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on ro-vibrational quantum levels
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The energy levels of a hydrogen molecule embedded in the cavity of single-walled carbon nanotubes
with different morphologies are studied using quantum dynamics simulations. All degrees of freedom
of the confined molecule are explicitly included in our model, revealing that the vibrational motion
is notably affected by the presence of a confining potential. The most relevant effects are neverthe-
less found in the rotational motion of the molecule and the appearance of a quantized translational
motion. We further analyze the dependence of the confinement effects on the interaction potential,
considering different parameters for the carbon–hydrogen interaction. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4742129]

I. INTRODUCTION

During the past ten years, the effects of nanoconfinement
have generated an increasing interest both at experimental and
theoretical levels.1–5 Research on carbon nanotubes has de-
veloped rapidly since their discovery by Iijima in 1991,6 due
to their variety of unique mechanical, physical, and chemical
properties.7 Their capacity for encapsulating molecules and
confining them in nearly uni-dimensional structures has mo-
tivated recent literature on the adsorption of gases in struc-
tures composed of a bunch of single-walled carbon nanotubes
(SWCNTs).8–13 Particular interest has been devoted to hy-
drogen physisorption,14–18 in view of the potentiality of such
nanostructures as storage devices.19, 20

The present work aims at exploring the changes induced
in the spectrum of quantum ro-vibrational states of hydrogen
molecules when confined in nanostructures of SWCNTs. To
this aim, we model the quantum dynamics of a single hydro-
gen molecule embedded in a rigid carbon nanotube. This sys-
tem is referred to as H2@SWCNT throughout the paper. The
accurate simulation of the whole H2@SWCNT system, in-
cluding explicitly all the carbon atoms of the nanotube in a
fully quantum formalism, is numerically unfeasible. On the
other hand, classical formalisms cannot reproduce quantum-
nature mechanisms that govern the processes on such small-
sized systems. An alternative with a reasonable computational
cost is to restrict the quantum formalism to the description of
H2, keeping the carbon atoms of the nanotubes frozen. The
positions of the carbon atoms are, however, explicitly consid-
ered at the level of the interaction.

The strategy we follow here is similar to the one used
by Lu et al.17 and Yildirim and Harris,21 the last authors us-
ing a generic cylindrical confining potential. In our contri-
bution, however, we propose an even more realistic model.
The main novelty we introduce is the assumption of a full-
quantum approach of H2 trough the use of a five-dimensional

a)Electronic mail: jaime.suarez@uam.es.
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Cartesian coordinate system. This allows us to simultaneously
consider (1) hydrogen’s internal vibration, (2) rotation of the
confined molecule, and (3) its center of mass translation in-
side the nanotube. Up to date, theoretical studies of such sys-
tems have eluded the first point by considering a rigid hydro-
gen molecule, based on the assumption that the vibrational
energy level spacing is too large with respect to the perturba-
tion induced by the nanotube walls. Following this reason-
ing, the confinement would result in a significant coupling
between rotational and translational motions without affect-
ing the vibrational pattern. However, a serious limitation ap-
pears in the interpretation of results when comparing with ex-
perimental data. Well established optical techniques such as
low-temperature infrared (IR) spectroscopy perform the anal-
ysis at the ν = 1 vibrationally excited level of hydrogen. In a
recent publication concerning the encapsulation of hydrogen
inside fullerenes,22 Xu et al. proposed a basic extrapolation
procedure to optimize a realistic potential energy surface for
the H2@C60 system. They inferred a generic vibration-less
energy spectrum from vibrationally excited experimental IR
data,23 taking the effective rotational constant of the uncon-
fined H2 molecule. Although to a much smaller extent than
for rotation, we believe that the nanoconfinement must some-
how affect also the energy range and internal structure of each
vibrational band.

Standard quantum molecular dynamics methods usually
approach the nuclear problem by using those curvilinear co-
ordinates which better adapt to the processes that will be re-
produced, making the methodology problem specific. Regard-
ing their computational implementation, the extrapolation to
bigger systems or their adaptation to other type of processes
is all but routine. At this point, the development of a Carte-
sian coordinates-based code which can act as a black-box has
clear advantages, not the least of which are the simplicity of
the algorithms (no cross-derivatives in the kinetic term) and
the absence of singularities in the Hamiltonian. On the other
hand, Cartesian coordinates schemes usually involve three
more dimensions than curvilinear coordinates schemes, where

0021-9606/2012/137(6)/064320/13/$30.00 © 2012 American Institute of Physics137, 064320-1

Downloaded 30 Aug 2012 to 161.116.55.25. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4742129
http://dx.doi.org/10.1063/1.4742129
http://dx.doi.org/10.1063/1.4742129
mailto: jaime.suarez@uam.es
mailto: fermin.huarte@ub.edu


064320-2 J. Suarez and F. Huarte-Larrañaga J. Chem. Phys. 137, 064320 (2012)

the global rotation can be explicitly written in the Hamilto-
nian operator, and therefore separated off in the absence of
external fields. This is not the case, though, for a hydrogen
molecule embedded in a rigid and static nanotube. A rea-
sonable model can then be achieved by considering a five-
dimensional Cartesian coordinate system, with the additional
advantage of an exact treatment of trans-vibro-rotational cou-
plings. The heavy computational cost of such an approach can
be overcome by the parallelization of the work over large clus-
ters of computers. We employ the parallelized Grid time de-
pendent Schrödinger equation (TDSE) computational tool,24

co-authored by one of us, to solve the corresponding TDSE
that rules the dynamics of the H2@CNT system.

The structure of the paper is as follows. In Sec. II we
detail the formalism that lies under the GridTDSE code. We
also describe the coordinate system adopted, the selection of
an appropriate initial wave function and the generation of the
potential energy surface (PES) that rules the nuclear quantum
dynamics. In Sec. III we give the results of the propagations.
In order to facilitate the interpretation of the spectral lines
of the full-dimensional 5D Hamiltonian, we first introduce
the results of two-dimensional and three-dimensional models.
Our main conclusions are summarized in the final section.

II. METHODOLOGY

A. GridTDSE code

GridTDSE is a parallel Fortran 95 code that performs
quantum molecular dynamics calculations by means of wave
packet propagations in Cartesian coordinates. The code is
based on Grid methods, which discretize the wave function
�(�x, t) over the whole coordinate space, with the vector �x
denoting the Nd mass-weighted Cartesian coordinates. The
TDSE that rules the dynamics is then written as

Ĥ�(�x, t) = −¯
2

2

Nd∑
i=1

∂2

∂x2
i

�(�x, t)+V �(�x, t) = i¯
∂�(�x, t)

∂t
,

(1)
where Ĥ and �(�x, t) are, respectively, the Hamiltonian and
the total wave function of the system. The computational
implementation of Eq. (1) renders a non-diagonal Hamilto-
nian matrix, due to the non-local kinetic term in the spatial
representation. The sparsity, however, can be efficiently in-
creased by using the variable order finite difference (VOFD)
method,25, 26 which considers a reduced number ns of neigh-
boring grid points (ns is called the “stencil”) to calculate the
second derivatives that appear in Cartesian coordinates in the
Laplacian operator. The combination of a Cartesian coordi-
nates scheme with VOFD methods makes the parallelization
of the matrix very efficient in computer memory and time.
Regarding the potential energy operator, the sparsity can be
additionally increased by considering an energy cut-off for
the process, Vc.

Considering a time-independent potential energy opera-
tor, the solution of Eq. (1) can be written in terms of an expo-
nential evolution operator U (t, Ĥ ), which applies to the initial

wave packet �0(�x) = �(�x, t = 0),

�(�x, t) = U (t, Ĥ )�0(�x) = e−iĤ t/¯�0(�x). (2)

The time evolution operator can be then approximated by
using a second order difference method (SOD),27 which
preserves norm and energy, obtaining a final two-term recur-
sive formula. In the SOD propagation scheme, the most cum-
bersome operation from a computational point of view is a
matrix-vector multiplication. GridTDSE uses the portable ex-
tensible toolkit for scientific computation library,28 very ef-
ficient at carrying out parallel matrix-vector operations with
sparse matrices. Further details on the code can be found in
Ref. 24.

Once the integration of the TDSE yields the value of the
wave function at any time, t, all molecular properties, such as
power spectra and eigenfunctions, can be readily calculated
from a Fourier transformation of the time-correlation function
C(t),

C(t) = 〈�(�x, 0)|�(�x, t)〉, (3)

obtaining,

I (E) =
∫

exp(iEt/h)C(t)dt. (4)

For infinite integration time, the magnitude I(E) consists of
a manifold of peaks that mimic a set of delta functions. The
spectral resolution depends inversely on the total time of in-
tegration, while the spectral window decreases with the time-
step. GridTDSE is also provided with an implementation of
the iterative diagonalization Lanczos method.29 In such a
technique, the extraction of specific eigenvalues and eigen-
vectors is performed more efficiently than in standard Fourier
transform methods. However, the accuracy of the method is
restricted to a small-width window in the energy spectrum.
In the H2@CNT system, the combination of a high-energetic
vibrational motion with lower energetic motions, such as ro-
tation and translation of the center of mass, renders a broad
energy range which cannot be accurately covered by this
technique. Consequently, Lanczos calculations have been re-
stricted to extract specific energies at the lowest part of the
fundamental vibrational band, while the Fourier transform of
C(t) has been used to obtain the general spectrum.

B. Coordinate system and initial wave function

In order to use GridTDSE to study the dynamics of
H2 embedded in a SWCNT, we have implemented a five-
dimensional Cartesian coordinate Hamiltonian system. Three
Cartesian coordinates (ρx,ρy,ρz) are devoted to characterize
the internal motion of H2 (rotation and vibration), described
by the internuclear vector �ρ. Two additional Cartesian coor-
dinates (Xcm,Ycm) refer to the confined translation of the H2

center of mass on the plane perpendicular to the nanotube
axis, associated to the vector �R. Here we have made use of
the assumption that the CNT is an infinite-length structure.
The three types of motion previously cited (vibration, rota-
tion, and translation) have very different characteristic energy
ranges. As we will see later, the first vibrationally excited state
of the confined H2 molecule is 4145 cm−1 above the ground
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state, approximately one order of magnitude larger than the
energies associated to rotation and translation inside the nan-
otube. Consequently, the density of confined states in the en-
ergy spectrum will be enormous, and it will extend over a
very long energy range (thousands of wavenumbers). In such
a pattern, the identification of the energy levels by graphical
inspection of every single eigenstate is unfeasible.

At this point, the selection of a initial wave function with
specific symmetry conditions may act as a filtering technique
for clarifying the molecular spectrum. All the spectral infor-
mation of the bound states gathered from Eq. (4) is related
to the initial wave function �0(�x) introduced in Eq. (2). In
fact, the height of the lines correlate to the squared abso-
lute value of the coefficients in the spectral decomposition
of �0(�x), while their positions correspond to the respective
eigenenergies. The standard procedure for building the ini-
tial wave packet consists in introducing a direct product of
gaussian functions, one for each quasi-uncoupled degree of
freedom, exciting the specific modes by displacing the corre-
sponding gaussian function from its equilibrium position. Al-
ternatively, one can impose specific symmetry configurations
for the global initial wave function, so that only those modes
with the same symmetry will appear in the spectrum.

In an equivalent way to the procedure adopted by Lu
et al.17 for the identification of the eigenstates, we intro-
duce a translation/(rotation-vibration) separable initial wave
function, �(�x) = �( �R)�( �ρ). The implicit assumption here
is to initially decouple translation and treat the vibrational-
rotational coupling as in the case of an unconfined H2

molecule. In general terms, such a product will not be the
solution of the five-dimensional equation, and therefore we
should not expect a single-line spectrum, but it is a valuable
graphical tool to find out the main characteristic motion in
each energy level. The separable initial wave function can
be employed as an even more powerful filtering tool, using
the solutions of a two-dimensional ( �R) or a three-dimensional
( �ρ) model. In order to do so we will first study the case of a
structure-less H2 molecule confined in the interior of an in-
finitely long SWCNT and build the solutions of the corre-
sponding 2D Hamiltonian. Next, the three-dimensional case
of the unconfined H2 molecule will be solved. The solutions
of both models will serve as initial wave functions in the full-
dimensional calculations, trying to extract selected informa-
tion from the dynamics simulation. Such will be the general
strategy in the presentation of results that appears in Sec. III.

C. Potential energy surface

The first step, however, concerns the generation of the
PES for the model system, a diatomic homo-nuclear molecule
inside an infinite-length rigid SWCNT. In view of the small
fluctuations found for the potential energy when the center of
mass (c.o.m) of H2 moves along the CNT axis (here Z axis)
compared to the energy variations long a perpendicular di-
rection, we have circumscribed the motion of the c.o.m. to the
Zcm = 0 plane. The explicit position of the C atoms in the nan-
otube is instead considered when treating the internal motion
of the H2 molecule. In other words, the potential is Z-invariant

considering the center of mass ( �R) but not considering the �ρ
coordinate.

There are typically two main possibilities when a hydro-
gen molecule encounters a carbon based nanostructure: It can
either dissociate into hydrogen atoms and form strong C–H
bonds or it can keep its molecular form and bind only weakly
with the carbon structure. In the non-dissociative process of
hydrogen physisorption by SWCNTs, the main responsible
for the interactions are instantaneous electron correlations,
which can be modeled by Van der Waals forces. At present,
non-reactive process of such weakly bound systems can read-
ily be formulated from semi-empirical atom–atom interac-
tions. In this way, we can detach the internal potential for
H2 from the interaction of each hydrogen atom with the nan-
otube, resulting in a two-term potential function,

V ( �ρ, �R) = VMorse(| �ρ|) + U ( �ρ, �R). (5)

The associated five-dimensional Hamiltonian describes si-
multaneously the rotation, vibration, and translation of H2

inside the SWCNT. The first term of the potential in Eq.
(5) accounts for the length of the H–H covalent bond, and
is modeled employing a Morse potential30 with the standard
parameters18, 31 for H2. The second term describes the atom-
atom interaction of each hydrogen with the C atoms of the
rigid nanotube, and consists of a sum of C–H Lennard-Jones
potential energy functions,

U ( �ρ, �R) =
NC∑
i=1

2∑
j=1

V
ij

LJ (rCi−Hj
)

=
NC∑
i=1

2∑
j=1

4ε

[(
σ

rCi−Hj

)12

−
(

σ

rCi−Hj

)6
]

, (6)

where rCi−Hj
is the Ci–Hj distance determined by �R and �ρ.

Most part of the calculations presented in this paper have
been carried out with a set of values σ = 2.82 Å and ε

= 0.0605 kcal/mol previously employed by Huarte-Larrañaga
and Albertí to simulate hydrogen physisorption in CNTs.18

Our molecule–nanotube interaction model has evident limi-
tations in terms of accuracy and clearly a more accurate po-
tential energy surface, maybe developed from the recent fam-
ily of dispersion corrected density functional theory (DFT)
methods,15, 32 would mean a significant breakthrough for the
accuracy of quantum dynamics simulations. However, such an
advance can only be supported by broad experimental confir-
mation, while only a few neutron scattering experiments have
been successfully carried out in the past.1, 33, 34

Despite the general qualitative approach in the present
work, we cannot ignore the considerable discussion on the
election of the semi-empirical potential parameters in the
literature.16, 17, 22, 35 In this respect, Lu et al.17 showed the
influence of σ and ε parameters in the distribution of the
confined energy levels, revealing the key role that the equi-
librium distance characteristic of the C–H interaction plays
in quantum sieving. They proposed the use of a Franck-
Brenner potential with the set of parameters σ = 3.08 Å and ε

= 0.055 kcal/mol (labelled FB). On the other hand, a three-
center semi-empirical C–H potential was modelled by Bacić
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FIG. 1. One-dimensional cuts (solid lines) of the minimized confining potential U2D(Xcm, Ycm = 0) along the translational coordinate Xcm for (8,0) and (10,0)
nanotubes. Dotted lines indicate the energy levels of the eigenstates in the 2D model.

and co-workers22 from experimental data of molecular hydro-
gen embedded in C60. At the end of the Sec. III, we provide
a comparative sample of the calculations obtained using both
interactions.

III. RESULTS

A. Two-dimensional model: {Xcm, Ycm}

Concerning the translation of the center of mass of
H2 inside the nanotube, an illustrative two-dimensional po-
tential energy surface U 2D( �R) can be obtained as a func-
tion of the {Xcm, Ycm} coordinates by minimizing the po-
tential over all possible orientations of the inter-nuclear
vector �ρ. The confined two-dimensional translation of the
molecule inside the carbon nanotube originates discretized
energy levels E(n), with the associated wave functions �(n)( �R).
In previous contributions17, 21 it was shown that, as a gen-
eral feature, the variation of the CNT radius resulted in
two different types of confining potentials U 2D( �R). Narrow-
type CNTs exhibit parabolic potentials centered at the nan-
otube axis, while for wider nanotubes the potential min-
imum is displaced towards the nanotube walls, exhibiting
a ring structure as a result of the cylindrical symmetry.
The CNTs considered in this work, with chiral indices (n
= 8,m = 0) and (n = 10,m = 0), have been specifi-
cally chosen as representative examples of parabolic and
ring structure type potentials, respectively. The “narrow”
(8,0) nanotube is 6.26 Å in diameter, while the “broad”
(10,0) one is 7.84 Å. They have both been generated
concatenating 20 unit cells along the nanotube axis, as-
suring that the ends of the nanotube do not play any
role.

The energies En and eigenstates �(n) of the 2D model
were obtained from the TDSE equation using the Lanczos di-
agonalization implementation in the GridTDSE code. In the
case of the parabolic potential created by the (8,0) SWCNT,
the potential energy surface presents a minimum of −1628
cm−1 located at the axis of the nanotube ({Xcm = 0, Ycm

= 0}). The calculated spectrum resembles the structure of

a quasi-harmonic potential, with the energy levels approx-
imately equally separated. We superimpose in Fig. 1 (left)
the energy levels over a Ycm = 0 cut of the potential. Fig-
ure 2 shows the probability density plots of the edge func-
tions corresponding to the first four levels. The eigenener-
gies of the first two levels are E(n = 0) = 214.13 cm−1 and
E(n = 1) = 453.44 cm−1 above the minimum of the PES, the
second being doubly degenerated due to the symmetry be-
tween X and Y axis. Unlike the 2D harmonic oscillator case,
the third state is only doubly degenerated E(n = 2) = 714.64
cm−1, being the fourth (non-degenerated) value slightly more
energetic (739.54 cm−1). As Yildirim and Harris explained in
their paper concerning cylindrical-type potentials,21 this shift
is the result of the anharmonicity in the confining potential
produced by the walls of the CNT.

The structure of the confining potential changes signif-
icantly in the case of the (10,0) SWCNT. As expected for
a broader nanotube, a ring structure is now observed in the
PES, with the potential energy minimum located 0.97 Å away
from the axis of the nanotube. Only very small oscillations
of the potential (±0.21 cm−1) along the azimuthal direction
can be detected, yielding a quasi-free Ĵ 2D

z orbiting about the
nanotube axis. In the right panel of Fig. 1, we display a
one-dimensional cut of the PES, including the first energy
levels found for this system. The mentioned free orbiting
is at the root of the B2Dl(l + 1) progression found for the
lowest energies of the two-dimensional model, l being the
quantum number associated to the Ĵ 2D

z operator. In fact, the
rotational constant associated to the classical orbiting of a
2mH mass particle along the Rmin = 0.97 Å circumference
is B2D

0 = ¯2/(2mHR2
min) = 8.92 a.u., coherent with the en-

ergy structure obtained for the first four states (En = 0 = 80.12
cm−1, En = 1 = 99.88 cm−1, En = 2 = 139.9 cm−1, and En = 3 =
195.01 cm−1). As expected, the probability density of the cor-
responding eigenstates, shown in Fig. 3, is mainly localized
over the ring structure. At the same time, the orbiting pattern
combines with a parabolic anharmonic effect induced by the
CNT wall when the molecule approaches to it. The coupling
between both motions yields a more complicated picture for
the whole energy range, as it is shown in Fig. 1.
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FIG. 2. Contour plots of the four lowest eigenstates �(n) of the 2D model for H2 inside a (8,0) SWCNT. Corresponding energies: 214.13 cm−1 (a), 453.44
cm−1 (b), 714.64 cm−1 (c), and 739.55 cm−1 (d).

B. Three-dimensional model: Unconfined H2
in Cartesian coordinates

A spectral analysis of the vibrational and rotational lev-
els of unconfined H2 has been performed using GridTDSE in
a three-dimensional Cartesian system (ρx,ρy,ρz). Despite the
apparent simplicity of a diatomic molecular system, usually
described by a Morse potential, the absence of exact analytical

solutions for rotating molecules (J �= 0) is still leading to new
work on the subject.36, 37 In standard curvilinear coordinates-
based methods, where the vibrational-rotational coupling is
explicit in the Hamiltonian, the usual procedure to solve the
TDSE is to employ effective J-dependent potentials in ei-
ther variational or second-order perturbation schemes. Both
paths present limitations for the calculations of large-angular
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FIG. 3. Same as Fig. 2, in this case for the (10,0) nanotube. Corresponding energies: 80.12 cm−1 (a), 99.88 cm−1 (b), 139.9 cm−1 (c), and 195.01 cm−1 (d).
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momentum states, since the perturbative term is then larger.
On the contrary, a Cartesian coordinates formalism includes
the vibrational-rotational coupling implicitly in the Laplacian
of the Hamiltonian operator. In order to extract the eigenstates
associated to a specific angular momentum values, projec-
tion operators are introduced at the level of the initial wave
function,38 resulting a new wave function �J (�x) = P J �(�x).
In contrast to general curvilinear methods, the projection pro-
cedure is exact and does not involve significant changes in the
computational implementation for higher J values. Explicit
analytical formulae of such projections for the diatomic case
can be found in the bibliography.39, 40

The procedure for introducing the angular momentum J
in the calculations consists of propagating an arbitrary wave
packet—which is not eigenstate of the total angular mo-
mentum operator—under the global Cartesian Hamiltonian.
Throughout the propagation, one evaluates the overlapping
with the J-projection of the initial wave function �J(t = 0),
obtaining an autocorrelation function CJ(t) = 〈�J(0)|�(t)〉
which contains all the relevant spectral information associated
to the specific J value. We can, therefore, perform the spectral
analysis for several J values from a single wave packet propa-
gation. This technique was successfully employed in the past
to obtain accurate energies for highly rotationally excited di-
atomic (H2) and triatomic (H2O) molecules.24

The zero point energy (ZPE) of the unconfined H2

molecule is located at 2166.87 cm−1, being the first rotation-
ally excited levels 119.54 cm−1, 357.45 cm−1, 711.57 cm−1,
and 1178.58 cm−1 above this value. The first vibrational over-
tone is 4145.7 cm−1, just above the seventh-excited rotational
level. As we see in the ro-vibrational spectrum depicted in
Fig. 4 (upper panel), the agreement of the J = 0 levels with
the analytical solutions of a Morse potential (vertical dotted
lines) is perfect. The large energy gap between vibrational
levels, compared to the rotational and translational (seen in
Sec. II A) ones, queries the effect that the CNT may have on
the vibrational of the molecule.

C. Five-dimensional model: Full QMD

In the five-dimensional model that fully represents the
quantum molecular dynamics of H2 embedded in SWCNTs,
the nanotube is taken as a rigid structure whose axis lays al-
ways along the Z direction. Under this assumption, the total
angular momentum, considering the whole system nanotube
+ molecule, is not well defined. However, useful information
can be gathered by introducing the rotational angular momen-
tum quantum number j of the H2 molecule, although the as-
sociated rotational operator does not exactly commute with
the total molecular Hamiltonian. But it can be considered as
a good quantum number in a first approximation. From now
on, we will substitute J by j, referring to the internal rotation
of H2.

1. Parabolic confinement CNTs: (8,0)

We first examine the effects of nanoconfinement pro-
duced by the carbon nanotube of chiral index (8,0). The in-
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FIG. 4. (Upper panel) H2 ro-vibrational spectrum for the 3D model of the
unconfined H2 molecule. The initial gaussian wave function is centered at �ρ
= (0.866, 1.5, 1) a.u. Vertical dotted lines correspond to the Morse vi-
brational levels. (Lower panel) Spectrum of the 5D model represent-
ing H2@(8,0) with an initial gaussian wave function centered at �ρ =
(0.866, 1.5, 1) a.u. and �Rcm = (1, 0) a.u. The energy range is chosen in both
figures to match the first line of the spectrum and facilitate comparison.

put parameters of the GridTDSE code employed for the 5D
calculations of this work can be found in Table I. The con-
vergence of the calculations with the number of points in the
grid, the number of stencil points, and the potential cut-off
has been verified. The time dependent Schrödinger equation
has been integrated up to 48.4 ps, with a resolution in the en-
ergy spectrum of ∼0.6 cm−1. When referring to the energy
values of specific molecular eigenstates, additional accuracy
is provided by performing Lanczos calculations with a similar
implementation for the Hamiltonian matrix.

The power spectrum obtained from the full-dimensional
simulation of the confined molecule is shown in the bottom
panel of Fig. 4. The localized gaussian function that has been
used as initial wave function represents the H2 molecule with
its c.o.m located 1 a.u. away from the bottom of the potential
well and with the inter-nuclear vector leaning 60◦ with respect
to the nanotube axis. The energy range in the lower panel has
been displaced by 372.6 cm−1 with respect to the unconfined
system (upper panel) in order to match the first line of the
spectrum of both panels. The overall structure of the spectrum
in the 5D confined situation is much more complicated and

TABLE I. Numerical parameters used for GridTDSE 5D calculations.


t, tmax 2 a.u., 2 × 106 a.u.
Vc 6 eV
[x(min), x(max)] [−4.0 a.u., 4.0 a.u.]
ni=1,3

g / ni=1,3
s 44 / 15

[X(min)
cm ,X

(max)
cm ] [−3 a.u., 3 a.u.]

ni=4,5
g / ni=4,5

s 32 / 15
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TABLE II. Energies (E in cm−1) of the lowest line for each vibrational
band, corresponding to states with fundamental rotation and translation for
both unconfined H2 (3D calculation) and H2@(8,0) (5D calculation). Energy
gaps between the first ortho- and para-levels (
Eortho–para) are included in
cm−1 in an adjacent column. Energy differences between consecutive vibra-
tional overtones are displayed in parenthesis.

Unconfined 3D Confined 5D

E 
Eortho–para E 
Eortho–para

ν = 0 2166.9 119.4 2539.5 58.2
(4145.9) (4173.3)

ν = 1 6312.8 114.6 6712.8 47.0
(3898.3) (3923.3)

ν = 2 10 211.1 109.2 10 636.1 33.9
(3654.3) (3670.3)

ν = 3 13 865.4 103.6 14 306.4 20.5
(3412.9) (3420.8)

ν = 4 17 278.3 96.8 17 727.2 11.7

dense due to the combination of translational and rotational
lines, but we can still clearly distinguish the corresponding
vibrational bands. From graphical inspection we note that as
the vibrational number increases, the separation in energy be-
tween adjacent vibrational bands increases with respect to the
3D unconfined system. The effect of confinement on the vi-
brational structure can be better quantified in Table II, where
the energies of the lowest eigenstate for each vibrational band
are specified for both the unconfined (tri-dimensional) and
confined (five-dimensional) models. The difference in energy
between adjacent vibrational levels, displayed in parenthesis
in both calculations, is typically ∼25 cm−1 larger in the five-
dimensional calculations than in the three-dimensional ones.
This is an overall pattern that can be explained by consid-
ering that as the H2 vibrational excitation increases, the total
wave function reaches outer regions of the phase space, where
the repulsive effect of the confining nanotube walls is en-
hanced. One noticeable effect of the confinement induced by
the nanostructure is to raise the ZPE by 372.6 cm−1. This in-
crease can be partially attributed to the residual energy added
by the translation of the center of mass (Sec. III A). How-
ever, our calculations for a (reduced) two-dimensional model
predicted a value of 213 cm−1 for the lowest energy value.
The remaining 160 cm−1 gap is due to a significant coupling
among translational and rotational motions, which is hindered
in the two-dimensional case (we recall here that the 2D poten-
tial energy surface is obtained minimizing the energy along
�ρ).

A first filtering of the dense spectrum previously shown
in Fig. 4 can be efficiently achieved by introducing the eigen-
states �(n)(Xcm, Ycm) of the 2D model in the translational part
of the initial wave function. Concerning the rotational part,
we can further elucidate the structure by means of the H2 an-
gular momentum j, assuming specific projections Pj�(ρx, ρy,
ρz) in the “internal” part of the initial wave function. Figure 5
represents the spectral lines obtained for several j values and
using the lowest eigenfunction �(0)(Xcm, Ycm) in the transla-
tional part of the initial wave function. The figure has been di-
vided in three panels, corresponding to a 1600 cm−1 extract of

the first three vibrational bands, with similar energy scales in
order to better compare the effects of the confinement. Should
j be a constant of motion, each spectral line would be uniquely
correlated to the diatomic rotational quantum number j, or in
other words, to the corresponding j-projection of the inter-
nal part of the initial wave function (labelled as �j). In our
model, however, the rotation of the nanotube is strictly for-
bidden, and consequently the operator j cannot commute with
the total Hamiltonian of the system. This causes multiple con-
tributions for a specific spectrum line, the contributions stem-
ming from different j-projected initial wave functions. Due to
the homo-nuclear symmetry of the H2 molecule, the mixing
occurs only between lines with the same j-parity17 (e.g., the
curves associated to j = 1 and j = 3, or those associated to j =
0 and j = 2). For most of the lines, however, there is a domi-
nant contribution, and we can identify five different rotational
bands in each panel.

Concerning the composition of each rotational band, we
see how the (2j + 1)-degeneracy of the unconfined H2 system
(coarse blue dotted lines), characteristic of an isotropic poten-
tial, breaks under the cylindrically symmetric external confin-
ing potential into j + 1 different spectral lines. The identi-
fication of the axis of the nanotube (Z in our Cartesian co-
ordinate system) with the axis of the azimuthal momentum
operator, represented by the azimuthal quantum number m,
is key for understanding this behavior. In fact, we can refer
only to its absolute value |m|, since the symmetry of the nan-
otube indicates that +m and −m values correspond to states
with the same energy (hence the appearance of j + 1 different
energy values). Additional valuable information can be gath-
ered from varying the orientation of the inter-nuclear vector
in the initial wave function. Figure 6 shows the spectral lines
obtained using three initial gaussian wave packets �(g) dif-
ferently oriented with respect to the nanotube axis, namely,
0o (along Z axis), 90o (along X axis), and 60◦ (the one used
in the previous two figures). Contrary to the oblique orienta-
tion (60◦), ρx- and ρz-oriented initial wavefunctions keep in
part the symmetry of the potential and originate filtered spec-
tra. The reason for this can be viewed adopting the classical
counterpart. In this formalism, the angular momentum vec-
tor aligns in a plane perpendicular to the initial orientation of
the molecule. A molecule initially oriented along the Z axis
can only contribute to m = 0 states. That explains the single
line obtained at the lowest part of each rotational band when
a Z-aligned initial wave function is employed. In the case of
X-alignment, the molecule could rotate in any plane which
contains the X axis. The gaussian wave function introduced
is in fact a combination of functions with different |m| �= 0
values associated. Such a combination includes the |m| = j
value and those states with the same symmetry, which is de-
termined by the parity of j − |m|. As a result of it, the only
spectral lines that are not filtered out now are associated to
|m| = j, j − 2, . . . values. We can therefore conclude that high
|m| values are associated with wave functions that spread in
the XY plane, while lower ones reflect a localization along the
Z axis. With the center of mass of the molecule mainly lo-
calized at the nanotube axis as corresponds to the fundamen-
tal translational motion (�(0)), the proximity between hydro-
gen atoms and the carbon walls enhances the confining energy
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FIG. 5. Power spectra of the H2@(8,0) system for the first three vibrational bands, obtained from initial wave functions with defined j-rotational quantum
number and (n = 0) translational quantum number: �0 = Pj�( �ρ)�(0)( �R). Thick blue vertical dotted lines correspond to ro-vibrational levels of the unconfined
H2 molecule labelled as (ν, j), shifted to match the ZPE of the confined molecule. The three panels are aligned at the lowest line of the 3D spectrum.

for rotational states associated to high-|m| values, increasing
their energy with respect to the unconfined case. In the low-
|m| case, the hydrogen atoms tend to be localized along the
Z axis, where the confining potential is minimal and nega-
tive (see Fig. 1), and the energies are even lower than in the
isolated H2 molecule. The energy range covered by each ro-
tational band is then mainly due to the orientation of the to-
tal angular momentum with respect to the nanotube axis, and
thus does not change significantly from one band to another.
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FIG. 6. Same as Fig. 5 including three different orientations of H2 inter-
nuclear vector: �ρ = (0.866, 1.5, 1) a.u., �ρ = (0, 0, 2) a.u. and �ρ = (2, 0, 0)
a.u.

As one moves to higher vibrational levels (lower pan-
els), each j-manifold becomes broader. Two competitive ef-
fects are responsible for this: On the one hand, the vibrational-
rotational coupling equally red-shifts all the eigenstates of a
certain j-band. It is the consequence of a higher effective mo-
mentum of inertia, and thus a lower rotational constant. On the
other hand, in a similar way as we explained before, the com-
bination of high-|m| values and a longer vibrational amplitude
implies a shorter distance of the hydrogen atoms to the nan-
otube walls. This consequence blue-shifts those spectral lines
associated with highest energies inside each rotational band.
For low-|m| values, however, the vibration takes place mainly
along the nanotube axis, and the magnitude of the confining
energy is mainly unaffected throughout the vibration. To sum
up, the vibrational-rotational coupling pulls down the energy
of all the levels in the manifold, while the confining potential
lifts only the most energetic ones.

This pattern is also at the root of the decreasing gap be-
tween the first two spectral lines in each vibrational band as ν

increases. The two levels correspond in fact to the lowest state
of para- (characterized by even-j values) and ortho-hydrogen
(odd-j values), respectively. Treating the confinement as a per-
turbation U′, the internal part of the ground (para-) state corre-
lates in the U ′ −→ 0 limit to the spherical harmonic Y 0

0 , which
is a hollow sphere centered at ρ0 = 1.4 a.u. The presence of
the nanotube constrains elliptically the unperturbed orbital,

Downloaded 30 Aug 2012 to 161.116.55.25. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



064320-9 J. Suarez and F. Huarte-Larrañaga J. Chem. Phys. 137, 064320 (2012)

originating the mixing between {even-j,|m = 0|} levels. In
such a quasi-spherical structure, more quanta on the vibra-
tional spectrum significantly affects the thickness of the or-
bital. The wave function spreads now on a part of the phase
space which lays closer to the nanotube wall, and thus the con-
fining energy increases. On the other hand, the first-excited
(ortho-) rotational state correlates in the U ′ −→ 0 limit to a
pz-type orbital. Upon vibrational excitation, such an orbital
elongates along the Z axis, along which the confining energy
U ( �ρ, �R) stays constant at its minimum (negative) value. As a
result, the energies of the first two states then approach each
other, and the structure of both orbitals differ in the presence
of a node in Z = 0 for the antisymmetric first-excited state.
This claim is evidenced in the 
Eortho–para column of Table II.
Following the mentioned column, the rotational energy gap in
the confined case drops from 60 cm−1 for ν = 0 to 12 cm−1

for ν = 4, therefore, at a faster rate (∼12 cm−1 between con-
secutive vibrational levels) than in the unconfined case (∼6
cm−1). Due to the effect of confinement inside the nanotube,
lowest ortho- and para-hydrogen states reach almost similar
energy values in the ν = 5 vibrational band. This leads us to
expect an interchange in the order of ortho- and para-levels for
higher vibrational bands, but this could not be assured since
the computation of such highly excited states demands a much
more dense and extended grid than the one used in our five-
dimensional calculations.

A similar effect appears in the case of excitations on the
translation of the H2 center of mass. A very efficient way to
analyze this effect consists of introducing in the translational
part of the initial wave function the first (�(n = 1)), second
(�(n = 2)), and third (�(n = 3)) eigenstates of the 2D Hamil-
tonian. The excitation introduced in the translational part of
the wave function increasingly shifts the lowest ro-vibrational
(internal) state towards higher energies. Table III lists the en-
ergy gap between the first three excitations in the translational
motion and the n = 0 ground state, for given vibrational quan-
tum numbers. The first row of the column contains the cor-
responding energy differences in the bi-dimensional model,
as a reference. The gap is notably lower in the 2D model
than the one we obtained in the ν = 0 vibrational band of
the 5D case. Even for the lowest vibrational band, the differ-
ence between two- and five- (full-)dimensional models is ∼45
cm−1 for the eigenstate associated to n = 1, increasing to ∼90
cm−1 for the next two levels, n = 2 and n = 3, which would

TABLE III. Energy gap (cm−1) between states with n-excited and (n = 0)-
fundamental translational motion and associated to rotational labels (j, m)
= (0, 0) are displayed left to right for the H2@(8,0) system. Each row cor-
responds to a different ν-vibrational band. The energy differences found for
the reduced 2D model (Sec. III A) are included in the first row as a reference.

n = 1 n = 2 n = 3

E
(n)
2D − E

(0)
2D 239.3 500.5 525.3

ν = 0 285.6 591.1 611.4
ν = 1 290.2 599.8 620.4
ν = 2 292.3 604.5 623.8
ν = 3 296.4 612.6 634.3
ν = 4 337.9 697.3 705.9

have similar energies for harmonic confining potentials. We
recall here that the potential energy in the two-dimensional
model was minimized with respect to all possible orientations
of the inter-nuclear vector �ρ. In the five-dimensional model,
however, the translation does not take place under this mini-
mized PES, exhibiting higher energy values than in the two-
dimensional model. Obviously, the coupling is more effective
for n = 2 and n = 3 than for n = 1 since the wave function
spreads in a broader region of the subspace {Xcm, Ycm}. From
Table III it is possible to analyze also how the vibrational pat-
tern is affected by successive excitations in the translational
part. The energy gap Eν − Eν − 1 uniformly increases with ν

along a specific n-column, but in merely a few wavenumbers.
Instead, for the ν = 4 vibrational band, the shift suddenly be-
comes much more significant, and ranges from ∼40 cm−1 for
the n = 1 case to ∼70 cm−1 for the spectrum obtained with
n = 2 and n = 3 initial states. At this stage, it seems that
the vibrational amplitude of the diatom is elongated enough
(∼2.5 a.u.) as to produce, combined with the displacement of
the center of mass of H2, a significant increase of the repul-
sive energy due to the short distance of the H atoms to to the
nanotube walls.

We focus now on the effect that excitations on the trans-
lational part induce in the rotational pattern. The three pan-
els of Fig. 7 show the ν = 0 vibrational band of the power
spectra obtained from initial states of the type �j�

(n), with n
ranging from n = 1 to n = 3. Here again, Pj projections are
taken for the internal part of the wave function �j. As in the
case of n = 0, shown in Fig. 5, we can still distinguish non-
overlapping rotational bands. However, the structure of each
one is more complex now, with new lines stemming from the
highest m-levels of each band as a consequence of the new
symmetry in the translational part of the wave function. We
note also that the lowest state, corresponding to m = 0, is ba-
sically unperturbed in all cases. We can better understand the
new rotational pattern by inspection of the corresponding 2D
eigenstates shown in Fig. 2. The ground state (n = 0) is a
quasi-gaussian function centered at the axis of the nanotube.
Because of the cylindrical symmetry of this function there are
two equivalent orientations of the angular momentum (jx and
jy) and this yields a spectrum with only (j + 1) lines per band,
being those states with j �= 0 doubly degenerated. For the case
n = 1, the two-dimensional eigenstate has the shape of a px-
type orbital (or py, due to the degeneracy), with one single
node along the X- (Y-)direction. The asymmetry between X-
and Y-rotations in this case unveils the j + 1-degeneracy and
originates new lines in the spectrum. A simple classical in-
terpretation in this case is not enough to justify the unfolding
of degeneracy and a fully quantum view is required. For in-
stance, the j = 1 rotational band shown in the upper panel
consists of four distinguishable lines, while there exist only
three inequivalent orientations of the molecule inside the nan-
otube. This is consistent with the predictions of Yildirim and
Harris21 and Lu, Gray and Goldfield17 in their modelization of
rigid (non-vibrating) H2 inside carbon nanotubes. The struc-
ture of the manifold is also as they predicted, with one single
line at lower energy (2873 cm−1 in our case) and three lines in
the upper side of the band (2983 cm−1, 3018 cm−1, and 3060
cm−1), almost equidistant among each other (only under the
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FIG. 7. Same as Fig. 5 but for excited translational wave functions �(n), with n = 1, 2, 3. Only the fundamental vibrational band is displayed.

isotropic potential proposed by Yildirim and Harris the lines
are exactly equidistant). The number of spectral lines that ap-
pear in the j = 2 and j = 3 bands increases to six and eight,
respectively. In a similar “parabolic” potential obtained from
a (3,6)-CNT, Lu et al. could identify seven different lines for
the j = 2 band. However, two of these states where so close
in energy that it is very feasible that they would conform one
single line under the specific potential parameters chosen in
our work.

The results obtained in the second panel when the trans-
lational part of the initial wave function is replaced by the
second-excited eigenstate �(n = 2) show again an increase in
the number of states associated to each j-band. This is not
surprising provided the four-lobbed structure of the transla-
tional part of the wave function (third panel of Fig. 2). In par-
ticular, the rotational bands j = 1, 2, 3 consist now mainly
of five, six, and seven spectral lines. As it has been pointed
out earlier in Sec. III A, the energies of n = 2 and n = 3
translational states in the 2D model are very similar, and the
difference between them is only due to the anharmonic char-
acter of the confining potential. Instead, the spectra they gen-
erate are remarkably different. A notable simplification in the
5D spectral curves is observed for the case n = 3, where the
wave function regains the cylindrical symmetry in the trans-
lational part of the wave function, as depicted in the fourth
panel of Fig. 2. The rotational bands j = 1, 2, 3 consist in
this case of three, four, and six peaks, respectively. We must
mention here that, although both n = 0 and n = 3 2D states
are cylindrically symmetric, the second presents also a node
in the radial direction of the XY plane which makes its spec-
tral pattern rather different to the n = 0 case. We finally

note that the energy gap between the lowest ortho- and para-
rotational levels in the power spectrum (labelled j = 0, |m|
= 0, black line, and j = 1, |m| = 0, first red line) is notably
reduced in the highest translational levels. The reasoning that
supports this behavior was already exposed when comment-
ing Fig. 6. Similar to vibrational excitations, more quanta on
the translational state implies shorter distances to the nan-
otube walls, and therefore stronger interactions, pulling j =
0 and j = 1, |m| = 0 together.

Previous works showed that the separation between the
lowest levels assigned to j = 1 and j = 0 (ortho- and para-
levels) can be related to the intensity of quantum sieving
effects.16, 17 We have used GridTDSE for a better visualiza-
tion of the dependency of the spectrum on the choice of pa-
rameters ε, σ used for the modelization of the molecule–wall
interaction. The results are displayed in Fig. 8 for two differ-
ent potential parameterizations. The upper panel represents
spectral curves obtained for the potential “FB” of Ref. 17.
This choice of parameters, with a longer C–H equilibrium dis-
tance, originates extreme 1D confinement, resulting in strong
quantum sieving. In our calculations, this reveals in a dramatic
spread of the levels included in each j-manifold, with the con-
sequence of a quasi-degeneracy between the first two levels
(correlated to j = 0, |m| = 0 and j = 1, |m = 0| states of the
unperturbed system). We also note stronger mixing between
different j contributions for each line, and consequently j can-
not be considered as a good quantum number in such a sys-
tem. The reference lines from the original paper of Lu et al.17

have been blue-shifted 78.3 cm−1 in order to match our fun-
damental state. This might be the reflection of the absence
of H2 vibrational motion in their model. Still, we find small
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FIG. 8. Power spectra for CNT–H2 obtained from alternative potential pa-
rameters: (a) FB potential used by Lu et al.17 and (b) Bacić and co-workers22

for the first vibrational band of H2@(8,0). Vertical dotted lines in the upper
panel correspond to the results of Ref. 17 shifted to match the ZPE of the
present work.

discrepancies of ∼10 cm−1 in the third and fourth states of the
fundamental vibrational band, where the vibrational and rota-
tional motions become more efficiently coupled. An opposite
behavior is observed in the lower panel of the figure, where we
have chosen the potential proposed by Bacić and co-workers22

in the study of H2 embedded in C60. The nanoconfinement
does not distort significantly the molecular energy structure
of the diatom, as it did for the FB potential and, to a lesser ex-
tent, for the potential parameters used in the previous calcula-
tions. Although the breaking of j-degeneracy still appears in
clear and distinguishable rotational bands, there is no signif-
icant mixing among different j-contributions for each molec-
ular eigenstate. In this case j can be considered as a good
quantum number, and the interaction of the molecule with the
wall can be treated as a first-order perturbation of the uncon-
fined situation. The notable discrepancy with the other two
potentials might be a consequence of optimizing C–H inter-
actions from a spherical symmetry system (fullerene) instead
of a cylindrical structure (nanotube), using a three-center po-
tential for each pair of molecule–carbon interaction.

2. Ring confinement CNTs: (10,0)

The next example of nanoconfinement concerns the em-
bedding of hydrogen in a wider carbon nanotube of chiral
indices (10,0). The GridTDSE code was modified to imple-
ment the corresponding potential energy function, which in
this case presents a ring structure for the minimum of the
(minimized) confining potential U 2D( �R) as it can be seen in
Fig. 1 (right), characteristic of wider nanotubes.21 Compared
to the case of H2@(8,0), the energy spectrum is expected to
be considerably more complicated due to the quasi-free or-
biting associated to this ring structure. This type of angular
translational motion on the {Xcm, Ycm} plane can be repre-
sented by a Lz operator, which will efficiently couple those
rotational states of H2 with non-zero azimuthal number (m
�= 0). Most of the structures in these spectra can be assigned
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FIG. 9. Power spectra for H2@(10,0) along the first three vibrational bands.
The translational part of the initial wave function is a gaussian centered at
�Rcm = (1, 0) a.u. For the “internal” part of the wave function we have taken

j-projections of a gaussian initially oriented on �ρ = (0.866, 1.5, 1) a.u. Ver-
tical dotted lines correspond to ro-vibrational levels of the unconfined H2
molecule labelled as (ν, j) and translated to the ground state energy of the
H2-CNT system.

to one-dimensional confinement along the circle of minimum
energy.

We start by displaying in Fig. 9 the power spectra for the
first three vibrational bands, obtained from projections in the
angular momentum j of H2 and placing the initial translational
wave packet away from the minimum energy zone. In this
manner, most of the excitations referred to the translational
part will be reproduced. As a general feature, we confirm that
the spectral density is increased with respect to the (8,0) case.
At the same time, the energy shift of the ground state with
respect to the unconfined system is 95.7 cm−1, approximately
275 cm−1 smaller than for the (8,0) SWCNT system due to
the wider confining potential well. The structure of the spec-
tra is conserved in general terms as we move up to excited vi-
brational bands. Nevertheless, there is a very subtle increase
in the energy gap between the lowest line and the first- and
second-excited lines as we move up in the vibrational level,
i.e., going from the top panel to the bottom panel. This change
is hardly noticeable in the figure, with energy gaps of +2 cm−1

and +6 cm−1 for ν = 1 and +11 cm−1 and +18 cm−1 for ν

= 2, both taken with respect to the ν = 0 band. The reason for
this increase is that the region of minimum energy is located
close to the walls of the nanotube and a slight increase in the
inter-nuclear distance already results in higher confining en-
ergies. At the same time, the rotational constant B associated
to j = 1 levels decreases compared to j = 0 levels as a re-
sult of the vibrational-rotational coupling. Since the third and
fourth states of each vibrational band are characterized by j
= 0 and j = 1 numbers, respectively, the energy gap that we
find between them decreases as we move up on ν.

In the wide (10,0) SWCNT, the nanoconfining effect can
be treated as a perturbation in very good approximation. As
a consequence, the mixing between different j-contributions
found in the spectrum (being j the rotational quantum number
defined in the isolated H2 molecule) is almost inexistent now,
and we can safely consider j as a good quantum number. Com-
bining the j-labelling with the identification of the transla-
tional part according to the 2D model introduced in Sec. III A,
one can easily assign the first energy levels as displayed in
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FIG. 10. Same as Fig. 9 substituting the translational part by the first three eigenstates �(0, 1, 2) of the 2D translational model. Only the first vibrational band is
shown.

Table IV. The energies associated to the translation of the cen-
ter of mass are now typically smaller than those associated to
the rotational motion. In Fig. 10, we focus on the ν = 0 vibra-
tional band of the spectra obtained from three different initial
wave functions, whose translational part is built from the 2D
eigenstates �(n = 0, 1, 2). The first two excited states correspond
to the excitations in the orbital translation of the H2 c.o.m.
around the axis of the nanotube, which explains the l(l + 1)

TABLE IV. Energies (cm−1) associated to the first three translational levels
n = 0, 1, 2, aligned according to the rotational label j, are displayed for the
fundamental vibrational band of H2@(10,0) nanotubes.

j = 0 j = 1 j = 2 j = 3 j = 4

n = 0 2262.6 2378.8 2617.8 2969.8 3038.0
2381.5 2624.3 2974.2 3443.5

n = 1 2294.1 2401.1 2636.3 2991.6 3455.8
2405.3 2639.1 3007.6 3458.5
2415.5 2648.1 3016.5 3462.7
2434.9 2652.8 3021.6 3469.3

2665.1 3477.8
3483.2
3485.4
3488.1

n = 2 2346.3 2453.3 2699.4 3050.3 3516.9
2469.4 2715.4 3060.5 3519.4

3074.8 3524.2
3532.2
3543.6
3549.4

pattern found for the energies of such eigenstates, and already
pointed out in Sec. III A. The spreading inside each rotational
band is much smaller than it was for the H2@(8,0) system.
In fact, since the perturbation is now smaller, the degeneracy
between rotational energy levels of same j value is increased.
As a matter of fact, the j = 1, 2, 3 and 4 rotational bands asso-
ciated to the ground translational state (n = 0) consist only of
two spectral lines, hardly noticeable in Fig. 10 (consider the
0.5 cm−1 precision of the spectra obtained), in contrast to the
j + 1 lines that we obtained for the (8,0) nanotube. Although
this might appear contradictory to the dense spectra that we
obtained for H2@(10,0), the degeneracy is counter balanced
by the more complicated translational structures (orbiting +
vibration inside the nanotube). As soon as the translational
part includes phonon excitations (n �= 0) the number of spec-
tral lines is amplified (except for the j = 0 case, which consists
always of one single line).

IV. CONCLUSIONS

We have simulated the quantum dynamics of a hydrogen
molecule confined in the interior of two CNTs with different
diameters. The narrower nanotube involves a parabolic-type
potential, while the potential energy surface of the wider one
is characterized by a ring-structure. Unlike previous studies
on the subject, we have carried out a full-dimensional treat-
ment, as far as the confined molecule is concerned, based on
a Cartesian coordinate system. Such a model explicitly in-
cludes the vibrational motion of the molecule in addition to
the rotational and translational ones already considered in the
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bibliography. Furthermore, we have taken into account ex-
plicitly the positions of the carbon atoms in the nanotube for
building the potential energy surface.

The results obtained confirm previous observations on
the effect that nanoconfinement has on rotational levels. On
the one hand, the confinement breaks the j-degeneracy char-
acteristic of the unconfined molecule, giving rise to a struc-
ture of broad rotational bands. On the other hand, it causes
the appearance of new states whose quantum-mechanical na-
ture is associated to the motion of the center of mass of the
H2 molecule. We have additionally evidenced that the vibra-
tion is also affected by the confinement of the nanotube. In-
deed, the energy levels found for excited vibrational bands are
blue-shifted with respect to the pattern found for the ground
vibrational state. It is also remarkable the uniformly decreas-
ing gap between the lowest ortho- and para-energy levels as
the vibrational excitation increases, which makes one wonder
about a possible exchange in the order of appearance of these
levels for higher vibrational bands. Both effects cannot be ne-
glected if one intends to generate an accurate potential energy
surface for the H2@SWCNT system, especially in the case of
the narrower nanotubes.

With respect to the morphology of the nanotube, we have
shown that in the wider nanotubes the effective coupling be-
tween the translational and the internal degrees of freedom
(rotation and vibration) is much smaller than in the narrower
nanotubes, producing less distortion in the energy spectrum
with respect to the ro-vibrational spectrum of the unconfined
molecule. Nevertheless, the presence of a ring-structured min-
imum in the PES of the (10,0) SWCNT generates a manifold
of (orbital) translational states that enhances the density of the
spectra obtained for the confined molecule. In such a case, the
strongest coupling occurs between the rotational motion of
the molecule and the orbital translation of the center of mass
about the nanotube axis.

Finally, we have studied the role that the C–H interaction
potential plays on the energy spectrum pattern. As expected,
the most relevant modifications in the energy spectrum are
obtained for the C–H interaction potential with a larger equi-
librium distance (the FB potential), yielding an extreme 1D
confinement. A milder confining potential such as the one
proposed by Bacić and co-workers, produces only slight mod-
ifications in the rotational spectrum. The discrepancies are ex-
pected to be larger for vibrational excited levels.
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