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Abstract. It js well known that hyperbolic points of an analytic area 

preserving mapping (APM) T are unstable. As a Corollary of Moser's 

twist thcorem the elliptic ones are stable provided the eigenvalues 

l. of DT at the fixed point are nota k-th root of t.he unity, k~ lf2p+2 

p ~l. and any of the first p coefficients of the Birkhoff normal form 

is non-zero. To end the study of the stability of fixed µoints we study 

the parabolic ar degenerated case. Elliptic points far which stability 

can not be decided using directly Moser' s theorem (specially if " is 

a third or fourth root of the uni ty) can be reduced to the parabolic 

case taking a suitable power of T. The main result is that a degenera­

ted fixed point of an analytic APM is stable if and only if the genera­

ting function of T, with the part which generates the identity suppres­

sed, has a strict extremum at the fixed point. Sorne examples and com­

ment are included. 

§l. Introduction. The stabi li ty ( in the sense of Lyapunov) of fixed 

points of analytic APM is a method usually employed far the study of 

the quali tative properties of periodic orbi ts in hamil tonian systems 

with two degrees of freedom. When the fixed point, that we take always 

as the origin, is degenerated ar parabolic, i. e. , the eigenval ues of 

the differential OT of the mapping T at the fixed point are ± 1, the 

stability is a more subtle question. As we shall see it is not always 

enough to consider only the lower degree nonlinear terms to decide 

about stability. If the fixed point is elliptic with eigenvalues, l. , 

A, the cases 1.
3=1, 1.

4=1 do not allow an easy application of Moser's 

twist theorem. Oifficul ties can appear far every l., k-th root of the 

uni ty provided that all the determined coefficients ( the first 
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[(15-2)/2] ones) in the Birkhoff normal form are zero. In fact we can 

find examples of instability for every k (see (10]). 

From the numerical point of view a complete survey for quadratic 
·,· 

APM wa~ ini tiated by Hénon 151 and completed in ( 11]. The only nontri-

t.v!a1 ~s of this family with elliptic or parabolic fixed points can 

be reduced to one of the following forma (11]: 

a) (x,y) + (x cosa -(y-x 2)sin a, x sin a+(y-x
2

)cos a),a~(0,11). These 

maps are the composition of a de Jonquieres map (x,y) + (x,y-x
2

) 

anda rotation R0 and the origin is an elliptic point. 

b) (x,y) +(x~y,y+(x+y) 2 ). The origin is a double fixed point of parabo­

lic type. 

c) (x,y) + (-(x+y),-y-(x+y) 2). The origin is a fixed point of parabolic 

type. 

It follows from the figures in (5 ], [11] that in case a) for a = w/2 

one has stability and for a =211/3 instability. For cases b) and c) we 

get instability and stability, respectively. 

In [ 2] Chirikov and Izraelev study the behavior of the i terates 

of the map (x,y) + (x-y3 ,x+y-y3 ). The origin is parabolic. However it 

seems that there is a region of bounded motion reaching the point (0.52, 

O). The parabolic point has stable character surrounded by invariant 

curves. The point (1.0) is 6-periodic and DT
6

(1,0)= (~ ~) • By simula-­

tion i t seems that there are atable islands near the orbi t, despi te 

the parabolic character of the points. 

A criterion due to Levi-Civita assures that for maps T: (x,y)+ 

(x+f(x,y) ,x+y+g(x,y)) where f and g begin with terms of second or lar­

ger arder, the origin is unstable if the coefflcient of y2 in f is non­

zero (7]. However this criterion tells nothing about cases b) and c) 

of quadratic mapa or about the Chirikov-Izraelev map, that prompt us 

for a theorem. 

A question related to the stabili ty of parabolic points is the 

study of the stabili ty of sorne second arder fini te difference equa­

tions. Let E be the shifting operator: Ex
11

=xn+l· Then the equations 
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(E-2+E-1 )z =f(z ) and (E+2+E-1 )z =f(z ) are equivalent to the maps n n n n 
(x,y)+ (x+f(x+y),x+y) and (x,y) • (-x+f(x-y),x-y). If f is an analytic 

function wi thout zero or first order terms, the origin is a parabolic 

point. 

The case A k-th root of the unity is reduced to the parabolic one 

taking rk instead of T. Wi thout loss of generali ty we can suppose that 

in the parabolic case the eigenvalues are equal to one. (Take r 2 if 

necessary. This accounts also for T orientation reversing). However 

see later for sorne direct applications to the elliptic case and for 

the case with -1 eigenvalues. 

Two cases appear: diagonal and non diagonal linear part. In [12] 

the following resulta are proven for the second case: 

1.1.Lemma. Let T(x,y)=(x+f(x,y),x+y+g(x,y)) be an analytic APM with 

f,g beginning with terma of degree at least two. Then, foreach positi­

ve integer n, there exista a near the identi ty polynomial change of 

variables C such that the transformed mapping T*=C-l TC is given by 

T*(x,y)=(x+Fn(x+y)+On+l'x+y+On+l) where Fn is a degree n polynomial wi­

thout linear terma and O stands for a series wi th terms of lower de-
s 

gree at least s. 

m 
1,2.Theorem. In the hypothesis of the Lemma, let Fn(z)=amz +Om+l' amfo. 
Then the origin is stable under T* (and therefore under T) if and only 

if mis odd and a < O. 
m 

Our main objective is to give a theorem characterizing the stable 

parabolic points for the first case. ·Let (x' ,y• )=T(x,y) a canonical 

mapping (for dimension two, canonical is equivalent to APM). If D Y' 
y 

is regular (that is the case if T is near the identity) we can define 

an analytic generating function (see [1]) G(x,y') such that acx,y' l= 

=xy'+G(x,y') and 

get 

x'=Dy,G, y=DxG. For the non-diagonal case of 1.2. we 

fy' 
G(x,y')=-x2/2+ F (u)du+O 

2
(x,y') • 

n n+ 

Theorem 1.2. can be reformulated as: stability is equivalent to G(x,y) 

having a strict extremum at the origin. We shall prove that thi s cha-
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racterization is applicable to the diagonal case. We state the main 

result, 

1.3.Theorem. Let P be a parabolic fixed point of an analytical APM, 

T, and G(x,y)=xy'+G(x,y') a generating function for T. Then Pis Lyap~­

nov stable if and only if G has a strict extremum at P. 

We end this section giving some explicit results for the nondiago­

nal case wi th eigenvalues -1. In section 2 we prove some preliminary 

results concerning the conditions to be fulfilled by the Newton polygon 

associated to G and showing the twist character of an auxiliar map­

ping T 
1

• Section 3 is devoted to the proof of l. 3. We end wi th some 

examples with third and fourth roots of the unity as eigenvalues. Sta­

ble and unstable mappings are displayed in both cases. Some remarks 

are added concerning the stable and unstable invariant branches in the 

unstable case and a better method for obtaining T
1 

which allows for 

more accurate estimates of the branches and for the unification of the 

proofs of 1.2 and 1.3. 

As far as instabili ty is concerned the resulta obtained here ex­

tend the ones of McGehee [ 8 ) but only for the conserva ti ve case. A 

short account of the statements of this paper was given in (13]. 

Now we come directly to the case (x,y) + (-x+f(x,y),x-y+f(x,y)). 

Using the method of (11) for the proof of Lemma 1.1. with minor modifi­

cations, we can find the following result. 

1.4.Lemma. Let T(x,y)=(-x+f(x,y) ,x-y+g(x,y)) be an analytic APM with 

f,g beginning with terma of degree at least two. Then, for each positi­

ve integer n, there exista a near the identity polynomial change of 

variables C such that the transformed mapping T*=C-l TC is given by 

T*(x,y)=(-x+Fn(x-y)+On+l'x-y+On+l). 

Let us suppose F (x-y)=a(x-y{ +b(x-y) 8 +c(x-y)t + 
n where 

2(r<s<t< ... , di ferent from zero. Then, removing the 

terms On+l (of order as large as desired) we have 

x' -x+Fn(y') , 

x" -x'+F
0

(y"), 

4 

y' 

y" 

x-y 
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where T(x,y) = (x',y'), T(x',y') = (x",y"). Let z=x-y. Frorn z*=-z+Fn(z) 

we get the inverse function z=-z*+Q(z*). Then the desired function 

Gis given by 

We need sorne approxirnate expression of Q(z*), For our purpose it is 

enough to take 

Q(z*) 

Therefore 

G(x,y")=x2+(-l)r+la(x+y")r+l/(r+l) + (-l)s+lb(x+y")s+l/(s+l) + 

+ (-l)t+lc(x+y")t+l/(t+l) + ... + ay"r+l/(r+l) + by"s+l/(s+l)+ 

+ 

If r is odd the dorninant terrns in the Newton polygon of G are 

x2+2ay"r+l/(r+l), but for even r we rnust take into consideration the 

terrns x2-axy"r+(l+(-l)s+l)by"s+l/(s+l)+(l+(-l)t+\y"t+l/(t+l) + •...•• 

.. . + a2y"2r /2. We can state the following resul t. 

1.5. Corollary. Under the hypothesis of 1.4. we have the following cha­

racter concerning the stability of the origin: 

r odd: a> O (a<O) stable(unstable). 

r even: (*) s) 2r 

s=2r-1 

s<2r-1 

stable. 
---2 
4b/r+a > O(<O) stable (unstable). 

s odd b>O (b<O) stable (unstable). 

s even replace b(x-y)s by the next terrn 

and go to(*). 

For instance, the rnap (x,y) + (-x+(x-y) 2 ,x-y) which is equivalent 

to the quadratic case c) is stable, but a modification like (x,y)+ 

(-x(x-y) 2-(x-y) 3,x-y) turns out to be unstable. 

The rnissing case in 1.5., 

res a more detailed study (see 

i.e., r even, s=2r-1, 4b/r+a2=0, requi-­

§2). If there is sorne terrn c(x-y)t in 

F after the (present) term b(x-y)s such that t is odd and leas than 
n 

3r-2, we take the term of lower degree wi th this property. Then c>O 
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(c<O) implies stability (instability). If there is no term with this 

property the fixed point is unstable. For instance, consirler the map-

ping T 
1 

(x,y)=(-x,x-y) and the succesive modifications 
4 4 7 (-x+(x-y) ,x-y), T

3
(x,y) = (-x+(x-y) -(x-y) , x-y), 

(-x+(x-y)
4
-(x-y)

7
+(x-y)

9
,x-y). Under Ti, i=l,2,3,4 the origin is 

respecti vely unstable, stable, unstable and atable. The addi tion of 

new terms of higher order does not modify the character of the origin. 

§2.Preliminary results. Let us suppose that a real analytic function 

G of two variables G(x,y) has a strict mínimum at the origin and 

G(0,0)=0 (the case of a strict maximum being similar). Then, for small 

enough positive values of h we have that G(x,y)=h defines a closed cur­

ve surrounding the origin. It is clear that G(x,O) and G(O,y) can not 
'{' m m 

be identically zero, Le., if G(x,y)= ¿., a(m,n)x y , there are terms 

a(m,O), a(O,n) different from zero. There are addi tional condi tions 

on the Newton polygon and on the coefficients of G. 

2. 1. Proposi tion. A necessary and sufficient condi tion in order that 

G(x,y) has a minimum at the origin is that the Newton polygon of G sa­

tisfies: 

a) Every vertex has even coordina tes. The associated coefficient is 

positive. 

b) Let (mk,nk), mk=m+kr, nk=n-ks, r,s E Z+' g.c.d. (r,s)=l, k=Of2q be 

the points on one of the sides of the polygon. Then the function 

g(t) = La(mk,nk)tk has no real zeros of odd multiplicity. 

c) If g has a zero of even multiplicity, three cases are possible, as­

sociated to each one of such zeros: y=O(x); x=O(yP), p>l; y=O(xp), 

p ~. The first and second cases can be reduced to the third one 

through a rotation ora relabelling of the axes, respectively. The-

f i/j ·¡· 1 I t d i j i ~• we can suppose y=mx + ••. , 1 J > • n ro uc ng x=u , y=mu + 

+z we get a new Newton polygon ~nd we start again the procesa of 

checking the condi tions for the terma of the form z=O( u t), t > j. 

Proof. If we have a vertex in the Newton polygon of G with at least 

one odd coordina te, selecting the quadrant in a sui table form we have 
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sorne curve y=mxi/j such that the dominant term on it is negat.ive. If 

both coordinates are even but the coefficient is negative than G is 

locally negative along the curves y=mxi/j for which this tel'm is domi­

nant. 

Now we go to the si des of the polygon. If for one side g ( t) ( see 

condition b)) has a zero of odd multiplicity, as we have that the domi-
r/s nant terms are found on curves of the type y=zx they are 

x(sm+rn)/szng(t). with t=z-s. Then for curves whose t is near the odd 

zero of g, G(x,y) changes sign, against the hypothesis of being a 

strict minimum. It is clear that if g has a zero of even multiplicit.v 

we must check the subdominant terma as explained in condition c). 

In order to prove the sufficiency let us suppose that for each 

side of the Newton polygon there are no real zeros of the associated 

function g( t). ( If there are zeros of even mul tiplici ty but in sorne 

of the next steps we have condition a) satisfied and no real zeros on 

the new si des, the proof can be obtained through an easy modification 

of the following argument). The the curves y=mxq, qEQ, mER and x=O 

cover all the possible approaches to the origin (in fact all but a fini 

te number of q are associated to the verteces of the polygon). Over 

each one of those curves G is positive definite. Therefore, given a 

value of h small enough, there is local ly one point on each one wi th 

all the points obtained in this way encloses the origin. This is true 

for hin a set (0,h
0

). Therefore the origin is a strict mínimum. 

Remark l. If G changes sign in a neighborhood of the origin, the bran­

ches of G(x,y)=O can be easely obtained studying the odd zeros of the 

sides of the Newton polygon (or the possible odd zeros of the new poly­

gons if the original one has zeros of even multiplicity). 

Remark 2. The procedure a), b), e) of 2.1. has cases without stop. They 

correspond to a non strict minimum but to a minimum. For instance, i f 

f(x) is a real analytic function with f(O)=O, take G(x,y)=(y-f(x))
2

• 

n 
Remark 3. In [8] McGehee considera mapa (x,y) + (x-x +ypn-l +On+l , 

n-1 2 y+nyx +y Qn_
2

+on+l) that for the conaervative case give G(x,y') 

-xny'+y• 2R +O where P,Q,R are polynomiala of the ahowed dcgree 
n-1 n+2 
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and n~2. The vertex (n,1) in the Newton polygon implies instability 

according to 1.3. and 2.1. There are severa! cases of instability for 

which McGehee criterion does not apply and 

ce, take T(x,y)=(x-4(y-6x5 )3 ,y-6x5), where 
3/2 tangent manifolds y=x + ••• (stable) and 

we must use 1.3. For instan­

G(x,y' )=x6-y•
4

. There ar'e•two 
3/2 y=-x + ••• (unstable). 

Let us suppose now that G(x,y)=h defines closed curves around the 

origin for small values of h (of sorne sign, for instance, positive). 

Let T1 be the time unit flow associated to the hamiltonian system with 

hamiltonian G: T1 (x,y)=(x,y). Let U be a neighborhood of the or'igin. 

We intend to use T1 asan approximation of T in U. In U-{01 we define 

r=G(x,y), s=2•t/T(r), where T(r) is the period of the flow of hamilto-­

nian G along the closed curve W={G(x,y)=rJ. Here t stands for the time 

interval in going from (x
0 

,O) to (x,y) along w, with 

(r',s) variables one has T1(r,s) = (r,s+2n/T(r)). 

2.2.Lemma. The mapping T1 is a twist. 

X > o. In the 
o 

Proof. The only thing to prove is dT(r)/dr!0 if r' is small enough. We 

clai.m that the curves G(x,y)=r are star shaped with respect to the cur­

ves y=zxu/v if r is small. We can select values of z, u/v ~ 1 such that 
u/v on the curves y=zx the dominant term of G is of the form 

(mv+un)/v n ( -v) x z g z (see 2.1.b)) when this curve cuts w if r is small. 

Therefore we have axb+O(xc)=r with b<c and a>O. A similar' expres-

sion is obtained if for sorne z the function g is zero and we must 

use subdominant terms. Then we get locally only one value of x (other 

values are relatively as far as desired if r is small). In fact we have 

x=O((r/a)l/b) with b~4. We can exchange x and y if u/v<l. Using compac! 

ness we get a value r
0 

of r such that for all r(r
0 

the claim is true. 

Let S(r) the area enclosed by the curve w. For the period T(r) 

one has T(r)=dS/dr. One needs d2 S/dr 2• We compute S using slices of 

the type regions comprised between curves zx u/v and ( z+llz )xu/v . For 

instance, for the sector where y=O(x) one has p=O(rl/b)where p2 

= x2+y 2• The contribution of this sector is 

fe, p2(e) d8 = O(r2/b) 

Je1 
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For the other sectors we get sími lar terms wí th a larger val ue of b. 

Through integration we obtain S=mr"(l+O(l)), with n~½. Therefore 

d
2
S/dr

2
=0(r

0
-

2
) and in fact it is negative, showing that T(r) goes to 

infinity when r goes to zero and proving the Lemma. 

13. Proof of the main theorem. In order to compare T and T
1 

we obtain 

an approximate expression for T1 . We have x=x+x+x/2+ ••. , y=y+y+y/2+ .. 

and x=G2 , y=-G1 , x=G12a2-a22a1 , y=-G11a2+G12a1, where Gi is the par­

tial derivative of G w.r.t. the i-th argument and Gij, G ijk' ••. the 

second, third, ... partial derivatives. 

Then 

Let us compute the dífference between T1 and T in the r,s coordina­

tes. 

r'= G(x',y' )=G(x,y)+G1(x'-x)+G2(y'-y)+ ••. = 

r+Gl(G22°1-012ª1l/2+G2(G11°2-012°1l/2+ .•• = r+o(r), 

because from terma xmyn, m,n>O, m+n~4. we get perturbatíons of the or­
der x3m-2y3n-2 

In order to see the variation s,., of s due to the difference bet­

wenn the images of (x,y) under T 1 and T, we introduce the velocíty 
T 

v=(G2,-G1 ) • Then we have s 6=(ll,v)/(u,v) where ( , ) denotes the inner 

product on the plane. By substítution we have 

2 2 2 2 
sli ½(G12(-G2+G¡)+G1G2(G22-Gll))(l+o(l))/(Gl+G2) 

If the current dominant terms are xmyn we obtain s=O(xm-lyn-l)=O(rd), 

d~½. Therefore T is a relatively small perturbation of a twist. Thís 

produces the existence of invariant curves and hence the stabílity. 

If G has nota strict minimum at the origin there are curves rea­

ching the origin. If the multiplicity of these curves is one we have 

hyperbolic sector (see [6]) and therefore instability for r 1 and hence 
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for T. If there are branches wi th mul tiplici ty larger than one ( then 

the origin is notan isolated singular point of the hamiltonian field 

associated to G) on the left and right neighborhoods of these branches 

the flow approaches or leaves any (sufficiently small) neighborhood 

of the origin on both sides (even multiplicity) or approaches on one 

side and leaves on the other (odd mul tiplici ty). In any case we get 

instability. This ende the proof of 1.3. 

Remark l. A better choice of the hamiltonian can produce mapa T
1 

more 

faithful to T. For instance we can take 

1 1 2 2 1 2 2 2 
H = G-2GlG2+12(GllG2+4G12GlG2+G22Gl)-2(Gll2GlG2+Gl22G2Gl+GllG12G2+ 

2 2 
• G22G12Gl+GllG22GlG2+ 3Gl2GlG2)+ .•. 

Taking the first two terms of 11 we can unify the proofs of 1.2. and 

1.3. 

Remark 2. Between the invariant curves of the stable case there are 

(at least generically) elliptic and hyperbolic periodic points. The 

period of these points increases while the rotation number tends to 

zero as r goes to zero. 

§4. Sorne examples and applications. Take a map (x,y)+ (x,y+L a.xJ), 
- -- j)k J 

ak/0. Through composition with a rotation R
2

• 13 we have an elliptic 

fixed point whose eigenvalue A is a cubic root of the unity.Let (x' ,y')= 

= T
3
(x,y). It is convenient to use the map T in complex form: 

Z + A(Z + L a.2-j(z+z)j) 
jl>k J 

Then if k is odd we obtain the function 

G(x,y') 
8

k k+l -k (k+l) = - (x +2 L 
k+l r)O 2r 

3
r k+l-2r ,2r) 0 x y + 2k 

Íf k is even we must change the sign in the first term xk+l Hence 

have the following result. 
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4.1.Corollary. Let T(x,y)=R2 13(x,y•? a.xj) with ªk~O. If ~ is even - n J • k J =.__:;_c.:..: 

(odd) the origin is unstable (stable). 

In a similar but longer way we can study the case of a quartic 

root of the unity. 

4.2.Corollary. Let T(x,y)=Rw/2(x,y+ftkªjxj) with ªk~O. If k _is __ o_d_d 

the origin is stable (the dominant terms in G are a(xk+l+y'k+l)). If k 

is even we can scale and suppose ak=l. Then if for all odd i<k we have 

a
1

=0, the origin is stable. Otherwise let aj be the first non zero term 

of odd index. 

If j<2k-l one has stability. 

lf j=2k-l the origin is unstable (stable) when aj ~b~e~l~o.:..:nsg~s _ __,(~d~o~e~s 

not belong) to (0,k/2). 

If 2k-l<j~k(k+l)-2 the origin is unstable (stable) when 

(a ,<O). 
J 

If j=k(k+l)-1 the origin is unstable (stable) when 

(a .<k/2). 
J 

If j)k(k+l) the origin is always atable. 

Some resulta related to 4.2. can be found in {9). 

a.> O 
J 

a.> k/2 
J 

Another interesting application concerns the stability of the La­

grangian equilibrium points L4 ,L5 for the restricted problem of three 

bodies when the mass ratio of the primaries equals one of the cri tical 

mas ses of Routh. In [ 3) i t is shown stabi li ty except for the cri ti cal 

values 1,11 , 1,12 , µ3 (and another exceptional value that has been shown 

to be stable after). These excepti.onal cases are related to 1: 1, 2: 1 

and 3: 1 resonances and can be studied using a sui table Poincaré map 

or its power. See [14] for the details. 

As a last applicatlon we mention that also for the RTBP, G. Gómez 

[4) has used those methods to show the stability of some families of 

periodic orbits at the bifurcation point. 
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