UNIVERSITAT DE BARCELONA
FACULTAT DE MATEMATIQUES

IMPLICATION AND DEDUCTION IN SOME
INTUITIONISTIC MODAL LOGICS (')
by Josep M. Font

BIBLIOTECA DE LA UNIVER

il

070157062
juny 1982







IMPLICATION AND DEDUCTION IN SOME INTUITIONISTIC MODAL LOGICS (])

Josep M. Font

Faculty of Mathematics, University of Barcelona, Spain.

Abstract

We study the deductive properties of the system IM4 of intuitio-
nistic 'modal logic, paying special attention to the implicative ones.
This system is the intuitionistic counterpart of Lewis' Sk and its
models are the topological pseudo-Boolean algebras. Its abstract de-
ductive structure is analogous to that of pseudo-Boolean algebras
but here with respect to new implicative operations. These satisfy
the Deduction Theorem and allow us to find implicative characteriza-
tions of several types of deductive systems (such as irreducible,
maximal, prime) and some related concepts from universal algebra
(simplicity, semisimplicity, radical). Among these operations ,
p=q = L(Lp-Lq) is worth noting, because, besides satisfying a lot of
classical axioms, it allows us to define L in terms of = and give a
formalization of several modal logics of type S whose specific non-

classical operator is = and not L nor M,

1. The system IM4 and its models

The purpose of making intnitionistic modal logiec has benefitted
form the modern formulations of modal logic consisting in the addition
of an unary operator (L orM) to the language of ordinary propositional
calculus and of the corresponding axioms and/or rules of inference.
Then, to obtain the intuitionisitc analogue of a given classical modal
system, it suffices to weaken the propositional non-modal base, leaving
the modal part unaltered. However, this is not free from danger because

of the two following remarks.
f\v b

In the first place, we must remember that iq&glassical mdbdal logic
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I, and M are linked by the two equalities L = iﬁw dﬁaiﬁﬁ=lliﬂ s which
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are consistent with the boolean principles ofyduality, and accomdingly
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either L or M can be taken as the only primitive operator. The situ-
ation is quite different if we have an intuitionistic base, because
of the lack of duality, and so the two previous equalities can not
be accepted together. Most of the authors (Prior, Bull, Ono, Sotirov,
Honteiro and Varsavski...) take both L and M as primitive, rejecting
both equalities, while only a few (Fischer-Servi) prefer to take L
as primitive and define M as an abreviation of L7,

In the second place, the lack of a lot of boolean principles, all
concerning negation, destroys the equivalence between several classi-
cal axioms; thus, while it is easy to formulate the intuitionistic
analogue of Su, we need more additonal criteria to single out an
intuitionistic analogue of S5, due to the multiplicity of ways we can
take to define it starting from Su. Concerning this problem, the
papers of G. Fischer-Servi on this subject are worth reading. In a
forthcoming paper we will touch this problem from a different point
of view, as well as the study of the properties of the operator M =
= 7L in the logic here considered and in some of its extensions.

In the present paper we will concentrate on developping a deductive
theory for IM4 (our intuitionistic analogue to S%) in an algebraic-
logic setting and paying special attention to the role of the impli-
cation.

The language in which we will formulate our intuitionistic modal
system is the free algebra P(X) of type (1,1,2,2,2) generated by a
set X of propositional letters (which is usually assumed to be denu-
merable), the operations or connectives being denoted by L,™,A,¥,~»
respectively. From the axioms and inference rules given a syntacti-
cal consequence relation F— will be defined in the customary fini-

tistic form.



1.1 Definition. We call IM4 the logical system over P(X) which has

as axioms schemes, apart form the intuitionistic calculus ones, the

following: Lp»p , L{p2q)-(Lp»Lq) , Lp~oLLp , and which has as deduction

rules the Modus Ponens {p,p*ql}——q and the Necessity {p}— Lp .
This system has appeared elsewhere under different names, e.g.

in [Bu1] and [0] . As it can easily be seen, it is an intuitionistic

analogous of S% in the sense mentioned in [Bu?]. The analogy can also

be applied to its algebraic models, which are a weakening of topologi-

cal Boolean algebras.

1.2 Definition. A topological pseudo-Boolean algebra (tpBa) is an

algebra (A,I,%,A,v,9 of type (1,1,2,2,2) such that (A,,A,V,*} is

a pseudo-Boolean algebra, and I is an interior operator on A, that is

it satisfies: (I1) I(1)

1 , 1 being the maximum of Aj;
(I2) Ta < a for every a€A;
(I3) I(a:b) < Ia-Ib for all a,b€A;
(14) I?a = Ia for all a€A .

It is well-Known that (I13) can be substituted by (I3') 1(aab) =
= TaAIb , and that (I3)+(I4) just as mucH(T31)+(I") are equivalent
to the condition (I3") I(Ia.b) < Ia-Tb . The condition (I3) is often
called "Gilel's inequality”. It can be proved, with apropriate examples,
that the three resulting axiom sets are independent. In any tpBa the
elements a € A which satisfy Ya=a are called open and the set of all
open elements is denoted by B. The following results can be proved
by well-known and standard procedures.

1.3 Proposition. For every & C P(X) the relation ~. defined by

L

psq if and only if £F—— pesq 1is a congruence relation of the alge-
bra P(X) such that the quotient PZ(X) is a tpBa where p=1 if and

only if s — p . O



1.4 Proposition. The Tarski-Lindenbaum algebra P¢(X) is the free

tpBa generated by % = {x : x€X}. 0O

The regular matrices for the IM4 calculus are then the tpBa's,
FO(X) being characteristic. Using valuations in the usual way, it
results that the class of all tpRa's allows us to define a semantical
consequence relation k= that satisfies the following
1.5 Theorems. For all I C P(X) and all p€P(X) the following hold:
a) Completeness: L b===1p if and only if T —p ;
b) Compactness: I k== p if and only if there exists a finite A C

C 5 such that AF—— p ; and

c) Finite model property: I k===p if and only if & P==i p for
every finite tpBa A if and only if I P===i p for every tpBa
A with cardinality < 27k, k being the number of subformulas of p.
Proof: Part (a) follows from the fact that P¢(X) is characteristic,
and part (b) directly from (a). Part (c) can be proved by a slight
modification of the proof in [Bui] for a weaker system. O
It is clear that the tpBa's are the algebraic structures which

correspond to the IM4 logic. In the remaining sections of the paper

we will study the algebraic abstraction of several logical concepts.

2. Deductive systems and abstract logic

In view of the syntactical setting of IM4, the following defini-
tion is entirely natural.

2.1 Definition. A deductive system of a tpBa A is a D € A such that:

(T) 1€D , (MP) If a€D and a-b€D, then bED , (N) If a€D then
Ia€D , for all a,b€A . The set of all deductive systems of a given
tpBa A will be denoted by 3]

This concept, besides its original logical motivation.(a theory)

has a doubtless algebraic contents, as shows the following
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2.2 Proposition. If for every pEPwe define a relation %p in A by

aEDb if and only if a:b€D and b-a€D, then N

lation of the algebra A and the correspondence D — B defines an

is a congruence re-

isomorphism between O and the set C(A) of all congruence relations
of A. Thus it results that D is a complete lattice. O

Note that the inverse correspondence associates the deductive
system D_= {a€A : az=1} to every congruence relation EEC(A) , and
therefore the deductive systems of A are identified with the Shells
of all the epimorphisms between tpBa's.

From a logical point of view, the fact that Disa closure sys-
tem is more interesting, and therefore we have the associated conse-

quence operator D : D(X) = N{D' €ed: p'd X} for every X CA. We can

then consider the abstract logic L = (A, D}, which, and because of
the considerations we have made until now, will reflect algebraical-
ly the deductive properties of the IMY logic. Dis obviously alge-
braic, as it is isomorphic to A), and so we have:

2.3 Proposition. L is a finitary logic, that is, for every XCA,

D(X) = V{ID(F) : FCX , F finite}. O

It would probably not be difficult to obtain directly properties
and characterizations of this abstract logic, but the large knowledge
we have at present about pseudo-Boolean algebras and their associated
abstract logic (2) leads us to use the following characterization of
D in terms of D', the consequence operator associated to @'_, the
set of all "deductive systems" of the pseudo-Boolean algebra subja-
cent to A (that is, the set of all DCA that satisfy (T) and (MP) of
2.1, also called the "filters" of the pseudo-Boolean algebra A).
2.4 Theorem. For all XCA, the identity D{X) =P'(I(X)) holds.

Proof: It can directly be proved, using known constructive characte-




rizations of B', the fact that CH', and specially Gddel's ine-
quality, that 0 (1(x)) €D and that it is the minimum deductive sys-
tem that contains X. O

A proof that 9 is a distributive lattice can be obtained (using
2.4), by seeing that ® is a sublattice of '. At the end of this
section we will refer to another proof of this fact.

If we consider the properties of D' that are stated in [VI], the
previous theorem allows us to prove in an almost mechanical way the
following properties of L

2.5 Theorem. L satisfies the Adjunction Principle with regard to A:

D(a,b) = D(aAab) for all a,bep . O

2.6 Theorem. L satisfies the Strong Disjunction Principle with regard

t_qj (where a\?b = TavIb) : For all XCA, B(X,a)n D(X,b) = D(X,a\";b),
where a,beA . O

With 2.6 we see that the algebraic function which corresponds to
the connective of logical disjunction is assumed here by the opera-
tion \"; 3 theorem 3.5 will confirm this from another point of view.

2,7 Theorem. L satisfies the Deduction Principle with regard to # :

bED(R,a) if and only if a*bE€D(X) for all a,bEA and all XCA |

where "#" stands for any of the natural implication operations, which

are the following: The weak implication a+#b = Ia-b , the intuition-
istic implication a=b = I(Ia-Tb) , and the strange implication
avsb = Ia-Ib . 0O

These three operations (3) assume the algebraic role of the con-
nective of logical implication.

The algebra A has a minimum 0 and since the deductive systems are
also filters, ©D(0) = A and therefore we can consider the (pseudo-)
negations T*a = a*0 associated to the implications which satisfy:

and
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2.8 Theorem. 1, satisfies the Pseudo-Reductio ad Absurdum Principle

with regard to %: M3 €D(X) if and only if D(X,a) = A for all a€A

and all XCA. O
Following Verd('s terminology, theorems 2.3,5,6,7 and 8 can be

summarized saying that I is a finitary Heyting logic with an incon-

sistent element; that is, we see that the abstract logic naturally

associated to our logical system IMW is of an intuitionistic type.
The modal character is included in the new connectives (6,*,1*)
which, surprisingly, have in their turn an intuitionistic behaviour.

If for every DED we put 8D=(D'€S) : D' DD} we obtain a closure
system and with it a consequence operator DD which reproduces the
properties of B ; that is, LD = (A, DD) satisfies 2.3, and 2.5 to
2.8 , DD(¢) = D being its set of "theorems". We can see that the re-
lations " DD(a) = DD(b)" , " D(D,a) = B(D,b)" and "ax*b €D and b¥xa € D"
are equivalent and define an equivalence relation “n which is compa-
tible with the operations A, 3 , * , and ™ , and satisfies amDTa
for every a€A, that is, we could say that it is a "logical congru-
ence". Therefore, these operations define a pseudo-Boolean algebra
structure (without interior operator) in the quotient A/’hD . We
therefore have two quotients of A : A/ED which is the properly alge-
braic quotient, and A/’\:D which is called "the logical quotient of
A by the logic LD". Certain properties of both quotients will give us
information on the deductive system D, as we will see further on.

In the particular case D = {1} the relation we obtain is v , the
usual equivalence relation associated to the logic L . Then, accord-
‘ing to [Vl], there exists a bilogical morphism (u) between L and
the logic associated to the pseudo-Boolean algebra A/, which obviéus-

ly is an intuitionistic logic (this allows us to give another proof
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of the distributivity of $). 1n a certain sense, we can say that in
this way we obtain a translation of the formulas of the intuitionistic
modal logic IM4 into formulas of a certain simply intuitionistic logic,

that is, a translation which would be an inverse to GBdel's.

3. The natural implication operations

We have affirmed that the operations # have an implicative cha-

racter since they satisfy the deduction theorem which for us is the

most characteristic structural (abstract) property of implication
connectives, In the syntactical presentations
of the usual logical systems, the implication shows itself through
the modus ponens deduction rule, and through the axioms where it ap-
pears. In this section we will see how the natural implication ope-
rations also reflect the principles expressed by deduction rules and
axioms or theorems. First, one can easily prove the

3.1 Proposition. For every DCA, it holds that DGQif and only if

it satisfies the conditons (T) 1 €D , and (MP*) If a€D and a*b €D
then b€D , for all a,b€A. O

This result is quite interesting since it allows us to substitute
the two deduction rules (MP) and (N) formulated in terms of - and I
for one unique rule (MPx) formulated in terms of #* , the derived lo-
gical theories being preserved.

We will now see the properties of the usual implication which are
reproduced, in an algebraic form, by the natural implications. We
must bear in mind that asb = 1 is not equivalent to a<b (which is
actually equivalent to a-b = 1) but is weaker, that is, a<b implies
a*b = 13 the reciprocal is not true, and due to this some properties
which are classicaly inferred from one to the other are now indepen-

dent.



3.2 Theorem. In every tpBa A and for every a,b,c€A the following hold:
(i) as*a = 1 (Identity Law);

(ii) ax(bza) = 1 (A fortiori or Absortion Law);

(iii) Cax(bzec))x((azb)a(axc)) = 1 and ((asb)z(anc))xlax(bzec)) = 1

(Weak forms of the Autodistributive Law);

(iv) (a=(bxc))x(bx(azc)) = 1 (Weak form of the Permutation of the

Premises Law);
(v) (azb)zx((bsc)xCazc)) = 1 and (axb)x((c#a)«(c#b)) = 1 (First

weak form of the Hypothetical Syllogism Laws);

(vi) If axb = 1 then (bxcl)a(axc) = 1 and (cwa)«{(cxb) = 1 (Second

weak form of the Hypothetical Syllogism Laws); and

{vii) az(bx(aAb)) =1 .

Proof: All these conditions are proved using the properties of the

operator D , specially 2.7 and 3.1, and the fact that D(¢) = {1}.

For example, since c€D(a,a*b,ax(bsc)) is clear, we obtain the first

part of (iii), and using (ii) we have that asb€f(h) from where

c €D(a,b,(axb)x(axrc)) and so we obtain the second part of (iii).

The remaining are proved in the same way. O

3.3 Theorem. In all tpBa A and for all a,b,c €A the following hold:
(i) If a<b then cra<c#b (Left isotony);

(ii) If a<b then bxc <axc (Right isotony);

(ii1) az(axb) = axb (Elimination of the repeated premises);

(iv) as(bAc) = asbAaxc ; and

(v) (a¢b)xe = (axc) A(bxc) (Generalized DeMorgan's Law),

Proof: Unlike the previous theorem, these properties cannct be proved
for the three operations in a unified way. If we write+ , =, and ~»
in terms of I and +, (i) and (ii) can quickly be proved using the

analogous properties of -3 (iii) is more ardous and we must take into

_9-



account that a=b = T(axb) , that 1+a = = a , that 1=a = Ja
for all a€A, and use 4.1(a). Parts (iv) and (v) are proved patient-
ly but without any special trick. O

A second group of outstanding properties nf the natural implication
operations is composed by those which characterize some special types
of deductive systems and other related algebraic concepts., We will
prove them using 2.6, 2.7 and 3.1, which are the most powerful tools
we have, in some cases referring to the results of 3.2 and 3.3 and if
necessary inspiring ourselves in [D}, [M}, and [Rra).

3.4 befinitions. We will say that a deductive system D is:

Irreducible when if D = D' ND" then D=D' or D=D" for D',D"GQ;

Completely irreducible when for every ECQ , E#o , if D =n§

then DEE H

#a-prime when if ayb€ED then a€D or bED for all a,bEA; and
maximal when if D ¢ p'€P then D' = a .
3.5 Theorem. For every ped , D is irreducible if and only if D is
%#-prime., Proof: Assume that D is not %-prime: there are a,b € D such
that a¥bED. Then by 2.6 D = mD(D,a) "D(D,b) and this is a non-trivial
intersection, so D is not irreducible. Conversely, if we assume that
D =D'ND" with DGED' and DED" we should have a€D' and bED" such
that a,b € D; but D(adb) = D(A) ND(BIC D'N D" = D, s0 a¥YbhED
and D is not #%-prime. O

With respect to this theorem, see the remark which follows 2.6.
3.6 Theorem. For every ped , the following are equivalent:
(a) D is completely irreducible;
(b) There exists an a € D such that a € D' whenever DQD'EQ ; and
(c) There exists an a € D such that bxa€D for all b€ D , bEA.

Proof: Assume that (b) is false: For every a ¢ D there is a I)aG9

-10-



such that a & D, and DED_. Then jt is easy to prove that
D = r\{Da : a € D} and so D is not completely irreducible., TIf (b)
holds and b ¢ D, then D G D(D,b) and by hypothesis a€BD(D,b) which
is equivalent to b#*a €D by 2.7. Finally, if we assume (c) and that
N = ﬂ[Di:ie J} with D(;Dieb for all ieJ, we have an aieD:l
such that a; ¢ D; bLut there is an a € D such that a].j:aGD and so
ai*aGDi and by (MP#*) is aEDi for all i €J; hence a€D against the
assumption. So D is completely irreducible. O

We can add that the family of all completely irreducible deductive
systems is the smallest basis of £ and satisfies certain separation
properties.
3.7 Theorem. For every DEQ the following conditions are equivalent:
(a) D is maximal;
(b) D # A and a*b€D whenever a € D and b € D for all a,bEA;
(c) D# A and if (a#bh)*b €D then a€D or bED for all a,bEA;
(d) For all a€A, a€D or Ya€D but never simultaneously;
(e) A/;‘D is a simple tpBa (5)', and

(f) A/'\,D is a simple pseudo-Boolean algebra, i.e. A/'\,D = {0,7) .
Proof: It is easy to prove that (a) implies (b) and that (b) implies

(c), using only 2.7 and 3.1. Now assume (c) and suppose that D(;D'GS:
there is an a€ D' such that a € D. From 3.3(iii) it follows that
(ax(a=xb))=(asb) = 1€D for all bEA, and by (¢) and the hypothesis
a*b€D and so a*b€D' from where we infer that bED', that is, D'=A:
D is maximal. If (b) holds, putting b = 0 we have that a€D or
T*1€D for all a€ A; and clearly not simultaneously because D # A
implies 0 € D ; so (b) implies (d); if.(d) holds for a given pe ® s
it is easy to see that 0€ D' whenever DG p'e® , that is, (a) holds.
We have thus proved the equivalence petween (a), (b),(c¢) and (d). It

is a known result of universal algebra that (a) is equivalent to (e).

~11-



If D is maximal, then ﬂD = {D,A} and it follows from part (d) and

2.8 that if a€D then a = T while if a € D then a = d in A/n thus

D’
establishing that (a) implies (f). IF (f) holds, then we have easily
that for all p'€® , if DCD'C A then D'=D or D'=A , and so D is
maximal. O

This theorem is very interesting. For example (d) reminds us
that the maximals correspond to the complete consistent theories,
while (b) is just a technical tool and (c) relates the maximals with
a type of deductive systems known as "strongly prime" (6). Conditions

(e) and (f) are algebraically canonical.

3.8 Definitions. If A is a tpBa, the radical of A, denoted by R(A)

is the intersection of all maximal deductive systems. The z-peircean

elements are P, = {a€A : There are b,c€A with a = ((b%c)#b)«b};

the 2-dense elements are D,= {a€A : P e} .

These concepts are common in the implicative studies; later we
will point out a logical interpretation of them.
3.9 Lemma. For every DED , D is maximal if and only if D is comple-
tely irreducible and DDP,
Proof: Clearly if D is maximal then D is completely irreducible., Let
a,bEA . If a€D, as we have that a€D((azb)*a,a) we have also that
ax(((axb)*xa)=a) = 1 €D, so ((axb)xa)ra€D. If a € D and bED then
a*b &D because b€D(D,a,b); and if a € D and b € D then it follows
from 3.7 that a*b€D; in these last two cases we must have (aszb)xa €
€ D and so ((asb)sa)xa €D. In all cases we have shown that P,CD .
Conversely suppose that D is completely irreducible and P, CD, and let
p'e® be such that DgD', that is, there is an a€D' with a € D. By
hypothesis, for all b€A, ((a®b)2a)xa €D and so (axb)xa & D; by 3.7
we must have a*b €D and so axb€D' from where it follows that h€D'.

We have proved that D' = A, i.e. D is maximal. O

“12-



From this Lemma we immediately obtain the following

3.10 Proposition. In all tpBa it holds that R(A) = D(P,) . OO

In section 4 we will improve 3.8 and 3.10 for particular opera-
tions. For the time being we relate the radical with the semisim-
plicity through two different resnlts which will offer no surprise
to the readers familiar with universal algebra and congruence lat-
tices.

3.11 Theorem. In every tpBa A the following are equivalént:

(a) A is semisimple (7);

(b)Y R(A)Y = {1} that is, ((bac)ab)xb = 1 for all b,c€A; and

(c) ((ax0)=xa)wa = 1 for all a€A. D

3.12 Theorem. For every PED the following are equivalent:

(a) D is an intersection of maximal deductive systems;

(b) D D R(A), that is, D D P,;

() A/ED is semisimple; and

(d) A/'bD is a semisimple pseudo-Boolean algebra, that is, a Boolean

algebra. D

The most eutstanding feature of the second part of this section
(from 3.4 to the end) is that it deals with results formally analogous
to those which characterize the same concepts of pseudo-Boolean alge-
bras in terms of the usual implication (-), fact which confirms the

pure intuitionistic character of these structures.

4. The intuitionistic implication

In the first place, we can complete 3.2 and 3.3 with some additio-
nal properties of this operation:
4.1 Theorem. In every tpBa A and for every a,b,c €A the following hold:

(1) a=(b=c) = (a=h)=(a=c) (Autodistributivity);

13-



(i;') a=(b=c) = b=s(a=c) (Permutation of the Premises) ;

(iii) a=b < (b=»c)=(a=c) and a=b < (c=a)=(c=>b) (Hypothetical

Syllogism Laws); and

(iv) a=»(b=c) = (aAb)=c (Law of Importation-Exportation of the

Implication).
Proof: The proofs are reduced to easy but complicated computations
in which the properties of the interior I and of the usual implication
are essentially the only ones used. O

A specially interesting property of = is the following:
4.2 Theorem. In every tpBa A holds that R(A) = D
Proof: If aeD_ , 1™a = 0 and it follows from 3.7 that we have aeD
for every De® maximal, that is, ae€ R(A). Conversely, if we suppose
that a ¢ D , then I a) = 774 # 0 from where we infer that there
exists a De ® maximal such that —'”aeD, and therefore a ¢ D, from
where a ¢ R(A) follows, OO

The previous property, logically interpreted, affirms the coinci-
dence of two types of "almost certain" elements, i.e. those which be-
long to every complete consistent theory (R(A)) and those whose (in-
tuitionistic) negation is false (D_ ). On the other hand the preceding

result gives a simple characterization of the =-peircean elements:

4.3 Proposition. For all ac€A, a€ P, if and only if a = ((a=»>0)=a)=a.

Proof: In one direction there is nothing to prove. If we suppose that
agP_, since P_ c D(P_ ) = R(A) = D_ , it follows that a=0 = 'a = 0
and therefore ((a=0)=a)=a = (0=>a)=a = 1=a = Ia = a since by its
own definition every =-peircean element is open. O

A more complete and detailed study of the three sets Dy and P,

and of the relations between them and of them with the radical can

be seen in {F]; the results can be summarized in the two chains of
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inclusions and equalities:

P,CP_ CP, = R(A) = D,CP_ =D,

D,NBCP_ = HPM)= P NB =P NB = RAVNB = D_NB
Moreover, +« also satisfies 4.3 and parts (i), (ii) and (iv) of
4.1 (8). A+ does not satisfy any of the previous results.

Although the preceding results are interesting from an algebraic
point of view, its importance depends on the result we state next
and which says that the operation = completely characterizes the
structure of the topological pseudo-Boolean algebras.

4.4 Theorem. lLet A be a pseudo-Boolean algebra and % a binary operation
on A which satisfies the following properties:

(1) ara = 1 5 (2) a®(b#c) = (axb)=(axc) ; (3) ax(b-¢c) €ax(b=xc) ; and
(4) (axb)#xc < (arb):c for all a,b,c€A . Then the unary operator on

A defined by la = 1#a is an interior operator on A (that is, A is a
tpBa) such that a=b = azb for every a,b€A

Proof: Using (1) to (4) we can step by step prove (5) axl = 1 ,

(6) if a<b then c*a<c*b , (7) 1xa<a, and (8) 1=x(a*b) = a=*b . So,
if we put Ia = 1%a, then we have seen that Il = 1, Ta<a, 12a = Iaj
and then using (2) to (4) we also obtain I{(a-b) <Ia-Ib , that is, I

is an interior operator. Finally if a=b = I(Ia-Ib) = 1z((1za)+(1b)),
using (2),(3), (4), (6) and (8) we obtain a=b = a*b. O

A half of the conclusion of this theorem can be stated by saying
that = is the unique binary operation on a tpBa which satisfies (1)
to (4) and Ia = 1=a .

In the first place, an algebraic consequence of this result is that
we can define the topological pseudo-Boolean algebras as an equational
subclass of the algebras of type (1,2,2,2,2). In the second place, the
logical importance 3.1 and %#.4 have together is that they allow us to

pive a formalization of the intuitionistic modal logic IM4 (7) in
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which the concept of necessity does not intervene at all, being subs-
tituted by axioms and rules for a new connective, the "intuitionistic
implication", which at the present situation deserves with no doubt
a more proper name, and whichwe would maybe classify as "super-modal"
sentence since it seems to combine "de dicto™and "de re" modalities
on all its terms.
Specifically, having 1.3 in mind, the previous theorem suggests to us
the following set of axiom schemes:

p=p

(p=(g=1)) > ((p=q) »(p=r))

((p=>q)=»(p=r))>(p=(q=1))

(p=»(gq-o>1r))»(p=(qg=1r))

((p=2qQ)=r)>((p=q)>1)
that together with the intuitionistic ones and with the two deduction
rules

(MP)  {p,p~q} +— q

(MP=) {p,p=q} — q
will develop the same logic IM4. Tn this situation the necessity ope-
rator is a derived operator which could be defined, for example, by

(Def) Lp = (p=»p)mwp
We don't known if this is the more adequate definition of L in terms
of = 3 this would also depend on the adoption of a philosophical in-
terpretation of the "intuitionistic implication" = and its relation
to necessity. We have made no attempts to examine this matter although
it seems a quite interesting one, specially after the results we have

shown.
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NOTES

(1) This material constitutes a portion of the author's Ph.D. Dis-

¢

(

(

(f

(

)

)

)

)

)

sertation.

With respect to the pseudo-Boolean algebras, also called Heyting
algebras or in their dual form Brouwerian algebras, [MCKT] and
[Ra] can be read; some special techniques are inspired in [D]
and fM]. The theory of abstract logics which is used derives from
the one formulated in [BB] and [BS] and has been developped by
V. Verdfi in [V1]and[V2]. Note that we use some terms of the for-
mer in a slightly different sense.

The weak implication is mentioned in [Po] and the intuitionistic
one in [M], although we ignore if for the first time.

If L =¢A , €>» and L' = <A' , €') are two abstract logics,

a bilogical morphism of> L in L' is a mapping h of A onto A’

such that € = h'1°C'0h . In these conditions there exists a

lattice isomorphism between the closure systems of the closed sets
of both logics such that the properties of one of them (as e.g.
2.3, 2.5 to 2.8) are transferred from one to the other.

For us a simple algebra is the one which only has two different
congruence relations. It is obvious that a tpBa is simple if and
only if B = {0,1} and 0#1

For a very wide class of implicative algebras the deductive sys-
tems which satisfy the condition of being prime with respect to
the operation aeb = (a'b)+‘b are called "strongly prime". In the
implication algebras of [Ra] and the Sales algebras and Wajsberg
algebras of [Ro] this operation is effectively a supremum. In the
case of positive implication algebras (alias Hilbert algebras),
in [Pl] is proved that that they coincide with maximal deductive

systems.
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(7) We understand by a semisimple algebra the one which is a sub-
direct product of simple algebras.

(8) We want to emphasize P, = R(A) for its analogy with a property
of pseudo-Boolean élgebras we have not yet seen anywhere, namely
P_= R(A) . We observe this is a purely implicative result which
for its proof uses the negation. We ignore if it remains valid
in implicative structures without a negation, e.g. Hilbert
algebras.

(7) Observe that 4.4 remains valid if we change "pseudo-Boolean"

for "Boolean". Therefore this remark applies in the same way to

the classical modal logic S4, fact which has some interest, too.
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