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0. Introduction. The aim of this paper is to prove the existence
and smoothness of the density of the probability law on R™ induced

by the solution of the stochastic integral equations in the plane

xt o Xt [a*(x yawd + B*(x ) ar], i=1,...,m, (0.1)
z j v’ r
{0,2]
2 1 d . . R
ZGII+ , where Wz = (wz,...,wz) is a d-dimensional two-parameter

Wiener process, and assuming some conditions on the coefficients
AE and Bi. If these coefficients are globally Lipschitz functions,
it is known (cf. Cairoli (2], Hajek {[4]) that this system has a
unique continuous solution, which has a particular Markov property.
There exists a transition semigroup corresponding to these Markov
processes, but this semigroup acts on continuous functions over the
sets of the form {(x,t): x>s} L {{s,y): y>t}. Then, we cannot

expect the probability distribution of Xz to satisfy a second order

partial differential equation.

In the case of an ordinary stochastic differential equation
with respect to the Brownian motion, Malliavin has developed in [6)
probabilistic techniques to show the existence and smoothness of
density for the solution of these equations under Hormander's condi-
tions. Alternative approaches to Malliavin's theory were given by
Shigekawa [7], Bismut [1]and Stroock [8]. The extension of Malliavin
calculus to the case of two-parameter Wiener functionals is straight-
forward. In Section 1 we have briefly discussed Shigekawa's presenta-
tion of Malliavin Calculus adapted to functionals of a multidimensio-
nal Wiener sheet. However when we apply this stochastic calculus

to the solution of the system (0.1), some technical difficulties



appear, in relation with the following facts:

X i Kk,
a) The inner products <sz’ sz>H (in the notation of Shigekawa)
are not solutions of a similar system of equations, because the two-
parameter stochastic differentiation rules involve the presence of
2 2

. L L}
xR+. z,< z zzzz)

double integrals over the set {(z,z')ER 1 10 2

L
(ef. [10]).

b} Unlike the one-parameter case, there is no flow of transforma—
tions of R" naturally associated to the system (0.1). Also, the
solution of a linear system cannot be expressed as an exponential
(because of the two-parameter stochastic calculus) and is not inver-

tible, in general.

For these reasons, in the development of Malliavin calculus applied
to the functional Xz we have avoided the use of Ito's formula, and
the fact that X; (and other functionals deduced from Xz) belongs to
the space H, (in the notation of Ikeda-Watanabe [5]) is proved by means
of a direct approximation method. To do this, a good class of processes
is introduced in Section 2, and in Section 3 we show that the process

X = {x, ze[o,zo]) is included in this class.

Section 4 is devoted to prove the non-degeneracy condition, follo-
wing the ideas developed by Stroock in Section 8 of [9]. Wwe remark that
the two-dimensional character of the parameter set makes this demonstra-
tion a little simpler and, in fact, we do not need estimates for the
inverse of the solution of a linear system of equations in the

plane. In conclusion, the existence and smoothness of



the density of XZ (at any point z outside the axes) is obtained as-

suming that the vector space spanned by the vector fields A A

1000 fge

VA, 1<i,j<d, A(AA ), 1<i,j,k<d, ..., at the point x is
i 5% < <

Rm. Here AviAj denotes the covariant derivative of Aj in the direc-

tion of Ai' This property is strictly weaker than the restricted
Hormander's conditions, which are expresspd in terms of Lie brackets

instead of covariant derivatives.

1. Elements of Malliavin calculus. The set of parameters will be

T = [O,SO] x [O,to], with the partial ordering (sl,tl)i (SZ'tZ)

if and only if s ,<s and t t

158, 1< (sl.t1)< (sz,tz) means that

o1

1<52 and t1<t2. Iif zl<22.

We put Rz = [0,z], and zlez2 = (sl,tz) if
2

zl=(sl,t1) and z2=(52,t2). The increment of a function f: Ry— R

s (21'22] will denote the rectangle

{z€T: zl< Zizg)'

on a rectangle (21'22] is given by f((zl,zz]) = f(zl) - f(zlezz) -
2
- f(zapzl) + f(zz). The Lebesgue measure of a Borel set B C R

is denoted by |B]|.

Our probability space (2,F,P) is the canonical space associated
to the d-dimensional two-parameter Wiener process, that is, 8 is
the space of all continuous functions w: T—-—»Rd which vanish
on the axes, P is the two-parameter Wiener measure and F is the com-
pletion of the Borel o-field of @ with respect to P. We also consider
the increasing family of o-fields {Fz, 2€T}, where Fz is generated
by the functions {w(r), weQ, r<z} and the null sets of F. The
family{}‘-z, z€T} satisfies the usual conditionsof [3]. The following

subset of @ plays an important role:



H = {w€Q: there exists o € L2(T), i=l,...,d, such that

w(z) = & () dr, for any z€T and for any i}.

H is a Hilbert space with the inner product
et et
> = .
<m1,w2 H j ﬁ: ml(r)wz(r) dr
T i=1

Any measurable function defined on the Wiener space (9,F,P) is called
a Wiener functional. A Wiener functional F: @ — R is smooth if

there exists some n>1 and a C2—function f on Rn such that

(i) f and its derivatives up to the second order have at most poly-

nomial growth order,
(ii) Flw) = f(w(z ),...,w{z )) for some 2z ,...,z €T.
1 n 1 n
Every smooth functional is Fréchet-differentiable, and we have

DF(w ) (w) = ﬁ; i" A, (2))1r 0 (z)) w(z.).
° b Bx‘] ° .

We also need the operator L defined on smooth functionals as follows:

LF(w) = 5; g (w(z ),...,w(z ))I‘(z 2, ) - DF(w)(w),
i,k= ax ax

where r‘(zi,zk) = (xi/\xk)(yi/\yk)' if z, = (xi.yi), i=1,..,n. Note that

I is the covariance function of the Brownian sheet.

For any p >1, Lf{ will denote the space of Wiener functionals F:
Q ——— H, which are valued on the space H, and such that

E(IIFHS) <w, If we fix we & and a smooth functional F, DF(w):
H —— R 1is a continuous linear map, and, so, it may be considered

as an element of H. In this sense we have DFGLp

>1.
4 forany p>1



Let H(pl,pz;p3), PsP5ePy >1, be the space of real valued
Wiener functionals F such that there exists a sequence of smooth

functionals {Fk, k >1} satisfying:

. Py
(a) Fk - Fin L ,
. . P2
(b) {DFk, kil} is a Cauchy sequence in LH , and

14
(c) (LFk, k>1} 1is a Cauchy sequence in L 3.

For a Wiener functional F€ H(pl,pz;pa) we define DF = lkim DFk

and LF = lim LFk, and it is proved that these limits are uniquely
determined by F. H(pl,pz;pB) is a Banach space with the norm

Wl + HDFIl + (ILFll_ . weset H = A H(p,p;p).
Py P2 F3 .

Let Fle Hw for i=1,...,d, and let u: Rd — R be a twice

continuously differentiable function such that u and its first
and second derivatives have at most polynomial growth order. If we

1

set F = (F ,...,Fd), then ueoF € H_, and the following differen-

tiation rules hold

u ' i
D(uoF) = (ax o F) DF",
i
and
32u i J au i
L{uoF) = (3—;:3—;(; o F) <DF”,DF >H + (axi o F) LF .

The next result is the two-parameter version of Malliavin's
theorem. The proof of this theorem in the one-parameter case can

be generalized without any problem.
Theorem 1.1 (cf. Ikeda-Watanabe, [5]). Let F = (Fl, vve,F")  Dbe an
]Rm—valued two-parameter Wiener functional. Assume that F satisfies

the following two conditions:

-5 -



(i) F'€H_, i=1,...,m and also the class defined by

¢, = (F, <DF1,DFJ>H, LFYs i,3=1,...,m

satisfies that COC Hw. Furthermore assuming Cr—l C Hw we de-

fine the class Cr by

C =Cr_1u{<DF1,DG>H; GgeC

v i=l,...,m}

r-1’

and assume that Cr C H_ for every r=0,1,...

(ii) Setting QJ = <DF]',DF“]>H we suppose that (det Q)_le LP for

all p>1.

Then, the probability law of F is absolutely continuous with respect
to the Lebesgue measure and it has a infinitely differentiable densi-

ty.

2. A class of two-parameter processes. In order to prove that the so~

lution Xz of the stochastic differential system (0,1) (assuming that
the coefficients are smooth and have bounded derivatives) satisfies
condition (i) of theorem 1.1, we are going to introduce a rich class
of processes /fm which includes the process Xz, and such that

#_ has the following properties:

(i) If F €4 , then erHm for any z€T.

(ii) If F,GEH_, then the processes LF = (LFZ, z€T} and <DF‘,DG>H=

= {<DF_,DG >, z€T} are also in H_.



Consider the processes of the form Fz(w) = f(z,m(zl),...,w(zn))

where:
(i) zl,...,zn are n fixed points of T, not on the axes.

{ii) The functions f({(z,») and all their derivatives have at most

polynomial growth order and are continuous functions of z.

(iii) For any 2z€T, the function (xl,...,xn) —-»f(z.xl....,xn)

depends only on the coordinates xiend such that zii z, i=1,...,n.

With these assumptions {Fz, z€ T} is a continuous and adapted pro-
cess such that Fz is a smooth functional for each z€T. We will

call such processes, smooth processes. Note that for any h€H

OF_(h) = i 2 L (zr0(z)), e culz)) 0z =

£, (z,m)hd (r)ar,
143 e R J

z
where

f
£.(z,r) = i A (zielz,)yeewlz )1, (1),
d i1 ax‘i] 1 n’ "Ry

The process gj(z,r‘) vanishes unless r<z. More generally, we defi-

ne, for jl,...,jNE(l,...,d),

£, . (z,r,oia,ry)
APRRENY 1 N

n N
3

f
= Z - ;—x-ﬁ-———a-—JN— (Z.m(zl),...,w(zn)) le (rl)... 1Rz (rN).
frreceetnT 1,0y iy iN

These processes vanish unless z_>_r1V Y Ty and they will be

called the N-th derivatives of F. Observe that for any h€H

-7 -



DE, . (zyro a0, ) (h) = £, . (z,r ,...,r ,r)ﬁ‘j(r‘) dr.
RFEEENM 1 N Rz Jpeeedpd 1 N
For any subset K= {e<.,..<¢e} of {1,...,N} we put kS =

1 n
= {1,.e MoK, §(K) = §goy euv g, and r(K) =rei,....re . We define

d n N
9 f
16 ¢ (z,r(KS)) = Zl Z,0(z, yerms0(z_))
K3 (KD e;l( i< il,.z..,iN=1 axI1 | axIN ! n
€ 11 lN
'(H 1, .(r€)>(nwj€(zic)>. (2.1)
eek® Zi, c€K

The expression (2.1) represents a multiple stochastic integral with
respect to the Brownian sheet. We remark, however, that these sto-
chastic integrals will not follow the rules of the stochastic calcu-

lus because the processes EJl (z,+) are not adapted. We will

Jn
write Ii instead of I{i}’ and 1(1,“”1\”5(2) for I{l,...,N}Ej(w)(z’r(M)'

Note that I¢;=g.
For any integer M>1 and any real p2>1l, we set

_ py,1/p
||F||p'M = ““?é? [F, I}

1
N > sw [E(sup T £z, (k)P P,
N=1 kc{1,7..,N} r_,e€K zeT
where || +|| denotes the Hilbert-Schmidt norm. Let Hp y be the closed

hull of the family of smooth processes with respect to this norm. The

processes of #p are continuous, and if F € !’fp - then FZEH(p.p;p)
’

M

for any z€ T, Set # = n N # . For any F€/4 there exists a se-
L p,M ©
M>1 p>1 n
quence of smooth processes FI such that lim E(smzxp IFZ-FZIP) =0 for

all p>1, and such that (Fn, n>1} 1is a Cauchy sequence for all



norms |} . We will call (Fn,nil} an approximating sequence for the

p,M

process F.

Proposition 2.1. Suppose that F and G belong to f/m. Then, the

processes LF and <Dl“,DG>H are also in //m.

Proof. Let {Fn,nzl} be an approximating sequence for the process
F. Without loss of generality we may assume that F: = fn(z.m(zl),

...,w(zn)). We denote by E? j the N-th derivatives of F_. Then,
1--+3n

LF] = }t > ' (z,0(z,), ... 0(z Iz ,2,)
z ; s KA AR n i’%k

£ . J
J=1 i,k=1 axiaxk

n f, N
- g ; Lj (zralz)), (2 )) wi(z))

axy
1

= i: Egj(z,r‘,r) dr - Ilin(z).
J=1 Rz

We have lim E(sup|LF" - LF"|P) = 0 for all p, because F" is a
n,m z z z

Cauchy sequence with respect to the norms |i-|| . In consequence,

p,M

LF‘z exists for all ze€T, and we may choose a version of the pro-
cess {LFZ, Zz€T} such that lrilm E(Slzlp ILFZ-LFZIP) = 0, for any p.

Therefore, it suffices to show that the sequence of smooth processes

n n
. . Denote b v, .
It Ilp'M Y Vi

the N-th derivatives of LFn. We have

{LF", n>1} is Cauchy for all norms

n n n n
v, (z,r) = § f £... {(z,r,r,r ) dr - 1¢, (z,r.) -t {z,r )},
SO o B, T ! Pa, Ty,

and, by induction we obtain



n 5_‘! n
b, c(Zyr yeee,r,) = ... . (z,r,r,r. yeee,r )dr
APEREN Y 1 N £ Rz RNAPEREN 1 N

(z,rl,...,r‘N).

n
-1 & .(z.rly---,r*N)—Nﬁr.l
N J1

1 APREEN
From this expression it is easy to check that

lim _sup

n mpy _
Lim Sup ye E(sgp T ¥ - v 1) = O,

for any Kc{l,..,N}, N>1, and p>1.

In order to show the second part of the proposition, assume that

G2 = gn(z,w(zl),...,m(zn)) is an ‘approximating sequence for G, with de-
rivatives ¢r‘1 . » and compute
Favesd
1 N
n n afn &,
< > = _n
DFZ, DGz H 2 ‘gl xj (z,w(zl),...,w(zn)) ; 3 (z,m(zl),...,w(zn))
=1 ik=1l axj X5
-I‘(zi,zk)

1

n n
gJR EJ.(Z.P) ®j(z,r‘) dr.
2

As above, we have
R n _.n m _.m p
< > - < > =
}ﬁrrnn E(sgp | DI"Z,DGZ u DFZ,DGZ H{ Y =0,

for all p. Thus, the random variables Fz and Gz belong to H, for any

2z£€T, and there is a version of the process (<DFZ,DGZ>H, z€T} satis-
fying

: P
< - =
lll’}'ll E(sgp ] DF:'DGZ)H <DFZ,DG23'| ) =0

- 10 -



for all p. Finally, it remains to show that (<DFn,DGn>H, n>1} is a

Cauchy sequence for all norms || -|| . Let Bg ; be the N-th de-
FERRY

rivatives of the smooth process <DFn,DGn>H. We have

p,M

n

B, , (Z,r ,eea,r.) = 2; g'.‘. (z,r,r(K))q;r.‘. c (z,r,r(Kc))dr‘,
Jyeeedy 1 N £ KC{I,E.,N) R ii(K) J3(K®)

and, from this expression it is easy to verify that
: n my Py _
lim rs:f%eKC E(sgp 1 I8 I8 ") =o,

n,m

for any KC{1,...,N}, N>1, and p>1.0

3. Some results on stochastic differential equations in the plane

Henceforth, the d-dimensional two-parameter Wiener process in
the canonical probability space (,F,P) will be denoted by W = {Wz, Z€T).
We remember that T=R,, being 2z = (s ,t). Let V=1{V , zeD

) ) o’ o z

be a continuous and adapted M-dimensional stochastic processes such

that 8 = sup E(|V_ |P)< = for all p>1. Suppose that
P zeT z -

o RHR" — R"a R’ and b: R R — L R"
are continuous functions verifying the following properties, for some

positive constant K:

(1) llo(x,y)=atx,y )1l + Iblx,y)-b{x,y")[<K |y-y'|, for any x €R™;

¥,¥y' € Rm.

(ii) The functions x—o0(x,0) and x — b(x,0) have at most polynomial
growth order. That means, [lo(x,0)|l+|b(x,0)] < K(1+}x|¥) for some
integer v > 0.

- 11 -



With these assumptions we have the next result.

Lemma 3.1. Fix r€T and an Fr-measurable random vector u:(ul,...,txm)
such that E([ulp) <« for any p>1. Then, there is a unique conti-
nuous and adapted m-dimensional process Y ={ Yz, z € [r,zo]} satis-

fying the stochastic differential system

i ; j i )
Y, = o 4+ - z][oj(vu,vu)dwu + b7V, ¥ )du], i=1,...,m. (3.1)
9’

2
Moreover, E( sup |y Ip) < C,, and E(|Y(A)|p) < C2|A|p/ )
ze[r,zo] z - 1 -
for any p >2 and for any rectangle A= { zl,zz]C [ r,zo], where C, and C,

are positive constants depending on p, z K, pr and E(|G|p)-
Proof. Using Picard's iteration scheme we introduce the processes

Yé(z) =0,
and

yi (z) = ui + - z][o‘i],(vu,\(n(u))dwi + bi(Vu,Yn(u))du] ,

for any nzo.

Now, applying Burkholder and Holder's inequalities and condition

(i) we obtain, for any p>2,

E( sup 1Y ()Y (2)|P) < &P E(ly, (w)-Y__ (w(P) au .

z€lr,z ] [r,z ]

[o}

It follows inductively that the above expression is bounded by

(C xPIlr,z ) 1) nt) 2 E(lY, (W P) au.
[roz,]

-12 -



In consequence, by condition (ii) we have

p ©
E( sup |Yn+1(z)—Yn(Z)| ) < ,
n z€[r,z_]
o
which implies the existence of a continuous process Y satisfying (3.1) ,
and such that
E( sup IYzlp)<  , for all p>2.
ze[r,zo]
Furthermore, this expectation can be bounded by a constant depending
only on Pz K, pr and E(|a|P). The uniqueness of this solution
can be proved as usual. Finally, the inequality E(IY(A)lp) < CZIA|p/2
can be easily derived using first Burkholder and Holder's inequalities
and, secondly, applying conditions (i) and (ii), and the above remark

on the quantity E( sup |Yz|p). [m]
ze[r,zo]

Observe that in the preceding lemma the process V needs only to
be defined on [r,zo]. Also, we remark that the constants C1 and 02

do not depend on r,

We are going to state a lemma on the approximation of solutions
of equation (3.1) by polygonal paths. For any integer n>1 we consider
the set S" of points (12‘"s°, jz‘"to). i,j = 0,1,...,2". Define
on(z) = sup {ueS™; u<z} and vn(z) = inf {ueS™: u>z} for any

z€T.

Our processes will depend on a parameter A which belongs to an
arbitrary set A, We consider a map r: A—— T. For any 1, let ‘V(z,x),
ze[r(x),zo]} be a continuous and adapted M-dimensional process such
that sup E(|V(z,)\)|p) <= for all p>1. We also consider a sequence

A,z

- 13 -




of processes !Vn(z,x), z€ [r()\),zo”, n>1, with the same properties
as V(z,A) and verifying

lim sup E(lV(z,)\)—Vn(z,)‘)lp) = 0, for all p>1.
n A, 2

We also assume that for all p>1, the mapping =z— V(z,A) is continuous
in Lp, uniformly with respect to A. That means, for any €>0, there

exists 6§ >0 such that

sup sup E(|V(z,A) - V(z',0)|P) < €. (3.2)
A z,z'>r())
lz-z'[< 8

Let ¢ and b be functions satisfying (i) and the next condition (which

is stronger than (ii)):
(ii')  flo(x,y)-o(x',y) 1| + Iblx,y)-b(x",y)| < Klx-x'[(1+]y]"),

for some integer v > 0.

Then we have the following result.

Lemma 3.2. Suppose that for any A€A and n2>1 {Y(z,A), z>r(})} and
(Yn(z')‘)’ z >r{x)} are the continuous solutions of the stochastic dif-

ferential systems

iz, = et (o3 (V(u, ), ¥(u, 0 ))awd ¢ BT (V(uh), Y(ua))au]

(r(2),z]

(3.3)

iz =al) « [03(V, (o (W) 12), ¥, o (W) 12)) QW)

(v, (r(0)Az,z]

+ BHV (8 (w)13),Y, (8 (w),2))du], (3.2)

- 14 -



i=1,..,m, where a(A)} and “n()‘) are Fr“)—measurable m-dimensional ran
dom vectors satisfying sup E(la)|®) < =, and lim sup E(lu(x)-un(X)lp)=
A A
=0, for all p> 1. Then, with the above hypotheses, we have
lim sup E( sup |Y(z,)\) - Yn(z.x)lp) = 0,
nooa 2>1())

for all p>1.

Proof. Using Burkholder and Holder's inequalities we have

E( sup  [Y(z,0)-Y _(z,0)]P)
€lr(r),zy

2clprzy) JE(la()-0 (1]P)

E(lo (Vw2 ), ¥(u,2))=0(V (o (u),2),Y (o (u) 2 ))[P)du
v, (r()),2 ] :

E(Ib(V(u,0),¥(u,0)) = b(V_(6_(1),3),Y (6_(w),3))|P)du
(4,ir()),2)

E(o (Viu,2), ¥ (u,a ) P+ b (viu, 2), ¥ (u,n)) P au
[r(2), z, ["n(”‘”)'zo]

= C(p,zo) {Y +Y,4 Y.

ot Y3 Y h

where C(p,zo) represents a constant which depends only on p and z,

and may be different from one formula to another one. By hypothesis

we know that lim sx;p 11 = 0. Applying conditions (i) and (ii') we
n

deduce the following majorations for the second term.

v, < clp,z) ECllo(V(u,0), ¥ (u,0))-o0(v(e (u) ), ¥ (u,A)) P
v, (r()),2 ]

- 15 -



+

o (v(o, (u),2),¥(u,0)) = o (v (8 (w)A),¥(u,2)) (P

+

llo (v, (6 (w),2),Y(u,0)) = o (V_(o_ (w),2),¥(e (u),2)) P

+

o (v (0, (W) 1), ¥ (0, (W),0)) = o(V_(8_(w),0),Y (o (w),A))1IP) au

<clpz )R sup [E(V(u,M)-Vu )12 % sup [E(1Y(u,) 127 )%)
° u,u’'>r(i1) u>r(x)
|u-u* <8,

+ sup [E(lV(u,x)—Vn(u,x)IZp)]‘/z(l+ sup [E(IY(u,)‘)|2Vp)]y2

u>r(a) wr(x)
+ sup EC(]Y(u,2)-Y(u',2)|P)
u,u'>r(x)
-1’
lu-uTe g,
+j E( sup IY(u‘,x)—Yn(u',X)lp)du , (3.5)
N A
[r(0),z ] we[r{1),u]
o
where 6n= (sovto)Z_n. A similar bound can be derived for Y5 Finally

Y, < C(p,zo)Kpén{ sup E(|Y(u,)|P) + 1+ sup E(|V(u, X)lp)}.

u>r(a) uwr(a)
From lemma 3.1 we know that sup sup E(]Y(u, r )'p)< ©, and
A u>r(n)
1im sup  sup E(1Y(u,2)-Y(u', ) |P) =70, for all p>1.
A u,ur()
-1

|u-u T:sn

Therefore, l‘;;llm skxp YA = 0, and the first three sumands of the

expression (3.5) converge also to zero when n tends to infinity, uni-
formly with respect to A, using (for the first two terms) the condi-
tions that we have imposed to the processes V and Vn. Thus by Gron-

wall's lemma the proof of lemma follows easily. O

- 16 -



We remark that the process Y(z,A) solution of (3.3) satisfies
the continuity property (3.2). The preceding lemmas will be useful
in proving that the solution of a system of stochastic differential
equations in the plane belongs to the class of two-parameter processes

# _ introduced in Section 2.

Proposition 3.3. Consider the m-dimensional continuous process X =

{Xz, z€T } given by the system of stochastic differential equations

i i 3 i .
X = x + [Aj(xr)dvlr + B (Xr)dr], i=1,...,m,

R
z

where xe]Rm, and the functions A;., B"  have bounded derivatives

of all orders greater than or equal to one. Then, the process X belongs

to H,.

Proof. For any n>1 we introduce the process Xn = {Xn(z), z €T} de-

fined by

Xp(z) = x' + ) [adx (o ()l « BUX (o (m)Var],  i=1,....m,

z

i,
Notice that this is a recursive system and, therefore, Xn’ i=l,...,m,

are smooth processes, We are going to prove that (X}‘, n>1} is an appro-

i n)i
ximating sequence for Xl, i=l,...,m. Denote by Eg ) . (z,r ,..
Jpeeedy 1 N

the N-th derivatives of the process X:. First, by lemma 3.2 we have

)

.

. Py _
lgim E(sgp|xn(z)—x(z)| ) =0 for all p>1. If ze(O,so] x(O,tO] and

u = sup{veSn: v<z}, then X;(z) is given by

er;(z) = Xi(zau) + Xril(uoz) - X:‘l(u) + A:’](Xn(u))wh((u,z]) + Bi(xn(u))|(u,z]|.

- 17 -



As a consequence, we obtain

(n)i

CJ (z,r) = (n)i

(u,r)

jn)l(m ,r)+5( n)i (uez,r)- -5

N ——h (x_ (u))c("’k(u PP,z ]) ¢ ALK (u)e] r)

(u z]

+ 39; 0 e M ¥, e) 2]l

Therefore, Ejn)l(u r) is the solution of the following system of equa-

tions

i
o (X (6 (u)))E(n)k

[aA
[vn(r)Az,z] e

E;n)i(z,r) - Ai(xn(q;n(r))) . (s, (), r)aw’

(n)k

+ = (X (o (u)})i (on(u),r)dr] y i=l,.0080 §=1,...,d.

(3.6)

Then, if we introduce the processes {Ez(z,r), z>r} defined by the
system
i

. . 34 i

i i h k h aB k
Ej(z,r) = Aj(xr) + . z][ 3;; (Xu) Cj(u,r)dwu + E;E(Xu)ﬁj(u,r)du] ,

r
(3.7)

applying lemma 3.2 we obtain
lim sup E( sup || £(z,r) - E(n)(z.r)llp) =0
n r z>r

for all p.

wWe need a similar result for the derivatives g(n)1 . of arbitrary

veed
1 N
order and for the stochastic integrals ﬁ(g(n) introduced in Section

2. First we will see that the successive derivatives of the smooth pro-

cesses X; can be deduced by a recursive argument. To do this, define

- 18 -



v, i

a"A
(n)i _ z h (n)kq
th...jN(u'rl""’PN) = T V(X (uD¢; 3 y (1))
e ETS ),
and

(n)i ) avpl (n)ky
B gy (e - Z P a(DE T r (1)
1 v

(n)kv

v J(I )(u r(Iy)),

where the sums are extended to the set of all partitions {1,...,N} =

= Ilu e UL and we have employed the notations of Section 2. We

(n)1

also set mJ = A;(Xn(u)). Then, we can write the following formula

for the N-th derivatives of X;,

(n)i ﬁ; (n)i
g . (z Ty eee,0) = a, . : (o (r.), ry I S
J1 1 N €= Jedyoe J lJe+1'° In €-1
rs+1,...,rN)
(n)i h
+ (o' . (o (u),r. ,...,r )dW
[Vn(rlv...VrN»\z,z] th"'JN n 1 N
. plod (¢ (w),r r.)du] (3.8)
Jl'“‘jN n 1N . )

This expression can be proved by induction on N, For N=1 it reduces
to formula (3.6). Suppose that (3.8) is true for N. Remark that for
any g€&€H we have

p{™ @ = | o™ e

*J
, i yreeyro,r)g” (r)dr,
th-..JN 1 Rz th...JNJ 1’ N

- 19 -



and

(n)i (n)i
le-..jN(z,rl,...,rN))(g) . le-"ij(z,rl,
z

D( .,rN.r)éj(r)dr.

In consequence, we obtain

(n)i (n)i
D(E . (z,r.,...,v,) ) (g) = § o, . . . (e (r ),r,
Jyeeedy 1 N & Rz JEJl...J€_1J€+1...JNJ n e 1
., ,T PR r)éj(r)dr
e-1'"e+l N’
+ 0(9)i . (¢ (r),rl.-~-,FN) éj(r)dr
R Jipeerdy ' m

(n)i h
+ (o, .9 (uw,r ,...,r ,r)aw
XRZ j[vn(rlv...Vvar‘)/\z,z] Rjjeeedyd 0 1 N u

+ B(n)i

- J
A o ry,ridu} gi(r) dr,
Jl-'oJNJ N

(On(u).rl,..

which implies that (3.8) holds for N+1.

i (z,r
3 5 ] ]
Jl...JN 1

V..V rN}, i=1,...,m, jl,...,jNe(l,...,d}, given by

Now, for any r cesTys We introduce the processes £

1

...,rN), zzr‘1

the stochastic differential systems

Ei- s (z!r

i
yeeasly) = § a, . , . (r.,r ,...,r ,T ,
APERRN 1 N e JEJI...JE_1J€+1...JN €’1 €-1"" €4l

i h
ory) 4+ [a, . (u,r ,ee.,r, )dwW
N [(r‘lv...VrN)/\z,z] th""]N 1 NTTu

i
+ B . (u,r,,eee,ry)du],
Jl...JN 1 N

- 20 -



being

avAi K
i h 1
a . . (u,r . .., ) = z —— (X ), (u,r(1.))
th...JN 1 N axkl...axkv u J(Il) 1
ky
oo Cj(Iv)(u’r(I“))’

. v i

i §: 3B ki
B . (u,r,e0a,r) = — (X )E . (u,r(I))
Jyeeedy 1 N ax, e X u J(Il) 1

1 v

k
LX) Ej\()IV)(uyr(I\,))n

i i
and @ (u) = A (X ).
J J u
Here we have used the same notations as above.

We claim that

lhm sup E(

sup ffE(z,r
TireeesTy  Z2T{ve. Ty !

peeeomg -8 (2 I1P) = 0,
(3.9)

for any p.

Indeed, this can be shown by induction on N. We have already remar-

ked that (3.9) is true for N=1. Suppose that it holds for N-1. Observe

that o ( ) i Lto 2hh(x ek ( )
at a | . [T 7 S o is equal to —2 . . (uyyr ,.0.,r
th...JN 1 N axk u Jl-..JN 1 N

plus a polynomial function of the derivatives

avAi

h (Xu) with v>2,
I, ese X
kl k,

and the processes Cg j (u,r(I)) with card(I)< N-1. Therefore, (3.9)
1°°°YN
will follow from the induction hypothesis and lemma 3.2 applied to X =

- 21 -



N . .
= (rl,....rN) €T, r(i) = rlv..)/rN, Yl(r,x) = g% s (z,r. ,.0a,r

(we may fix the indexes jl,...,jN), and V(u,A) equal to the m(2N—2)—di—
mensional process whose components are X; and g?]f(I)(u,r(I)) being i=
=l,...,m, IC{1,..,N}, O < card(I)< N. The processes af{}A), un(x)

and Vn(u,x) would be defined in an obvious way.

By the same method, for any subset K of {1,...,N} we can prove

that

. c (n) Sy 1Py
lim r€§g£K° E(z>v{:upeexc} IIIK£(z.I‘(K ) - e (z,r(K D7) = 0,
el €

for any p, being IKL; the processes defined by the following system

of equations:

i c i c
L&} ey (2P KO)) = E;K ), j(ke- (en) (Ferr (K= LeD)

i c Je
K-{e} aj':j“(c)(r£ ,r{K ))dwr

+ I
€€ K [(V(re,cel(c hAz,z} €

+ 1

(u,r(Kc))dwh + 1 Bi. (u,r(Kc))du],
[(Vir,,c€K Az, 2 | KC) u KT j(Ke)

o
K hj(

aval «
i c _ h 1
Tg (ko) (wr(KT)) = :E: ax o (xu)IKﬂll CJ(II-K)(u’r(Il-K))
T

Ky
IKnIVEj(I\,_K)(u,r(I\,—K)).

and
i c _z 2%t ki
Ty &5ke)(uor(k)) = ax ax (xu)IKﬂI1 53(11-x)(“"(11’K))
k1 kv
K
e I £

R , -K)).
RAI, J(I\,—K)(u r(1,-K))
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The proof of the proposition is now complete. D

4. Application of Malliavin calculus to the solution of stochastic dif-

ferential equations in the plane. In order to state the main result

of this section, we need two preliminar lemmas.

Lemma 4.1. Let Q(w) be a symmetric non-negative definite mxm random
matrix. Define the random variable /\=I$T§1thv. Then for each p>1

there exist a universal constant C = C(p,m) such that

El(det @7P] < c{sup E[(thV)_z(p+m+1)]E[(1+I\)2m+6]}14.
Jv]=1

Proof. See Stroock [9], page 359.

Lemma 4.2, Let Yt: = Yo+Mt+vt be a continuous semimartingale adapted

to an increasing family of o-fields {Ft, t >0} satisfying the usual

conditions. We assume that M = {Mt, tzgl is acontinuous local martin-

gale stuch that Mo=0 and <M>t = b Gids, and we also assume that

Vt = sts, where a and vy are progressively measurable processes
o]

such that the preceding integrals exist. Let S: # —[0,1] be a bounded
stopping time and suppose that sup('ut(w)l,lYt(w)ll <M for any wE€Q
and t<S(w). We fix real numbers 6 > 4n > 0, a,b>0 and p>1.

Then, we have

5 > 5 5
P vedt < aed | agdt > be" < &,
0 0

for any 55_80, where eo depends on p, M, T,a,b,$ and n.

- 23 -



Proof., The proof of this lemma follows the same lines as that of theorem
8.26 in Stroock [9]. For the sake of completeness we will give the main
arguments of this demonstration. First we will show that for all cons-

tants A >0 and B> O the next inequality holds

S 5 1 1, 1,
3[ detiA,f idt > Bi < 2exp [-27 M 2B Aty 2], (4.1)
0

In order to prove (4.1) we may assume that for some 8 >0, [a _(w)| > B8

t

for any w and t. Indeed, suppose that (Bt’ t >0} is a standard Brownian
motion independent of \/ F . Then, the semimartingale Yé =Y, +8B

t>o ® ¢ t
verifies this property, and making B+0 we get the desired result

for Yt. Set Bt = M(At), t >0, being A, = inf{s > 0: <M> >t}. Then

w

1/.)
t7 AL

t
s <M> A
S ~ s
vlat = v2(a Ya"%(a )as > (y R aw? ds
o t 0 s s et u

and, therefore,
s B y B Ag > %

( Yi dt % M"(f (\ro»f{as)zds>/2 - M'l(f < Yudu> ds>
0 0 0 0

1.% As

2

M B %o, B](B( )) - A I‘fuldu>

](B(-)) - M),

{B t>0} is a Brownian motion. If f dt >B, we have
0o

Iv

|v

1,
M—lB/z(o

Iv

(0,B

2

where for any real and continuous function f on [0,B], o [0 B](f) deno-

B ‘B 2
% [f(s)2 - <% f(u)du) ]ds.
o 0

_ 24 -
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In consequence,

< PO ZBlopg o (BE-)7 < MY <Pigy 5i(BC)) < ma% )

{o,8] 0,B]

and applying lemma 8.6 (pag. 343) of Ikeda-Watanabe [5] we obtain the

inequality (4.1).

Now, to achieve the proof of the lemma we fix an integer n>1 and

we compute

S 5 2
P Y dt < ae$, af dat > b
t = t -
0 0

< z; P”‘ vi at < aed | ai dt >n"lpen
= [k=LAs, KAs) [k1as, Eng)
n n n n
1, - _1 - =3 1, - -
< n2/2 exp [—2-7M 2('rb %e n/2n % + a/z 6(5/2) " n) 2] . (4.2)

We take q such that q>n and 8 >2q + 2n. Then for any €<1 we may

choose n such that n< ¢ %d<n+l, and (4.2) is bounded by

e_qzzexp [—2-7M_2(21b_z£(q_n)/2 + azs(s/z)_q_n)_al.

which is less than ¢ for any €<¢.,0

€
Q

Theorem 4.3. Let X = (Xz, 2€T} be the continuous solution of the

stochastic differential system

- 25 =



i i 5o .
X5 = x" + [Aj(xp)dwr + B (Xr)dr], i=1,...,m, (4.3)

R
z

where xeiRm, and the functions A;, B' have bounded derivatives of'
all orders greater than or equal to one. Assume further that the follo-

wing property holds:

v
&7 ﬂiﬁj,
1<4,j<d, Avi(AvjAk), 1<i,j,k <d, ..., has full rank at the point

{P)} The vector space spanned by the vector fields Al,...,ﬁ

X.

Then, for any point (s,t)€T with st#0, the law of the rardom vec

tor Xst admits an infinitely differentiable density function.

Proof. We fix 2z = (s,t) € T with st#£0. We have to check conditions
(i) and (ii) of theorem 1.1 for the Wiener functional Xz. The first con-
dition follows from proposition§3.3 and 2.1. In order to prove the second

condition we set Q1J = < DXi, DXi> From the results of Section 3 we

”
know that

ij | & i 3 d i 1 j by
QY = éga . £, (z,r) gplz,r)dr = &gﬁ . gy (2. r)A (X )ey, (z,7)A (X )dr,

2 z (4.4)"
where, for any r, the processes(é}(z,r), z>r} are defined as the solution
of the stochastic differential system:

i
aAh

i
i i n 9B
tiz,r) = &%+ [ (x 1K u,ryaw” + &
J X u’ u
[rsz} k

k
axk (Xu)cj(u,r)du] . {4.5)

We want to show that E[(det Q) Plce for all p>1. Set A= max VtQV_iIIQ"-
v|=1
Using the estimates for the moments of the solutions of stochastic diffe-

rential equations in the plane, obtained in lemma 3.1, we deduce that EﬂlQ“p)<"

for any p. Therefore, by lemma 4.1 it suffices tosee that sup E[(vtov)'p]w.
|v]=1
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To this end we are going to show that for all p>1 we have
Piviguc e < P (4.6)

for any v such that |v|=1 and ¢ < €1 'where € depends on p, X, 2
and the coefficients of system (4.3). Suppose that 0 < €< 1, and using

(4.4) compute

P{thvie) = p{ gj; (vilj(z,r)Ag(Xr))zdr < €}
- 2
S t . . 2
Py (v, tt(z,r) A (X ))%r < €}
~ o 2/3 i’ h''r
t-e€

S
i 2 1/3
pl :f (v A (X ))7do < 4e™ )
=1 Jy
S g 2 1/3 s [t i j 2
+ P{ zf (VA (X ))7do > 4e77, 2/3(vi5j(z,r)Ah()(r)) dr<e },
=1 Jo =1 JO Jt-e (4.7)

The second probability of this expression is bounded by

3 sf’c i » 2]5]1; : 5 5
P (v.A (X _ ))"do> 4e, (v.5 (z,r)A (X)) dr_<_e$
g o t—52/3 i"h "ot — 0 t—52/3 ii h “r
8 [ cotemminid
P (v (8 -5 (z,r))AJ(X }) dr>¢
— b t-€2/3 it i h'"r (

(A

[

<
A " TR (,g‘l<vi<6?-:?<z,r))Ag(xr))2|q>
ref0,s]x[t-€7" 7, t] = I
)
< TV [E(llrm-tfz.r)n“q) E(IIA(xr)Ildq)]/*.
- rG[O,S]x{t—e it

for any ¢>1. Here Im denctes the identity matrix of order m. 1In the
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following C(q) will represent a constant which may depend on q,x,z and

the coefficients of system (4.3).

Applying the second inequality deduced in lemma 3.1 to the stochas-

tic differential system (4.5) we obtain

4 2q 4q/3
sup EC(T -c(z,0) |l 9 < c(q)s29M/3

relo,slx(t-¢2/3¢]

In consequence, the second sumand of expression (4.7) is bounded by

C(q)eq/3, which provides the desired majoration. Then, it suffices to

s N
P (v.al(x_)2a0 < a3, (4.8)
= Jo i h ot -

y
= <h< = {&Y < h< .
Set 96 (Ah, 1<h<d} and g] (AhV, 1< h<d, Ve j—l) for any

study the term

j>1. By property (P) there exists an integer j°_>_0 such that the 1li-
Jo
near span of 'UO gJ at the point x has dimension m. This implies that
J:
there is an R>0 and ¢>0 such that
J

2 wvten? > e,
o VeZ

for all v and y with |v|=1 and |y-x| <R. Consider the stopping time S

with respect to the family of o-fields { F ¢ >0} defined as

at’

S = inf {60 >0: sup |X -x| >R} A s.
- £<o gt -

<t

-4j

2 and we introduce the set

Wi

For any ;j=0,1,....jo we put m(j) =

- 28 -



S . .
E| - ; > J;(vivﬂxot))zdc < a g'“‘J’s.

ve _G/J

We remark that

s
! g; i 2 1/3
) f (viA (X)) do < 4e CE.
= 0
Consider the decomposition
c c c
n u n .
EOC (Eo El) (E1 EZ)U U(Ejo_lﬂ EJO)UF.

where F = EoﬁEln eea Ej . Then, the probability given in (4.8) is
(o]
bounded by
Jo
P(E. ,NES) + P(F)
£ -1

and we are going to estimate each term of this sum. This will be done

in two steps:

(i) We can write

P(F) < P(FN{s >¢®) + pis< By

*
where 0< 8 <m(jo). For € small enough, the intersection F(\{SZ_GJB}

8

is empty. In fact, if § 2> € we have

J s . 5
> 1: (v, v (xg )20 2 B,
J=o0 VE€E 3} 1

whereas on F this integral is bounded by 4(j°+1)€m(‘]°). Moreover it

holds that
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P({S< )

< pi sup  |X -x|> R}
u<(eB,t) Y
< RYE(  suwp | [a, (x )dwr+B dr]lq)
ui(ee,t) Ru

for any g>1. Now, using Burkholder and Holder inequalities we deduce B
< B} < qB/2 .
P{S< €} < C(q) ¢ for any q>2, and, therefore, we have obtained

a majoration of the type (4.6) for P(F).

(ii) For any j = 1,...,jo we consider the probability
c
P(E. . NE))
J-1 J
3 S 2 SEIDY i 2. w()
(vi v (xqt)) do < 4e (viv (xot)) do>4e ;
vegg,_l 0 Ae@ )

< 3[ (v, vix, o)) 240 <ae”1)
ve@

zf(v (W (x )12 do > an(i-1)7" e'“(j)f ,

where n(j) = card 9{] We fix j=1,...,j  and a vector field V€ gj—l

(4.9)

Applying Ito's formula in the first coordinate we obtain

i i avi k h
v (Xuv) = Vi(x) + a—k (X, ) Ah(xm) aw

uv

i 2.4 .
3V k 1 3%V k j
+ . [axk (Xov)B (X)) + 3 Foeppve T (XGV) g Ah(xor)Ah(Xm)] dodt .

k
uv

Then, by lemma 4.2 we have the following estimation
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S .
P ; L (Vivl(xo ))%do < PRLINY g;f f (v, 55— (X )A:(XOT))Zdodr

> on(gent ) si <P, (4.10)

for any p>1 and ¢ < €, (so depending on p). In fact, note that

m(j-1) > 12m(j). Finally, we have the following majorations

gg f Vi K (X )A::(Xc't))2 do > 4n(j-1)‘1 em(j)'

Sft i .
;; = x 2 -1 3m(j)
SP’ ff v, B x akx | ))2a0ar > an(i-1)"1 ¢ ,
=iJo o 2m(3) 1 ax, Tot’"h ot
St i .
av k 2 . -1 3m(j) v
g;ff Zm(J)(Vi Ix (Xot)Ah(xor)) dodr < n(j-1) " e %
= OJt-¢ k

Sf[t i .
ﬁ; v k k 2 . ay-1 3m(j)
< pg = Lﬁ_EZm(j)(vi a_x—; (xat)(Ah(xot)_Ah(xar))) dodr> n(j-1) “e {

. i
<9 MIn(1) s E(li (v Dix ) Ak (x )
oelo,s], re[t-c>") = K

k 2,9
AL, Y

sqe_qm(‘])n(a n9

sup dq)
oe[o,s] Te[t—e

av
< 2m(3) t]‘E‘“Z&(xut)"

4q9,, %
cE(lA(X )-AX O =,
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for any q>1. Using lemma 3.1, this expression is less than or equal
to ¢(@) ¢ Thig result combined with inequalities (4.9) and (4.10)

gives us the desired sort of estimate for the term P(Ej r‘E?), which

1

achieves the proof of the theorem. O

In the one-parameter case, the existence of a density for the solu-
tion of a stochastic differential equation can be proved under Horman-

der's condition:

(P') The vector space spanned by Alreensh [Ai,Aj], 1<1i,j<d,

3
[Ai,[AJ.,Ak]] , 1<i,j,k<d,..., at the point x is R".
Actually, a more general condition using Lie brackets formed with

the vector field B as generators would be sufficient. We have been una-

ble to generalize this kind of condition to the two-parameter case.

Remark that hypothesis (P ) is weaker than (P) and, in fact, theo-
rem 4.3 can be applied to a family of situations that did not appear

in the one-parameter case. Consider, for instance, the following exam-

1 2 m—l)

ple. Assume that m>2, d=1, x=0, Al(x) = (1,X X ,e0e,X and B=0.

Then property (P') does not hold and, for m=2, the one-parameter solu-

t
. 2 1.1 ol 2 o 2,12
tion xlt=w1t, X; = jowsdws = 4lw)%-t]  satisties 2] = (X,)°-t.

However, in the two-parameter case, theorem 4.3 can be used, and, for

z = {s,t), st£0, the joint distribution of the iterated stochastic inte-

2 3
grals  x!-w} x% - whoawl, x° - wiawt)awl, ... x" -
z z 4 r r z u ol 1
R R R
z z r

=f Xm—ldeI‘ has an infinitely differentiable density on Rm. Observe
R

thatz here the stochastic differentiation rules (cf. [10]) claim that

1,2 2

(X_)" = 2X +2f 1 0. , ,, dw dw_, + st, and
z z R, {{r,r'): r<ry, r>2n) ror

Xz is not a function of X;.

- 32 -



References

(1]

(2]

[7)

[8]

[10]

{11]

Bismut, J.M. "Martingales, the Malliavin Calculus and hypoellipti-
city under general Hormander's conditions". Z. Wahrscheinlichkeits-
theorie verw. Gebiete 56, 469-505 (1981).

Cairoli, R. "Sur une équation différentielle stochastique'. CRAS
274, 1739-1742 (1972).

Cairoli, R. and Walsh, J.B. "Stochastic integrals in the plane®.
Acta Math. 134, 111-183 (1975).

Hajek, B. "Stochastic equations of hyperbolic type and a two-para-
meter Stratonovich calculus", Ann. Probability 10, 451-463 (1982).

Ikeda, N. and Watanabe, S. "Stochastic differential equations and
diffusion processes'". Amsterdam-Oxford-New York: North-Holland
and Tokyo: Kodansha 1981.

Malliavin, P. '"Stochastic calculus of variations and hypoelliptic
operators'". Proceedings of the International Conference on Stochas-
tic Differential Equations of Kyoto 1976, pp. 195-263. Tokyo: Kimo-
kuniya and New York: Wiley 1978.

Shigekawa, I. "Derivatives of Wiener functionals and absolute con-
tinuity of induced measures". J. Math. Kyoto Univ. 20-2, 263-289
(1980).

Stroock, D.W. "The Malliavin calculus, a functional analytic ap-
proach”. Journal of Functional Analysis 44, 212-257 (1981).

Stroock, D.W. "Some applications of stochastic calculus to partial
differential equations'". Lecture Notes in Math., 976, 267-382
(1983). -

Wong, E. and Zakai, M. "Differentiation formulas for stochastic
integrals in the plane". Stochastic Processes and their Applica-
tions 6, 339-349 (1978).

Zakai, M. "The Malliavin Calculus". Preprint.

D. Nualart and M. Sanz
Factultat de Matematiques
Universitat de Barcelona
Gran Via 585, Barcelona 7.
SPAIN.

- 33 -










publicacions
edicions

universitat
de barcelona g

Diposit Legal B.: 26.665-1984
BARCELONA — 1984



