chivs 3\.S

UNIVERSITAT DE BARCELONA
FACULTAT DE MATEMATIQUES

ON THE SINGULARITIES OF POLAR CURVES
by Eduardo Casas

BIBLIOTECA DE LA UNIVERSITAT DE BARCELONA

570624

o

PRE—PRINT N.© 5
marg 1982




1
-
1) 1
i
11
=1
1
: [
.
" - -
1 2
] "
-
]
1 1 of
A 1 1




ON THE SINGULARITIES OF POLAR GURVES
by

Eduardo Casas

1l.- Introduction. Let C be a plane algebraic curve, defined over the

field of complex numbers, and O a singular point of C3j we denote P{C)
a generic polar of C3 it is well known that P(C) passes through O and
the intersection multiplicity (C.P(C))O is given by the term which
corresponds to O in the first Pliicker's formula.

No much more is known about the local properties of P(C) at O:
the geometers of the Italian school claimed to have determined the
equisingularity type of P(C) at O from the equisingularity type of
C at O, but his statement is false: B, Segre in a memoir of 1952, (8),
gave a curve with a multiple infinitely near point that does not belong
to the generic polary this exemple contradicts the Italian statement.

In (M) we find some information about the singularity of the
polar curve deduced from the equisingularity type of the original
curve. In fact one can expect to determine the equisingularity type
of P(C) at O in terms of the equisingularity type of C at O because
(as L& DUng Tréhng showed to me) the equisingularity type of P(C) at
O depends on the analytical type of C at' O and not only on the
equisingularity type.

We consider here the case of irreducible algebroid plane curves

(more briefly branches) with only one characteristic exponent. Ve
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determine the equisingularity types of the generic polars of these
curves and one can observe in particular that the claim of the Italians
becomes true for branches with general moduli. I believe that the same
holds in general, namely that for any equisingularity class of one~
-branched algebroid curves there is an open dense subset A in the
corresponding moduli space such that for any curve representing a

peint on A the Italian statement is true,

xay’

We fix some terminology. Let § : a "2 0 be the equation

spz0 P
of a plane algebroid curve, We call Newton-Cramer (briefly N.C.)
diagram the set of points on the plane with non-negative integer

coordinates (8,p) for which a # 0. We consider only N, C, diagrams

8,0
with some point on each axis. The boundary of the convex hull of the
N. C. diagram is a broken linej we call Newton-Cramer polygon the
lower-left part of this boundary, i. e., that one whose sides do

not contain the origin and leaves it on a halfplane with no points

on the N. C. diagram.

2.~ The equation of the polar curves. Let ¥V be an algebroid one~

~branched plane curve with one characteristic exponent and defined
over the field C of complex numbers. By performing an analitic
transformation, if necessary, we may suppose the Puiseux series

of ¥ written in the form

m4i
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where n is the order and m/n the characteristic exponent of the branch

V. Define

We can take
0=flx,y) = My -5, e of ke, 511
' vel
as implicit equation of y, where U is the group of n-th roots of
unity.
The polar1 of V relative to the direction with homogencous

coordinates (A,u) is defined by the equation

of of
Aé; 4'H5; =0

or, more explicitly,

- - o - -

= z:( oy - Sq(x))(;:~,XSL(x)) =
reU\nel

nhv

1 Or, more clasically, the polar of the improper point (0,A,s) with
respect to Y. One can consider also polars of proper points, but,

as one can easily sec, we do not have a more general situation.
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We determine first the monomials that efectively occur in this equation.

Obviously, in despite of its appearance, the equation is rational in x.

Take any p such that n - 1 > p 2 Oz

Proposition 1: In the equation (1) we do not have monomials of bidegree
(8,p) (on x and y respectively) if & < m(n-1-p)/n. If 82> u(n-i-p)/n and
if we take i = i(8,p) = dn - (n-1-pPm, then there occurs in (I) a non-
~-trivial monomial with bidegree (8,p) whose coefficient is a linear
function on a; . Furthermore if i(8,p) = i(8',p') we have (5,p) = (8',p")
and a does not occur in Lhe monomials whose bidegree (8,p) verifies

i(s,m) <j.

Proof:The order of each SQ(X) is m/n, so that the coefficient of yp

in (I) has order, as a series of x, not less than (n-1-p)m/n.
Suppose now § 2 (n-1-p)m/n: from gec.de(n,m) =31 and p+1<n

we have (n-1-p)m £ 0 mod. n which gives & > (n~1-p)m/n3 hence i =

= én - (n-1-p)m > O and we con consider in (I) the sum of the products

of u, y”, n-p=-2 termsrrxm/n and one term ”m+1aix(m+1)/n which gives
Iz Me” T a xdyP
qn-p-2q ajxy (n

N
nel ﬁGU—{'I* {"17"""11—,)-2} !

where the most inner summation runs over the subsets of n ~-p- 2



elements of U - {ﬂ,ﬁ L No other monomials of bidegree (8,p) in which
occurs a; come from (I). Therefore we only need to prove that the
coefficient in (II) is non-zero. Define the polynomials
J J
sP . = inl...xip
Jl’."’l]p 1 'p

where the summation runs over all the p-uples of different indices

p

e {1,...,n}, classically s
111"'9Jp

was called a p-uple symmetric

polynomial, see (Sev), number 151, As one can easily verify

P st = 8P F...4 5P pH

LS « 15 Sy . 4 s
31,...,Jp J 31,...,3 ,Jp j 3 J""’Jp Jl,.-.,J .

Now the coefficient in (II) is

P E E E ’ ', 7m"'i _
" J, 1 n~p=-2

precee

#(pi1) m m mbi
® To=p-2)1 e "’n—p—Z"n-p-l -

URPPRRL N

(pil)  n-p-1
= Tacp-2)1 My ea,m, m#l(ql""’qn)
if p<n-2, méi = (p42)m Z O mod. n, therefore

+i 1
0T vyzu' 17 = ey (et
€

hence

n-p-2
Myooo

0=s (n],....l)q

n141 ('11,...,1)“) =



-p-2 -p-1
n-p .(ni,...,nn) + gtk .(ni,...,nn)

= (n-p-2
(n-p )Sm,...,m,2m+1 My.o. Mymtd

that is

p(p+l) Sn—p"i (‘n n) =
(n-p-2) I'my...,moméi 1°°°°2"n

_ _ _nlp+r1) Sn—p—? ( n)
- (h-p-3) 'm,...,m,2m+i Ngsereoly

If p <n-3 we repeat this procedure and, after n-p-2 steps,

we obtain finally

- n-p-2 1
vee = (~1) ﬂ(p*l)sm(n-p—1)+i("1""’nn)

Recalling that m(n-p-1)+i = 6én, we have

1

Sm(n-p-1)+i(n1""’nn) = n

and our coefficient is non-zero.

The last two statements are almost trivial: if i(8,p) =
= i(8',p') we have Sn-(n-p-1)m = 8'n-(n-p'-1)m and in par-
ticular (p+1)m = (p'+1)m mod. n; if we recall that p < n-1,
p' < n-1 and g.c.d.(n,m) = 1, we have p = p' and thus also
§ = &8,

The monomial of bidegree (§,p) in (I) is obtained by

adding products of yp, n-p-1 factors from the Sn(x)’s and

one factor from (u-ASi(x)). If a; occurs we have
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(n-p-2)2 4+ mty
- n n

from which
j < 8n - (n-p-1)m = i(8,p)

and the proof is complete.

-1 -
Remark: The terms py" and -mAx™"1 appear also in (I).
the last one comes from adding the products of n-1 factors
mxm/n

from

n ﬂvmxx(m-n)/n
n

from the Sn(x)'s and one factor
SG(X). There are no other terms with bidegree (0,n-1), and
no other terms with bidegree (m-1,0) involving A. Therefore,
for any value of the a; there are non-trivial monomials of
bidegrees (0,n-1) and (m-1,0) in the equation of a generic

polar curve.

3.- Continous fractions.We recall some facts about continous

fractions which will be need later on. For more details see
(Sev) Chap. VII, §85.20, We shall consider continous fractions

of the form

h  +
o



where the hi are positive integers. We set, if i > 1,

pP.
rou ho M : 1
93 h, +
1 h, +
2 .
o1
+ -
h.
i
the so called partial fractions, and we take P, = ho’
4, 1, P4 7 1, Q.4 0.

As one can see by using induction, we may take

Pisqd = DigqPg * Pyq > 9Q44q = Pygqay * 9y (ITD)
which gives
. i+l (1v)
Pid5.1 - P5g; = (1)
In particular g.c.d.(pi,qi) = 1 and
P. pP._ gy i+t
i Fi-r (A1) (V)
i Yi-1 %4959
so that we have
Py 1 1 (_1)1+1
— = h_ + - Fooot e (v1)
a3 Bl N 93-19;
where 1 < 9,94 < ... < 95495+ In particular if j < i
P; P
0 <+ .1 1 if § 2 0 mod. 2
94 Qj Qij+1



Pj Py
0 < == - == < if 3 2 0 mod. 2 (Vi)
qj q; q]-qj,,,l

4.~ Drawing a Newton-Cramer polygon. We shall now analize

the singularity of the generic polar curve for a curve
with general moduli, i. e., for all the curves Yy excepted
these ones whose coefficients ay verify a finite set of
algebraic non trivial relations (which will not be explicited).
See (2) for the definition of the moduli space and its
topology.

Proposition 1 determines the monomials that occur 1in
the equation of a generic polar of a general y; in parti-
cular if we consider the monomials of degree p in y, where
0 < p < n-1, their lowest degree in x is the lowest integer
not less thamn (n-p-i)m/n, 1. e., m - [(p+1)m/d] because
{p+1)m # 0 mod. n. (We denote by square brackets the integral
part).

To draw the N.C. polygon we have to consider only the

points on the plane
Py = (m - [(p+1)m/n],p) s P = 04...,4n-1,

Note that we include the point (0,n-1) which corresponds
to the only monomial of degree n-1 in y; thus we have the
points (m - [m/ﬁ],O) and (0,n~1) as first and last vertices

of the N.C. polygon.
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We perform the Euclidian algorithm to compute 1 =

= g.c.d.{m.n):

m = hn + o4

n = hjoy + o0,

and we write m/n as continous fraction:

CXE]
n
=2
-+

Suppose, as induction hypotesis, that we know that the

(j+1)-th vertex of the N.C., polygon is the point

qyim

P = m—.[ ] ] q -1
-1 *H2

5 n j

Note that if § = 0, we have the point (m-h,0) = (m—[m/@],o)

and if 2j = s we stop because qs-l = n~1, We suppose j < s/2.
To draw the next side of the N.C. polygon we select
among the lines P P 1 9,3~1 < p < n-1, the one of maximal

P dy5- 23 -
slope. We must determine
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[orsos] _[1237)

Max |22 L B ) 1< <na

- ]
P q2j+1
where we take, instead of the slope, the opposite of his

inverse (note that the slopes are all negative). Write

t = p - q?:i + 1

thus, we have

0 <t < - gy

and we must determine the maximal value of

1 m q2j“‘]
A= ?([(“qzj);] - [_n -

We have

Pss .
DY I Dt RO R S5 1 | I
2in 23945 21\9g 9y
p Pys
=p.+q.(—s-—l = p,.
23 23\ 9y 23

where the last equality comes from (VII) §3. Hence

1 m
A = ?([(t'quj)H] - p2j>.

Suppose now 2j+1 < s; we shall consider the case j =

sz2

2

later on.
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mzps=__p2i+(fi__1p '>=
n

9 923 9 425
Psa
_ Py, (#__1“ s (_1)“1_1__‘)
993 925925+1 95-195

by using (VI) §3. Therefore

Py
b= Loera, 022 4 Cerq, (i -...+<-1>s+1.__1._)-p2.
J 955 275925+1 d4g_1% J

[y

~+

Py ;

= i)y, ¢ PN S (t+q2.)(——1——-...+(—1)s E )
o5 923929+1  925+1 T \%3+1%9254+2 9g-19
p .

- ;[;2—3"—1 pot— - (trg | - L (eSS )]
92541 Y2941 I \424+1%25+2 9s-19¢

Perform the Euclidean division

WS

= < <

tTPoje1 = Cd2441 T T 0 O I T S dp54y
Now
LT (e EppTETLE . B

9o5+1 1 \%%5+1%25+2 95-1
Because

r+1 <1
92541

and

(t+q2.)(——1—-—~ - s+ (-8 ! )> 0
3 \%235+41%542 4g.1%
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(remember that 2j + 2 < s). Also

c _ 1(tp2j+1 3 r)( Poj+1
vt 2541 /7 Y25+1

so that we have determined a upper bound for A. We shall
prove now that this upper bound is in fact the wanted
maximum. We shall prove also that the maximum is reached

if and only if t = aq25+1 , O = 1""’h2j+2'

From the last computation it is obvious that the upper

bound is not reached if r > 0, Suppose r = 0: divides

q2j+1

tp2j+1, hence also t because g.c.d.(p2j+1,q2j+1) = 1. Thus

we take t = aq2j+1 and we suppose first 0 < a < h2j+2‘

1 1 1 (-1)°
A = ——Jap,.,,+ —— - (aq,., .+tq .)( -t
SCPYTRY IR LE AR PRPSY 2371720 2541 %25 42 9s-15/]
- 3
1 1 1 (=1)°
S O SN +q.>(
%pjq | 23t dggyy 234272541023\ ag5,4 99540 9g-19s/]
1 1 1 (-1)°
T e ap .t ——— = Qi - .. 4
®dpspq | 2341 Ap44g 2]+2(q2j+1q2j+2 qs—iqs)
r s+1
-1
g |"Poger * el - e ¢ %‘Lq‘)
i+ ] 23+2%925+3 s-1%g
_ p2j+1

925+1




.

because either

s+1 [«
0<q2'+2(____1____'.+_(_ﬂ_)<_.ﬂ_+_2__< 1,
IY2\2254+2%5+3 95-19 / 7 925+42925+3
if 2542 < s, or this term does not exist if 2j+2 = s.

Suppose now a > h 1: we prove first

25+2°

1 (-1)5 1 (VIII)
(t+q, {l——m— - ..+ > .
23 ( ) q,

325+192542 95-19¢ j+1

In fact

s
gt - o )
I \925+1%25+2 95-19¢

925+1%25+2 dg-19g

1 (-1)®
(q,. + q,. )(—————————-— e ¥ —— 5
2J%2 - T23*17\9541924+2 95-1%

2 (hos4092441 * Q2441 ¥ q2j)(

we distinguish now three cases:

a) 23 + 3 < s:

1 (-1)°
(q,. + s - ...+ >
925+¢2 7 924942 (q25+1q2j+2 . .q

1 1
>(q. + g, )( - ):
2342 T2341°N9554192542  U25+2%2543

t ., 92543 = 92441 ~ %2442
924+1 92542%25+3
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. 1 . 923+3 7 Y2541 7 Payesdogen 4

T 92541 925+2%24+3 924+1
b) 23 + 3 = s: we proceed as in the case a): the first
inequality is an equality here, but h2j+3 = hS > 1 and

hence the second inequality is a strict one.

c) 25 + 2 = s:

1 (-1)°
(q,. + q,. )(——-——————~ - hes b ] =
2j+2 2j+1 q2j+1q2j+2 g_19¢
1 1 1 1
= ( + ) = + —— >
s s-1 95-19 5-1 g 95-1

and we have proved (VIII). We have now, by (VIII)

1 1 1 (-1)%
b = ——Jap, .., + —— - (t+q .)( -t
@dog4q | 23*1 0 o544 23°\9541%542 95-19

1 [ ] Poj+1
(-————-—-(y,p, =
aq2j+1 2j+1 q2j+1

and, as expected, the maximum is not reached.
Thus we know that, if 2j+1 < s, the greatest value
of A is p2j+1/q2j+1 and it is reached for p = aq2j+1+q2j-1,

o = 1,...,h Consequently the side of the N.C. polygon

2j+2°
which starts at quj'i has slope 'q2j+1/P2j+1’ passes
through the points

P o =1,...,h,,. -1
aq2j*1+q2j—1 2j+2



-16-

and ends at the point

P, =

hogs292541% 92571 !

925+2°
according the induction hypotesis. If s is even, this holds
for j = 8/2 - 1 and we reach the last vertex Pq 4 ° Pn—l;
s
the N.C. polygon is completely drawn in this case.
If s is odd, we must consider separately the case 2j =

= s-1, which is not included in the former computation.

We will determine the side starting at Pq _q‘ Dow
s-1

_ 1 Pg
A= ?[(t+qs-1)€; - ps—J

and frbm

1=p39,.4 =~ Pg_4qg ((IV) §3)

we have

D>

G
i
T )

p
=%[t—s-+l
;4

First we note that

tp, + 1 2 0 mod. q (1X)
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if and only if

where we used again (IV), 8§3. As 0 < t < n—q2j = 4 -ag_ o
we have (IX) if and only if t = q_- a _4-

Take t = 9 - 9, 4"

1 dgPs = 25.1Pg 1 Ps 7 Pgq
4 1 = 959

=
L
u

We claim that this is the maximal value for A. If t < SRl S

(tps+1)/qs is not an integer, thus

tps + 1 tps
_— ] ¢ 2
Qg = qq

and hence

(x)

e
lad
°
(1]
0
o | +
N
—_—
1A
-]
73] w0

If we recall (IV) §3 again,

“Pgds-y

i. e.

this is
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A
-

o
(2]
/2]
i
0o T
%]
t
=Y

fa]
]
9]
1
«
1
[y

from which, using (X) we conclude

for t < Qg - Ag.1° Thus we have a new side of the N.C.

polygon which starts at P E Note that if t = Q.- Q1>
s-1
p =n - 1 so that the new side ends at Pn-l and is in fact

the last one.

We summarize:

Proposition 2. The Newton-Cramer polygon of a generic polar

of our generic curve Y has [5%2] sides, Pj’ j = 0,...,[5%2].

The side ry has slope either if § < (s-1)/2,

“9954+1/P2541
or —(qs—qs_l)/(ps—ps_l) if § = (s-1)/2.Furthermore the points
of the N.C. diagram on the side r; are, for j < (s-1)/2

P = (m-p,y.sq,:-1) + Al=DPys,asQns,qa)s
q2j+q2j+1~1 23°7%235 2341 723+1

o = If s is odd, the last side T(s-1)/2° contains

0""’h2j+2'
only the points (m_ps-l’qs—l_l) and (0,n-1).

As proposition 1 shows, one can order the points on
the sides of the N.C. polygon, excepted (0,n-1), by the

values of i(8,p) in such a way that, for each point, there
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there occurs in the corresponding monomial one aj which

does not appears in the monomials corresponding to former
points. Hence the coefficients of the forms which approximate
the polar equation in correspondence to the sides of the

N.C. polygon are general for a general y. In particular

each side yelds an equation with no multiple roots for

the determination of the first coefficients of the Puiseux
series of the polar curve. From the N.C. polygon we deter-
mine easily the equisingularity type of the general polar

curve and we obtain:

Theorem 1. Let m/n be be a irreducible fraction which we

write as continous fraction in the form

T=h+ t
n 1
h, + S
1 h, +
2
'+1.
h
s
with hS > 1, Let pi/qi, i=0,...,8, be, in irreducible
form, the partial fractions
P
q—l'-'-h"‘ 11
i h, +
1 h2+
. 1
+ -
h
s

LLet M be the moduli space of the one-branched algebroid
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plane curves with characteristic exponent m/n. Then there
exists in M a dense open subsét A such that if y represents
a point on A, the singularity of the generic polar curve
of Yy can be described in the following way:

Let 0,,...,0, the free infinitely near points which

follow 0 in y. The generic polar of y is composed by

h2 branches with characteristic exponent pilq1

hu branches with characteristic exponent p3/q3

. . .

h,. branches with characteristic exponent P

2j 25-17925-1

and at last, either
a) hS branches with characteristic exponent Ps-i/qs-i

if s is even;

b) ho branches with characteristic exponent ps—2/qs-ﬂ
g.c.d.(ps—ps_i,qs-qs_i) branches with characteris-

tic exponent (ps-ps_l)/(qs-qs_1) if 8 is odd.

All these branches pass through the points O, 01,..., 0y
and no two of them share the first free infinitely near
point which follows Oh'
We can reformulate the last statement by saying that in

the Puiseux series of y and in those of the branches of
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the generic polar the h terms before the characteristic
term are the same ones and the characteristic terms are
all different (modulo the choice of determination ou the

fractionary powers of x).

3.- The non generic branches. It is known (see (Z)) that

in the moduli space of one-branched plane algebroid curves
with characteristic exponent m/n there is a "most particular
point"™ which is adherent to every point on M; this is the
analytical type of Yol x" = yn. We call elementary branches
the branches with the analytical type of Yo It is very
easy to determine the equisingularity type of the generic
polar of an elementary branch: we calculate from Yo and

we obtain a N.C. polygon with only two vertices, (m-1,0)
and (O0,n-1), which gives g.c.d.(m-1,n-1) branches with
characteristic exponent (mil)/(n—l). Any two of these
branches have infinitely near points in common up to the
last satellite point.

As one can expect, the singularity of the generic polar
of any one-branched plane curve with characteristic exponent
m/n is, in certain sense, "intermediate" between the sin-
gularities of the generic polars of the general and most
particular curves, Y and Yo’ respectively. We prove also

the converse, that is, any such intermediate singularity
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corresponds to the generic polar of a one-branched curve
with characteristic exponent m/n.

Let © be the closed domain on the plane bounded by
the N.C. polygon described in Proposition 2, the line
segment from (0,n-1) to (m-1,0) and the §-axis, i. e.,
the part of the upper-half plane limited by the N.C.

polygons of y and Yo+

Theorem 2. If ; is a one branched algebroid plane curve
with characteristic exponent m/n, upon an analitic trans-

formation of the coordinates, the generic polar of y has

its N.C. polygon contained in ©. Conversely, any N.C.
drawn in O, from (0,n-1) to the §-axis, is the N.C. polygon
of the generic polar of a one branched algebroid plane

curve with characteristic exponent m/n.

Proof: We may suppose that Yy was given, as in §2, by the

Puiseux series

The first statement is obvious: from the note which follows
Proposition 1, we have the points (0,n-1) and (m-1,0) in
the N.C. polygon and we know (from the definition of the
N.C. polygon) that the points below the lower boundary

of O correspond to monomjals that do not occur in the

polar equations for general values, hence for any values,
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of the a.
i
For the second statement we note first that all the
points on © are in the half-plane § > (n-1-p)m/n and thus,
by proposition 1, correspond to non trivial monomials on
the polar equation for general values of the a;swe select
from © the points with integral coordinates excluding

those in the upper boundary line, getting

E o= {(G,Q)EO | 8§ and p are integer and Hgf + EPT # 1}.

We order the points of £ by the values of 1 = i(8,p) so
that (Proposition 1) in the monomial which corresponds
to a point there appears a coefficient a, that does not
occur in the monomials corresponding to former points.
On the other hand we note that any term in the
equation (I), §2, in which occurs the parameter X has

bidegree (§,p) with

m m
8> (np-1)2 + T -y

P 1

$
n-1 ' n - n/m 2

thus, see figure below, A does not occur on the monomials
which correspond to points of E. Hence if we select any

subset TCEZ, by the first remark we can select the values
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flgure

of the a, for a polar equation with zero coefficients
corresponding to the points on T and non-zero coefficients
corresponding to the §oints of £ not in T. By the second
remark this is done indebendently of A, i. e., for a

generic polar, and the proof is complete.
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