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FOR WHICI JACOBT VARIFTIES IS STNG 6 REDUCTIBILE?

Introduction

In this paper by a curve we understand a one-dimen-
sional, projective, non-singular and irreducible scheme
over C.

Let C be a curve of genus g and denote by J its jaco-
bian variety.

By Abel's theorem, the points of J may be canoni-
cally interpreted as the linear equivalence classes of
divisors of degree 0 on C, or, once a divisor class of de-
gree n has been fixed, as the linear equivalence classes
of divisors of degree n on C.

In particular, fixing a base point on the curve, we
get a map of the symmetric powers of the curve to the Ja-
cobian

d)

C( — ]

By Riemann's Parametrization Theorem, the image of
this map for d=g-1 (usually denoted by W:_l or Wg") is a
translate of the theta divisor of the canonical polariza-
tion of J. Moreover, Riemann's Singularity Theorem says
that the singular locus of wag_l is the sct of linear
equivalence classes of divisors of dimension at least

equal to one ([K] p.184 Coreollary). So, its study fits

naturally in the theory of special divisors.




It is proved (sece [A,C], §2 and [F,L] §2), that the

r
sets W
d

of points of J wnich represent linear equivalence
classes of divisors of degree d with dim |D| >+ may be
given natural scheme structures when we realize them as
the locus where certain homomorphisms of vector bundles
on J drop rank. The schemes thus obtained together with
the restriction of the universal bundle on Cx . represent
the functors that assign to every scheme X the families
of divisors of degrece d and dimension at least r parame-
trized by X.

By general results of Fulton and lLazarsfeld [F,L]
p-27t corollary), it is known that Wg is ir'r‘educibl»e for

a generic curve if p=g-(r+¢t)(g-d+r)> 0. Tn particular,

Sing ©- W:Z is irreducible for C generic when g> 5.
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When g-4, if C is non-hyperelliptic, it is the inter-
section of a quadric and a cubic surface in 1}"‘7 and qu con-
sists in two points corresponding to the linear series
cut by every system of generators of the quadric, which
come to coincide when the quadric is a cone ({H} (5.2.2)
and (5.5.2)).

When g-3 W]2 is non-empty just when C is hyperellip-
tic and for g< 2 it is always empty.

The aim of this paper is to find all curves for

i
which Sing @- Wg_] is reducible.

Our result is:

Theorem: Let C be a curve of genus g >5. The singular lo-



cus of the theta divisor of its jacobian Sing 6: W
with its natural scheme structure is reduced, and it is
reducibie if and only if € is of one of the following ty-
pes:

a) trigonal

b) supereclliptic, that is to say a double cover of an
elliptic carve (also called elliptic-hyperelliptic)

¢) an unhbranched double covering of a genus 3 curve {(and
so g=5).

Note that the reducedness statement is false for a
genus four curve whose canonical model is contained in a
quadric cone. Then the two points of Wg for a generic
genus four C come to coincide.

The author wishes to thank professor De. Gerald FE.
Welters for his guidance during the preparation of this

work .

I Reducibility of W' |
-

For hyperelliptic curves the locus W;_l is well known
to be irreducible ([A,M] p. 212). Hénce, we shall assume
in what follows that C is non hyperelliptic.

We shall use the ideas of Fulton and lLazarsfeld in
their proof of the irreducibility of WS (remark 1.8
[F1.]). By using their construction of the set of special
divisors we get the two following sufficient conditions

1
for the irrcducibility of wg—l'



. 1
a) dim Wg_] - p = g-4
b) cod . (Sing Wé_

Wo ot

)22

Condition a) holds for every nonhyperelliptic curve
(lA,M] prop. 8 p. 209 or [M] Thl). Moreover, in this ca-
se, as pointed out by Fulton and Lazarefeld in their re-
mark named above and proved by Kempf and Laksov ([K,L] p.
160-162), Wé_l with its scheme-theoretic structure is
Cohen Macaulay, so equidimensional.

In particular condition b) can be written as:

dim Sing Wi | <g-5.

We shall study separately the case g-§.

We claim:

Lemma 1| If g26 and dim sing W;_lz_g—s then C is either
trigonal or superelliptic.

Moreover, for trigonal and superelliptic curves it
is known that W;_l is reducible ([A,M] p.188 and [Sh]
(2.5.2) p. 212 respectively). So, in case g> 5 the lemma
yields the irreducibility statement of the theorem.

Proof of lemma 1:

1t is known ({Ma] lemma 6 p.164) that W;_‘C sing W;_

|
. . 1 2
For a point L in wg—lﬁwg—l’ the Langent space to
W;_l at ILl may be interpreted as the subspace of the tan-

v :
gent space to the Jacobian H°(c,K) , ortogonal to the ima-

ge of the Petri mocrphism:



P: H°(1) @ (Ko L"') — 1K)
(compare [S,D} p.162 lemma 2.5).
So

sing W]g_I - wg—l U A

where A denotes the set of equivalence classes of divi-
sors of degree g-t and dimension one for which the Petrvi
mofphism is not injective.

As C is non-hyperelliptic, dim W:‘l <g-5 ([M] th 1),
so we must just study the second term.

lLet 1. belong to A. Tf 1, has no fixed points we

have an exact sequence ([S,D] lemma 2.6)

0+H%(Ke L72) — n®(1)e #%(ket."ly —F . (k)
and, as we are assuming |L|] € A, we must have h(Ke |,"2)#0

Since Ke],—2 is a divisor of degree 0, the above con-
dition implies KrLZ, i.e., L is a #6-characteristic. As
the set of O-characteristics on a curve is finite and we
are assuming g > 5, we deduce: we must look for curves for
which the variety A has a component W with dim W> g-5 and
whose generic point | corresponds to a divisor with fi-
xed points, that is to say WCW;_zbwl (here f\nd in what
follows Wi will stand for Wﬁ).

As € is non-hyperelliptic dim W <g-5 (IM] th 1)

1
g-2
and equality holds only in the following cases ([Mu] Ap-

pendix, p. 348).

a) Trigonal curves



b) Superelliptic curves
c) Non-singular plane quintics.
cases a) and b) are allowed in the lemma. As for c¢) it is

easily shown by using the fact that the canonical system

is cut. by plane conics that sing W:. - W§ has only one
point. In fact, a divisor in W_ corresponds to a linear

5

series with a fixed point peC plus the residual divisor
cut by the pencil of lines through another point Q€C. If
P)éQ one can check that this divisor has dimension
exactly t and that the Petri morphism is injective, so it
corresponds to a non-singular point in WS. If P=Q we get
the point of WS.
Suppose that C does not belong to any of the listed
cases. Then A has a component of dimension g-5 if and on-
ly if W;‘Z has a component X of dimension g-6 such that
the generic point of X is a diviéor class of dimension
one and the generic point of )(+Wl is in A. We shall prove
that this is imposible.
Lemma 2. lLet I. be a divisor with h®(L)=2 and degree g-1
such that for a generic point P of C L+P does not satisfy
Petri's condition. Let Z;zl P be the fixed part of the
divisor K-L. Then K-1- 3. % p. = 2D where dim D2 1.
Granted lemma 2 let t be the number of fixed points
of a generic divisor k-L. As L describes X, X—L-Z;’Tl p;=

. s 2 .
=2D moves in a swubvariety X' of wg—f and D describes a

non-empty suvbvariety Y of w:g—t)/Z'



It is clear that dim X'-dim Y. Moreover, as XCX'&Wt

dim Xf_dim(X'tWt) = dim X'+t

dim Y = dim X'> max(dim X-t,0) - max(g-6-t,0),
Therefore

max(g-6-t,0) < dim Y < dim W{ _ ), <((g-t)/2)-3

where the last inequality follows from [M] th.l.
We get
3<(g-t)/2<3

Therefore dim W; = 0 and this is impossible as we

are assuming that C is neither hyperelliptic nor trigo-

nal. This concludes the proof of lemma 1.

Proof of lemma 2:
As P is generic in C L+P bas P as fixed point and
Ho(L+p) = 1°(L).

Embedding H®(K-1L-P) in H%(K-1.) we get a commutative

diagram
HO(L+P) @ HO(K-L-P) —F . n°(K)
0 —» B — (L) @ HO(K-L) — T . n°(K)

where B denotes the Kernel of the Petri morphism.
Condition L+P does not satisfy Petri's condition is

written now as

BN(H%(LYe HO(K-1.-P)] £ O



Note that dim B 2. in fact by lemma (1.5.1) in [ Sh]

dim B< 2 and it cannot he one: otherwise, as B cuts all
HO (e HO(K-1-P) it wonld be contained in their intorsec-
tion. But

N ("7 re n(k-1.-ry} are [ N n(k 1M 0
PeC

Ped

Now we map C by the complete linear system without
fixed points

i p
. . y Y PARY
1x.|,.izlri| in fKL 3op w5

We claim that under the above conditions, the image cup -
y 2

ve U is a conic.

For this purpose lel us consider the foliowing dia-
gram deduced from above

Pi(B)Y c.___, () e HY(K-1.- £rL)

The space ﬂ‘(ll“(l,) w HO(K-1.- Xl’i)) H‘; is five dimensio-
natl and conbains one iwmage of Segre's cembedding

2.9
|PI x H‘Z'—*‘ﬂ'g

where

P wn’ ) A TR TS 2P

. . . . 5 .
and (B} is a line in this T’ which does not cul Ime
becavnse B does not countain decomponible elements.



Our hypotheses is that for every point ME(TC(JPZ)\’ y
2

if we denote by I, the corresponding line in W<, the

M
three dimensional linear subvariety of ll‘5 which contains

1 . . . . N
(P x I,M) cuts P(B) in a point. Call this point v (M).

In this way we get a map
V: T —— P(B)

Moreover ¢ must be injective, otherwise W(B) would
cut. the intersection of the linear spaces generated by

?( w!x l_.M) and ol ll’l x LN) N/M  points of €. This is
easily seen to be ¢( ]I" x “'Nn"l\l)) and that would contra-
dict the fact that P (B) does not cut Im ¢.
So € is rational. As C is mapped onto C by a comple-
te linear system of dimension two, C must be a conic.
Hence we have K-l..—.i Pi = 2D, dim D] >1 as claimed.

i-1

Il Reducedness

Before dealing with the irreducibility in case g-§
we want to prove the reducedness statement in general.

Assume first that € is hyperelliptic. For such a cur-
ve w;~l= wg—3 as it is easily seen by using the functo-
rial definition of the locus of special divisors. For any
curve Wk has the correct dimension p -k, so it is Cohen
Macaulay ([ F,L] remark 1.8 and [K,L.] p. 160-162)) and it

is irreducible. So, to prove the reducedness it is enough

to prove that it has a nonsingular point. But that is ob-



vious (for k< g) by taking a point in wk_wi and computing

the tangent space to Wk in that point by means of the
Petri morphism.

Were C non hyperelliptic and W;_] non reduced then,
as we have remarked that W;_l is Cohen Macaulay of dimen-
sion g-4, one of its components would be contained in the
singular locus. So, using the notations above, we would
have a component. X of dimension g-§5 in W;‘Z giving rise
to a component for dimension g-4 in A. sut then, by lemma
2, for a generic L in X and letting QZ‘ I’.l be the fixed
part of K-L we would have K-I- i: P. o= 2D dim|D|>1. When

i-1
I. moves in X we would get a non-empty subvariety of dimen-
1
sion g-5-t in w(g—t)/Z
So
1
_g5.t < i < -t -
g-5-t < dim w(g—t)/Z < ((g-t)/2)-3
where, as before, the last inequality follows from {M]
Th. t.
So we have (g-t)/2 < 2 and this is impossible as

C is non hyperelliptic.

I1I The case g=5

In this paragraph C will denote a curve of genus §
neither hyperelliptic nor trigonal. We shall not rule out
the superelliptic case, both because we do not need it to
apply our method and For the independent interest of its

study.

- 10 -



In our situation, by Noether's Theorem and FEnriques-
Petri's results {(see [S D}), C is the complete interscc-
tion of three gquadrics in ]P4.

The linear series of degree four and dimension one
on such a curve are cut out by the systems of generators
of quadrics of rank 4, i.e singular quadrics, contaning
the curve ([A,M] lemma 4 p.192). The quadrics of v con-
taining the curve form a net with base locus C. The condi-
tion of degeneration for a quadric is given by the va-
nishing of the determinant of jits associated matrix which
is a degree five polynomial. Therefore, the degenerate

quadrics containing the curve yield a plane quintic. The

1
4

of points over every point of the quintic corresponding

variety W  is a double covering of this curve, the couple
to the two different systems of generators of the qua -
dric. The discriminant points correspond to the guadrics
of rank 3 through C.

In Ch VII of [Be], Beauville studicd those varieties
which are obtained as the complete intersection of thrce
quadrics in " n-=2k and their associated double coverings
of a plane curve of degree n+l. lle proves that both cur-
ves have at most ordinary double points. Moreover, the
covering map is ramified precisely at the singular points
of the covering curve and at those points the covering
involution does not interchange the branches. It follows

in particular that the covering curve is reducible if and

T




only if the image curve is.

Accordingly, we study the cases where the plane quin-
tic decomposes. Were it to happen, the plane quintic
would contain either a line or a non degenerate conic.

If the plane quintic contains a line, this corres-
ponds to a pencil of singular quadrics through C with a
common vertex (IBe] lemma 6.8). By proyecting the curve C
from this point, we obtain the complete intersection of
two quadrics in IP3 (projection of any two quadrics of the
pencil). So, the image cu-ve F has degrce 4 and genus
one. As C has degree eight and the center of projection
does mnot belong to C (otherwise it would be a singular
point on C}, the morphism is 2 to 1. So C is superellip-
tic.

Conversely, when C is syperelliptic the morphism CE»E

* from the variety of linear series

induces a morphism ¢
of degree 2 and dimension 1, which is isomorphic to F,
into Wi. So, Wd1 must contain an elliptic curve and by Hur-
witz's formula applied to the double covering of the pos-
sible components of a plane quintic, this quintic must
contain a Line.

Assume now that the plane quintic decomposes into a
non-singular conic and a cubic. The points of the conic
correspond to a family F of rank four quadrics in 11’4 con-

taining C whose coefficients are given as quadratic poli-

nomials in a single parameter, that is to say, for a gene-

- 12 -



4

ric point of 1 there are two such quadrics containing
it. Moreover, by applying lemma (6.12) 2 of [Be]l to our
situation we obtain that the set of vertices of the qua -
drics in F form a line 1.

We project C from L and we want to show that the mor-
phism is 2 to 1. For this purpose we need to show that
every 2-plane containing 1. and a point. P of C contains
another point. In fact 7" either cuts the quadrics of F in
a family of degenerate conics with vertex moving in L and
containing P or is contained in them. The latter situa-
tion cannot occur for a generic quadric in F. In fact C
is the intersection of any three independant quadrics
containing it, so, it is the intersection of three qua-
drics in F. If » were contained in a generic quadric in F
it would be contained in C, which is imposible.

In_H\e former case, in every degenerate conic one of
the lines goes through P and so the set. of such lines is
a pencil with Kernel in P. As F is a quadratic family,
so is the family of conics obtained by section with n, so
the remaining set of lines must constitute another pencil
and its Kernel is the point we were looking for.

Moreover, no tangent line t to a point of € may cut
L. Assume that this is not the case and call 0 the inter-
section point of t and L. The line t must be tangent to
every quadric containing C, in particular to every qua-

dric in F. But this is impossible if the vertex Q' is any

- 13 -



point of L different from @, as the section with » is a

conic with vertex in Q'.

So, we have proved that the morphism C —C is 2:1
and unramified. llence C is nonsingular. Moreover L cannot
cut € because the points of L are vertices of quadrics
containing € and the curve is the complete intersection
of those quadrics. So € has degree 4 and it must be a ge-
nus 3 curve.

Conversely, if C is an unramified double covering of
a genus 3 curve Ce— E then the Prym variety associated
to this covering is the jacobian of a genus two curve
(IMn] p.344 Th), hence its theta divisor E is a genus
two curve. But the linear series in W‘“ whose image in C
are canonical divisors are precisely those parametrized
by 2 (IMu] p.342 Prop.). Hence W; contains an irreduci-
ble genus 2 curve. By Hurwitz's formula we deduce that in

this case the quintic must contain a conic.

T



This ends the proof of our theorem.

Note: Possibilities a) and b) in our  theorem arec, of
course, incompatible. 1In fact, on a canonical model of a.
curve trigonal and superelliptic at a time, the plane
generated by a line containing a trigonal divisor and the
center of the superelliptic projection ([Sh} p.211) must
contain at least 6 points, so the curve would have a g%
and should be either hyperelliptic or of genus 4.

Possibilities b) and ¢) may occur simultaneously for
a genus five curve. Moreover, unlike the higher genus ca-
ses where the superelliptic structure is unique ([Sh]
p.211), a curve of genus five may have several (five at
most) superelliptic structures, each corresponding to a
line in the associated quintic. It may also be a double
covering of a genus three curve in two different ways
(and in this case the curve is necesarily superelliptic
because, if the plane quintic contains two non-degenerate
conics it must also contain a line).

All the cases listed above actunally occur because
Beauville's construction recovers the curve from the

plane quintic and a @-characteristic on its normalization.
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