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This thesis uses a field-based approach complemented with geophysical and well data to 

investigate the controlling factors on the geometry and kinematics of  salt walls developed 

above extensional faults whose movement occurs during or after the deposition of  salt; 

and the behavior of  these precursor diapiric structures when are involved in a subsequent 

thin-skinned contractional deformation. This is an investigation that has been carried out 

by defining the geometric and temporal relationships between the structure of  the salt walls 

and their adjacent strata in two distinct field-work areas: the southeastern Paradox Basin (SW 

Colorado) and the Eastern Prebetic Zone at the Jumilla region (SE Spain).

At the SE Paradox Basin, the analyzed salt wall is the Gypsum Valley Diapir, which was 

mostly driven by differential sedimentary loading and developed above a pre-existing subsalt 

fault without significant regional extension or contraction. The early style of  diapirism was 

that of  single-flap active NW-trending salt wall, with a thinned roof  bounded by a suprasalt 

counterregional fault over its northeastern edge. Erosion of  the thinned diapiric roof  triggered 

the salt breakthrough and the onset of  passive diapirism. Subsequent evacuation of  deep salt 

into the growing diapir generated diapir-flanking depocenters with progressive rotation of  

the southwestern flank into the megaflap geometry and consequent widening of  the diapir. 

Therefore, the present-day structure of  the salt wall is characterized by a highly asymmetric 

stratal architecture on its northeastern and southwestern flanks, with thicker, deeper, gently 

dipping strata in the depositionally proximal (NE) minibasin and thinned older strata rotated 

to near-vertical in a megaflap on the distal (SW) side. The megaflap terminates to the SE 

through a progressive decrease of  the bedding dip and ultimately truncation by a pair of  

radial faults bounding a down-dropped block with lower dips. East of  these faults, the salt wall 

termination is a moderately plunging nose of  salt overlain by a gently southeast-dipping strata 

separated from the down-dropped NE minibasin by a counterregional fault.

At the Jumilla region instead, the studied salt walls and salt-related structures correspond 

to diapirs, made up of  pre-kinematic salt, triggered by thick-skinned extension during the 

development of  a passive margin (i.e. the Mesozoic Iberian margin of  the Maghrebian Tethys), 

which was later incorporated into the external part of  the eastern Betic foreland fold-and-

thrust belt. In this scenario, the initial extension led to a major decoupling of  the deformation 

with planar subsalt extensional faults overlain by monoclinal drape folds and suprasalt faults 

and extensionally triggered diapirs (salt walls). After extension, this inherited sub- and suprasalt 

structure together with the formed diapirs controlled the subsequent contractional deformation 
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in such a way that: 1) determined a stepped geometry for the salt and therefore for the future 

décollement level where the thin-skinned contractional deformation is propagated; and 2) 

allowed the development of  a series of  fault-bend folds where the salt walls and salt-related 

structures concentrated the major part of  the thin-skinned contractional deformation. This 

deformation was resolved first by narrowing and squeezing of  the preexisting salt structures 

(i.e. cryptic shortening) and then, when secondary welds were developed, by the formation of  

thrust faults at their pedestals.

The results of  these investigations have permitted to propose a series of  simple end-

member models addressing the extensional formation and later contractional reactivation 

of  the studied salt walls developed above a thick-skinned extended basement. These simple 

models together with the discussion conducted in this thesis suggest that the geometry and 

kinematics of  salt walls triggered by thick-skinned extension are strongly controlled by: 1) 

the geometry of  the subsalt faults; 2) the spatial and temporal thickness variations of  the 

overburden; 3) the salt thickness variations and the available deep salt budged to flow into the 

forming salt walls; 4) the lateral changes in the syn-kinematic sedimentary loading induced by 

the subsalt fault motion; and, 5) the position of  the salt breakthrough and the pre-kinematic salt 

wall piercement geometry. And, in relation to a later thin-skinned contractional reactivation of  

these salt walls, this investigation points out that the resulting structure is largely determined 

by: 1) the subsalt structure defined by the dip, dip direction and the displacement magnitude 

of  the subsalt faults; 2) the thickness/strength and 3) the structure of  the pre-contractional 

overburden adjacent to the contractionally reactivated salt wall; 4) the ratio between amount 

of  shortening and the initial width of  the diapir; and finally, 5) other factors like the length, 

shape and orientation of  the precursor salt wall, the possible linkage between adjacent diapiric 

structures and the lithological composition of  the evaporitic sequence.
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Aquesta tesi doctoral utilitza treball de camp complementat amb dades geofísiques i de 

pous d’exploració per tal d’investigar els factors que controlen la geometria i la cinemàtica de 

les parets salines desenvolupades a sobre de falles extensionals –el moviment de les quals ocorre 

durant i després la deposició de la sal. Així mateix, també analitza el comportament d’aquestes 

parets salines preexistents quan es sotmeten a una deformació contractiva posterior de pell fina. 

Per tant, aquesta és una investigació que s’ha dut a terme definint la geometria i les relacions 

temporals entre l’estructura de les parets salines analitzades i els estrats adjacents en dos zones 

de camp situades a: la regió sud-est de la Conca de Paradox (SW del Colorado) i a la part est del 

Prebetic a la zona de Jumilla (SE d’Espanya).

Al sud-est de la Conca de Paradox, la paret salina analitzada és el Gypsum Valley Diapir, 

el qual es va formar principalment per diferència de càrrega sedimentaria a sobre d’una falla 

subsalt preexistent. Una falla que no va tenir moviment extensiu o contractiu significatiu durant 

la formació de la paret salina. L’estil inicial de diapirisme va ser del tipus actiu i single-flap, 

caracteritzat per un sostre aprimat delimitat al nord-est per una falla de tipus counterregional i 

suprasalt. L’erosió d’aquest sostre diapiric desencadenà la perforació de la sal i l’inici del diapirisme 

passiu. Posteriorment, l’evacuació de la sal cap al diapir va generar la formació de depocentres 

sedimentaris flanquejant la paret salina. Durant aquest procés, els estrats localitzats al flanc 

sud-oest del diapir van anar rotant progressivament, formant així una geometria en forma de 

megaflap, al mateix temps que l’amplada la paret salina anava incrementant. Per tant, l’estructura 

actual de la paret salina es caracteritza per ser asimètrica i per tenir: un costat nord-est amb 

una successió sedimentaria potent, profunda i amb cabussaments suaus; i un costat sud-oest 

amb una successió sedimentaria aprimada, somera i amb cabussaments que progressivament es 

van verticalitzant per tal de formar un megaflap. Cap al sud-est, aquest megaflap desapareix a 

mesura que el seu cabussament va disminuint on finalment queda trucat per un parell de falles 

radials que delimiten un graben situat al límit sud de la paret salina. Finalment, a l’est de les falles 

radials, la paret salina presenta una terminació de sal recoberta per estrats sedimentaris descrivint 

conjuntament cabussaments graduals cap al sud-est. Una terminació, que està separada del 

costat nord-est, per una falla de tipus counterregional i suprasalt.

Per altra banda, a la regió de Jumilla, les parets y altres estructures salines estudiades 

corresponen a diapirs constituïts per salt pre-cinemàtica. Aquestes es van desenvolupar a partir 

de l’extensió de pell gruixuda de l’escorça continental durant la formació d’un marge passiu, 

concretament el marge Ibèric del Tethys magrebí durant el Mesozoic. Posteriorment, aquest 
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marge va ser incorporat en un sistema de plegament formant així la part externa i més oriental 

de la Serralada Bètica. En aquest sentit, l’extensió inicial donà lloc a un desacoblament de 

la deformació tectònica amb falles planars i extensionals de tipus subsalt recobertes per una 

cobertora sedimentaria deformada per plecs monoclinals, per falles de tipus suprasalt i per 

diapirs i parets salines. Després d’aquesta etapa d’extensió, l’estructura heretada conjuntament 

amb els diapirs desenvolupats varen controlar la deformació contractiva posterior de manera 

que: en primer lloc, van determinar una estructura esglaonada del nivell salí i per tant del 

futur nivell de desenganxament on la deformació contractiva de pell fina es podia propagar; 

i en segon lloc, van facilitar el desenvolupament d’una sèrie de plecs de tipus fault-bend a la 

cobertora sedimentaria on les parets i les altres estructures salines van concentrar la major 

part de la deformació de pell fina. Concretament, aquesta deformació es va resoldre amb 

l’escanyament de les estructures salines preexistents (escurçament críptic), la formació de 

cicatrius salines secundaries pel tancament de les tiges d’aquests diapirs, i finalment, amb la 

formació d’encavalcaments la seva base.

Els resultats d’aquestes investigacions han permès proposar una sèrie de models geològics 

que tenen com a objectiu abordar la formació extensiva i la posterior deformació contractiva de 

les parets salines estudiades. Aquest models, conjuntament amb la discussió inclosa en aquesta 

tesi, suggereixen que la geometria i la cinemàtica de parets salines desenvolupades a partir de 

l’ extensió de pell gruixuda estan controlades per: 1) la geometria de les falles subsalt; 2) les 

variacions en l’espai i el temps del gruix de la cobertora sedimentaria; 3) les variacions de gruix 

del nivell salí i la quantitat de sal disponible per tal de fluir cap a la paret salina en formació; 4) els 

canvis laterals en la diferencia de càrrega sedimentaria sin-cinemàtica promoguda pel moviment 

de la falles de tipus subsalt; i finalment 5) la posició al llarg del sostre del diapir aprimat on 

té lloc la extrusió de la sal i la geometria pre-cinemàtica prèvia a la perforació del diapir. A 

més a més, aquesta investigació indica que la posterior reactivació contractiva de pell fina de 

parets salines preexistents ve determinada per: 1) l’estructura subsalt, la qual està definida pel 

cabussament, la direcció de cabussament i la magnitud de desplaçament de les falles subsalt; 2) 

el gruix/resistència i 3) l’estructura pre-contractiva de la cobertora sedimentaria adjacent a les 

parets salines reactivades; 4) la relació entre la quantitat d’escurçament de pell fina i l’amplada 

inicial del diapir; i finalment, 5) altres factors de control com la longitud, la forma i orientació 

de la paret salina precursora, així com la interconnexió amb altres parets salines veïnes i la 

composició litològica de la seqüència evaporítica involucrada durant el diapirisme.
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The cover photo of  the Preface depicts an overview of  the basecamp installed in the SE termination of  the Gypsum Valley salt wall 
during the successive field-work campaigns.
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Motivation and objectives

Together with salt stocks, salt walls are the most classic of  salt structures. In map-view, they are 

elongated diapirs that form the fundamental building blocks of  many sedimentary basins containing 

mobile salt (e.g. Zechstein Basin, Atlas Mountains, Newfoundland, Sverdrup Basin, La Popa Basin 

or Nordkapp Basin). Their abundance is equally remarkable. For example, the Precaspian Basin 

alone contains about 1,800 named stocks and walls (Volozh et al., 2003).

These salt bodies and the corresponding flanking strata have become increasingly interesting 

for the hydrocarbon exploration because they can bear economically exploitable hydrocarbon gas 

and oil fields. For example, in the northern Gulf  of  Mexico, along the South Atlantic margins or 

in the Persian Gulf, hydrocarbon reservoirs flanking steep-sided salt diapirs account for significant 

oil and gas reserves (e.g. Kirkland & Evans, 1981; McGee et al., 1994; Alsharhan and Nairn, 1997; 

Warren, 2006; Wagner, 2010). Like the other salt structures, salt walls create structural hydrocarbon 

traps, control the reservoir and facies distribution, affect the fluid migration pathways, and 

regarding the petroleum systems, they impact on the maturation and generation of  hydrocarbons. 

However, despite their great affluence in the salt-bearing sedimentary basins and their economic 

importance for the oil and mining industry, many aspects of  their growth and development have 

been misunderstood for decades.

The structure of  salt walls and adjacent strata as well as the lithological and sedimentological 

features of  the involved rocks are critical factors during exploration, development and risk 

assessment. The resolution limitations of  the seismic reflection data which hardly image steep 

surfaces, the complexity of  developing velocity models for depth conversions and the one-

dimensional well sampling may difficult, during the exploration process, the recognition of  the 

salt body boundaries as well as the geometry of  the subsalt strata, leading to missed opportunities 

or failed wells (Jackson & Lewis, 2012; Fiduk et al., 2014; Rowan et al., 2016). These issues, along 

with the reservoir prediction and risk assessment, reinforce the need for field-based studies of  

analogue outcropping salt structures. Thus, the integrated approach combining field mapping and 

structural analysis with seismic reflection and well data of  outcropping salt walls improve the ability 

to interpret the three-dimensional structure and evolution of  analogue structures imaged in seismic 

reflection data from many salt-bearing sedimentary basins. Therefore, the results of  the present 

study have implications for providing a better understanding of  the processes controlling the three-

dimensional structure and development of  salt walls, and thus improving the risk assessment in 
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hydrocarbon exploration.

The geometry and kinematics of  salt walls are controlled by the driving mechanism (differential 

sedimentary loading, regional extension and/or contraction), and any younger deformation in 

which the basin might be involved. In this regard, salt walls like the other salt bodies, constitute 

the weakest part of  the cover and consequently they tend to localize any ulterior deformation 

occurring in the area (e.g. Nilsen et al., 1995; Roca et al., 2006; Rowan & Vendeville, 2006; Callot et 

al., 2007; Dooley et al., 2015). Nevertheless, previous geological studies and scaled physical models 

mainly aimed at only one specific tectonic setting and more rarely at case studies with superposition 

of  driving mechanisms (e.g. in the Great Kavir, Jackson et al., 1990; the Santos Basin, Jackson et 

al., 2014; La Popa Basin, Rowan et al., 2003; the Bicorb-Quesa salt wall, Roca et al., 1996, 2006). 

In addition, they were focused on cross-sectional views of  near-diapir deformation and thus were 

primarily two-dimensional (e.g. Fletcher et al., 1995; Giles & Lawton, 2002; Giles & Rowan, 2012). 

While these studies stressed the relevance of  salt-sediment interaction, rarely field data from several 

salt walls developed in different tectonic settings have been combined to obtain global factors 

controlling the geometry of  salt walls and their adjacent strata as well as their kinematics.

To this end, the main objectives of  this thesis are three-fold: (1) to document, from a field-

based approach, the three-dimensional structure of  salt walls developed by thick-skinned extension 

and affected by adjacent differential sedimentary loading and followed by a later contractional 

deformation; (2) to define the existing relationships between the geometry of  the diapir and the 

flanking strata; and finally, (3) to establish a series of  factors controlling the geometric and kinematic 

evolution of  salt walls resulting from thick-skinned extension whether it occurs during or after the 

deposition of  salt; and finally, to determine the constrains on the geometry and kinematic evolution 

of  these precursor salt walls when they are affected by a subsequent thin-skinned contractional 

deformation.

To achieve these goals, field work has been performed in the Gypsum Valley salt wall at the 

southeastern Paradox Basin (SW Colorado, USA), and in the diapirs and salt-cored structures of  

the Jumilla region at the Eastern Prebetic Zone (SE Spain; Fig. I.I). The Gypsum Valley salt 

wall was mostly driven by differential sedimentary loading and developed above a basement fault 

without significant regional extension or contraction. At the Jumilla region, instead, the salt walls 

correspond to diapirs triggered by thick-skinned extension during the development of  a passive 

margin, which was later incorporated into the external part of  the Betic foreland fold-and-thrust 

belt.
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Structure and organization of the thesis memoir

This PhD thesis has been designed as a compilation of  scientific articles published in 

journals that are indexed by the Journal Citations Reports  and integrated with the Web 

of  Science (https://www.fecyt.es/es/recurso/web-science). On the basis of  the previous 

outlined approach, the present memoir has been organized in the following chapters:

Chapter 1 introduces the fundamental aspects of  the diapiric emplacement under three 

tectonic scenarios (extension, contraction and differential sedimentary loading), details the 

particular geometries of  salt walls and adjacent strata during the diapiric evolution, and 

describes different reactivation mechanisms for salt walls and the types of  flanking faults 

that form in each scenario. Thereby, this chapter provides the readership not versed in salt 

tectonics with the essential tools to easily understand the next chapters comprised in this 

memoir. After this general introduction, a summary of  the methodological workflow followed 

during the investigation is also presented. Importantly, the terminology used to describe 

location with respect to autochthonous salt include the following terms: “overburden” (noun) 

and “suprasalt” (adjective) for designating the sedimentary pile and/or deforming structures 

that are lying above the autochthonous salt; “basement” (noun) and “subsalt” (adjective) for 

indicate strata and/or deforming structures located beneath the autochthonous salt layer; and 

“cover” (noun) when referring the entire sedimentary pile above crystalline basement including 

presalt strata, salt, and overburden. In addition to this, a specific color pattern has been used 

along the figures included in chapters 1 and 3 for consistency and a better understanding. 

Thereby, the blue–green colors indicate deposition of  sediments prior to salt movement (i.e. 

pre-kinematic strata), and the red–orange–yellow colors indicate synchronous deposition of  

sediments during salt movement (i.e. syn-kinematic strata).

Chapter 2 represents the core of  this thesis including the main results of  the investigation, 

which were materialized in three published articles (see Annexes 1, 2, and 3): the first paper 

was devoted to the Gypsum Valley salt wall at the Paradox Basin (SW Colorado, USA), and 

the other two were dedicated to the diapirs and salt-cored structures of  the Jumilla region at 

the Eastern Prebetic Zone (SE Spain). Accordingly, this chapter is subdivided in two sections, 

in which the geological setting of  each studied area is presented before summarizing the main 

results obtained from these investigations.
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So, after a brief  introduction, Chapter 2.2 is inspired by the first article with the following 

complete reference:

• Escosa, F. o., Rowan, M. G., GilEs, K. a., DEatRicK, K. t., Mast, a. M., lanGFoRD, 

R. P., HEaRon iV, t. E., & Roca, E. (2018c). Lateral termination of  salt walls and 

megaflaps: An example from Gypsum Valley diapir, Paradox Basin, Colorado, USA. 

Basin Research, 31, 191–212. doi:10.1111/bre.12316 (Annex 1)

The aim of  this paper (Escosa et al., 2018c) is to present new data from the southeastern 

end of  the Gypsum Valley salt wall (SW Colorado), in order to evaluate the structural styles and 

associated controls on lateral termination of  salt walls and megaflaps developed by differential 

sedimentary loading. So, we produced a detailed geological map and six cross-sections of  the 

SE-termination of  the Gypsum Valley salt wall, allowing us to characterize the 3D structure 

and kinematic evolution of  the salt wall and associated megaflap. Then, we compared these 

findings with other salt walls in the Paradox Basin, and to analogous counterregional systems 

in the northern Gulf  of  Mexico in order to establish simple models for the lateral terminations 

of  salt walls and megaflaps.

And Chapter 2.3 contains a summary of  the main results and conclusions of  the other 

two articles with the following complete references:

• Escosa, F. o., FERRER, o., & Roca, E. (2018a). Geology of  the Eastern Prebetic Zone 

at the Jumilla region (SE Iberia). Journal of  Maps, 14, 77–86. doi:10.1080/17445647.201

8.1433562 (Annex 2)

• Escosa, F. o., Roca, E., & FERRER, o. (2018b). Testing thin-skinned inversion of  a 

prerift salt-bearing passive margin (Eastern Prebetic Zone, SE Iberia). Journal of  Structural 

Geology, 109, 55–73. doi:10.1016/j.jsg.2018.01.004 (Annex 3)

The first paper (Escosa et al., 2018a) presents a geological map and cross-sections at 

1: 50,000 scale of  the Eastern Prebetic Zone at the Jumilla region (SE Spain); documents 

printed at A1 size and enclosed at the end of  this memoir. The geological map is accompanied 

with an explanation of  the stratigraphic units and the general structure cropping out in the 

study area. This allowed to decipher the tectonic history of  the Eastern Prebetic Zone at the 

Jumilla region, and then to discuss the Upper Jurassic to present day geodynamic evolution 

https://doi.org/10.1111/bre.12316
http://doi.org/10.1080/17445647.2018.1433562
http://doi.org/10.1080/17445647.2018.1433562
http://doi.org/10.1016/j.jsg.2018.01.004
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considering the geological framework of  the western Mediterranean.

The second article (Escosa et al., 2018b) includes the main results deriving out of  the 

analysis and interpretation of  surface and subsurface data from the Eastern Prebetic Zone at 

the Jumilla region (SE Iberia). The main objective of  this study is to determine the role played 

by the pre-kinematic salt in the development of  the proximal part of  the South Iberian passive 

margin and its subsequent incorporation into the external part of  the Betic fold-and-thrust 

belt. We first document and analyze the architecture of  the existing salt walls and salt-related 

structures and adjacent strata. Then, we determine the structural styles and associated controls 

on the development of  salt structures during thick-skinned extension and their reaction to a 

subsequent thin-skinned contractional deformation.

Chapter 3 includes a discussion of  the generic controls on the geometric and kinematic 

evolution of  salt walls developed above subsalt faults whose movement occurs during of  

after the deposition of  salt. And addresses the constrains on the geometry and kinematic 

evolution of  these precursor salt walls when they are affected by a subsequent thin-skinned 

contractional deformation.

Chapter 4 lists the partial and general conclusions of  this thesis, stating the global factors 

controlling the geometric and kinematic evolution of  salt walls in the above outlined tectonic 

settings. Finally, the Reference chapter details the bibliographic works mentioned along the 

thesis memoir.
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CHAPTER 1. INTRODUCTION
1.1.  Introduction to salt walls

1.2.  Salt wall formation
1.3.  Salt wall and pre-kinematic

piercement geometries
1.4.  Syn-kinematic stratal geometries

flanking salt walls
1.5.  Reactivation of salt walls

1.6.  Salt wall-flanking faults
1.7.  Methodology



The cover photo of  Chapter 1 depicts the Klondike Ridge and, outcropping in its northwestern face, the Permian to Jurassic strata 
thinning-out and overlying the southeastern termination of  the salt wall.
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1.1. Introduction to salt walls

Salt diapirs are composed of  a ductile mass of  evaporites and other types of  rocks that 

have pierced their initial roof  and have discordant contacts with the encasing overburden 

(Mrazec, 1907). They can display variable map-view shapes and when they are steep-sided 

are classified according to two end-members: stocks and walls (Jackson & Hudec, 2017). Salt 

stocks include pluglike bodies having equant or sub-circular planforms (Fig. 1.1a). Conversely, 

salt walls have clearly elongated planforms (Fig. 1.1b). When the diapir is subtle or little 

elongated, such classification becomes rather subjective and both names have been used 

indiscriminately to describe the corresponding salt bodies. To solve this discrepancy, Hudec 

& Jackson (2011) proposed to term these as salt stocks when the planform axial ratio is less 

than 2, and salt walls when it is greater than 2 (Trusheim, 1960; Fig. 1.1); but, as is indicated by 

the same authors (Jackson & Hudec, 2017), this is an arbitrary value and therefore disputable.

It is important to not confuse salt walls and salt anticlines. Both are salt ridges (i.e. 

elongated salt bodies in map-view), but the latter are not diapirs because they do not pierce the 

overlying suprasalt strata. Therefore, defined by DeGolyer (1925), salt anticlines are elongated 

(planform axial ratio of  two or more) upwellings of  salt having concordant overburden (e.g. 

see the buckle anticline from the southern North Sea in Fig. 1.2).

1.2. Salt wall formation

The diapiric emplacement of  buried salt and, hence the formation of  any salt wall, is 

driven by removing or displacing the brittle overlying strata. Global tectonics can trigger salt  

a) b)

xy

axial ratio= x/y

y x

Figure 1.1. Block diagrams showing the main differences between a salt stock and a salt wall. x: length of  
the diapir in plan-view; y: width of  the diapir in plan-view. All diapirs have discordant contacts against their 
overburden. Modified from Jackson & Hudec (2017).
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movement, whether under extension, contraction and/or strike-slip deformation. But even in 

the absence of  a tectonic drive, salt can begin to move and pierce the overburden if  there are 

differences in the hydraulic head above salt (Vendeville & Jackson, 1992a; Hudec & Jackson, 

2007; Fig. 1.3). Hydraulic head includes two components: elevation head and pressure head. 

Individually or in combination, both can trigger salt flow and consequently diapir initiation as 

long as the resulting hydraulic head is great enough to overcome the strength of  the overburden 

and the viscous drag effects in the salt layer.

Lateral changes in the hydraulic head can be triggered by regional tectonics but also by 

depositional and erosional processes. Considering the geological settings of  the studied salt 

walls in this thesis, three of  the most common generators of  salt flow are briefly described 

below.

top salt contact parallel
to the overlaying strata

1 km 50
0 

m
s 

(T
W

T
)

Figure 1.2. Two-dimensional time-migrated seismic profile depicting an example of  a salt-cored buckle fold in 
Silverpit Basin (southern North Sea). Note that the top salt contact is parallel to the overlying strata. Modified 
from Stewart (2007).
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Figure 1.3. For simple geometries, the initial direction of  salt flow can be inferred from hydraulic heads. Salt 
flow driven by a) pressure head or by elevation head b), whether or not the overburden is denser than salt. 
Modified from Hudec & Jackson (2007).
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1.2.1. Extension

According to the structural and sedimentological analysis of  salt basins (e.g. Zechstein 

Basin, Mohr et al., 2005; Krzywiec, 2006; Atlas Mountains, Saura et al., 2014; Martín-Martín 

et al., 2016; Newfoundland, Balkwill & Legall, 1989) combined with scaled physical models 

(Vendeville & Jackson, 1992a; Jackson & Vendeville, 1994), regional extension may initiate and 

control the growth of  salt walls. This is because extension modifies the overall hydraulic head of  

the system and favors salt migration and the subsequent development of  diapirs. Furthermore, 

because of  the rectilinear trace of  the extensional faults in map-view, this scenario favors the 

formation of  salt walls rather than circular salt stocks. Considering the scaled physical models, 

diapirism may undergo three evolutionary stages: reactive, active, and passive diapirism (Fig. 

1.4). Accordingly, lengthening and thinning of  the overburden creates a graben at the surface 

and a reactive diapir at depth (Fig. 1.4a), thus salt reacts to extension by overall thinning and 

by passively filling the space beneath the graben. The result is a reactive diapir, triangular in 

cross-section and elongate in map-view, flanked by growth faults that are younger towards the 

center of  the graben. If  the diapir is tall enough and the overburden is thinned and weakened, 

the diapir will actively punch through to the surface (i.e. active stage; Fig. 1.4a). Once at the 

surface, the diapir will grow passively as surrounding suprasalt strata subside into and displace 

the salt in the source layer towards the diapir (Nelson, 1989; Fig. 1.4a).

a) Symmetric diapirism b) Asymmetric diapirism

Reactive Stage

Active Stage

Passive Stage

Figure 1.4. Schematic cross-sections illustrating the a) symmetric and b) asymmetric evolution of  diapiric 
piercement through syn-kinematic overburden during thin-skinned extension. Symmetric diapiric evolution 
modified from Vendeville & Jackson (1992a).
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In the reactive stage, the diapir may be controlled by symmetric and conjugated growth 

faults (Fig. 1.4a) or by a single asymmetric extensional fault with a salt roller in its footwall 

(Fig. 1.4b). In general, the symmetry of  the diapir is controlled by the geometry of  the salt 

detachment (Stewart, 1999). So, the formation of  salt walls during extension may result from 

the gravitational failure of  a tilted passive margin (Fig. 1.5a), or alternatively from crustal 

extension (e.g. thick-skinned extension in rift basins) affecting both the overburden and subsalt 

rocks (Jackson & Vendeville, 1994; Fig. 1.5b). Particularly, this latter trigger mechanism was 

the responsible for the development of  the salt structures studied at the Eastern Prebetic 

Zone. In this scenario, the presence of  an autochthonous salt layer decoupled the deformation 

affecting the overburden and the underlying subsalt strata. Thereby, controlling the general 

structural style of  the overburden above a basement fault during thick-skinned extension. 

According to Withjack & Callaway (2000), see their figure 14, the degree of  structural coupling 

between the basement and the overburden is constrained by: the thickness and viscosity of  

salt, the thickness and the cohesive strength of  the suprasalt strata and the total displacement 

of  the subsalt fault accommodating thick-skinned extension.

Pre-kinematic regional datum

b) Subsalt rocks affected by extension (thick-skinned extension)

a) Subsalt rocks not affected by extension (thin-skinned extension)
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Figure 1.5. a) Thin-skinned extension may promote the rise of  a reactive diapir through the pre-kinematic 
overburden. Further extension may promote the evolution from a reactive to a passive salt wall. b) Partially 
decoupled synrift extension in which the overburden drapes over a basement fault; stretching in the outer arc of  
the monoclinal drape fold creates a graben in the overburden, which initiated a reactive diapir. Further extension 
may promote the evolution from a reactive to a passive diapir above the footwall of  a basement fault. Modified 
from Jackson & Vendeville (1994).
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1.2.2. Contraction

Salt walls may also result during contraction (e.g. Sverdrup Basin, Harrison & Jackson, 

2014; Sivas Basin, Kergaravat et al., 2016). If  the suprasalt strata is tectonically thickened (Fig. 

1.6a), the differential load is insufficient, and its thickness and strength is too great for a diapir 

to initiate and grow. Conversely, if  the suprasalt strata is thin (Fig. 1.6b), contraction above 

a salt décollement also generates detachment folds that may be eroded and/or weakened by 

local extension (e.g. fold crests deformed by outer arc extensional faults; Figs. 1.7c).

The combination of  these processes favors the thinning of  the overburden, so salt may 

break through to the surface and subsequently grow as a diapir (Coward & Stewart, 1995; 

Sans & Koyi, 2001). During contraction, erosion affecting detachment folds enhances salt 

piercement allowing passive salt extrusion (Fig. 1.7d). However, erosion may be local and 

heterogeneous, thus promoting the formation of  elliptical salt stocks rather than salt walls 

(e.g. Cardona diapir; Sans, 2003). Nevertheless, outer arc extension at the anticline crests, 

more continuous in map-view, may trigger the development of  more elongated diapirs (e.g. 

salt walls). 

Another factor that controls the formation of  salt walls during contraction is the syn-

tectonic sedimentation in the adjacent synclines (Duerto & McClay, 2009; Pichot & Nalpas, 

2009; Izquierdo-Llavall et al., 2018; Fig. 1.8). According to scaled physical models, the syn-
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Figure 1.6. A thicker pre-kinematic overburden and a lower differential sedimentary load in a) prevents a 
diapir to rise. Conversely, a thinner pre-kinematic overburden with a greater differential sedimentary load in b), 
promotes the diapiric rise. Equation for the formation of  buckle folds obtained from Ramberg (1960).
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kinematic sedimentation promotes an increase of  the hydraulic head of  salt favoring the 

development of  salt walls at the crests of  the detachment anticlines (Pla et al., 2015; Fig. 

1.8b). Additionally, a thick syn-kinematic overburden tends to preserve tight isoclinal salt-

cored anticlines with vertical to overturned limbs of  pre-kinematic strata (Fig. 1.8c).
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the synclines in b) combined with the extension of  a buckling salt-cored fold in c) and erosional unroofing in 
d), may trigger the development of  a salt wall at the anticline crest. Modified from Coward & Stewart (1995).
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1.2.3. Differential sedimentary loading

Salt walls may also form by differential sedimentary loading, in the absence of  extension or 

contraction (e.g. Paradox Basin, Trudgill, 2011; La Popa Basin, Rowan et al., 2003; Nordkapp 

Basin, Rowan & Linsø, 2017). In this scenario, the pattern of  the depositional loading might be 

asymmetric, especially when a foreland basin is progressively filled by syn-orogenic sediments 

shed from the hinterland (Fig. 1.9).

 

When this occurs, the progradation of  sediment over mobile salt develops a pressure head. 

Even if  the overburden is less dense than the salt, it is denser than the adjacent water or air. 

Thereby, the area beneath the sediment wedge will sink until the salt is welded, at which point 

the depocenter shifts basinward (Fig. 1.10). The shifting load of  advancing sediment displaces 

the underlying salt (Fig. 1.10b). As also occurs in salt walls resulting from contraction, salt 

inflation promotes arching of  the overburden above the subsalt faults to from crestal faults, 

which initiate active diapirism. Erosion of  the crest causes further thinning of  the suprasalt 

strata leading salt breakthrough and passive growth of  a salt wall by simply downbuilding 

(Nelson, 1989; Jackson & Talbot, 1991; Figs. 1.10c and 1.10d).
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Figure 1.9. a) Active diapirism can be driven by topographic variation creating a wedge of  water (or air); a 
diapir can rise actively even though the cover is less dense than salt. Modified from Jackson & Hudec (2017). b) 
active diapirism can be developed when a foreland basin is progressively filled by syn-contractional sediments.
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Figure 1.10. Vertical slices of  scaled physical models showing the schematic evolution of  salt structures during 
progradation above a salt basin underlain by a stepped basement. Modified from Ge et al. (1997).
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Despite the great variety of  tectonics scenarios where salt walls can be developed, the 

present study assumes that in most cases, regardless of  the triggering mechanism, salt walls 

grow as passive diapirs once the salt has pierced its initial roof.

1.3. Salt wall and pre-kinematic piercement geometries

Regardless of  the triggering mechanism, the brittle pre-kinematic strata adjacent to salt 

walls may depict different geometries depending on the shape of  the diapir and its evolutionary 

stage (Fig. 1.11). As is explained above, a reactive diapir may be controlled by several symmetric 

faults (Vendeville & Jackson, 1992a; Fig. 1.4a) or by a single asymmetric fault with a salt roller 

in its footwall (Fig. 1.4b). Depending on the shape of  the reactive diapir, the adjacent pre-

kinematic strata also depict symmetrical (Fig. 1.11a) or asymmetrical geometries (Fig. 1.11b), 

respectively. For example, pre-kinematic strata may be faulted down toward the center of  a 

graben; or may be broken in two parts by a single listric fault.

In all scenarios, if  the pre-kinematic overburden is thinned and weakened enough because 

is situated above the regional datum where is exposed to erosion, the salt wall will actively rise 

(Vendeville & Jackson, 1992a; Schultz-Ela et al., 1993). Specifically, for a symmetrical diapir, 

the active rise will promote the progressive folding of  the pre-kinematic strata together with 

the rotation of  the conjugate faults (Fig. 1.11a).

 
a) Symmetric diapir b) Asymmetric diapir

Reactive piercement

Active piercement

Passive piercement

Regional datum

Regional datumRegional datum

Regional datum

Regional datum

Regional datum

Figure 1.11. Schematic cross-sections illustrating the a) symmetric and b) asymmetric evolution of  diapiric 
piercement through pre-kinematic overburden during thin-skinned extension. Symmetric diapirism modified 
from Vendeville & Jackson (1992a).
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The active rise of  an asymmetrical diapir will promote folding of  the pre-kinematic strata 

located in the footwall of  the listric fault (Fig. 1.11b). The fault plane will be also folded 

as the diapir progressively rises and breaks the thinned pre-kinematic strata. Despite this, 

the deeper strata located in the hanging wall will remain slightly undeformed and will be 

progressively covered by syn-kinematic sediments. Once at the surface, the diapir will grow 

passively as surrounding suprasalt strata subside into and displace the salt in the source layer 

(Nelson, 1989). At this point, regional deformation is preferentially accommodated by weak 

salt flowing into widening salt walls (i.e. cryptic extension; Vendeville & Jackson, 1992a). So, 

regardless of  the diapir geometry, the extensional faults that initiated diapirism will be no 

longer active and will remain attached at the diapir walls.

The pre-kinematic strata adjacent to passive diapirs may also be folded over wider zones 

with variable amounts of  structural relief  (Rowan et al., 2016). In extreme cases, termed 

megaflaps, the deeper minibasin strata may extend far up the sides of  steep diapirs or their 

equivalent welds (Giles & Rowan, 2012; Graham et al., 2012; Rowan et al., 2016; Fig. 1.12). 

The width of  folding and vertical relief  of  megaflaps span multiple kilometers, with the 

maximum bedding attitude ranging from near-vertical to completely overturned beneath an 

allochthonous salt sheet. The megaflap strata may be constant thickness or convergent and 

the oldest part is usually concordant to the top salt or slightly onlapping. This description 

is purely geometric and implies nothing about the genesis, kinematics or evolution of  the 

verticalized strata neither de diapir (Rowan et al., 2016).

2 km 2 km

SW NESW NE

Megaflap

Figure 1.12. Uninterpreted and interpreted 3D prestack depth-migrated seismic reflection profile using well 
ties of  a diapir flanked by a megaflap in the northern Gulf  of  Mexico. No vertical exaggeration. Modified from 
Rowan et al. (2016).
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1.4. Syn-kinematic stratal geometries flanking salt walls

The growth of  a salt wall, described in the previous section 1.3, is accompanied by the 

deposition of  syn-kinematic sediments recording the diapiric evolution. The geometrical 

analysis of  the syn-kinematic strata adjacent to salt walls allow to decipher the driving 

mechanism for diapirism, to determine the shape of  the salt wall, and to infer the geometry of  

the pre-kinematic strata when, for example, they are not well imaged in the seismic reflection 

data.

From this structural analysis, two main groups of  syn-kinematic stratal geometries can be 

distinguished depending on the moment in which sedimentary deposition occurs in relation 

to the evolutionary stage of  the diapir. That is, when sediments are deposited synchronous 

to salt inflation and prior to piercement of  the diapir’s roof  (i.e. reactive and/or active diapir 

growth), or when deposition occurs after salt breakout and synchronous to salt extrusion (i.e. 

passive diapir growth). During reactive diapirism, the syn-extensional sediments thicken in the 

grabens as they are progressively developed above a reactive salt wall (Vendeville & Jackson, 

1992a; Fig. 1.13a). In this scenario, the stratal geometries will depend on the shape of  the 

extensional faults bounding the graben and the relationship between sedimentation rate and 

the fault slip rate (Jackson & Hudec, 2017). During the active rise of  a diapir, the resulting syn-

kinematic stratal geometries are similar to those located adjacent to detachment folds formed 

by limb rotation (e.g. Poblet & Hardy, 1995; Fig. 1.13b). Thereby, the syn-kinematic sediments 

onlap and overlap the diapir’s roof  (i.e. pre-kinematic strata) as it is being rotated and uplifted 

during the active rise of  the diapir. Note that in the limb-rotation model, straight fold limbs 

rotate and steepen maintaining constant limb length and fold hinges and axial surfaces remain 

fixed during the growth of  the active diapir (Poblet & McClay, 1996).

a) b)

0 2 cm 0 2 km

Figure 1.13. a) Syn-kinematic growth faults above a reactive diapir (scaled physical model by Bruno Vendeville; 
Jackson & Hudec, 2017). b) syn-kinematic growth wedges above an active diapir (modified from Poblet & Hardy, 
1995).



 Extensional development and contractional reactivation of  salt walls

35

C
H

A
PT

E
R

 1

Finally, passive diapirism undergo multiple phases of  active rise, as ephemeral diapiric roofs 

are successively pierced by the rising salt (Barton, 1933; Nelson, 1989; Vendeville & Jackson, 

1992a; Schultz-Ela et al., 1993). The repeated phases of  uplift and salt breakout produce syn-

kinematic folded beds that are preserved and stacked to form halokinetic sequences adjacent 

to passive diapirs (Giles & Rowan, 2012). This type of  syn-kinematic stratal geometries are 

described from field exposures in Mexico (e.g. Rowan et al., 2003; Giles & Rowan, 2012; 

Andrie et al., 2012), South Australia (e.g. Kernen et al., 2012; Hearon et al., 2015) and more 

recently from subsurface seismic analogues in the northern Gulf  of  Mexico (e.g. Hearon et al., 

2014; Fig. 1.14), the Nordkapp Basin (Rojo & Escalona, 2018), or the Santos Basin (Coleman 

et al., 2018).

The halokinetic sequences are localized (<1 km wide), unconformity-bound successions 

of  growth strata that form as a drape fold due to the interplay between salt-rise rate (R) and 

sediment-accumulation rate (A; Giles & Lawton, 2002; Rowan et al., 2003; Giles & Rowan, 2012). 

Two types of  halokinetic sequences, wedges and hooks (Fig. 1.15), are defined geometrically 

depending on changes in topography above an active rising diapir. The topographic relief  

is controlled by the interplay between salt inflation/deflation rates and sedimentation rates 

(Rowan et al., 2003). Hook halokinetic sequences have narrow and steep drape-fold geometries 

(Fig. 1.15a). Beds fold and thin over a distance of  50–200 m from the diapir with bed rotation 

of  up to, but not surpassing, 90°. Bounding unconformities are correspondingly highly angular 

(<70°) with up to 90° of  angular discordance but become conformable within 200 m of  the 

1 km1 km

SW NESW NE

Figure 1.14. Uninterpreted and interpreted 3D wide-azimuth, prestack depth-migrated seismic profile across the 
center of  the Auger diapir showing the vertical distribution of  tapered (orange) and tabular (yellow) composite 
halokinetic sequences. No vertical exaggeration. Modified from Hearon et al. (2014).
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diapir (Fig. 1.15a). In contrast, wedge halokinetic sequences have broad and gentle drape-fold 

geometries (Fig. 1.15b). Folding and thinning occurs over a wider zone of  300–1,000 m, with 

only minor or gradual bed rotation. Bounding unconformities have low-angle truncation (5–10°), 

but commonly extend for more than 500 m away from the diapir edge before becoming conformable.

Halokinetic sequences stack stratigraphically into two end-member types of  composite 

sequences (Fig. 1.16): tabular and tapered, which form under relatively high and low ratios, 

respectively, of  R and A (Figs. 1.17a and 1.17b). Tabular CHS form by vertically staking hook 

sequences (Fig. 1.16a), creating a large-scale package with tabular form (Fig. 1.17a). Stratal 

thinning and drape-fold monoclines within individual hook halokinetic sequences are slightly 

offset from each other at the halokinetic sequence boundaries but are confined to a narrow 

zone (50–200 m) trending roughly parallel to the diapir margin. Minor cusps form where 

the unconformities intersect the diapir. In contrast, tapered CHS form by stacking wedge
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Figure 1.15. End-member styles of  halokinetic sequences with their corresponding specifics: a) hook halokinetic 
sequence, and b) wedge halokinetic sequences, respectively. Modified from Giles & Rowan (2012).
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(2012).
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sequences (Fig. 1.16b), creating a large-scale package with a broadly folded tapered form (Fig. 

1.17b). The lower boundary is folded over a distance of  300–1,000 m from the diapir so that 

thinning towards the diapir occurs over a wider zone. The axial traces of  stacked drape-fold 

monoclines trend at an incline away from the margin of  the diapir and are slightly curved. In 

addition, salt walls growing along contractional anticlines could have adjacent folded zones 

affecting the halokinetic sequences as much as 3 km wide (Rowan et al., 2003).

Finally, syn-kinematic sediments may be coevally deposited adjacent to a developing 

megaflap (Fig. 1.12). Thereby, they onlap and overlap the pre-kinematic strata as a megaflap is 

progressively formed. Two end-member geometries characterize these types of  syn-kinematic 

strata (Rowan et al., 2016; Fig. 1.18): progressive wedging and/or pronounced onlap depending 

on the kinematic process for megaflap formation (limb-rotation and/or kink-band migration 

respectively), which are analogous to those involved during the development of  detachment 
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Figure 1.17. Genetic models for the development of  tabular and tapered CHS as a function of  the relative rates 
of  salt rise (R) and sediment accumulation (A). Modified from Giles & Rowan (2012).
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folds (Poblet & McClay, 1996; Poblet et al., 1997; Suppe et al., 1997). Therefore, the resulting 

geometry of  these specific syn-kinematic strata is ultimately controlled by the interplay 

between deformation rate and sediment-accumulation rate as well as by the kinematic process 

for megaflap development, which can be also a combination of  the two folding mechanisms 

mentioned above (Rowan et al., 2016).

1.5. Reactivation of salt walls

Precursor salt walls are commonly reactivated by later extension and/or contraction. Salt 

walls, like the rest of  salt bodies, are the weakest part of  the rock volume and consequently 

localize any ulterior deformation occurring in the area (e.g. Nilsen et al., 1995; Roca et al., 

2006; Rowan & Vendeville, 2006; Callot et al., 2007; Dooley et al., 2015). In this sense, they are 

very sensitive to any change of  the tectonic regime, thus they are the first structures to record 

such changes. The deformation style of  salt walls during newly stablished tectonic scenarios 

can vary considerably but shows some distinctive features whenever it is produced during 

extension, contraction or strike-slip. Below are summarized the principal key features during 

the extensional and contractional reactivation of  salt walls. Note that the influence of  strike-

slip reactivation on precursor salt walls is beyond the scope of  this investigation, and thus not 

detailed in this memoir (see further details in Jackson & Hudec, 2017; their Chapter 12).

1.5.1. Extensional reactivation

Regional extension promotes the widening of  salt walls with time because it is easier than 

faulting the adjacent stronger sedimentary overburden. As long as there is enough salt supply 

from the source layer, the diapir can widen and grow at the same time by internal flow without 

0 3 km

a) Limb rotation 

b) Kink-band migration
Scale 1:1
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Figure 1.18. Forward-kinematic models with the same initial geometry and developing megaflap formations 
by a) limb rotation and b) kink-band migration. Models modified from Rowan et al., (2016) incorporating 
compaction and preserving bed lengths.
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visible extensional faulting (i.e. “cryptic extension”; Vendeville & Jackson, 1992a). The diapir 

height can decrease or increase in function of  the ratio between the extension and salt supply 

rates (Schultz-Ela, 1992; Vendeville & Jackson, 1992b; Fig. 1.19). Thereby, if  there is enough 

salt coming from the source layer, the salt wall will maintain or even increase its height (Fig. 

1.19a). Despite this, if  the salt supply is insufficient to fill the accommodation space generated 

by continued extension, the diapir will start to fall (Vendeville & Jackson, 1992b; Fig. 1.20). 

Independently of  extension, the diapir will collapse if  the source layer is depleted and primary 

welds form beneath the adjacent subsiding minibasins.

Accommodation
space > Salt rise rate

Accommodation
space < Salt rise rate

Accommodation
space = Salt rise rate

Initial active salt wall

a) b) c)

Figure 1.19. The relationship between accommodation space and salt rise rate controls the height of  an initial 
active salt wall covered with a thin roof. a) Low ratios promote the further growth of  the diapir; b) equant rates 
tend to stop the diapir growth; and finally, c) high ratios foster the salt wall collapse and the formation of  a 
younger depocenter.
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c)
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Passive rise

Initial post-welding fall Active depocenter

Active depocenter
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Active
depocenter

Supply of salt exhausted at depth
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Figure 1.20. Extensional fall of  a salt wall may create a muck-turtle anticline. Modified from Vendeville & 
Jackson (1992b).
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The collapse or fall of  a salt wall results in the formation of  a younger depocenter in the 

form of  an elongated minibasin over what was the diapiric high (Fig. 1.19c). This newly created 

minibasin, surrounded by salt horns, can evolve to a “mock-turtle” anticline when a primary weld 

is created beneath the depocenter of  the subsiding minibasin and regional extension continues. As 

it is folded, a crestal graben may be developed in the center of  the former minibasin, which is now 

subdivided in two separated active depocenters that migrate laterally as salt horns are progressively 

depleted (Vendeville & Jackson, 1992b; Fig. 1.20d).

1.5.2. Contractional reactivation

Precursor salt walls may be also affected by regional shortening. Again, as the weakest part of  the 

cover, they narrow by internal flow localizing shortening strain without visible contractional faulting 

(i.e. “cryptic shortening”; Vendeville & Nilsen, 1995; Gottschalk et al., 2004). So, they affect the 

style of  the contractional deformation in the way that shortening reduces the width of  the salt walls, 

increases the rate of  salt extrusion meanwhile the rest of  the cover remains almost undeformed.

Regional shortening can rejuvenate dormant salt walls even if  their roof  is thick, the source 

layer is depleted, or the diapir is denser than its overburden (Vendeville & Nilsen, 1995). Shortening 

promotes the narrowing of  salt walls by squeezing them and arching their roofs (Figs. 1.21a and 

1.21b). In this point, if  the diapiric roof  is thin and/or weak enough, rising salt may disrupt the 

overlying strata, allowing salt to break through the surface and to extrude passively as a salt sheet 

(Figs. 1.21c, 1.21d and 1.21e). If  shortening increases, the salt wall’s stem may be depleted, until 

the development of  secondary welds (Fig. 1.21f) that can link two remnant diapirs (e.g. “Q-tip” 

structure; Rowan & Vendeville, 2006; Fig. 1.22). Eventually, tilted secondary welds dipping favorably 

to the shortening propagation can evolve into thrust-welds if  compression progresses (e.g. Callot et 

al., 2007; Figs. 1.21g and 1.21h).

As occurs in the extensional reactivation, the salt wall orientation and distribution exert a strong 

influence in the location and strike of  folds and thrusts developed during shortening (e.g. Fars 

province of  the Zagros Mountains in Iran, Letouzey & Sherkati, 2004; Jahani et al., 2009; Callot et 

al., 2012; or the Atlas Mountains of  Algeria, Letouzey et al., 1995; Fig. 1.23). The influence of  salt 

walls on the surrounding stress pattern recedes away from the diapir termination, so thrust faults 

are more prevalent along the termination of  the salt walls tending to be perpendicular to regional 

shortening (Fig. 1.23).
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buried salt wall

salt sheet thrust-weld

thrust

crestal graben

pierced crestal graben

Figure 1.21. Conceptual evolutionary model, obtained from scaled physical models, for the contractional 
reactivation of  a buried salt wall without syn-kinematic sedimentation and erosion. a) initial stage; b) narrowing 
of  the buried diapir and arching of  its roof  with formation of  a keystone graben (crestal graben); c) narrowing 
of  the diapir and piercement of  its roof  along the crestal graben; d) narrowing of  the diapir, increase of  the 
dip of  the roof  shoulders and development of  a salt sheet; e) narrowing of  the diapir, and the increase in size 
of  the salt sheet as a consequence of  the continued extrusion of  salt. f) complete closure of  the diapir stem 
and formation of  a secondary weld. g) nucleation of  a short-cut and a back-thrust in the upper part of  the 
diapir pedestal and incipient development of  a box-fold antiform. h) amplification of  the box-fold antiform and 
formation of  a thrust-weld along favorable dipping portions of  the primary weld. Modified from Ferrer (2012).

salt wall

strain gradien

a)

b)

c)

Figure 1.22. Plan-view evolution of  a salt wall under compression. a) the relative weakness of  the salt and 
the strength of  the rocks around the salt wall tips promotes the development of  a strain gradient. As a result, 
the central part of  the salt wall is squeezed more than its terminations. b) with enough shortening, a vertical 
secondary weld is formed linking two remnant diapirs that have not been squeezed. c) if  the two remnant diapirs 
together with the secondary weld are covered, the result may be an anticline with a central culmination and 
plunging in both directions. Modified from Rowan & Vendeville (2006).
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1.6. Salt wall-flanking faults

The mode of  diapirism as well as the tectonic regime are controlling factors on the type 

of  the resulting syn-kinematic faults flanking the reactivated salt walls. Thus, the adjacent fault 

patterns will be different according to the geometry in plan-view of  the salt wall (Link, 1930; 

Parker & McDowell, 1955; Withjack & Scheiner, 1982; Sims et al., 2013), but also depending 

on the specific stage of  the diapir evolution in which faulting occurs (Vendeville & Jackson, 

1992a and 1992b; Schultz-Ela, et al., 1993). That is, during the reactive stage, the active rise of  

the diapir or any ulterior reactivation.

1.6.1. Syn-kinematic faults developed during reactive diapirism

The structural style of  a salt province affected by thin-skinned extension is a function of  

the salt detachment geometry, whenever it is horizontal or tilted basinwards (Stewart, 1999). 

When the salt detachment is horizontal, classic reactive diapirism is usually symmetrical, 

Figure 1.23. Salt walls oblique to regional shortening affect the resulting structural style of  the deformed cover. 
The deformed salt walls are typically bounded by oblique-slip transpressional faults and crowned by oblique-slip 
transtensional grabens. Scaled physical model published in Jackson & Hudec (2017) courtesy of  Tim Dooley.
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in which conjugate thin-skinned faults develop over the reactive diapir (e.g. Fig. 1.4a). As 

extension progresses, younger extensional faults are developed toward the center of  the graben. 

If  the overburden is thinned and weakened enough, the diapir will actively rise through to the 

surface and the preexisting set of  extensional faults will become inactive as they are rotated 

and shouldered aside (Fig. 1.4a).

Conversely, in regional dipping salt detachment scenarios, the thin-skinned faults typically 

dip in the same direction than the detachment (e.g. Fig. 1.4b), having in plan-view, maximum 

displacements near the center of  the faults and zero at the fault tips. The center of  the fault 

usually shows a greater salt roller than at the fault tips. If  extension progresses, is likely in this 

position where the salt will break the thinned overburden if  there is enough salt to flow and 

differential load established by faulting and syn-kinematic sedimentation. Once this occurs, a 

passive diapir is developed and the former extensional faults are abandoned and rotated on 

one side of  the diapir (Fig. 1.4b).

1.6.2. Syn-kinematic faults developed during active diapirism

The active diapiric rise is characterized by the uplift and arching of  the diapir’s roof  

above the regional level (Jackson et al., 1994, Schultz-Ela et al., 1993; Fig. 1.4). This process 

promotes thinning and lengthening of  the sedimentary roof  as is drape-folded over the rising 

diapir leading to the formation of  several types of  extensional faults, that are not necessarily 

linked to regional extension. In arched roofs, small-scale deformation can be widespread and 

their response to deformation depends on strain intensity and the lithology of  the involved 

rocks (Davison, 2000).

The geometry of  the faults affecting the roof  is strongly dependent on the plan-view 

edge of  the salt wall (Link, 1930; Parker & McDowell, 1955; Withjack & Scheiner, 1982; Sims 

et al., 2013). Thereby, they will be longitudinal faults when the curvature of  the diapir edge is 

zero, that is a diapir with a rectangular outline in plan-view; or radial faults when the curvature 

is different to zero. Nevertheless, during the active rise of  a diapir, both types of  faults are 

indistinctly developed when the overburden is drape-folded to form hook and/or wedge 

halokinetic sequences adjacent to the salt wall. Additionally, a third type of  syn-kinematic 

faults can be found adjacent to active salt walls in counterregional-style systems (e.g. northern 

Gulf  of  Mexico, Diegel et al., 1995; Rowan & Inman, 2005; Rowan et al., 1999; Trudgill 
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& Rowan, 2004; or Paradox Basin, Escosa et al., 2018c). In this case, the counterregional 

faults accommodate part of  the differential subsidence adjacent to the diapirs and extend into 

the overburden away from the diapir termination. Note that this model requires no regional 

extension to be accommodated by the faults, only differential sedimentary loading adjacent to 

the growing diapir (Schuster, 1995).

1.6.2.1. Longitudinal faults

These are faults parallel to the long axis of  the salt wall (i.e. the x axis in Fig. 1.1) and are 

caused by regional extension and/or differential sedimentary loading adjacent to the diapir or 

by local doming (e.g. Fig. 1.24). In cross-section view, they depict different geometries (e.g. 

listric, planar…) and are rooted at the top of  the diapir (Schultz-Ela et al., 1993).

Additionally, if  the volumetric flux of  salt along the long axis of  the diapir is not 

homogeneous (e.g. culminations and subsiding areas along the topographic surface of  the salt 

wall), longitudinal faults may be relayed by oblique transversal faults that are also detached 

above the salt wall.

1.6.2.2. Radial faults

Radial faults may originate in arched roofs above active raising diapir terminations (e.g. 

Fig. 1.24). They have large net slips at the crest and zero at the edge of  the diapir (Stewart, 

2006; Yin & Groshong, 2007). These faults can also extend radially from the edge of  the salt 

body into the flanking strata. This may be caused as the overburden is drape-folded around 

a curved edge of  salt and the resultant concentric tensile (hoop) stress regime (e.g. Rowan et 

al., 2003; Stewart, 2006; Escosa et al., 2018c). The hoop extension is proportional to the strike 

curvature of  the salt-sediment interface, which is why radial faults are more prevalent at the 

end of  salt walls where the radius of  curvature is higher (Withjack & Scheiner, 1982; Davison 

et al., 2000; Stewart, 2006; Sims et al., 2013). Additionally, Coleman et al. (2018) suggested 

that the causal mechanism for radial faults on a salt stock (both affecting the roof  and/or the 

entire overburden adjacent to the diapir) is dependent on the thickness variations of  the roof  

during the active/passive phases of  the diapiric rise.
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1.6.2.3. Counterregional faults

In counterregional-style systems like the northern Gulf  of  Mexico, the largest differential 

subsidence is centered adjacent to the diapirs (Rowan & Inman, 2005). However, differential 

subsidence may still be significant along strike from the diapirs, where it is accommodated by 

slip on counterregional faults that merge into the proximal edges of  the diapirs (Rowan et al., 

1999; Trudgill & Rowan, 2004; Rowan & Inman, 2005; e.g. Fig. 1.24). These faults dip towards 

the source of  the prograding sediment (landward-dipping) and curve into the proximal edge 
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Figure 1.24. Examples of: a) landward dipping faults (counterregional) linking buried diapirs; and an b) active 
salt wall with radial and longitudinal faults and possible counterregional faults extending off  the ends of  the 
diapir. BOEM Northern Gulf  of  Mexico deepwater hillshaded bathymetry obtained from 3D seismic data 
(vertically exaggerated by 5x). Courtesy of  U.S. Bureau of  Ocean Energy Management (https://www.boem.gov/
Gulf-of-Mexico-Deepwater-Bathymetry/).
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of  the diapirs (Diegel et al., 1995; Schuster, 1995). The deeper portions of  the faults are 

actually welds since the salt evolves from linear, low relief  walls to high-relief  stocks (Trudgill 

& Rowan, 2004). As fault displacement decreases along strike, the differential subsidence is 

increasingly accommodated by folding, until only monoclinal folding records the deformation 

around the landward and lateral margins of  the minibasin. They are typical of  asymmetric 

diapirs flanked by thicker and deeper strata in one side and thinner and shallower strata in the 

other side (e.g. Fig. 1.4b).

1.6.3. Salt dissolution related faults

All evaporites are dissolved by undersaturated surface or groundwater, so salt walls close 

to the erosional regional level are prone to salt dissolution (Bosák et al., 1998; Talbot, 1998; 

Warren, 2006).

When the dissolved salt is not replaced by the rising diapir, the upper part of  a salt wall 

will start to subside (Jackson & Hudec, 2017). In this scenario, the salt dissolution promotes 

the development of  different types of  salt dissolution related structures above the collapsing 

diapir. For example, when the salt wall is exposed or covered by a thin roof, the salt dissolution 

may promote the development of  tight folds bounded by diapir-parallel extensional faults 

at the diapir margins. Both the extensional faults and the folds are interpreted as different 

manifestations of  shoulder collapse due to halite dissolution and the formation of  caprock. 

Note that a salt shoulder is a diapir margin geometry where the edge steps relatively abruptly 

inward (e.g. McFarland et al., 2015; Giles et al., 2017; Escosa et al., 2018c).

Conversely, when the salt wall is totally covered by a thicker roof, the salt dissolution 

may promote the development of  extensional faults parallel to the diapir margin deforming 

the diapir’s roof. Additionally, scaled physical models suggest that these extensional faults 

verticalize in depth to became contractional thrusts before rooting at the edges of  the 

collapsing diapir (Ge & Jackson, 1998; Fig. 1.25). The spacing of  the resulting faults depends 

on the initial geometry of  the salt wall. Regardless of  the diapir geometries, extension of  the 

normal faults at the upper part is balanced by shortening of  the reverse faults in the lower part 

of  the collapsing diapir. Besides this, the presence of  contractional zones helps to differentiate 

the collapsed roofs from those structures resulting from the extensional reactivation of  a 

diapir (Jackson & Hudec, 2017).
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1.6.4. Salt wall reactivation related faults

1.6.4.1. Faults developed during the extensional fall of salt walls

Extensional faults can be developed above collapsing salt walls when the rate of  extension 

exceeds the rate of  salt supply (Vendeville & Jackson, 1992b; Jackson & Hudec 2017; e.g. 

1.19c). In this process, crestal fault blocks indent the top of  the diapirs. Depending on the 

geometry of  the extensional faults accommodating the roof  collapse, the indenting fault 

blocks can form half-grabens or symmetric grabens above the falling diapirs (e.g. Figs. 1.20b - 

1.20c). These grabens are usually flanked by planar or listric faults with hornlike projections of  

salt in the footwall of  each fault. So, as the salt wall progressively collapses and syn-kinematic 

sedimentation continues, the diapirs and their indented grabens become wider and lower as 

the flanking faults increase its height (e.g. Schultz-Ela, 1992). This process finishes when the 

salt stem is depleted, and the bottom of  the graben touches down to form a primary weld.

1.6.4.2. Faults developed during the contractional reactivation of salt walls

Contractional and extensional faults can be developed above buried salt walls affected by 

thin-skinned shortening. The characteristics of  these faults are mainly controlled by the diapir’s 

width, profile and orientation, thickness of  the diapir’s roof  and the shortening magnitude 

(Vendeville & Nilsen 1995; Gottschalk et al. 2004; Rowan et al. 2004; Roca et al. 2006; Jackson 

et al. 2008; Dooley et al. 2009; Callot et al., 2012; Duffy et al., 2018). 

a) Undeformed rectangular wall b) Undeformed semicircular wall c) Undeformed triangular wall

Extensional
zone

Extensional
zone

Contractional
zone

Extensional
zone

Extensional
zone

Contractional
zone

Extensional
zone

Extensional
zone

Contractional
zone

0 5 cm

Figure 1.25. Three different scenarios of  roofs collapse for salt diapirs displaying different geometries a), b) and 
c) when they are dissolved. Modified from scaled physical models by Ge & Jackson (1998).
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Essentially, the thinner the roof  relative to the height of  the underlying diapir, the tighter 

and more localized is the deformation affecting the arched roof  by shortening (Callot et 

al., 2012). Accordingly, if  the roof  is thin and weak, rising salt disrupts the roof  affected by 

ephemeral extensional and/or contractional faults, allowing salt to break through to the surface 

and to rise passively. Conversely, if  the roof  above a squeezed diapir is thick and mechanically 

strong, scaled physical models suggest that different structures may be developed as the diapir 

is contractionally reactivated (Dooley et al., 2009; Duffy et al., 2018). At the beginning, before 

the adjacent overburden shows signs of  shortening, far-field shortening pressurizes the salt 

source and an inward plume inflates the diapir’s stem. This promotes arching of  the overlying 

roof  and the nucleation of  outer-arc extensional faults at the crest of  the folded roof. Further 

shortening promotes the formation of  a thrust salient on the foreland side and a backthrust 

on the hinterland side of  the diapir. Additionally, the continued extensional thinning over 

the crest of  the diapir triggers the development of  a crestal graben flaked by roof  flaps (Fig. 

1.21b). Finally, once the diapir has pinched shut and shortening progresses, one flank may 

override the other as a thrust fault, offsetting the two halves of  the diapir from each other 

(e.g. Fig. 1.21h).

1.7. Methodology

This section summarizes the methodological workflow followed during this investigation 

(Fig. 1.26), which comprehends the collection of  data, their processing and their incorporation 

into the present analysis, to finally obtain the results of  this PhD thesis. Thereby, the present 

investigation has carried out from surface data supported whenever it has been possible by 

the available subsurface data (2D seismic reflection, well, and gravimetric data). At the same 

time, this study builds on the preexisting knowledge of  the studied areas (published articles 

and geological maps) and utilizes the concepts of  salt tectonics and the structural geology to 

characterize different salt walls in the respective investigated areas.

Therefore, the research carried out during the last five years has resulted in the construction 

of  a geometric and kinematic model for the studied salt walls as well as in the identification of  

global factors that control these salt structures driven by extension and/or differential loading 

and affected by a subsequent thin-skinned contractional deformation. The outcomes of  this 

study have been reflected in three articles published in journals indexed by the Journal Citation 

Reports (JCR), the present thesis memoir, several oral and poster presentations at international
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meetings, and a report of  the Cofrentes-Ayora region which is not included in this thesis 

memoir due to confidential agreements with the company. Nevertheless, among the results 

presented in this thesis, there are three geological maps, ten cross-sections and one cross-

section restoration at scales ranging from 1:50,000 to 1:1,000.

1.7.1. Input data

1.7.1.1. Surface data set

The surface data set used in this thesis consists of  cartographic and geological field 

data. The cartographic data include digital terrain models (DTM), orthophotographs, 

topographic maps, and previously published geological maps. The digital terrain models 

and orthophotographs pertaining to SE Spain have downloaded from the Centro Nacional de 

Información Geográfica (https://www.cnig.es/) and the geological maps have downloaded from 

the Instituto Minero y Geológico de España (http://www.igme.es/). The topographic and geologic 

maps of  SW Colorado (USA) have been supplied by professor Richard P. Langford of  the 

University of  Texas at El Paso. In this case, the corresponding digital terrain models and 

orthophotographs have downloaded from a Global Mapper™ repository.

The geological field data include localization and mapping of  the different outcropping 

stratigraphic or lithological units, the tracing of  the outcropping geological contacts 

(stratigraphic or tectonic), and the acquisition of  structural and stratigraphic data. The 

collection of  this data set has been done by using an iPad and the FieldMove software in 

three different field-work areas: SW Colorado (USA), Jumilla and Cofrentes-Ayora regions 

(SE Spain). During this process, more than 11, 400 (11,464) bedding and fault/fold attitude 

data have been collected from the investigated areas using a compass-clinometer. However, 

the data set and corresponding results from the latter studied area (Cofrentes-Ayora region) 

are not included in this memoir because of  confidential agreements with the company.

1.7.1.2. Subsurface data set

The subsurface data located in the two studied areas (SW Colorado and Jumilla region; see 

their respective locations in Figs. 1.27 and 1.28) consist of  17 wells (13 from SW Colorado and 

4 from the Eastern Prebetic Zone), 16 two-dimensional seismic reflection profiles (2 from SW 

Colorado and 14 from the Eastern Prebetic Zone), and bouguer anomaly maps (Fig. 1.26).
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The source of  the gravity data from the Prebetic Zone is field data downloaded from 

the Instituto Minero y Geológico de España (http://www.igme.es/) combined with additional 

gravimetric data collected by Castaño (1993). The used reference density is 2.67 g/cm3 and 

the topographic correction has been implemented. The source of  the gravity data from SW 

Colorado is field and spatial data downloaded from the Regional Geospatial Service Center at 

the University of  Texas at El Paso (http://gis.utep.edu/data.html). The used reference density 

is also 2.67 g/cm3 and the topographic correction has also been implemented.

The reflection seismic and well data from SE Spain has been supplied in paper copy by the 

Archivo Técnico de Hidrocarburos (Ministerio de Economía, Industria y Competitividad) of  the Spanish 

Government, and in digital copy by the Instituto Geologico y Minero de España (Lanaja et al., 1989). 

The seismic reflection data set is composed of  the vintage “RV” seismic survey acquired 

between 1982–1985 by CGG and BP, using dynamite as a seismic source and a receptor array 

composed by 36 geophones. These seismic reflection data were provided in time, simple-

stacked but not migrated to time. Despite this, during the processing stage, multichannel 

deconvolution was applied by the operating companies to avoid possible seismic diffractions. 

Regarding the exploratory wells, they were drilled between 1965–1989 by different companies 

(Enpensa, Enpasa, Tenneco, Repsol…). From them, we only have a complete data set of  

the closest well to the Jumilla region (Ascoy-1). This data set includes the well tops and the 

lithological, sonic, gamma ray, resistivity, ciberdip and dipmeter logs. For the other wells, only 

the well tops and the lithologoical logs are available.

The original subsurface data from SW Colorado have been directly supplied in digital 

format by Conoco-Phillips. The seismic reflection data set is composed of  two lines shot in 

the 1970s using dynamite. They were time-processed data converted to depth using average 

velocities of  four units dividing the stratigraphic section: surface to top Honaker Trail, 

Honaker Trail, Paradox Fm., and basement. The velocities were based on check-shot data 

from the Burkholder #1 well near Castle Valley (located in central Paradox Basin). In this 

instance, the well data set consisted of  well tops and lithological logs. As a result of  the 

confidentiality agreements with the company that supplied the data, only the line drawings of  

the seismic reflection profiles are included in this memoir and in the corresponding compiled 

article (see Annex 1).
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1.7.2. Processing

1.7.2.1. Digital and time-to-depth conversions of the seismic reflection data

Fourteen paper-based seismic reflection profiles of  the Eastern Prebetic Zone have been 

processed to obtain standard digital SEG-Y files. For that purpose, they have been scanned 

and the corresponding seismic trace lines have been georeferenced and then digitized from 

a seismic trace position map to obtain the X/Y UTM coordinates of  the seismic navigation 

files. The chosen methodology is the one developed by Farran (2008) in the Grup de Geologia 

Marina (ICM) and Institut de Ciències del Mar (CMIMA-CSIC) to save seismic paper records as 

fully conforming SEG-Y digital data files. This methodology is embodied a Matlab® script 

called “image2segy” (Farran, 2008) which associates the pixels of  the scanned seismic images 

with the geographical and geophysical information included in their corresponding seismic 

navigation files.

The obtained SEG-Y digital data files have been subsequently checked by a quality control 

to detect possible mistakes. Common encountered errors were mostly related to the X/Y 

UTM coordinate locations and sporadically to the shot points, common depth points or the 

sample interval. If  detected, the errors have been corrected by adjustments introduced in the 

trace headers of  the SEG-Y files using the Seisee software.

The time to depth conversion of  the resulting digital seismic reflection profiles has been 

performed with a calculated velocity model and using a depth conversion algorithm included in 

the Petrel E&P software. Such model is based on the sonic log of  the Ascoy-1 well, which allow to 

define interval and average velocities as well as a time to depth conversion curve. The processing 

datum used along this process is located at 1050 m above the mean sea level. Therefore, this is a 

velocity model only constrained by a unique data set and, consequently, susceptible to generate 

results with appreciable margins of  error in areas placed away from the Ascoy-1 well; specially, 

in those areas located in other paleogeographic domains (i.e. External Prebetic; Fig. 1.28). 

Nonetheless, this issue is minimized because most of  the seismic reflection profiles are in the 

same paleogeographic domain than the exploratory well (i.e. the Internal Prebetic). Accordingly, 

the interpretable seismic stratigraphy should be similar to the one intersected by the well, and 

thus little deviations are expected between the real and calculated depths.
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1.7.2.2. Map construction

The georeferenced cartographic and field data have been transferred into a three-

dimensional digital environment (Move™ software from Midland Valley; Fig. 1.26). Both 

orthophotographs and geological field data (i.e. differentiated geological contacts and structural 

data) have been overlain over the digital terrain models, and following the methodology 

developed by Fernández (2005), the mapping of  the geological surfaces has been completed 

in three-dimensions.

The fault symbols depicted on the geological maps have been stablished by taking as a 

reference the bedding (i.e. datum) surfaces located at both faulted blocks and classifying the 

faults as extensional or contractional depending if  the involved strata are lengthened/thinned 

or shortened/thickened respectively (Norris, 1958; Suppe, 1985; Groshong, 2006). The color 

charts used for designating the geological units, both on the maps and cross-sections of  the 

Paradox Basin and the Eastern Prebetic Zone, follow respectively the Institute of  Tectonic 

Studies (ITS) convention and the Commission for the Geological Map of  the World (http://

www.ccgm.org). Finally, the resulting maps have been edited using MAPublisher™ in Adobe 

Illustrator™ and are presented in this memoir as georeferenced PDF files.

1.7.2.3. Seismic interpretation

The depth-converted seismic reflection profiles have been transferred into a Move™ 

project along with the geological field data. In this software, they have been interpreted 

simultaneously to the construction of  the geological maps. This interpretation is constrained 

by the stratigraphic information provided by well data and the collected surface data (bedding 

attitudes, outcropping lithologies and tectonic/stratigraphic contacts).

Due to confidential agreements, the interpretation of  the 2D depth-converted seismic 

reflection data from SW Colorado is based on line-drawings previously interpreted by Mark 

G. Rowan and Thomas E. Hearon. Despite this, the interpretation in depth is constrained by 

horizon tops from 13 wells. Conversely, in the Eastern Prebetic Zone (SE Spain), the seismic 

interpretation has been accomplished directly on the SEG-Y digital data files and constrained 

by the Ascoy-1 well logs. This borehole is located 2 km northwest from the seismic reflection 

profile RV-57 (Fig. 1.28), so according to the information provided by the dipmeter log, the 

well tops have been properly projected into the seismic reflection profile RV-57 (Fig. 1.29).

http://www.ccgm.org
http://www.ccgm.org
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This procedure has allowed to identify the characteristic seismic facies of  each sedimentary 

unit and to determine the position in depth of  following horizon tops (Fig. 1.29): Lower 

Jurassic, Middle Jurassic, Upper Jurassic, lower Albian, upper Albian and Maastrichtian. 

Therefore, this has facilitated the interpretation of  the intersecting seismic reflection profiles 

but also of  those profiles located away from the Ascoy-1 well by comparing the seismic facies. 

Besides this, from the seismic interpretation and the surface data, some vertical mis-ties have 

been detected at profile intersections between time-equivalent lateral seismic reflections. 

These incoherencies have been minimized by applying a bulk shift (Z axis correction) for each 

seismic reflection profile.

1.7.2.4. Cross-section construction and restoration

Several geological cross-sections have been constructed to depict the structure of  the 

studied areas. They have been designed perpendicularly to the main trend of  the structures, 

but in some cases, they have also been constructed parallel to these to depict the structural 

variations along strike. Accordingly, the cross-sections have been built from the lithological 

contacts and fault traces cut by the vertical plane of  the cross-sections and from the projected 

strike and dip data located less than 200 m from the cross-section trace. Additionally, they are 

also constrained by the geometrical relationships between stratigraphic units that are laterally 

observed in other cross-sections, seismic reflections and/or geological maps. The projection 

of  the dip attitudes of  bedding and faults into the cross-sections has been done accordingly to 

the calculated projection vectors which are parallel to the plunge of  the intersected geological 

structures (DePaor, 1988; Groshong, 2006; Fernández et al., 2003). Thereby, depending if  

1 km

Fig. 2.17a (RV-61) Fig. 2.14b1000
10

00
30

00
50

00
70

00
2000 3000
TWT (ms)

D
ep

th
 (

m
)

RV-60RV-57

SWAscoy-1 well (at 2 km north-west) NE

y = 0,0005x2
+ 1,1683x

0

-1

-2

-3

0,5

(k
m

)

-4

-5

Serravallian - Quaternary
Aquitanian - Languian
Paleocene - Oligonece
Cenomanian -
Maastrichtian
upper Albian

Neocomian - lower Albian

Upper Jurassic

Middle Jurassic
uppermost Triassic -
Lower Jurassic
Variscan basement - 
Middle Triassic

b)a)
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they cut cylindrical (e.g. Ramsay, 1967; Wilson, 1967; Bengston, 1980; Groshong, 2006) and 

non-cylindrical or conical folded structures (e.g. Stauffer, 1964; Ramsay, 1967; Wilson, 1967; 

Webb & Lawrence, 1986; Langenberg et al., 1987; Nicol, 1993), different projection vectors 

have been calculated for each segment of  the cross-sections.

Using also Move™ software, the interpolation and extrapolation of  the projected data 

has been done according to the widely used constrains in both extensional and contractional 

tectonic settings (e.g. Dahlstrom, 1969; Elliott, 1976; Hossack, 1983 and 1995; Suppe, 1983; 

Woodward et al., 1985; Rowan & Kligfield, 1989; Schultz-Ela, 1992; Rowan, 1993; Rowan et 

al., 1996; Hudec & Jackson, 2004; Rowan & Ratliff, 2012) and also considering the following 

assumptions for the subsalt, salt and suprasalt units.

For the suprasalt structure, these assumptions are: 1) to maintain constant thicknesses 

of  the sedimentary units except if  it is contrarily indicated by the sub- and surface data; 2) 

to make gradual and progressive thickness variations of  the suprasalt units; and 3) to stablish 

the fold geometry according to its relationship with subsalt faults or salt detachments (e.g. 

Jamison, 1987; Mount et al., 1990; Hardy & Poblet, 1994; Poblet & Hardy, 1995).

During the construction of  the salt structures we have assumed that: 1) the presence of  

sediments covering piercing salt diapirs is indicative of  that the underlying salt structure is 

no longer active, and thus is either surrounded in depth by primary welds or squeezed with 

secondary welds; 2) the gradual thinning of  syn-kinematic units within sedimentary basins, 

suggests the progressive depletion of  the salt source layer and the formation of  primary 

welds beneath the principal depocenters; 3) thickened young suprasalt strata lying directly on 

top of  previously salt inflated areas are indicative of  diapiric extensional collapse; and finally 

4), considering the regional context in which the studied salt structures were formed (i.e. the 

proximal segment of  an extensional developing passive margin in the Eastern Prebetic Zone, 

SE Spain; and the distal part of  a foreland basin in the Paradox Basin, SW Colorado), the 

style of  early diapirism in the first case was that of  reactive diapiric rise (Jackson & Vendeville, 

1994); and for the second case was that of  single-flap active diapiric rise because no regional 

extension nor shortening was involved (Schultz-Ela et al., 1993).

And for the subsalt units, depth-to-basement calculations are made using the suprasalt 

stratigraphic thicknesses both obtained from well and field data and combined with the 

interpreted seismic data. In addition to these constrains, we also accept the following 
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assumptions for the construction of  the subsalt structure: 1) the brittle behavior of  the 

basement in the studied areas; 2) the location of  the synclinal fold hinges determines the 

position of  the basement roof  as long as the fold hinge coincides with a primary weld in 

depth; and 3) the monoclinal flexures of  the overburden coinciding with sharp changes in the 

elevation of  the regional datum (defined as the level where strata, deposited at the synclines 

after primary welding, have not gone up or down due to local deformation; Hossack, 1995) are 

interpreted as related to basement faults –whose extensional or contractional nature would be 

defined according to its age and the regional context. In all cases, the interpretation considers 

the geometry of  the syn-kinematic sediments because their structural analysis provides 

valuable information not only for the kinematic evolution of  the structures but also for their 

geometry in depth (e.g. Medwedeff, 1989, 1992; Mount et al., 1990, DeCelles et al., 1991; 

Bloch et al., 1993, Shaw & Suppe, 1994; Poblet & Hardy, 1995).

Finally, one of  the obtained cross-sections has been qualitatively restored to illustrate 

the Alpine evolution of  the South Iberian passive margin at the studied area in the Eastern 

Prebetic Zone. It is a restoration based on the Rowan (1993) methodology in which: 1) the 

bed length of  the supra- and subsalt layers is maintained in all restoration steps (Rowan & 

Ratliff, 2012); 2) the suprasalt beds are considered to be deformed by flexural slip; 3) the salt 

area is not maintained assuming that salt migration could occur out of  the cross-section plane; 

4) the fault displacement is maintained along the fault planes; 5) the salt structures are restored 

individually and then merged to the contiguous ones; and 6) unknown “cryptic” extension 

and/or shortening is assumed during the restoration of  the salt structures (see further details 

in chapter 1.5.1 and 1.5.2). The explained methodology and procedure have been done by 

using the tools and algorithms included in the Move™ software. This process encompassed 

multiple iterations to finally obtain regional consistent and kinematically plausible restoration 

steps. In this regard, the restoration process has been proven to be a powerful tool to detect 

incongruences in the original cross-sections, that obligate to modify and thus improve the 

final result. Finally, as the other illustrations included in this memoir, the cross-sections and 

corresponding restoration have been edited and exported in a PDF file by using Adobe 

Illustrator™.
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CHAPTER 2. SUMMARY OF 
THE RESULTS

2.1.  Introduction
2.2.  Gypsum Valley Diapir, Paradox Basin,

SE Utah and SW Colorado
2.3.  Jumilla region, Eastern Prebetic Zone,

SE Spain



The cover of  Chapter 2 is composed by two photos: an upper one depicting the southeastern termination of  the Gypsum Valley salt 
wall (SW Colorado); and a lower one illustrating the Jumilla Diapir in the foreground and the characteristic “ridge and valley” 
landscape of  the Eastern Prebetic Zone at the Jumilla region (SE Spain) in the background.
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2.1. Introduction

In order to accomplish the objectives outlined in the Preface of  this thesis, a characterization 

of  salt walls has been carried out in two distant field-work areas with distinct geological settings 

(Fig. I.I). Therefore, rather of  presenting the study of  both study areas in a single geological 

framework, the following summary of  the results has been organized in two subchapters, in 

which the respective outcomes of  the Paradox Basin (SW Colorado and SE Utah) and the 

Eastern Prebetic Zone (SE Spain) are presented separately. Besides this, the global results of  

the investigated areas are reflected in Chapter 4 which also lists the main concluding points 

of  this thesis.

Accordingly, the results obtained from the study of  salt walls and salt-related structures 

are introduced in the respective subchapters as follows: firstly, presenting a geological overview 

of  each field-work area; secondly, indicating the articles enclosed in this memoir in which the 

major part of  the corresponding results have been reflected; thirdly, enumerating the oral and 

poster presentations at international meetings that served to show either the results presented 

in this memoir as other ones not included in it; and finally, summarizing the main results and 

derived controlling factors on the development of  salt walls in the respective tectonic settings.
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2.2. Gypsum Valley Diapir, Paradox Basin, SE Utah and SW 
Colorado.

2.2.1. Regional geological overview

The Paradox Basin, located in SE Utah and SW Colorado (USA), is a large and asymmetric 

intracratonic foreland basin defined by the depositional extent of  the layered evaporites of  the 

Paradox Fm. (Fig. 2.1a). Well and 2D seismic reflection data show that the Paradox Basin is 

located in the footwall of  a 50° NE-dipping reverse fault bounding the southwestern flank of  

the basement-cored Uncompahgre Uplift (White & Jacobson, 1983; Moore et al., 2008; 

Timbel, 2015 (Fig. 2.2a). This uplift resulted from the Late Mississippian to Early Permian 

convergent tectonism that affected the western margin of  North America coupled with the 
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Figure 2.1. Location map: a) Paradox Basin and its major salt walls (after Shoemaker et al. 1958); UT: Utah, 
CO: Colorado, AZ: Arizona, NM: New Mexico; b) geologic map of  Gypsum Valley salt wall. The red outlines 
indicate, in Fig. 2.1a, the location of  Fig. 2.1b, and in Fig. 2.1b, the study area illustrated in Fig. 2.4.
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collision of  Gondwanaland to the south (Mallory, 1972; Kluth & Coney, 1981; Kluth, 1986; 

Barbeau, 2003). Maximum subsidence of  the Paradox Basin coincided with the deposition of  

the Paradox Fm. evaporites (Barbeau, 2003; Blakey, 2009). Subsequent differential loading by 

prograding Upper Pennsylvanian to Permian fluvial sediment, shed from the Uncompahgre 

Uplift (Fig. 2.1a) caused salt inflation over subsalt extensional faults, thereby triggering a 

series of  NW-SE trending salt walls (Elston et al., 1962; Baars & Stevenson, 1981; Ge et al., 

1997; Lawton & Buck, 2006; Kluth & DuChene, 2009; Trudgill, 2011; e.g. see this process 

illustrated in Fig. 1.10). The onset of  diapirism was earlier in the proximal (NE) than distal 

(SW) areas (Trudgill, 2011). Importantly, although contraction was involved in the emplacement 

of  the Uncompahgre Uplift, there is no cited evidence for any contraction in the Paradox 

Basin, except for minor shortening during the Laramide Orogeny, postdating salt wall 

formation and diapir burial (Mankowski et al., 2002).

In this geological setting, the Gypsum Valley diapir is a NW-SE trending vertical salt wall 

located in the southeastern, distal part of  the Paradox Basin in SW Colorado (Fig. 2.1a). It is 

almost 35 km long and from 2 to 3.5 km wide salt wall that is bounded on the northeastern side 

by the Dry Creek minibasin and on the southwestern side by the Disappointment minibasin 

(Fig. 2.1b). Seismic reflection, well, and field data depict an important asymmetry between the 

bounding minibasins (Amador et al., 2009; Rowan et al., 2016; Fig. 2.2). In the northeastern 

side, older strata are relatively thick and deeply buried. In contrast, the southwestern side is 

marked by the same older strata that gradually thin and upturn to near-vertical forming a 

megaflap adjacent to the diapir (Deatrick et al., 2015; Mast, 2016; Rowan et al., 2016; Fig. 

2.2b).
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The general evolution of  the southeastern part of  this salt wall, based on a 2-D analysis 

and restoration from Rowan et al., (2016) is depicted in Figure 2.3. Salt movement was 

triggered during the late Pennsylvanian by differential sedimentary loading, forming an early, 

asymmetric, single-flap active diapir (Schultz-Ela et al., 1993) with a thinned roof  bounded by a 

suprasalt counterregional fault over the proximal (NE) edge of  the diapir (Fig. 2.3b and 2.3c). 

Lengthening and/or erosion of  the thinned diapir roof  (mid-Cutler unconformity) triggered 

salt breakthrough and the onset of  passive diapirism (Fig. 2.3d). Subsequent evacuation of  

deep salt into the growing diapir generated diapir-flanking depocenters containing upper 

Cutler Grp. and younger strata, with progressive rotation of  the southwestern flank into the 

megaflap geometry and consequent widening of  the diapir (Fig. 2.3e and 2.3f).

2.2.2. Results

The results obtained in the Gypsum Valley diapir are related to the structural and 

sedimentological characterization of  the southeastern termination of  the salt wall; and most 

of  them are included in the following scientific article published in Basin Research:

• Escosa, F. o., Rowan, M. G., GilEs, K. a., DEatRicK, K. t., Mast, a. M., lanGFoRD, R. 

P., HEaRon iV, t. E., & Roca, E. (2018). Lateral termination of  salt walls and megaflaps: 

An example from Gypsum Valley diapir, Paradox Basin, Colorado, USA. Basin Research, 

31, 191–212. doi:10.1111/bre.12316 (Annex 1).
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Figure 2.3. Sequential quantitative restoration of  the Gypsum Valley salt wall (modified from Rowan et al. 
2016) along the depth-converted seismic profile illustrated in Fig. 2.2b.
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In addition to this article, the results have also been advertised at international conferences 

in posters and oral communications (see Table 1) in which other less significative outcomes were 

presented. These presentations and the above-mentioned article illustrate the main results and 

conclusions derived from the investigation in the Gypsum Valley diapir which are detailed in the 

following points:

• The characterization of  the three-dimensional architecture of  the SE-termination of  

the Gypsum Valley diapir which is depicted in a new geological map (Fig. 2.4) and 

the corresponding cross-sections (Fig. 2.5). For a full explanation of  the structure see 

Annex 1.

The geological map and the corresponding cross-sections recognize that:

• The southeastern end of  the Gypsum Valley salt wall is asymmetric, with thicker, 

deeper, gently dipping strata in the proximal NE minibasin and thinned, rotated older 

strata forming a megaflap on the distal SW side. Its termination is characterized by a 

moderately plunging nose of  salt overlain by SE-dipping strata with maximum 45º dips, 

a large counterregional fault that separates the nose of  the deep proximal minibasin, and 

radial faults that accommodate concentric extension where the map-view curvature of  the 

flanking strata is greatest.
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Mast, A.M., Langford, R.P.,
Roca, E., Hearon IV, T.E.

2017 Poster
Gypsum Valley megaflap and salt wall termination 
structures, Paradox Basin, Colorado

 S-SIRC Annual Sponsors Meeting,
Cortez, Colorado

Escosa, F.O., Rowan, M.G.,
Giles, K.A., Deatrick, K.T.,
Mast, A.M., Langford, R.P.,
Hearon IV, T.E., Roca, E.

2018 Conference
paper

Lateral terminations of  salt walls and megaflaps:
An example from Gypsum Valley Diapir, Paradox
Basin, Colorado

Table 1. Oral and poster communications at international meetings corresponding to the investigation carried 
out in the Paradox Basin (SE Utah and SW Colorado).
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Figure 2.4. Detailed geologic map of  the 
southeastern termination of  the Gypsum Valley 
salt wall (location in Fig. 2.1b), showing available 
well data, the trace of  the cross sections (Fig. 2.5), 
and the trace of  the seismic profile shown in Fig. 
2.2b and restored in Fig. 2.3. Coordinates are in 
meters in Universal Transverse Mercator, zone 12 
northern hemisphere and datum NAD83.

Figure 2.5. (next page) Geological cross sections 
constructed using surface and subsurface data 
(locations in Fig. 2.4). Vertical dashed lines marked 
by A-A’, B-B’, C-C’, D-D’ and X-X’ indicate the 
limits of  the geological map shown in Fig. 2.4, 
vertical solid lines denote the intersections with 
other cross sections, and vertical fine dashed lines 
indicate wells within 200 m of  the cross sections. 
Stratigraphic colors, labels and unconformity 
styles as in Figs. 2.4. Coordinates are in meters in 
Universal Transverse Mercator, zone 12 northern 
hemisphere and datum NAD83.
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• The megaflap, which is characterized by near-vertical strata, terminates towards the 

southeastern end of  the diapir by a decrease to ca. 60º dips over a distance of  several 

hundred meters before being truncated by the western radial fault. The northwestern 

termination is buried by younger strata. The megaflap includes undeformed non-

evaporite strata of  the uppermost Paradox Fm. to the SE, but the same interval becomes 

increasingly deformed along strike to the NW. This deformation may represent early 

syn-sedimentary slumping or part of  the intrasalt deformation; in the latter case, the 

base of  the megaflap would change its stratigraphic position along strike.

• And finally, the gradual termination and decrease in dip of  the megaflap may be related 

to the deep salt budget since limb rotation to vertical in halokinetic megaflap requires an 

adequate thickness of  deep salt (Rowan et al., 2016). Thus, beneath the Gypsum Valley 

megaflap, the salt would have been thick enough for strata to rotate to vertical, but 

rotation was limited where the salt might have thinned southeastward towards the edge 

of  the salt basin (see the extend of  the Paradox Fm. evaporites in Fig. 2.1a).

From these results, and by comparison with analogue structures located elsewhere in the 

Paradox Basin and the northern Gulf  of  Mexico, a series of  simple end-member models in 

which salt wall and megaflaps may terminate abruptly or gradually have been proposed (Figs. 

2.6, 2.7 and 2.8).
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Figure 2.6. Schematic plan-view illustrations of  end-member termination geometries of  salt walls (red faults 
are all suprasalt, countour lines are on top salt): a) symmetric salt wall termination above a subsalt basement 
fault (not shown); b) symmetric salt wall termination where there is deep salt present off  the end of  the diapir; 
c) termination where the salt wall is asymmetric, with a counterregional fault off  the end. Note that radial fault 
development depends on both map-view curvature and the degree of  drape folding of  flanking strata. Arrows 
indicate salt flow into diapir.
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For example, the thickness and composition of  salt as well as the location where the 

diapiric growth takes place in relation to the paleogeographic extend of  a salt basin can control 

the shape of  the salt wall termination (see Figs. 2.6a and 2.6b). Additionally, the presence 

of  nearby diapirs growing simultaneously, and thus the availability of  deep salt budged to 

flow into the diapir may constrain the length of  the salt wall termination and the presence of  

radial and/or counterregional faults (see Figs. 2.6c, 2.7a and 2.7b). Finally, the width of  the 

early pillow or single-flap active diapir together with the along strike variation of  the deep salt 

budged may control the lateral termination of  a megaflap before reaching the end of  a salt 

wall (see Fig. 2.8).
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Figure 2.7. Schematic plan-view of  varying terminations of  salt walls with asymmetric minibasins and 
megaflaps. Red dashed lines indicate radial faults; red continuous lines indicate the counterregional fault at a) 
abrupt and b) gradual salt wall terminations; continuous black lines indicate topographic contours on the top salt.
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Figure 2.8. End-member styles of  megaflap termination along the length of  a salt wall: a) constant limb length 
with gradual decrease in dip along strike; b) gradual decrease of  limb length with constant dip along strike; c) 
constant limb length with abrupt decrease of  dip across a fault; d) abrupt decrease of  limb length with constant 
dip across a fault. These are conceptual models of  end-member geometries; most real examples combine 
elements of  these.
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Therefore, this investigation suggests that the controlling factors in determining these 

geometries include: the original thickness and spatial distribution of  the deep salt, the presence 

of  nearby diapirs (which determines the fetch area for salt flow into the diapir), spatial patterns 

of  depositional sedimentary loading, and variations in the nature and location of  salt breakout 

through the roof  of  the initial salt structure.
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2.3. Jumilla region, Eastern Prebetic Zone, SE Spain

2.3.1. Regional geological overview

The Eastern Prebetic Zone is located in the southeastern Iberian Peninsula where the 

Betic Cordillera constitutes the main geographical feature (Fig. 2.9a). The Betic Cordillera 

together with the Rif  (situated in the northwestern margin of  Africa) compose the Gibraltar 

Arc (Fig. 2.9a), which is at the westernmost end of  the Alpine Mediterranean belt (Dercourt 

et al., 1986; Dewey et al., 1989). The formation of  this belt was driven by the N-S to NNW-

SSE convergence between the major Eurasian and African plates, together with the westward 

displacement of  the Alboran Domain, located in between (Spakman & Wortel, 2004; Crespo-

Blanc & Frizon de Lamotte, 2006; Vergés & Fernàndez, 2012).
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Figure 2.9. a) Present day tectonic map of  the western Mediterranean depicting the southeastern termination 
of  the Alpine fold-and-thrust belt. b) Paleotectonic map of  North Africa and Iberia for Callovian times, modified 
from Frizon de Lamotte et al. (2011). c) Regional cross-section across the eastern Betic Cordillera illustrating the 
crustal geometry of  the orogen (see location in Fig. 2.9a; the Internal Betic Zones and the Subbetic Zone are 
modified from Banks & Warburton, 1991).
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The Betic Cordillera is generally subdivided from north to south into the External and 

Internal Betic Zones (Fallot, 1948; Balanyá & García-Dueñas, 1987; Vera, 2004). The Internal 

Betic Zones consist of  an allochthonous stack of  thrust sheets mainly made up of  Triassic 

and older rocks metamorphosed during the Upper Cretaceous to Paleogene (Egeler & Simon, 

1969; Torres-Roldán, 1979; De Jong, 1990). The External Betic Zones correspond to a broad 

orogenic wedge that is composed of  a NW- to NNW-directed fold-and-thrust belt that is 

Campanian to middle Miocene in age and is detached from the Iberian subsalt basement 

along the Upper Triassic salt (Platt et al., 2003; Fig. 2.10). In general, the thrusted sheets are 

composed of  an uppermost Triassic to Middle Jurassic unit characterized by a minor thickness 

increase towards the SE, and an Upper Jurassic to Santonian unit illustrating major thickening 

towards the SE (García-Hernández et al., 1980, 1989; De Ruig, 1992; Hanne et al., 2003). In 

addition, the thrust sheets are pierced by diapirs of  Upper Triassic salt that were emplaced 

from Mesozoic to Quaternary times (Moseley, 1973; De Ruig, 1995; Escosa et al., 2018b).

During the Mesozoic, the External Betic Zones represented the northern conjugate 

passive margin of  the Alpine Tethys (i.e. South Iberian passive margin; Fig. 2.9b), which 

was located southeast of  the Iberian Massif  (Dewey et al., 1973; Bernoulli & Lemoine, 

1980; Ziegler, 1982). The Alpine Tethys was the result of  Lower and Middle Jurassic rifting 

followed by the Callovian oceanic flooring (Fig. 2.9b) that separated the Eurasian and African 

plates (Schettino & Turco, 2011). Oceanic flooring is evidenced by Middle Jurassic ophiolites 

currently outcropping in the Internal Betic Zones (Puga et al., 2011). This rifting episode is 
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depicted in Fig. 2.12b. Blue line indicates the northern part of  the cross-section shown in Fig. 3.9.
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clearly connected with the opening of  the Central Atlantic Ocean to the west (Klitgord & 

Schouten, 1986; De Jong, 1990; Srivastava et al., 1990). However, a major Upper Jurassic to 

Santonian rift event affected the eastern External Betic Zones linked to a continued opening 

of  the Central Atlantic Ocean combined with a synchronous development of  extensional 

basins in the western Tethyan area (Ziegler, 1989; Hanne et al., 2003; Frizon de Lamotte et 

al., 2015).

In the Jumilla region, this rift allowed for the deposition of  the Upper Jurassic to Santonian 

syn-extensional sediments unconformably overlying the uppermost Triassic to Middle Jurassic 

carbonates that show minor thickness variations (García-Hernández et al., 1980, 1989; De 

Ruig, 1992; Vera, 2004; Hanne et al., 2003; Fig. 2.11). During this time, based on both tectonic 

and stratigraphic criteria, the External Betic Zones were progressively subdivided into the 

northwestern Prebetic Zone and the southeastern Subbetic Zone (García-Hernández et al., 

1980; Fig. 2.10).
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In particular, the Prebetic Zone is characterized by continental to shallow-platform 

deposits including inner and slope facies. The Subbetic Zone is formed by deep basinal 

and pelagic deposits (e.g. García-Hernández et al., 1980). According to the thickness and 

the stratigraphy of  the Mesozoic units, the Prebetic Zone is subdivided (from NW to SE) 

into the External and Internal Prebetic (De Ruig, 1992; Fig. 2.11). In this geological setting, 

the Jumilla region is in the Eastern Prebetic Zone, comprising a portion of  the External 

and Internal Prebetic paleogeographic domains (Fig. 2.12a). This is an area in which the 

Variscan basement to Middle Triassic autochthonous successions do not crop out and the 

overburden appears to be deformed by a system of  ENE-trending, thin-skinned folds and 

thrusts detached in the Upper Triassic salt. Specifically, the lateral continuity of  this fold-and-

thrust belt is interrupted by the NW-trending Matamoros Basin located at the center of  the 

study area (Fig. 2.12b). Despite this, the general structure of  the area includes abundant salt 

diapirs made up of  Upper Triassic evaporites displaying two main geometries: inactive and 

elongate salt walls that are parallel to the ENE-WSW trending folds (e.g. La Sarsa salt wall); 

and active sub-circular salt stocks situated in the lateral terminations of  the Matamoros Basin 

(e.g. Jumilla and La Rosa diapirs; Fig. 2.12b).

2.3.2. Results

The main objective of  the investigation in the Eastern Prebetic Zone, besides the 

understanding of  the regional structure, was to characterize the geometric, kinematic and 

mechanical behavior of  diapirs mainly driven by thick-skinned extension and affected by a 

subsequent thin-skinned contractional deformation. In this regard, the corresponding results 

have been presented in the following articles:

• Escosa, F. o., FERRER, o., & Roca, E. (2018). Geology of  the Eastern Prebetic Zone at 

the Jumilla region (SE Iberia). Journal of  Maps, 14, 77–86. doi:10.1080/17445647.2018.

1433562 (Annex 2).

• Escosa, F. o., Roca, E., & FERRER, o. (2018). Testing thin-skinned inversion of  a prerift 

salt-bearing passive margin (Eastern Prebetic Zone, SE Iberia). Journal of  Structural 

Geology, 109, 55–73. doi:10.1016/j.jsg.2018.01.004 (Annex 3).

Besides the two articles mentioned above, the outcomes of  the investigation accomplished 

in the Jumilla region have also been presented in numerous international conferences including 

oral and poster communications (see Table 2).

http://doi.org/10.1080/17445647.2018.1433562
http://doi.org/10.1080/17445647.2018.1433562
http://doi.org/10.1016/j.jsg.2018.01.004
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Figure 2.12. a) Relief  map depicting the 
location of  the main structural units along 
the Prebetic and Subbetic Zones in the 
Jumilla region as well as the Ascoy-1 well. b) 
Simplified geological map of  the External 
and Internal Prebetic in the Jumilla region. 
The northernmost part integrates data 
from Baena (1979). Note the location of  
two cross-sections shown in Figs. 2.14a 
and 2.14b; a detailed geological map of  the 
southwestern part of  Sierra de los Bujes 
shown in Fig. 2.16a; and the location of  the 
provided depth-converted seismic lines in 
Fig. 2.17. See Annex 2 for more detail on the 
cartographic units. Coordinates are in meters 
in Universal Transverse Mercator, zone 30 
northern hemisphere and datum ED50.
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 2The above outlined presentations include results obtained in adjacent studied areas that, 

also located in the eastern Betic Cordillera, have not materialized in articles yet, and therefore 

they are not included in this thesis. Nevertheless, focusing on the two enclosed articles (Annex 

2 and 3), this investigation has shown that the Alpine structure and evolution of  the Jumilla 

region is characterized by the following points:

• A Mesozoic to Cenozoic overburden that is decoupled above the Upper Triassic salt and 

is firstly displaced to the southeast and then to the northwest above a Paleozoic–Middle 

Triassic basement, which is affected by major southeast-dipping extensional subsalt faults 

(Fig. 2.13).

• The southern set of  southeast-dipping subsalt faults (i.e. Carxe and Sopalmo faults) are 

the responsible for the thickness variations of  the Mesozoic successions over the faulted 

blocks (Fig. 2.14).

• Above the footwall of  this subsalt faults, the suprasalt structure is characterized by a thin 

overburden deformed by short-wavelength folds and thrust faults trending ENE-WSW 

(Fig. 2.14). This general architecture results from the Alpine contractional reactivation of  

a former extensional structure composed of  salt walls and extensional faults, that having 

a listric geometry, are detached on the Upper Triassic salt.

• Conversely, in the hanging wall of  the basement faults, a thicker and less deformed suprasalt 

strata displays a broad synclinal geometry, which resulted from the northwestwards 

contractional translation of  the overburden above the hanging wall of  the basement faults 

Comunication
titleAuthors Type of  the

comunication
Meeting

name

Escosa, F.O., Roca, E., Ferrer,
O., Roma, M., Górriz, E.

2018
Conference
paper

AAPG/GTW Alpine Folded
Belts and Extensional Basins,

Granada

Subsalt extensional structure controls
Mesozoic salt tectonics and the Betic inversion

Escosa, F.O., Roca, E. 2016 Poster
The external eastern prebetics: paper of  basement
faults in an inverted salt-bearing passive margin

Escosa, F.O., Roca, E., Ferrer 2016
Conference
paper

Congreso Geológico
de España,

Huelva

Thin- vs thick-skinned deformation in an inverted
salt-bearing passive margin (the Eastern Prebetic)

Escosa, F.O., Roma, M.,
Roca, E., Butillé, M., Ferrer, O.

2016 Conference
paper

AAPG/SEG’s International
Conference and Exhibition,

Barcelona

AAPG/SEG’s International
Conference and Exhibition,

Barcelona

The Mesozoic structure of  the central part of
the south-Iberian passive margin and its influence
in the Cenozoic contractional deformation: 
comparison between the eastern Prebetic Zone 
(Betic Cordillera) and the Columbrets Basin
(southwest Valencia Trough).

Year

Table 2. Oral and poster communications at international meetings corresponding to the investigation carried 
out in the Eastern Prebetic Zone.
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and its intersection with the southeast-dipping subsalt faults (Fig. 2.14). Additionally, the 

thickened overburden is also deformed by the squeezed and NE-trending La Sarsa salt 

wall located in the southern limit of  the Jumilla region (Figs. 2.12b and 2.13g).
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Figure 2.13. Qualitative sequential restoration for the Eastern Prebetic Zone at the Jumilla region. Figure 2.13g 
corresponds to the regional cross-section shown in Fig. 2.14a. The original thickness of  the Upper Triassic salt 
is estimated according to Bartrina et al. (1990) and De Torres & Sánchez (1990).
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• In the center of  the study area, the lateral continuity of  the ENE-trending structures 

is interrupted by an elongated NW-trending and 2–4 km wide Matamoros Basin 

(Figs. 2.12b and 2.15). The geometrical analysis of  the Mesozoic–Cenozoic sediments 

recognized in the seismic reflection profiles, show that the structure describes a drape 

syncline over a basement rollover in the hanging wall of  a northeast-dipping basement 

fault (Fig. 2.15). In addition, located respectively at the tips of  this subsalt fault, there 

are two active and sub-circular salt stocks (i.e. Jumilla and La Rosa diapirs).

• The structural analysis together with the sequential restoration have led to interpret the 

tectonic evolution of  the overburden in relation to the subsalt rocks. This was conducted 

by a combination of  thick- and thin-skinned styles of  deformation (Fig. 2.13). Thick-

skinned extension occurred mainly during Upper Jurassic to Santonian times deforming 

the Paleozoic to Middle Triassic autochthonous succession. Above the basement 

faults, the pre-kinematic units (i.e. uppermost Triassic to Middle Jurassic) mimicked 
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the resultant stepped subsalt geometry by using the Upper Triassic salt as an effective 

detachment. Thereby, the overburden was deformed by monoclinal drape folds and 

stretched by suprasalt faults and reactive diapirs (Fig. 2.13b). Locally, the offset of  these 

suprasalt faults triggered the rise of  salt walls on their footwalls, which progressively 

widened as the suprasalt strata was translated basinwards (Fig. 2.13c and 2.13d). Passive 

diapirism ended due to the depletion of  the salt source and the development of  primary 

welds during upper Cenomanian to lower Turonian times (Fig. 2.13e). After extension, 

during the Campanian to Cenozoic times, the stepped subsalt geometry allowed for 

the NW-directed propagation of  the thin-skinned contractional deformation, which 

was conducted by a thrust fault with a ramp-flat-ramp geometry rooted into the salt 

décollement (i.e. Upper Triassic salt; Fig. 2.13f). In this scenario, the precursor diapirs 

accommodated part of  the contractional deformation by squeezing their stems and 

arching their roofs. As compression progressed, the compartmentalized overburden 

became reconnected by secondary welds, where further compression led the nucleation 

of  thrust faults (Fig. 2.13g). Additionally, during the process, the thick-skinned faults 

were extensionally reactivated due to the flexural deformation that experienced the 

forebulge of  the orogen because of  the southwards lithospheric loading of  the eastern 

Betic Cordillera (Fig. 2.13g).

In such a regional setting, the present investigation has also allowed to decipher the main 

geometric and kinematic features of  the salt walls developed in the Jumilla region. In this 

regard, the following points detail the structure and kinematic evolution of  four squeezed 

and/or collapsed salt walls and their adjacent overburden:

• The first example is found in the northwestern limit of  the Jumilla region. Here, the 

structure is characterized by SE-dipping suprasalt extensional faults and thrusts, locally 

affected by short wavelength anticlines that deform Upper Cretaceous rocks detached 

from the underlying succession (Fig. 2.14a). The existence of  a secondary décollement 

level right below the Upper Cretaceous rocks together with the presence of  Upper 

Triassic evaporites cropping out at the fold hinges, suggests that these structures could 

correspond to folded roofs of  pre-Albian salt walls that were shortened and squeezed 

during the Betic contractional deformation.

• A second example is observed in the Sierra de los Bujes anticline (see location in Fig. 

2.12b and a detailed geological map in Fig. 2.16a). This fold is cut by a NW-directed 
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suprasalt thrust fault (Fault 4 in Fig. 2.16a), which displaces a minor scale ENE-trending 

double plunge anticline deforming an uppermost Triassic to Serravallian succession. 
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In the hanging wall of  the thrust fault there is a minor fold that deforms uppermost 

Triassic to upper Albian rocks (Fig. 2.16b). The syn-extensional succession, Lower 

Cretaceous to upper Albian in age, display growth strata geometries in the core of  

the anticline (Fig. 2.16a). Locally, this sequence presents isolated carbonate breccias 

containing upper Albian rocks cropping out adjacent to the Sabina diapir (Fig. 2.16a). 

They are interpreted to be diapir-derived debris flows deposited as consequence of  

diapir rise and destabilization of  the salt wall roof. The near-diapir abrupt facies 

change (<200 m) from carbonate breccias to massive sands attributed to the Utrillas 

sands Fm. (upper Albian in age) together with the presence of  mass-wasting deposits 

are indicative of  hook halokinetic sequences adjacent to the Sabina diapir (Giles & 

Rowan, 2012). Considering these observations and the general double-plunge folded 

structure, the core of  the anticline shows evidences for a small-scale ramp-flat-ramp 

extensional fault (i.e. salt roller named Fault 2 in Fig. 2.16) soled above a NE-trending 

salt wall. According to the qualitative restoration depicted in Figure 2.16c, the salt roller 

developed due to the increase of  the fault displacement (Fault 2 in Fig. 2.16) coeval 

to the growth of  the underlying salt wall from Neocomian to upper Albian times. In 

this scenario, further extension promoted the piercement of  the overburden and the 

subsequent passive salt extrusion of  the Sabina diapir (Fig. 2.16a). Afterwards, during 

the inversion of  the basin, the extensional faults were deformed by folding and thrusting 

–a process that also triggered the rejuvenation of  the salt wall. In this scenario, the thin 

roof  covering the diapir was arched and deformed by short wavelength contractional 

folds due to squeezing of  the salt wall stem. Finally, further shortening might have led 

to the formation of  secondary welds and the formation of  thrust fault 4 (Figs. 2.16a 

and 2.16b).

• The third example is found northwest of  the Sierra del Molar and southeast of  the 

Sierra del Buey (see location in Fig. 2.12b). These topographic reliefs are made up 

of  folded and thickened Turonian to Maastrichtian successions unconformably lying 

above upper Cenomanian rocks. Turonian angular unconformities located at top of  the 

upper Cenomanian succession in the Sierra del Buey are indicative of  an uplifted area 

during the upper Cenomanian times. Despite the fact that diapirism occurred mostly 

during upper Cenomanian to lower Turonian, the Turonian to Maastrichtian thickened 

succession is interpreted to be the result of  salt wall collapse as is proposed in the 
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constructed cross-sections (Figs. 2.14a and 2.14b). Afterwards, upon inversion, the 

resulting Turonian to Maastrichtian basin was contractionally folded during the Betic 

contractional deformation as recorded in the Oligocene to lower Miocene growth-strata 

geometries, which unconformably overlap the Turonian to Maastrichtian folded strata 

(Fig. 2.12b).

• Finally, the fourth example is in the southeastern part of  the study area (see location in 

Fig. 2.12b), where the seismic reflection data show a rapid steepening of  the reflections 

followed by the presence of  chaotic seismic facies (Fig. 2.17d). The seismic interpretation 

together with the existence of  Upper Triassic evaporites outcropping at surface, suggest 

that this structure corresponds to the NE-SW trending and steep-sided La Sarsa salt 

wall (Fig. 2.12b). Above the diapir, a Paleocene to Quaternary succession is deformed 

by a pair of  short wavelength syncline-anticline folds followed by a broader anticline 

cut by a NW-directed thrust fault (Fig. 2.12b). These contractional structures are more 

relevant adjacent to the salt wall termination and disappear in two kilometers away 

from the diapir. These documented evidences suggest that a Paleocene to Quaternary 

sedimentary roof  covered the La Sarsa salt wall as consequence of  the source layer 

depletion and ongoing sedimentation. This promoted the formation of  primary welds, 

and the subsequent cessation of  the salt wall growth (Fig. 2.14a). In addition to this, 

the NW-directed thrust fault could be indicative of  secondary welding promoted by 

the contractional rejuvenation of  the diapir and the depletion of  the salt wall stem.

Therefore, the above explained results together with the mentioned regional outcomes, 

have contributed to a better understanding of  the contractional reactivation of  the proximal 

part of  a passive margin containing pre-kinematic salt. In particular, our study has allowed to 

improve it by determining that:

• Thick-skinned extension controlled the rate of  subsidence and hence the accumulation 

of  sediment over mobile pre-kinematic salt. In this scenario, salt acted as a strain 

localizer by decoupling the overburden and subsalt deformation, thus generating two 

differentiated structural styles–above and below the salt layer. The subsalt extension 

controlled the suprasalt deformation and the “locus” for the development of  piercing 

salt walls above the footwalls of  the main basement faults.
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• Salt also localized strain during the incorporation of  the passive margin into the external 

zones of  a thin-skinned fold-and-thrust belt. Indeed, the preexisting salt walls, weaker 

than the adjacent overburden, preferentially absorbed the contractional deformation 

by nucleating folding and thrusting. Additionally, the stepped subsalt geometry which 

resulted from thick-skinned extension also controlled the shortening propagation. 

Therefore, the degree of  strain localization of  the salt walls was dependent on the 

thickness of  the overburden and on the dip and dip direction of  the subsalt faults 

relative to the thin-skinned shortening direction.
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The cover of  Chapter 3 depicts a close-up view of  the vertical to overturned upper Miocene sandstones and marls outrcropping in the 
southern margin of  the Jumilla Diapir.
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3.1. Introduction

The obtained results concerning the study of  the salt walls in the Paradox Basin and 

the Eastern Prebetic Zone not only improve the regional knowledge of  the respective areas 

(Fig. I.I), but also supply information that has permitted to deepen into the understanding 

of  the controlling factors on the geometry and kinematic evolution of  salt walls and adjacent 

strata in different tectonic settings. In particular, this investigation provides observations that 

significantly enrich the comprehension of  two items that usually have received much less 

attention from a field-based approach. These are: firstly, the geometry and kinematics of  salt 

walls developed above extensional subsalt faults whose movement occurs during or after the 

deposition of  salt; and secondly, the behavior of  these precursor salt structures when are 

involved in a subsequent thin-skinned contractional deformation.

Therefore, considering the advances detailed in the previous chapter, the following 

sections are devoted to stablishing new guidelines and/or to improve the existing ones about 

the geometric and kinematic evolution of  salt walls in the above outlined tectonic settings. 

Specifically, this chapter firstly explores what are the main parameters controlling the geometry 

and kinematics of  salt walls and adjacent strata during or after thick-skinned extension; and 

secondly, discusses the factors that define the geometry and kinematics of  precursor salt 

walls and surrounding overburden when they are shortened during a latter thin-skinned 

contractional deformation. Importantly, the analysis presented in this chapter not only has 

considered the results obtained during the present investigation, but also has incorporated the 

information of  previous studies carried out in this type of  structures, both in nature examples 

and in scaled physical and numerical models.
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3.2. Controls on the geometry and kinematic evolution of salt 
walls driven by thick-skinned extension

Regional extension, whether thick- or thin-skinned, tends to attenuate the brittle 

overburden above mobile salt by forming grabens and/or half  grabens flanked by suprasalt 

faults (Jackson & Vendeville, 1994). These suprasalt structures differentially load the salt by 

their surface relief  and weaken the overburden by fracturing and thinning it, leading to salt 

upwelling forming first reactive and then active salt walls.

If  extension affects both the supra- and subsalt strata (i.e. thick-skinned extension), 

salt tends to decouple the deformation, so distinct structural styles can coexist above and 

below it (e.g. Nalpas & Brun, 1993; Jackson & Vendeville, 1994; Stewart et al., 1996, 1997; 

Alves et al., 2002; Richardson et al., 2005; Marsh et al., 2010). In addition, the presence of  

a salt layer may limit the upward propagation of  a subsalt fault tip, so the basement fault is 

mechanically decoupled from, but being responsible for, a drape fold deforming the suprasalt 

strata (Withjack et al., 1990; Hodgson et al., 1992; Koyi & Petersen, 1993; Stewart et al., 1996, 

1997; Maurin & Niviere, 1999; Withjack & Callaway, 2000; Kane et al., 2010; Lewis et al., 

2013). Accordingly, as the throw of  the subsalt fault increases, the overburden is progressively 

draped over the subsalt faults, with salt accommodating the difference in geometry. In this 

regard, because the suprasalt strata must extend as much as the subsalt section, drape folding 

is accompanied by suprasalt extensional faulting, usually concentrated at the upper hinge of  

the monoclinal drape folds (Nalpas & Brun, 1993; Jackson & Vendeville, 1994; Stewart et al., 

1997; Pascoe et al., 1999; Fig. 3.1).

With enough extension, reactive salt walls may initiate at the upper hinge of  the monoclinal 

drape folds where suprasalt faulting is concentrated (Nalpas & Brun, 1993; Jackson and 

Vendeville, 1994; Vendeville et al., 1995; Withjack & Callaway, 2000). The location where 

diapirism takes place is also dependent on the capacity of  a salt layer to decouple deformation 

above and below it (e.g. Nalpas & Brun, 1993; Jackson & Vendeville, 1994; Stewart et al., 1996, 

1997; Alves et al., 2002; Richardson et al., 2005; Marsh et al., 2010). Furthermore, if  decoupling 

between the basement and the overburden increases, the diapir will be located in a farther 

position in relation to the upper tip  of  the subsalt fault (Withjack & Callaway, 2000).

The degree of  decoupling has been related to several factors, including the thickness 

and rheology of  autochthonous salt and suprasalt strata, and slip rate and magnitude of  the 
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subsalt fault (Withjack & Callaway, 2000). The previous factors not only determine the degree 

of  decoupling between basement and overburden, but also control the distribution of  the 

deformation as well as the geometry and number of  the folds and faults affecting the suprasalt 

strata (see Fig. 14 in Withjack & Callaway, 2000). Therefore, they also constrain the geometry 

and kinematics of  the suprasalt faults liable of  generating future salt walls.

However, the geometry and kinematics of  the suprasalt faults can be also governed by 

other factors that not necessarily depend on the decoupling degree. Thereby, the following 

subchapters are devoted to discussing the following controlling parameters: the geometry of  

the subsalt fault, the thickness variations of  the suprasalt strata over time, the salt thickness 

variations (available salt budget), the syn-kinematic sedimentary loading pattern, and the early 

style of  salt rise and position of  the salt breakthrough.

3.2.1. Geometry of the subsalt fault

In decoupled scenarios, the deformation of  the suprasalt strata takes place due to 

a combination of  drape folding and coeval salt evacuation towards the upper tip of  the 

subsalt fault (Withjack et al., 1989; Pascoe et al., 1999; Cosgrove & Ameen, 2000; Maurin 

& Niviere, 1999; Richardson et al., 2005; Kane et al., 2010; Duffy et al., 2012; Fig. 3.1). 

Accordingly, the geometry and kinematics of  the folds and faults developed above salt are 

constrained by (Nalpas & Brun, 1993; Jackson et al., 1994; Withjack & Callaway, 2000; Lewis 

et al., 2013): a) the thicknesses of  both salt and the overlying suprasalt strata; b) the inflation 

and/or depletion of  salt induced by lateral changes of  the pressure head (resulting from 

the differential accommodation space generated by the subsalt faults, which is filled by syn-

kinematic sediments rather than by salt); c) the thick-skinned extensional rate; and finally, d) 

the total displacement of  the subsalt fault.

Besides the above-mentioned controls, the suprasalt structures deforming the overburden 

are also controlled by the geometry of  the subsalt fault. Considering field (e.g. Escosa et al., 

2018b) and scaled physical model examples (e.g. Ferrer et al., 2016; Roma et al., 2018), aside 

from the thicknesses of  salt and overburden and the displacement of  the basement fault, the 

dip of  the subsalt fault also exerts an important control on the wavelength of  the resulting 

suprasalt drape monoclines. Considering the same amount of  extension in each example, 

low-angle subsalt faults (e.g. Carxe Fault, dipping 30º-40º; Fig. 3.1a) tend to generate a smaller 
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accommodation space above their hanging walls, and thus the overburden is deformed by 

long wavelength monoclines with gently dipping flanks. Conversely, high-angle subsalt faults 

(e.g. Maestre Fault, dipping 60º-70º; Fig. 3.1b), with the same amount of  extension, tend 

to generate a greater accommodation space above their hanging walls and short wavelength 

monoclines depicting steep flanks. In this instance, there is a higher difference in the pressure 

head above salt between the faulted blocks, which enhances the migration of  salt towards the 

upper tip of  the basement fault. So, the resulting monoclinal drape fold has a major curvature 

in its upper hinge, contributing to a pronounced layer-parallel stretching in the outer arc of  

the hinge zone, and thus favoring the development of  suprasalt faults and elongated reactive 

diapirs in their footwalls. In contrast, the upper hinge of  the long-wavelength monoclines 

above low-angle subsalt faults are less affected by layer-parallel stretching, and thus tend to 

hamper the development of  diapirism.

30–40º dip subsalt fault (e.g. Carxe Fault)a) 60–70º dip subsalt fault (e.g. Maestre Fault)

Thick-skinned extension Thick-skinned extension

long wavelength drape fold short wavelength drape fold

Thin-skinned extension Thin-skinned extension

b)

faster salt evacuationslower salt evacuation

Syn-kinematic
overburden 3

Syn-kinematic
overburden 2

Syn-kinematic
overburden 1

Pre-kinematic
overburden

Pre-kinematic
salt

rotation of the
suprasalt faults
(equal to the 30 - 40º
dipping subsalt fault)Basement

rotation of the
suprasalt faults
(equal to the 60 - 70º
dipping subsalt fault)

Figure 3.1. Time-serial cross-sections of  a monoclinal drape fold developed over extensional planar subsalt 
faults: a) in the case of  a 30–40º dipping fault similar to the Carxe Fault; and b) in the case of  a 60–70º dipping 
fault similar to the Maestre Fault, in the Eastern Prebetic Zone (SE Spain). The sub- and suprasalt layers are bed 
length balanced.
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In addition, the geometry of  the subsalt faults also exerts a significant impact on the 

kinematics of  the thin-skinned extensional deformation affecting the overburden. In this 

manner, the dip of  the subsalt faults determines the dip of  the pre-kinematic suprasalt strata 

as well as the dip of  the suprasalt faults that, initially located above the footwall of  the subsalt 

fault, are incorporated above its hanging wall as extension progresses (Fig. 3.1). So, the 

resultant dip of  the suprasalt faults, once are incorporated into the hanging wall of  the subsalt 

fault, will constrain their future extensional activity and kinematic evolution. For example, 

if  the suprasalt faults are slightly rotated above the hanging wall of  the basement fault (e.g. 

deforming a long wavelength monoclinal drape fold above a low-angle subsalt fault–the Carxe 

and/or Sopalmo faults; Figs. 2.13b–2.13d), they might remain active once are translated above 

the hanging wall of  the subsalt fault. Conversely, if  the suprasalt faults are highly rotated (e.g. 

deforming a short wavelength monoclinal drape fold above a high-angle subsalt fault), they 

may acquire a geometry similar to an inverse fault which will hamper their future extensional 

activity (e.g. see the rotated suprasalt faults above the Maestre Fault (Figs. 2.15a and 2.15b). 

Therefore, this implies that above low-angle basement faults, the suprasalt faults may have 

a longer extensional activity than in those areas deformed by high-angle basement faults. In 

addition, high-angle subsalt faults may tend to localize suprasalt deformation in a narrow and 

elongated zone of  the overburden. Conversely, above low-angle subsalt faults, the suprasalt 

deformation may affect a broader area of  the suprasalt strata.

Importantly, the previous assumptions are valid in situations where a salt layer has a 

homogeneous thickness and is deposited prior to thick-skinned extension (e.g. pre-kinematic). 

However, if  salt is deposited synchronously to extension, then the previous assumptions may 

variate since suprasalt deformation may be mostly controlled by the salt thickness variations 

across the subsalt faults (e.g. see as an example the Sele High Fault System in the northern 

North Sea; Jackson & Lewis, 2016). In addition, if  the sedimentation rate of  salt is higher 

than the extensional rate of  the subsalt fault, then the later may be negligible on contributing 

to the total suprasalt deformation affecting the overburden. In this scenario may be difficult 

or almost impossible to detect, from a field-based approach, the presence of  such controlling 

subsalt fault as is the case at the termination of  the Gypsum Valley salt wall. In this instance, a 

basement fault is well imaged in the center of  the diapir (Fig. 2.2a) but not at the termination 

of  the diapir (Fig. 2.2b).
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3.2.2. Overburden thickness variations over time

During thick-skinned extension, the location and distribution of  the deformation 

affecting the entire overburden changes over time (Escosa et al., 2018b). This is in part related 

to the thickness variations, and hence the strengthen that experience the overburden as syn-

kinematic sedimentation occurs synchronously to thick-skinned extension.

At the beginning of  their motion, the subsalt extensional faults are associated with small 

offsets, so they cannot control for suprasalt thickness which tend to remain almost constant. 

As a result, if  salt decouples the deformation, similar thicknesses of  the overburden favor a 

distributed suprasalt deformation because do not exist significantly differences in strength of  

the suprasalt strata over the faulted blocks (e.g. Fig. 3.2b).

In this manner, if  there is enough salt budged and the pre-kinematic strata is thin, 

diapirism might develop during the early stages of  extension, and thus reactive diapirs might 
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salt wall widening
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Figure 3.2. Upper Jurassic to Upper Cretaceous extension affecting the proximal part of  the South Iberian 
passive margin at the Eastern Prebetic Zone (SE Iberia). Modified from Escosa et al. (2018b).
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be indistinctly formed over the extended area and/or incipient passive margin. For example, 

in the Eastern Prebetic Zone, during the Upper Jurassic to Lower Cretaceous extension, 

suprasalt extensional faults and reactive diapirs were developed above the footwalls of  the 

main subsalt faults (i.e. Jumilla, Sopalmo and Carxe faults; Fig. 3.2).

As the offsets of  the subsalt faults increase and syn-kinematic sedimentation continues, 

the thickness and thus the strength of  the overburden experiments significant variations over 

the extended area (e.g. Fig. 3.2c). So, this is almost negligible at the margins of  the basin and/

or passive margin where there is a lower syn-kinematic sedimentation, but the strength of  

the overburden increases considerably basinwards, where the syn-kinematic sedimentation 

rate is higher. In this scenario, faulting of  the suprasalt strata tend to be concentrated above 

the footwall of  those subsalt faults located in a marginal position (i.e. footwall of  the Carxe 

and Sopalmo faults in the Eastern Prebetic Zone), where the overburden is thin and hence 

mechanically weak. In contrast, translation with minor folding is concentrated above the 

hanging walls where the overburden is thicker and thus mechanically resistant.

Accordingly, diapirs located above the hanging wall of  the subsalt faults tend to be 

translated basinwards together with the thickened overburden, without concentrating a 

significant amount of  strain (see translation of  the La Sarsa salt wall over time on Figs. 

3.2b, 3.2c, and 3.2d). Conversely, diapirs above the footwall of  the subsalt faults located 

in a marginal position, where a thin overburden does not experiment significant thickness 

variations, are slightly displaced from their original location and tend to concentrate part of  

the suprasalt deformation. As a result, the stem of  these diapirs may be progressively widened 

if  there is enough salt supply from the source layer and primary welds are still not developed 

(e.g. Figs. 3.2c and 3.2d).

Therefore, the capacity of  a salt wall to concentrate future extensional deformation, besides 

its orientation respect to the regional stretching direction (see further details in Section 12.5 of  

Jackson & Hudec, 2017), will depend on the thickness/strength of  the adjacent overburden 

(Vendeville & Jackson, 1992a; Escosa et al., 2018b). This will be maximum in a thin and weak 

overburden containing salt walls; and minimum in a thick, and hence stronger suprasalt strata.
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3.2.3. Salt thickness variations (available salt budget) in pre- and syn-
kinematic salt basins

The local thickness and/or composition variations of  salt in pre- and syn-kinematic 

evaporitic basins may constrain the available salt budget for salt walls to develop, and 

consequently control their geometric and kinematic evolution (Clausen & Korstgard, 1996; 

Jackson & Lewis, 2016; Escosa et al., 2018c).

In thick-skinned extensional settings with pre-kinematic salt, the thickness of  the evaporitic 

sequence controls the degree of  decoupling and the location where suprasalt deformation and 

diapirism are focused (i.e. Withjack & Callaway, 2000). Therefore, since suprasalt faults may 

trigger the development of  salt walls (e.g. Fig. 1.4b), any variation on the pre-kinematic salt 

thickness will impact on their geometry and kinematic evolution. For example and assuming 

the same amount of  suprasalt extension in each scenario, if  subsalt extension occurs in a 

landward position with respect to the salt basin, a thinner salt layer will promote the early 

formation of  primary welds, so coupling between subsalt and suprasalt units will occur earlier, 

and salt walls will have a short period of  time to develop (e.g. see the pre-Albian salt wall 

developed above the Jumilla Fault; Fig. 2.14a). Conversely, if  thick-skinned extension occurs 

in a basinward position with respect to the salt basin, the decoupling will be more widespread, 

and salt walls will develop in a longer period of  time since primary welding might form 

later (e.g. see the long-lived La Sarsa salt wall formed in the Internal Prebetic; Fig. 2.14a). 

Furthermore, the salt thickness also controls the width of  the diapir, so the thicker it is the 

wider is the resulting salt wall.

These variations in style and evolution of  salt walls may occur across the faulted blocks 

of  the thick-skinned extensional system with pre-kinematic salt (e.g. Eastern Prebetic Zone) 

or may also occur along strike the same salt wall developed in a syn-kinematic salt basin. In 

this manner, the structural characterization of  the Gypsum Valley salt wall together with 

its comparison with analogue structures located elsewhere in the Paradox Basin (Table 1 in 

Annex 1) exemplify that, if  for example there is no local variation in deep salt thickness, the 

salt wall is liable to plunge steeply to moderately along strike (Fig. 2.6b). So, its edge will have a 

curved map-view outline, with depocenters on all sides and radial faults best developed where 

curvature of  drape-folded strata is greatest. But if  the salt basin has an abrupt lateral boundary 

controlled by for example a subsalt fault, the developed salt wall abutting against the basin 
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edge will have an equally abrupt termination because of  the restriction in deep salt budget 

(Fig. 2.6a). In this latter case, the salt wall is not able to grow laterally, so the depocenters 

flanking the diapir will be bounded by steep faults separating the subsiding minibasins from 

areas of  no corresponding subsidence off  the end of  the salt wall.

Other case would be the situation in which the salt thickness decreases gradually along 

strike the growing salt wall (e.g. the syn-kinematic Paradox Fm. evaporites deposited in the 

Paradox foreland basin). The above explained geometric and kinematic models (Fig. 2.6) 

show symmetric diapir flanks, but diapirs may be slightly to highly asymmetric in plan- and 

cross-section view. If  asymmetric, the salt wall may be associated with a counterregional fault 

at one corner, radial faults on the other corner, and a possible megaflap adjacent to the diapir 

(Fig. 2.6c), as is observed at Gypsum Valley. In these situations, the termination will be more 

abrupt with common radial faults if  the salt budget decreases rapidly along strike; otherwise, 

the termination will be gradual and radial faults absent or minor. In the case in which the 

termination is relatively abrupt (Fig. 2.7a), differential subsidence would be high immediately 

adjacent to the end of  the salt wall but decrease rapidly along strike away from the diapir, 

the top salt plunges relatively steep, radial faults are well developed due to high degrees of  

map-view curvature of  the flanking strata, and counterregional faults or equivalent welds are 

relatively short. Instead, if  the salt wall termination is more gradual (Fig. 2.7b), the differential 

subsidence would be diffused over a broader area, and it would have a gently plunging salt 

nose, less map-view curvature, and thus less common radial faults and a longer counterregional 

fault. For example, the SE termination of  the Gypsum Valley diapir falls between these end-

member geometries.

In addition to this, the adjacent overburden to a developing salt wall may also depict 

different geometries and underwent distinct kinematic evolutions depending on the available 

deep salt budget. For example, megaflaps adjacent to a diapir may also terminate before 

reaching the end of  a salt wall. Because megaflaps are defined by the steepness and height 

of  the stratal panel (Rowan et al., 2016), end-member styles of  termination are a gradual 

decrease in elevation or maximum dip of  the megaflap panel along strike or an abrupt drop 

or decrease in dip across one or more faults (Fig. 2.8). In this scenario, a common cause for 

lateral termination of  megaflaps is a decrease in deep salt budget along strike, as suggested 

above for the Gypsum Valley case. As Rowan et al. (2016) noticed, a megaflap formed by 

limb rotation cannot reach vertical if  the salt is too thin relative to the rotating roof  panel. 
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Therefore, considering a salt wall developed above a source layer with a variable thickness, an 

adjacent megaflap may not be homogenously developed since the salt thickness may decrease 

abruptly or gradually along strike, and thus the source layer has not longer the necessary 

critical thickness for a megaflap to form. 

Finally, the critical thickness of  salt for a megaflap to develop also cannot be achieved if  a 

forming salt wall is located in a landwards position with respect to the pre-kinematic evaporitic 

basin. An example of  this latter scenario would be the northeastern part of  the Jumilla region 

(Eastern Prebetic Zone) where the salt walls located in a landward position with respect 

the Upper Triassic salt basin (Ortí, 1974; Ortí et al., 2017) do not have adjacent megaflaps. 

Conversely, the salt walls located in a basinward position (e.g. La Sarsa salt wall; Figs. 2.14a 

and 2.14b), may have adjacent megaflaps since the source layer is thicker. However, in all 

scenarios mentioned above, it should be taken into account that the salt budget for flow into 

the diapir from beneath the sedimentary depocenters will be also controlled by the position of  

the nearby diapirs, and thus the fetch area for deep salt (Escosa et al., 2018c).

3.2.4. Syn-kinematic sedimentary loading patterns during thick-
skinned extension

The geometry of  the salt walls and surrounding strata as well as their lateral terminations 

are also constrained by the sedimentary loading patterns, and thus the spatial variations in salt 

evacuation and flow towards the diapir (Escosa et al., 2018c).

Therefore, during thick-skinned extension, the geometry and kinematics of  the developing 

salt walls will be controlled by variations in the accommodation space, and thus the differences 

in the sedimentary load that generate the offset of  the extensional subsalt faults. (e.g. see 

examples in the Lusitanian Basin (Portugal), Rasmussen et al., 1998; or in the Essaouira Basin, 

offshore Morocco, Tari & Jabour, 2013; Fig. 3.3).

In this manner, areas where subsalt extensional faulting generates a large accommodation 

space, a corresponding high syn-kinematic sedimentation rate will favor the development 

of  salt walls having a tapered shape in cross-sectional view (McGuinness & Hossack, 1993; 

Talbot, 1995; Koyi, 1998; Karam & Mitra, 2016). So, an elevated pressure head above the 

source layer will foster a rapid salt depletion beneath the subsiding minibasins located above 

the hanging walls of  the subsalt faults (Fig. 3.1b). Conversely, if  subsalt extensional faulting 
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generates a small accommodation space and a corresponding low sedimentation rate above 

the pre-kinematic overburden (i.e. above the footwalls of  the subsalt faults), salt walls with a 

flared shape in cross-sectional view will be liable to develop (McGuinness & Hossack, 1993; 

Talbot, 1995; Koyi, 1998; Karam & Mitra, 2016). In this latter case, a lower velocity on the salt 

source depletion will also favor a later formation of  primary welds (Fig. 3.1a).

The above explained different behaviors across the subsalt faults might explain the 

asymmetry of  salt walls that are developed at the upper hinge of  the monocline drape folds, 

where usually there is a megaflap on the landward side of  the diapir (e.g. see the salt walls in the 

Sierra Larga-Sopalmo and Carxe in the Eastern Prebetic Zone, Figs. 2.14a and 2.14b; and/

or the Gypsum Valley diapir, Fig. 2.5 sections B–C). Therefore, if  subsalt faulting generates 

enough differential pressure head above salt across the faulted subsalt blocks, the formation 

of  a megaflap in the overburden will take place if  salt is thicker enough for a roof  panel to 

rate and verticalize (see the salt walls and their adjacent megaflaps close to the upper tip of  the 

Carxe and Sopalmo faults, in the Eastern Prebetic Zone; Figs. 2.14a and 2.14b).
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Figure 3.3. Three-dimensional seismic dip line in the Essaouira salt basin in the Atlantic margin of  Morocco 
(modified from Tari & Jabour, 2013). The thickening of  the Cretaceous strata is interpreted as the gradual 
depletion of  the syn-extensional salt beneath the center of  the subsiding basins and the development of  salt 
walls in the upper tip of  the subsalt faults.
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3.2.5. Early style of salt rise and position of the salt breakout

The early style of  salt rise and the position of  diapir breakthrough may constrain the 

resulting geometry and kinematic evolution of  diapirism and adjacent strata (Schultz-Ela et 

al., 1993; Rowan & Inman, 2011; Escosa et al., 2018c).

As it is explained above, the extensional movement of  the basement faults triggers the salt 

migration towards the upper hinge of  the overlying monoclinal drape fold and the subsequent 

layer-parallel stretching of  the folded overburden located above the footwall of  the subsalt 

fault (Fig. 3.1). This process promotes the development of  salt inflated ridges and/or salt 

depleted areas. So, these salt-inflated structures are usually developed parallel to the trend 

of  the subsalt faults where the overburden experiments a major thinning (e.g. at the upper 

hinges of  the monoclinal drape folds and/or in extensionally faulted areas). In this scenario, 

different geometries of  salt bodies can be developed: a) reactive salt walls with a triangular 

shape in cross-section view, when their formation is constrained by conjugated suprasalt 

extensional faults (Vendeville and Jackson, 1992a; Fig. 1.4a); b) salt rollers, when diapirism is 

constrained by a single suprasalt fault displaying a listric geometry (Figs. 1.4b and 3.1); and 

c) salt inflated plateaus located above pre-existing subsalt faults (whose movement occurred 

during the deposition of  salt) when the overburden is thinned over a broader zone (Figs. 1.10 

and 3.4). Note that this latter model requires no regional extension to be accommodated by 

the faults, only differential sedimentary loading adjacent to the salt inflated plateau caused by 

a subsequent prograding wedge of  sediment (Schuster, 1995).

c)b)

megaflap

a) Regional

Basinward

Figure 3.4. End-member scenarios for the evolution of  salt inflated plateaus located above pre-existing 
basement faults (based in part on Rowan & Inman 2011; Rowan et al. 2016): a) early salt inflation due to equal 
and progressive depositional loading in both flanks of  the diapir, with salt breakout at the center of  the inflated 
salt; b)  early single-flap active diapirism (Schultz-Ela et al. 1993), with salt breakout at the one edge of  the salt 
inflated plateau and development of  a megaflap along the basinward flank of  the diapir. c) early salt inflation due 
to progressive depositional loading, with salt breakout at the basinward edge of  the inflated salt.
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In the first two cases, if  a salt wall is formed, the salt breakthrough will likely be developed 

at the crest of  those two types of  salt structures, thus generating different geometries 

depending on the shape of  the initial reactive diapir. So, for a symmetrical diapir, the active 

rise will promote the progressive folding of  the pre-kinematic strata together with the rotation 

of  the conjugate faults (Fig. 1.11a; see also examples either from scaled physical models in 

Vendeville & Jackson, 1992a; and from nature in Rowan, 1995). Conversely, the active rise 

of  an asymmetrical diapir will promote folding of  the pre-kinematic strata located in the 

footwall of  the listric fault (Fig. 1.11b), so the fault plane will be also folded as the diapir 

progressively rises and breaks the thinned pre-kinematic strata (see an example in Sierra de los 

Bujes anticline in the Eastern Prebetic Zone, Figs. 2.16b and 2.16c).

However, in a salt inflated plateau located above a pre-existing basement fault, the 

geometry of  the resultant diapir will be controlled by the location of  the salt breakthrough 

and the adjacent syn-kinematic patterns of  depositional loading (Rowan & Inman, 2011; 

Rowan et al., 2016; Escosa et al., 2018c). For example, when salt breakout occurs in the 

middle of  a salt inflated plateau (Fig. 3.4a), the pre-kinematic strata and the overlying syn-

kinematic sediments will display a symmetric geometry adjacent to the resultant passive diapir. 

However, if  salt breakthrough occurs at the edge of  the roof, the subsequent diapir together  

with the flanking minibasin will display an asymmetrical geometry (Fig. 3.4b). In this case, 

the early history is that of  single flap active diapirism (Schultz-Ela et al., 1993), with the fault 

and eventual diapir breakthrough located at the proximal end of  the inflated salt, and the 

thinned roof  (flap) ends up draped on the distal side of  the diapir, potentially as a megaflap. 

Additionally, if  the roof  is not affected by faulting and salt simply inflates, progressive 

sedimentary loading on the proximal side leads to diapir breakout at the distal end of  the 

inflated salt, with the thinned oldest strata (the roof  of  the early inflated salt) ending up at 

the base of  the landward minibasin (Fig. 3.4c). Of  course, the geometry may change from 

one style to the other along strike, possibly due to variations in roof  thickness and strength, 

thereby providing one possible form of  megaflap termination (Escosa et al., 2018c).

For example, the oldest strata on the proximal side at Gypsum Valley diapir are thicker 

than on the distal side. Similar relationships exist in the northern Gulf  of  Mexico (Schuster, 

1995; Trudgill & Rowan, 2004; Fig. 3.5). In other cases, the opposite relationship also exists, 

with the oldest strata in the proximal minibasin being thinned and the younger section being 

thicker (Rowan & Inman, 2005, their figure 1). The same geometry is seen at Salt Valley diapir 
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in the Paradox Basin (Trudgill, 2011; Fig. 3.6) indicating that both styles can exist in the two 

basins. Again, the difference in the resulting geometry of  the salt wall and adjacent strata is 

related to the early style of  salt rise and the position of  diapir breakthrough (Fig. 3.4).
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Figure 3.5. Dip-oriented, time-migrated seismic reflection profile crossing diapir A of  Trudgill and Rowan 
(2004). Eight maximum flooding surfaces are illustrated and labelled. The ages of  each horizon are constrained 
from biostratigraphic data obtained from wells. Note that the oldest strata on the downthrown side are thicker 
than on the upthrown side.
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Finally, in the case in which a salt wall is developed at the edge of  a salt inflated plateau 

(e.g. Fig. 3.4b), the resultant geometry of  an adjacent megaflap may be controlled by the 

width of  the early salt anticline or single-flap active diapir and any lateral variation in where 

the roof  pulls apart and salt breaks through (Fig. 2.8). Accordingly, as the width of  the diapir’s 

roof  decreases, there is less length available to rotate into steep attitudes. If  the early fault that 

separates the strata that end up on one or the other sides of  the diapir is consistently along 

one edge of  the early salt structure, then the geometry of  a megaflap will change very little 

along strike (for a constant width early salt inflated plateau). If, however, the fault gradually 

or abruptly crosses the top of  the diapir, the length of  the roof  panel that rotates into the 

megaflap is diminished and the rest of  the roof  ends up flanking the other side of  the diapir 

(assuming none is removed by erosion).
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3.3. Controls on the geometry and kinematic evolution of precursor 
salt walls affected by a subsequent thin-skinned contractional 
deformation

Under regional shortening, the geometric and kinematic evolution of  precursor salt walls 

is largely linked by the inherited subsalt structure, the difference in the mechanical strength 

between the relatively weak diapir and the adjacent suprasalt rocks, the structure and thickness 

of  the adjacent overburden, the syn-orogenic sedimentation, and the flexural loading processes 

affecting the lithosphere during the orogenic building (e.g. Nilsen et al., 1995; Roca et al., 

2006; Rowan & Vendeville, 2006; Callot et al., 2007; Izquierdo-Llavall et al., 2018; Pla et al., 

in review).

In the following sections, we address this connection by using the structural analysis of  

the Paradox Basin (SE Utah and SW Colorado) and the Eastern Prebetic Zone (SE Spain). 

Particularly, the investigation carried out in the Jumilla region (Eastern Prebetic Zone) allows 

to document the behavior of  the above-mentioned factors in situations where the precursor 

salt walls are constituted of  pre-kinematic salt, thick-skinned extension is their major drive, 

and have been affected by a subsequent thin-skinned contractional deformation detached on 

the salt layer. In this structural analysis, the geometry of  the salt walls before being shortened 

is determined by documenting the structural and sedimentological features that depict the 

adjacent suprasalt sedimentary successions developed before and during the formation of  

the salt walls. Additionally, the following discussion is also complemented with bibliographic 

information and concepts of  other studied zones (e.g. northern part of  the Eastern Prebetic 

Zone, North Sea and/or the Atlantic margins of  Iberia and east North America) where salt 

walls formed by thick-skinned extension and affected by differential sedimentary loading have 

been lately deformed by minor shortening. Among these, we could include the Gypsum Valley 

salt wall case study that, although was developed in a foreland basin and was constituted 

of  syn-kinematic salt, was only affected by minor shortening during the Laramide Orogeny 

postading the salt wall formation and diapir burial (Mankowski et al., 2002; Escosa et al. 

2018c).

Accordingly, the sections below address the controlling factors on the geometry and 

kinematic evolution of  salt walls during thin-skinned contractional deformation by discussing 

the influence of: 1) the subsalt structure, 2) the precursor salt walls during the development of  



 Extensional development and contractional reactivation of  salt walls

109

C
H

A
PT

E
R

 3

a fold-and-thrust belt; 3) the structure of  the suprasalt strata adjacent to the diapir; and finally, 

4) the amount of  shortening applied to the pre-existing salt wall. Note that the effects of  

thick-skinned inversion on precursor salt walls are beyond the scope of  this analysis, and thus 

are not included in this discussion (for further information, see scaled physical models and 

field examples in Letouzey et al., 1995; Harrison & Jackson, 2014; Lickorish & Ford, 1998).

3.3.1. Influence of the pre-existing subsalt structure

The décollement level, where the thin-skinned contractional deformation is propagated, 

may depict a planar and continuous geometry (e.g. Appalachian Plateau and the Valley and 

Ridge province; Davis & Engelder, 1985) or may be folded and/or offset by subsalt faults (e.g. 

the western Alps; Butler, 1989; Deville & Chauviere, 2000). In the first scenario, shortening 

will result in a regularly spaced thin-skinned fold-and-thrust belt trending perpendicular to the 

propagation of  the contractional deformation and having a cross-sectional tapper governed 

according to the critical wedge theory (e.g. Chapple, 1978; Davis et al., 1983; Suppe, 1983; 

Dahlen, 1984; Dahlen et al., 1984). In addition to these controlling factors, the thin-skinned 

fold-and-thrust belt developed over a folded and/or faulted décollement may result in a more 

complex structure; depicting an arcuate geometry deformed by directional faults, folds and 

thrusts with varying orientations and wavelengths (e.g. the Jura fold-and-thrust belt; Laubscher, 

1986; Caër et al., 2015 and 2018).

In this regard, the study of  the Eastern Prebetic Zone permits to determine the role of  

the thick-skinned extensional deformation offsetting a future décollement level and allows to 

decipher the influence that exerts this deformation on the subsequent formation of  a thin-

skinned fold-and-thrust belt with precursor salt structures. Our interpretations of  the Eastern 

Prebetic Zone (see Chapter 2.3.2) and qualitative restoration (Fig. 2.13) together with the 

existing magnetoteluric and gravimetric data (Rubinat et al., 2010; Castaño, 1993) indicate 

that during the Mesozoic development of  the South Iberian passive margin, the basement 

was deformed by planar subsalt faults offsetting the pre-kinematic Upper Triassic salt (e.g. 

Jumilla and Sopalmo-Carxe faults; Fig. 2.13e). These subsalt faults have in general an ENE-

WSW orientation but locally they trend N-S, E-W and NW-SE (e.g. Maestre Fault; Fig. 2.15), 

depicting also opposite dipping directions.

Therefore, this is an ideal pre-contractional scenario that permits to address the influence 

of  the orientation and dip direction of  subsalt extensional faults offsetting a future contractional 



 Chapter 3: Discussion

110

décollement level. According to Rubinat et al. (2013) and Roca et al. (2013), this influence will 

depend on: 1) the subsalt fault orientation and 2) dip direction, in respect to the direction of  

the shortening propagation; 3) the dip of  the subsalt fault; and 4) the displacement magnitude 

of  the subsalt faults. Considering the field examples studied in this thesis, the following 

discussion will be mostly focused on the dip, dip direction and displacement magnitude of  the 

subsalt faults.

First, depending on their dip, subsalt faults dipping towards the hinterland and cutting 

the continuity of  the décollement level may difficult the propagation of  the thin-skinned 

shortening (Fig. 3.7). So, if  the subsalt fault dips nearly vertical, the overburden together with 

the salt structures might be deformed by buckling folds since the rigid basement may act as 

a buttress against the propagation of  the thin-skinned thrust (Fig. 3.7a). In this scenario, the 

salt walls located in a hinterland position are highly deformed, and the ones located towards 

the foreland remain almost undeformed. Conversely, a low angle dipping subsalt fault may 

foster the activation of  a thin-skinned thrust system, so the contractional deformation is 

easily propagated towards the foreland (e.g. Carxe Fault; Fig. 2.13f). In this case, the salt walls 

located in a hinterland position are squeezed but also translated towards the foreland (Fig. 

3.7b).

Second, and related to the dip direction of  the subsalt faults, two end-member scenarios 

are considered into this analysis (Fig. 3.8): subsalt faults dipping towards the foreland or 

towards the hinterland, with respect the main direction of  the shortening propagation. In the 

Pre-contractional units

Suprasalt strata Salt Subsalt basement

Initial extensional configuration

basinward hinterland

b)

a)

basinward basinward

Thin-skinned shortening

Figure 3.7. Schematic cross-sections depicting the propagation of  thin-skinned shortening over a) high angle 
or b) low angle dipping subsalt faults.
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first case, when shortening propagates over the footwall of  a subsalt fault dipping towards 

the foreland (Fig. 3.8a), its further advance may be hampered if  the throw of  the fault is 

larger than the thickness of  the salt layer (e.g. see location of  the Betic thrust front in Fig. 

3.9; Roca et al., 2013). So, according to the critical Coulomb wedge theory (Dahlen, 1984), a 

downward offset of  the décollement systematically generates an abandonment of  the current 

décollement level and the activation of  a thrust ramp where this level is disrupted. In other 

words, the thin-skinned thrust system does not step down into the hanging wall of  the subsalt 

fault, contrarily the deformation ramps up at the upper hinge of  the monoclinal drape fold and 

breaches the surface (Fig. 3.8a). In this scenario, the salt structures located above the footwall 

of  the subsalt fault likely absorb part of  the shortening, and therefore nucleate folding and 

thrusting. However, above the hanging wall of  a subsalt fault dipping towards the foreland, 

a thicker overburden may also hamper the propagation of  the contractional deformation, so 

the pre-existing salt structures located in this position are slightly affected by shortening (Fig. 

3.8a).

Conversely, if  subsalt faults dip towards the hinterland, the contractional deformation 

is conducted by a fold-and-thrust belt rooted into the décollement level with a flat-ramp-flat 

geometry (Fig. 3.8b). So, shortening is easily propagated over the hanging wall of  a subsalt 

fault, forming a fault-bend fold with a suprasalt ramp anticline located over the upper tip of  

this fault (Fig. 3.9). This process is also facilitated by a decrease in thickness of  the overburden 

Initial extensional configuration

Thin-skinned shortening
landward basinward

hinterland

b)
Mostly undeformed

salt structures
Slightly deformed

salt structures
Deformed

salt structures deformed salt structures

a)

foreland

Pre-contractional units

Suprasalt strata Salt Subsalt basement

Figure 3.8. Schematic cross-sections depicting the propagation of  thin-skinned shortening over a pre-existing 
extensional system with faults dipping towards the a) foreland and/or b) towards the hinterland.
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towards the foreland. In this scenario, the pre-existing salt walls located over the faulted subsalt 

blocks will cryptically accommodate shortening until secondary welds are developed at their 

stems (Vendeville & Nilsen, 1995; Gottschalk et al., 2004). At this stage, as shortening is easily 

propagated towards the foreland, thrust faults are rarely developed at the pedestals of  the 

squeezed salt walls (e.g. Figs. 2.13e and 2.13f). Only when shortening progresses, this type of  

contractional structures will be activated at and likely will decapitate the pre-existing diapirs 

(e.g. Fig. 2.13g).

In particular, when salt walls are developed above the upper hinge of  the monoclinal 

drape fold, the presence of  a thicker overburden in the hinterland side than in the foreland 

side of  the diapir constitutes an important mechanical anisotropy for a future contractional 

deformation. So, under shortening, this inherited architecture may foster the squeezing of  

the uppermost part of  the salt wall, the formation of  secondary welds, and the activation of  

thrust faults in the hinterland side of  the diapir and directed towards the foreland. As a result 

of  this, suprasalt successions that were initially on the hanging wall of  the subsalt fault will 

be thrusted and located on top of  thinner successions with a similar age located above the 

footwall (e.g. Carxe Fault; Fig. 2.13g; or the southern margin of  the Organyà Basin, Bóixols 

thrust sheet, Southern Central Pyrenees, Mencos et al., 2015).

Finally, the throw magnitude of  the subsalt fault also controls the propagation of  the thin-

skinned contractional deformation. For example, a small fault offset may not cut the continuity 

of  the décollement level, so the contractional deformation is easily propagated towards the 
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Figure 3.9. Simplified transect across the Eastern Prebetic Zone. B.T.F. and I.C.T.F., Betic and Iberian Chain 
thrust fronts, respectively. See the location of  the northern segment in Fig. 2.10.
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foreland and the pre-existent salt walls are equally shortened over the faulted subsalt blocks. 

In this manner, the subsalt faults with small throws together with similar thicknesses of  the 

suprasalt strata, will exert a little influence on the shortening propagation, independently of  

both their dip and dip direction.

3.3.2. Influence of the pre-existent salt structures

The existence of  precursor salt structures also constrains the incorporation of  extensional 

salt-bearing basins into foreland fold-and-thrust belts (e.g. Rowan & Vendeville, 2006; Escosa 

et al., 2018b; Granado et al., 2018). They are weaker than the adjacent overburden and thus 

tend to localize the contractional deformation as they are cryptically shortened (e.g. Nilsen 

et al., 1995; Vendeville & Nilsen, 1995; Gottschalk et al., 2004; Roca et al., 2006; Rowan & 

Vendeville, 2006; Callot et al., 2007; Dooley et al., 2009; Duffy et al., 2018). 

During contraction, the narrowing process is principally concentrated at the central 

part of  the salt wall where the difference between the flexure strength of  the diapir and the 

contractional strength (i.e. σ1) is maximum (Rowan & Vendeville, 2006; Dooley et al., 2015, 

see their figure 10). In this regard, the spatial and cross-sectional distribution of  the strain 

gradient along the salt wall is ultimately constrained by the inherited geometry and/or length 

and width of  the precursor diapir (Nilsen et al., 1995; Callot et al., 2007).

Furthermore, if  the diapir is covered by a thin and weak roof  or crops out at the 

topographic surface, the salt flow rate will increase and the diapir may disrupt the roof  and flare 

upwards forming overhangs and/or salt sheets. However, if  a buried diapir with a thicker roof  

is shortened, the salt body will be progressively narrowed and the diapir roof  will be folded 

forming an anticline cored by the pressurized and displaced salt (Nilsen et al., 1995; Vendeville 

& Nilsen, 1995; Dooley et al., 2009, 2015). Scaled physical models conducted in Dooley et al. 

(2009, 2015) suggest that the diapir roof  may deform in three different stages: firstly, far field 

shortening pressurizes salt promoting the arching of  the diapir roof; secondly and as shortening 

progresses, the thin-skinned thrust front advances and reaches the narrowing diapir, forming 

then a thrust salient on its foreland side; and thirdly, the diapir roof  is disrupted and one half  

might be translated and thrusted over the other half. At this stage, thrust faults and associated 

folds may extend off  the end of  the diapir. The geometry and kinematics of  these contractional 

structures may be influenced in part by the shape of  the lateral termination of  the salt wall.
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Regardless the diapir situation (e.g. with or without a roof  covering it), the upwards 

flow of  pressurized salt along the stem of  the diapir stops when a secondary weld develops 

connecting its pedestal to an upper teardrop diapir (Hudec & Jackson, 2007). If  shortening 

continues, thrust faults are developed at the pedestal of  the diapir and propagate off  the end 

of  the diapir to link other contractional structures deforming the adjacent overburden without 

diapirs (e.g. Callot et al., 2007, 2012; Jackson et al., 2008; Dooley et al., 2009).

Therefore, the geometric and kinematic evolution of  a shortened salt wall is strongly 

influenced by the inherited width, shape and orientation of  the precursor diapir, the possible 

linkage between adjacent diapiric structures, the lithological composition of  the involved 

evaporitic sequence, the thickness of  the diapir roof  if  any, and the shortening magnitude 

(Nilsen et al., 1995; Vendeville & Nilsen, 1995; Dooley et al., 2009, 2015). Among these, 

our analysis from the Paradox Basin and the Eastern Prebetic Zone enables to deepen the 

knowledge of  the role played by the initial structure of  the salt wall and adjacent overburden, 

its thickness and by the amount of  shortening applied to the precursor diapir; key controlling 

factors that are discussed in the following sections.

3.3.3. Influence of the pre-existing overburden

In a thin-skinned contractional system detached into a regional salt décollement (e.g. Davis 

& Engelder, 1985; Letouzey et al., 1995; Hudec & Jackson, 2007), the spacing of  a fold-and-

thrust belt is controlled, among other factors, by the overburden and salt thicknesses, and the 

strength contrast between layers (e.g. formation of  buckling folds; Biot, 1961; Ramberg, 1964). 

So, the thicker is the overburden, the major is the spacing between the resulting contractional 

structures.

According to Callot et al. (2012), the spacing or wavelength of  the contractional structures 

in a fold-and-thrust belt is also controlled by the existence of  precursor salt-stocks and 

thickened minibasins. If  the spacing is small and hence the overburden is thin, all salt stocks 

will likely nucleate contractional structures (i.e. folds and thrust faults). Conversely, if  the 

spacing is large (e.g. Zagros fold-and-thrust belt), not all salt stocks may nucleate contractional 

structures, so they will be located either in the limbs or in the hinges of  the synclinal folds (see 

Callot et al., 2012; Fig. 3.10).
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Therefore, the principal controlling factor is the mechanical strength of  the entire 

overburden adjacent to the pre-existing salt structures. The thicker it is, the stronger behaves 

facing an ulterior contractional deformation; assuming that there is a fraction of  the total 

shortening that is accommodated solely by lateral compaction of  the adjacent suprasalt 

rocks (e.g. Koyi et al., 2004; Dooley et al., 2009). In this scenario, if  there is an effective 

salt décollement, a squeezed diapir and a thicker overburden mostly experiment rigid body 

deformation (i.e. translation) over the main décollement. Alternatively, if  the overburden is 

thin and thus mechanically weak, the pre-existing diapir together with the adjacent suprasalt 

strata accommodate both rigid and non-rigid body transformations. In this case, the diapir is 

narrowed until the formation of  secondary welds, leading to the development of  a fold-and-

thrust belt connecting different isolated salt stocks.

However, what if  precursor salt walls instead of  salt stocks are involved into the thin-

skinned contractional deformation? The following subsections will address this question by 

discussing the studied examples in the Eastern Prebetic Zone, where salt walls formed in 

an overburden displaying thickness variations were subsequently affected by a thin-skinned 

contractional deformation. Particularly, we address the influence of  the thickness and structure 

of  the overburden adjacent to the contractionally reactivated salt walls.

b)a)

Pre-contractional units

Suprasalt strata Salt Subsalt basement

Initial extensional configuration

Thin-skinned shortening

Figure 3.10. Simplified cross-sections obtained from scaled physical models that exemplify the interaction 
between the developing thin-skinned fold-and-thrust belt and the precursor diapirs and locally thickened 
minibasins: a) the wavelength of  the contractional structures is disrupted by locally thickened overburden; b) 
the existence of  precursor diapirs also modifies the wavelength of  the contractional structures. Modified from 
Callot et al. (2012).



 Chapter 3: Discussion

116

3.3.3.1. Thickness of the overburden

As it is explained above, the elliptical shape in plan-view of  a salt wall (Fig. 1.1) constitutes a 

weakness point facing a contractional deformation that propagates perpendicular to it, since the 

salt wall offers less flexural strength in its elongated axis than in its shorter axis (e.g. see Dooley et 

al., 2015, their figure 10). Therefore, for a constant thickness overburden, pre-existing salt walls 

will narrow more readily than salt stocks as a result of  perpendicular shortening.

However, the thickness of  the overburden also exerts a significant influence once the 

salt wall has squeezed and secondary welds are developed. If  for example the suprasalt strata 

adjacent to the diapir is thick and thus mechanically strong, the salt wall does not tend to 

accommodate further contractional deformation (e.g. La Sarsa salt wall; Figs. 2.13f and 2.13g). 

Instead of  this, the contractional deformation will result in: a) the formation of  buckling folds 

affecting the entire overburden with a wavelength depending on the thickness of  the suprasalt 

strata and the salt layer (Biot, 1961; Ramberg, 1964); and/or b) the propagation of  the 

deformation towards regions where the thickness of  the overburden decreases considerably 

(e.g. the External Prebetic; Figs. 2.14a and 2.14b). In this latter case, the squeezed salt wall 

is passively translated over the décollement as the contractional deformation is propagated 

towards the foreland. Conversely, if  the overburden is thin and thus mechanically weak, thrust 

faults will nucleate at the pedestal of  the diapir once a secondary weld is formed. These 

thrust faults will decapitate the welded stem of  the diapir and translate the upper teardrop 

diapir towards the foreland (e.g. Sierra de los Bujes; Fig. 2.16b), or towards the hinterland 

depending on the pre-existent structure of  the overburden (see further details in the following 

subchapter 3.3.3.2).

Besides the thickness of  the adjacent overburden, the resulting structure of  a contractionally 

reactivated salt wall is also controlled by the thickness of  a sedimentary roof  covering the 

diapir. So, in absence of  it, the narrowing of  a salt wall increases the rate of  the upwards 

flow of  pressurized salt, which depending on the erosion and dissolution rates (Jackson & 

Vendeville, 1994), results on the formation of  salt glaciers (e.g. Kuh-e-Namak salt extrusions, 

Talbot & Jarvis, 1984). However, if  a sedimentary roof  is covering the salt wall, meaning that 

the growth of  the diapir is no longer active, the narrowing of  the diapir may produce different 

situations depending on the thickness of  the sedimentary roof  (Duffy et al., 2018). Thereby, a 

thick roof  will hamper the squeezing of  the salt wall; and a thin roof  may allow the narrowing 
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and hence foster the rejuvenation of  the diapir. Nevertheless, in all scenarios, the resulting 

contractional structures deforming the diapir’s roof  will have a shorter wavelength compared 

with the regional style of  the deformation, since the thickness of  the folded roof  is always 

thinner than the surrounding overburden (e.g. La Sarsa salt wall, Fig. 2.14a).

Furthermore, during the extensional development of  a salt wall, the roof  may collapse 

because of  the formation of  primary welds hampering the flux of  salt into the diapir, resulting 

in the formation of  a turtle structure if  sedimentation continues (e.g. Figs. 2.13e and 2.13f). 

In this case, the collapsed roof  of  the ancient diapir may depict a similar thickness than the 

adjacent suprasalt strata once the subsiding minibasin touches down and primary welds develop 

(see Chapter 1.5.1 for further details). During the subsequent thin-skinned contractional 

reactivation and after the formation of  secondary welds at the respective salt horns, the turtle 

structure may be uplifted forming a symmetrical pop-up (see Jackson and Hudec, 2017, their 

figure 11.17b). Thereby, the thickened roof  is thrusted above the flanks of  the pre-existent 

salt wall using the secondary welded salt horns as décollements. A particular case is when the 

resulting salt wall is triggered by a single asymmetric extensional fault with a salt roller in its 

footwall (e.g. the Sierra del Buey and Sierra del Molar; Figs. 1.4b, 2.14a and 2.14b). In this 

scenario, upon inversion, strata in the footwall of  the extensional fault is slightly folded, but 

strata in the hanging wall is highly deformed by thrust faults cross-cutting the overburden. Of  

course, thrust faults only develop if  the overburden contains weak horizons susceptible of  

acting as décollement levels (e.g. Upper Cretaceous marls in the Eastern Prebetic Zone; Fig. 

2.11).

3.3.3.2. Structure of the overburden

The example described above of  a salt wall collapse in the Sierra del Buey and Sierra del 

Molar evidences the role of  the adjacent suprasalt structure on the geometric and kinematic 

evolution of  shortened salt walls. Thereby, if  precursor salt walls with symmetrical flanks 

triggered by differential loading and/or contraction are shortened, a symmetrical pop-up 

structure may develop deforming the adjacent overburden (e.g. see natural examples of  

squeezed diapirs in the Nordkapp Basin, Nilsen et al., 1995; and in scaled physical models in 

Dooley et al., 2009). However, for salt walls formed by a single thin-skinned extensional fault, 

the resulting contractional structure will be more asymmetric (Fig. 3.11).
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As is depicted in the constructed cross-sections of  the Eastern Prebetic Zone (e.g. Figs. 

2.14 and 2.14b), shortening of  an asymmetric salt wall may result in the formation of  a thrust 

fault detached at the pedestal of  the diapir and directed towards the ancient footwall of  the 

extensional fault. This thrust fault decapitates the primary welded salt wall and translates 

the upper teardrop diapir over the footwall of  the ancient extensional fault (see examples 

in Sierra de Santa Ana and Comisario anticline, Figs. 2.14b and 2.14b; and Sierra de los 

Bujes, Fig. 2.16b). In this instance, the distinct mechanical behavior of  the overburden in the 

flanks of  the salt wall might be related to different dip attitudes of  the salt-sediment interface 

in both sides of  the diapir (Fig. 3.11). So, in the flank where the thrust fault is developed, 

this contractional structure may use part of  the ancient extensional fault that, soled into the 

décollement, remained almost undeformed during the extensional growth of  the salt wall.

Furthermore, the dip of  the overburden adjacent to the precursor salt wall also influences 

its ulterior contractional deformation. Thereby, adjacent suprasalt strata dipping towards the 

diapir may facilitate the activation of  bedding surfaces as folds and thrust faults once the 

diapir is secondary welded. Conversely, adjacent suprasalt strata dipping away from the diapir 

may hamper the activation of  these contractional structures deforming the overburden.

3.3.4. Role of the amount of shortening

The amount of  shortening applied to a precursor salt wall controls the resulting shape 

of  the diapir, the type of  contractional structures extending off  its end, and the degree of  

salt extrusion of  the reactivated diapir (e.g. Vendeville & Nilsen, 1995; Gottschalk et al., 2004; 

Rowan et al., 2004; Roca et al., 2006; Jackson et al, 2008; Dooley et al., 2009, 2015; Jackson 

Initial extensional configuration Thin-skinned shortening

Figure 3.11. Geometric and kinematic model for the contractional reactivation of  a salt wall triggered by a single 
asymmetric suprasalt fault. Upon inversion, the thin-skinned shortening uses part of  the ancient extensional 
fault, decapitates the primary squeezed salt wall and translates the upper teardrop diapir over the ancient footwall 
of  the suprasalt extensional fault. 
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& Hudec, 2017). At the same time, the way how shortening affects precursor salt walls also 

depends on the direction, magnitude and rate of  the contractional deformation as well as the 

initial width of  the salt wall (e.g. Nilsen et al., 1995; Jackson & Hudec, 2017; Duffy et al., 2018). 

Thereby, if  shortening occurs perpendicular to the long axis of  a preexisting salt wall, the 

diapir will preferentially narrow and/or squeeze facilitating the nucleation of  thrust faults at 

its pedestal (e.g. Rowan & Vendeville, 2006; Stefanescu et al., 2000). Conversely, if  shortening 

is propagated parallel to the long axis of  the salt wall, the diapir will be sheared and faults with 

a directional component will nucleate at its terminations but also along the salt wall sides (e.g. 

De Ruig, 1992; Sherkati et al., 2005; Dooley & Schreurs, 2012; Alsop et al., 2018). At the same 

time, the strain rate during the contractional deformation will control the mechanical behavior 

of  the salt; thereby fast rates will promote a brittle response; and low stain rates will allow salt 

to flow in a ductile manner (Senseny et al., 1992; Wallner, 1983; Jackson & Hudec, 2017).

The sequence of  structures that form during shortening of  an isolated salt wall is strongly 

controlled by the strain magnitude in combination with the weakness of  the salt in relation 

to the adjacent overburden (Duffy et al., 2018). So, at low strains, the diapir flanks begin to 

converge and therefore the diapir’s roof  arches as well (Nilsen et al., 1995). In this context 

the diapir accommodates the major part of  the contractional deformation propagated from 

the hinterland (e.g. see the progressive cryptic shortening absorbed by la Sarsa salt wall in 

Figs. 2.13e and 2.13f). The other part of  the deformation is accommodated solely by lateral 

compaction of  the adjacent sedimentary rocks (e.g. Koyi et al., 2004; Dooley et al., 2009).

As shortening strain increases, the salt wall continues accommodating deformation, thus 

pressurized salt rises allowing the diapir to narrow (Nilsen et al., 1995; Callot et al., 2007; 

Dooley et al., 2009). In map-view, thrusts and folds nucleate at the diapir and propagate out 

into the adjacent suprasalt strata to link up with other contractional structures deforming 

the overburden (Koyi, 1988; Nilsen et al., 1995; Gottschalk et al., 2004; Letouzey & Sherkati, 

2004; Rowan et al., 2004; Callot et al., 2007; Jackson et al., 2008; Fernandez & Kaus, 2014). For 

example, the gentle folding of  the Dakota Sst. and younger strata extending ca. 2 km from the 

edge of  the Gypsum Valley salt wall (Fig. 2.5, sections A–C) cannot be explained by simple 

halokinetic drape-folding because this latter is restricted to 1 km away from the diapir margin 

(Giles & Rowan, 2012). In this case, we determined that the broader zone of  gentle folding 

was generated by minor diapir rejuvenation during the subsequent Laramide Orogeny that 

affected the Paradox Basin (see Escosa et al., 2018c; Annex 1). Thereby, the total amount of  
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shortening decreasing abruptly at the end of  the salt wall, was accommodated in part by the 

formation of  a lateral tear fault (see Fig. 6 in Annex 1).

At higher contractional strains, if  salt disrupts the diapir’s roof  and extrudes passively, 

the stem of  the salt wall is progressively depleted, and secondary welds are likely developed 

(e.g. Fig. 2.14a). For example, the presence of  a NW-directed thrust affecting La Sarsa salt 

wall, the pronounced folding of  its roof  as well as the existence of  isolated outcrops of  

Upper Triassic evaporites disrupting the diapir’s roof  (Fig. 2.12), indicate that this salt wall 

was contractionally deformed by moderate to high strains.

Finally, the results of  the investigations conducted in this thesis also suggest that the 

strain magnitude affecting precursor salt walls is not only controlled by the initial width of  

the diapir but also by the location of  the salt wall in respect to the subsalt structure. As it 

is observed in the Eastern Prebetic Zone, the salt walls located near the upper tip of  the 

Carxe and Sopalmo subsalt faults (Figs. 2.14a and 2.14b), are not totally squeezed during 

the thin-skinned contractional deformation. Instead of  this, thrust faults are developed in 

the hinterland side of  these slightly narrowed diapirs accommodating the major part of  the 

shortening. Again, this might be related to a distinct mechanical behavior of  the overburden 

adjacent to the salt wall, which is influenced by the dip attitude of  the salt-sediment interface 

in both sides of  the diapir and the existence of  ancient extensional faults. Therefore, in this 

particular case, the salt-sediment interface in the hinterland side of  the diapir may have a 

favorable dip for activating thrust faults instead of  narrowing the whole diapir.
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CHAPTER 4. CONCLUSIONS
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4.2.  Conclusions regarding the study of the Gypsum Valley Diapir,
Paradox Basin (SE Utah and SW Colorado)

4.3  Conclusions regarding the study of the Jumilla region,
Eastern Prebetic Zone (SE Spain)

4.4  General conclusions



The cover photo of  Chapter 4 depicts a marvelous sunset with reddish and windy clouds over the base camp at the SE termination 
of  the Gypsum Valley salt wall, after a long day of  field-work.



 Extensional development and contractional reactivation of  salt walls

125

C
H

A
PT

E
R

 4

4.1. Introduction

This chapter is organized in two main parts in which the partial conclusions of  the 

respective field-work areas are summarized before presenting, based on the previous partial 

conclusions, the global concluding points of  this PhD thesis. Therefore, the last section of  

this chapter lists the factors that control the geometry and kinematics of  salt walls developed 

above subsalt faults whose movement occurs during or after the deposition of  salt. And 

finally, details the parameters that define a later thin-skinned contractional deformation of  

these precursor salt walls.

4.2. Conclusions regarding the study of the Gypsum Valley Diapir, 
Paradox Basin (SE Utah and SW Colorado)

The structural analysis of  the southern end of  the Gypsum Valley salt wall (SE Paradox 

Basin) compared with analogue structures located elsewhere in the Paradox Basin and in the 

northern Gulf  of  Mexico, have permitted to propose a series of  simple end-member models 

for salt walls mostly driven by differential sedimentary loading without significant regional 

extension or contraction. This investigation evidences that controlling factors on determining 

the terminations of  salt walls and adjacent megaflaps are:

• The original thickness and spatial distribution of  the deep salt.

• The presence of  nearby diapirs, which determines the fetch area for salt flow into the 

diapir.

• The spatial patterns of  depositional sedimentary loading.

• And, variations in the nature and location of  salt breakout through the roof  of  the 

initial salt structure.

4.3. Conclusions regarding the study of the Jumilla region, 
Eastern Prebetic Zone (SE Spain)

The investigation in the Eastern Prebetic Zone at the Jumilla region (SE Spain) has 

revealed that the observed structure corresponds to the proximal part of  a passive margin 

containing prerift salt, that decouples a subsalt basement deformed by planar extensional 

faults from an overburden deformed by monoclinal drape folds, thin-skinned extensional 

faults and diapirs; an overburden that has been contractionally reactivated during the Betic 
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orogeny with the subsequent development of  the thin-skinned fold-and-thrust belt.

This structural analysis has contributed to a better understanding of  the development of  

salt walls and salt-related structures triggered by thick-skinned extension during the formation 

of  a passive margin; and their reaction to a thin-skinned contractional deformation during the 

incorporation of  a passive margin into a foreland fold-and-thrust belt. In particular, this study 

has allowed to improve this understanding by determining that:

• Thick-skinned extension controls the rate of  subsidence over faulted subsalt blocks, 

creates accommodation space, and thus constrains the accumulation of  syn-kinematic 

sediments above pre-kinematic salt. Therefore, this stablishes a differential sedimentary 

load over mobile salt that promotes the salt migration towards the upper tip or towards 

the hangingwall of  the subsalt faults, respectively. In this scenario, the subsalt extension 

controls suprasalt deformation, which its location and distribution changes over time. 

In the early stages of  extension, the suprasalt deformation is accommodated by the 

development of  monoclinal drape folds, suprasalt faults and diapirs. As extension 

progresses folding and faulting is concentrated above the footwall of  the main subsalt 

faults where the cover is thin and mechanically weak. In spite of  this, translation with 

minor folding is concentrated above their hanging walls where the cover is thick and 

mechanically resistant.

• Upon inversion, salt also localizes strain during the incorporation of  the passive margin 

into the external zones of  a thin-skinned fold-and-thrust belt. In this scenario, the 

preexisting salt walls, weaker than the adjacent overburden, preferentially absorb part 

of  the contractional deformation until secondary welds are developed at their narrowed 

stems. Afterwards, further shortening is accommodated by the formation of  folds and 

thrusts that nucleate at the pedestals of  the squeezed diapiric structures. In addition to 

this, the stepped subsalt geometry, inherited from the previous thick-skinned extension, 

also influences the propagation and localization of  the thin-skinned contractional 

deformation. Therefore, the degree of  shortening localization of  the squeezed salt 

walls is dependent on the thickness of  the adjacent overburden and on the dip and dip 

direction of  the subsalt faults relative to the thin-skinned contractional propagation.
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4.4. General conclusions

The previous studies and the respective partial conclusions together with the discussion 

conducted in this PhD thesis have permitted to highlight a series of  global factors controlling 

the geometry and kinematics of  salt walls developed in the above outlined tectonic settings. 

Accordingly, salt walls formed above subsalt faults whose movement occurs during or after 

the deposition of  salt are constrained by:

• The lateral changes in the syn-kinematic sedimentary loading induced by the subsalt 

fault motion. During thick-skinned extension, the geometry and kinematics of  the 

developing salt walls are controlled by variations in the accommodation space, and thus 

the differences in the sedimentary loading that generate the offset of  the extensional 

subsalt faults. Thereby, a large accommodation space and corresponding high syn-

kinematic sedimentation rate might favor an elevated pressure head above the source 

layer and a rapid migration of  salt above the footwall of  the subsalt faults. Conversely, 

a small accommodation space and corresponding low sedimentation rate might favor a 

lower velocity on the salt source depletion. In this regard, the different behaviors of  salt 

migration over the subsalt faulted blocks might explain the asymmetry of  salt walls that 

are developed at the upper hinge of  the monocline drape folds; where usually there is 

a megaflap and a thinner suprasalt succession at the landward side of  the diapir and a 

deeper and thicker succession at the basinward side.

• The geometry of  the subsalt faults. Indeed, in an equal amount and direction of  

regional extension, high-angle dipping (e.g. 60–70º) subsalt faults tend to generate a 

greater accommodation space above their hanging walls than low-angle dipping (e.g. 

30–40º) basement faults. In this regard, a higher accommodation space and a thicker 

syn-kinematic succession above the hanging wall of  the subsalt fault promotes a greater 

differential pressure head above mobile salt between the faulted subsalt blocks. Thereby, 

thick-skinned extension conducted by high-angle subsalt faults favors the migration of  

salt towards the upper tip of  the subsalt fault, contributes to a major outer arc stretching 

at the upper hinge of  the overlying monocline drape fold, and fosters the development 

of  suprasalt faults and reactive salt walls above their footwalls. Conversely, the upper 

hinge of  the monoclinal drape folds over low-angle subsalt faults are less affected by 

outer arc stretching, therefore there is a major decoupling and suprasalt extension is 

distributed over a wider zone of  the overburden.
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• The lateral thickness variations of  the overburden over time, which is directly linked 

to the strengthen that experience the suprasalt strata adjacent to the developing salt 

walls as syn-kinematic sedimentation occurs synchronously to thick-skinned extension. 

Thus, at the beginning of  extension, when the subsalt faults have not generated 

significant lateral variations of  accommodation space filled by syn-kinematic sediments, 

the overburden does not show noticeable thickness difference favoring a distributed 

suprasalt deformation. Therefore, diapirism might be indistinctly developed over the 

entire extended area. However, as extension progresses and the subsalt faults produce 

major differences in the thickness of  the syn-kinematic sediments, suprasalt faulting 

and diapirism tend to be concentrated above the footwalls of  the subsalt faults where 

the overburden is thin and mechanically weak. Conversely, on the hanging walls, where 

the overburden is thicker and hence mechanically resistant, there is almost no suprasalt 

deformation and the previous structures are essentially translated basinwards above the 

decoupling salt. Therefore, the capacity of  a salt wall to concentrate future extension, 

besides its orientation respect to the regional stretching direction, appears strongly 

dependent on the lateral mechanical strength/thickness variations of  the adjacent 

overburden driven by the underlying subsalt faults.

• The salt thickness variations and the available deep salt budget for a salt wall to form. 

In pre-kinematic salt basins, if  subsalt extension occurs in a landward position respect 

to the evaporitic basin, a thinner salt layer will promote the early formation of  primary 

welds, so coupling between subsalt and suprasalt units will occur earlier, and salt walls 

will have a short period of  time to develop. Conversely, if  thick-skinned extension 

occurs in a basinward position with respect to the salt basin, the decoupling will be more 

widespread because of  a thicker salt unit, and salt walls will develop in a longer period 

of  time since primary welding might form later. Furthermore, the thickness of  the salt 

also controls the width of  the diapir, so the thicker it is the wider is the resulting salt 

wall. Variations in salt thickness may also occur along strike the same diapir developed in 

for example syn-kinematic salt basins. In this scenario, the available salt budget for a salt 

wall to form is also controlled by 1) the presence of  subsalt faults offsetting the source 

layer, and thus controlling the deposition and the spatial distribution of  the evaporites; 

and 2), the variations in the lithological composition of  the evaporites, which constrains 

the mobility of  the salt.
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• The location of  the salt breakout through the roof  of  the initial salt structure which 

is ultimately controlled by the early style of  diapirism and the pre-kinematic salt wall 

piercement geometry. In regional extension with pre-kinematic salt, the active rise of  

a symmetrical reactive salt wall may promote the progressive folding of  the pre- and 

syn-kinematic suprasalt strata together with the conjugate suprasalt faults. Instead 

of  this, the active rise of  an asymmetrical salt wall will promote folding of  the pre-

kinematic strata located in the footwall of  the listric fault. Thereby, the fault plane will 

be also folded as the diapir progressively rises and breaks the thinned roof. Finally, 

salt walls may also develop in absence of  regional extension above pre-existent subsalt 

faults whose movement occurred during the deposition of  salt. So, the position of  

the salt breakout in a salt inflated plateau may be led only by progressive differential 

sedimentary loading adjacent to the diapir. In this instance, the resultant geometry of  

the salt wall and adjacent overburden might be symmetric or asymmetric depending on 

the position of  the salt breakthrough. Of  course, the geometry may change from one 

style to the other along strike the salt wall, possibly due to variations in roof  thickness 

and mechanical strength.

• Finally, it is worth noting that all the above-mentioned factors may variate over time 

but also along the elongated axis of  the developing salt wall, thus leading to distinct 

geometries and kinematics along strike the same diapir.

As the weaker part of  the overburden, precursor salt walls are readily deformed by any 

subsequent deformational event. In this regard, the investigation conducted in this thesis 

suggests that the structure resulting from the thin-skinned contractional reactivation of  pre-

existent salt walls is largely determined by:

• The subsalt structure, which controlled the extensional development of  salt walls, 

and is defined by the dip, dip direction and the displacement magnitude of  the subsalt 

extensional faults:

 - So, high angle dipping subsalt faults may act as a buttress against the 

propagation of  the thin-skinned shortening. In other words, the highly dipping 

salt panels resulting from drape folding over this type of  subsalt faults may 

difficult the contractional activation of  a thrust system, and thus may hamper 

the propagation of  the deformation towards the foreland. In this instance, 

the overburden and precursor diapirs above the hanging walls may be highly 
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deformed, meanwhile the suprasalt strata and salt walls above the footwalls 

may remain slightly deformed. Conversely, low angle dipping subsalt faults may 

foster the activation of  a thin-skinned thrust system that propagates over the 

faulted blocks along the salt décollement. In this latter case, the thin-skinned 

shortening affects the precursor salt walls and adjacent overburden regardless 

their position with respect to the subsalt structure.

 - Subsalt faults dipping towards the foreland with respect to the main direction 

of  shortening may hamper the propagation of  the contractional deformation 

if  the vertical fault offset is greater than the thickness of  the salt layer acting 

as a décollement level. In this scenario, precursor salt walls located above the 

footwall of  the subsalt fault may likely absorb part of  the shortening and 

therefore nucleate folding and thrusting once they are squeezed. However, 

above the hanging wall, a thicker overburden together with a bigger fault offset 

may difficult the shortening propagation, so the pre-existing salt structures are 

slightly affected by the contractional deformation. Alternatively, thin-skinned 

shortening is easily propagated towards the foreland over subsalt faults dipping 

to the hinterland –a process that is also facilitated by a decrease in thickness of  

the overburden towards the foreland and by a favorable flat-ramp-flat geometry 

of  the salt décollement. In this scenario, shortening affects the precursor salt 

walls and adjacent overburden regardless their position with respect to the 

subsalt structure.

• The thickness and strength of  the pre-contractional overburden adjacent to the 

contractionally reactivated salt wall, once the diapir has squeezed and secondary welds 

are developed. If  shortening continues, the squeezed salt walls may nucleate thrust 

faults at their pedestals that decapitate the welded stems. These contractional structures 

are formed when the differential contractional strengths are greater than the rupture 

strength of  the overburden which depends among other factors on its lithology and 

thickness. Therefore, the activation of  these contractional structures is facilitated in 

thin and weak overburdens rather than in thicker and hence mechanically stronger ones. 

In this regard, a thick overburden impedes the localization of  further contractional 

deformation into the squeezed salt wall. So, the diapir is passively translated over the 

décollement level as the contractional deformation is propagated towards the foreland 
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–a process that is also facilitated by a decrease in thickness of  the overburden towards 

the external parts of  the fold-and-thrust belt. Conversely, a thinner and mechanically 

weak overburden may facilitate the nucleation of  thrust faults at the pedestal of  the 

salt wall, thus decapitating the welded stem of  the diapir and translating the detached 

teardrop diapir towards the foreland or the hinterland. Furthermore, in the case of  

previous inactive salt walls, the thickness of  the diapiric roof  also controls the resulting 

structure of  the reactivated diapir structure. So, a thin and mechanically weak roof  

may foster the squeezing and thus the rejuvenation of  the salt wall; and a thick and 

mechanically strong roof  may hamper their squeezing and narrowing.

• The structure of  the overburden adjacent to the precursor salt wall which is directly 

linked to the early style of  diapirism stablished during extension. Thus, the contractional 

reactivation of  a salt wall triggered by symmetrical extensional faults may result in a 

symmetrical pop-up structure; and in a more asymmetrical one if  the salt wall is triggered 

by a single listric suprasalt fault. In this last scenario, the distinct mechanical behavior of  

the overburden at the flanks of  the salt wall might be related to different dip attitudes 

of  the salt-sediment interface in both sides of  the diapir. In addition to this, the dip 

of  the adjacent overburden also influences the ulterior contractional deformation of  

the precursor diapir. Thereby, suprasalt strata dipping towards the salt wall (e.g. a turtle 

structure) may facilitate the activation of  bedding surfaces as thrust faults once the 

diapir is secondary welded. Alternatively, adjacent suprasalt strata dipping away from the 

diapir may hamper the activation of  these contractional structures deforming both the 

overburden and the diapir.

• The ratio between the amount of  shortening and the initial width of  the precursor salt 

wall. If  the ratio is <1, the salt wall is cryptically shortened by pressurizing the salt which 

enhances its upwards flow and promotes the arching of  the diapiric roof. In this case, 

far field shortening is mainly accommodated by the salt wall and in a less proportion by 

lateral compaction of  the adjacent sedimentary rocks. If  the ratio is ~1, shortening in a 

precursor salt wall may result in the development of  a thrust salient on its foreland side 

and the possible disruption of  the arched diapiric roof. Here, the pressurized salt may 

extrude passively at the surface, with the consequent progressive depletion of  the salt wall 

stem. And finally, if  the ratio is >1, that means the flanks of  the salt wall have converged, 

the stem has been depleted and therefore secondary welds may be developed. In this latter 
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case, a thrust fault can be nucleated at the pedestal of  the shortened salt wall, decapitating 

the welded stem of  the diapir and translating a possible detached teardrop diapir.

• Finally, besides all the above-mentioned factors, the resulting contractional structure 

of  preexisting salt walls and adjacent overburden is also controlled by the length, shape 

and orientation of  the precursor diapir, the possible linkage between adjacent diapiric 

structures, and the lithological composition of  the evaporitic sequence.
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Annex 1: “Lateral Terminations of salt walls and megaflaps: An 
example from Gypsum Valley Diapir, Paradox Basin, Colorado, 
USA”.
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Abstract
Descriptions of exposed salt structures help improve the ability to interpret the

geometry and evolution of similar structures imaged in seismic reflection data from

salt‐bearing sedimentary basins. This study uses detailed geologic mapping com-

bined with well and seismic data from the southeastern end of the Gypsum Valley

diapir (Paradox Basin, Colorado), to investigate the three‐dimensional geometry of

the terminations of both the salt wall and its associated megaflap. The salt wall

trends NW‐SE and is characterized by highly asymmetric stratal architecture on its

northeastern and southwestern flanks, with thicker, deeper, gently dipping strata in

the depositionally proximal (NE) minibasin and thinned older strata rotated to near‐
vertical in a megaflap on the distal (SW) side. The megaflap terminates to the SE

through a decrease in maximum dip and ultimately truncation by a pair of radial

faults bounding a down‐dropped block with lower dips. East of these faults, the salt

wall termination is a moderately plunging nose of salt overlain by gently southeast‐
dipping strata, separated from the down‐dropped NE minibasin by a counterregional

fault. From this analysis, and by comparison with analogue structures located else-

where in the Paradox Basin and in the northern Gulf of Mexico, we propose a series

of simple end‐member models in which salt walls and megaflaps may terminate

abruptly or gradually. We suggest that controlling factors in determining these

geometries include the original thickness and spatial distribution of the deep salt,

the presence of nearby diapirs (which determines the fetch area for salt flow into the

diapir), spatial patterns of depositional loading, and variations in the nature and

location of salt breakout through the roof of the initial salt structure.

KEYWORD S

megaflaps, Paradox Basin, radial faults and counterregional faults, salt diapirs, salt walls

1 | INTRODUCTION

Steep‐sided salt diapirs can have variable map‐view shapes.
They are termed salt stocks when the planform axial ratio

is <2, and salt walls when it is >2 (Hudec & Jackson,
2011; Trusheim, 1960). Salt walls may form in a variety of
tectonic settings. For example, they may result from exten-
sion (e.g. Zechstein Basin, Krzywiec, 2006; Mohr, Kukla,
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Urai, & Bresser, 2005; Atlas Mountains, Martín‐Martín et
al., 2016; Saura et al., 2013; Newfoundland, Balkwill &
Legall, 1989). When the thick‐skinned extension is decou-
pled by the presence of autochthonous salt, the walls typi-
cally develop above or slightly on the footwalls of the
main presalt faults (Jackson & Vendeville, 1994). Con-
versely, salt walls may form during contraction (e.g. Sver-
drup Basin, Harrison & Jackson, 2014; Sivas Basin,
Kergaravat et al., 2016). For example, a salt‐cored contrac-
tional anticline may be eroded, so that salt breaks through
to form elongate diapirs (Stewart, 2007). Salt walls may
also form by differential loading in the absence of exten-
sion or contraction (e.g. Paradox Basin, Trudgill, 2011; La
Popa Basin, Rowan, Lawton, Giles, & Ratliff, 2003; Nord-
kapp Basin, Rowan & Lindsø, 2017), when progradational
loading causes inflation above or immediately updip of the
pre‐existing presalt faults (Ge, Jackson, & Vendeville,
1997). In most cases, regardless of the triggering mecha-
nism, they grow as passive diapirs once the salt has pierced
its initial roof.

Stratal geometries flanking salt walls typically range
from halokinetic sequences to megaflaps, depending on the
scale of near‐diapir deformation. Halokinetic sequences are
localized (<1 km wide), unconformity‐bound successions
of growth strata that form as drape folds due to the inter-
play between the salt‐rise rate and the sediment‐accumula-
tion rate (Giles & Lawton, 2002; Rowan et al., 2003).
Stacked halokinetic sequences form tabular and tapered
composite halokinetic sequences, which have relatively nar-
row and broad zones of thinning, respectively (Giles &
Rowan, 2012). Megaflaps are panels of deep minibasin
strata that extend far up the sides of steep diapirs or their
equivalent welds (Giles & Rowan, 2012; Graham, Jackson,
Pilcher, & Kilsdonk, 2012; Rowan, Giles, Hearon, &
Fiduk, 2016). The width of folding and vertical relief of
megaflaps span multiple kilometres, with the maximum
bedding attitude ranging from near‐vertical to completely
overturned beneath an allochthonous salt sheet.

Many studies have focused on cross‐sectional views of
near‐diapir deformation and thus are primarily two dimen-
sional; three‐dimensional analyses are relatively rare.
Rowan, Lawton, and Giles (2012) showed along‐strike
variations in minibasin‐scale folding, local halokinetic
drape folding, and small‐scale deformation of a welded salt
wall in La Popa Basin. Similarly, Martín‐Martín et al.
(2016) determined the 3D geometry of the Tazoult salt
wall in Morocco (including megaflaps), showing along‐
strike variations of flanking stratal geometries. In both
cases the variations in stratal geometries were explained as
being caused, in part by changes in the style and/or
amount of shortening along the lengths of the walls. In
contrast, Hearon, Rowan, Giles, and Hart (2014) tracked
composite halokinetic sequences around the Auger salt

stock in the northern Gulf of Mexico, demonstrating that
composite halokinetic sequences progressively change in
geometry around the margin of the diapir and suggesting
this was caused by local variations in diapir‐roof thickness.
Despite these studies, very little is known about strike‐par-
allel changes in structural and stratigraphic architecture at
the terminations of salt walls or megaflaps. Investigating
this variability is important for a better understanding of
salt‐sediment interaction in three dimensions, as well as
for aiding interpretations of poorly imaged seismic reflec-
tion data and thus risk assessment in hydrocarbon
exploration.

The purpose of this paper is to present new data from
the southeastern end of the Gypsum Valley salt wall, in the
Paradox Basin of SW Colorado, in order to evaluate the
structural styles and associated controls on lateral termina-
tions of salt walls and megaflaps. The main goals are
three‐fold: (a) to build on the brief two‐dimensional analy-
sis of the Gypsum Valley megaflap in Rowan et al. (2016)
and characterize the 3D structure and kinematic evolution
of both the megaflap and southeastern end of the salt wall;
(b) to compare our findings with other salt walls in the
Paradox Basin, and analogous to counterregional systems
in the northern Gulf of Mexico; and (c) to establish simple
models for the lateral terminations of salt walls and mega-
flaps. We suggest that factors controlling the nature and
geometry of these lateral terminations include the type and
location of bounding structures, the salt budget for flow
into the diapir, the spatial patterns of depositional loading,
and variations in the style and location of salt breakout
through the roof of the initial salt structure.

Highlights

• The Gypsum Valley salt wall is characterized by
highly asymmetric stratal architecture on its NE
and SW flanks.

• The SW flank comprises thinned, rotated strata
in a megaflap that terminates to the SE by a
decrease in dip and truncation by a radial fault.

• Strata on the NE flank are thicker, deeper, and
only gently folded.

• The salt wall terminates to the SE in a moder-
ately plunging nose of salt in the footwall of a
NE-dipping counterregional fault.

• We propose end-member models in which salt
walls and megaflaps may terminate abruptly or
gradually.

• Controlling factors include the deep salt budget,
the depositional loading pattern, and the position
where the salts breaks through its early roof.
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2 | GEOLOGICAL SETTING AND
PREVIOUS WORK

2.1 | Paradox Basin

The Paradox Basin (SE Utah and SW Colorado, USA), is a
large, asymmetric, intracratonic foreland basin defined by
the depositional extent of the layered evaporites of the
Pennsylvanian Paradox Formation (Figure 1a). The basin
measures ca. 300 km in length (NW‐SE) and ca. 150 km
in width (Condon, 1997; Trudgill, 2011; Whidden, Lillis,
Anna, Pearson, & Dubiel, 2013). During the Late

Mississippian to Early Permian time, convergent tectonism
along the western margin of North America, coupled with
the collision of Gondwanaland to the south, generated
intraplate deformation in the form of a series of thick‐
skinned, basement‐cored uplifts, extending from Canada to
Mexico, known as the Ancestral Rocky Mountains (Bar-
beau, 2003; Kluth, 1986; Kluth & Coney, 1981; Mallory,
1972). Borehole and 2D seismic reflection data show the
Paradox Basin (Figure 1a) is located in the footwall of a
50° NE‐dipping reverse fault, with ca. 10 km of slip,
bounding the southwestern flank of the basement‐cored
Uncompahgre Uplift (Moore, Soreghan, & Sweet, 2008;
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Timbel, 2015; White & Jacobson, 1983). The emplacement
of the Uncompahgre Uplift and concurrent flexural loading
of the crust in its foreland created accommodation for sedi-
ment infill (Barbeau, 2003; Condon, 1997; DeCelles &
Giles, 1996; Trudgill, 2011).

The Paradox Basin contains as much as ca. 7 km of
Pennsylvanian to Cretaceous basin fill (Figure 2) adjacent to
the Uncompahgre Uplift (Barbeau, 2003; Goldhammer,
Oswald, & Dunn, 1994; Trudgill & Paz, 2009). The upper
Paleozoic to Mesozoic section comprises four lithostrati-
graphic units separated by three regional unconformities
(Figure 2). At the base is the Middle Pennsylvanian (Des-
moinesian) Paradox Fm., a layered evaporite sequence that
passes upward to mixed marine carbonates (Honaker Trail
Fm.) and marine to nonmarine siliciclastics (lower Cutler
Grp.). The mid‐Cutler unconformity (which is readily
imaged on seismic data; Figure 3a,b) separates this basal
unit from those above, which comprise upper Cutler Grp. to
Mesozoic alluvial, fluvial and eolian strata. These in turn are
separated by two regional unconformities at the bases of the
Chinle Fm. (Molenaar, 1981) and Entrada Sst. (Figure 2).

According to Barbeau (2003) and Blakey (2009), maxi-
mum subsidence of the Paradox Basin coincided with
deposition of the Paradox Fm. evaporites. Subsequent dif-
ferential loading by prograding Upper Pennsylvanian to
Permian fluvial sediment, shed from the Uncompahgre
Uplift (Figure 1a), caused salt inflation over presalt normal
faults, thereby triggering a series of NW‐SE trending salt
walls (Baars & Stevenson, 1981; Elston, Shoemaker, &
Landis, 1962; Ge et al., 1997; Kluth & DuChene, 2009;
Lawton & Buck, 2006; Trudgill, 2011). The onset of dia-
pirism was earlier in proximal (NE) than distal (SW) areas
(Trudgill, 2011).

Throughout the basin, passive diapirism was a domi-
nantly Permian event, with activity decreasing during the
Triassic (Barbeau, 2003; Elston et al., 1962; Lawton &
Buck, 2006; Trudgill, 2011). According to Rasmussen and
Rasmussen (2009), diapirism across the deepest part of the
basin ended in the Early Triassic. However, Vogel (1960)
and later Rowan et al. (2016) interpret diapirism at Gyp-
sum Valley, which is located in a distal position, to have
ended by the mid‐Jurassic. Importantly, although contrac-
tion was involved in the emplacement of the Uncompahgre
Uplift, there is no cited evidence for any contraction in the
Paradox Basin, except for minor shortening during the
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Laramide Orogeny, postdating salt wall formation and dia-
pir burial (Mankowski, Campbell, Huntoon, Gregg, &
Linari, 2002).

2.2 | Gypsum Valley salt wall

The Gypsum Valley diapir is a NW‐SE trending vertical
salt wall located in the southeastern, distal part of the Para-
dox Basin in SW Colorado (Figure 1). The salt wall is
bounded on the northeastern side by the Dry Creek mini-
basin and on the southwestern side by the Disappointment
minibasin, forming a breached anticline geometry almost
35 km long and from 2 to 3.5 km wide. The core of the
structure has been eroded to form the Gypsum Valley
physiographic feature, which is divided into a northern,
narrower part referred to as Little Gypsum Valley, and a
broader, southern part referred to as Big Gypsum Valley.
The southeastern termination of the salt wall, at the south-
ern end of the Big Gypsum Valley, is the focus of this
study (Figures 1b and 4).

Seismic reflection, well, and field data depict an impor-
tant asymmetry (Figure 3b) between the bounding mini-
basins of the study area (Amador, Schurger, & Miller,
2009; Rowan et al., 2016). On the northeastern side (Dry
Creek minibasin), older (Upper Pennsylvanian to Permian)
strata are relatively thick and deeply buried, with only
minor upturn near the diapir. On a broad scale, Cutler Grp.
strata form basinward (SW) shifting depocentres (Fig-
ure 3a,b) characteristic of expulsion–rollover structures (Ge
et al., 1997; Trudgill, 2011). In contrast, the southwestern
side (Disappointment minibasin, Figure 3b) is marked by
Pennsylvanian strata that gradually becomes thin and
upturns to the near‐vertical adjacent to the diapir, forming
a megaflap (Deatrick, Giles, Langford, Rowan, & Hearon,
2015; Mast, 2016; Rowan et al., 2016).

The general evolution of the southeastern part of this
salt wall, based on a 2‐D analysis and restoration (Rowan

et al., 2016), is depicted in Figure 5. Salt movement was
triggered during the Late Pennsylvanian by differential sed-
imentary loading, forming an early, asymmetric, single‐flap
active diapir (Schultz‐Ela, Jackson, & Vendeville, 1993)
with a thinned roof bounded by a suprasalt counterregional
fault over the proximal (NE) edge of the diapir (Figure 5b,
c). Erosion of the thinned diapir roof (mid‐Cutler unconfor-
mity) triggered salt breakthrough and the onset of passive
diapirism (Figure 5d). Subsequent evacuation of deep salt
into the growing diapir generated diapir‐flanking depocen-
tres containing upper Cutler Grp. and younger strata, with
progressive rotation of the southwestern flank into the
megaflap geometry and consequent widening of the diapir
(Figure 5e,f).

3 | OBSERVATIONS

3.1 | Methods

To achieve the goals outlined for this study, both subsur-
face and field data were incorporated into the analysis.
Subsurface data include one regional 2D depth‐converted
seismic reflection profile across the southeastern end of the
Gypsum Valley salt wall (Figure 3b; Rowan et al., 2016).
The interpretation in depth was constrained by horizon tops
from 13 wells (see well locations in Figure 4). Field data
include more than 1,200 stations with structural and strati-
graphic data.

3.2 | Stratigraphy

According to field and well data (Baars, 1965; Hite &
Buckner, 1981; Mahrer, Ake, O'Connell, & Block, 2012;
Timbel, 2015; Weimer 1982), the nonoutcropping presalt
units are Cambrian to lowermost Pennsylvanian carbonate
and siliciclastic rocks (Figure 2). Overlying this, the thick
Paradox Fm. contains 29 cycles of primarily halite,
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anhydrite, and organic mudstones (Figure 2) that are
interbedded with coarse‐grained siliciclastics in the fore-
deep near the Uncompahgre Uplift and carbonates in the
distal margins of the Paradox Basin, which includes Gyp-
sum Valley (Franczyk, 1992; Goldhammer et al., 1994;
Hite & Buckner, 1981; Lawton, Buller, & Parr, 2015; Nuc-
cio & Condon, 1996). The Paradox Fm. serves as the salt
source for the Gypsum Valley diapir.

Stratal units influenced by concurrent salt tectonics
range from the uppermost Ismay member, an informal rock
unit of the Upper Pennsylvanian Paradox Fm., through the

Lower Cretaceous Dakota Sst. (Figure 2). On the south-
western flank of the diapir, the thinned package of the
megaflap comprises: the uppermost Paradox Fm. shales
and carbonates (Mast, 2016), the cyclic carbonate and sili-
ciclastics of the Honaker Trail Fm., and the lower Cutler
Grp. carbonates interbedded with shales (Deatrick et al.,
2015). Growth strata recording passive diapirism are com-
posed of the following: the upper Cutler Grp., the Moen-
kopi and Chinle formations, the Glen Canyon Grp. and the
San Rafael Grp. (Figure 2). The lower Cutler fossiliferous
carbonates and upper Cutler nonmarine red arkosic con-
glomerates and sandstones are separated by the mid‐Cutler
unconformity (Barbeau, 2003), and the base‐Chinle uncon-
formity divides marine fine‐grained sediment of the Moen-
kopi Fm. from continental red sandstones and
conglomerates of the Chinle Fm. (Doelling, 1988; Hazel,
1994; Molenaar, 1981; O'Sullivan & MacLachlan, 1975;
Stewart, Poole, & Wilson, 1972). Above the base‐Entrada
unconformity, eolian and fluvial strata of the San Rafael
Grp. (and younger units) have a different relationship to
the diapir, overlapping the salt wall, thickening into syncli-
nes located over the top of the diapir in the Little Gypsum
Valley, or exposed as blocks that have been faulted down
onto the top of salt. Finally, the Mancos Shale and Mesa
Verde Grp. (Figure 2) were deposited in the Sevier Fore-
land Basin (Lawton et al., 1997), by which time the salt
wall was no longer active and was buried beneath at least
a kilometre of sediment.

3.3 | Structural geometry

The southeastern end of the Gypsum Valley salt wall is
subdivided into five structural domains (SD) that are
bounded by different types of faults (Figure 6a). In the sec-
tions below, we describe first the faults and then the defin-
ing attributes of structural domains and sub‐domains,
generally moving from the megaflap counter‐clockwise
around the end of the diapir to the northeastern flank.

3.3.1 | Faults

Northwestern minor fault
A minor WNW‐ESE trending fault on the SW flank of the
Gypsum Valley salt wall divides structural domain I into
two sub‐domains, I′ and I″ (Figure 6a). Although mostly
covered by Quaternary sediment, the fault is inferred from
the ca. 80 m offset of the Paradox‐Cutler contact and asso-
ciated different attitudes in strata on either side (Figure 4).
Although the origin of the fault is unknown, the geometry
is compatible with a down‐to‐the‐N normal fault (Figure 7,
section A inset). Moreover, it was active relatively early
since it terminates at the base‐Entrada unconformity
(Figures 4 and 6a).
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Radial faults
Strata flanking the diapir at its southern corner are cut by
the western and eastern radial faults (2.9 and 3.5 km long
respectively). They are approximately orthogonal to the
diapir edge, diverge away from the diapir, and bound a
down‐dropped block (Figure 4 and 6a). The N‐S trending
western fault dips towards the NE and has an estimated
throw of ca. 480 m on section D (Figure 7) and the NW‐
SE to NNE‐SSW trending eastern fault dips towards the
SW and has an estimated throw of ca. 400 m (Figure 4
and 7, section D). Both radial faults decrease in throws
southwards away from the diapir until they terminate
within the Mancos Shale.

Counterregional fault
A large, NW‐SE trending, down‐to‐the‐NE normal fault
extends away from the southeastern termination of the
Gypsum Valley salt wall (Figure 4 and 7, section D).
Because its geometry is analogous to that of coun-
terregional (landward‐dipping) faults in the northern Gulf
of Mexico, in that it dips towards the source of prograding
sediment and curves into the proximal edge of the diapir
(Diegel, Karlo, Schuster, Shoup, & Tauvers, 1995; Schus-
ter, 1995), we apply the same terminology. The counter‐
regional fault accommodates more than 1.5 km of throw
close to the salt wall, with Honaker Trail Fm. in the foot-
wall and a thickened Upper Pennsylvanian to Cretaceous
sequence in its hanging wall (Figure 7, section D). Dis-
placement decreases away from the diapir to the SE (Fig-
ure 4).

Lateral fault
Northeast of where the counterregional fault merges with
the diapir is a small, NE‐SW trending, down‐to‐the‐SE nor-
mal fault (Figure 6a) within the Dakota Sst. Slickenlines
plunge 24° and 40° towards 150 and 171, respectively (i.e.
NNW‐SSE‐oriented oblique slip). We do not term this a
radial fault because radial faults merely segment drape‐
folded strata, whereas this fault separates two very different
structural domains (see below).

Diapir‐parallel faults
Along both outer edges of the diapir are steep normal
faults oriented parallel to the salt wall margin (Figures 4
and 6a). The hanging walls have Morrison Fm. strata
down‐dropped directly onto the Paradox Fm. evaporites
(Figure 7, sections A–C insets).

3.3.2 | Structural domains

Diapir‐flanking strata around the southeastern termination of
the Gypsum Valley salt wall are divided into five SD sepa-
rated by some of the faults described above (Figure 6a).

SD I
The southwestern flank of the Gypsum Valley salt wall
(SD I) is dominated by the megaflap (Figures 6a and 8a).
It is subdivided into two sub‐domains (SD I′ and SD I″),
separated by the northwestern minor fault (Figures 4 and
6a), according to the character and amount of internal
deformation observed within the megaflap, as described
below. In addition to the megaflap, another common ele-
ment is the diapir‐parallel normal faults that juxtapose low‐
dipping Morrison Fm. above the diapir against vertical
megaflap strata adjacent to the diapir (Figures 4 and 7,
sections A–C).

Although SD I″ is southeast of SD I′, it is described
first because it has a simpler character. It is equivalent to
Zone 1 of Mast (2016), where the megaflap is composed
of two mechanically differentiated but concordant units: (a)
an upper unit formed by the Honaker Trail Fm. carbonates
and siliciclastics and the lowermost part of the lower Cutler
Grp. carbonates; and (b) a lower unit made up of carbon-
ates interbedded with mudstones of the Paradox Fm. (prob-
ably corresponding to the uppermost Ismay informal Mbr.,
Deatrick et al., 2015; Mast, 2016). In other words, the
nonevaporite uppermost part of the salt diapir is part of the
megaflap.

The megaflap decreases in dip south‐eastward,
from near‐vertical to overturned in the northwestern part of
SD I″ to about 60° close to the western radial fault (Fig-
ure 4). Above the mid‐Cutler unconformity, the upper Cut-
ler Grp. through Lower Jurassic strata form a growth
wedge that is truncated beneath the 30–35° dipping base‐
Entrada unconformity (Figures 4, 7 sections B and C, and
8a). The entire structure (megaflap and capping unconfor-
mity) deepens along strike to the northwest so that only the
nonevaporite member of the Paradox Fm. is exposed
between the unconformity and diapir near the boundary
with SD I′ (Figure 4). The fold axis of the megaflap drape
fold plunges 7° towards 264°, slightly oblique to the 255°
trend of the diapir edge (Figure 6b).

SD I′, like the northwestern part of SD I″, exposes only
the uppermost Ismay Mbr. of the Paradox Fm. between the
diapir and the mid‐Cutler unconformity (Figures 4 and 7,
section A). Just NW of the northwestern minor fault (Zone
2 of Mast, 2016; Figure 6a), however, it is characterized
by discontinuous dolomite ridges that form short‐wave-
length, low‐amplitude asymmetric folds interbedded with
black shales. Fold axes are sub‐horizontal (ca. 3°–15°
plunge) and roughly parallel to the edge of the diapir and
the fold axis of the megaflap panel (Figure 6b). Longer
fold limbs are near vertical and shorter limbs dip ca. 70° to
the SW, suggesting a NE‐side‐up sense of shear.

The uppermost Ismay Mbr. in Zone 3 of Mast (2016),
at the northwestern end of the megaflap in SD I′ (Fig-
ure 6a), contains discordant dolomite blocks. The lithology
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is similar to Zone 2 of Mast (2016) and folds are still rec-
ognized, but the dolomite blocks appear to be isolated and
encased in black shales and marls. Thus, the oldest strata
in the megaflap become increasingly deformed towards the
NW: they are conformable, without significant internal
deformation, in SD I″; they include coherent asymmetric
folds in southeastern SD I′; and they are disrupted in north-
western SD I′.

There is no evidence for any structural thinning of the
Honaker Trail Fm. and the lowermost part of the lower
Cutler Grp. during stratal rotation (Rowan et al., 2016). In
addition, well control shows that the Honaker Trail Fm. at
the base of the Disappointment minibasin has a thickness
intermediate between that within the megaflap and that at
the base of the Dry Creek minibasin.

SD II
SD II is the graben bounded by the two large radial faults
at the southern corner of the diapir (Figure 6a). Bedding
dips are a maximum of ca. 65° to the SSW near the diapir
and gradually decrease southward. Jurassic strata in the
northern part of the graben (Figure 4) are folded into a
low‐amplitude anticline‐syncline pair with sub‐horizontal
fold axes trending roughly parallel to the eastern bounding
fault (Figure 6b). The Brushy Basin Mbr. to Dakota Sst.
are ca. 150 m thicker within the graben (Figure 7, section
D); older strata are not exposed.

SD III
SD III, located off the southeastern termination of the salt
wall, is bounded by the eastern radial fault to the W and
the counterregional fault to the NE (Figures 6a and 8b).
Strata in SD III form a moderately to gently dipping panel
over the plunging nose of the diapir (Figure 7, section X),
with maximum dips (45°) close to the diapir (Figures 4
and 6b). Within SD III, the mid‐Cutler unconformity pro-
gressively cuts out more strata closer to the counterregional
fault and the base‐Entrada unconformity cuts out more sec-
tion approaching the diapir (Figures 7, section X and 8b).

SD IV
SD IV forms the hanging wall of the counterregional fault
(Figure 6a). Strata are generally sub‐horizontal (Figure 7,
sections D and Y), but a broad, gentle syncline with a fold
axis plunging 5° towards 112° probably intersects the
counterregional fault near its termination against the diapir
(Figures 4 and 6b). SD IV is bounded to the NW by SE‐
dipping strata cut by the lateral fault (Figure 7, section Y).

SD V
SD V is located along the northeastern flank of the salt
wall (Figure 6a). Strata in the Dry Creek minibasin are
folded within 2 km of the diapir, with dips as steep as 80°

immediately adjacent to the salt structure (Figure 7, sec-
tions A–C). Along most of its length, SD V is bound to
the SW by a SW‐dipping normal fault with Morrison Fm.
strata in its hanging wall adjacent to exposed diapir
caprock (Figure 4). The fault dies out towards the SE and
is replaced by a SE‐plunging asymmetric anticline with a
gently‐dipping (ca. 20°) NE limb and a steep (ca. 80°) SW
limb (Figures 4 and 6b). The fold‐axis plunge increases to
ca. 60° near the termination of the salt wall, with the SE‐
dipping strata offset slightly by the lateral fault (Figures 4
and 7, section Y).

4 | SUMMARY AND
INTERPRETATION

The stratal geometry flanking Gypsum Valley diapir is
asymmetric, whereas strata on the SW flank are deposition-
ally thinned and folded to near‐vertical in the megaflap,
strata on the NE side are thicker, deeper and mostly gently
dipping. The asymmetry continues off the southeastern end
of the diapir, where the counterregional fault separates SDs
III and IV. This style is typical of counterregional systems
(Rowan & Inman, 2005; Schuster, 1995), where differential
minibasin subsidence is accommodated by a combination
of the diapir (Figure 7, sections A–C) and counterregional
faults extending off its ends (Figure 7, section D). At the
diapir, slip is likely to have been accommodated by shear
within the salt, not by a discrete fault at its edge. Because
the Honaker Trail Fm. is thin in the footwall of the coun-
terregional fault and along the southwestern flank of the
diapir, and thicker in the hanging wall and along the north-
eastern flank, the asymmetry and counter‐regional‐style
relationship were established from the onset of salt move-
ment (Figure 5). The style of diapirism was that of single‐
flap active diapirism (Schultz‐Ela et al., 1993), not reactive
rise.

4.1 | Southwest (high) side

There are significant along‐strike changes in geometry on
the southwestern, upthrown side of the diapir and counter‐
regional fault. The most prominent is the existence of the
radial faults and intervening graben (Figures 4 and 6a).
These were probably caused by drape folding around a
curved edge of salt and the resultant concentric tensile
(hoop) stress regime (Coleman, Jackson, Duffy, & Nikoli-
nakou, 2018; Rowan et al., 2003; Stewart, 2006; Figure 9).
Indeed, the radial faults are located exactly where the strike
direction of the diapir edge and adjacent Honaker Trail
Fm. strata changes most abruptly (Figures 4 and 6a). The
concentration of radial faults at the ends of the salt wall is
compatible with observations from the North Sea (Davison
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et al., 2000; Stewart, 2006). The minor folds within the
graben are more enigmatic. They may have formed due to
crowding as the wider younger section was dropped down
into a narrower space (Figure 9); alternatively, they may
have formed during late (Laramide) contraction. The onset
and duration of radial faulting is unknown, except that the
faults were active as late as during deposition of the Man-
cos Shale Fm. Because they presumably formed due to
drape folding, they were probably long‐lived since differen-
tial salt evacuation/diapirism began during Honaker Trail
deposition (Figure 5). They would have grown in displace-
ment with increased folding and would gradually have
propagated away from the diapir (Figure 9). The fault
lengths and net displacement may have increased due to
late reactivation during the Laramide contraction.

The geometry of the Honaker Trail Fm., and thus prob-
ably the salt–sediment interface, changes as the termination
of the diapir is approached. The strata are steep, approach-
ing vertical, along the elongate SW side (Figures 3 and 7,
sections A–B), but gradually decrease towards the SE (Fig-
ure 7, section C), so that the diapir termination forms a
plunging nose over a distance of about 4 km (Figure 7,
section X). Because megaflaps are defined as having near‐
vertical to overturned dips (Rowan et al., 2016), the Gyp-
sum Valley megaflap terminates gradually to the SE as the
dips decrease near the western radial fault (Figure 4), and
there is no megaflap at the structural nose of the salt wall
termination. This gradual termination and decrease in dip
may be related to the deep salt budget since limb rotation
to vertical in halokinetic megaflaps requires an adequate
thickness of deep salt (Rowan et al., 2016). Thus, beneath
the Gypsum Valley megaflap, the salt would have been
thick enough for strata to rotate to vertical, but rotation
was limited where the salt might have thinned southeast-
ward towards the edge of the basin (Figure 1a).

The style of megaflap termination to the NW is uncer-
tain. Maximum dips of the megaflap strata are slightly
decreased in SD I′ (65–80°) and the strata are buried
beneath the Morrison Fm. farther NW. Seismic data show
that the megaflap is absent 13 km to the NW, with the
Honaker Trail Fm. truncated at depth beneath the mid‐
Cutler unconformity (Figure 3a). Whether the megaflap
gradually decreases in dip and elevation, or is truncated
abruptly by one or more faults, is unknown.

As described above, the uppermost Paradox Fm. black
shales and interbedded carbonates are parallel to the Hon-
aker Trail Fm. in SD I′, but the latter are folded in the
southeastern part of SD I′, and completely disrupted to the
NW. The asymmetric fold geometries suggest formation
during roughly diapir‐parallel shear, with a sense of motion
of the inside of the diapir up relative to flanking strata in
the minibasin. Two possible origins for this deformation
are considered. First, the deformation might have occurred

early as soft‐sediment deformation during the earliest infla-
tion of the diapir just to the NE. In this case, the deformed
and disrupted strata would still be considered part of the
megaflap, simply rotated during drape folding. Alterna-
tively, the deformation could have been caused at any time
by ductile flow of the salt and associated weak shales, in
which case the uppermost Paradox in this area acted as part
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of the diapir, not the megaflap. One implication of this lat-
ter interpretation is that the base of the megaflap can shift
stratigraphically along the edge of the diapir.

4.2 | Northeast (low) side

There is relatively minor along‐strike variation in the large‐
scale geometry of the northeastern, downthrown flank of
the diapir (Figures 4 and 7). One difference is that the
Mesozoic strata climb gently towards the diapir over a
zone about 1.5–2 km wide within SD V (Figure 7, sections
A–C), the same strata in the hanging wall of the counter‐
regional fault (SD IV) are sub‐horizontal (Figure 7, section
D). The required change in elevation occurs right at the SE
termination of the diapir, manifested by the local SE‐dip-
ping Dakota Fm. strata, the minor lateral fault, and the
presence of the Mesa Verde Grp. only to the SE (Figures 4
and 7, section Y).

Is this change in elevation due to ongoing drape folding
adjacent to the diapir during the Late Cretaceous or to
some other factor, and is the lateral fault separating SD IV
and V just a radial fault due to drape folding? We have
already pointed out that there is no drape fold to the SE of
the fault, so that it is unlikely to be a radial fault. To the
NW of the fault, there are two scales of folding: gentle
folding of the Dakota Sst. and younger strata extending
close to 2 km from the salt (Figure 7, sections A–C); and a
narrower zone of folding within the underlying Morrison
Fm., as indicated by a sudden increase in dip, within about
300 m of the diapir on section B (Figure 7). The latter is
compatible with halokinetic folding, which occurs within
1 km of a passive diapir (Giles & Rowan, 2012). More-
over, the regional level of the top Dakota Sst. (defined as
the level where the strata have not gone up or down due to
local deformation; Hossack, 1995) is consistent over a
broad area along the eastern portions of sections A–D and
most of section Y (Figure 7). In contrast, the Dakota Sst.
within the 1.5–2 km wide zone of folding is above regio-
nal. Thus, we attribute the near‐diapir folding to a combi-
nation of two processes. The more pronounced folding
occurring within 300–500 m of the diapir likely represents
halokinetic drape folding during ongoing passive diapirism
in the Jurassic. However, we infer that the broader zone of
gentler folding, recorded by the Burro Canyon Fm. and
Dakota Sst., was generated by minor diapir rejuvenation
during the subsequent Laramide Orogeny. The amount of
shortening decreasing abruptly at the end of the salt wall,
accommodated in part by a lateral tear fault.

Another change in near‐diapir deformation on the NE
flank of the diapir is that a normal fault dipping towards
the diapir transitions to the SE to an anticline with a stee-
per limb on the diapir side (Figure 4). The tightness of the
fold cannot be explained by deformation above the deep

salt level and thus suggests the presence of an inward step-
ping of the diapir edge (i.e. salt shoulder) that was progres-
sively overlapped by Morrison Fm. strata (Figure 7,
sections C and Y). Both the diapir‐parallel normal fault
and the fold are interpreted as different manifestations of
shoulder collapse due to halite dissolution and the forma-
tion of caprock (see McFarland, Giles, Langford, &
Rowan, 2015).

5 | DISCUSSION

In the following sections, we compare the southeastern ter-
mination of Gypsum Valley salt wall, with its counter‐
regional fault, firstly to other diapir terminations in the
Paradox Basin and secondly to similar features in the
northern Gulf of Mexico. We then discuss general aspects
of salt wall and megaflap terminations.

5.1 | Paradox Basin salt wall terminations

Four other diapirs (shown in Figure 1a) have known simi-
larities to the Gypsum Valley diapir (Table 1). First, the
Onion Creek diapir has a megaflap on the distal (SW) side
(Hudec, 1995; Trudgill, 2011), but no counterregional
faults are mapped. Second, the Castle Valley diapir has no
megaflap, although a 300 m long and N‐S trending coun-
terregional (E‐dipping) structure extending away from its
NW end has been identified as a salt weld, not a fault
(Lawton et al., 2015). Welding was presumably caused by
some combination of NE side subsidence, dissolution, and
late contraction. Third, the nearby Moab Valley diapir
extends in the subsurface for over 20 km NW from the sur-
face termination as a salt roller in the footwall of the NE‐
dipping Moab fault. This fault was active during late
(Cenozoic) extension and/or salt dissolution (Pevear, Vro-
lijk, & Longstaffe, 1997; Solum, van der Pluijm, & Peacor,
2005; Trudgill, 2011; Trudgill, Banbury, & Underhill,
2004), but an early origin as a counterregional fault is
uncertain. Finally, the Lisbon Valley diapir is an inflated
salt roller in the footwall of a 20‐km long counterregional
fault (Morrison & Parry, 1986; Parker, 1981). The slightly
asymmetric geometry of its flanking minibasins demon-
strates that fault activation occurred early (Fleming, 2015);
it may have been analogous to the early single‐flap active
diapir phase at Gypsum Valley diapir (Figure 5b). How-
ever, the Lisbon Valley salt never broke through to grow
as a passive diapir, but was simply reactivated during late
contraction and extension (Fleming, 2015).

We highlight these aspects of other salt walls to show
that there are both similarities and differences between their
geometries and those described here for the Gypsum Valley
salt wall. The comparison is intriguing, and suggests that
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further work is warranted in order to understand better the
styles and processes of diapirism and salt–sediment interac-
tion in the Paradox Basin.

5.2 | Counterregional systems in the
northern Gulf of Mexico

Counterregional faults extending away from diapir termina-
tions are also known from the northern Gulf of Mexico
(Diegel et al., 1995; Rowan & Inman, 2005; Rowan, Jack-
son, & Trudgill, 1999; Schuster, 1995; Trudgill & Rowan,
2004). They are found above both the autochthonous and
allochthonous salt levels, the diapirs are often basinward‐
leaning rather than vertical, sub‐circular stocks are more
common than salt walls, and megaflaps have not been
reported.

The oldest strata on the downthrown side at Gypsum
Valley diapir are thicker than on the upthrown side. Similar
relationships exist in the northern Gulf of Mexico (Schus-
ter, 1995, figures 10 and 11; Trudgill & Rowan, 2004, fig-
ure 7b). In other cases, the opposite relationship exists,
with the oldest strata in the proximal minibasin being
thinned and the younger section being thicker (Rowan &
Inman, 2005, their figure 1). The same geometry is seen at
Salt Valley diapir in the Paradox Basin (Trudgill, 2011,
figure 5a) indicating both styles can exist in the two basins.
The difference in style is related to the early style of salt
rise and the position of diapir breakthrough. If the roof is
unfaulted and the salt simply inflates, progressive loading
on the proximal side leads to diapir breakout at the distal

end of the inflated salt, with the thinned oldest strata (the
roof of the early inflated salt) ending up at the base of the
landward minibasin (Figure 10a). If, in contrast, the early
history is that of single‐flap active diapirism, with the fault
and eventual diapir breakthrough located at the proximal
end of the inflated salt, the thinned roof (flap) ends up
draped on the distal side of the diapir, potentially as a
megaflap (Figure 10b). Of course, the geometry may
change from one style to the other along strike, possibly
due to variations in roof thickness and strength, thereby
providing one possible form of megaflap termination.

In counterregional‐style systems of the northern Gulf of
Mexico, the largest differential subsidence is centred adja-
cent to the diapirs (Rowan & Inman, 2005). Differential
subsidence may still be significant along strike from the
diapirs, where it is taken up by slip on counterregional
faults that merge into the proximal edges of the diapirs
(Rowan & Inman, 2005; Rowan et al., 1999; Trudgill &
Rowan, 2004). Note that this model requires no regional
extension to be accommodated by the faults (Schuster,
1995). The deeper portions of the faults are actually welds
since the salt evolves from linear, low‐relief walls to high‐
relief stocks (Trudgill & Rowan, 2004). As fault displace-
ment decreases along strike, the differential subsidence is
increasingly accommodated by folding, until only monocli-
nal folding records the deformation around the landward
and lateral margins of the minibasin. This is similar to the
geometry observed at the southeastern termination of the
Gypsum Valley salt wall, where the counterregional fault
emanates from the proximal edge of the diapir,

TABLE 1 Selected attributes of different salt walls within the Paradox Basin derived from the literature (information for salt walls other than
Gypsum Valley taken from Banbury, 2005; Fleming, 2015; Hudec, 1995; Lawton & Buck, 2006; Lawton et al., 2015; Morrison & Parry, 1986;
Parker, 1981; Trudgill, 2011)

SE Gypsum
Valley SW Onion Creek NW Castle Valley NW Moab Valley Lisbon Valley

Type Salt wall Salt wall (Fisher
Valley)

Salt wall Salt wall Salt roller

Structural relief (m) 2,300 3,800 3,000 2,500 2,700

Timing of diapirism Pennsylvanian to
Jurassic

Pennsylvanian to
Permian

Pennsylvanian to Early
Triassic

Pennsylvanian to
Triassic

Pennsylvanian,
Cenozoic

Major bounding structure Counterregional
fault

Is not mapped Counterregional weld Late extensional
fault

Late extensional
fault

Geometry of flanking
minibasins

Asymmetric Asymmetric Asymmetric Slightly asymmetric Slightly asymmetric

Salt wall termination
geometry

Steep plunging
nose

Steep plunging
nose

Steep plunging nose Gradual plunging
salt roller

Gradual plunging
salt roller

Salt wall attenuation
distance (km)

Short (4) Short (3.1) Short (1.6) Long (20) Short to moderate
(8)

Megaflap Yes Yes No Yes No

Radial faults Yes Are not mapped Yes No No
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accommodates differential subsidence of the two mini-
basins, and decreases in displacement away from the dia-
pir.

5.3 | Salt wall and megaflap terminations

In general, structures extending off the terminations of salt
walls differ depending on the local tectonic setting. They
may be contractional salt‐cored anticlines, thrust faults,
extensional faults, strike‐slip faults, or counterregional
faults related to differential salt evacuation. However, we
focus here only on passive diapirism driven by differential
loading, without significant regional extension or contrac-
tion, and specifically on the final geometry after the flank-
ing minibasins have touched down to form welds. We first
address the termination geometry of the diapir itself (with
or without a megaflap, Figure 11), then cases in which the
salt wall and megaflap terminations are coincident (Fig-
ure 12), and finally cases in which a halokinetic (noncon-
tractional) megaflap terminates away from the end of the
salt wall (Figure 13).

The geometry of the termination of a passive salt wall
is ultimately controlled by the available salt budget and the
patterns of sedimentary loading, and thus the spatial varia-
tions in salt evacuation and flow towards the diapir. If, for
example, the autochthonous salt basin has an abrupt lateral
boundary (such as a basement‐involved fault), a salt wall
formed near the basin edge will have an equally abrupt ter-
mination, with flanking depocentres bounded by steep
faults separating the subsiding minibasins from areas of no
corresponding subsidence off the end of the diapir (Fig-
ure 11a). If there is no local variation in deep salt thickness
to begin with, the salt wall is liable to plunge along strike
and its edge will have a curved map‐view outline, with
depocentres on all sides and radial faults best developed

where curvature of drape‐folded strata is greatest (Fig-
ure 11b). The salt budget for flow into the diapir from
beneath the depocentres will be controlled in part by the
position of nearby diapirs and thus the fetch area for deep
salt.

The cartoons in Figure 11a, b show symmetric diapir
flanks, but diapirs may be slightly to highly asymmetric.
If asymmetric, the diapir may be associated with a coun-
terregional fault at one corner, radial faults on the other
corner, and a possible megaflap (Figure 11c), as observed
at Gypsum Valley. Note that although the corner where
the counterregional fault intersects the diapir is broadly
curved, no significant radial faults form because there is
no curved drape fold. The diapir termination may be rela-
tively abrupt, in which case differential subsidence is
high immediately adjacent to the end of the salt wall but
decreases rapidly along strike away from the diapir, the
top salt correspondingly plunges relatively steeply, radial
faults are well developed due to high degrees of map‐
view curvature of the flanking strata, and the counter‐
regional fault or equivalent weld is relatively short (Fig-
ure 12a). Alternatively, the salt wall termination may be
gradual, with differential subsidence diffused over a
broader area, a gently plunging salt nose, less map–view
curvature and thus less common radial faults and a longer
counterregional fault (Figure 12b). The difference might
again be explained by the deep salt budget: if it
decreases rapidly along strike, the termination will be
more abrupt and radial faults will be common (Fig-
ure 12a); otherwise, the termination will be gradual and
radial faults absent or minor (Figure 12b). The SE termi-
nation of the Gypsum Valley diapir falls between these
end‐member geometries.

Megaflaps may also terminate before reaching the end
of a salt wall. Because megaflaps are defined by the

(a)

Basinward

(b)

Basinward

Megaflap

FIGURE 10 End‐member scenarios for the evolution of counterregional‐style diapirs (based in part on Rowan & Inman, 2011; Rowan
et al., 2016): (a) early salt inflation due to progressive depositional loading, with salt breakout at the basinward edge of the inflated salt; (b) early
single‐flap active diapirism (Schultz‐Ela et al., 1993), with salt breakout at the proximal edge of the diapir and development of a megaflap along
the basinward flank of the diapir
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steepness and height of the stratal panel, end‐member styles
of termination are a gradual decrease in elevation or maxi-
mum dip of the megaflap panel along strike or an abrupt
drop or decrease in dip across one or more faults (Fig-
ure 13). Combinations of any of these are possible and
likely in natural examples. One possible cause for lateral
termination is a decrease in deep salt budget along strike,
as suggested above for the Gypsum Valley megaflap;
again, a megaflap forming by limb rotation cannot reach
vertical if the salt is too thin relative to the rotating roof
panel (Rowan et al., 2016). A second factor is the width of
the early pillow or single‐flap active diapir; as the width
decreases, there is less roof length available to rotate into
steep attitudes. Similarly, a third factor is any lateral varia-
tion in where the roof pulls apart and salt breaks through.
If the early fault that separates the strata that end up on

one or the other sides of the diapir is consistently along
one edge of the early salt structure, then the geometry of a
megaflap will change very little along strike (for a constant
width early pillow). If, however, the fault gradually or
abruptly crosses the top of the pillow, the length of the
roof panel that rotates into the megaflap is diminished and
the rest of the roof ends up flanking the other side of the
diapir (assuming none is removed by erosion).

6 | CONCLUSIONS

The Gypsum Valley diapir is an outstanding natural labora-
tory for studying the three‐dimensional architecture of the
terminations of both a salt wall and a megaflap. From this
example, and from comparison to analogous structures in
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FIGURE 11 Schematic illustrations of end‐member termination geometries of salt walls (red faults are all suprasalt, countour lines are on
top salt): (a) symmetric salt wall termination above a presalt basement fault (not shown); (b) symmetric salt wall termination where there is deep
salt present off the end of the diapir; (c) termination where the salt wall is asymmetric, with a counterregional fault off the end. Note that radial
fault development depends on both map–view curvature and the degree of drape folding of flanking strata. Arrows indicate salt flow into diapir

Sediment input
direction

Abrupt salt wall
termination with
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Radial faults Salt weld
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direction
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Younger flanking minibasin
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(hoop) stress
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FIGURE 12 Schematic plan view of
varying terminations of salt walls with
asymmetric minibasins and megaflaps. Red
dashed lines indicate radial faults; red
continuous lines indicate the counter‐
regional fault at (a) abrupt and (b) gradual
salt wall terminations; continuous black
lines indicate topographic contours on the
top salt
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the Paradox Basin and the northern Gulf of Mexico, we
have demonstrated or suggested the following:

1. The southeastern end of the Gypsum Valley salt wall is
asymmetric, with thicker, deeper, gently dipping strata
in the proximal NE minibasin and thinned, rotated older
strata forming a megaflap on the distal SW side. Its ter-
mination is characterized by a moderately plunging nose
of salt overlain by SE-dipping strata with maximum 45°
dips, a large counterregional fault that separates the
nose from the deep proximal minibasin, and radial faults
that accommodate concentric extension where the map-
view curvature of the flanking strata is greatest.

2. The megaflap, which is characterized by near-vertical
strata, terminates towards the southeastern end of the dia-
pir by a decrease to ca. 60° dips over a distance of several
hundred metres before being truncated by the western
radial fault. The northwestern termination is buried by
younger strata. The megaflap includes undeformed
nonevaporite strata of the uppermost Paradox Fm. to the
SE, but this same interval becomes increasingly deformed
along strike to the NW. This deformation may represent
early syn-sedimentary slumping or part of the intrasalt
deformation; in the latter case, the base of the megaflap
would change stratigraphic position along strike.

3. In counterregional systems like the Gypsum Valley dia-
pir and possibly analogous structures in the northern
Gulf of Mexico, megaflap formation on the distal flank
is favoured when the salt breaks out on the proximal
side of the initial salt pillow or diapir.

4. In general, salt wall terminations may be abrupt or grad-
ual. Controlling factors probably include the spatial and
thickness variation in the deep salt, the presence of

nearby diapirs and thus the fetch area for salt feeding
the wall, and the pattern of depositional loading and
associated flow of salt into the diapir.

5. For a salt wall without significant extension or contrac-
tion, if the two flanking minibasins are highly asymmet-
ric, a counterregional fault extends off the end of the
wall. The length of the counterregional fault away from
the diapir depends in part on the degree of plunge of
the salt wall nose.

6. Megaflaps may terminate at any position along the salt
wall. Termination is accommodated by decreased length
and/or dip of the megaflap strata that occurs either grad-
ually or abruptly at one or more faults. Controlling fac-
tors include the deep salt budget, the width of the initial
salt pillow or single-flap active diapir and variations in
the position on the early salt structure at which the roof
separates and the salt breaks out.

7. In all cases, radial faults will be most prevalent where
there is the maximum map–view curvature of drape-
folded strata. They tend to have more offset and extend
farther from the diapir with wider zones and higher
degrees of stratal upturn, as found in megaflaps.
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ABSTRACT
This article presents a geological map and cross-sections at 1:50,000 scale covering an area of
609 km2 of the Eastern Prebetic Zone (SE Iberia). The structure of the studied area is
characterized by an NW-directed fold-and-thrust belt and inactive salt diapirs that are parallel
to the ENE- to NE-regional trend of the eastern Betic Cordillera. This regional trend is locally
disrupted by the NW-trending Matamoros Basin, which is flanked by the active Jumilla and
La Rosa diapirs. The geological map, the cross-sections and the outcrop observations support
the hypothesis that the major Mesozoic rifting phase affecting the Eastern Prebetic Zone
occurred during the Upper Jurassic to Santonian times coeval to the development of
extensional basins in the Western Tethyan area. The proximal part of this passive margin was
subsequently incorporated into the external part of the Betic thin-skinned fold-and-thrust
belt. The Upper Cretaceous to Cenozoic tectonic evolution of the study area encompassed
the following stages: a Campanian to Aquitanian NW-directed contraction; a Burdigalian to
upper Miocene extensional reactivation of the main subsalt faults; and a Serravallian NW-
directed contractional reactivation. In this scenario, the combined effect of the previous
contractional reactivation of pre-existing salt structures together with the Miocene subsalt
extension triggered passive salt extrusion of the La Rosa and Jumilla diapirs.
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1. Introduction

The Betic Cordillera, located in the southwestern part
of the Alpine fold-and-thrust belt (Figure 1), is the
result of the N–S to NNW–SSE convergence between
the major Eurasian and African plates during the
Upper Cretaceous to Present times (De Galdeano,
1990; Dercourt et al., 1986; Dewey, Helman, Knott,
Turco, & Hutton &, 1989). The eastern part of this cor-
dillera (Figure 2) is subdivided from north to south into
the External and Internal Betic Zones (Balanyá & Gar-
cía-Dueñas, 1987; Fallot, 1948). The Internal Betic
Zones (e.g. the Malaguide Complex outcropping in
Sierra Espuña, Murcia) consist of an allochthonous
stack of thrust sheets composed mainly of a thick suc-
cession of Triassic to Early Miocene sedimentary rocks
(De Jong, 1990; Egeler & Simon, 1969; Martín-Martín
et al., 2006; Torres-Roldán, 1979). The External Betic
Zones correspond to an orogenic wedge composed by
an NW- to NNW-directed fold-and-thrust belt that is
detached from the Iberian basement along the Upper
Triassic evaporites (Platt et al., 2003). Locally, diapirs
made up by these evaporites pierce the thin-skinned
thrusted sheets that constitute the fold-and-thrust
belt (De Ruig, 1995; Martínez del Olmo, Motis, & Mar-
tín, 2015; Moseley, 1973).

During the Mesozoic, the External Betic Zones were
represented by the proximal part of the NE-trending
South Iberian passive margin (i.e. northern conjugate
passive margin of the Alpine Tethys, Bernoulli &
Lemoine, 1980; Dewey, Pitman, Ryan, & Bonnin,
1973; Ziegler, 1982). The Alpine Tethys resulted from
the Lower to Middle Jurassic rifting followed by the
Callovian oceanic flooring that separated the Eurasian
and African plates (Schettino & Turco, 2011). How-
ever, in the External Betic Zones, the most important
rifting phase occurred later allowing the deposition of
the Upper Jurassic to Santonian syn-extensional sedi-
ments unconformably above the pre-extensional
Lower and Middle Jurassic carbonates (De Ruig,
1992; García-Hernández, López-Garrido, Rivas, Sanz
de Galdeano, & Vera, 1980; Hanne, White, & Lone-
rgan, 2003; Vera, 2001). During the Upper Jurassic to
Santonian, the External Betic Zones (Figure 2) were
subdivided into the northwestern Prebetic Zone and
the southeastern Subbetic Zone (García-Hernández
et al., 1980). According to the thickness and the strati-
graphy of the Mesozoic units, the Prebetic Zone is
divided, from NW to SE, into the External and Internal
Prebetic (De Ruig, 1992; García-Hernández et al.,
1980).
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This study presents a detailed geological map of the
Jumilla region, comprising part of the External and
Internal Prebetic (see the red square in Figure 2).
The structure of the studied area is characterized by
an NW-directed fold-and-thrust belt and inactive
salt diapirs that are parallel to the ENE- to NE-

regional trend of the Betic Cordillera and the Meso-
zoic South Iberian passive margin. However, the
ENE- to NE-regional trend is locally disrupted by
the NW-trending Mesozoic to Cenozoic Matamoros
Basin, which is flanked by the active Jumilla and La
Rosa diapirs.

Figure 1. Geologic map of the Southern termination of the Alpine fold-and-thrust belt in the Western Mediterranean (modified
from Vera, 2004).

Figure 2. Geologic and tectonic maps of the Eastern Betic Cordillera (modified from IGME 1M scale Geological map).
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2. Methods

The geological map of the Eastern Prebetic Zone at the
Jumilla region covers 609 km2. The map was con-
structed as part of a PhD dissertation, with more
than six months of fieldwork distributed in three
years. The cartographic base consists of 1:50,000 topo-
graphic maps, digital terrain models (DTM’s at 5 m
cell size) and orthophotographs (with 0.25 m pixel res-
olution) provided by the Centro Nacional de Informa-
ción Geográfica (C.N.I.G.) of the Spanish
Government. Geological mapping was performed at
1:5000 scale. Traces of the outcropping geological sur-
faces (mostly bedding and faults) were mapped in the
field using the orthophotographs and up to 6000 dip
data were collected using a compass-clinometer. The
field data were geo-referenced and transferred into a
three-dimensional digital environment (Move™ soft-
ware from Midland Valley). In this scenario, the digital
outcrop characterization using the methodology devel-
oped by Fernández (2005) allowed us to complete the
mapping of the geological surfaces. The northernmost
part of the geological map (i.e. northern part of Sierra
de las Cabras unit) is also represented on the map, but
it was mapped at less detail than the rest of the area.
The mapping of this part benefited from previous
works of Baena (1979) and Gallego Coíduras, García
Domingo, López Olmedo, and Baena Pepez (1981).
The fault symbols depicted on the Main Map reflect
the stratigraphical relationship of hanging wall to foot-
wall (i.e. thrust fault: older over younger; extensional
fault: younger over older).

The Main Map is accompanied by three cross-sec-
tions at 1:50,000 scale. Their orientation was chosen
to depict the main structural features of the studied
area. Using Move™ software, dip data were projected
into the cross-section lines according to the projection
vectors calculated by the definition of cylindrical dip-
domains. Interpolation and extrapolation of data
were also performed using Move™ software. The geo-
metry of the faults was interpreted according to the
stratal architecture located in its hanging wall.

3. Results

3.1. Stratigraphy

The stratigraphic units depicted on the map are classi-
fied into four well-differentiated main groups of rocks
according to the tectonic events that controlled their
deposition (Figure 3).

The pre-extensional succession is subdivided into
three main groups of rocks Paleozoic to Middle Trias-
sic, Upper Triassic and uppermost Triassic to Middle
Jurassic in age, respectively. The Paleozoic to Middle
Triassic unit, which does not crop out in the study
area, is located underneath the main detachment

(Upper Triassic salt) and is therefore considered mech-
anical basement. Despite this, the analysis of the strati-
graphy based on the Salobral-1 and Jaraco-1 wells (see
wells location in Figure 2) reveals Middle Triassic mar-
ine carbonates (∼300 m thick) and Lower Triassic det-
rital continental rocks (∼670 m thick) unconformably
overlaying meta-sedimentary quartzites Silurian in
age (Lanaja et al., 1987). The Upper Triassic unit is
mostly characterized by halite with minor intercala-
tions of volcanic, carbonate and detrital rocks (Ortí,
1974). In the study area (Main Map), this unit acts as
the principal detachment decoupling the suprasalt
cover from the subsalt basement. Its preserved normal
stratigraphy and original thickness are difficult to
reconstruct because it is highly deformed by diapiric
structures (e.g. La Rosa, Jumilla and Carxe diapirs).
Nevertheless, based on well data and composite out-
crop sections along the Eastern External Betic Zones,
the original Upper Triassic salt thickness is estimated
to be ca. 600–700 m (Bartrina et al., 1990; De Torres
& Sánchez, 1990). The uppermost Triassic to Middle
Jurassic rocks consist of two cartographic units con-
formable lying above the Upper Triassic salt: the
uppermost Triassic – Lower Jurassic mudstones and
dolostones and the Middle Jurassic dolostones and
oolithic limestones. This unit crops out only in the
Sierra de las Cabras, partially in the northern part of
Sierra del Carche and in the southeastern part of the
study area (Main Map). According to outcrop scale
observations and the stratigraphy based on the
Ascoy-1 well (see its location in Figure 2), this unit
thickens towards the SE: ∼240 m in this part of the
External Prebetic to ∼370 m in the Internal Prebetic.
In the northwestern part of the study area (Sierra de
las Cabras), a low angle unconformity and hard
grounds Callovian – Oxfordian in age are located
above the Middle Jurassic rocks. This unconformity
(Figure 3) is interpreted as the onset of the major
extension that affected this segment of the South Iber-
ian margin (García-Hernández et al., 1989).

The syn-extensional succession consists of three
main groups of rocks: Upper Jurassic, Neocomian to
lower Albian and upper Albian to Santonian in age,
respectively. The Upper Jurassic group consists of mar-
ine marly limestones, mudstones and oolithic dolos-
tones unconformable lying above the uppermost
Triassic to Middle Jurassic unit. It is subdivided into
two cartographic units Oxfordian and Kimmeridgian
– Tithonian in age (Vilas et al., 1982). This unit crops
out in the northern part of the study area (i.e. Sierra
de las Cabras) and in the northern part of the Sierra
del Carche (Main Map) showing a thickness increase
from ∼300 m in the External Prebetic to ∼1700 m in
the Internal Prebetic (Azéma, 1977; García-Hernández
et al., 1980). The second group of rocks (Neocomian to
lower Albian in age) is mainly composed by shallow
water limestones, calcarenites, bioclastic calcarenites
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Figure 3. Lithostratigraphic chart of the sedimentary facies variation across the External and Internal Prebetic in the Jumilla region.
After López-Garrido, 1971; Moseley, 1973; von Hillebrandt, 1974; Ortí, 1974; Martínez del Olmo, Benzaquen, Cabañas, & Uralde,
1975; Azéma, 1977; Rodríguez-Estrella, 1977; García-Hernández et al., 1980; Vera et al., 1982; Vilas, Arias, Elizaga, García de Domingo,
& López-Olmedo, 1982; Lanaja, Querol, & Navarro, 1987; Bartrina, Hernández, & Serrano, 1990; Arias, Masse, & Vilas, 1993; Vilas,
Martin-Chivelet, & Arias, 2003; Guerrera et al., 2014.
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and siliciclastics lying unconformably above the Upper
Jurassic unit (Arias et al., 1993; Vilas et al., 1982). This
group has been subdivided into four cartographic units
(Neocomian – Barremian, lower Aptian, upper Aptian
and lower Albian in age) cropping out in the northern
part of the Sierras Larga-Sopalmo and Carche and also
in Sierra de Santa Ana and Peña Rubia (Main Map). In
general, this group thickens towards the SE being
∼170 m thick in the External Prebetic and ∼1250 m
thick in the Internal Prebetic. The third group, upper
Albian to Santonian in age, lays unconformable above
the previous units and has a more homogeneous car-
bonate facies association. It has been subdivided into
seven cartographic units corresponding to the sedi-
mentary formations defined by Martín-Chivelet
(1992): the upper Albian sands (Utrillas sands Fm.),
the upper Albian limestones (Jumilla Fm.), the lower
Cenomanian marls (Villa de Ves Fm.), the lower Cen-
omanian dolostones (Alatoz Fm.), the upper Cenoma-
nian limestones (Moratillas Fm.), the Turonian –
Coniacian marly limestones (Alarcón Fm.) and the
Santonian massive limestones (Sierra de Utiel Fm.).
According to outcrop scale observations and well
data, the upper Albian to Santonian group thickens
towards the SE having an average thickness of
∼200 m in the External Prebetic and ∼900 m in the
Internal Prebetic (Vilas et al., 2003). Locally in the
External Prebetic, the Turonian to Santonian succes-
sion thickens suddenly related to halokinetic processes
(e.g. Sierra del Molar and Buey). In the southern part of
the Sierra del Carche, the presence of an erosive uncon-
formity at the base of the Campanian rocks and a
regressive general trend from hemipelagic to continen-
tal facies is interpreted as the onset of the contractional
deformation probably related to the Pyrenean Orogeny
and the incipient Betic compression (Andeweg, 2002;
Guerrera et al., 2014; Martín-Chivelet, Giménez, &
Luperto Sinni, 1997; Rodríguez-Estrella, 1977; Vilas
et al., 2003).

The syn-orogenic succession consists of two main
groups of rocks: Campanian – Maastrichtian and
upper Paleocene – Serravallian. The first group is sub-
divided into two cartographic units corresponding to
the sedimentary formations defined by Martín-Chive-
let (1994): the Campanian marly limestones (Carche
Fm.) and the Maastrichtian sandy limestones (Molar
Fm.). This group displays a moderate thickening
trend to the SE being ∼80 m thick in the External Pre-
betic and ∼280 m thick in the Internal Prebetic. Locally
in the External Prebetic, this unit thickens related to
halokinetic processes (e.g. Sierras del Molar and
Buey). The Cenozoic succession is well developed in
the Internal Prebetic (Main Map) and involves nine
cartographic units made up of: upper Paleocene
marly limestones and slumped sandstones; Ypresian
green clays and marls; Lutetian nummulitic limestones;
Bartonian – Priabonian sands and clays; Oligocene

conglomerates, sandstones and marls; Aquitanian bio-
clastic limestones and marls; Burdigalian calcarenites;
Langhian limestones and marls; and Serravallian bio-
clastic calcarenites and marls. South of the Sierras
Larga-Sopalmo and Carche, the Burdigalian to Lan-
ghian succession thicken towards the SE and display
growth strata geometries related to the subsalt exten-
sional reactivation of the same age. The complete
syn-orogenic succession is up to ∼100 m thick in the
External Prebetic increasing to more than ∼1800 m
in the Internal Prebetic.

Finally, the post-orogenic succession consists of
Tortonian to Quaternary rocks. This succession is sub-
divided into six cartographic units made up of: Torto-
nian white marls and limestones; Messinian limestones
and marls; Pliocene red conglomerates, sandstones and
sands; Pliocene lamproitic rocks; Quaternary alluvial;
and Quaternary colluvial (von Hillebrandt, 1974; Guer-
rera et al., 2014). The deposition of this succession was
mainly controlled by extension accommodated by the
NE-dipping Maestre subsalt fault (Figure 4(a)). In
addition, upper Miocene to Quaternary growth stratal
geometries adjacent to the La Rosa and Jumilla diapirs
suggest passive diapirism coeval to the deposition of
these sediments (Figure 4(b–e)).

3.2. Structure

Based on the stratigraphic thickness of the sedimentary
succession and the wavelength of the ENE-trending
folds, the study area can be subdivided from NW to
SE into three different units: Sierra de las Cabras,
Jumilla and the Casas del Puerto-Torre del Rico
units. The first two units are located in the External
Prebetic, and the third one is located in the Internal
Prebetic (Escosa, Roca, & Ferrer 2018).

The Sierra de las Cabras unit is characterized by
short wavelength and symmetric NE-trending folds
involving a thin Jurassic to upper Cenomanian succes-
sion unconformably overlain by Serravallian and Tor-
tonian deposits. According to the fold geometry and
the thickness of the involved sedimentary successions,
it is interpreted that these are detachment folds cored
by Upper Triassic salt. Considering the position of
the fold hinges, the detachment is interpreted to be
horizontal being located between the 0 and 100 m
below the sea level. Southeast from this area, the
Jumilla unit includes a Lower to Middle Jurassic suc-
cession with an assumed constant thickness (García-
Hernández et al., 1980) overlain by the Upper Jurassic
to Quaternary rocks displaying thickness changes
across the area. This sedimentary succession is
deformed by NE-trending narrow anticlines and
broad synclines and by suprasalt faults dipping in gen-
eral towards the northwest and southeast. According to
the stratigraphic thickness, the wavelength of the folds
and the position of the fold hinges, it is interpreted that
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Figure 4. (a) Oblique Google Earth® image of the Jumilla Region with the location of the main structural and geomorphological
features, the Matamoros Basin and La Rosa and Jumilla Diapirs. (b) Vertical to overturned upper Miocene sandstones and marls in
the southern margin of the Jumilla Diapir (see location in Figure 4(a). (c) Panoramic view of the La Rosa Diapir from Sierra del Carche
(see location in Figure 4(a). (d) Edge of La Rosa Diapir where Upper Triassic clays and gypsum are in contact with highly deformed
Quaternary sediments. (e) E-dipping white marls and sandstones probably Tortonian – Messinian in age adjacent to the Jumilla
Diapir.
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the main detachment is horizontal being located at
800–1000 m below the sea level. In this unit, the lateral
continuity of the NE-trending structures is interrupted
by the Matamoros Basin (Figure 4(a)) which occupies
an elongated NW-trending area extending from the
Jumilla Diapir to the La Rosa Diapir (Figure 4(b,c)).

South of the previous unit, the Casas del Puerto –
Torre del Rico unit is characterized by a thicker
Upper Jurassic to Campanian succession and a com-
plete Paleogene to Miocene sequence that is not pre-
sent in the northern units. At the northwestern limit
of the Sierras Larga-Sopalmo and Carche, there is a sys-
tem of NW-directed thrust faults affecting a thinned
succession of Upper Jurassic to middle Miocene
rocks. From here to the south and according to the
stratigraphic thickness and the dip attitudes, the gen-
eral structure of this unit can be interpreted as a
broad monoclinal followed by a nearly horizontal
panel. The base of the horizontal panel of this mono-
cline could be located between −3200 and −5000 m
below the sea level slightly dipping towards the
southeast.

4. Discussion

The Eastern Prebetic Zone at the Jumilla region is
characterized by a well exposed uppermost Triassic to
Quaternary sedimentary succession. The geometrical
analysis of the Mesozoic to Cenozoic structures in
these units allows inferring a progressive SE-deepening
of the Upper Triassic regional detachment associated
with NE-trending basement steps. From NW to SE,
these basement steps are interpreted to be controlled
by the SE-dipping Jumilla and Sopalmo-Carxe subsalt
faults. In the NW-trending Matamoros Basin, the
analysis of surficial dip attitudes allows inferring that
this basin is controlled by the NE-dipping Maestre
Fault. The age of the associated growth stratal geome-
tries of the suprasalt cover along the faulted blocks
allows constraining the age of the faulting. Considering
this, the Jumilla, Sopalmo-Carxe and the Maestre sub-
salt extensional faults were active during the Upper
Jurassic to Santonian and were later extensionally reac-
tivated during the Burdigalian to Langhian. The base of
the syn-contractional sediments (i.e. Campanian
unconformity) over the hanging wall of the subsalt
faults show similar or less topographic elevation com-
pared with the same syn-contractional sequence over
their footwalls. Therefore, these evidences suggest
that basement faults were not positive inverted, and
thus in the study area, a thin-skinned inversion
model needs to be assumed during the Betic
compression.

These observations together with the sequential res-
toration of the extensional structures led to interpret
that in the Eastern Prebetic Zone, the Upper Jurassic
to Santonian extensional deformation affecting the

subsalt basement and the suprasalt cover was
decoupled by the Upper Triassic salt. This implied
that extension within the sedimentary cover was par-
tially controlled by subsalt faults and partially by
thin-skinned tectonics represented by listric suprasalt
faults and piercing diapirs. This agrees with regional
stratigraphic and structural evidences along the Eastern
Prebetic Zone supporting the existence of a Mesozoic
phase of extension (De Ruig, 1995; García-Hernández
et al., 1989; Pedrera, Marín-Lechado, Galindo-Zaldívar,
& García-Lobón, 2014; Vilas et al., 2003). However,
ophiolites Middle Jurassic in age outcropping in the
Internal Betic Zone demonstrates that the Southern
Iberian margin was already a passive margin with the
oceanic crust at this time (Puga et al., 2011). Extension
in the South Iberian margin which took place between
the Lower and Middle Jurassic was clearly connected
with the opening of the Central Atlantic Ocean to the
west (De Jong, 1990; Srivastava et al., 1990). Therefore,
the following Upper Jurassic to Santonian extension
could be related to the continued opening of the Cen-
tral Atlantic and synchronous development of exten-
sional basins in the Western Tethyan area (Hanne
et al., 2003; Ziegler, 1989). Examples of Mesozoic
extension (i.e. post Alpine Tethys rifting) are also
documented in the Eastern Iberia (e.g. Columbrets
Basin, Roca, Salas, & Guimerà, 1994), in the Organyà
Basin (García-Senz, 2002) or along the Maghrebian
margin represented by E–W rifting in Tunisia (Guir-
aud, 1998) and the Riffian – Tellian troughs (Wildi,
1983). Therefore, we interpret that the Upper Jurassic
to Santonian extension is limited to the eastern parts
of the South Iberian margin, and this process is inde-
pendent from the formation of the Alpine Tethys.

The subsequent Betic compression was governed by
thin-skinned shortening detached along the Upper
Triassic salt which deformed the sedimentary cover
and diapirs. In the study area, two major contractional
events Campanian – Aquitanian and Serravallian in
age are identified. The Campanian – Aquitanian con-
tractional deformation appeared to be absorbed by dia-
pir squeezing. Afterwards, in the Serravallian stage, the
suprasalt cover together with the squeezed salt struc-
tures was contractionally translated towards the NW.
However, the study area was affected by a Burdigalian
to upper Miocene extensional reactivation of the main
subsalt faults (i.e. Jumilla, Sopalmo – Carxe and Maes-
tre faults). In the Eastern Prebetic Zone, this extension
was mainly SW–NE and in the study area was con-
ducted by the NE-dipping Maestre Fault. As a result,
a thickened Miocene succession was deposited in the
Matamoros Basin. This late extension could be related
to the late Oligocene to Miocene extension that took
place in the western Mediterranean region, in the
Alboran Sea and in the Valencia Trough (Hanne
et al., 2003; Maillard & Mauffret, 1999; Roca & Gui-
merà, 1992; Torné & Banda, 1992). In addition, the
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combined effect of the Campanian to Aquitanian con-
tractional reactivation of pre-existing salt structures
and the Miocene extensional reactivation conducted
by the NE-dipping Maestre Fault, triggered passive
salt extrusion of La Rosa and Jumilla diapirs (Figure
4(b,c)). In this scenario, according to the Tortonian
to Quaternary growth strata located adjacent to these
diapirs (Figure 4(d,e)), salt was evacuated from beneath
the Matamoros Basin to the rising diapirs creating sedi-
mentary space for the deposition of the Miocene to
Quaternary units.

5. Conclusions

This work presents a new detailed geological map of
the Eastern Prebetic Zone at the Jumilla region that
has facilitated the construction of cross-sections and
a sequential restoration illustrating the interpretation
of the tectonic evolution of the area. The geological
map, the cross-sections and the outcrop observations
support the hypothesis that the major Mesozoic rifting
phase affecting the Eastern Prebetic Zone occurred
during the Upper Jurassic to Santonian times coeval
to the development of extensional basins in the Wes-
tern Tethyan area. The proximal part of this passive
margin was subsequently incorporated into the exter-
nal part of the Betic thin-skinned fold-and-thrust
belt. The Upper Cretaceous to Cenozoic tectonic evol-
ution of the study area was characterized by: a Campa-
nian to Aquitanian NW-directed contraction; a mainly
Burdigalian to upper Miocene extensional reactivation
of the main subsalt faults; and a Serravallian NW-
directed contractional reactivation of the thin-skinned
thrust faults. In addition, the Campanian to Aquitanian
contractional reactivation of pre-existing salt structures
together with the Miocene subsalt extension triggered
passive salt extrusion of the La Rosa and Jumilla diapirs
coeval to the deposition of the Miocene to Quaternary
units.

Software

The Main Map was produced using Move™ software
from Midland Valley which was used to ensemble the
digital terrain models (DTM), the orthophotographs
and to digitize the lithological contacts and the main
structures mapped in the field. The cross-sections
were also constructed and restored using Move™

from Midland Valley. Final editing and PDF construc-
tion were made using Adobe Illustrator™.
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A B S T R A C T

Detailed geologic mapping combined with well and seismic data from the Eastern Prebetic Zone (SE Iberia)
reveal extensional and contractional structures that permit characterization of passive margin development and
its incorporation into a thin-skinned fold-and-thrust belt. The study area is represented by NW-directed, ENE-
trending folds and thrusts faults locally disrupted by the NW-trending Matamoros Basin and the active Jumilla
and La Rosa diapirs. These structures resulted from the thin-skinned inversion of the proximal part of the Eastern
South Iberian passive margin containing prerift salt. Here, Upper Jurassic to Santonian thick-skinned extension
controlled the accumulation of sediment over mobile prerift salt. This in turn defined the style of salt tectonics
characterized by monoclinal drape folds, suprasalt extensional faults and diapirs. The structural and sedi-
mentological analysis suggests that during extension, salt localizes strain thus decoupling sub- and suprasalt
deformation. Thick-skinned extension controls suprasalt deformation as well as its location and distribution
which changes over time. Salt also localizes strain during inversion. The preexisting salt structures, weaker than
adjacent areas, preferentially absorb the contractional deformation. In addition, the stepped subsalt geometry
that results from thick-skinned extension also controls the shortening propagation. Therefore, the degree of
strain localization depends on the thickness of the suprasalt cover and on the dip of subsalt faults relative to the
thin-skinned transport direction.

1. Introduction

Salt is common in passive-margin basins such as in the central
Atlantic or the Tethyan margins (e.g. Rowan et al., 2004; Roca et al.,
2006; Saura et al., 2013; Jackson et al., 2015). As a function of the
relationship between evaporite deposition and passive margin devel-
opment, salt can be classified as prerift, syn-stretching, syn-thinning
and syn-exhumation (e.g. Jackson and Vendeville, 1994; Tari et al.,
2003; Rowan, 2014). Of these, prerift salt decouples supra- and subsalt
deformation during early extension thereby inhibiting the upwards
propagation of subsalt faults into the cover and favoring the develop-
ment of monoclinal drape folds and suprasalt faults (Withjack and
Callaway, 2000; Jackson and Vendeville, 1994). As extension pro-
gresses, active suprasalt faults soled into the salt detachment can trigger
diapirism. Deformation gradually becomes more coupled as the offset of
the subsalt faults increases and the salt layer is depleted. This disrupts
the salt continuity allowing the upwards propagation of the subsalt
faults into the suprasalt cover.

The role of the prerift salt during the tectonic evolution of the

central Atlantic margins is well known because the extensional archi-
tecture has not been subsequently affected by inversion (Favre and
Stampfli, 1992; Cramez and Jackson, 2000; Tari et al., 2003; Rowan
et al., 2004). However, most of the Tethyan passive margins have been
incorporated into orogenic edifices like the Pyrenees – Bay of Biscay
system or the Alps (e.g. Lemoine et al., 1986; Serrano et al., 1994;
Muñoz, 2002; Canérot et al., 2005; Roca et al., 2011; Decarlis et al.,
2014; Tavani and Granado, 2014). In this case, their structural style
depends on many factors such as the strain rate, the inherited archi-
tecture or the distribution and position of mechanically weak horizons
(e.g. salt detachments) resulting in two deformation styles end-mem-
bers: thick- and/or thin-skinned tectonic models (Ellis et al., 1998;
Beaumont et al., 2000; Jammes and Huismans, 2012). In orogens where
thick-skinned inversion dominates, the reconstruction of the tectonic
evolution of the salt-bearing passive margin is obscured by large thrust
faults and folds involving the sub- and suprasalt rocks (e.g. Cantabrian
Mountains, Western Pyrenees, Carola et al., 2015).

What is the response of the extensional structure ahead of a con-
tractional reactivation? Does the inherited extensional structure control
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the inversion of passive-margin basins that contain prerift salt? The
present study aims to answer these questions by providing new data
from the Eastern Prebetic Zone (SE Iberia) that resulted from the
moderate inversion of the Eastern South Iberian passive margin. In this
scenario, thick-skinned extension controlled the accumulation of sedi-
ment over mobile prerift salt. This in turn defined the style of salt
tectonics that developed during extension. The contractional structure
is characterized by a thin-skinned deformation style restricted to the
suprasalt cover with moderate folding and thrusting (Platt et al., 2003;
Ter Borgh et al., 2011). The cover was slightly translated in relation to
its original location with respect to the undeformed subsalt basement.
This general configuration allows for an accurate kinematic and ar-
chitectural reconstruction of the salt-bearing passive margin and the
subsequent fold-and-thrust belt development.

The case study presented here provides key insights into the un-
derstanding of the role of the prerift salt during passive margin devel-
opment and its subsequent incorporation into a fold-and-thrust belt. We
suggest that salt localizes strain during extension thereby decoupling
supra- and subsalt deformation. Thick-skinned extension controls the
suprasalt deformation, and its location and distribution changes over
time. In the early stages, deformation is equally distributed over the
faulted blocks. Despite this, as extension progresses, folding and
faulting is mostly localized above the footwall of the main subsalt
faults; and translation with minor folding is concentrated above the
hanging walls. During inversion, the interplay between shortening, the
inherited subsalt structure and the preexisting salt diapirs plays an
important role in forming the deformation structures of the cover,
which is influenced by an effective salt detachment, the dip and dip
direction of the subsalt faults, and the presence of mechanically weak
salt bodies that compartmentalize mechanically resistant cover blocks.

2. Regional geologic overview

The Betic Cordillera and the Rif constitute the Gibraltar Arc
(Fig. 1a), which is situated at the westernmost end of the Alpine
Mediterranean belt (Dercourt et al., 1986; Dewey et al., 1989). Its
formation was driven by the N-S to NNW-SSE convergence between the
major Eurasian and African plates, together with the westward dis-
placement of the Alboran Domain, located in between (e.g. De
Galdeano, 1990).

The Betic Cordillera is generally subdivided from north to south into
the External and Internal Betic Zones (Fallot, 1948; Balanyá and García-
Dueñas, 1987; Vera, 2004). The Internal Betic Zones consist of an al-
lochthonous stack of thrust sheets composed mainly of Triassic and
older rocks metamorphosed during the Upper Cretaceous to Paleogene
(Egeler and Simon, 1969; Torres-Roldán, 1979; De Jong, 1990). The
External Betic Zones correspond to a broad orogenic wedge that is
composed of a NW- to NNW-directed fold-and-thrust belt that is Cam-
panian to middle Miocene in age and is detached from the Iberian
basement along the Upper Triassic salt (Platt et al., 2003). In general,
the thrusted sheets are composed of an uppermost Triassic to Middle
Jurassic unit characterized by a minor thickness increase towards the
SE, and an Upper Jurassic to Santonian unit illustrating major thick-
ening towards the SE (García-Hernández et al., 1980, 1989; De Ruig,
1992; Hanne et al., 2003). In addition, the thrusted sheets are pierced
by diapirs of Upper Triassic salt that were emplaced from Mesozoic to
Quaternary times (Moseley, 1973; De Ruig, 1995).

During the Mesozoic, the External Betic Zones represented the
proximal part of the NE-trending South Iberian passive margin (i.e.
northern conjugate passive margin of the Alpine Tethys, Fig. 1b) lo-
cated southeast of the Iberian Massif (Dewey et al., 1973; Bernoulli and
Lemoine, 1980; Ziegler, 1982). The Alpine Tethys was the result of
Lower and Middle Jurassic rifting followed by the Callovian oceanic
flooring (Fig. 1b) that separated the Eurasian and African plates
(Schettino and Turco, 2010). Oceanic flooring is evidenced by Middle
Jurassic ophiolites currently outcropping in the Internal Betic Zones

(Puga et al., 2011). This rifting episode is clearly connected with the
opening of the Central Atlantic Ocean to the west (Klitgord and
Schouten, 1986: De Jong, 1990; Srivastava et al., 1990). However, a
major Upper Jurassic to Santonian rift event affected the Eastern Ex-
ternal Betic Zones related to a combination of continued opening of the
Central Atlantic and synchronous development of extensional basins in
the western Tethyan area (Ziegler, 1989; Hanne et al., 2003). In the
study area, this rift allowed for the deposition of the Upper Jurassic to
Santonian syn-extensional sediments unconformably overlying the up-
permost Triassic to Middle Jurassic carbonates that show minor thick-
ness changes (García-Hernández et al., 1980, 1989; De Ruig, 1992;
Vera, 2004; Hanne et al., 2003). During this time, on the basis of both
tectonic and stratigraphic criteria, the External Betic Zones (Fig. 2a)
were subdivided into the northwestern Prebetic Zone and the south-
eastern Subbetic Zone (García-Hernández et al., 1980). The Prebetic
Zone is characterized by continental to shallow-platform deposits in-
cluding inner and slope facies. The Subbetic Zone is formed by deep
basinal and pelagic deposits (e.g. García-Hernández et al., 1980). Ac-
cording to the thickness and the stratigraphy of the Mesozoic units, the
Prebetic Zone is subdivided (from NW to SE) into the External and
Internal Prebetic (De Ruig, 1992).

Specifically, the study area is located in the Jumilla region (SE
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Iberia), comprising a part of the External and Internal Prebetic (see red
square in Fig. 2a). This area is characterized by a NW-directed, ENE-
WSW trending fold-and-thrust belt in which the Variscan basement to
Middle Triassic succession does not crop out and salt diapirs are
abundant (Fig. 2b).

2.1. General stratigraphy

The outcropping sedimentary record of the study area is composed
of Mesozoic to Cenozoic rocks that can be grouped into four well-dif-
ferentiated tecto-sedimentary packages (Fig. 3):

1) The Upper Triassic evaporitic unit is mostly comprised of halite with
intercalations of volcanic, carbonate and detrital rocks (Ortí, 1974).
Its preserved normal stratigraphy and original thickness is difficult
to determine because it is highly deformed by diapiric structures.
Nevertheless, based on well data and composite outcrop sections
along the Eastern External Betic Zones, its original thickness is es-
timated to be ca. 600–700m (Bartrina et al., 1990; De Torres and
Sánchez, 1990). This unit is interpreted to be deposited in a postrift
setting related to the breakup of Pangea (e.g. Dercourt et al., 1993).
In the study area, this unit acts like a regional décollement level.

2) An uppermost Triassic to Santonian mainly marine platform car-
bonate cover where the following units can be differentiated
(Fig. 3): i) a prerift uppermost Triassic to Middle Jurassic con-
formable unit depicting a moderate thickness increase towards the
SE and a homogeneous stratigraphy, which is mostly composed of
marine carbonates; ii) a syn-extensional Upper Jurassic to lower
Albian unconformable unit characterized by deepening depositional
environments with a thicker succession towards the SE (Vilas et al.,
1982; Arias et al., 1993). The largest variations of thickness (Fig. 4)
can be observed across the boundary between the Internal and Ex-
ternal Prebetic (Azéma, 1977; García-Hernández et al., 1980); and
iii) a syn-extensional upper Albian to Santonian unconformable unit
with a more homogeneous marine facies association (Figs. 3 and 4),
which, to a minor degree, thickens towards the SE (Vilas et al.,
2003). Locally, this unit shows sudden thickness increases in the
External Prebetic.

3) A Campanian to Eocene unit lying unconformably above the pre-
vious sedimentary package (Rodríguez-Estrella, 1977; Martín-
Chivelet, 1996). These units are composed of carbonates, mudstones
and sandstones that were deposited in platform to continental en-
vironments until the Eocene. In general, this unit is interpreted as a
syn-orogenic sequence thickening towards the SE where the

Fig. 2. a) Tectonic map of the Eastern Betic Cordillera, Eivissa and Formentera islands. Red line points out the stratigraphic well correlation shown in Fig. 4. Red square corresponds to
the location of the study area depicted in Fig. 6b. Blue line indicates the northern part of the cross-section shown in Fig. 15a. b) Regional cross-section across the Eastern Betic Cordillera
illustrating the crustal geometry of the orogen (see location in Fig. 1a) (the Internal Betic Zones and the Subbetic Zone are modified from Banks and Warburton, 1991). (For interpretation
of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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foredeep of the Betic orogen was located (Guerrera et al., 2014).
4) Finally, Oligocene to Quaternary terrigenous marine to continental

rocks (Fig. 3) lie unconformably above the previous sedimentary
packages (Hillebrandt, 1974; Guerrera et al., 2014).

Below the previous outcropping units, the subsalt stratigraphic
succession revealed by Jaraco-1 and Salobral-1 wells (located 200 km
northeast and 60 km northwest respectively of the study area) is com-
posed of carbonates, shales, sandstones and meta-sedimentary

Fig. 3. Lithostratigraphic chart of the sedimentary facies variation across the External and Internal Prebetic in the Jumilla region. After López-Garrido, 1971; Moseley 1973; Hillebrandt,
1974; Ortí, 1974; Martínez del Olmo et al., 1975; Azéma, 1977; Rodríguez-Estrella, 1977; García-Hernández et al., 1980; Vera et al., 1982; Vilas et al., 1982, 2003; Bartrina et al., 1990;
Arias et al., 1993; Guerrera et al., 2014.
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sandstones (Fig. 3). The analysis of the stratigraphic sections inter-
sected by the previous wells (Fig. 4) reveals Middle Triassic marine
carbonates and Lower Triassic detrital continental rocks unconformably
overlying a meta-sedimentary Paleozoic basement (Lanaja et al., 1987).

3. Methodology

To address the goals outlined in this study, both field and subsurface
data were integrated into the analysis. Field data include more than 6000
stations distributed over the study area containing structural and strati-
graphic data obtained from field work. Subsurface data includes six 2D
depth-converted seismic profiles across the External and Internal Prebetic
and the sonic and stratigraphic logs of the Ascoy-1 well (see its location in
Fig. 2a). The sonic log was used to perform the depth conversion of the
seismic profiles and the stratigraphic log was used to interpret the seismic
facies according to their lithology and the stratigraphic thicknesses (Fig. 5a
and b). Move 2015™ fromMidland Valley was used to integrate the surface
and subsurface data and to create both the geologic maps (Figs. 6b and 8a)
and the cross-sections (Figs. 7a, b and 8b).

The cross-sections, oriented NW-SE perpendicular to the trend of the
Betic structures, depict the main structural features of the study area.
Field dip data and seismic interpretations were used to constrain the
cross-sections. The deep subsalt, salt and suprasalt structures have been
interpreted according to widely used constraints in thin-skinned fold-
and-thrust belts developed in salt provinces (e.g. Dahlstrom, 1969;
Elliott, 1976; Hossack, 1983; Suppe, 1983; Woodward et al., 1985;
Rowan and Ratliff, 2012). Depth-to-basement calculations are made
using Mesozoic to Cenozoic stratigraphic thicknesses both from well
data and field data, combined with seismic data. In addition to these

constrains, we also accept the following assumptions in the construc-
tion of the cross-sections: 1) the location in depth of the fold hinges
involving the uppermost Triassic to Quaternary sequence determines
the depth to the roof of the subsalt basement; and 2) the monoclinal
flexures of the Mesozoic suprasalt cover coincident with growth-strata
geometries are interpreted to be controlled in depth by extensional
subsalt faults. In the construction of the salt structures we assumed that
1) salt structures are no longer active when at depth —they are primary
and/or secondary welded (Cramez and Jackson, 2000); 2) progressive
thinning of the sedimentary units within the basin is related to primary
welding; and 3) thickened young successions lying directly above salt
are interpreted to be related to salt collapsed structures.

4. Structure of the Prebetic Zone at the Jumilla region

4.1. Salt and suprasalt structure

The study area is characterized by a fold-and-thrust system (Fig. 2a)
and currently inactive salt diapirs that are parallel to the ENE-to NE-
regional trend of the Betic Cordillera and the Mesozoic South Iberian
passive margin (Fig. 1a and b). However, this regional trend is dis-
rupted by the NW-trending Matamoros Basin, which is flanked by the
Jumilla and la Rosa diapirs (Fig. 6b).

Based on the wavelength of the ENE-trending folds and the strati-
graphy of the suprasalt cover, three different units can be distinguished.
From NW to SE they are: the Sierra de las Cabras unit, the Jumilla unit,
and the Casas del Puerto-Torre del Rico unit. The first two units are
located in the External Prebetic, and the third one is located in the
Internal Prebetic (Fig. 6a).

Fig. 4. Well correlation throughout the undeformed Mesozoic cover and External and Internal Prebetic (datum of the well correlation is defined at the base of the Campanian un-
conformity). Note the thickening of the Mesozoic units in the External and Internal Prebetic towards the southeast related to the rifting trend of the Mesozoic South Iberian passive
margin. The study area is divided in three differentiated units: (1) Sierra de las Cabras, (2) Jumilla and (3) Casas del Puerto - Torre del Rico. Their synthetic stratigraphic columns are
depicted in the well correlation. Refer to legends in Fig. 3 for lithological symbols. Stratigraphic thickness of salt, supra- and subsalt units in the study area and the Salobral-1 obtained
from field work and after García-Hernández et al. (1980) and Lanaja et al. (1987). Jaraco-1 well is located approximately 150 km towards the northeast from the study area.
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4.1.1. Sierra de las Cabras unit
The Sierra de las Cabras unit is restricted to the northwestern corner

of the study area, where mostly Jurassic rocks crop out (Fig. 6b). This
unit includes an uppermost Triassic to Cenomanian succession un-
conformably overlain by the upper Miocene deposits. The structure of
this area is characterized by symmetric folds whose amplitude and
wavelength decreases suddenly at the southern limit of this unit. These
folds also affect the middle Miocene rocks which are less or much less
deformed than the underlying Mesozoic rocks. According to the sym-
metric fold geometry and the rocks involved it is interpreted that these
are detachment folds cored by Upper Triassic salt. Taking into account
the observed syncline hinge location and the thickness of the folded
successions, it has an estimated detachment level located between 0
and 100m below sea level (Fig. 7a and b).

4.1.2. Jumilla unit
The Jumilla unit is located between the previous northwestern unit

and the Sierra Larga-Sopalmo and Carxe, where mostly Cretaceous to
Quaternary rocks crop out (Fig. 6b). This unit includes an assumed
homogeneous uppermost Triassic to Middle Jurassic succession over-
lain by Upper Jurassic to Quaternary rocks that display thickness
changes across the area. The structure of the northwestern limit of this
unit is characterized by a SE-dipping monoclinal flexure (Fig. 7a). This
monocline is cut by SE-dipping extensional faults and thrusts, locally
affected by short wavelength folds that deform the Upper Cretaceous
rocks that are detached from the underlying succession. The Upper
Cretaceous rocks deformed by narrow anticlines, together with the
presence of Upper Triassic salt at their cores, suggest that these struc-
tures correspond to the roof of pre-Albian diapirs or salt walls that were
squeezed during the later contractional deformation.

Southeast of this boundary, the structure mainly consists of broad
and flat-bottomed synclines and narrow and tight anticlines. These
anticlines are characterized by vertical to overturned limbs and are cut
by both extensional and contractional faults as well as by some diapiric
structures (Fig. 7a and b). Contrasting with the Sierra de las Cabras
unit, the folds of the Jumilla unit verge toward the foreland and hin-
terland. The genetic and structural relationships of these structures can
be analyzed in the Sierra de los Bujes anticline located at the northern
part of the Jumilla unit (see location in Figs. 6b and 7a and the detailed
geological map in 8a). The anticline is cut by a longitudinal NW-di-
rected thrust fault, which displaces minor scale ENE-trending double
plunge folds that deform uppermost Triassic to Serravallian sedimen-
tary successions (Fig. 8a). In the hanging wall of the thrust fault there is
a minor anticline that deforms an uppermost Jurassic to Lower Cre-
taceous succession (Fig. 8b). The Mesozoic folded architecture and its

internal geometrical relationships denote that the core of the anticline
shows evidence of a salt roller structure that is bounded by SE-dipping
listric faults. In the hanging wall of these faults, the syn-extensional
Lower Cretaceous to upper Albian sediments display growth strata
geometries (Fig. 8a).

According to the qualitative restoration (Fig. 8c), the salt roller
developed as a consequence of increasing fault displacement (Fault 3 in
Fig. 8) and the subsequent salt inflation in its footwall from Neocomian
to upper Albian times. Continued extension promoted salt extrusion and
passive diapirism. In the Sierra de los Bujes outcrop, there are isolated
and brecciated bodies containing upper Albian rocks adjacent to the
Sabina Diapir (Fig. 8a). They are interpreted to be diapir-derived debris
flows deposited as a consequence of diapir rise and destabilization of
the diapir roof. The near-diapir abrupt facies change from carbonate
breccias to sandstones that are upper Albian in age, in addition to the
presence of mass-wasting deposits are indicative of hook halokinetic
sequences adjacent to the Sabina Diapir (Giles and Rowan, 2012).
Afterwards, during compression, the suprasalt cover located over this
inflated area was eroded and the extensional faults were deformed by
folding and thrusting —a process that triggered localized diapir re-
juvenation (e.g. the Sabina diapir, see location in Fig. 8a). In this sce-
nario, contractional folds developed due to salt roller squeezing, in
which further compression might have led to thrust deformation
(Fig. 8b). The genetic and structural similarities between this fold and
other structures along the Jumilla unit suggest a common development
process where the fold and thrust vergence can be used as a polarity
indicator for each salt roller.

The only folds that seem not to follow this development pattern are
the synclines located northwest of the Sierra del Molar and southeast of
the Sierra del Buey (Fig. 6b). These folds include Turonian to Maas-
trichtian anomalous thick successions unconformably lying above
upper Cenomanian rocks. Turonian angular unconformities located at
the top of the upper Cenomanian succession in the Sierra del Buey are
indicative of an uplifted area during the upper Cenomanian. Despite the
fact that diapirism occurred during Cretaceous times, these Turonian to
Maastrichtian thickened successions are interpreted to be a result of a
salt wall collapse as proposed in the cross section depicted in Fig. 7a.
The resulting collapse basin was later deformed during the Betic com-
pression as recorded in the Oligocene to lower Miocene growth-strata
geometries, which unconformably overlap the Turonian to Maas-
trichtian successions (Fig. 7a and b). Taking into account the fold hinge
location and the general thickness of the involved successions, we in-
terpret the base of the Upper Triassic salt to be nearly horizontal being
located at 800–1000m below sea level (Fig. 7a and b).

Fig. 5. a) Time-depth curve used to perform the depth conversion of the seismic profiles (sonic log of the Ascoy-1 well has been used to obtain the interval velocity and the average
velocity. Processing datum 1050m). b) Seismostratigraphy of the Mesozoic and Cenozoic cover at the Ascoy-1 well (see the location of the well and the seismic profile RV-57 in Fig. 6a).
Colored dots indicate the base of the stratigraphic units intersected by the well. Lithology colors used on the seismic interpretation in Fig. 9 and 10. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 8. a) Detailed geological map of the Sierra de los Bujes anticline (see location in Fig. 6b). Numbers 1, 2, 3 and 4 indicate the relative age of each fault in a younging order. b) Cross-
section showing the internal geometry of the salt roller structure (see location in Fig. 8a). c) Qualitative restoration of cross-section depicted in Fig. 8b for the upper Albian. Number 4
indicates the inversion of the older extensional Fault 1 during the compressional deformation of the salt roller.
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Fig. 9. 2D depth-converted seismic profiles located in the Internal Prebetic (Fig. 6b). a) Seismic line RV-61 and b) its interpretation. c) Seismic line RV-62 and d) its interpretation. e)
Seismic line RV-60 and f) its interpretation.
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4.1.3. Casas del Puerto – Torre del Rico unit
Southeast of the previous unit, field and seismic data show the

presence of a thicker differentiated Casas del Puerto – Torre del Rico
unit (Figs. 6a and 9a, c, and e). This unit is characterized by a thick
Upper Jurassic to Campanian succession and a more complete Cenozoic
succession including Paleocene and Eocene materials that are not pre-
sent in the previous units.

Its northwestern limit is located along the Sierra Larga-Sopalmo and
Carxe (Fig. 6b). This area is characterized by a system of NW-directed
thrust faults developed over a salt inflated area, which includes diapirs
(e.g. Carxe Diapir, see its location in Fig. 6b). Toward the SE and in the
eastern part of this unit, the geometry of the cover is depicted by a
southeast dipping monoclinal fold followed by a nearly horizontal panel
(Fig. 9d). In the western part of this unit, the geometry of the seismic
reflectors (Fig. 9a) illustrates an anticline deforming the base of the
interpreted Cenozoic rocks (Fig. 9b). This fold could be related to the
contractional reactivation of an Upper Jurassic to upper Albian supra-
salt fault (Fig. 9b). The southern part of Sierra Larga-Sopalmo is also
affected by extensional SE-dipping faults (Fig. 6b). Therefore, we in-
terpret a similar origin for the folds related to the inversion of these
faults illustrated in Fig. 7b. According to the seismic data and the
stratigraphic thickness of the cover, we interpret that the base of the
Upper Triassic salt is dipping towards the SE and is located between
−3200m and −5000m below sea level (Fig. 9f).

In the southern part of the unit there is the contractionally squeezed
La Sarsa salt wall (Fig. 6b). This salt structure is covered by Paleocene
to Quaternary deposits which together with the salt wall are folded and
cut by some minor NW-directed thrusts. The presence of these thrusts is
indicative of secondary welding resulting from the squeezing of this salt
wall during the Betic compression. The Paleocene to Quaternary sedi-
mentary roof that covers the entire salt wall is a consequence of salt
depletion and the formation of primary welds and thus the cessation of
the salt wall growth (Fig. 7a).

In summary, the described structures in the Casas del Puerto – Torre
del Rico unit were formed before upper Miocene time. The internal
deformation of this unit is represented by the Upper Jurassic to upper
Albian extensional suprasalt faults (see the interpreted seismic profile
in Fig. 9b), but also by folds and thrust faults, and by the squeezing of
the La Sarsa salt wall and the Carxe Diapir. The development of the La
Sarsa salt wall and the Carxe Diapir is linked to the extensional activity
of the suprasalt faults that are Upper Jurassic to upper Albian in age. In
the southern part of the Sierra del Carxe, the presence of low angle
unconformities at the base of the Campanian and Paleogene rocks and a
regressive general trend from hemipelagic to continental facies
(Figs. 6b and 7a), suggests the onset of an incipient contractional de-
formation during this time (Rodríguez-Estrella, 1977; Martín-Chivelet
et al., 1997; Vilas et al., 2003; Guerrera et al., 2014).

Fig. 10. 2D depth-converted seismic profiles with their respective interpretations crossing the Maestre Fault and the Matamoros Basin. a) Seismic line RV-58-ext. b) Seismic line RV-62-
ext. See the location of both seismic profiles in Fig. 6b.
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4.2. NW-trending structures of Jumilla – La Rosa

In the Jumilla unit, the lateral continuity of the ENE-trending
structures is interrupted by an elongated NW-trending and 2–4 km wide
area that extends from the Jumilla Diapir to the southwestern termi-
nation of the Sierra del Carxe (Fig. 6b). This area includes two actives
and relatively rounded diapirs (Jumilla and La Rosa diapirs) that are
located at its northwestern end and are close to the opposite south-
eastern limits respectively. The diapirs generate up to 134m (Jumilla
Diapir) and 227m (La Rosa Diapir) of topographic relief over the sur-
rounding Quaternary valleys. Moreover, the near-diapir upper Miocene
to Quaternary rocks are deformed by narrow and steep drape-fold
geometries that correspond to hook halokinetic sequences, which are
common in high rate salt extrusion settings (Giles and Rowan, 2012).

The Mesozoic and Cenozoic structure of this NW-trending elongated
area is difficult to determine because of the presence of a broad valley
that is filled with Quaternary colluvial and alluvial sediments (Fig. 6b).
Despite this, the combination of surficial dip attitudes (Fig. 6b) and
seismic data (Fig. 10a and c) allows inferring that this area actually
corresponds to a lower Miocene to Quaternary syncline basin (Fig. 10b
and d). This basin is bounded by a set of lower Miocene to Quaternary
suprasalt and subsalt faults that cut up to the surface. Beneath the
unconformably lying Neogene sediments, the Mesozoic rocks also show
a synclinal geometry having the same orientation with a horizontal
NW-trending fold hinge located on top of the Upper Triassic detach-
ment level (Fig. 10d). The northeastern part of the synclinal basin has a
constant dip (Fig. 10b), whereas its southern part is affected by su-
prasalt faults (Fig. 10b and d). According to the interpreted strati-
graphic thicknesses, the base of the syncline basin could be located at
∼3200m below sea level (Fig. 10d).

The detailed geometrical analysis of the Mesozoic and Cenozoic
sediments recognized in the seismic profiles (Fig. 10b and d), show that
the Matamoros Basin forms a drape syncline that developed during the
Upper Jurassic to Santonian over a rollover controlled by the NE-dip-
ping Maestre Fault (see qualitative restoration for the Matamoros Basin
in Fig. 11a, b, c, d, and e). Furthermore, during the lower Miocene to
Quaternary, the syncline continued to develop through the vertical
subsidence of its central part (Fig. 11f and g), which was synchronous to
the movement of the supra- and subsalt faults that bound the Mata-
moros Basin.

4.3. Subsalt structure

The subsalt structure is not well imaged in either the seismic profiles
or the gravimetric data (Fig. 12). Nevertheless, the geometrical analysis
of the outcropping Mesozoic and Cenozoic structures allows inferring
the roof of the subsalt basement. The progressive SE-deepening of the
inferred Upper Triassic regional detachment along the study area, can
be interpreted as associated with basement steps. Whereas the
boundary between the Sierra de las Cabras and Jumilla units implies a
subsalt step of ∼800–1000m of vertical throw, the boundary between
Jumilla and Casas del Puerto – Torre del Rico corresponds to a base-
ment step of ∼4000m of vertical throw, and thereby characterizes the
boundary between the External and Internal Prebetic. The character-
istic width and rectilinear geometry of the basement steps suggest that
the subsalt faults control the NE-SW trend of the Eastern Prebetic Zone.
From NW-SE these faults are called: the Jumilla and Sopalmo-Carxe
Faults (Fig. 7a and b). In the Bouguer anomaly map, the location of the
Jumilla Fault is well depicted, whereas the Maestre, Sopalmo, and
Carxe faults can only be inferred (Fig. 12).

The inferred horizontal base of the regional Upper Triassic salt de-
tachment over the faulted blocks suggests a non-rotational planar
geometry for these subsalt faults. The thickness variation of the
Mesozoic to Cenozoic suprasalt cover along the faulted blocks allows
constraining the age of the faulting from Upper Jurassic to Santonian
with a later extensional reactivation that is Burdigalian to Langhian in

age. In addition, over the hanging wall of the subsalt faults, the regional
base of the syn-orogenic units shows similar (or slightly less) topo-
graphic elevation compared to the same syn-orogenic sequence over
their footwalls. Therefore, this evidence suggests that basement faults
cannot be significantly inverted, and thus a thin-skinned inversion
model needs to be assumed.

The subsalt rocks are also deformed by the NE-dipping Maestre
Fault (Fig. 10b and d). This subsalt fault constrains the southwestern
boundary of the Matamoros Basin. Its geometry is interpreted as a
kinked planar fault with an associated basement rollover and a hor-
izontal detachment located at∼-6000m below sea level (Fig. 10b and
d). According to the age of the associated growth strata, this fault was
active during the Upper Jurassic to Santonian times with a later ex-
tensional reactivation during the lower Miocene to Quaternary times.

5. Interaction between sub- and suprasalt deformation during
South Iberian passive margin development and its subsequent
inversion at the Eastern Prebetic Zone

To address the tectonic evolution of the suprasalt cover in relation
to the subsalt basement we use a combination of thick- and thin-skinned
styles of deformation. The results of this interpretation are the quali-
tative restorations shown in Figs. 11 and 13, which illustrate the de-
velopment of the proximal segment of the Eastern South Iberian passive
margin and its subsequent inversion.

In the study area, the major thick-skinned extension started during
the Late Jurassic. In this initial stage, the pre-kinematic units (i.e. up-
permost Triassic to Middle Jurassic) were affected by a broadly diffused
subsalt deformation (Fig. 13a and b). Above the subsalt faults, the cover
was deformed by monoclinal drape folds and was stretched by suprasalt
faults and reactive diapirs (Fig. 13b). As a result, suprasalt materials
mimicked the resultant stepped subsalt geometry using the salt as an
effective detachment. Suprasalt rollover structures and associated
growth strata also developed on the hanging wall of the suprasalt listric
faults (e.g. ramp-flat fault in Sierra de los Bujes, Fig. 8b). Locally, the
offset of these listric faults triggered the rise of diapirs on their footwalls
(e.g. Sabina Diapir).

As extension progressed, the cover and diapirs together with the
suprasalt faults were dragged basinwards becoming progressively in-
corporated above the hanging wall of the subsalt faults (see this process
in Fig. 11). At the same time, folding and faulting was concentrated
above the footwalls of the main subsalt faults in which a thinner cover
was prone to be easily deformed (Fig. 13c). Moreover, the basinwards
translation of the cover triggered the widening of passive diapirs
compartmentalizing the cover into different blocks (Fig. 13c and d).
However, we interpret passive diapirism to have finished during the
upper Cenomanian – lower Turonian after salt depletion and the de-
velopment of primary welds (Fig. 13d). In this scenario, salt structures
collapsed and the corresponding sedimentary depocenters allowed the
development of Turonian to middle Miocene salt-withdrawal basins
progressively distributed in time along the footwall of the Carxe – So-
palmo faults (e.g. Sierra del Molar, del Buey or Larga-Sopalmo, Fig. 6b).

Summarizing, in the study area, the development of the Eastern
South Iberian passive margin was the result of a major NW-SE thick-
skinned extension caused by the activation of the SE-dipping Jumilla
and Carxe-Sopalmo faults. According to the qualitative restoration il-
lustrated in Fig. 13, the basement was stretched by ∼6 km of SE-wards
directed subsalt extension resulting in ∼13 km of SE-wards suprasalt
extension. However, the area was coevally stretched by∼0.8 km of NE-
wards directed subsalt extension conducted by the Maestre Fault
(Fig. 11g). In this scenario, the Maestre Fault could act as a lateral
structure transferring subsalt transtension between the two major So-
palmo and Carxe faults. The location of the Jumilla and La Rosa diapirs
would indicate the intersection of this lateral fault with the two re-
gionally-trending extensional faults. The presence of NW-trending
subsalt faults is also documented in other parts of the Eastern Prebetic

F.O. Escosa et al. Journal of Structural Geology 109 (2018) 55–73

66



Zone (De Ruig, 1992). This orientation could be linked to the E-to NE-
directed Mesozoic extension that affected the southeastern Iberian
Chain (Roca et al., 1994, 2006), which was synchronous with extension
in the Eastern South Iberian passive margin.

After extension, the basinwards stepped subsalt geometry and the
salt structures controlled the Betic inversion of the proximal part of the
passive margin (Fig. 13g). In the study area, the present-day location of
the syn-orogenic units deepening towards the SE demonstrates that the
subsalt basement was not involved during the contractional deforma-
tion. Therefore, the stepped geometry of the basement allowed for the
NW-directed propagation of the thin-skinned contractional

deformation. This shortening was carried out by a thrust fault with a
flat-ramp-flat geometry rooted into the detachment level (i.e. Upper
Triassic salt).

According to field observations and the interpreted seismic data, the
incorporation of the South Iberian passive margin into the external
zones of the Betic fold-and-thrust belt encompassed the following
phases: a first stage (Campanian to Aquitanian in age) when the con-
tractional deformation was mostly absorbed by squeezing of the pre-
existing diapirs, thus generating secondary welds. As compression
progressed, the compartmentalized cover became reconnected and
thrust faults nucleated at the secondary welds. Field evidence

Fig. 11. Qualitative sequential restoration of the Matamoros Basin according to the interpreted RV-58-ext seismic profile (see its interpretation in Fig. 10a and its location in Fig. 6b).
Note that the dextral strike-slip component of the Maestre transtensional fault has not been taken into account during the qualitative restoration.
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supporting this interpretation takes the form of thrust faults affecting
the Sarsa salt wall (Figs. 6b and 7a); a second stage Burdigalian to
Langhian in age occurred when the major subsalt faults (e.g. Sopalmo,
Carxe and Maestre faults) were extensionally reactivated (Fig. 7a and
b). This extension could be linked to the flexural deformation that ex-
perienced the forebulge of the orogen as a result of the southwards
lithospheric loading of the Eastern Betics. The orogenic loading could
have also promoted the tilting of the sub- and suprasalt architecture
including the Carxe and Sopalmo faults (Fig. 13g). In addition, the
development of a Burdigalian – Langhian salt-withdrawal basin above
the upper cut-off of the Sopalmo Fault could have also occurred during
its extensional reactivation; and finally, a third stage that is Serravallian
in age occurred when the suprasalt cover and the squeezed diapirs were
contractionally translated towards the northwest along the salt de-
tachment. In the Internal Prebetic, the SE-dipping Aquitanian to Lan-
ghian units are located beneath an unconformity and are onlapped by
less dipping Serravallian sediments (see Fig. 9b). This geometrical re-
lationship could be interpreted as a consequence of the northwestern
translation of the suprasalt cover, its intersection with the ramp of the
thin-skinned thrust fault and the subsequent southeast tilting and ero-
sion during the Serravallian.

6. Discussion

6.1. The role of the subsalt structure and the prerift salt during South Iberian
passive margin development

According to our interpreted tectonic evolution of the study area,
prerift salt decoupled the extensional deformation thereby generating
two differentiated structural styles, above and below the salt. This
scenario is also documented in other parts of the Eastern Prebetic Zone
(De Ruig, 1992; Roca et al., 2013), in the Basque-Cantabrian Basin
(Carola et al., 2015), in the Bay of Biscay (Ferrer et al., 2012), in the
Lusitanian Basin of the North Atlantic (Alves et al., 2002), in the North

Sea (Withjack et al., 1989; Pascoe et al., 1999), in the Rhine Graben
(Maurin and Niviere, 2000) as well as in analogue models (Koyi et al.,
1993; Ferrer et al., 2014, 2016). In most of these examples, suprasalt
extension is mainly accommodated by the development of monoclinal
drape folds, suprasalt faults and diapirs.

Considering the previously outlined deformation conditions (see
Section 5 for more detail), our cross-sections (Fig. 7a and b) and the
qualitative restorations (Figs. 11 and 13), the increase of subsalt fault
extension must therefore generate: (1) folding and lengthening of the
cover; and (2) accommodation above the hanging wall progressively
filled by syn-kinematic units located above the monoclinal drape folds.

Folding of the pre-kinematic cover takes place due to a combination
of hanging wall subsidence and coeval salt evacuation towards the fault
(Withjack et al., 1989; Pascoe et al., 1999; Cosgrove and Ameen, 2000;
Maurin and Niviere, 2000; Richardson et al., 2005; Kane et al., 2010;
Duffy et al., 2012). During this process, the wavelength of the resulting
extensional drape fold will be controlled by the dip of the subsalt fault
(Ferrer et al., 2016). Hence, low-angle subsalt faults (e.g. dipping
30°–40°, Fig. 14a) tend to generate long wavelength extensional drape
folds, which deform the overburden and control the broad deposition of
syn-kinematic units. In contrast, high-angle subsalt faults (e.g. dipping
60°–70°, Fig. 14b) will result in short wavelength extensional drape
folds that restrict the deposition of syn-kinematic units.

In the study area, extensional faults rooted at the top of the salt
detachment developed along the monoclinal flanks (maximum
stretching area) also constraining diapirism above the footwall of the
subsalt faults. (e.g. Fig. 13b). As a result, the progressive incorporation
of the suprasalt cover into the hanging wall of the subsalt fault pro-
duced the lengthening of the monoclinal flanks (Fig. 14a and b). In
addition, low-angle subsalt faults (Fig. 14a) tend to keep suprasalt
faults active once they are incorporated into the hanging wall (e.g.
Fig. 13c and d). Nonetheless, high-angle subsalt faults (Fig. 14b) tend to
favor the clockwise rotation of the suprasalt faults, which appear as
reverse faults when these are dragged into the hanging wall of the
subsalt fault (e.g. Figs. 11b, c and d).

In all scenarios, subsalt fault displacement produces an increase in
the accommodation space over their hanging walls and hence the de-
position of syn-extensional units. During this process and as a con-
sequence of salt depletion, primary welding may generate coupling of
the cover and the subsalt basement (Withjack and Callaway, 2000).
This strengthens the suprasalt cover over the hanging wall and disrupts
the continuity of the salt unit.

Therefore, in extension, the location and distribution of the supra-
salt deformation changed over time. In the early stages, subsalt faults
were associated with short offsets and they could not control suprasalt
thicknesses which remained almost constant. Thus, similar thicknesses
along the margin promoted a diffused and distributed extensional de-
formation over the subsalt faults (e.g. Fig. 13b). As extension pro-
gressed and subsalt faults offsets increased, there was a corresponding
major difference in suprasalt cover thicknesses over the faulted blocks
(e.g. Fig. 13c). In this scenario, folding and faulting were concentrated
above the footwall of the main subsalt faults, where the cover was thin
and hence mechanically weak; and translation with minor folding was
concentrated above their hanging walls where the cover was thick and
mechanically resistant.

6.2. The influence of salt diapirism

The presence of a thick salt (i.e. Upper Triassic salt) beneath a re-
latively thin pre-kinematic unit (i.e. uppermost Triassic to Middle
Jurassic) could facilitate diapiric processes during the early stages of
extension. However according to our tectonic model, as extension
progressed, diapirs located above the hanging wall of the subsalt faults
tended to translate basinwards together with the thickened cover,
without concentrating further strain (see translation of the La Sarsa salt
wall over time on Fig. 13b, c, and d). In spite of this, the diapirs located
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above the footwall, where the sedimentary cover was thin, were not
displaced from their original location and instead they concentrated
part of the deformation (e.g. widening process in Fig. 13c and d).

The growth of diapirs and salt walls not only play a key role in the
deformation of the adjacent suprasalt cover, they also have mechanical
implications for the entire segment of the passive margin (Rowan and
Vendeville, 2006; Ferrer et al., 2012; Rowan, 2014). Therefore, the
regions with diapirs become mechanically weak, nucleating further
extensional deformation (mostly non-rigid body transformations or

strain). The capacity to concentrate future extensional deformation will
depend on both salt bodies' geometries and the strengths of the adjacent
covers. This will be maximum in a thin and weak suprasalt cover with
salt bodies oriented orthogonal to the tectonic transport direction; and
it will be minimum in a thick, and hence strong, suprasalt cover ad-
jacent to a salt body parallel to tectonic transport with a circular or
elongated geometry.

However, ongoing extension and thinning of the cover eventually
inhibits further diapir growth, leading to its collapse (e.g. see this

Fig. 13. Qualitative sequential restoration for the Eastern Prebetic Zone at the Jumilla region. Fig. 13g corresponds to the regional cross-section shown in Fig. 7a. The original thickness of
the Upper Triassic salt is estimated according to Bartrina et al. (1990) and De Torres and Sánchez (1990).
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process in Fig. 14 of Vendeville and Jackson, 1992). The salt structure
collapse occurs when the salt supply becomes restricted after depletion
and primary weld formation, thus disrupting the salt unit (e.g. see
Fig. 13e). Consequently, young sedimentary depocenters are located
directly on top of an ancient diapir as it collapses by out-of-plane salt
evacuation. Such basins can eventually ground onto the basement and
invert to form mock turtle anticlines (e.g. Sierra del Buey in Fig. 7a).

6.3. Distinctive contractional suprasalt features linked to the stepped subsalt
geometry and the presence of salt structures

6.3.1. Stepped salt detachment
After extension, the resulting salt and suprasalt contractional

structure was constrained by the dip direction of the inherited subsalt
faults, and by the direction of the thin-skinned shortening. Thus, de-
pending on the dip of subsalt faults (towards the foreland or the hin-
terland) with respect to the shortening propagation, different contrac-
tional structures of the detached cover were developed (Fig. 15a and b).

When the contractional deformation propagated over the hanging
wall of a subsalt fault dipping towards the hinterland, a suprasalt ramp
anticline was developed over the footwall cut-off of this fault (Fig. 15a
and b). Consequently, the fold wavelength will increase towards the
hinterland because of the increase of cover thickness. This can be ob-
served by comparing the fold wavelength between the Sierra de las
Cabras anticlines with respect to the Sierra Larga-Sopalmo and Carxe
anticlines (Fig. 13g).

In contrast, when the contractional deformation propagated over
the footwall of a subsalt fault dipping towards the foreland, further
advance of shortening was blocked by the footwall cut-off (e.g. see
location of the B.T.F in Fig. 15a). Rubinat et al. (2012) and Roca et al.
(2013) discussed the role played by this specific subsalt architecture in
the junction between the Iberian Chain and the Northeastern Prebetic
Zone (Fig. 15a). In this scenario, the pre-existing north-dipping subsalt
fault hampered the propagation of the Betic thin-skinned shortening.
Consequently, the footwall cut-off of the subsalt fault acted as a

nucleation point in the Betic contractional detachment, which con-
centrated the entire shortening of the cover (Fig. 15a). In other words,
the basal detachment of the cover thrust system did not step down into
the Upper Triassic salt of the hanging wall of the north-dipping subsalt
fault but ramped up and breached the surface.

6.3.2. Effects of previous salt structures on basin inversion
The incorporation of an ancient passive margin into a foreland fold-

and-thrust belt is also restrained by the presence of salt structures
(Rowan and Vendeville, 2006). They are weaker than adjacent areas
and thus preferentially absorb the shortening during early stages of
contractional deformation. In this context, the geometry, width, and
number of diapiric structures are the key factors controlling the in-
version of the passive margin.

In some locations of the study area, the suprasalt structure was the
result of salt roller inversion generating a detachment anticline cored
by the salt remnant. Shortening produced the inversion of the suprasalt
extensional fault that propagated into the overburden as a thrust fault
and controlled the evolution of the hanging wall propagation fold (i.e.
the Rajica de Enmedio and Comisario anticlines; see their locations in
Fig. 7a and b). In addition, shortening also rejuvenated buried diapirs
by squeezing, thus arching their roof (i.e. La Sarsa salt wall, Fig. 7b). As
shortening increased, the salt wall could be depleted thus developing
secondary welds, eventually evolving into a thrust-weld if shortening
progressed (e.g. La Sarsa salt wall, Fig. 7a).

The distribution of previous salt structures along the margin would
also control the location of weaker mechanical zones in the suprasalt
cover during contraction. For instance, the La Rosa and Jumilla diapirs
compartmentalized two thickened suprasalt covers (e.g. Matamoros
Basin and Casas del Puerto-Torre del Rico unit, Fig. 15b). In this sce-
nario, shortening was absorbed by rejuvenating the Jumilla Diapir, but
also the southeastern La Rosa Diapir, whereas the mechanically re-
sistant thickened covers remained almost undeformed.

The proposed contractional model is consistent with what is ob-
served along the western Betic Cordillera (Flinch et al., 1996; Ramos

Fig. 14. Balanced cross-sections across an ideal monoclinal drape fold system. a) in the case of a 30–40° dip subsalt fault similar to the Carxe Fault; and b) in the case of a 60–70° dip
subsalt fault similar to the Maestre Fault.
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et al., 2016), the Cotiella Basin (e.g. south central Pyrenees, López-Mir
et al., 2014), the Aquitaine Basin (James and Canerot, 1999), the Za-
gros fold-and-thrust belt (Callot et al., 2012) or the Flinders Ranges
(Rowan and Vendeville, 2006) among others where different degrees of
inversion of a salt-bearing passive margin led to thin-skinned fold-and-
thrust belt development.

7. Conclusions

The Eastern Prebetic Zone (SE Iberia), is an outstanding natural
laboratory for studying the contractional reactivation of the proximal
part of a passive margin containing prerift salt. The structural and
stratigraphic analysis of field and subsurface data unravels a series of
extensional and contractional structures that can be used to char-
acterize the development of similar passive margins and their later
incorporation into thin-skinned fold-and-thrust belts. Therefore, we
essentially provide a case study in which:

1 Thick-skinned extension controlled the rate of subsidence and hence
the accumulation of sediment over mobile prerift salt. In this sce-
nario, salt acted as a strain localizer by decoupling supra- and
subsalt deformation, thus generating two differentiated structural
styles —above and below the salt. The subsalt extension controlled
suprasalt deformation, and its location and distribution changed
over time. In the early stages of extension, the suprasalt deformation
was accommodated by the development of monoclinal drape folds,
suprasalt faults and diapirs. As extension progressed, folding and
faulting were concentrated above the footwall of the main subsalt
faults where the cover was thin and mechanically weak. In spite of
this, translation with minor folding was concentrated above their
hanging walls where the cover was thick and mechanically resistant.

2 Salt also localized strain during the incorporation of the proximal
part of the passive margin into the external zones of the fold-and-
thrust belt. The preexisting salt structures, weaker than adjacent
areas, preferentially absorbed the contractional deformation. The
stepped subsalt geometry which resulted from thick-skinned exten-
sion also controlled the shortening propagation. Therefore, the de-
gree of strain localization depended on the thickness of the suprasalt

cover and on the dip of subsalt faults relative to the thin-skinned
transport direction.
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