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ON THE SINGULARITIES OF' POLAR CURVF.S 

by 

Edu'lrdo Casas 

1.- Introduction. Let C be aplane algebraic curve, defined over the 

field of comp1ex numbers, and O a singular point of C; we denote P(C) 

a generic polar of C; it is well k.nown that P(C) passes through O and 

the intersection multiplicity (C.P(C)) 0 is given by the term which 

corresponds to O in the first PlUcker's formula. 

No much more is known about the local properties of P(C) at O: 

the geometers of the Italian school claimed to have determined the 

equisingularity type of P(C) at O from the equisingularity type of 

C at O, but his statement is false: B. Segre in a memoir of 1952, (S), 

gave a curve with a multiple infinitely near poi.nt that does not belong 

to the generic polar; this exemple contradicts the Ital ian st1a.tement. 

In (M) we find some information about the singularity of the 

polar curve deduced from the equisingularity type of the original 

curve. In fact one can expect to determine the equisingularity type 

of P(C) at O in terms of the equisingularity type of C at O because 

(as L~ Dung Tr~ng showed to me) the equisingularity type of P(C) at 

O depends on the analytical type of C at'O and not only on the 

equisingularity type. 

We consider here the case of irreducible algebroid plan€' curves 

(more briefly branches) with only one characteristic exponent. We 
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determine the equisingularity types of the generic polars of these 

curves and one can obsPrve in particular that the claim of the ltalians 

becomes true for branches with general moduli. I believe that the same 

holds in general, namely that for any equisingularity class of one­

-branched algebroid curves there is an open dense subset A in the 

corresponding rnoduli space such that for any curve representing a 

point on A the Italian staternent is true, 

We fix sorne terminology. Let Í: al, xl,yf':: O be th,:, equation 
h,P?.0 ,f' 

of aplane algebroid curve, We call Newton-Crarner (briefly N.C.) 

diagram the set of points on the plane with non-negative integer 

coordinates ( h,p) for which ªh,f' ¡6 O. We consider only N. C. diagrarns 

with sorne point on each axis. The boundary of the convex hull of the 

N. C. diagram is a broken line; we call NP.wton-Cramer polygon the 

lower-left part of this boundary, i, e., that one whose sides do 

not contain the origin and leaves it on a halfplane with no points 

on the N. C. diagrarn. 

2.- The eguation of the polar curves. Let P be an algebroid one­

-branched plane curve with one characteristic exponent and defined 

over the field C of complex nurnbers. By perforrning an analitic 

transforrnation, if necessary, we may suppose the Puiseux series 

of r written in the forrn 

y S(x) rn/n 
:: X + L ili 

11 a.x 
i~l 1 
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where nis thc ordAr and m/n the characteristic exponcnt of lhc branch 

V. Dcfine 

We can take 

s,,(x) n 
l' 

o f(x,y) = n (y - s,,(x)) f c[t¡c,y]] 
t•fU 

l. 

as implicit equation of 1', where U is the group of n-th roots of 

unity. 

1 
Th-, polar of V relativc to the dirE>ction with homogeneous 

coordinatcs (A,µ) is defined by the equation 

A df + 11 clf 0 ax ay 

or, more explicitly, 

o =-\}x(n (y - s,.(x)~+ ,,: (.n (y - s,.(x)~ = 
t•fU J y t•EU J 

¿( [1 (y - s,,<x)\(,, --lS:,(x)) = 
l'EU 1/fU J 

,¡/,, 

1 Or, more clasically, the polar of the improper pofot (O,.l,11) with 

respect to V. One can consider also polars of proper points, but, 

as one can easily see, we do not have a more general situation. 



.!!! 
m n 

- 1/ X -

rr+i ~-l 
'°' rn+i n 1~ '(rn m n + ¿_,a.r¡ X -A-l'X 

i~l l n 

m-n+i 
L m+i

11 
_ 

1
.m+ix--n-)+ 

1
) 

Bln 1 '/ 

We determine first the monomiaJs that efectively occur in this equation. 

Obviously, in despite of its appearance, the equation is rational in x. 

'I'ake any (' such that n - l > p ~ O: 

Proposition 1: In the equation (I) we do not have monomials of bidegree 

(li,p) (on x and y respectively) if li < m(n-1-r•)/n. If li~ m(n-1-p)/n and 

if we take i = i(li,r1) = lin - (n-1-f>)m, then there occurs in (I) a non­

-trivial monomial with bider,ree (¡¡,p) whose coefficient. is a linear 

function on ªiº Furthermore if i(li,p) = i(li' ,p') we have (li,r1) = (¡¡• ,p') 

anda. does not occur in lhe monomials whose bidegree (li,p) verifies 
J 

i(li,r•)<j. 

~:The arder of each s,1(x) is m/n, so that thc coefficient of yf' 

in (I) has arder, as a serien of x, not less than (n-1-p)m/n. 

Suppose now li ~ (n-1-p)m/n: from g.c.d.(n,m) = l and ,,+l < n 

we have (n-1-,,)m f= O mod. n which givcs li > (n-1-p)m/n; hence i = 

= lin - (n-1-p)m > O and we C'1.n consider in (I) the sum of the products 

of ¡1, yf', n-p-?. terms,fxm/n and one term r¡m+iai/m+i)/n which gives 

,('°" '""' '""' m m -m+i~ li p 1 L..,¡ L..,¡ L..,¡ 1¡
1 

•• •'I 
2

11 · a.x y 
1/fÜ ij,u-1111 f'11' • • • •'ln-p-21 n-p- l . 

(II) 

where the most inner summation runs over thc suhsets of n -p- 2 

(I) 
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elements of U - J •1,ij J. No other monomials of bide¡,:ree U,,p) in which 

occurs ªi come from (I). Therefore wc only need to provc Lhnt the 

coefficient in (II) irs non-z<'ro. Define the polynom"inlr; 

where the summation runs over al] the p-uples of differcnt in~ices 

ik E j 1, ••• ,n J, classical1y s~ . was cal] ed a p-uple syr.,metric 
J1 ' ••• ,Jp 

polynomial, see (Sev), number 151. As one can easily verify 

Now the coefficient in (II) is 

'°' '°' '°' m m -mH pL.,.¡L.,.¡ L.,_¡ j '11 • •. 1111-p-211 

1/ ,¡ 1111 ' ••• '1/ 

11(pH) 
(n-p-2)! 

n-r-

11(pH) n-p-1 (1/ ,
1 

) 
(n-p-2)!º 6 m,m, ••• ,m,mti 1, ... , n 

if ,,<n-2, mti _ (,,tz)m t O mod. n, therefore 

hence 

o 

o ~ mh 
f..,¡ 1/ 
,,,u 

1 
s 1. ( '11 • ••• '1/ ) m-.1. n 

1 ('I 11 ) n-r-2 (" ,1 ) s 1. ] ' ••• ' s ''1, ••• , m+i n m, ••• ,m . n 
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= ( ) n-p-2 ( ) n-p-1 ( ) n-p-2 s 2 . n1 , .•. ,n + s . n1 , ... ,n m, ..• ,m, m+1 n rn, ... ,m,m+1 n 

that is 

,,e p+1) n-p-1 ( 2) s .(n1 , ... ,n > n-p- ! m, ... ,m,m+i n 

= µ(p+1) n-p-2 ( ) 
- (n-p-3) s 2 • n1•···•n !m, ... ,m,m+1 n 

If p <n-3 we repeat this procedure and, after n-p-2 steps, 

we obtain finally 

= ( )n-p-2 ( ) 1 ( ) -1 ,, p+1 s C l)+· n1 , ..• ,n m n-p- 1 n 

Recalling that m(n-P-1)+i = ón, we have 

and our coefficient is non-zero. 

The last two statements .are almost trivial: if i(ó,p) = 

= i(Ó' ,P') we have Ón-(n-p-1)m = ó•n-(n-p'-1)m and in par­

ticular (p+1)m = (p 1 +1)m mod. n; if we recall that p < n-1, 

p' < n-1 and g.c,d.(n,m) = 1, we have p = p 1 and thus also 

ó = ó t. 

The monomial of bidegree Có,p) in (I) is obtained by 

adding products of yP, n-p-1 factors from the S (x)'s and 
n 

one factor from (µ-AS~(x)). If aj occurs we have 
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o> (n-p-2)~ + ~ 
n n 

from which 

j < on - (n-p-1)m i( ó 'p) 

and the proof is complete. 

n-1 m-1 Remark: The terms µy aud -mAx appear also in (I). 

the last one comes from adding the products of n-1 factors 

m m/n n x from the Sn(x)'s and one factor 

S~(x). There are no other terms with bidegree (O,n-1), and 

no other terms with bidegree (m-1,0) involving A. Therefore, 

for any value of the ªí there are non~trivial monoMials of 

bidegrees (O,n-1) and (m-1,0) in the equation of a generic 

polar curve. 

3.- Continous fractions.We recall sorne facts about continous 

fractions which will be need later on. For more details see 

(Sev) Chap. VII, §S.20. We shall consider continous fractions 

of the form 

h + 
o 

1 
1 

1 
+ 'fí 

s 
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where the hi are positive integers. We set, if i > 1, 

1 

+ .!. 
h. 

l. 

the so called partía! fractions, and we take p
0 

= h
0

, 

As one can see by using induction, we may take 

which gives 

In particular g.c.d.(pi,qi) = 1 and 

so that we have 

1 

~ < 1 

(-1)i+1 

4 i 4 i-1 

+ ••• + 
(-1)i+1 

qi-1qi 

qj qjqj+1 
if j - O mod. 2 

( I II) 

(IV) 

(V) 

(VI) 
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if j t O mod. 2 (VII) 

4.- Drawing a Newton-Cramer polygon. We shall now analize 

the singularity of the generic polar curve for a curve 

with general moduli, i. e., for all the curves y excepted 

these ones whose coefficients ªi verify a finite set of 

algebraic non trivial relations (which will not be explicited). 

See (Z) for the definition of the moduli space and its 

topology. 

Proposition 1 determines the monomials that occur in 

the equation of a generic polar of a general y; in parti­

cular if we consider the monomials of degree pin y, where 

O< p < n-1, their lowest degree in x is the lowest integer 

not less than (n-p-1 )m/n, i. e., m - (( p+1 )m/n] beca use 

(p+1)m t O mod. n. (We denote by square brackets the integral 

part). 

To draw the N.C. polygon we have to consider only the 

points on the plane 

Pp = (m - [(p+1)m/n].p) , p = o, ... ,n-1. 

Note that we include the point (O,n-1) which corresponda 

to the only monomial of degree n-1 in y; thus we have the 

points (m - [m/aj ,O) and (O,n-1) as first and last vertices 

of the N.C. polygon. 
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We perform the Euclidian algorithm to compute 1 = 

g.c.d.{m.n): 

m = hn + o 1 

0 s-2 = hs-1°s-1 + 0 s 

ªs-1 = hscrs 

and we write m/n as continous fraction: 

~ = h + 
n 

1 
1 

·+ 1 
h 

s 

Suppose, as induction hypotesis, that we know that the 

(j+l)-th vertex of the N.C. polygon is the point 

ª (.-[q!i•] ,s,r') 
Note that if j = O, we have the point (m-h,O) = (m-[m/n] ,O) 

and if 2j = s we stop because qs-1 = n-1. We suppose j < s/2. 

To draw the next side of the N.C. polygon we select 

among the línes P P 1 , q 2 J.-1 < p < n-1, the one of maximal 
p q2j-

slope. We must determine 
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(

~( p+! )m1 - [q2t]) 
Max ----- , q 2 . -1 < p < n-1 

.] 
p-q2j+1 

where we take, instead of the slope, the opposite of his 

inverse (not~ that the slopes are all nPgative). Write 

t = p - q2j + 1 

thus, we have 

O < t < n - q 2 j 

and we must determine the maximal value of 

We have 

[q2j~] = 
[ P2 · 

es - ~)] q .::21.. + 
q2j qs = 

2jq2j q2j 

= [ + (Ps _ 21)] 
P2j q2j qs q2j = P2j 

where the last equality comes from (VII) §3. Hence 

t; = ½(~t+q2j)~] - P2j). 

Suppose now 2j+1 < s; we shall consider the case j 

later on. 

s-1 
= ~ 
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~ Ps P2j 
+ es P2 ") = - ~ = 

n qs q2j qs q2j 

= 
P2j 

+ (q2jq~j+1 
- + (-i)s+1 1 ) ... 

q2j qs-1qs 

by using (VI) §3. Therefore 

( 
1 s+1 1 ) ] (t+q2.) ---- - ... +(-1) --- -P2• 

J q2jq2j+1 qs-1qs J 

1 ( 1 - s1)~ -- - (t+q .) ---- -, .. +(-1) ---
q2j+1 2 J 42j+1q2j+2 qs-1q 

Perform the Euclidean di~ision 

Now 

f., 

Because 

and 

r+1 -- -
q2j+1 

cq2j+1 + r , O < r < q2j+1 

r+1 

q2j+1 
< 1 
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(remember that 2j t 2 ~ s). Also 

~ = .!_(t P 2 j + 1 - r) < p 2 j + 1 

t t q2jt1 - q2j+1 

so that we have determined a upper bound for 6. We shall 

prove now that this upper bound is in fact the wanted 

maximum. We shall prove also that the maximum is reached 

if and only if t = aq 2 j+l, a= 1, ... ,h 2 j+ 2 • 

From the last computation it is obvious that the upper 

bound is not reached if r > O. Suppose r = O: q 2 j+l divides 

tp 2 jtl' hence also t because g.c.d.(p 2 j+l'q 2 j+l) = 1. Thus 

we take t = aq2j+1 and we suppose first o <a< h2. 2· - ]+ 

6 1 [ 1 ( 1 (-1)')] = ap . + -- - (aq . +q .) - .•. +---
aq 2j+l 2Jt1 q2jt1 2J+l 2 J q2j+1q2j+2 qs-lqs 

> __ 1 __ rap . 1 +--1- -( h . q . +q . )(---1 ___ - ... t---'('--c.....:1c....:....) _sy 
aq2j+1 L 2J+ q2j+1 2)+ 2 2J+l 2J q2j+1q2j+2 qs-1qs~ 

1 ~ ap . + 
aq 2 j+l 2J+1 

1 

( 
1 

q -2 j+ 2 q2j+1q2j+2 
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because either 

( 
1 o < q ----- -

2 j+ 2 42j+2q2j+3 

if 2j+2 < s, or this term does not exist if 2j+2 s. 

Suppose now a> h 2 j+ 2+1: we prove first 

In fact 

we distinguish now three cases: 

a) 2j + 3 < s: 

+ 4 2j+3 - q2j+1 - q2j+2 > 

q2j+2q2j+3 

(VIII) 
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+ g2j+3 - q2j+1 - h2j+3q2jt2 = 

q2jt2q2j+3 

b) 2j + 3 = s: we proceed as in the case a): the first 

inequality is an equality here, but h 2 j+J = hs > 1 and 

hence the second inequality is a strict one. 

c)2j+2 s: 

(q2jt2 + 
q 2 j+l>(q2jt1!2j+2 

t (-1)s) = - ... 
qs-1qs 

(qs qs-1) 
1 1 1 > 1 

= + -- + 
qs-1qs qs-1 qs qs-1 

and we have preved (VIII). We have now, by (VIII) 

1 [ J __ P2j+1 < --- ap . 
aq2j+1 2J+l q2j+1 

and, as expected, the maximum is not reached. 

Thus we know that, if 2j+1 < s, the greatest value 

of A is p 2 j+l/q2 jtl and it is reached for p = aq 2 j+l+q2 j-1' 

a= 1, ... ,h 2 jt 2 . Consequently the side of the N.C. polygon 

which starts at P 1 hds slope -q 2 J.+l/p 2J.tl' passes 
q2j-

through the points 

, a= 1, ... ,h 2 j+ 2 -1 
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and ends at the point 

according the induction hypotesis. If s is even, this holds 

for j = s/2 - 1 and we reach the last vertex P = Pn_ 1 ; 
qs-1 

the N.C. polygon is completely drawn in this case. 

If s is odd, we must consider separately the case 2j = 

= s-1, which is not included in the former computation. 

We will determine the side starting at P 1 : now 
4s-1-

/:J, = !.[e t+q >:E_ - P ] 
t s-1 qs s-1 

and from 

1 = ({IV) §3) 

we have 

First we note that 

tps + 1 - O mod. qs (IX) 
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if and only if 

t _ - qs-t mod. qs 

where we used again (IV), §3. As O< t ~ n-q 2 j = qs-qs-t' 

we have (IX) if and only if t = qs- qs-t. 

Take t = qs - qs_ 1 : 

We claim that this is the maximal value far 6. If t < qs-qs-t' 

(tps+1)/qs is notan integer, thus 

and hence 

(X) 

If we recall (IV) §3 again, 

i. e. 

this is 



-18-

from which, using (X) we conclude 

for t < qs - qs-1· Thus we have a new side of the N .C. 

polygon which starts at p 
q -1· Note that if t q - qs-1' s s-1 

p = n - 1 so that the new side ends at p 
n-1 and is in fact 

the last one. 

We summarize: 

Proposition 2. The Newton-Cramer polygon of a generic polar 

of our generic curve y has [ s;
1
] sides, r j, j = O, ... , [s;

1
] 

The side rj has slope either -q 2 jtl/p 2 jtl if j < (s-1)/2, 

or -(qs-qs_ 1 )/(ps-ps_ 1 ) if j = (s-1)/2.Furthermore the points 

of the N.C. diagram on the side r. are, for j < (s-1)/2 
J 

a= o, ... ,h 2 j+ 2 . If sis odd, the last side r(s-l)/ 2 , contains 

only the points (m-ps-l'qs-l-1) and (O,n-1). 

As proposition 1 shows, one can order the points on 

the sides of the N.C. polygon, excepted (O,n-1), by the 

values of i(6,p) in such a way that, for each point, there 
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there occurs in the corresponding monomial one a. which 
J 

does no~ ;i_ppPars in the monomL,ls corr0spond.i.ng to former 

points. Hence the coefficients of the forms which approximatc 

the polar equation in cnrrespondence to the sides of the 

N.C. polygon are eeneral for a general y. rn particular 

each side yelds an equatíon wíth no multiple roots for 

the determination of the first cnefficients of the Puíseux 

series of the polar curve. Prom the N,C. polygon we deter­

mine easily the equisingularitv type of the gPneral polar 

curve and we obtain: 

Theorem 1. Let m/n be be a irreducible fraction which we 

write as continous fraction in the form 

m 
n 

h + 

with h
8 

> 1. Let pi/qi' i 

form, the partial fractions 

" h t 

1 
1 

• + 1 
¡:; 

s 

O, ... ,s, be, in irreducible 

1 
1 

Let M be the moduli space of the one-branched algebroid 
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plane curves with characteristic exponent m/n. Then there 

exists in M a dense open subset A such that if y represents 

a point on A, the singularity of the generic polar curve 

of y can be described in the following way: 

Let 0 1 , ... ,0h the free infinitely near points which 

follow O in y. The generic polar of y is composed by 

h 2 branches with characteristic exponent p1 /q1 

h 4 branches with characteristic exponent p 3 /q 3 

h 2 j branches with characteristic exponent P 2 j_ 1 /q 2 j-l 

and at last, either 

or 

a) hs branches with characteristic exponent Ps_ 1 /qs-l 

if s is even; 

b) h 1 branches with characteristic exponent p 2 /q 2,• s- s- s-

g .c .d. (ps-ps-1 'qs-qs-1) branches with characteris-

tic exponent (p -p 1 )/(q -q 1 ) if s is odd. s s- s s-

All these branches pass through the points O, 0 1 , ... , Oh 

and no two of them share the first free infinitely near 

point which follows Oh. 

We can reformulate the last statement by saying that in 

the Puiseux series of y and in those of the branches of 
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the generic polar the h terms befare the characteristic 

term are the same ones and the characteristic terrns are 

all different (modulo the choice of determination on the 

fractionary powers of x). 

3.- The non generic branches. It is known (see (Z)) that 

in the moduli space of one-branched plane algebroid curves 

with characteristic exponent m/n there is a "most particular 

point" which is adherent to every point on M; this is the 

analytical type of y : xm = yn. We call elementary branches 
o 

the branches with the analytical type of y
0

• It is very 

easy to determine the equisingularity type of the generic 

polar of an elementary branch: we calculate from y
0 

and 

we obtain a N.C. polygon with only two vertices, (m-1,0) 

and (O,n-1), which gives g.c.d.(m-1,n-1) branches with 

characteristic exponent (m-1)/(n-1). Any two of these 

branches hav~ infinitely near points in common up to the 

last satellite point. 

As one can expect, the singularity of the generic polar 

of any one-branched plane curve with characteristic exponent 

m/n is, in certain sense, ''intermediate" between the sin-

gularities of the generic polars of the general and most 

particular curves, y and y
0

, respectively. We prove also 

the converse, that is, any such intermediate singularity 
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corresponds to the generic polar of a one-branched curve 

with characteristic exponent m/n. 

Let 0 be the closed domain on the plane bounded by 

the N.C. polygon described in Proposition 2, the line 

segment from (O,n-1) to (m-1,0) and the a-axis, i. e., 

the part of the upper-half plane limited by the N.C. 

polygons of y and y
0

• 

Theorem 2. If y is a one branched algebroid plane curve 

with characteristic exponent m/n, upon an analitic trans­

formation of the coordinates, the generic polar of y has 

its N.C. polygon contained in 0. Conversely, any N.C. 

drawn in 0, from (O,n-1) to the a-axis, is the N.C. polygon 

of the generic polar of a one branched algebroid plane 

curve with characteristic exponent m/n. 

Proof: We may suppose that y was given, as in §2, by the 

Puiseux series 

m/n 
y = X + L 

i>O 
a.x 

1 

m+i 
n 

The first statement is obvious: from the note which follows 

Proposition 1, we have the points (O,n-1) and (m-1,0) in 

the N.C. polygon and we know (from the definition of the 

N.C. polygon) that the points below the lower boundary 

of 0 correspond to monomials that do not occur in the 

polar equations for general values, hence for any values, 
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For the second statement we note first that all the 

points on 0 are in the half-plane o> (n-1-p)m/n and thus, 

by proposition 1, correspond to non trivial monomials on 

the polar equation for general values of the ai;we select 

from 0 the points with integral coordinates excluding 

those in the upper boundary line, getting 

i <o,p)e:0 1 o and pare integer and __.2.__ + __p_ f 1}. 
m-1 n-1 

We order the points of E by the values of i = i(o,p) so 

that (Propos5tion 1) in the monomial which corresponde 

to a point there appears a coefficient ªi that <loes not 

occur in the monomials corresponding to former points. 

On the other hand we note that any term in the 

equation (I), §2, in which occurs the parameter A has 

bidegree (o,p) with 

i. e., 

o> (n-p-1)~ + m - 1 
n n 

o p 
m-1 + n - n/m ~ 1 

thus, see figure below, A <loes not occur on the monomials 

which correspond to points of E. Hence if we select any 

subset TC E, by the fjrst remark we can select the values 
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p 

l\ •1 

r 

---------------~-------,..,.___• 6 
m- h m-1 

figure 

of the ªi for a polar equation with zero coefficients 

corresponding to the points on T and non-zero coefficients 

corresponding to the points of _ not in T. By the second 

~emark this iR done independently of A, i. e., for a 

generic polar, and the proof is complete. 
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