ΔS for both conducting and dielectric channel walls, whereas
Fig. 9(b) shows that ΔV reaches a plateau for both k0h̄ ≪ 1 and
k0h̄ ≫ 1 and that the sensitivity of ΔV on k0h̄ is maximum for
k0h̄ ≃ 1, i.e., in the entropic electrokinetic regime. Finally, by invert-
ing Eq. (62a), Eqs. (62) show that net fluid flow can be obtained by
applying a chemical potential gradient Δμ̄. However, the net fluid
flow is not a direct consequence of Δμ̄ (we recall that L23 = L32 = 0).
Rather, Δμ̄ induces an osmotic pressure drop that eventually drives
the flow.

4. Ion exchange membrane
Finally, we consider the channel to be in series with a mem-

brane that selectively allows for the flow of solvent and one ionic
species, impeding the other species. Recalling that Jc = (J+ + J−)/2
and Jq = (J+

− J−)/2, when only positive ions are flowing (J− = 0), we
have Jc = Jq, whereas when only negative ions are flowing (J+ = 0),
we have Jc = −Jq. Hence, we have

Jc =
L2

22

±L22 −L12
zeΔV −

L12γ0L33 −L22L13

±L22 −L12
ΔP, (63a)

Δμ̄ = −
L12 + γ0L13

L22
zeΔV −

γ0L33

L22
ΔP + Jc, (63b)

Q = L13ΔV + L33ΔP, (63c)

FIG. 9. Electrostatic potential drop ΔV [Eq. (62b)] across a solvent permeable
membrane, as a function of ΔS [panel (a)] and k0h̄ [panel (b)] for conducting (red
lines) and dielectric (blue lines) channel walls. Panel (a) shows ΔS-dependence
at k0h̄ = 1 (solid) and k0h̄ = 10 (dashed). Panel (b) shows ΔV-dependence at
ΔS = 1 (solid) and ΔS = 1 (dashed).

where the sign in front of L22 is positive when positive ions are flow-
ing and negative otherwise. We remark that within linear response,
L22 ≥ L12.46 In contrast to the solvent permeable membrane, for
the ion exchange membrane we can put one of the thermodynamic
forces to zero. In particular, for electrostatic driven flows, ΔV ≠ 0
with ΔP = 0, Eqs. (63) read60

Jc = −2
μionε

β(ze)2h̄
ΔV ×

k2
0h̄2

H1

1
±1 −ΦΥ1

, (64a)

Δμ̄ = zeΔVΦ × [Υ1 +
ε

βzeμionη
Υ3] + Jc, (64b)

Q = −2
ε
βze

ΔVΦh̄
1
η
×
Υ3

H1
. (64c)

Equation (64a) is remarkable for two reasons. First, as commented
earlier, if it diverges when ±1 − ΦΥ1 → 0 it would require higher
order corrections. Second, in Eq. (64a), the dimensionless potential,
Φ, plays a major role, i.e., it modulates the relative magnitude of the
two terms in the denominator, and it is not simply a multiplicative
constant as is in all previous cases. In order to proceed with a numer-
ical inspection of Eq. (64a), we fix the value of Φ such that ±1 −ΦΥ1
never vanishes. This allows us to fulfill the constraint L22 ≥ L12. Fix-
ing the value of Φ is crucial for the dielectric case since, in order to
keep the magnitude of the potential fixed, the surface charge density
decreases with k0 (Fig. 10).
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FIG. 10. Solute flux Jc [Eq. (64a)] through a semipermeable membrane as a func-
tion of ΔS [panel (a)] and k0h̄ [panel (b)] for conducting (red lines) and dielectric
(blue lines) channel walls. Panel (a) shows ΔS-dependence at k0h̄ = 1 (solid)
and k0h̄ = 10 (dashed) (all lines are overlapping each other). Panel (b) shows
ΔV-dependence at ΔS = 1 (solid) and ΔS = 1 (dashed).

VI. MICROSCOPIC PERSPECTIVE
So far, we have discussed the macroscopic transport properties

of the channel. However, our framework also allows us to discuss
some microscopic details, such as the local electrostatic potential,
ψf (x, y), induced by the external forces modulated by the geometry
of the channel. At first order in lubrication, the leading order force-
induced correction of the Poisson equation [Eq. (1a)] reads

∂2
yψf (x, y) = k2

0[ψf (x, y) + ψ0(x, y)
γf (x)
γ0

] −
zeξf (x)

ε
, (65)

where the right hand side follows from the perturbed ionic charge
density linear in the external force, qf = ρ+

f − ρ
−
f . Equation (65) is

solved in Appendix D for both dielectric and conducting boundary
conditions. In the case of conducting walls, ψf (x, y) reads

ψζf (x, y) =
ψζ0(x, y)

2
γf (x)
γ0

(k0y tanh[k0y] − k0h(x) tanh[k0h(x)])

+
1
βze

ξf (x)
γ0

(1 −
cosh[k0y]

cosh[k0h(x)]
), (66)

while for dielectric walls we find

ψσf (x, y) =
ψσ0(x, y)

2
γf (x)
γ0

(k0y tanh[k0y] − k0h(x) coth[k0h(x)] − 1)

+
1
βze

ξf (x)
γ0

, (67)

with ψζ0(x, y) and ψσ0(x, y) given by Eqs. (13) and (14), respectively.
We note that the contributions in Eqs. (66) and (67) are within the
approximations in Eq. (25a).

A. Local charge electroneutrality
At the end of Sec. III, we showed that local charge neutrality

is fulfilled at equilibrium in our system of interest. For the out-of-
equilibrium case discussed in this section, one can show that local
charge neutrality holds at the lowest order in the applied forces as
well: Using Eqs. (13) and (14), we show in Appendix E that the total
ionic charge qtot,f in a slab at x precisely balances the local surface
charge for both boundary conditions [2eσζf (x) and 2eσf = 0, respec-
tively]. Global charge neutrality is then obviously satisfied at this
order of approximation as well.

B. Local Debye length
Using Eqs. (26) and (30a), we can define a local Debye length

k(x) =

√
β(ze)2

ε
(γ0 + γf (x)) ≃ k0 + k1(x), (68)

where

k1(x) =
k0

2
γf (x)
γ0

. (69)

Interestingly, assuming a local Debye length k(x) = k0 + k1(x) and
expanding Eqs. (13) and (14) for small values of k1(x), the terms pro-
portional to γf in Eqs. (66) and (67) are retrieved. Hence, our results
show that the leading corrections to the local electrostatic potential
proportional to the local salt concentration γf (x) can be interpreted
as being caused by a local Debye length proportional to γf (x).

VII. CONCLUSIONS
We have characterized the dynamics of a z − z electrolyte

embedded in a varying-section channel. We focused our analysis
on channels whose section is varying smoothly enough so that we
can apply a lubrication approximation to the (linearized) Poisson-
Boltzmann equation—governing the electrostatic potential—as well
as for the Stokes equation—governing the fluid flow. At equilibrium,
we found that the Debye length stays constant up to first order in the
lubrication expansion. For driven systems, we have focused on the
linear response of the electrolyte to the external driving. Such a limit
is relevant for weak external forces for which higher-order contribu-
tions are negligibly small. Applying these approximations enabled
us to derive analytical expressions for the corrections induced by
the external driving to the local properties of the electrolyte. In such
a regime, we have identified the set of thermodynamic forces and
fluxes for which the Onsager matrix is symmetric. We remark that
our results are valid in the regime of small Dukhin number (see
Appendix F).

Exploiting these results, we have investigated several cases of
experimental interest. In general, we found that increasing the chan-
nel corrugation ΔS leads to smaller transport coefficients. How-
ever, our model shows that there are a few counterexamples for
which the opposite holds. Indeed, the electric current induced by
an ionic chemical potential imbalance Δμ̄ grows with ΔS (Fig. 6). A
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similar effect can be obtained when multiple thermodynamic forces
are applied. For example, both the ionic chemical potential drop,
Δμ̄V , induced by an applied voltage ΔV when Q = Jc = 0 and the elec-
tric potential drop ΔVμ induced by a chemical potential drop Δμ̄ for
Jq = 0 grow with the channel corrugation ΔS.

Finally, we have investigated the role of the conductive proper-
ties of the channel walls on the transport coefficients. In contrast to
the case of planar channel walls for which it is possible to map the
solution for dielectric channel walls into that of conducting chan-
nel walls by properly rescaling the potential at the wall, when ΔS ≠ 0
this mapping does not hold anymore and different behavior appears.
Interestingly, our results show that the difference between the trans-
port coefficients calculated for dielectric or conducting channel walls
can be significant (see Fig. 4). In particular, dielectric walls typ-
ically lead to larger transport coefficients than conducting walls.
This difference is relevant only in the entropic electrokinetic regime,
where the Debye length is comparable to the channel bottleneck,
k0hmin ≃ 1, but not to the channel widest section, k0hmax ≃ 1. This
clearly requiresΔS = ln[hmax/hmin] ≠ 0. Indeed, as shown in Fig. 4, the
difference between the transport coefficients vanishes for k0h̄ → 0,
i.e., when the Debye length is too small and also for ΔS→ 0, i.e., for
straight channels. In particular, the difference between the transport
coefficients for conducting and dielectric walls becomes not only
quantitative but also qualitative in the case of the electric current
driven by an ionic chemical potential drop, Δμ̄, and with Q = Jc = 0.
For this case, the current grows monotonically with ΔS for dielectric
channel walls, whereas it shows a maximum for conducting channel
walls.

Our results show that electrolytes embedded in varying-section
channels can display a rich dynamics. We believe that these results
can open new routes for the realization of synthetic devices aiming at
energy harvesting or water desalination and can be insightful for the
understanding of biological processes such as ionic transport across
pores and membranes.
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APPENDIX A: DERIVATION OF EQ. (29)
Inserting the chemical potential μ± [Eq. (26)] into the Nernst-

Planck equation (1b), at linear order in the external force f and

up to quadratic in the equilibrium electrostatic potential ψ0 (but
disregarding O( fψ2

0)), we find

j±x (x, y) = vx(x, y)ρ±0 (x, y) −Dβρ±0 (x, y)∂xμ±f (x, y) + O( f 2
). (A1)

Using the local equilibrium approximation, ∂yμ±f = 0, we find

J+
=

h(x)

∫

−h(x)
ρ+

(x, y)vx(x, y)dy −Dβ∂xμ̄+
f (x)

h(x)

∫

−h(x)
ρ+

(x, y)dy, (A2a)

J− =
h(x)

∫

−h(x)
ρ−(x, y)vx(x, y)dy −Dβ∂xμ̄−f (x)

h(x)

∫

−h(x)
ρ−(x, y)dy. (A2b)

Recalling that ρ±0 (x, y) ≃ %0(1 ∓ ψ0(x, y)), γ0 = 2%0, and defining
J±(x) = ∫

h(x)
−h(x) j±x (x, y)dy [Eq. (28)], Jc = J+ + J−, and Jq = J+

− J−,
we obtain

Jc

D
= βzeψ0(x)∂xξf (x) − 2h(x)∂xγf (x) +

γ0Q
D

, (A3a)

Jq

D
= βzeψ0(x)∂xγf (x) − 2h(x)∂xξf (x) +

Jq(x)
D

, (A3b)

where we identified Q [cf. Eq. (20)] in the last term of Eq. (A3a) and
where we defined61

ψ0(x) = ∫
h(x)

−h(x)
ψ0(x, y)dy, (A4)

Jq(x) = ∫
h(x)

−h(x)
q0(x, y)vx(x, y)dy. (A5)

APPENDIX B: DERIVATION OF EQ. (35b)
Inserting vx(x, y) [Eq. (19)] into Jq(x), to O(ψ0), only the

pressure driven velocity uP remains, giving

Jq(x) = γ0βze
ΔP
2ηL

h̄3

H3h3(x) ∫
h(x)

−h(x)
[h2

(x) − y2
]ψ0(x, y)dy. (B1)

Here, we used that ∂xPtot,f (x) = ΔPh̄3
/[H3Lh3

(x)] + O(ψ0), which
follows from inserting Eq. (23) into Eq. (21). We can rewrite the inte-
gral in Eq. (B1) by inserting the Poisson equation (12). Two partial
integrations then give

∫

h(x)

−h(x)
k2

0[h2
(x) − y2

]ψ0(x, y)dy = h2
(x)∫

h(x)

−h(x)
∂2

yψ0(x, y)dy − ∫
h(x)

−h(x)
y2∂2

yψ0(x, y)dy

=

����������
h(x)2

∫

h(x)

−h(x)
∂2

yψ0(x, y)dy −

��
���

��

y2∂yψ0(x, y)∣
h(x)

−h(x)
+ 2∫

h(x)

−h(x)
y∂yψ0(x, y)dy

= 2∫
h(x)

−h(x)
[ψ0(x, h(x)) − ψ0(x, y)]dy. (B2)
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Evaluating Eq. (34) at x = L, a term containing ∫
L

0 dxJ(x′)/h(x′) appears. With the above two equations and the definition of Υ3
[cf. Eq. (36d)], we find

∫

L

0

Jq(x)
h(x)

dx = γ0
ΔP

k2
0ηL

h̄3

H3
βze∫

L

0
dx∫

h(x)

−h(x)
ψ0(x, h(x)) − ψ0(x, y)

h4(x)
dy = 2γ0

ΔP
k2

0η
ΦΥ3, (B3)

which proves the appearance of the Υ3 term in Eq. (35b). Note
that the derivation in Eq. (B2) is valid for both boundary electric
conditions, so is Eq. (B3).

APPENDIX C: DERIVATION OF EQ. (38)
We recall the expression of the electroosmotic flow

Qeo =
h̄3

H3L ∫
L

0

dx
h3(x) ∫

h(x)

−h(x)
ueo(x, y)dy, (C1)

where the electroosmotic fluid velocity [Eq. (19c)] reads

ueo(x, y) = U(x, y) − U(x, h(x)), (C2)

with

U(x, y) =
ze
η ∫

dy∫ dy q(x, y)∂xψ(x, y), (C3)

the integrand of which, to first order in lubrication, ψ0, and f, reads

q(x, y)∂xψ(x, y) = qf (x, y)∂xψ0(x, y) + q0(x, y)∂xψf (x, y). (C4)

By inserting Eqs. (66) and (67) into Eq. (C4), we find O(ψ0f ) expres-
sions for the two terms in Eq. (C4) for both boundary conditions,
which we can write compactly as

qf (x, y)∂xψ0(x, y) = ξf (x)[1 − θ(x, y)]∂xψ0(x, y), (C5)

q0(x, y)∂xψf (x, y) = −ψ0(x, y)∂x[ξf (x)θ(x, y)], (C6)

with

θ(x, y) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 −
cosh[k0y]

cosh[k0h(x)]
cond,

1 diel.
(C7)

After reshuffling, U reads

Uf (x, y) = −
ze
η ∫

dy∫ dy{∂x[ψ0(x, y)ξf (x)(θ(x, y) − 1)]

+ψ0(x, y)∂xξf (x)}. (C8)

We can now determine ueo(x, y) for the two different boundary con-
ditions explicitly (note that the first term of the above integrand is
zero for dielectric walls and the last term can be explicitly integrated
twice),

uζeo(x, y) =
1
βze

εζ
η

{
∂xξf (x)
γ0

(1 −
cosh[k0y]

cosh[k0h(x)]
) − ∂x[

ξf (x)
γ0

2k2
0[y2

− h2
(x)] + cosh[2k0y] − cosh[2k0h(x)]

8 cosh2
[k0h(x)]

]}, (C9)

uσeo(x, y) =
eσ
ηk0

1
βze

∂xξf (x)
γ0

cosh[k0h(x)] − cosh[k0y]
sinh[k0h(x)]

. (C10)

Using G(x) = tanh(x)/x and L(x) = coth(x) − 1/x as defined in
Eq. (43), we obtain

∫

h(x)

−h(x)
uζeo(x, y)dy =

2h(x)
βze

εζ
η

∂xξf (x)
γ0

(1 − G [k0h(x)])

−
1
βze

εζ
ηk0

∂x[ξf (x)Γ(x)]
γ0

, (C11a)

∫

h(x)

−h(x)
uσeo(x, y)dy = 2h(x)

eσ
ηk0

∂xξf (x)
βzeγ0

L [k0h(x)], (C11b)

with

Γ(x) =
1
4

tanh[k0h(x)] −
k0h(x)

2 cosh[k0h(x)]
+

3k0h(x) − 4k3
0h3

(x)
12 cosh2

[k0h(x)]
.

(C12)

Using Eqs. (C2) and (C11), we find the following expressions for Qeo
[cf. Eq. (23c)]:

Qζ
eo = 2

εζ
η

h̄3

H3L ∫
L

0

1
βze

∂xξf (x)
γ0

1 − G [k0h(x)]
h2(x)

dx

−
εζ
ηk0

1
βze

h̄3

H3L ∫
L

0

∂x[ξf (x)Γ(x)]
γ0

dx
h3(x)

, (C13a)

Qσ
eo = 2

eσ
ηk0

h̄3

H3L ∫
L

0

1
βze

∂xξf (x)
γ0

L [k0h(x)]
h2(x)

dx. (C13b)
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We obtain an expression for ∂xξf (x) by substituting Eq. (32) in
Eq. (31). At order O((ψ0)

0
), we obtain

∂xξf (x) = −
Jq

2Dh(x)
+ O(ψ0). (C14)

Inserting this expression into Eq. (C13), at linear order in ψ0, we find

Qζ
eo = −

Jq

D
εζ
η

1
βzeγ0

h̄3

H3L ∫
L

0

1 − G [k0h(x)]
h3(x)

dx

−
ε
η
ζ
k0

1
βze

h̄3

H3L ∫
L

0

∂x[ξf (x)Γ(x)]
γ0

dx
h3(x)

, (C15a)

Qσ
eo = −2

eσ
ηk0

1
βzeγ0

h̄3

H3L ∫
L

0

Jq

2Dh(x)
L [k0h(x)]

h2(x)
dx. (C15b)

Comparing the above equations to Eq. (42), we see that we can write
Qeo as

Qζ
eo = −Jq

ΦΥζ3
Dβηk2

0
−
ε
η
ζ
k0

1
βze

h̄3

H3L ∫
L

0

∂x[ξf (x)Γ(x)]
γ0h3(x)

dx, (C16a)

Qσ
eo = −Jq

ΦΥσ3
Dβηk2

0
, (C16b)

which proves Eq. (38) up to the second term on the right hand
side of Eq. (C16a). Since at O(ζ0

) we have ξf (x) = ξf [h(x)], we can
write

∫

L

0

∂xF[h(x)]
h3(x)

dx = ∫
L

0

δF[h(x)]
δh(x)

∂xh(x)
h3(x)

dx, (C17)

with F[h(x)] = ξf (x)Γ(x), i.e., F[h(x)] depends on x solely through
h(x). Without loss of generality, we can define a function G[h(x)]
such that

1
h3(x)

δF[h(x)]
δh(x)

=
δG[h(x)]
δh(x)

⇒ ∫

L

0

∂xF[h(x)]
h3(x)

dx = ∫
L

0

δG[h(x)]
δh(x)

∂xh(x)dx

= G[h(L)] −G[h(0)], (C18)

i.e., for periodic channels, h(L) = h(0), we have G(L) = G(0) and the
last term in Eq. (C16a) vanishes.

APPENDIX D: DERIVATION OF EQS. (66) AND (67)
The solution to Eq. (65) reads

ψf (x, y) = −A0(x)
γf (x)
4γ0

[cosh(k0y) − 2k0y sinh(k0y)]

+ Af (x) cosh(k0y) +
1
βze

ξf (x)
γ0

, (D1)

where A0 is given for conducting and dielectric walls by
Aζ

0 = ζ/ cosh[k0h(x)] and Aζ
0 = eσ/(εk0 sinh[k0h(x)]), respec-

tively. The term Af (x) is obtained by imposing the suitable boundary
conditions at the channel walls.

For conducting channel walls, one has ψf (x, ±h(x)) = 0, and
hence

Aζ
f (x) =

1
cosh[k0h(x)]

× [
ζ
4
γf (x)
γ0

(1 − 2k0h(x) tanh[k0h(x)]) −
1
βze

ξf (x)
γ0

].

(D2)

Inserting Aζ
f (x) into Eq. (D1), we find Eq. (66) of the main text,

ψζf (x, y) =
ζ
2
γf (x)
γ0

(k0y
sinh[k0y]

cosh[k0h(x)]

− k0h(x)
cosh[k0y] sinh[k0h(x)]

cosh2
[k0h(x)]

)

+
1
βze

ξf (x)
γ0

(1 −
cosh[k0y]

cosh[k0h(x)]
) (D3)

=
ψζ0(x, y)

2
γf (x)
γ0

(k0y tanh[k0y] − k0h(x) tanh[k0h(x)])

+
1
βze

ξf (x)
γ0

(1 −
cosh[k0y]

cosh[k0h(x)]
). (D4)

In the case of dielectric walls, we fix Aσ
f (x) by demanding ∂yψf (x,

±h(x)) = 0. First, we find

ψσf (x, y) = Aσ
f (x) cosh[k0y]

−
eσ

4εk0

γf (x)
γ0

cosh[k0y] − 2k0y sinh[k0y]
sinh[k0h(x)]

+
1
βze

ξf (x)
γ0

,

(D5)
∂yψσf (x, h(x)) = Aσ

f (x)k0 sinh[k0h(x)]

+
eσ
4ε
γf (x)
γ0

(1 + 2k0h(x) coth[k0h(x)]).

We now fix Aσ
f (x) to

Aσ
f (x) = −

eσ
4εk0

γf (x)
γ0

1 + 2k0h(x) coth[k0h(x)]
sinh[k0h(x)]

. (D6)

Using these results, we find Eq. (67),
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ψσf (x, y) = −
eσ

4εk0

γf (x)
γ0

[
cosh[k0y] − 2k0y sinh[k0y]

sinh[k0h(x)]
+

cosh[k0y]
sinh[k0h(x)]

+
2k0h(x)

tanh[k0h(x)]
cosh[k0y]

sinh[k0h(x)]
] +

1
βze

ξf (x)
γ0

=
eσ

2εk0

cosh[k0y]
sinh[k0h(x)]

γf (x)
γ0

(k0y tanh[k0y] − 1 − k0h(x) coth[k0h(x)]) +
1
βze

ξf (x)
γ0

,

(D7)

ψσf (x, y) =
ψσ0(x, y)

2
γf (x)
γ0

(k0y tanh[k0y] − 1 − k0h(x) coth[k0h(x)]) +
1
βze

ξf (x)
γ0

.

APPENDIX E: DERIVATION OF LOCAL CHARGE NEUTRALITY AT O(ψf)
The total ionic charge in a slab at x is obtained by integrating the rhs of Eq. (65) along the transverse direction,

zeq̄ = zeqf (x) = 2zeh(x)ξf (x) − β(ze)2
[ψ0(x)γf (x) + ψf (x)γ0(x)]. (E1)

Here, ψζ0 = 2ζ tanh[k0h(x)]/k0 and ψσ0 = 2eσ/(εk2
0) = 2σ/(βz2eγ0). In the conducting case,

ψζf (x, y) = −ζ
γf (x)
2γ0

(2h(x) tanh2
[k0h(x)] − 2h(x) +

2 tanh[k0h(x)]
k0

) +
1
βze

ξf (x)
γ0

(2h(x) −
2
k0

tanh[k0h(x)])

= −ζh(x)
γf (x)
γ0

(tanh2
[k0h(x)] − 1 +

tanh[k0h(x)]
k0h(x)

) +
2h(x)
βze

ξf (x)
γ0

(1 −
tanh[k0h(x)]

k0h(x)
). (E2)

This gives

qζf (x, y) =�����2h(x)ξf (x) − βzeγf (x)
2ζ tanh[k0h(x)]

k0
+ βzeζh(x)γf (x)(tanh2

[k0h(x)] − 1 +
tanh[k0h(x)]

k0h(x)
)

− 2h(x)ξf (x)(�1 −
tanh[k0h(x)]

k0h(x)
), (E3)

zeqζf (x, y) = β(ze)2ζh(x)γf (x)(tanh2
[k0h(x)] − 1 −

tanh[k0h(x)]
k0h(x)

) + 2h(x)zeξf (x)
tanh[k0h(x)]

k0h(x)
. (E4)

Meanwhile, the surface charge per surface is given by eσ = −ε∂yψf (x, y = h(x)). We find for the two surfaces

2eσ(x) = εζ
γf (x)
γ0

[k2
0h(x) tanh2

[k0h(x)] − k0 tanh[k0h(x)] − k2
0h(x)] + 2zeξf (x)

tanh[k0h(x)]
k0

2eσζ(x) = β(ze)2ζh(x)γf (x)[tanh2
[k0h(x)] −

tanh[k0h(x)]
k0h(x)

− 1] +
2zeξf (x)

k0
tanh[k0h(x)].

(E5)

Clearly, the local surface charge 2eσζ(x) balances the ionic charge zeqζf (x, y) at each x.
In the dielectric case, there are no perturbations to the surface charge: −ε∂yψf (x, y) = 0, which means that local charge neutrality is

satisfied only if the total perturbed ionic density vanishes qσf (x, y) = 0. We find

ψσf (x, y) = −
eσ

2εk0

γf (x)
γ0

(
cosh[k0y]

sinh[k0h(x)]
+ k0h(x)

cosh[k0y] cosh[k0h(x)]
sinh2

[k0h(x)]
− k0y

sinh[k0y]
sinh[k0h(x)]

) +
1
βze

ξf (x)
γ0

⇒ ψσf (x, y) = −
eσ

2εk0

γf (x)
γ0

⎛

⎝

2
k0

+
���

���2h(x)
tanh[k0h(x)]

+
2
k0
−

���
���2h(x)

tanh[k0h(x)]
⎞

⎠
+

2h(x)
βze

ξf (x)
γ0

, (E6)

βzeγ0ψσf (x, y) = −
2eσ
ze

γf (x)
γ0

+ 2h(x)ξf (x).
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With Eq. (E1), we then indeed find that

qσf (x, y) = 2h(x)ξf (x)−γf (x)
2σ
zγ0

+
2σ
z
γf (x)
γ0

−2h(x)ξf (x) = 0. (E7)

APPENDIX F: DUKHIN NUMBER
Here, we derive the values of the Dukhin number that fit within

our approximations. Specifically, we have54

Du =
λ2

lGCh̄
, (F1)

lGC = 2
εkBT
z2eσ

, (F2)

where the Guy-Chapman length lGC is the length at which the surface
electrostatic potential energy equals the thermal energy and λ is the
Debye length. We define ψwall as the dimensionless magnitude of the
surface potential

ψwall =
σ1/k0

εkBT
; (F3)

hence, we obtain

lGC =
2/k0

z
1

ψwall
(F4)

and

Du =
1
2
ψwall

1/k0

h̄
. (F5)

In the Debye-Hückel regime, we can assume ψwall ≲ 1, and hence, we
get

Du ≃
1/k0

h̄
. (F6)

Hence, the values of Dukhin number that fit within our lubrication
approximation are Du ≲ 1.
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26Z. Siwy, I. D. Kosińska, A. Fuliński, and C. R. Martin, Phys. Rev. Lett. 94, 048102
(2005).
27I. Kosinska, I. Goychuk, M. Kostur, G. Schmidt, and P. Hänggi, Phys. Rev. E 77,
031131 (2008).
28V. Gomez, P. Ramirez, J. Cervera, S. Nasir, M. Ali, W. Ensinger, and S. Mafe,
Sci. Rep. 5, 9501 (2015).
29N. Laohakunakorn and U. F. Keyser, Nanotechnology 26, 275202 (2015).
30D. Lairez, M.-C. Clochard, and J.-E. Wegrowe, Sci. Rep. 6, 38966 (2016).
31S. Y. Park, C. J. Russo, D. Branton, and H. A. Stone, J. Colloid Interface Sci. 297,
832 (2006).
32A. Mani, T. A. Zangle, and J. G. Santiago, Langmuir 25, 3898 (2009).
33P. Malgaretti, I. Pagonabarraga, and J. M. Rubi, Phys. Rev. Lett. 113, 128301
(2014).
34M. Chinappi and P. Malgaretti, Soft Matter 14, 9083 (2018).
35P. Malgaretti, I. Pagonabarraga, and J. M. Rubi, Macromol. Symposia 357, 178
(2015).
36P. Malgaretti, I. Pagonabarraga, and J. Miguel Rubi, J. Chem. Phys. 144, 034901
(2016).
37S. Ghosal, J. Fluid Mech. 459, 103 (2002).
38M. Janssen, E. Griffioen, P. M. Biesheuvel, R. van Roij, and B. Erné, Phys. Rev.
Lett. 119, 166002 (2017).
39B. L. Werkhoven, J. C. Everts, S. Samin, and R. van Roij, Phys. Rev. Lett. 120,
264502 (2018).
40L. Joly, C. Ybert, E. Trizac, and L. Bocquet, Phys. Rev. Lett. 93, 257805
(2004).
41S. R. Maduar, A. V. Belyaev, V. Lobaskin, and O. I. Vinogradova, Phys. Rev.
Lett. 114, 118301 (2015).
42W. B. Russel, W. B. Saville, and W. R. Schowalter, Colloidal Dispersions
(Cambridge University Press, 1989).
43Z.-X. Luo, Y.-Z. Xing, Y.-C. Ling, A. Kleinhammes, and Y. Wu, Nat. Commun.
6, 6358 (2015).
44T. Colla, M. Girotto, A. P. dos Santos, and Y. Levin, J. Chem. Phys. 145, 094704
(2016).
45F. H. J. van der Heyden, D. Stein, and C. Dekker, Phys. Rev. Lett. 95, 116104
(2005).
46S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (Dover,
Amsterdam, 1983).
47R. J. Gross and J. Osterle, J. Chem. Phys. 49, 228 (1968).
48E. Brunet and A. Ajdari, Phys. Rev. E 69, 016306 (2004).
49P. B. Peters, R. van Roij, M. Z. Bazant, and P. M. Biesheuvel, Phys. Rev. E 93,
053108 (2016).
50A. Ajdari, Phys. Rev. E 65, 016301 (2001).
51H. Bruus, Theoretical Microfluidics (Oxford University Press, Oxford, 2008),
Vol. 18.
52H. Yoshida, T. Kinjo, and H. Washizu, Comput. Fluids 124, 237 (2016).

J. Chem. Phys. 151, 084902 (2019); doi: 10.1063/1.5110349 151, 084902-17

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1039/b909366b
https://doi.org/10.1103/revmodphys.77.977
https://doi.org/10.1016/j.copbio.2013.11.009
https://doi.org/10.1039/c8cs00420j
https://doi.org/10.1103/physreve.83.021908
https://doi.org/10.1016/j.bpj.2014.08.015
https://doi.org/10.1103/physreve.95.063105
https://doi.org/10.3390/membranes8010010
https://doi.org/10.1038/nature07226
https://doi.org/10.1007/s13239-011-0054-6
https://doi.org/10.1152/physrev.00037.2011
https://doi.org/10.1038/nature11876
https://doi.org/10.1038/nature19315
https://doi.org/10.1103/physrevlett.101.108303
https://doi.org/10.1039/c7sm00986k
https://doi.org/10.1073/pnas.0337563100
https://doi.org/10.1021/la049524t
https://doi.org/10.1021/nl050925i
https://doi.org/10.1021/ac300705z
https://doi.org/10.1063/1.4979947
https://doi.org/10.1063/1.4979948
https://doi.org/10.1103/physrevlett.103.058501
https://doi.org/10.1103/physreve.91.062302
https://doi.org/10.1103/physrevlett.94.048102
https://doi.org/10.1103/physreve.77.031131
https://doi.org/10.1038/srep09501
https://doi.org/10.1088/0957-4484/26/27/275202
https://doi.org/10.1038/srep38966
https://doi.org/10.1016/j.jcis.2005.11.045
https://doi.org/10.1021/la803317p
https://doi.org/10.1103/physrevlett.113.128301
https://doi.org/10.1039/c8sm01298a
https://doi.org/10.1002/masy.201400222
https://doi.org/10.1063/1.4939799
https://doi.org/10.1017/s0022112002007899
https://doi.org/10.1103/physrevlett.119.166002
https://doi.org/10.1103/physrevlett.119.166002
https://doi.org/10.1103/physrevlett.120.264502
https://doi.org/10.1103/physrevlett.93.257805
https://doi.org/10.1103/physrevlett.114.118301
https://doi.org/10.1103/physrevlett.114.118301
https://doi.org/10.1038/ncomms7358
https://doi.org/10.1063/1.4962198
https://doi.org/10.1103/physrevlett.95.116104
https://doi.org/10.1063/1.1669814
https://doi.org/10.1103/physreve.69.016306
https://doi.org/10.1103/physreve.93.053108
https://doi.org/10.1103/physreve.65.016301
https://doi.org/10.1016/j.compfluid.2015.05.001


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

53V. Á. Delgado, F. González-Caballero, R. Hunter, L. Koopal, and J. Lyklema,
J. Colloid Interface Sci. 309, 194 (2007).
54J. Lyklema, Fundamentals of Interface and Colloid Science (Academic Press,
London, 1995).
55zeJq(x) coincides with the usual definition of the streaming current Istr [see,
for instance, Eq. (1) of Ref. 45] if the channel is flat but differs from Istr for a
corrugated channel.
56From here on, we will omit subscripts f when we denote chemical potential
differences because Δμ̄ is enforced upon the system, while the local perturbed
chemical potential μf (x) is a reaction to that thermodynamic force.

57With Eqs. (26) and (27), it is easy to show that Δγ = μ+(x, y) + μ−(x, y) and
Δξ = μ+(x, y) − μ−(x, y), i.e., that Δγ and Δξ are the sum and difference of the full
chemical potentials at order O( f ).
58Since a chemical potential drop alone cannot induce a solvent flow, J′c = Jc.
59This differs from what has been reported for a tracer (see Ref. 35). In the latter
case, a phase dependence arose because the concentration of tracers is not affecting
the local electric field.
60We remark that by using Stokes-Einstein, D = kBT/(6πηR) where R ≃ 0.1 nm is
the linear size of an ion, and the prefactor in Eq. (64b) reads ε/(βzeμionη) ≃ 10−1.
61We recall that zeq0(x,y) = −εk2ψ0(x,y) = −2%βψ0(x,y).

J. Chem. Phys. 151, 084902 (2019); doi: 10.1063/1.5110349 151, 084902-18

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1016/j.jcis.2006.12.075

