
GRAU DE MATEMÀTIQUES
Treball final de grau

Resolution of general linear systems:
numerical methods and applications

Autor: Bertran Miquel Oliver

Director: Dr. Antoni Benseny Ardiaca

Realitzat a: Departament de Matemàtiques

i Informàtica

Barcelona, 20 de juny de 2019

Abstract

The Singular Value Decomposition and the complete orthogonal decomposition algo-
rithms are two numerical methods based on orthogonal matrix transformations.
Among other usages, both are used for least square approximately solving gen-
eral linear systems. Not all the systems have a unique solution, but all the possible
solutions can be found. Besides, in this project, these two methods are going to
be compared each other and then see how apply them to nonlinear systems in a
geodesic scope.

2010 Mathematics Subject Classification. 15A03, 15A06, 15A18, 15A24, 15B10, 65F05, 65H10,
65K05, 65Y15.

Acknowledgements

I would like to thank my tutor, Dr. Antoni Benseny, for all his patience, his
interest in this work and all the advices that he has provided to me. I would
also like to thank my parents and friends for their general support through this
journey, specially to Marc for solving all my doubts about LATEX . Finally, I want to
thank to Sandra for encouraging me in the most difficult moments and be always
willing to advise me.

Contents

Introduction iv

1 Preliminaries 1

1.1 Orthogonal matrices . 1

1.2 Condition number . 2

1.3 Givens rotations . 4

1.4 Householder reflections . 6

2 Decomposition methods 9

2.1 Bidiagonalization . 9

2.2 The QR iteration method on tridiagonal matrices 11

2.2.1 Explicit single shift QR iteration 12

2.2.2 Implicit shift version . 13

2.3 The singular value decomposition algorithm 14

2.3.1 Complete orthogonal decomposition algorithm 17

3 Least Squares approximated solutions of linear systems 19

3.1 The singular value decomposition method 20

3.2 The complete orthogonal decomposition method 21

4 Program 23

4.1 Structure of the program . 23

iii

4.2 The solution file . 25

4.3 Comparison SVD vs QTZ . 25

4.4 R simulator . 27

5 Application to geodesy 29

5.1 Introduction . 29

5.2 Reasoning . 31

5.2.1 LS resolution . 33

5.3 Data representation . 34

5.3.1 Graph preliminaries . 34

5.3.2 Information graphs . 34

5.4 Adaptation of the problem . 37

5.4.1 The data file . 37

5.4.2 Formulate and solve the problem 38

5.5 Inconveniences . 39

Conclusions 40

Appendix A 41

Appendix B 43

Bibliography 47

Introduction

Motivation

During my Bachelor degree in Mathematics, I have studied different courses
related to the resolution of linear systems. In the Linear Algebra course, we deal
with the problem of solving linear systems in a theoretical way. Moreover, cours-
ing the first part of Numerical Methods provided to me different tools for solving
compatible determined linear systems. While the second part gave to me methods
for solving compatible undetermined linear systems, such as the QR factorization
method. In addition, coursing subjects as Graphs, Scientific Programming or Al-
gorithms brought me interest to the programming scope and also to study the
efficiency of algorithms.

Objectives

With these motivations in mind and the proposal of Dr. Benseny, we decided
to focus this project on three main goals.

Following the Jordi Jover project, see [8], the first objective consisted in study
different efficient methods to approximately solve general linear systems without
increasing the condition number, not only using the techniques learned during
the degree, but also extending to other methods. To do this, we focused on two
methods: the Singular Value Decomposition and the complete orthogonal decomposition
methods.

Moreover, the second goal consisted in applying the mentioned methods to
some random linear systems by using a software. To do so, we had to under-
stand and adapt the software used in project [8], in order to compare the studied
methods.

Finally, the third goal was about making an application of solving non linear
systems to a real case: adjusting the position of geodesic vertices in a simplification
of the geodetic network.

Memoir structure

This work is organised in five chapters. The first three chapters provides two
different resolutions of general linear systems methods. To do so, the first chapter
introduces the basic concepts that will be applied in following chapters.

In the second chapter, we will apply the preliminary concepts to explain the

vi Introduction

singular value decomposition algorithm and the complete orthogonal decomposition al-
gorithm. By doing it, we will use the bidiagonalization and the QR iteration meth-
ods.

Then, the main goal of the third chapter is to approximate a solution for general
linear systems. By using the normal equations and applying the two decomposition
algorithms explained in the last chapter, we are going to provide not only the
least squares solutions, but all of the possible approximated solutions of a general
linear system.

Subsequently, in the chapter four, the software, which approximate the solu-
tion of any linear systems by the SVD and the complete orthogonal decomposition
methods, is explained in detail. Furthermore, a comparison between the two meth-
ods is done. Also, the SVD algorithm of the software is compared to a function of
the basic package of R.

In the last chapter, a geodesy application is done by using the SVD method.
To do so, by using graph concepts, the problem and the solution of it will be
represented.

Chapter 1

Preliminaries

The aim of this chapter is to provide a brief overview of the orthogonal matri-
ces and present some of their characteristics. We will also make emphasis in two
of them: the Givens and the Householder matrices.

1.1 Orthogonal matrices

Definition 1.1. A matrix A ∈ Rnxn is an orthogonal matrix if its columns and rows
are orthogonal unit vectors, i.e.

QQt = QtQ = I ,

where I is the identity matrix.

This definition implies two direct consequences.

Observation 1.2. The columns of an orthogonal matrix form an orthonormal basis.

Observation 1.3. The inverse of an orthogonal matrix is its transpose

Q−1 = QT .

The second observation is helpful when solving linear systems, since we can
always find the inverse of an orthogonal matrix in an efficient way. Apart from
these observations, there are also two additional properties of this sort of matrices.

Properties 1.4. Let Q ∈ Rnxn be an orthogonal matrix

1

2 Preliminaries

1. det(Q) = ±1 .

Proof. 1 = det(I) = det(QTQ) = det(QT) · det(Q) = det(Q)2 ⇒ det(Q) =
±1 .

2. ‖ Q ‖ = 1 .

Proof. All rows of the matrix have norm equal to one, because of the defini-
tion of orthonormal matrix.

Observation 1.5. The converse of the first property is not true: having a determi-
nant of a matrix equals to ±1, does not guarantee the matrix to be orthogonal.

The second property is very useful because of its relation with the condition
number of a matrix. In the next section, we will introduce the concept of condition
number and its relation with the linear systems.

1.2 Condition number

Firstly, we will introduce the definition and give an interpretation of it. After
that, we will make some observations of this concept to see the importance of
orthogonal matrices.

Definition 1.6. Given a linear equation Ax = b, where A ∈ Rm×n, x ∈ Rn and
b ∈ Rm, the condition number gives a bound on how inaccurate the solution x will
be after the approximation. The condition number is defined by

κ(A) = ‖ A ‖ ‖ A−1 ‖ .

If a matrix has κ(A) ≈ 1, it is said to be a well-conditioned matrix. While, if it is
a high number, ill-conditioned.

Furthermore, the condition number gives information about how a variation
of A or b alters the solution vector x. In other words, κ(A) is the rate at which the
solution will change with respect to a change in A or b.

Now, let us introduce some observations about the condition number.

Observation 1.7. 1. κ(A) ≥ 1 .

1.2 Condition number 3

Proof.
κ(A) = ‖ A ‖‖ A−1 ‖ ≥ ‖ AA−1 ‖ = ‖ I ‖ = 1.

2. We can calculate the condition number if, and only if, the matrix is regular, as
we need his inverse to compute it. So, it can be computed for any orthogonal
matrix.

3. An orthogonal matrix has κ(Q) = 1. Consequently, the product of an or-
thogonal matrix with any matrix does not modify its the condition number.

Proof. Let A ∈ Rm×n be an invertible matrix and Q ∈ Rmxm an orthogonal
matrix

κ(QA) = ‖ QA ‖‖ (QA)−1 ‖ = ‖ A ‖ ‖ A−1QT ‖ = ‖ A ‖ ‖ A−1 ‖ = κ(A) .

Remark that ‖ QA ‖ = ‖ A ‖.

As a consequence of the last observation, if we apply an orthogonal matrix to
solve a linear systems, the resultant matrix will have the same condition as the
initial matrix. For example, in the QR method, when we product the orthogonal
matrix Q with the initial matrix A, it results a matrix R which κ(R) = κ(A). On the
whole, applying an orthogonal matrix to a system, does not increase the condition
number, i.e. does not make the linear system worse. For these reason, we will
focus on those methods that use orthogonal matrices to solve linear systems.

For solving linear systems Ax = b, we will use matrices that diagonalize or, at
least, make the matrix A triangular. To do it, we need to zero some elements of
the initial matrix. In the next section, we will see two different sort of orthogonal
matrices: the Givens rotations, to introduce a zero in a component of the matrix;
and the Householder reflections, used to transform a vector to a multiple one of the
e1 = (1, 0, . . . , 0), in one step.

4 Preliminaries

1.3 Givens rotations

When diagonalizing matrices, we usually want to zero a specific component.
In order to achieve it, we are going to apply rotation matrices.

Definition 1.8. A rotation matrix is an orthogonal matrix of the form

G(i, k, θ) =





1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . c . . . s . . . 0 i
...

...
. . .

...
...

0 . . . -s . . . c . . . 0 k
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1
i k

where c = cos(θ) and s = sin(θ) for some θ.

If we multiply G(i, k, θ)T on the left side of another matrix, amounts to a coun-
terclockwise rotation of θ radians in the (i, k) coordinate plane. We can see it if we
take a column vector x ∈ Rn and y = G(i, k, θ)Tx, then

yj =


cxi − sxk , j = i
sxi + cxk , j = k

xj , j 6= i, k

Our goal is to zero some elements. We can force yk by using

c =
xi√

x2
i + x2

k

, s =
−xk√
x2

i + x2
k

.

Definition 1.9. A Givens rotation is a rotation matrix G(i, k, θ) ∈ Rnxn where given
a vector x ∈ Rn,

c =
xi√

x2
i + x2

k

, s =
−xk√
x2

i + x2
k

, where i, k < n. (1.1)

Observation 1.10. Given a vector x ∈ Rn, applying n-1 times a sequence of Givens
rotations, we transform it to a parallel vector of e1.

1.3 Givens rotations 5

Applying Givens rotations

Having the definition of a Givens rotation in mind, let us see how to apply
it. First, we will see a better form to calculate (1.1). Secondly, we will provide an
efficient algorithm to apply a Givens rotation.

In the next algorithm, we are going to calculate c and s to zero a particular
element. This algorithm is better than (1.1) because it guards against overflow.
Given two scalar a, b ∈ R, this function compute c = cos(θ) and s = sin(θ) such
that [

c s
-s c

]T [a
b

]
=

[
r
0

]
consequently, we obtain the following conditions{

ca− sb = r
sa + cb = 0

(1.2)

Another implicit condition is c2 + s2 = 1 , because of the trigonometric reason.

If b = 0, then c = ±1, s = 0. Consequently, a = ±r. Otherwise, if a = 0, then
c = 0, s = ±1. Now, b = ∓r. Else, we set r in function of the module of a and b.

• If |a| ≥ |b|, then, we set r = - a
b . As a result of (1.2)

c = − a
b

s =
s
r
⇒ s = cr .

By the trigonometric rule and replacing, we obtain

c =
1√

1 + r2
.

• Otherwise, |a| < |b|, then, we choose r = - b
a . Analogously, we obtain

c = sr , s =
1√

1 + r2
.

Observation 1.11. In fact, to set the Givens rotation, the value of θ is not needed,
as we can see in the calculus of above. In consequence, we can say that G(i, k, θ) is
in function of c and s, also of θ, but just in an implicit form. So it is not necessary
to work with trigonometric functions.

Now, let us see how to multiply efficiently a matrix with a Givens rotation. Let
A ∈ Rm×n, c = cos(θ) and s = sin(θ). If G(i, k, θ) ∈ Rmxm, then G(i, k, θ)T A affects
just two rows of A, the ith and the kth row.

6 Preliminaries

Analogously, multiplying a Givens matrix by the left, affects just two columns
of A, with a similar program.

1.4 Householder reflections

Definition 1.12. Let v ∈ Rn be a nonzero column vector. An n× n matrix P of the
form

P(v) ≡ I − 2
vTv

vvT

is called a Householder reflection. The vector v is called a Householder vector.

Properties 1.13. This matrices satisfy:

• P(cv) = P(v), if c 6= 0. We can say Householder matrices are associated to
different directions or one-dimensional subspaces.

• P(v) is symmetric: P(v)T = P(v).

• P(v) is orthogonal: P(v)P(v) = I.

• P(u)v = u, ∀v ∈ u⊥. As a result, P(v)v = −v, so P(v) represents a reflection
with respect to the hyperplane v⊥. Therefore, x ∈ Rn can be splited in

x = cu + v ,

with c = uT x
uTu , v = x− cu⊥, and P(u)x = −cu + v .

• As a consequence of the last item, det P(v) = −1 .

This are some of the properties of Householder matrices. With Householder re-
flections, we can find a Householder vector such that for a vector x ∈ Rn , P(v)x =
±‖x‖2 e1 . See [2].

We can apply the product by the left and obtain a row vector multiple of eT
1 .

Applying Householder reflections

Let us see now which is the most efficient way to apply this sort of matrices.
Actually, any Householder matrix will be[

I 0

0 P

]
.

1.4 Householder reflections 7

The dimension of the identity matrix I can be modified in function of the elements
that we want to change of the original matrix. Furthermore, the dimension of the
identity matrix could be zero.

Applying a Householder matrix to another matrix in an efficient way, means
just multiplying the rows or columns that need to be modified. As a consequence,
we are going to multiply just the P matrix to the corresponding rows and columns
of the original matrix.

8 Preliminaries

Chapter 2

Decomposition methods

In this chapter, we will see how by applying Householder and Givens matrices,
we can transform any matrix to a diagonal or upper triangular matrix. To achieve
it, we will go through different previous steps: the bidiagonalization and the QR
iteration methods. Finally, we are going to expose the singular value decomposition
algorithm. In addition, we will see the complete orthogonal decomposition algorithm.

2.1 Bidiagonalization

In this section, we will see how, by applying orthogonal matrices, any matrix
is transformed to a bidiagonal one. Also, we will justify why the diagonal matrix
can not be formed directly.

Suppose A ∈ Rm×n and m ≥ n. There exist two orthogonal matrices UB, VB
such that

B := UT
B AVB =



d1 f1 0 . . . 0
0 d2 f2 . . . 0
...

.
...

0 . . . dn−1 fn−1
0 . . . 0 dn

0


,

where B is a bidiagonal matrix.

We have shown in 1.4 that using Householder matrix, with the correct House-

9

10 Decomposition methods

holder vector, it transforms any vector to a e1 multiple vector1. In fact, UB and VB
are a product of Householder reflections: UB = U1 · · ·Un and VB = V1 · · ·Vn−2 ,
where UB ∈ Rmxm and VB ∈ Rnxn , which transforms the columns and the rows of
A to multiplies of e1, respectively. Let us illustrate how Ui and Vj matrices affect
to a R5x4 matrix, when are applied.


[×] × × ×
× × × ×
× × × ×
× × × ×
× × × ×

 U1−−→


× [×] × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×

 V1−−→


× × 0 0
0 [×] × ×
0 × × ×
0 × × ×
0 × × ×

 U2−−→


× × 0 0
0 × [×] ×
0 0 × ×
0 0 × ×
0 0 × ×

 V2−−→


× × 0 0
0 × × 0
0 0 [×] ×
0 0 × ×
0 0 × ×

 U3−−→


× × 0 0
0 × × 0
0 0 × ×
0 0 0 [×]
0 0 0 ×

 U4−−→


× × 0 0
0 × × 0
0 0 × ×
0 0 0 ×
0 0 0 0

 ,

where [×] is the initial element of the vector that will be multiple of e1, as a column
once applied Ui, and as a row when Vi does.

However, why can we not directly diagonalize the matrix? When we apply the
Vi matrices, if take as [×] a diagonal element (i, i), then the subdiagonal element
(i + 1, i), previous zeroed by the Uj matrix, is going to be altered. Even so, if we
now apply a Uk matrix to zero the (i + 1, i) element, the (i, i + 1) element, previous
zeroed by the Vi matrix, is going to be altered and therefore we will not achieve
the diagonal matrix.

the rows are zeroed, if we choose the element (i, i) as the first element of the
vector that will be modified, then, when we apply the Vi, the element (i + 1, i) will
be altered. As a consequence, we will obtain a bidiagonal matrix.

1Form now on, when we talk about the e1 vector, we assume that it has the corresponding size
which will be understood by the context.

2.2 The QR iteration method on tridiagonal matrices 11

Special case

Now, suppose m < n. Doing the same process and so applying the correspon-
dents Householder matrices, we will arrive at the next scenario:

× × 0 0 0 0
0 × × 0 0 0
0 0 × × 0 0
0 0 0 × × 0

 .

As the element (m, m + 1) is not necessary zero, the resultant matrix not bidi-
agonal. In order to achieve a bidiagonal one, we should zero this element applying
Givens rotation by the right. By doing it,

× × 0 0 0 0
0 × × 0 0 0
0 0 × × 0 0
0 0 0 × × 0

 G1−−→


× × 0 0 0 0
0 × × 0 0 0
0 0 × × × 0
0 0 0 × 0 0

 G2−−→


× × 0 0 0 0
0 × × 0 × 0
0 0 × × 0 0
0 0 0 × 0 0

 G3−−→


× × 0 0 × 0
0 × × 0 0 0
0 0 × × 0 0
0 0 0 × 0 0

 G4−−→


× × 0 0 0 0
0 × × 0 0 0
0 0 × × 0 0
0 0 0 × 0 0

 ,

the element goes up and finally turn it zero. In fact, the Gi matrices are Givens
rotations in the coordinate plans (i, m + 1), which i is the number of row in each
case.

2.2 The QR iteration method on tridiagonal matrices

Once we have the bidiagonalization done, by making the product T := BTB,
where B is the bidiagonal matrix, we obtain a symmetric tridiagonal matrix. We
can diagonalize this matrix with the QR iterative method. There are three main
characteristics about the QR iteration applied to the tridiagonal matrices.

1. Preservation of form. If we apply the QR factorization to a symmetric tridiag-

12 Decomposition methods

onal matrix T = QR. Then,

T+ = QTTQ = QT(QR)Q = RQ

is also symmetric and tridiagonal. By repeating several times this algorithm,
the resultant matrix tends to a diagonal matrix.

2. Shifts. In order to increase the speed of convergence of the algorithm of 1,
we redefine the algorithm, but adding a shift ν ∈ R, such that T − νI = QR.
Then,

T+ = QTTQ = RQ + νI

is also tridiagonal. It is called a sift-QR step.

If T is an unreduced matrix2, choosing the value of ν from one of the eigen-
values of T and applying a shifted QR step, then the last diagonal element
of the R matrix is rnn = 0. In addition, the last column of T+ is equivalent to
ν · In(:) = ν · en = T+(:, n). This is called a Perfect Shift. Afterwards, we are
going to make more emphasis on the choose of the ν.

3. Cost. In fact, our goal is to remove all the elements of the lower subdiagonal.
To do it, we just need to apply a sequence of n − 1 Givens rotations.

2.2.1 Explicit single shift QR iteration

The shift-QR method accelerates the convergence of the QR iteration method,
taking away a νI matrix from T. Choosing a correct value of s could have im-
portant effects to the effectiveness of our algorithm. We saw that if ν equals an
eigenvalue, then rnn = 0. But, usually, the computation of the eigenvalues will be
very inefficient and, sometimes, impossible. However, with a good approximation
of an eigenvalue, the element (n, n − 1) will be small after a QR shift step. We
have two options to choose this value:

(a) The first one is to set ν as the last element of the main diagonal of the tridi-
agonal matrix, ν = an. We do not have to make any computation to take this
element.

(b) The second choice, generally more effective, is to set the shift as the eigen-
value of

T(n− 1 : n, n− 1 : n) =
[

an−1 bn−1
bn−1 an

]
.

2A triangular unreduced matrix is a triangular matrix with all the subdiagonal and upperdiago-
nal elements nonzero.

2.2 The QR iteration method on tridiagonal matrices 13

Computing it, we obtain

ν = an + d− sign(d)
√

d2 + b2
n−1 ,

where d = an−1−an
2 . Remark that it is the closer eigenvalue of the element

an, the last diagonal element of the tridiagonal matrix. This shift method is
called the Wilkinson shift. With this shift technique, the method is cubically
convergent to a diagonal matrix.

2.2.2 Implicit shift version

In this section, we will see how the shift-QR method is executed. As we said,
the iteration step of the method differs from the original QR method, in this case
T+ = RQ + νI. But, when it is computed, actually, there is no need of explicitly
calculate the matrix T− νI. This fact has advantages when the shift is much larger
than some of the diagonal elements of the tridiagonal matrix. We must keep in
mind that our goal is to achieve a diagonal matrix, i.e., zero the upperdiagonal
and the subdiagonal of the tridiagonal T matrix.

Remark that the tridiagonal matrix is a product of two bidiagonal matrix, T =
BTB. Therefore, the tridiagonal matrix elements are

T(i, j) =


di fi if i + 1 = j
f 2
i−1 + d2

i if i = j, i > 1
d2

i if i = j = 1
di−1 fi−1 if i = j + 1, i > 1

Now, let us see how the Givens rotations are applied to the T − νI matrix. Let
us focus in T − νI(1, 2) and let c = cos(θ) and s = sin(θ) be computed such that[

c s
−s c

]T [d1 − ν
d1 f1

]
=

[
×
0

]
and set G1 = G(1, 2, θ1). Let us see in detail what happens when the product G1T
is done.

As calculating the explicit formation of T = BTB is unwise from the numer-
ical standpoint3, we are going to apply the Givens rotations directly to B. As a

3Making this product can increase a lot the cost of the algorithm, but also, it can make lost some
information of the matrix.

14 Decomposition methods

consequence of applying G1, it appears a subdiagonal element

B← BG1 =


× × 0 0
+ × × 0
0 0 × ×
0 0 0 ×
0 0 0 0


In order to zero it, we can determine Givens rotations U1, V2 2, . . . , Vn−1, Un−1

to chase the element down

B
UT

1−−→


× × + 0
0 × × 0
0 0 × ×
0 0 0 ×
0 0 0 0

 V2−−→


× × 0 0
0 × × 0
0 + × ×
0 0 0 ×
0 0 0 0

 UT
2−−→


× × 0 0
0 × × +
0 0 × ×
0 0 0 ×
0 0 0 0

 ,

where UT
i ’s are applied by the left, while Vi’s by the right. We must make this

steps until we achieve the bidiagonal matrix again. So, the new bidiagonal B̄ is
related to B by

B̄ = (UT
n−1 · · ·UT

1)B(G1V2 · · ·Vn−1) = ŪTBV̄ .

As V̄e1 = Qe1, by the implicit Q theorem (see [5]), we can assert that V̄ and
Q are essentially the same. This happens because the Vi matrices are Givens
rotations, i.e., Vi = G(i, i + 1, θi) for i = 2, . . . , n − 1. As a consequence, we can
work directly with the matrix B, instead of the tridiagonal matrix T, that is more
efficient.

These affirmations only are held when the tridiagonal matrix T is unreduced,
therefore the BTB. To verify it, we just have to check that f1 · · · fn−1 6= 0 and
d1 · · · dn 6= 0, since the subdiagonal entries of BTB depend of the two diagonals of
B.

2.3 The singular value decomposition algorithm

Knowing all the necessary background theory, now we will expose an algo-
rithm to diagonalize any matrix: the SVD algorithm.

2.3 The singular value decomposition algorithm 15

Theorem 2.1. (Singular Value Decomposition, SVD) Given A ∈ Rm×n, then there
exist orthogonal matrices U ∈ Rmxm and V ∈ Rnxn such that

Σ = UT AV = diag(σ1, . . . , σp) ∈ Rm×n, where p = min{m, n}

with σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

Proof. See [5]; Theorem 2.5.2.

Observation 2.2. The σi elements of the final diagonal matrix Σ are not necessarily
different from 0. As a consequence, the rank of Σ could be less than m or n, i.e.,
rank(Σ) = r ≤ min{m, n}

Given A ∈ Rm×n a matrix, the SVD transforms it to a diagonal matrix. Now,
let us introduce the step-by- step algorithm.

1. Firstly, we transform A to a bidiagonal matrix by the algorithm shown pre-
viously,

A = UBBVT
B .

2. Secondly, we set bi,i+1 to zero the elements which |bi,i+1| ≤ ε · (|bi,i|+ |bi+1,i+1|,
for any i = 1, . . . , n− 1. Now, we have to find the largest q and the smallest
p such that if

B =

[]B11 0 0 p
0 B22 0 n− p− q
0 0 B33 q
p n− p− q q

,

then B33 is diagonal, B22 has nonzero superdiagonal and the Bii matrices
are squared matrices. Therefore, if we find a zero in the superdiagonal, i.e.,
fk = 0, for k ≤ n− 1, then we decouple B in two different matrix: B11 and
B22.

3. In order to apply the algorithm explained in 2.2.2, we need T = BT
22B22 to be

an unreduced matrix. AS we explained, T is an unreduced matrix if dk 6= 0
and fk 6= 0, for any p < k < q. By the definition of B22 matrix, all the
upperdiagonal elements are different from zero. Therefore, just we need to
proof that all the diagonal elements of B22 are dk 6= 0. From now on, in this
point we will consider the dimension of the B22 matrix r× r.

Firstly, let us look at the k < r elements. If there is any 0 between them,
applying a Givens rotations sequence can zero fk. For example, if r = 6 and
k = 3, then by rotating in row planes (3, 4), (3, 5) and (3, 6) we zero f3 and,

16 Decomposition methods

consequently, the third row:

B22 =



× × 0 0 0 0
0 × × 0 0 0
0 0 0 × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×


(3,4)−−−→



× × 0 0 0 0
0 × × 0 0 0
0 0 0 0 + 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×



(3,5)−−−→



× × 0 0 0 0
0 × × 0 0 0
0 0 0 0 0 +
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×


(3,6)−−−→



× × 0 0 0 0
0 × × 0 0 0
0 0 0 0 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

 .

These Givens transformations just alter the diagonal and upperdiagonal el-
ements of the rows 4, 5 and 6, respectively. So, it does not affect any other
element of the matrix.

Now, if the last diagonal element is zero, dr = 0. In this case, the last
column can be zeroed with a series of column rotations in planes (r −
1, r), . . . , (1, r), so we are going to chase and go up this element, and.
finally turn it zero.

If we have done any of this two last modifications, we have to return to the
second point.

4. If any modification is made in the last point, the B22 matrix is unreduced, so
we can apply the implicit-shift QR step. We compute the eigenvalue, ν, of

BTB(n− 1 : n, n− 1 : n) =
[

d2
n−1 + f 2

n−2 dn−1 fn−1

dn−1 fn−1 d2
n + f 2

n−1

]
.

Then, we apply the method explained in the 2.2.2, that computes the T+ =
T − νI step.

We have to apply this algorithm until q = n. When it happens, will mean that
B = B33, where, as we set, B33 is a diagonal matrix.

2.3 The singular value decomposition algorithm 17

2.3.1 Complete orthogonal decomposition algorithm

Given a A ∈ Rm×n matrix, the complete orthogonal method, by applying orthog-
onal matrices, we achieve a triangular matrix T:

A = QTZT

.

Let us see how we can find these orthogonal matrices. Firstly, a modification
of the QR factorization algorithm is applied. Then, the QR factorization is used to
achieve the T matrix.

The QR factorization, for deficiency rank matrices, does not always works
correctly, as it does not necessarily produce an orthonormal basis for the ran(A)4.
But, we can generate the orthonormal basis by modifying the QR factorization
with permutation. By doing it, we obtain

QT AΠ =

[]
R11 R12 r
0 0 m− r
r n− r

, (2.1)

where R11 ∈ Rrxr is upper triangular and regular, Q ∈ Rmxm is orthogonal and
Π ∈ Rnxn is a permutation matrix. Notice that the Q matrix is a product of
Householder matrices and Π is a product of interchange matrices.

Let us expose how these matrices are computed. Recall that this algorithm is a
modification of the QR factorization algorithm, where the columns are permuted
with the Πi matrices. Let us explain how these permutations are done. To do it,
there is no better way than looking what happens on a specific step. Once we have
the k iteration completed, we have computed Householder matrices H1, . . . , Hk−1,
in order to zero the subdiagonal elements of the first k columns of the matrix. Also,
the permutations Π1, . . . , Πk−1 are applied, and the following matrix is obtained:

(Hk−1 · · ·H1)A(Π1 · · ·Πk−1) =

[]
R(k−1)

11 R(k−1)
12 k− 1

0 R(k−1)
22 m− k + 1

k− 1 n− k + 1
,

where R(k−1)
11 is a non-singular and upper triangular matrix. Now, we want to zero

4Remark that ran(A) = {y ∈ Rm such that y = Ax for some x ∈ Rn}, so is the subspace of Rm

created by the matrix A.

18 Decomposition methods

the R(k−1)
22 . Suppose that

R(k−1)
22 =

[
z(k−1)

k , . . . , z(k−1)
n

]
is a column partitioning and let k ≤ p be the smallest index such that∥∥∥ z(k−1)

p

∥∥∥
2
= max

{∥∥∥ z(k−1)
k

∥∥∥
2

, . . . ,
∥∥∥ z(k−1)

n

∥∥∥
2

}
.

Note that if k− 1 = rank(A), then this maximum is zero and we are finished.
Otherwise, let Πk be the n− by− n identity matrix with the columns p and k inter-
changed and determine a Householder matrix Hk such that if R(k) = HkR(k−1)Πk,
then R(k)(k + 1 : m, k) = 0.

In other words, Πk moves the largest column in R(k−1)
22 to the lead position and

Hk zeroes all of its subdiagonal elements. Then, we have to recompute the norms
by updating the old column norms with the next calculus∥∥∥ z(j)

∥∥∥2

2
=
∥∥∥ z(j−1)

∥∥∥2

2
− r2

kj .

Once we have achieved the 2.1 matrix, it can be further reduced. Multiplying
by an appropriate sequence of Householder matrices, we can zero the R12 part of
the matrix, but transforming the R11 matrix.

Applying the QR factorization algorithm

Zr · · · Z1

[]
RT

11
RT

12

=
[]

TT
11 r
0 n− r ,

where the Zi are Householder transformations and TT
11 is an upper triangular

matrix. Thus, we obtain that rank(A) = r. Therefore, adding this procedure to the
QR modified factorization, we obtain

QT AZ = T =

[]
T11 0 r
0 0 m− r
r n− r

,

where Z = Π · Z1 · · · Zr.

Chapter 3

Least Squares approximated
solutions of linear systems

Given a matrix A ∈ Rm×n and two vectors x ∈ Rn and b ∈ Rm, we are going
to see how to give all the possible solutions of any linear system or at least an
approximation of them.

Therefore, our goal is to find the solution vector x such that makes Ax closer
to b. Thus, in a mathematical way, we want to find

min
x∈Rn
‖ Ax− b ‖2 . (3.1)

To find those vectors is called the least squares (LS) problem, sometimes, with
more than one possible xLS solution. In order to know the error between Ax̃ and
b, where x̃ is an approximate solution, we define the minimum residual rLS(x̃) =
b− Ax̃.

To find all the possible solutions of any system, let us introduce the normal
equations, that transforms a general linear system into a compatible linear system,
by doing

AT Ax = ATb . (3.2)

To solve it, we are going to decompose the matrix A, using orthogonal matrices,
by two methods: the singular value decomposition method and the complete orthogonal
decomposition methods.

19

20 Least Squares approximated solutions of linear systems

3.1 The singular value decomposition method

As we explained in the last chapter, applying this algorithm, we decompose
any matrix as A = UΣVT. By applying the normal equations,

VΣTUTUΣVTx = VΣTUTb . (3.3)

Now, applying QT = Q−1 for any orthogonal matrix, we obtain

ΣTΣVTx = ΣTUTb . (3.4)

Remark that Σ is a diagonal matrix, but not always invertible. Suppose we
have r diagonal elements different from zero, the rank(A) = r. Then, we can
define Σ1 = Σ(r, r), an invertible matrix. The solution is determined by

ΣT
1 Σ1(VTx)1 = ΣT

1 c ,

we call c to the first r columns of the UTb vector. Applying Σ−1
1 in each side of the

equation,
(VTx)1 = Σ−1

1 c .

Therefore, a solution is fixed by v(1)T
...

v(r)T

 x =

 ā1
...

ār

 = Σ−1
1 c .

Knowing one LS solution, now our goal is to find all the other possible solu-
tions.

Let us express the x vector in the orthonormal basis of the V matrix

x = a1v(1) + a2v(2) + · · ·+ arv(r) + ar+1v(r+1) + · · ·+ anv(n) ,

thus, all the other possible solutions are generated by adding multiples of the last
n− r columns of the matrix V to the previous found solution. Therefore, all the
possible solutions are in the linear variety

E = ā1v(1) + ā2v(2) + · · ·+ ārv(r) + 〈v(r+1), . . . , v(n)〉 , (3.5)

where its dimension is n− r.

Observe that if the rank(A) = n, then the dim(E) = n− n = 0, so there is only

3.2 The complete orthogonal decomposition method 21

one LS solution.

3.2 The complete orthogonal decomposition method

In a similar way as in the SVD algorithm, all the solutions, in particular the LS
solutions, are determined using the complete orthogonal decomposition.

As we have viewed, A = QTZT. Considering the normal equations with this
decomposition, we obtain

ZTTQTQTZTx = ZTTQTb . (3.6)

Using the orthogonal matrix properties,

TTTZTx = TTQTb . (3.7)

Remark that T is a triangular matrix but nor always invertible. However, we
have defined the T11 invertible matrix. Notice that rank(A) = r.

Considering the first r columns of T in 3.7, we obtain

TT
11T11(ZTx)1 = TT

11c ,

where (ZTx)1 are the first r rows of ZT multiplied by x and c equals to the first r
rows of QT multiplied by b, c = (QTb)1. As TT

11 is a regular matrix, we can find
the inverse, so

T11(ZTx)1 = c .

Therefore, a solution is fixed by z(1)T
...

z(r)T

 x =

 a1
...

ar

 = T−1
11 c .

Now, we have found a LS solution. Our goal will be to find all the other
possible solution.

We can express the vector x in the orthonormal basis1 of the Z matrix as

x = a1z(1) + a2z(2) + · · ·+ arz(r) + ar+1z(r+1) + · · ·+ anz(n) ,

1As is an orthonormal basis, as we said in 1.1, it does not alter the norm of the vector

22 Least Squares approximated solutions of linear systems

where the first r components are determined by

Therefore, all the possible solutions are generated by adding multiples of the
last n− r columns of the matrix Z to the previous found solution. Finally, all the
possible solutions are in the linear variety

E′ = ā1z(1) + ā2z(2) + · · ·+ ārz(r) + 〈z(r+1), . . . , z(n)〉 . (3.8)

Chapter 4

Program

In the last chapters, we studied how to solve linear systems with different
methods. In order to compare which method is more efficient, we are going to use
a program in C++ language. This program solves linear systems with the Singular
Value Decomposition and the complete orthogonal decomposition methods.

In the full rank case, instead of using the complete orthogonal decomposition
method, the program will directly apply the QR factorization. In other words,
when it is needed, it does the column pivoting and the consequence factorization.
Also, the program takes care of some special cases explained in 2.1. So, when the
bidiagonalization is not completed in a matrix A ∈ Rm×n, m < n, the program
itself applies the correspondent Givens rotations to manage it.

4.1 Structure of the program

The program is divided in 6 different modules which include functions with
a common objective. Let us explain how they are distributed and which sort of
functions include each module:

1. DSC1 Basics: The first module includes the most basic functions that will be
used in the following modules. There are functions that make basic actions
such as reading and printing a linear system, transposing matrices, matrices
and vector permutations, generating random matrices, copying data infor-
mation and comparing two different matrices. In addition, there are some
functions which makes matrix by matrix or matrix by vector products.

23

24 Program

2. DSC2 Linear Transformation: In this module, we can find functions which
apply the Givens and Householder matrices. Those can be applied by the left
or by the right, with some many changes on its products, as we has shown in
1.3 and in 1.4. Always these functions are going to apply these two matrices
in the efficient way explained before.

3. DSC2 Orthogonal triangular decomposition: Now, we already have all the
tools to decompose matrices. Here, we can find many functions that com-
putes the complete orthogonal decomposition. Firstly, we have the QR fac-
torization function (QRD) and a function that checks the decomposition has
done well. Then, we include the permutation option in the QR factorization,
also with the correspondent check function. This module also includes func-
tions that complete the decomposition. So, there are the TZ and the final
QTZ decompositions.

4. DSC2 Singular value decomposition: Within the five functions of this mod-
ule, two of them are the most important. These ones apply the algorithm ex-
plained in 2.3 by parts. Firstly, we have the bidiagonalization of the original
matrix. Then, we apply the rest of the algorithm with the SVD_B function.
This function includes all the possibilities and different scenarios that we can
find applying the SVD algorithm. Also, there are some "check" function just
to prove that the decomposition is done correctly. Finally, we find the main
function of the module that just call the two main functions and write the
results, if it is necessary.

5. DSC3 Solutions: This module will give us not only the least square solution,
but also all the possible solution of the linear system. Roughly, it is divided
in two: the first part computes and writes the QTZ decomposition solutions,
while the second part does it for the SVD solutions. From the respective
decomposition, the functions of this module solve linear systems by different
techniques - back and forward replacement and applying orthogonal inverse
matrices 1 - and writes all the solutions.

6. LSq Test: Finally, we arrive at the main function of the program. This func-
tion call another one which computes all the functions. It does including a
file and two Boolean variables. The first one indicates if the algorithm has to
be written step by step. If it is false, the program will only write the solution
of the two methods. The second Boolean variable tells if the matrix is going
to be generate in a random way or is read of a file. When this function is
executed, it computes the time of execution of the two algorithms and com-
pares it. Also, it computes the difference between the solution given by the
two algorithms.

1The orthogonal matrices always has inverse, specifically Q−1 = QT

4.2 The solution file 25

4.2 The solution file

As we have explained in the last section, the program could write just the
solution or a step by step solution, where we can see how the algorithm works.
Firstly, in the two options, we will find the linear system. Then, the step by
step option will be different form the other one, as it is going to include more
information

At the beginning, we are going to find the SVD method explained step by step.
First, the bidiagonalization method with the correspondent orthogonal matrices is
written. Next, the SVD algorithm step by step, indicating the iterate number and
the q and e vectors that represents the upperdiagonal and the diagonal elements
of the B matrix. Then, the Implicit Version algorithm is showed, explained in 2.2.2,
where the kp and kq values are equivalent to the p and q values of 2.3. In each
step, are printed the T and R matrices, the orthogonal matrices needed to apply
in the Implicit Version algorithm. Finally, the program shows the U, S and V
matrices, with the least square solution and all the possible solutions, which we
have found following the method in 3.5. The first row is a particular solution,
while the following rows are the vectors of the subspace. Also, the RMS error is
showed.

Now, let us focus on the QTZ decomposition algorithm. In this case, the pro-
gram only shows the three different matrices decomposed and the solutions. Here
we are in the same situation as the SVD. The first row gives the particular solu-
tion and the following ones, the vectors which generate the subspace, explained
in 3.8. In the other case, we are only going to see the Least Square solution, all the
possible solutions and the execution time. Finally, the program compares the two
results and the computation time of the methods.

4.3 Comparison SVD vs QTZ

In order to see which method is more efficient, we generate different random
matrices with dimensions not bigger than 250 × 250, where the elements take
the values between (−250, 250). There is the possibility to change the range of
this value in the LSq Test module. In the table 4.1, there are compiled a few
random matrices that have been executed. Knowing their dimensions, we can
see the computation time2 in microseconds (10−3 seconds) and the correspondent
comparison between the two methods: SVD / QTZ.

2This computation time is taken when the program does not write the solution step-by-step, so
the writing part does not affect it too much.

26 Program

m n SVD QTZ SVD / QTZ

1 94 75 43 1.7442

17 80 401 272 1.4743

250 249 228506 62018 3.6845

14 47 166 114 1.4561

23 91 978 637 1.5353

19 62 403 229 1.7598

74 16 385 240 1.6042

6 49 95 67 1.4179

4 61 131 101 1.2970

59 14 230 129 1.7829

154 102 17892 7356 2.4323

59 134 6175 3664 1.68539

120 104 13102 4507 2.9070

101 74 5785 2497 2.3167

182 11 1063 1555 0.6836

64 16 314 162 1.9382

143 143 31255 8456 3.6962

218 205 114867 35046 3.2776

Average 1.7520

Table 4.1: Computation time compilation of random matrices.

Observe that SVD takes in average 1.75 more time than QTZ method. Probably
this sample is not sufficient to set an exact relation between the computation time
of the two algorithms. However, we can conclude that QTZ is more efficient than
SVD.

In addition, we have to take into account that this program is made in a few
days and it cannot be comparable with one function of libraries as redsvd or eigen.
Moreover, we have made a program in R to see the computation time of an efficient
algorithm.

4.4 R simulator 27

4.4 R simulator

This R simulator generates 100 random matrices and computes the SVD algo-
rithm with a defined function, found in [9]. These random matrices have random
dimension between (2, 250)× (2, 250), which those elements are random num-
bers between (−250, 250).

The software executes the La.svd that returns U, Σ and the transposed VT

matrices. Once done it, a comparison between the original matrix A with the
product of matrices UΣVT is done. Finally, it averages the computation time and
the error3 of each iteration.

In conclusion, as we can see in the Annex, the average error is about 10−11 and
the computation time is around 0.006 seconds (6 microseconds) for each iteration.
As it is expected, this algorithm is much more efficient, the computation time of
this function is much more lower than the program in C++.

3In this case, we understand the error as the difference between the original matrix and the
matrix originated by the product of the SVD resultant matrices. In fact, could be interpreted as the
tolerance used by the SVD function.

28 Program

Chapter 5

Application to geodesy

In the last chapters, we have seen two possible methods for solving linear
systems. As an application of these methods, let us introduce a geodesy problem
found in [1]. To compute and represent the problem, we have a simulator. To store
and represent the information, we will introduce some concepts of graph theory.
Finally, we will see some inconveniences of this application and how to improve
some of them.

5.1 Introduction

Geodesy is the science that studies the Earth at various global and local scales.
As its known, the shape of the Earth is not exactly spherical, but similar to it.
Approximating its shape is the task that geodesy does as a global scope. To achieve
it, a geodesy network is used. A geodesy network is formed by a set of geodesic
vertices, which positions are needed to be measured with a high precision.

Another utility of the geodesic vertices takes place in the local scale to accu-
rately reference nearby points. This network is developed as an utility it can give
to help to the take into different studies about some geographic limitations of the
territory.

The objective of this chapter is to make an adjustment method of a positions
of geodesic vertices of a given network. We have measure of some distances and
of some angles between them, and we want to refine the exact positions of the
vertices. Notice that the angles between three nodes are only measured when
we know the two adjacent distances, see Figure 5.4. The measures are taken in
order to determinate the new position of the geodesic vertices. In other words,
these measures generates some constraints between each points. Thus, we want to

29

30 Application to geodesy

Figure 5.1: Map of the geodesy network of a slice of the province of Barcelona.
Source: Institut Cartogràfic i Geològic de Catalunya (ICGC). Last update:
23/7/2018. Used with license.

adjust the position of the geodesic vertices that satisfies the constraints associated
with the measured distances and angles.

We may notice that the constraints depend directly on how the measurements
are taken. Nowadays, the tool used to take the measures is total station, see the
Figure 5.2, which integrates a theodolite and an electronic distance measurement.
This machine computes the angles in a high precision, with the theodolite incor-
porated system, and gives us the distance between the positions of the geodesy
vertices.

Figure 5.2: A theodolite. Source: Wikimedia Commons. Used with license.

These constraints generate a system of equations. Each equation of this system
is determined by a measure. Therefore, we will have as many equations as taken
measures. Then, we will find any type of systems: if there are few measures, the

5.2 Reasoning 31

system may be underdetermined; while taking as much measures as possible, an
overdetermined system is generated. Regardless, our objective will be finding a
least squares adjustment of the position of the geodesic vertices.

Remark that the accuracy of the position of the vertices is directly related with
the number of equations of the system. With an overdetermined system, we will
have much more precision, as the solution is going to be determined by more
equations and, therefore, it will also satisfy more constraints. Thus, the more
measurements are taken, the more precision we will achieve.

Moreover, we simplify this problem restricting it to the 2 dimensional space.
However, notice that to extend the problem to the 3 dimension, we only need to
add one more coordinate to the points.

Figure 5.3: A geodesic vertex of the
IGCG located in Molins de Rei.

Figure 5.4: Angles are measured
when adjacent distances are known.

Notice that the problem will not be linear, as the equations include at least
quadratic expression for distances. So to solve it, we linearize the problem by
firstly using an initial approximation of the points and then applying the Newton’s
method. Finally, we the SVD algorithm is applied to find the solution.

5.2 Reasoning

In this section, we will introduce the problem in a mathematical way. Our goal
will be finding the least square adjustment of the nodes which best satisfy the
constraints. We also have to take into account that the problem will not be linear,
so we must linearize the problem.

Let us consider a set of approximated geodesic points x = (x1, . . . , xn)T, where
xi = (x(1)i , x(2)i), as we are restricting the problem in R2. Also, we suppose that we
know some of the distances between the points and some of the angles between
three points, when we have the two adjacent distances.

32 Application to geodesy

Firstly, we are going to compute an error function which compares the mea-
sures with the expected distances or angles, respectively. Those are computed
with the approximated components of the points.

Let us define the function eij, for each distance measure between the points xi
and xj

eij(x) = d(xi, xj)− zij ,

where the value of zij indicates the square obtained distance and the function d,
the expected measurement. The function d computes the distance between the
approximated points xi and xj. Notice that the distance between xi and xj is
the same distance between xj and xi, therefore, zij = zji, and so eij = eji. For
computing the d function, we consider the Euclidean distance, therefore

d(xi, xj) = (x(1)i − x(1)j)2 + (x(2)i − x(2)j)2 . (5.1)

Our goal is to zero the eij functions, so we need to solve the equation

(x(1)i − x(1)j)2 + (x(2)i − x(2)j)2 − zij = 0

for every xi, xj where the distance measure exists.

Supposing now three points xi, xj and xk, knowing the distances from xi to xk
and xi to xj and suppose the angle between the three points has been measured,
the angle î jk. We define an error function eî jk for each angle constraint, as

eî jk(x) = g(xi, xj, xk)− zî jk ,

where zî jk is the measure of the angle between the points. In this case, eî jk 6= e ĵik,
as there take different angles measure. The function g is the computed angle with
the approximated points xi, xj and xk

g(xi, xj, xk) =
(# »xixj · # »xixk)

2∥∥ # »xixj
∥∥2 · ‖ # »xixk‖2

(5.2)

=
(x(1)

2

i − x(1)i x(1)k − x(1)j x(1)i + x(1)j x(1)k + x(2)
2

i − x(2)i x(2)j − x(2)k x(2)i + x(2)j x(2)k)2∥∥ # »xixj
∥∥2 · ‖ # »xixk‖2

,

where # »xixj is the vector formed by the point xi to xj and ‖ # »xixj‖2 is the Euclidean
norm of it. Remark that the function g is equivalent to cos2 θ, for an angle θ.
Consequently, in order to compare the function g with zî jk, the measure will be

given as zî jk = cos2 α, for an angle α.

5.2 Reasoning 33

In order to reduce the operations, we are going to use the measured distances
instead of the norms of the vector between the correspondent points, so zij =∥∥ # »xixj

∥∥2 and zik = ‖ # »xixk‖2. So, the equation needed to satisfy is

(# »xixj · # »xixk)
2 − zî jk · zij · zik = 0 ,

for every xi, xj and xk points which we have the angle measure. Therefore, we can
redefine eî jk as

eî jk = (# »xixj · # »xixk)
2 − zî jk · zij · zik .

To sum up all these functions, we define a function F : R2n → Rm, where n
is the number of points and, as we are in the R2 dimension, is multiplied by 2;
while m is the number of equations, i.e., the number of eij equations added to the
number of eijk ones. As we said in the last section, depending on the values of m
and 2n we will have an overdetermined or underdetermined system. The function
F(x) will return a vector with all the values of eij followed by the values of eî jk.
Therefore, our objective will be to find the vector of points x such that zeroes F(x).

5.2.1 LS resolution

Firstly, we observe that F(x) is a non-linear function, as it contains at least
quadratic elements because of the distance and angles computations. In order to
linearize it, let us apply the Newton’s method that sets the equation

DF(x)∆x = −F(x) , (5.3)

where DF ∈ Rmx2n is the Jacobian matrix of the function F and ∆x = x̄ − x, the
difference between the oldest points and the new approximation points.

The reason for adding the restriction of having the two adjacent distances for
measuring an angle, now it gets significance. Using the zijk values in 5.2, instead
of computing the norms, greatly simplifies the calculation of the Jacobian matrix.
Moreover, as we have initially approximated the vector x, notice that the unknown
vector in this linear system is the x̄. When it is solved, then x = x̄ and the system
is set out again, until F(x̄) = (0, . . . , 0).

For solving the linear system, we are going to apply the SVD algorithm until
we obtain the least square solution vector.

34 Application to geodesy

5.3 Data representation

Once found the approximate solution, the representation of it will be based on
graphs. Before explaining how it will be, let us introduce some basic concepts of
graph theory.

5.3.1 Graph preliminaries

Let us introduce a few definitions of basic concepts of the graph theory. Work-
ing with the graph G, we will notice the edges of the graph as E(G) and the
vertices as V(G).

Definition 5.1. Let u, v ∈ V(G), if there exist u− v ∈ E(G), these two vertices are
adjacent, or neighbours. Let e, f ∈ E(G), e 6= f , are adjacent if they have an end in
common: e = v− u and f = v− w, where v, u and w are vertices of G.

Now, let us apply these two definitions to explain another concept.

Definition 5.2. The line graph L(G) of G is the graph on E(G) in which e, f ∈ E(G)
are adjacent as vertices if and only if they are adjacent as edges in G.

In other words, the line graph L(G) takes the edges of the graph G as vertices.
Those adjacent vertices in G are going to be connected in L(G). In the Figures 5.5,
5.6, 5.7 and 5.8, it is showed how a lineal graph is formed.

Figure 5.5: Graph G. Source: Wiki-
media Commons. Used with license.

Figure 5.6: Edges in G. Source: Wiki-
media Commons. Used with license.

5.3.2 Information graphs

As we said, we are going to represent the data points and its distances and
angles using graphs. In particular, we are going to use two different graphs to
represent all the information.

5.3 Data representation 35

Figure 5.7: Edges of L(G). Source:
Wikimedia Commons. Used with li-
cense.

Figure 5.8: The graph L(G). Source:
Wikimedia Commons. Used with li-
cense.

The first graph G is a weighted non directional graph. Its vertices represent
the geodesic vertices, while the distance measurements represented as weighted
edges: each edge e ∈ E(G) corresponds to the measured distance d2

e = ze, the
weight between its vertices.

The second graph is a weighted non directional subgraph of the line graph of
G. We denote it as H ⊂ L(G). We are going to use this graph for representing
the angles measures. Recall that we need that three with at least two adjacent
edges for having an angle measure. The vertices of H are some of the edges of
G, V(H) ⊂ E(G), in consequence from the definition. The edge of H join two
elements of E(G). In other words, each a ∈ E(H) links two adjacent e, f ∈ E(G):
e = v− u, f = v− w, and its weight corresponds to the squared cosine cos2 αa of
the measured angle αa between them there must exist u, v ∈ E(G).

Once the two graphs are generated, we will represent both in one image, su-
perposing the graph H on G. Let us illustrate it with the next example, see Figure
5.9.

In this graph, we can observe that we know the distance between the vertices
6 and 7. On the contrary, the distance between the vertices 3 and 4 have not been
measured, so the edge 3− 4 does not exist.

As we can see, there is one edge of the graph H, coloured in red, between the
edges 0− 1 and 0− 2 of the graph G. This red edge represents that the measure of
the of the angle 0̂12 is given. Also, we can see that the vertex 4 is adjacent to 5 and
2, but in this case we do not know the angle measure 4̂52. Otherwise, with the
vertices 2, 4 and 3, we do not have the possibility to receive any angle information
as 3− 4 /∈ E(G).

F is composed of two parts. The first one contains all the equations related to
the distances measures. As many equations as the number of elements of E(G).
Remark that the weight of each edge of G equals to ze = d2

e . The second part
of the function compiles all the equations related to the angles measures za =

36 Application to geodesy

Figure 5.9: Graph G0.

cos2αa. Of these ones, we are going to have as many as the number of edges of
H. Consequently, the dimension of F will partly be determined by m = #E(G) +
#E(H).

Figure 5.10: Angle of the weighted graph G.

Knowing how to represent the problem, in the next section, we are going to
see how the problem is set out and how the simulator works.

5.4 Adaptation of the problem 37

5.4 Adaptation of the problem

In the simulator, we have made an adaptation of this problem. First, let us in-
troduce how the data information is received. Then, we will see how the program
formulates and solves this approximation to the original problem.

5.4.1 The data file

The data is received with the next structure. First, we know the quantity of
points vn, the unknowns. In the same line, we have the number of edges, en, and
angles, an, that have been measured, the constraints.

Then, we will find vn lines were the coordinates of the points are specified.
Each point has a line, the first column indicates the number of vertex, the second
the first coordinate and the third the second coordinate.

Below of that, we are going to find en lines where the edge information is
specified, actually, if the edge exist or not. The first column gives the edge number,
the second one the initial vertex and in the third one the final vertex of the edge.

Finally, we will find an lines, which say if the angle exist or not. Firstly, we will
find the angle numeration and, in the next three columns, there are three numbers
that represent the vertex number. Between the first and the second number must
exist an edge and also between the first and the third number. Let us illustrate it
with the data file of the example shown in the Figure 5.9:

8 9 4

0 0 2
1 1 0
2 2 1

Vertices 3 1 4
4 2 5
5 3 3
6 4 4
7 4 5

38 Application to geodesy



0 0 1
1 0 3
2 1 3
3 2 1

Edges 4 2 5
5 3 2
6 4 2
7 4 5
8 6 7
0 0 1 3

Angles 1 2 1 5
2 3 0 2
3 5 2 4

5.4.2 Formulate and solve the problem

As we saw, we may notice that any measurement information have read. What
the simulator is going to do is to calculate the distances of the vertices and the an-
gles that exist and, then modify it. By doing that, we will obtain an approximation
of points that does not satisfy the constraints. Now, let us explain step-by-step
how the simulator exactly works.

Firstly, once the information is read, the first step is to compute the distances
between the adjacent points using the function 5.1 and the angles of the read
points using the function 5.2. Now, the program will alter these distances and
angles multiplying by 1 + λ · ε, where λ is a random variable and ε is a variable
that we will modify in the simulator. So, when we modify this value, the points
will not satisfy the constraint.

In order to find the new points which satisfy the new constraints, the program
applies the equation 5.3, computing the Jacobian matrix and updating the vector
x. Finally, the simulator call some functions of the program of chapter 4, to solve
the linear system, applying SVD.

Depending on the number of distances and angles read, we will find different
types of linear systems. Therefore, the simulator will find the exact solution of it
or give us a least square adjustment of the solution. Also, the value of ε, could
conditioned finding the solution. If it has a big, will be more difficult for the
algorithms gives a satisfying solution.

When the new points are found, the simulator contains some modules which
represents the graph. Also, we can see if the program finds the exact solution or,

5.5 Inconveniences 39

otherwise, if it just solves it for a least square solution. For that, there is a window
that gives the error of each node of the graph.

5.5 Inconveniences

Even if this method solves the problem, it has two main inconveniences. Firstly,
if we consider the problem as the way announced in 5.1, the constraints depend
directly on how the measurements are taken. However, the total station has a
limited precision and, so on, it can have some small errors that accumulated can
have relevance to the final result.

Secondly, we may notice that the simulator does not take into account any
fixed point when finding the position of the geodesy vertices. This fact generates
a slack problem, since the graph solution can be translated or rotated and will
continue being a solution. That is, having a satisfying set of points for the given
measures, if we move all the set of points together around the R2 plane, this new
points are still going to be solution, as they accomplish the constraints since the
distances and the angles between them are the same. Adding the possibility to
the simulator of fixing a few points, at least two, would be a solution for this
inconvenient. By fixing the positions of at least two points, these positions should
remain fixed in the adjustment process and they should not be unknowns in the
system of equations.

Conclusions

Two numerical methods for solving general linear systems: the SVD and the
complete orthogonal decomposition methods give all their least squares solutions
using orthogonal transformations.

The given software in C++ has been understood and modified in order to
generate random matrices and compare the two methods studied. With this mod-
ification, we have seen that the complete orthogonal method is more efficient than
the SVD method. In fact, this was expected since fewer steps are required to apply
the first method. In addition, we studied the effectiveness of th SVD algorithm
using a basic package function of R.

In the last chapter, we have made a geodesy application. We have applied the
methods to adjust the position of vertices in a geodesic network. To do it, we have
implemented a software which includes a simulator to represent the problem and
the solutions.

Therefore, we achieved all the proposed goals, being able even to extend some
parts. Moreover, this project could be more extended in the following points.
Firstly, as we have done for the SVD algorithm, an equivalent R simulator can be
done for the complete orthogonal decomposition. In the part of the geodesy appli-
cation, one improvement would be doing the R3 extension, previously mentioned.
In addition, we can study the different techniques used for solving this adjustment
geodesic problem. Last but not least, solving the slack problem explained in 5.5.
For solving it, including the option of setting two fixed points in the simulator,
would be enough.

Finally, we must notice that the SVD algorithm has many other application, as
Principal Component Analysis and how it can be applied to the compilation of
images, compiled in [8].

Appendix A

R program: SVD Algorithm

This program computes SVD into 100 different random matrices. After that,
it averages the computation time and the error of each one. These matrices are
created with random sizes, between 1 to 250, and random element, which values
are in (-250, 250).

I t u s e s t h e l i b r a r y t i c t o c f o r c a l c u l a t e t h e
c o m p u t a t i o n t ime .

l i b r a r y (t i c t o c)
t i c . c l e a r l o g

I t s e t s t h e number o f d i f f e r e n t m a t r i c e s and c r e a t i n g
t h e v e c t o r t o s a v e t h e e r r o r s .

j <− 100
e r r o r <− vector (mode = " numeric " , j)

I t makes a l o o p f o r computing t h e 100 m a t r i c e s .

for (i in 1 : j) {
S e t t i n g m and n v a l u e s f o r an i n t e g e r random
#number be tween 1 and 2 5 0 .
m <− sample (2 : 2 5 0 , 1)
n <− sample (2 : 2 5 0 , 1)

Matrix c r e a t e d randomly with e l e m e n t s in (−250 , 2 5 0) .
A <− matrix ((runif (m∗n)−0.5) ∗ 500 , ncol=n)

41

42 Conclusions

Applying t h e SVD f u n c t i o n and computing i t s t ime .
t i c ()
y <− La . svd (A)
toc (quie t = TRUE, log = TRUE)

D e f i n i n g t h e U, D and Vt mat r i x r e s u l t i n g from t h e SVD
a l g o r i t h m .
D <− diag (y$d)
U <− y$u
Vt <− y$v

#Making t h e p r o d u c t t o s u b s e q u e n t l y compare with t h e
o r i g i n a l m at r i x with t h e F r o b e n i u s norm f o r ma t r i x .
SVD <− U%∗%D%∗%Vt
e r r o r [i] <− sqr t (sum(colSums ((A − SVD) ^ 2)))

}

#Time a v e r a g e
log . t x t <− t i c . log (format = TRUE)
log . l s t <− t i c . log (format = FALSE)
t i c . c l e a r l o g ()
t imings <− u n l i s t (lapply (log . l s t , function (x) x$ toc −

x$ t i c))
av_time <− mean (t imings)
av_time
[1] 0 .0063

E r r o r a v e r a g e
av_ e r r o r <− mean (e r r o r)
av_ e r r o r
[1] 4 .310559 e−11

Appendix B

In this appendix, we are going to show how the simulator adjust the points
with the modified measures multiplied by 1 + λ · ε, where, as mentioned in 5.4.2,
λ is a random value. We are going to show how the position of the points are
modified, while the value of ε increases. In each image, we would see the error
for each measure nearest to the mouse. In particular, we are going to see the value
of e23, the value of e302 and the position of the geodesy vertex.

Figure 5.11: ε = 0.00.

43

44 Conclusions

Figure 5.12: ε = 0.05.

Figure 5.13: ε = 0.10.

Conclusions 45

Figure 5.14: ε = 0.15.

Figure 5.15: ε = 0.20.

46 Conclusions

Bibliography

[1] Pratik Agarwal, Wolfram Burgard, and Cyrill Stachniss. A survey of geodetic
approaches to mapping and the relationship to graph-based slam. 2014.

[2] Anton Aubanell, Antoni Benseny, and Amadeu Delshams. Útiles básicos del
cálculo numérico. Labor universitaria. Manuales. Servei de Publicacions de la
Universitat Autònoma de Barcelona, 1993.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms. MIT Press, Cambridge, MA; McGraw-Hill Book Co.,
Boston, MA, second edition, 2001.

[4] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics.
Springer, Berlin, fifth edition, 2018. Paperback edition of [MR3644391].

[5] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hop-
kins Studies in the Mathematical Sciences. Johns Hopkins University Press,
Baltimore, MD, third edition, 1996.

[6] Institut Cartogràfic i Geològic de Catalunya. Sobre les xarxes geodèsiques.
http://www.icgc.cat/ca/Administracio-i-empresa/Serveis/
Posicionament/Senyals-geodesics2/Sobre-les-xarxes-geodesiques.

[7] Sergei Izrailev. Package tictoc, version 1.0.
https://www.rdocumentation.org/packages/tictoc/versions/1.0/topics/
tic.

[8] Jordi Jover Molina. TFG: Anàlisi de components principals: estudi numèric i
aplicacions. 2018. http://hdl.handle.net/2445/122109.

[9] Base v3.6.0 by R-core. R documentation: SVD.
https://www.rdocumentation.org/packages/base/versions/3.6.0/topics/
svd.

47

