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Abstract. In th,U no.te we. p1tove. .tlta,t a polynomilll ma.pping T in .two 

!te.al valtiabtu .6ueh .tlta,t ili jaMbian i-6 eon-6.tan.t (.the. 60 eatte.d planM 

!te.al C1te.mona map-6I i-6 a b.i.je.dion be..twe.e.n R2 and R2. le..t IF,GI be. .the. 

polynomla.l eompone.n.t-6 06 T. We g.i.ve a complete global pic.tulte 06 .the 

6amillf 06 cUltvU F = coM.tan.t and G = con-6.tan.t. 

1 Introduction 

The main purpose of this note is to prove the following 

theorem. 

Theorem A. le..t F = F(~1,x2) and G = G(x1,x2J be .two 1te.al polynom.i.al-6 in 

.the .two !te.al valtiablu x1,x2 .6Uch .tha.t ili jacobian J = de..t(a(F,Gl/a(x 1,x2I I 

i-6 a nonze1to con-6.tan.t. Then .the polynomilll ma.p ( F, G) : R
2 
-- R

2 
i-6 bijedive. 

The key point in the proof of the injectivity of Theorem A 

is that the algebraic curves F(xl'x2 ) = constant and G(x 1 ,x2 ) 

constant are solutions of systems of ordinary differential 

equations of Hamiltonian type (with Hamiltonians F and G, of 

course). These systems have only a singularity of index two 

at the infinity point which consists of two elliptic sectors 

(see section 2). 
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For the proof of the onto character we analyze the Newton 

polygon of F and G. In order to make this analy~is easier we 

p· note that using triangular maps of the type (x
1

,x
2

)---+ (x1 ,x2+bx 1 ), 

where b is a nonzero real number and p an integer such that p > 1, 

we obtain another Cremona map of the type 

(1) 

where degree F < m and degree G < n. When F and G have the forro (1) 

the only possible diffeomorphic qualitative global pictures of the 

flow (for the Hamiltonians F or G) are given in Figure 1.a and 

Figure l.b (see section 2). In any case the global picture is 

homeomorphic to one of these two figures (see, again, section 2) 

where we have used the usual compactification of the plane adding 

one point p at infinity. 

Figure 1 here 

As a consequence of the onto character of T the flows with 

Hamiltonian F and G do not reach the infinity in finite time 

(see section 3). 

Remark l. The assumption that F and G are polynomials is 

necessary in Theorem A. The result is not true for analytical 

maps. For instance, if F(x1 ,x2 ) = -exp(x2 )cos(x1exp(-2x 2 )l and 

G(xl'x2 ) = exp(x2 )sin(x1exp(-2x2 )) then J=l but the map 

2 2 (F,G): R --,. R is clearly not injective. 

Remark 2. There is no restriction putting J = 1 because, if 

-1 
J = a ,t. O, we can consider the map (a F ,G) instead of (F ,G). 
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Remark 3. A theorem similar to Theorem A for complex polynomials 

in two complex variables would prove the jacobian conjecture for 

two variables, that is, the inversemap is also polynomial (see 

[2], [6J and [7, Theorems 38 and 46] ). In fact for the validity 

of the jacobian conjecture it is enough to prove the injectivity. 

Remark 4. To prove the injectivity for a mapping T= (F,G): c2
-+ c2 , 

F and G complex polynomials with J= 1, we claim that it is enough 

to prove the injectivity for complex valued polynomials maps 

T' = (P,Q): R2 __.. c2 in two real variables with J= 1. Suppose T 

2 is not injective. Then there exist z,w E e such that Tz = Tw. 

Using translation, scaling and rotation we can assume that z and 

w are (0,0) and (1,0). Let T" be the map obtained from T by these 

changes of variables. The restriction of T" to R2 is of type T' 

and the claim is proved. Note thát T' is of type T' = (P1 +iP2 , 

Q1 +iQ2 ) where P1 , P2 , o1 , Q2 are real valued polynomials. From 

Theorem A follows easely that if sorne of these four polynomials 

is identically zero T' is injective. 

The authors would like to express their gratitude to Prof. 

P. Menal and Prof. C. Perell6 for his interest in the present 

work. 

2 Proof of the injectivity 

Let F and G be two polynomials in the hypotheses of Theorem A. 

This implies that the analytical Hamiltonian system XF given by 

dx1 3F 
F 

dt ax 2 
x2 

dx 2 3F 
=-F 

dt X ax1 1 

J 



has no critica! points. Of course F is a first integral of this 

system. 

Lemma l. Fo1t ea.ch IJ E r/ theJLe iA a un.ique Mlu.tlon cj,)IJI = (x 1 (.ti ,x2(.tll 

06 XF Ullth cp0(yl = y de.6..úted on a rrr:tumal. open ..út.teJr.val (a,61 e R 6uch .tha,t 

llcf>.t(ylll-+<» a6 .t + a olt .t + 6 wheJLe 11 11 deno.tu .the. EucUdea.n no!Un. 

l.t iA poMi.ble a = _, , 6 = +00 Olt bo.th. 

For a proof of this lemma see [4,p.210]. 

Next we introduce the Poincar~ compactification far polynomial 

vector fields X(x) in the plane (see [5)). We consider in R3 the 

-2 3 2 2 2 sphere S = {(x1 ,x2 ,x3 ) E R x 1 +x2 +x
3 

= 1 and the plane 

- 3 -P = {(x
1

,x
2

,x
3

) E R : x
3 

1 }. For each point x of P of type 

-2 (x1 ,x2 ,1) we define the map f+:·P--+ S given by f+(x) = 

2 2 1/2 (x
1

,x
2

,1)/d(x) = (y
1

,y
2

,y
3

) = y where d(x) = (x
1 

+x
2

+1) . 

- ~ The image of P under f+ is the upper hemisphere H+ of S • Then 

f+ induces a field on H+: X(y) = Df+•X(x). 

Let X= (P ,Q) a polynomial vector field on P of degree n = 

n-1 max (deg P , deg Q ) • Let r (y) = y 
3 

Then we claim that the field 

rX can be extended analytically to a vector field on H+ U s1 

1 -2 where S = S n {y
3 

= O} , the equator of the sphere. 

In order to prove the claim (see [5] for details) we use 

five local carts (Ui ,cj,i) i=l,2,3, (Vi,lj,i) i=l,2 where 

ui {y s2 Y1 > O } ; vi= {y -2 } ; E : E S : Yi < O 

cj,i 
1 

j < k i ;,! j ,k; y (yj,yk) 
i 

lj,i 
1 
Y1 (yj,yk) j < k i ;,! j ,k. 

Let y E u1 nH+ and z=cp 1 (y). Then (z1 ,z2 ) = (y2 ,y3 )/y1 = (x2 ,1J/x1 . 

The vector field rX is expressed in the z coordinates as 



n 
z2 

( -z lp ( 1 zl 
) + Q( 1 zl 

) -z 2P( 1 zl 
) ) 

d(z)n-1 z , - , , z/ 2 z2 z2 z2 z2 

IQ u2 we get 

n 
z2 ( P( zl 1 zl 1 

n 1 z ' z J -zlQ ( · ' -z ) 
d(z) - 2 2 z2 2 

Furthermore the expressions of rX on v
1

, v
2 

are the ones of rX 

n-1 on u1 , u2 , respectively, multiplied by (-1) • In u
3 

the 

expression obtained is 

It is easy to check that the different expressions of rX are 

analytical and compatible. Hence rX is extended to "+ U s1 and 

s1 is clearly invariant under the flow. 

where Pj , Qj are homogenous polynomials of degree j. The field 

on s1 ('\ u1 , s1 ('\ u2 is given by 

respectively. In s1 nv1 , s10 v2 we have the same expressions 

times (-l)n-l. 

On the other hand, let s2 be the sphere of R3 defined by 

3 2 2 2 2 { (yl'y2 ,y3 J E R : y 1 + y 2 + (y3 - 1/2) = 1/4 } . The plane R 

may be identified with the sphere s 2 with the "north pole" 

p=(0,0,1) removed by means of the stereographic projection which 

assigns to each point (x 1 ,x2 ) E R2 the point (y1 ,y2 ,y3 ) E s2 

through the relations x 1 = y 1/(1-y3 ) , x 2 = y 2/(1-y3J, 

' 2 
The differential system XF on S - {p} becomes 
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where 

If the degree of F, m, is greater than 2, this system is not 

defined at p, but it can be extended by a change of the time 

scale. In any case we introduce a new variable u via 

Then XF becomes 

dyl 

du 

dy2 

du 

(2) 

2 This system extends analytically the flow of XF from S - { p} to 

s 2 
(at least in a neighbohood of p). Note that the point pis 

the unique critica! point of the new flow. 

Lemma 2. In .the hypo.thuu 06 TheOJr.em A .the local phMe-p1w.tJi.lLlt 06 l>yl>.tem 

(2) Mound .the CJLUlcal poin.t p coM.Uü 06 .tJ.oo elüp.tic .sec.tou and .the 

Jr.u.t 6anl> 1 l>ee ~.p.219] 6°"- de6.ini.tionl>). 

Proof. By the Poincar~-Hopf Index Theorem (see [3,p.366]) the 

index of pis equal to two. Now we use the compactification of 

Poincar~. As we noted in section 1 we can always suppose that 

F(x1 ,x2 ) e x~ + F(x1 ,x2 ), degF < m. Therefore P(x1 ,x2 ) ,.fx
2 

, 
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m-1 Q(x1 ,x2 ) = -mx1 - F . The vector field (P,Q) on the parts 
xl 

of s1 which are in the carts u1 , v1 , u2 and v2 (see Figure 2) 

, m-1 m is given by R(z 1 ) = -m, R(z 1 ) = (..;1)· m, S(z
1

) = mz
1 

and 

m-2 lll S ( z 1 ) = ( -1 ) mz 1 , 

2 2 
{ (yl,y2) E R : Y1 

respectively. If we look at s1 as 

2 
+ Y2 1 }, then the only critica! points 

1 are (0,1), (0,-1). We can visualize "+ U s as a closed disc 

bounded by s1
. The flow on it (recall that there are no critica! 

points inside and use Lemma 1) has the two qualitative possibilities 

given in Figure 3. When we glue the s1 into a point (and obtain 

s2 ) the respective pictures of Figure 3 become the ones given 

in Figure 1.a and l.b. This proves Lemma 2. 

// 

Figure 2 here 

Figure 3 here 

Remark l. The statement of Lemma 2 is obviously true for the 

analytical Hamiltonian system XG. 

Remark 2. In the proof of Lemma 2 we strongly rely on the 

existence of the polynomial G such that the jacobian of (F,G) 

with respect to (x1 ,x2 ) is equal l. In fact for a general analytic 

Hamiltonian system XF without proper critica! points the stat~ 

ment is false. A counterexample is displayed by F(x
1

,x
2

)=x
2

(x
1

x
2
-1) 

which has two hyperbolic sectors and four elliptic sectors at 

the infinity. 
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Lemma 3. (,l) The global 6low 06 XF on R2 
.l6 cli66eomOJtplúc, to the 6low 

g{ven m F{guJte 4. 

(U) 16 the algebJuúe euJtve F(x1,x2J = eow,ta.nt on R2 ,u: noneinpty
1 

then 

ft luu, only one eonneeted eomponent. Tlú6 eomponent .l6 cli66eomo1tplúe to R. 

(ilil FoJt al! i e R2 the cú'.gebJuúe etlflve F(x) = F{i) and the .tJto..jeetoJtq 

<Pt(i) 06 XF 1tep1tuent the ~ame eWtve in R
2

• 

Proof. (i) follows from Figure 3. 

(ii) The curves F(x) = constant on R2 have only one connected 

component. Otherwise, between two curves with the same value of 

F there would be a curve where F is a extremum and hence it 

would be composed of critical points. 

(iii) follows immediately from the Hamiltonian character and {ii). 

Figure 4 here 

Proof of the injectiviti of T. Let .pt and ljlt be the flows of 

XF and XG, respectively. Since the jacobian is 1 we have that 

d 
(G•.pt) {G•<Pt F} -1 

dt 
, 

d (F•ljlt) = {Feljlt G} 1 
dt 

where { , } denotes the Poisson bracket {for more details 

see [1,p.193] ) • Then for each point x e R2 we have that 

G(<Pt (x)) 

F(,j,t (x)) 

-t+G(x) 

t + F(i) 
(3) 

// 

From (2) and Lemma 3 it follows that the curves F(x) = constant 

and G(x) constant have at most one point in common. So the 

2 2 
polynomial map (F,G) : R - R is injective. 

// 
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3 Proof of the exhaustivity 

It is not excluded up to now that for ~t or wt sorne point 

of R2 reaches the infinity in·finite time. By Lemma 3 (ii) the 

image of"R2 under F is an interval I ·of R.· There are· three 

possibilities: I is bounded, I is bounded from one side or 

I = R. If I is bounded from above, for each point x e: R2 it 

follows from (2) that there is sorne time tco (x) < +co such that 

wt (xl goes to infinity when t t t co(x). In a similar way if I 

is bounded from below there is sorne time t _co (x) > -co such that 

wt<x> goes to infinity when t. t_co (x). These values tco (x), 

t_co (x) are the values a and B of Lemma l. Let us show that 

is exhaustive, that is, I = R (and therefore if follows that 

the orbits of XG reach the infinity only for unbounded time). 

The same will be true for G. 

F 

We suppose again F(x1 ,x2 ) = x~ + LFj(x1 ,x2 ). We consider 
j<m 

the Newton polygon of F for the neighborhood of the infinity, 

i.e., the outer part of the boundary of the convex closure of 

the set { (r, s) E: N x N : F (x1 ,x2 ) = ~ ªrsx~x; with ªrs t- O } , 

see Figure 5. We claim that if there is sorne vertex (i,j) in 

the Newton polygon with one odd coordinate then F is exhaustive. 

We set x
2 

= xt/q, q odd, where -q/p belongs to the interval J 

whose extrema are the slopes of the sides of the polygon whích 

meet in (i,j) (eventually pis negative if these two slopes 

are positive or one is positive and the other zero). Suppose 

i,j odd. Then we 

F(x x = xp/ql 
1' 2 1 

select p even and for lx1 1 large we have 

ªijx1qi+pj)/q(1 +o(l)) with qi+pj odd. 

Therefore F is exhaustive. If i odd, j even, take any p such 
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that p/q E J and again F is exhaustive. Finally, for i even, 

j odd it is enough to take p odd. Hence we can SUP,pose that 

all the verteces have even coordinates. If the coefficients 

associated to the verteces change the sign we have exhaustivity. 

We suppose for definiteness that all these coefficients are 

positive. 

Figure 5 here 

Let us take a side of the Newton polygon. The involved 

terms are of the type Fs = f._ akxi+kpx~-kq where r is even 
k=O 

and g.c.d. (p,q) = l. These terms are dominant when x 2 = axl/q 

(or when x
1 

=c=constant, if q=0). On this curve Fs(x1 ,x2 ) = 

x¡qi+pj)/qajfr(b) where fr(b) = *ªkbk, b=a-q (or Fs(xl'x2 ) 

x~cjfr(b) , b=cp if q=0) and F(x1 ,x2 ) = Fs(x1 ,x2 )(1+o(l)) 

when (x
1

,x2 ) + w if Fs(x1 ,x2 ) is unbounded on this curve. 

If fr(b) has sorne real zero b of odd multiplicity, then in 

any neighborhood of b there are points b_, b+ such that 

fr(b_) < O, fr(b+) > O and hence F is exhaustive. 

Let us suppose that all the real zeros of fr(b)_are of 

even (greater than zero) multiplicity. Then we consider the 

terms in the highest line parallel to the side through one of 

the points in the Newton diagram and let f(l) be the related 
r 

polynomial in b. If for one of the zeros b* of fr we have 

f(l) (b*) < O, we have done. For the case f(l) (b*) > O see later. 
r r 

If f{l) (b*) =O we continue the process with other lines parallel 
r 

to the selected side, obtaining t; 21 , 

first index such that f(t) (b*) -1 O If r . 

10 

f(J) etc. Let t be the r , 

f(t) (b*) < O the exhaustivity 
r 



is clear. If for all t f (t) (b*) = O then we have that xq - axp 
' r ' 2 1 

is a factor of F (or XjX~P -a if p=O). Therefore F(x1 ,x2 ) 

_<x1-axi)F(x1 ,x2 ) + C, where C is a constant. Then for the· 

Hamiltonian field we get F = apxl-l - (x¿ - ax1)F 
xl xl 

F = qx«r 1f + (xq2 - axP
1

¡ F . First we suppose p > O, q t- O. Then 
x2 x2 

p > 1 and we have a critical point at the origin if q > 1, which 

is an absurdity. Therefore F(xl'x2 ) = (x2 - ax1)F + C. Then the 

algebraic curve F = C has the real cornponents x 2 - axl = O, F = O. 

If F = O has real points in the curve x 2 - axi =O, then these 

points will be critica! points and this is impossible. If F = O 

has real points outside x 2-axi =O, we have a contradiction 

with Lemma 3 (ii). If F = O has no real cornponents then F(O ,x
2

) 

is a polynomial of even degree and thereforeF(O,x2 ) is of odd 

degree, showing exhaustivity. A similar reasoning applies to the 

cases p < O and q = O. 

If for all the sides of the Newton polygon we have no zeros 

of the related fr(b) polynornials or if the zeros being even there 

is sorne t such that f~t) (b*) > O for a zero b* of fr then F is 

positive definite for large values of ll<x1 ,x2 ) 11 • Therefore 

the curve F(x1 ,x2 ) = K is closed for K large enough. This implies 

that this curve is a periodic orbit for XF showing the existence 

of a critical point inside (see (4,p.254]) and therefore leading 

toan absurdity. This ends the proof that F is exhaustive. The 

sarne is true for G. Figure 5 displays the dorninant terms in the 

Newton polygon near infinity. If there are no terrns with exponents 

(i,j), i < r but there is sorne point (r,s) with nonzero coefficient 

the Newton polygon ends on the point (r,s) with the maximum 

value of s. 
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Proof of the exhaustivity of T. We know that t,he flows ,j,'t , Wt 

exist for all t without going to infinity in finite time. Let 

(x0 ,y0 ) e: R
2 

be any point and (t0 ,s
0

) = T(x
0

,y
0
). Then select 

any point (t,s) in R2 . From (2) it follows that 

4>
5 

_
5

• ijlt-t (x0 ,y0 ) = (x,y) with T(x,y) = (t,s). Hence T is 
o o 

exhaustive. 

// 
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Captions for the figures 

Fig. l. Qualitative picture of the flow of XF on s~ 

Fig. 2. The four carts used for s1 . 

1 -2 Fig. 3. Qualitative picture of the flow of (1) in H+Us e S .Case 

(a) m odd: case (b) m even. 

Fig. 4. Qualitative picture of theflowof XF. 

Fig. 5. The Newton polygon of dominant terms near infinity. 
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