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IMPLICATION AND DEDUCTION IN SOHE INTUITIONISTIC MODAL LOGICS (1)

Josep M. Font

Faculty of Mathematics, University of Barcelona, Rpain.

Abstract

We sttidy the deductive properties of the System IM4 of intuitio-
nistic 'modal logic, paying special attention to the implicative onor..

This System is the intuítioniStic counterpart of Lewis' S4 and its
models are the topological pseudo-Boolean algebras. Its abstract de¬
ductive strueture is analogous to that of pseudo-Boolean algebras
but here w.ith respect to new implicative operations. These satisfy
the Deduction Theorem and allow us to find implicative characteriza-
tions of several types of deductive Systems (such as irreducible,
maximal, prime) and some related conoepts from universal algebra
(simplicity, semisimplicity, radical). Among these operations ,

p=»q = L(I.p-»Lq) is worth noting, because, besides sat.isfying a lot of
classical axioms, it allows us to define L in terms of -» and give a

formalizat.ion of several modal logics of type S4 whose specific non-

classical operator is and not L ñor H.

1. The system IM4 and its models

The purpose of making intuitionistic modal logic has benefitted

form the modern formulations of modal logic consisting in the addition

of an unary operator (LorM) to the language of ordinary propositionn.1

calculus and of the corresponding axioms and/or rules of inference.

Then, to obtain the intuitionisitc analogue of a given classical modal

system, it suffices to weaken the propositional non-moda) base, leavirig

the modal part unaltered. However, this is not free from danger because

of the two following remarks.

In the first place, we must remember that i^'^lassical modal logic

which

are consi stent with the boolean principies ofjdualjity, and accoifdingly



either L or M can be taken as the only primitive operator. The situ-

ation is quite different if we have an intuitionistic base, because

of the lack of duality, and so the two previous equalities can not

be accepted together. Most of the authors (Prior, Bull, Ono, Sotirov,

Honteiro and Varsavski...) take both L and M as primitive, rejecting

both equalities, while only a few (Fischer-Servi) prefer to take L

as primitive and define M as an abreviation of iL1.

In the second place, the lack of a lot of boolean principies, all

concerning negation, destroys the equivalence between several classi-

cal axioms; thus, while it is easy to formúlate the intuitionistic

analogue of SM, we need more additonal criteria to single out an

intuitionistic analogue of S5, due to the multiplicity of ways we can

take to define it starting from SU. Concerning this problem, the

papers of G. Fischer-Servi on this subject are worth reading. In a

forthcoming paper we will touch this problem from a different point

of view, as well as the study of the properties of the operator M =

- "’f in the logic here considered and in some of its extensions.

In the present paper we will concéntrate on developping a deductive

theory for IM4 (our intuitionistic analogue to SM) in an algebraic-

logic setting and paying special attention to the role of the impli-

cation.

The language in which we will formúlate our intuitionistic modal

System is the free algebra P(X) of type (1,1,2,2,2) generated by a

set X of propositional letters (which is usually assumed to be denu¬

merable), the operations or connectives being denoted by L,-1, A,v,-»

respectively. From the axioms and inference rules given a syntacti-

cal consequence relation | will be defined in the customary fini-

tistic form.



1.1 Definítion. We cali IM4 the logical System over P(X> which has

as axioms schemes, apart form the intuitionistic calculus ones, the

following: Lp->p , L(p-*q)-*(Lp->Lq) , L,p->LLp , and which has as deduction

rules the Modus Ponens (p,p-»q} {- - q and the Hecessity {p} 1 Lp .

This System has appeared elsewhere under different ñames, e.g.

in [Bul] and [o] . As it can easily be seen, it is an intuitionistic

analogous of S4 in the sense mentioned in [Bu2]. The analogy can also

be applied to its algébrale models, which are a weakening of topologi-

cal Boolean algebras.

1.2 Definition. A topological pseudo-Boolean algebra (tpBa) is an

algebra < A, I, '•, A , v, •> of type (1,1,2,2,2) such that < A,t, A, v, •> is

a pseudo-Boolean algebra, and I is an interior operator on A, that is

it satisfies: (II) 1(1) =1,1 being the máximum of A;

(12) la < a for every aGA;

(13) I(a-b) < la • Ib for all a,b€A;

(14) I?a = la for all aGA .

It is well-Known that (13) can be substituted by (13') l(aAb) =

= la A Ib , and that (I3) + (I4) just as mucti^( 13 ' ) + (14) are equivalent

to the condition (13") I(Ia-b) < Ia-Tb . The condition (13) is often

called "Gdrtel's inequality". It can be proved, with apropriate examples,

that the three resulting axiom sets are independent. In any tpBa the

elements aGA which satisfy Ia=a are called open and the set of all

open elements is denoted by B. The following results can be proved

by well-known and standard procedures.

1.3 Proposition. Por every l C P(X) the relation -v defined by

p'Vj.q if and only if £l p<—^>q is a congruence relation of the alge¬
bra P(X) such that the quotient P^.(X) is a tpBa where p=l if and
only if I I p . O
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1.4 Proposition. The Tarski-Lindenbaum algebra P^(X) is the free
tpBa generated by 5? = {x : x?)[). D

The regular matrices for the IM4 calculus are then the tpBa's,

F^(X) being characteristic. Using valuations in the usual way, it
results that the class of all tpBa's allows us to define a semántica!

consequence relat.ion |- that satisfies the following

1.5 Theorems■ For all Z C P(X) and all pGP(X) the following hold:

a) Completeness: Z I— - p if and only if Z I p ;

b) Compactness: Z i — p if and only if there exists a finite A G

C £ such that A I p ; and

c) Finite model property: Z M= p if and only if Z I— ^ p for
every finite tpBa A if and only if Z. I- ^ p for every tpBa

. . . ok
A with cardinality *5 2‘ , k being the number of subformulas of p.

Proof: Part (a) follows from the fact that P,(X) is characteristic,
——-— <p

and part (b) directly from (a). Part (c) can be proved by a slight

modificat.ion of the proof in ^Bulj for a weaker system. O
It is olear that the tpBa's are the algebraic structures which

correspond to the IM4 logic. In the remaining sections of the paper

we will study the algebraic abstraction of several logical concepts.

2. Deductive Systems and abstract logic

In view of the syntactical setting of IM4 , the following defini-

tion is entirely natura].

2.1 Definition. A deductive system of a tpBa A is a D C A such that:

(T) leí) , (MP) If a € D and a-bep, then bfD , (N) If aGD then

la G D , for all a,bGA . The set of all deductive systems of a g.iven

tpBa A will be denoted by í) .

This concept, besides its original logical motivation,(a theory)

has a doubtless algebraic contents, as shows the following
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2.2 Proposition. If for every DE© we define a relation =p in A by
a5pb if and only if a-bED and b-aED, then is a congruence re¬
lation of the algebra A and the correspondence D • * Fp defines an
isomorphism between 5) and tbe set (J(A) of all congruence relations

of A. Tbus it results that 3D is a complete lattice. □

Note that the inverse correspondence associates the deductive

system D_= {aEA : aFl} to every congruence relation = E (J(A) , and

therefore the deductive Systems of A are identified with the Shells

of all the epimorphisms between tpBa's.

From a logical point of view, the fact that S is a closure Sys¬

tem is more interesting, and therefore we have the associated conse-

quence operator D : D( X) = n {p' G JD : D' D X} for every XCA. We can

then consider the abstract logic L = ( A, D>, which, and because of

the considerations we have mado until now, will reflect algebraical-

ly the deductive properties of the IMM logic. í) is obviously algé¬

brate, as it is isomorphic to (}A), and so we have:

2.3 Proposition. L is a finitary logic, that is, for every XCA,

D(X) = U{D(F) : FCX , F finí te}. O

It would probably not be difficult to obtain directly properties

and characterizations of this abstract logic, but the large knowledge

we have at present about pseudo-Boolean algebras and their associated
2 ...

abstract logic ( ) leads us to use the following character1zatxon of

D in terms of J)] , the consequence operator associated to the

set of all "deductive Systems" of the pseudo-Boolean algebra subja-

cent to A (that is, the set of all DCA that satisfy (T) and (MP) of

2.1, also called the "filters" of the pseudo-Boolean algebra A).

2.M Theorem. For all XCA, the identity C(X) = D'(I(X)) holds.

Proof: It can directly be proved, using known constructive characte-



rizations of O' , the fact that Bcfl', and specially Godel's ine-

quality, that O'(I(X))€í) and that it is the mínimum deductive Sys¬

tem that contains X. □

A proof that D is a distributive lattice can be obtained (using

2.-4), by seeing that £) is a sublattice of £)'. At the end of this

section we will refer to another proof of this fact.

If we consider the properties of 0' that are stated in [vi], the

previous theorem allows us to prove in an almost mechanical way the

following properties of l. :

2.5 Theorem. L satisfies the Adjunction Principie with regard to A:

D(a,b) = O(aAb) for all a,b£A . n

2.6 Theorem. O satisfies the Strong Disjunction Principie with regard

to V (where aVb = la v Ib) : For all XCA, 0(X, a)n ITKX.b) = ®(X,aVb),

where a,b£A . □

With 2.6 we see that the algebraic function which corresponds to

the connective of logical disjunction is assumed here by the opera-

• *
tion V ; theorem 3.5 will confirm this from another point of view.

2.7 Theorem. L satisfies the Deduction Principie with regard to * i

b€I)(X,a) if and only if a*bCD(X) for all a,beA and all XCA ,

where stands for any of the natural implication operations, which

are the following: The weak implication a ** b = Ia-b , the intuition-

istic implication a =► b = I(Ia-Ib) , and the strange implication

av*b = la-Ib . □

These three operations (^) assume the algebraic role of the con¬

nective of logical implication.

The algebra A has a mínimum 0 and since the deductive Systems are

also filters, 0(0) = A and therefore we can consider the (pseudo-)

negations "I*a = a*0 associated to the implications which satisfy:
and
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2.8 Theorem. I, satisfies the Pseudo-Reductio ad Absurdum Principie

with regard to -'*a€D(X) if and only if D(X,a) = A for all a6A

and all XCA. □

Following VerdG's terminology, theorems 2.3,5,6,7 and 8 can be

summarized saying that L is a finitary Heyting logic with an incon-

sistent element; that is, we see that the abstract logic naturally

associated to our logical system IMU is of an intuitionistic type.

The modal character is included in the new connectives (»,*,"•*)

which, surprisingly, have in their turn an intuitionistic behaviour.

If for every D €E f) we put SD= {D 'e £) : D1ID) we obtain a closure

system and with it a eonsequence operator which reproduces the

properties of D ; that is, L® = (A, > satisfies 2.3, and 2.5 to

2.8 , = D being its set of "theorems". We can see that the re-

lations " DD(a) = I)D(b)" , " D(D,a) = D(D,b)" and "a*beD and b*a e D"

are equivalent and define an equivalence relation n. which is compa¬

tible with the operations A , V , * , and "1* , and satisfies a^-^Ia
for every aEA, that is, we could say that it is a "logical congru¬

ente" . Therefore, these operations define a pseudo-Boolean algebra

structure (without interior operator) in the quotient A/'Vp . We
therefore have two quotients of A : A/ = p which is the properly alge-
braic quotient, and A/'Vp which is called "the logical quotient of
A by the logic i/*". Certain properties of both quotients will give us

information on the deductive system D, as we will see further on.

In the particular case D = (1} the relation we obtain is s, , the

usual equivalence relation associated to the logic L . Then, accord-

ing to [VI], there exists a bilogical morphism (') between L. and
the logic associated to the pseudo-Boolean algebra A/n., which obvious-

ly is an intuitionistic logic (th.is allows us to give another proof
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of the distributiva.ty of SD ). In a certain sense, we can say that in

this way we obtain a translation of the formulas of the intuitionistic

modal logic IM'l into formulas of a certain simply intuitionistic logic,

that is, a translation which would be an inverse to Godel's.

3. The natural implication operations

We have affirmed that the operations * have an implicative cha-

racter since they satisfy the deduction theorem which for us is the

most characteristic structural (abstract) property of implication

connectives. In the syntactical presentations

of the usual logical Systems, the implication shows itself through

the modus ponens deduction rule, and through the axioms where it ap-

pears. In this section we will see how the natural implication ope¬

rations also reflect the principies expressed by deduction rules and

axioms or theorems. First, one can easily prove the

3.1 Proposition. For every DCA, it holds that D€ £> if and only if

it satisfies the conditons (T) 1GD , and (MP*) If aED and a*b€D

then b£D , for all a,b£A. D

This result is quite interesting sinee it allows us to substitute

the two deduction rules (MP) and (N) formulated in terms of -* and I

for one unique rule (MP*) formulated in terms of * , the derived lo¬

gical theories being preserved.

We will now see the properties of the usual implication which are

reproduced, in an algebraic form, by the natural implications. We

must bear in mind that a*b = 1 is not equivalent to a<b (which is

actually equivalent to a-b = 1) but is weaker, that is, a<b implies

a*b =1; the reciprocal is not true, and due to this some properties

which are classicaly inferred from one to the other are now indepen-

dent.
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3.2 Theorem. Tn every tpBa A and for every a,b,ceA the following hold

(i) a*a - 1 (Xdentity Law);

(ii) a*(bita) = 1 (A fortiori or Absortion Law);(iii)(a*(b*c))*((a*b)*(a*c)) = 1 and ((a*b)*(a*c))*(a*(b*c)) = 1

(Weak forms of the Autodistributive l.aw) ;(iv)(a*(b*c))*(b*(a*c)) = 1 (Weak form of the Permutatlon of the

Premises Law);(v)(a*b)*((b*c)*(a*c)) = 1 and (a*b)*((c*a)*(c*b)) = 1 (First

weak form of the Hypothetical Syllogism Laws);(vi)If a*b - 1 then (b*c)*(ai>c) = 1 and (c*a)*(c*b) - 1 (Second

weak form of the Hypothetical Syllogism Laws); and(vii)a*(b*(aAb)) = 1 .

Proof: All these conditions are proved using the properties of the

operator (D , specially 2.7 and 3.1, and the fact that ft(^) = (1).

For example, since c € t)(a ,a*b,a*( b>'<c)) is clear, we obtain the first

part of (iii), and using (ii) we have that aíbf|)(M from where

c € t)(a ,b, (a*b) *(a*c)) and so we obtain the second part of (iii).

The remaining are proved in the same way. □

3,3 Theorem. In all tpBa A and for all a,b,cFA the following hold:

(i) If a<b then c*a<c*b (Left isotony) ;

(ii) If a<b then b*c<a*c (Right isotony);

(iii) a*(a*b) - a*b (Elimination of the repeated premises);

(iv) a*(bAc) = a*bAa*c ; and

(v) (a</b)*c = (a*c)A(b*c) (General i zed DeHorgan' s Law).

Proof: Unlike the previous theorem, these properties cannot be proved

for the three operations in a unified way. If we write , =*■ , and -v*

in terms of I and •, (i) and (ii) can quiokly be proved using the

analogous properties of •; (iii) is more ardous and we must take into
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account that a =* b = I(aab) , that 1 ** a = = a , that 1 ■» a = la

for all a€A, and use 4.l(a). Parts (iv) and (v) are proved patient-

ly but without any special trick. □

A second group of outstanding properties of the natural implication

operations is composed by those which characteriz.e some special types

of deductiva systems and other related algebraic concepts. We will

prove them using 2.6, 2.7 and 3.1, which are the most powerful tools

we have, in some cases referring to the results of 3.2 and 3.3 and if

necessary inspiring ourselves in [d], [m], and [Ra].
3.4 Definitions. We will say that a deductiva system D is:

Irreducible when if D = D' <"> D” then D=D’ or D=D" for D*,D"e£) ;

Completely irreducible when for every *C © , 5 * * , if D = ng
then DsJ ;

ft-prime when if aíbfD then a€D or bfD for all a,b6A; and

maximal when if D £ D* E J) then D' - A .

3.5 Theorem. For every DE© , D is irreducible if and only if D is

*-prime. Proof: Assume that D is not *-prime: there are a,b ff D such

that ai bfl). Then by 2.6 D = ID(D,a) F'B)(D,b) and this is a non-trivial

intersection, so D is not irreducible. Conversely, if we assume that

D = D' n D" with D£D' and D £ D" we should have a E D' and b€D" such

that a ,b 4 D; but D(aíb) = 0(a> np(b) C D'n D" = D, so a v bE D

and D is not *-prime. O

With respect to this theorem, see the remark which follows 2.6.

3.6 Ttieorem. For every DE©, the following are equivalente

(a) D is completely irreducible;

(b) There exists an a ^ D such that aED' whenever Dí^D'eSD ; and
(c) There exists an a é D such that b*a € D for all b í D , b£A.

Proof: Assume that (b) is false: For every a í D there is a D E®
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such that a tf D^ and D £ Dfl. Then it is easy to prove that
D " n {D ¡atfD} and so D is not completely irreducible. Tf (b)

holds and b tf D, then D £ l3(D,b) and by hypothesis atf|D(D,b) which
is equivalent to b*a tf D by 2.7. Finally, if we assume (o) and that

D = n{D.j :ig ,1) wi th D^D .írf) for all ie.J, we have an a.. gD.
such that a. tf D; but there is an a tf D such that a • *a tf D and so

a,j*atfD.j and by (MP*) is a tf D^ for all itf J; henee atfD against the
assumption. So D is completely irreducible. O

We can add that the family of all completely irreducible deductivo

systems is the smallest basis of £) and satisfies certain separat.ion

properties.

3.7 Theorem. f or every D tf í) the following conditions are equivalen!:

(a) D is maximal;

(b) DÍA and a*btf D whenever atfD and b tf D for all a,btf A;

(c) DÍA and if (a*b)*bSD then atfD or btf D for all a,b€A;

(d) For all atf A, atfD or "'“'a tf D but never simultaneously;

(e) A/=p is a simple tpBa and
( f) A/%d is a simple pseudo-Boolean algebra, i.e. A/-v = {0,T} .
Proof: It is easy to prove' that (a) implies (b) and that (b) implies

(c), using only 2.7 and 3.1. Now assume (c) and suppose that D^D'tfí):
there is an atfD' such that atfD. From 3.3(iii) it follows that

(a* (a*b) )* (aftb) = 1€D for all btf A, and by (c) and the hypothesis

aftbtfD and so aftbtfD' from where we infer that btf D', that is, D’=A:

D is.maximal. If (b) holds, putting b = 0 we have that atfD or

"'“atfD for all atf A; and clearly not simultaneously because DÍA

implies 0 tf D ; so (b) implies (d); if (d) holds for a given Dtf S) ,

it is easy to see that OtfD' whenever D' 6® , that is, (a) holds.

We have thus proved the equivalence between (a), (b),(c) and (d). It

is a V.nown result of universal algebra that (a) is equ.ivalent to (e).
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If D is maximal, then = {D,A} and it follows from part (d) and

2.8 that if s£D then 5 = 1 while if aGD then á = 5 in A/'Vp, ^us
establishing that (a) implies (f). If (f) holds, then we have easily

that for all D'G $) , if DCD'C A then D'=D or D'=A , and so D is

maximal. D

This theorem is very interesting. For example (d) reminds us

that the maximals correspond to the complete consistent theories,

while (b) is just a technical tool and (c) relates the maximals with
g

a type of deductive Systems known as "strongly prime" (°). Conditions

(e) and (f) are algebraically canonical.

3.8 Definitions. If A is a tpBa, the radical of A, denoted by R(A)

is the intersection of all maximal deductive systems. The a-peircean

elements are PA = (af A : There are b,cSA with a = ((b*c)*b)*b);
the ft-dense elements are Dft = (a6A : "**a = 0} .

These concepts are common in the implicative studies; later we

will point out a logical interpretation of them.

3■9 Lemma. For every D£$ , D is maximal if and only if D is comple-

tely irreducible and D3P5 .

Proof: Clearly if D is maximal then D is completely irreducible. Let

a,b6A . If aGD, as we have that a GD( (a*b)aa,a) we have also that

a*( ((a*b) *a) *a) = 1 € D, so ( (a*b)*a)*a G D. If a € D and bGD then

a*bGD because b€D(D,a,b); and if a í D and bGD then it follows

from 3.7 that a*bGD; in these last two cases we must have (a*b)*a G

G D and so ((a«b)*a)*aGD. In all cases we have shown that Pft C D .

Conversely suppose that D is completely irreducible and P4 CD, and let

D'G be such that D£.D', that is, there is an aGD' with aGD. By

hypothesis, for all bGA, ((a*b)*a)*aG D and so (a*b)*a G D; by 3.7

we must have a*b G D and so a*bGD' from where it follows that bGD'.

We have proved that D' = A, i.e. D is maximal. O

-12-



From tliis Lemma we immediately obtain the following

3.10 Proposition. In all tpBa it holds that RÍA) = t)ÍP.;¡) • n

In section 4 we will improve 3.8 and 3.10 for particular opera-

tions. For the time being we relate the radical with the semisim-

plicity through two d.ifferent results which will offer no surprise

to the readers familiar with universal algebra and congruence lat-

tices.

3.11 Theorem. In every tpBa A the following are equivalént:
. . . 7

(a) A JS semisimple ( );

(b) RÍA) = (1) that is, ííb*c)*b)*b = 1 for a)l b,c6A: and

(c) ííafcü)*a)*a = 1 for a11 a 6 A. O

3.12 Theorem. For every DeSb the following are equivalent:

(a) D is an intersection of maximal deductive Systems;

(b) D 3 RÍA), that is, D D Pít;

íc) A/=p is semisimple; and
id) A/i-p is a semisimple pseudo-Boolean algebra, that is, a Boolean

algebra. n

The most outstanding feature of the second part of this section

ífrom 3.4 to the end) is that it dea)s with results formally analogous

to those which characterize the same concepts of pseudo-Roolean alge¬

bras in terms of the usual implication Í-), fact which confirms the

puré intuitionistic character of these structures.

4. The intuitionistic implication

In the First place, we can complete 3.2 and 3.3 with some additío-

nal properti.es of this operat.ion:

4.1 Theorem. In every tpBa A and for every a,b,oCA the following hóld

í i ) a=»(b=>c) = í a b) =* í a =» c) í Autodistributivity) ;



(ii) a*»(b-»c) = b^(a-»c) (Permutation of the Premises) ;

(ii.i) a ~ b < (b •» c) =» (a ■» c) and a «* b < (c =»a) =» (o ■* b) (Hypothetical

Svllogistn Laws); and

(iv) a«»(b=»c) = (aAb)=>c (Law of Importation-Exportation of the

ímplication).

Proof: The proofs are reduced to easy but complicated computations

in which the properties of the interior X and of the usual Ímplication

• are essentially the only ones used. □

A specially interesting property of =» is the following:

4.2 Theorem. In every tpBa A holds that R(A) = D .

Proof: If a g , ~'"*a = 0 and it follows from 3.7 that we have agD

for every D g £) maximal, that is, agR(A). Conversely, if we suppose

that a ¿ , then I(~’"*a) = "'’^a t 0 from where we infer that there

exists a Dg £> maximal such that "1’’asD, and therefore a é D, from

where a ¿ R(A) follows. O

The previous property, logically interpreted, affirms the coinci-

dence of two types of "almost certain" elements, i.e. those which be-

long to every complete consisten! theory (R(A)) and those whose (in-

tuitionistic) negation is false (D ). On the other hand the preceding

result gives a simple characterization of the =»-peircean elements:

4.3 Propos i t ion. For all agA, a g P_^ if and only if a = ( (a 0)«» a) »»a .

Proof: In one direction there is nothing to prove. If we suppose that

a g P_^, since P_^ c l)( P^ ) = R(A) = , it follows that a =» 0 = ~’^a = 0
and therefore ((a 0) =► a) =* a = (0=»a)-»a = l>*a = la = a since by its

own definition every «-peircean element is open. □

A more complete and detailed study of the three sets and Pft

and of the relations between them and of them with the radical can

be seen in [f]; the results can be summarized in the two chains of
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inclusions and equalities:

P CP CP = R( A) = D CD = D
■=> -Yr* ** 'VrV *+

f> n B C P = I(P ) = P nB = P nB = R( A) n B = D nB .
*+ =» V> -Irt +♦ =*

Horeover, ** also satisfies 4.3 and parís (i), (ii) and (iv) of
g

4.1 ( ). -v+ does not satisfy any of the previous results.

Although the preceding results are interesting from an algebraic

point of view, its importance depends on the result we state next

and which says that the operation -» completely characteri7.es the

structure of the topological pseudo-Boolean algebras.

4,4 Theorem. Let A be a pseudo-Boolean algebra and * a binary operation

on A which satisfies the following properties:

(1) a*a = 1 ; (2) a*(b*c) = (a*b)*(a*c) ; (3) a*(b*c) <a*(b*c) ; and

(4) (a*b)*c<(a*b)’C for all a,b,c6A . Then the unary operator on

A defined by la = l*a is an'interior operator on A (that is, A is a

tpBa) such that a -»b = a*b for every a,beA .

Proof: Using (1) to (4) we can step by step prove (5) a*l - 1 ,

(6) if a < b then c*a<c*b , (7) l*a<a, and (8) l*(a*b) = a*b . So,
2

if we put la = l*a, then we have seen that II = 1, Ia<a, I a = la;

and then using (2) to (4) we also obtain Ka-b)<Ia-Ib , that is, I

is an interior operator. Finally if a ■* b = I(Ia-Ib) = 1*((l*a)•(l*b)) ,

using (2),(3), (4), (6) and (8) we obtain a =» b = a*b. □

A half of the conclusión of this theorem can be stated by saying

that »» is the unique binary operation on a tpBa which satisfies (1)

to (4) and la = l=*a .

In the first place, an algebraic consequence of this result is that

we can define the topological pseudo-Boolean algebrar, as an equational

subclass of the algebras of type (1,2,2,2,2). In the second place, the

logical importance 3.1 and 4.4 have together is that they allow us to
9

gtve a formalization of the intuitionistic modal logic IM4 ( ) in

-15-



which the ooncept of necessity does not intervene at all, being suhs-

tituted by axioms and rules for a new connective, tbe "intuitionistic

implication", which at the present situation deserves with no doubt

a more proper ñame, and whichwe would maybe classifyas"super-modal"

sentence since it seems to combine "de dicto"and "de re" modalities

on all its terms.

Specifically, having 1.3 in mind, the previous theorem suggests to us

the following set of axiom schemes:

p-»p

(p-»(q-*r)) -► ((p =» q) =» (p -► r) )

((p -» q) =* (p r)) -► (p (q »»r))

(p«»(q->r)) ->(p«»(q-»r))

((p =» q) =» r) -+ ( (p ■» q) -*■ r)

that together with the intuitionistic ones and with the two deductíon

rules

(MP) {p,p-»q} I q

(MP~ ) { p,P q) I q

will develop the same logic IMM. In this situation the necessity ope-

rator is a derived operator which could be defined, for example, by

(Def) Lp = (p«*p)»p .

We don't known if this is the more adequate definition of L in terms

of •* ; this would also depend on the adoption of a philosophical in-

terpretation of the "intuitionistic implication" •» and its relation

to necessity. We have made no attempts to examine this matter although

it seems a quite interesting one, specially after the results we have

shown.
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NOTES

(*) This material constitutes a portion of the author's Ph.D. Dis-

sertation.

2
< ) With respect to the pseudo-Boolean algebras, also called Heyting

algebras or in their dual form Brouwerian algebras, £McKT] and

[Ra] can be read; some special techniques are inspired in [p]
and flfj . The theory of abstract logics which is used derives from

the one formulated in [BB] and [BS] and has been developped by

V. Verd(5 in [Vl]and[V2] . Note that we use some terms of the for-
mer in a slightly different sense.

(^) The weak implication is mentioned in QPo] and the intuítionistic
one in [m], although we ignore if for the first time.

4
()If L = < A , C > and L’ = <A' , are two abstract logics,

a bilogical morphism of L in L' is a mapping h of A onto A'

such that C = h~*»C'«>h . In these conditions there exists a

lattice isomorphism between the closure Systems of the closed sets

of both logics such that the properties of one of them (as e.g.

2.3, 2.5 to 2.8) are transferred from one to the other.

(**) For us a simple algebra is the one which only has two different

congruence relations. It is obvious that a tpBa is simple if and

only if B = (0,1) and 0¿1 .

(^) For a very wide class of implicat.ive algebras the deductive Sys¬

tems which satisfy the condition of being prime with respect to

the operation aob = (a-b)-b are called "strongly prime". In the

implication algebras of [Ra] and the Sales algebras and Wajsberg

algebras of [Ro] this operation is effeetively a supremum. In the

case of positive implication algebras (alias Hilbert algebras),

in [Pl] is proved that that they coincide with max.imal deductive

Systems.

-17-



7 . .

( ) We understand by a semisimple algebra the one which ís a sub-

dírect product of simple algebras.

( ) We want to emphasize Pw = R(A) for its analogy with a property
of pseudo-Boolean algebras we have not yet seen anywhere, namely

P_= R(A) . We observe this is a purely implicative result which

for its proof uses the negation. We ignore if it remains valid

in implicative structures without a negation, e.g. Hilbert

algebras.
9

( ) Observe that 4.4 remains valid if we change "pseudo-Boolean"

for "Boolean". Therefore this remark applies in the same way to

the classical modal logic S4 , fact which has sorae interest, too.
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