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Abstract. In this note we prove that a polynomial mapping T in two
neal variabfes such that its jacobian {8 constant (the s0 called pLanar
neal Cremona maps) is a bijection between R and RY. Let (F,G) be the
polynomial components of T. We give a complete global picture of the
family of curves F =constant and G = constant.

1 Introduction

The main purpose of this note is to prove the following
theoren.
Theorem A. Llet F=F(x,,x2) and G=G(x’,x2) be two neal polynomials in
the two neaf variables X;,%, such that {ts jacobian J=do,t(a(F,G)/a(x,,xZH
48 a nonzeno comstant. Then the poluynomial map (F,G): R2—~ R2 48 bijective.

The key point in the proof of the injectivity of Theorem A
is that the algebraic curves F(xl,xz) = constant and G(xl,x2)=
constant are solutions of systems of ordinary differential
equations of Hamilt;nian type (with Hamiltonians F and G, of
course). These systems have only a singularity of index two
at the infinity point which consists of two elliptic sectors

(see section 2).




For the proof of the onto character we analyze the WNewton
polygon of F and G. In order to make this analysis easier we
note that using triangular maps of the type (xl,xz)——» (xl,x2+bx§f,
where b is a nonzero real number and p an integer such that p> 1,
we obtain another Cremona map of the type

(xy.%)) —— (X7 +F(x,,%,),%] +8(x;,%,)) , (1)

where degree F <m and degree G <n. When F and G have the form (1)
the only possible diffeomorphic qualitative global pictures of the
flow (for the Hamiltonians F or G) are given in Figure l.a and
Figure 1.b (see section 2). In any case the global picture is
homeomorphic to one of these two figures (see, again, section 2)
where we have used the usual compactification of the plane adding

one point p at infinity.

Figure 1 here

As a consequence of the onto character of T the flows with
Hamiltonian F and G do not reach the infinity in finite time

{see section 3).

Remark 1. The assumption that F and G are polynomials is
necessary in Theorem A. The result is not true for analytical
maps. For instance, if F(xl,xz) = —exp(xz)cos(xlexp(—sz)) and
G(xl,xz) = exp(xz)sin(xlexp(—sz)) then J =1 but the map
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(F,G): R" —— R” 1is clearly not injective.

Remark 2. There is no restriction putting J=1 because, if

J=a # 0, we can consider the map (a—lF,G) instead of (F,G).



Remark 3. A theorem similar to Theorem A for complex polynomials
in two complex variables would prove the jacobian conjecture for
two variables, that is, the inversemap is also polynomial (see

[2], [6] and [7, Theorems 38 and 46] }. In fact for the validity

of the jacobian conjecture it is enough to prove the injectivity.

Remark 4. To prove the injectivity for a mapping T = (F,G): C2 — C2,

F and G complex polynomials with J=1, we claim that it is enough
to prove the injectivity for complex valued polynomials maps

T = (P,Q): R2 —_ C2 in two real variables with J=1. Suppose T
is not injective. Then there exist z,w ¢ C2 such that Tz = Tw.
Using translation, scaling and rotation we can assume that z and
w are (0,0) and (1,0). Let T" be the map obtained from T by these
changes of variables. The restrictioﬁ of T" to R2 is of type T'
and the claim is proved. Note that T' is of type T' = (P1-+£P2,
Ql-tin) where Pl’ P2' Ql' 02 are real valued polynomials. From

Theorem A follows easely that if some of these four polynomials

is identically zero T' is injective.

The authors would like to express their gratitude to Prof.
P. Menal and Prof. C. Perell$ for his interest in the present

work.

2 Proof of the injectivity

Let F and G be two polynomials in the hypotheses of Theorem A.

This implies that the analytical Hamiltonian system XF given by

aF

—_= — = F ’

x
dt ax2 2

dx aF



has no critical points. Of course F is a first integral of this

system.

Lemma 1. Fon each y ¢ R there 48 a unique sotution by} = (x; (), x,(¢))
of XF with ¢o(y) =y defined on a mximal open interval (a,B) € R such that
||¢t(yl||»°° as t+aon t -+ gwhene || || denotes the Euclidean nonm.

It is possible a=-=, B=4w on both,.
For a proof of this lemma see [4,p.210].

Next we introduce the Poincaré compactification for polynomial
vector fields X(x) in the plane (se'e [5]). We consider in R> the
sphere 52 - {(x),%5,%5) € R . xi+x§+x§ = 1 } and the plane
P = [(xl,xz,x3) 3 R3 2 Xy = 1 }. For each point x of P of type
(xy,%,,1) we define the map f+:-T> — §2 given by f (x) =
(x,,%,,1) /d(x) = (y,,¥5,¥5) =y where d(x) = (x5 +x2+1) "2,
The image of P under f+ is the upper hemisphere H+ of §2. Then

f, induces a field on H_ : X(y) = Df »X(x).

Let X = (P,Q) a polynomial vector field on P of degree n =

max(deg P, deg Q). Let r(y) = yg-l

. Then we claim that the field
rX can be extended analytically to a vector field on H u S1

where 81 =§2 N {y3=0) , the equator of the sphere.

In order to prove the claim (see [5] for details) we use

five local carts (Ui,«bi) i=1,2,3, (Vi,wi) i=1,2 where

=2 =2
Uy =lyes” : y;>01}; V, ={yeS :y; <0};:

o1 .
¢i = yi(yerk) ’ ‘j<k , 1#73,k;
1
Y, = = (yi.Y) » J<k , i#3i,k.
i Y j’' 'k .

Let y ¢ UyNH, and z=¢,(y). Then (z,,2,) = (y,,¥5) /¥y = (x,,1)/%,.

The vector field rX is expressed in the z coordinates as



n

z z z z

2 1 1 1 1 1 1
——— (-2, P( =, =) +Q( =, =), -z,P( =, =) )
d(z)n 1 1 z," z, zz’ z 2 z," z,
In 02 we get

zh z z z
D S Bl BT TR ) BRI Y G
d(z) 2 2 2 2 2 2

Furthermore the expressions of rX on Vl' V2 are the ones of rX
on U,, U,, respectively, multiplied by -1, 1n U, the

expression obtained is

1
————5 ( P(z;.2,) , Q{z,,z,) ).
a(z)" 1 172 1792
It is easy to check that the different expressions of rX are
analytical and compatible. Hence rX is extended to H+_U S1 and

S1 is clearly invariant under the flow.
n n
Let P(x,,x,) = jgo Pylxgoxy) 4 QUxg.x,) = jzz:o Qg (xy0xy)

where P are homogenous polynomialé of degree j. The field

: 39
on SN v, S1 N U, is given by

Ne
|

= R(zl) = Qn(l,zl) —zlpn(l,zl) ,

z, = S(z

1 = Pn(zl.l) -len(zl.l) f

1)
respectively. In Slﬂv1 ’ sln v2 we have the same expressions
times (-1)"71,

On the other hand, let S2 be the sphere of R3 defined by

((¥1:¥5.¥3) € R yi + yg + (y3--1/2)2 = 1/4 }. The plane R?
may be identified with the sphere 52 with the "north pole”
p=(0,0,1) removed by means of the stereographic projection which
assigns to each point (xl,xz) € R2 the point (yl.yz,y3) € 52

through the relations x; = y,/(l-y3) , x, = y,/(1-y;}.

The differential system Xp on 52 - {p} becomes



———dyl ( )
= F.(y,/¥,,¥Y
at 1M rfarf3t oy

M2 ( )
— = F {y,:,¥,/Y ' . -
dt 211742743

where

) 4 Y Y y
- IF 1 2, 2 _y3F Y3 2
F]_(Y1!Y2'Y3) - ZYIYZ axl( 1_Y3 11_y3) (ZYI+Y3 l)axz(i_YBIl_Y3) .

_ 2 ok 1 Y2 F 1 Y2
Foly /¥,,¥3) = (2y5 +yy =Dy (I:§_1I:§—) = 2¥3Y,5% (I:;‘rf:;“ )
1 3 3 2 3 3
If the degree of ¥, m, is greater than 2, this system is not
defined at p, but it can be extended by a change of the time
scale. In any case we introduce a new variable u via

dt m-1

du - 1-vyy)

Then XF becomes

dy

1 m-1

—= = (1-y,) Fo(Y1:Y5:Y,)

du 3 1 ¥yr¥pr Y3l

dy (2)
22 _ (1—y3)m-1F2(Y1,Y2,Y3) .

du

This system extends analytically the flow of X_ from Sz-{p) to

F
82 (at least in a neighbohood of p). Note that the point p is

the unique critical point of the new flow.

Lemma 2. In the hypotheses of Theorem A the Local phase-protrait of system
(2) anound the critical point p consists of two elfiptic sectons and the
nest fans { see [3,p.219] for definitions).

Proof. By the Poincaré-Hopf Index Theorem (see [3,p.366]) the
index of p is equal to two. Now we use the compactification of

Poincar&. As we noted in section 1 we can always suppose that

F(xl,xz) - x1

+ F(xl,xz), deg F < m. Therefore P(xl,xz) ’sz ,



Qlx,,x,) = —mx'il-1 - Ex . The vector field (P,Q) on the parts

1
of S1 which are in the carts Ul' V1' U2 and V2 {see Figure 2)
. -1
P = =", §(z;) = mz] and
S(zl)= (_l)m—2sz’ respectively. If we look at S1 as

{(Yl'yz’ € R2 : yi + yg = 1 }, then the only critical points

is given by R(zl)é -m, R{z

are (0,1), (0,-1). We can visualize H+ (V) S1 as a closed disc

bounded by Sl. The flow on it (recall that there are no critical
points inside and use Lemma 1) has the two qualitative possibilities
given in Figure 3. When we glue the S1 into a point (and obtain

52) the respective pictures of Figure 3 become the ones given

in Figure 1l.a and 1.b. This proves Lemma 2.

//

Figure 2 here

Figure 3 here

Remark 1. The statement of Lemma 2 is obviously true for the
analytical Hamiltonian system XG.
Remark 2. In the proof of Lemma 2 we strongly rely on the

existence of the polynomial G such that the jacobian of (F,G)

with respect to (xl,xz) is equal 1. In fact for a general analytic
Hamiltonian system XF without proper critical points the state
ment is false. A counterexample is displayed by F(xl,x2)=x2(x1x2—1)

which has two hyperbolic sectors and four elliptic sectors at

the infinity.




» .

Lemma 3. (4] The global flow of Xg on R2 i diﬂgeomonkhic to the §Low
given in Figure 4. ’

(£d) 1§ the algebraic curve Flx;,x,) = constant on r? iAfnanempty‘ then
it has only one connected component. This component is diffeomonphic to R.
(iid) Fon atl X € R the algebraic cunve F(x) = F(X) and the trajectory

¢t(2) of Xp nepresent the same cunve in R.

Proof. (i) follows from Figure 3.

{(ii} The curves F{x} = constant on Rz have only one connected
component. Otherwise, between two curves with the same value of
F there would be a curve where F is a extremum and hence it
would be composed of critical points.

(iii) follows immediately from the Hamiltonian character and (ii).

//

Figure 4 here

Proof of the injectivity of T. Let ¢t and wt be the flows of

Xp and XG' respectively. Since the jacobian is 1 we have that

(G'¢t) = {G°¢t ’ F} = -1 ’

[ n.‘oa
o

(Fep,) = {Feyp, , G} =1,
at t t

where { , } denotes the Poisson bracket (for more details

see [1,p.193] ). Then for each point X ¢ R? we have that

-t +G(X) ,

G (o, (X))
(3)

F(y, (X)) = t + F(X)

From (2) and Lemma 3 it follows that the curves F(x) = constant
and G(x) = constant have at most one point in common. So the
polynomial map (F,G) : R2 — Rz is injective.

//



3 Proof of the exhaustivity

It is not excluded up to now that for ¢t or wt some point
of R2 reaches the infinity in'finite time. By Lemma 3 (ii} the
image of':R2 under F is an interval I of R. There are three
possibilities: Y is bounded, I is bounded from one side or
I=R. If I is bounded from above, for each point X ¢ R2 it
follows from (2) that there is some time tml(;—() <+ such that
wt(i) goes to infinity when t } t (x). In a similar way if I
is bounded from below there is some time t_m(f) > - such that
Yy (x) goes to infinity when t ‘ t__{(x). These values t_(x),
t_w(i) are the values o and 8 of Lemma 1. Let us show that F
is exhaustive, that is, I =R (and therefore if follows that
the orbits of XG reach the infinity only for unbounded time).
The same will be true for G.

We suppose again F(xl,xz) = xT + ZFj (xl,xz). We consider
the Newton polygon of F for the neighb;?hood of the infinity,

i.e., the outer part of the boundary of the convex closure of

s
2

see Figure 5. We claim that if there is some vertex (i,3) in

r :
the set {(r,s) ¢ NxN : F(xl,xz) = Zarsxlx with arsslo }.,
the Newton polygon with one odd coordinate then F is exhaustive.
We set x, =x513/q, q odd, where -q/p belongs to the interval J
whose extrema are the slopes of the sides of the polygon which
meet in (i,j) (eventually p is negative if these two slopes
are positive or one is positive and the other zero). Suppose
i,j odd. Then we select p even and for |x1| large we have

/3y . . L lai+pid/a N
F(xl,xz--xl ) = :—1]._:‘)(l (1 +0(1) ) with gi +pj odd.

Therefore F is exhaustive. If i odd, j even, take any p such



that p/q € J and again F is exhaustive. Finally, for i even,
j odd it is enough to take p odd. Hence we can suppose that
all the verteces have even coordinates. If the cdéfficients
associated to the verteces change the sign we have exhaustivity.
We suppose for definiteness that all these coefficients are

positive.

Figure 5 here

Y

Let us take a side of the Newton polygon. The involved

terms are of the type F_ = 25: akxi+kpxg—kq where r is even

s
k=0
and g.c.d.(p,q) =1. These terms are dominant when X, =ax11°/q

(or when x, =c =constant, if q=0). On this curve Fs(xl,x2)=

1
CL . r

X{ql+pj)/qajfr(b) where fr(b) = %akbk ’ b=a q (or Fs(xl'XZ) =
xgcjfr(b) R b=cP if g=0) and F(xl,xz)

when (xl,xz) > o if Fs(xl,xz) is unbounded on this curve.

= Fs(xl,xz)(l-fo(l))

If fr(b) has some real zero b of odd multiplicity, then in

any neighborhood of b there are points b_, b, such that

+
fr(b_) <0, fr(b+)> 0 and hence F is exhaustive.

Let us suppose that all the real zeros of fr(b).are of
even (greater than zero) multiplicity. Then we consider the
terms in the highest line parallel to the side through one of
the points in the Newton diagram and let fﬁl) be the related
polynomial in b. If for one of the zeros b* of fr we have
fil)(b*) <0, we havé done. For the case fél)(b*)> 0 see later.
If fil)(b*) =0 we continue the process with other lines parallel
to the selected side, obtaining f;z), f£3), etc. Let t be the

first index such that fit)(b*) #0. If fét)(b*) <0 the exhaustivity

10



is clear. If for all t,fét)(b*) =0, then we have that xg —axg
is a factor of F (or xgxzp -a if p=0). Therefore F(xl,xz)
(xg-axﬁ)F(kl,xz) + C , where C is a constant. Then for the’
Hamiltonian field we get F_ = apxp“1 - (xq-axp)F B

: Xy 1 2 1 Xy
F. = qxg—lf + (x3-axP)F, . First we suppose p>0, q#0. Then
X, 2 1 Xy
p>1 and we have a critical point at the origin if gq> 1, which
is an absurdity.TherefcteF(xrxz)=(xz-axg)F + C. Then the
algebraic curve F =C has the real components x2-ax§ =0, F=0.
If F=0 has real points in the curve xz-ax€==0, then these
points will be critical points and this is impossible. If F=0

has real points outside x —ax§==0, we have a contradiction

2
with Lemma 3 (ii). If F =0 has no real components then F(O,xz)
is a polynomial of even degree énd thereforeF(O,xz) is of odd
degree, showing exhaustivity. A similar reasoning applies to the

cases p<0 and q=0.

If for all the sides of the Newton polygon we have no zeros
of the related fr(b) polynomials or if the zeros being even there
is some t such that fﬁt)(b*)> 0 for a zero b* of fr then F is
positive definite for large values of lﬂxl,xz)l(. Therefore
the curve F(xl,xz) =K is closed for K large enough. This implies
that this curve is a periodic orbit for XF showing the existence
of a critical point inside (see [4,p.254]) and therefore leading
to an absurdity. This ends the proof that F is exhaustive. The
same is true for G. Figure 5 displays the dominant terms in the
Newton polyéon near infinity. If there are no terms with exponents
(1,j), i <r but there is some point (r,s) with nonzero coefficient.
the Newton polygon ends on the point (r,s) with the maximum

value of s.

11



Proof of the ex’haustivitj of T -Wé know that ihe flows &):t ’ "”t

exist for all t without going to infinity in finite time. Let
2 .

(xo,yo) € R” be any point and (to,so) =T(x0,yo). :I‘hen select

any point (t,s) in R°. From (2) it follows that

¢so_s~ wt_to(xo,yo) = (x,y) with T(x,y) = (t,s). Hence T is

exhaustive.

/7
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Captions for the figures

Fig.

Fig.

Fig.

Fig.

Fig.

Qaalitative picture of the flow of XF on S%

The four carts used for Sl.

Qualitative picture of the flow of (1} in HJJS]C §Z,Case

(a) m odd; case (b) m even.

. Qualitative picture of the flow of X_.

F

The Newton polygon of dominant terms near infinity.
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