UNIVERSITAT DE BARCELONA

FACULTAT DE MATEMÀTIQUES

MALLIAVIN CALCULUS FOR TWO-PARAMETER WIENER FUNCTIONALS

by
D. Nualart and M. Sanz

by
D. Nualart and M. Sanz
(Universitat de Barcelona)

Abstract. In this paper we apply the Malliavin Calculus to deduce the existence and smoothness of density for the solution of stochastic differential equations with respect to a multidimensional two-parameter Wiener process.

-

AMS 1980 Subject classification: 60H10, $60 G 30$.

o. Introduction. The aim of this paper is to prove the existence and smoothness of the density of the probability law on \mathbf{R}^{m} induced by the solution of the stochastic integral equations in the plane

$$
\begin{equation*}
x_{z}^{i}=x^{i}+\int_{[0, z]}\left[A_{j}^{i}\left(X_{r}\right) d w_{r}^{j}+B^{i}\left(X_{r}\right) d r\right], \quad i=1, \ldots, m \tag{0.1}
\end{equation*}
$$

$z \in \mathbf{R}_{+}^{2}$, where $w_{z}=\left(w_{z}^{1}, \ldots, w_{z}^{d}\right)$ is a d-dimensional two-parameter Wiener process, and assuming some conditions on the coefficients A_{j}^{i} and B^{i}. If these coefficients are globally Lipschitz functions, it is known (cf. Cairoli [2], Hajek [4]) that this system has a unique continuous solution, which has a particular Markov property. There exists a transition semigroup corresponding to these Markov processes, but this semigroup acts on continuous functions over the sets of the form $\{(x, t): x \geq s\} \cup\{(s, y): y \geq t\}$. Then, we cannot expect the probability distribution of X_{z} to satisfy a second order partial differential equation.

In the case of an ordinary stochastic differential equation with respect to the Brownian motion, Malliavin has developed in [6] probabilistic techniques to show the existence and smoothness of density for the solution of these equations under Hörmander's conditions. Alternative approaches to Malliavin's theory were given by Shigekawa [7], Bismut [1] and Stroock[8]. The extension of Malliavin calculus to the case of two-parameter Wiener functionals is straightforward. In Section 1 we have briefly discussed Shigekawa's presentation of Malliavin Calculus adapted to functionals of a multidimensional Wiener sheet. However when we apply this stochastic calculus to the solution of the system (0.1), some technical difficulties
appear, in relation with the following facts:
a) The inner products $\left\langle\mathrm{DX}_{\mathrm{z}}^{\mathrm{i}}, \mathrm{DX}_{\mathrm{z}}^{\mathrm{k}} \mathrm{H}_{\mathrm{H}}\right.$ (in the notation of Shigekawa) are not solutions of a similar system of equations, because the twoparameter stochastic differentiation rules involve the presence of double integrals over the set $\left\{\left(z, z^{\prime}\right) \in \mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}: \quad z_{1} \leq z_{1}^{\prime}, z_{2} \geq z_{2}^{\prime}\right\}$ (cf. [10]).
b) Unlike the one-parameter case, there is no flow of transformations of \mathbf{R}^{m} naturally associated to the system (0.1). Also, the solution of a linear system cannot be expressed as an exponential (because of the two-parameter stochastic calculus) and is not invertible, in general.

For these reasons, in the development of Malliavin calculus applied to the functional X_{z} we have avoided the use of Ito's formula, and the fact that X_{z}^{i} (and other functionals deduced from X_{z}) belongs to the space H_{∞} (in the notation of Ikeda-Watanabe [5]) is proved by means of a direct approximation method. To do this, a good class of processes is introduced in Section 2, and in Section 3 we show that the process $X=\left\{X_{z}, z \in\left[0, z_{0}\right]\right\}$ is included in this class.

Section 4 is devoted to prove the non-degeneracy condition, following the ideas developed by Stroock in Section 8 of [9]. We remark that the two-dimensional character of the parameter set makes this demonstration a little simpler and, in fact, we do not need estimates for the inverse of the solution of a linear system of equations in the plane. In conclusion, the existence and smoothness of
the density of X_{z} (at any point z outside the axes) is obtained assuming that the vector space spanned by the vector fields A_{1}, \ldots, A_{d}, $A_{i}^{\nabla} A_{j}, \quad 1 \leq i, j \leq d, \quad A_{i}^{\nabla}\left(A_{j}^{\nabla} A_{k}\right), 1 \leq i, j, k \leq d, \quad \cdots, \quad$ at the point x is R^{m}. Here $A_{i}^{\nabla} A_{j}$ denotes the covariant derivative of A_{j} in the direction of A_{i}. This property is strictly weaker than the restricted Hörmander's conditions, which are expressed in terms of Lie brackets instead of covariant derivatives.

1. Elements of Malliavin calculus. The set of parameters will be $T=\left[0, s_{0}\right] \times\left[0, t_{0}\right]$, with the partial ordering $\left(s_{1}, t_{1}\right) \leq\left(s_{2}, t_{2}\right)$ if and only if $s_{1} \leq s_{2}$ and $t_{1} \leq t_{2} ;\left(s_{1}, t_{1}\right)<\left(s_{2}, t_{2}\right)$ means that $s_{1}<s_{2}$ and $t_{1}<t_{2}$. If $z_{1}<z_{2},\left(z_{1}, z_{2}\right)$ will denote the rectangle $\left\{z \in T: z_{1}<z \leq z_{2}\right\}$. We put $R_{z}=[0, z]$, and $z_{1} z_{2}=\left(s_{1}, t_{2}\right)$ if $z_{1}=\left(s_{1}, t_{1}\right)$ and $z_{2}=\left(s_{2}, t_{2}\right)$. The increment of a function $f: R_{+}^{2} \longrightarrow R$ on a rectangle $\left(z_{1}, z_{2}\right]$ is given by $f\left(\left(z_{1}, z_{2}\right]\right)=f\left(z_{1}\right)-f\left(z_{1} \otimes z_{2}\right)-$ $-f\left(z_{2} \otimes z_{1}\right)+f\left(z_{2}\right)$. The Lebesgue measure of a Borel set $B \subset R_{+}^{2}$ is denoted by $|B|$.

Our probability space (Ω, F, P) is the canonical space associated to the d-dimensional two-parameter Wiener process, that is, Ω is the space of all continuous functions $\omega: T \longrightarrow R^{d}$ which vanish on the axes, P is the two-parameter Wiener measure and F is the completion of the Borel o-field of Ω with respect to P. We also consider the increasing family of o-fields $\left\{F_{z}, z \in T\right\}$, where F_{z} is generated by the functions $\{\omega(r), \omega \in \Omega, r \leq z\}$ and the null sets of F. The family $\left\{F_{z}, z \in T\right\}$ satisfies the usual conditions of [3]. The following subset of Ω plays an important role:
$H=\left\{\omega \in \Omega\right.$: there exists $\dot{\omega}^{i} \in L^{2}(T), i=1, \ldots, d$, such that

$$
\left.\omega^{i}(z)=\int_{R_{z}} \dot{\omega}^{\dot{i}}(r) d r, \text { for any } z \in T \text { and for any } i\right\}
$$

H is a Hilbert space with the inner product

$$
\left\langle\omega_{1}, \omega_{2}\right\rangle_{H}=\int_{T} \sum_{i=1}^{d} \dot{\omega}_{1}^{i}(r) \dot{\omega}_{2}^{i}(r) d r
$$

Any measurable function defined on the wiener space (Ω, F, P) is called a wiener functional. A wiener functional $F: \Omega \longrightarrow R$ is smooth if there exists some $n \geq 1$ and a C^{2}-function f on R^{n} such that
(i) f and its derivatives up to the second order have at most polynomial growth order,
(ii) $F(\omega)=f\left(\omega\left(z_{1}\right), \ldots, \omega\left(z_{n}\right)\right)$ for some $z_{1}, \ldots, z_{n} \in T$.

Every smooth functional is Fréchet-differentiable, and we have

$$
D F\left(\omega_{o}\right)(\omega)=\sum_{j=1}^{d} \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}^{j}}\left(\omega_{o}\left(z_{1}\right), \ldots, \omega_{o}\left(z_{n}\right)\right) \omega^{j}\left(z_{i}\right) .
$$

We also need the operator L defined on smooth functionals as follows:
$L F(\omega)=\sum_{j=1}^{d} \sum_{i}^{n} \frac{\partial^{2} f=1}{\partial x_{i}^{j} \partial x_{k}^{j}}\left(\omega\left(z_{1}\right), \ldots, \omega\left(z_{n}\right)\right) \Gamma\left(z_{i}, z_{k}\right)-D F(\omega)(\omega)$,
where $\Gamma\left(z_{i}, z_{k}\right)=\left(x_{i} \wedge x_{k}\right)\left(y_{i} \wedge y_{k}\right)$, if $z_{i}=\left(x_{i}, y_{i}\right), i=1, \ldots, n$. Note that r is the covariance function of the Brownian sheet.

For any $p \geq 1, L_{H}^{p}$ will denote the space of Wiener functionals F : $\Omega \longrightarrow H$, which are valued on the space H, and such that $E\left(\|F\|_{H}^{p}\right)<\infty$. If we fix $\omega \in \Omega$ and a smooth functional F, $D F(\omega)$: $H \longrightarrow R$ is a continuous linear map, and, so, it may be considered as an element of H. In this sense we have $D F \in L_{H}^{p}$ for any $p \geq 1$.

Let $H\left(p_{1}, p_{2} ; p_{3}\right), \quad p_{1}, p_{2}, p_{3} \geq 1$, be the space of real valued Wiener functionals F such that there exists a sequence of smooth functionals $\left\{F_{k}, k \geq 1\right\}$ satisfying:
(a) $\mathrm{F}_{\mathrm{k}} \xrightarrow[\mathrm{k} \rightarrow \infty]{ } \mathrm{F}$ in $\mathrm{L}^{\mathrm{p}_{1}}$,
(b) $\left\{D F_{k}, k \geq 1\right\}$ is a Cauchy sequence in $L_{H}^{p_{2}}$, and
(c) $\left\{L F_{k}, k \geq 1\right\}$ is a Cauchy sequence in $L^{p_{3}}$.

For a Wiener functional $F \in H\left(p_{1}, p_{2} ; p_{3}\right)$ we define $D F=\lim _{k} \mathrm{DF}_{k}$ and $L F=\lim _{k} L F_{k}$, and it is proved that these limits are uniquely determined by F. $H\left(p_{1}, p_{2} ; p_{3}\right)$ is a Banach space with the norm $\|F\|_{p_{1}}+\|D F\|_{p_{2}}+\|L F\|_{p_{3}}$. We set $H_{\infty}=\bigcap_{p \geq 2} H(p, p ; p)$.

Let $F^{i} \in H_{\infty}$ for $i=1, \ldots, d$, and let $u: R^{d} \longrightarrow R$ be a twice continuously differentiable function such that u and its first and second derivatives have at most polynomial growth order. If we set $F=\left(F^{1}, \ldots, F\right)$, then $u \circ F \in H_{\infty}$, and the following differentiation rules hold

$$
D(u \circ F)=\left(\frac{\partial u}{\partial x_{i}} \circ F\right) D F^{i}
$$

and

$$
\left.L(u \circ F)=\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \circ F\right)<D F^{i}, D F_{H}^{j}\right\rangle_{H}+\left(\frac{\partial u}{\partial x_{i}} \circ F\right) L F^{i}
$$

The next result is the two-parameter version of Malliavin's theorem. The proof of this theorem in the one-parameter case can be generalized without any problem.

Theorem 1.1 (cf. Ikeda-Watanabe, [5]). Let $F=\left(F^{1}, \ldots, F^{m}\right)$ be an $\mathbb{R}^{\mathbf{m}}$-valued two-parameter wiener functional. Assume that F satisfies the following two conditions:
(i) $F^{\mathfrak{i}} \in H_{\infty}, \quad i=1, \ldots, m$ and also the class defined by

$$
C_{0}=\left\{F^{i},\left\langle D F^{i}, D F_{H}^{j}\right\rangle_{H}, L F^{i} ; i, j=1, \ldots, m\right\}
$$

satisfies that $C_{0} \subset H_{\infty}$. Furthermore assuming $C_{r-1} \subset H_{\infty}$ we define the class C_{r} by

$$
C_{r}=C_{r-1} \cup\left\{\left\langle D F^{i}, D G\right\rangle{ }_{H} ; \quad G \in C_{r-1}, \quad i=1, \ldots, m\right\}
$$

and assume that $C_{r} \subset H_{\infty}$ for every $r=0,1, \ldots$
(ii) Setting $Q^{i j}=\left\langle D F^{i}, D F^{j}\right\rangle_{H}$ we suppose that $\quad(\operatorname{det} Q)^{-1} \in L^{p} \quad$ for all $p \geq 1$.

Then, the probability law of F is absolutely continuous with respect to the Lebesgue measure and it has a infinitely differentiable density.
2. A class of two-parameter processes. In order to prove that the solution X_{z} of the stochastic differential system $(0,1)$ (assuming that the coefficients are smooth and have bounded derivatives) satisfies condition (i) of theorem 1.1, we are going to introduce a rich class of processes H_{∞} which includes the process X_{z}, and such that H_{∞} has the following properties:
(i) If $F \in H_{\infty}$, then $F_{z} \in H_{\infty}$ for any $z \in T$.
(ii) If $F, G \in H_{\infty}$, then the processes $L F=\left\{L F{ }_{z}, z \in T\right\}$ and $\langle D F, D G\rangle_{H}=$ $=\left\{\left\langle D F_{\mathbf{z}}, D G_{\mathbf{z}}\right\rangle_{H}, \quad z \in T\right\}$ are also in H_{∞}.

$$
\text { Consider the processes of the form } F_{z}(\omega)=f\left(z, \omega\left(z_{1}\right), \ldots, \omega\left(z_{n}\right)\right)
$$ where:

(i) z_{1}, \ldots, z_{n} are n fixed points of T, not on the axes.
(ii) The functions $f(z, *)$ and all their derivatives have at most polynomial growth order and are continuous functions of z.
(iii) For any $z \in T$, the function $\left(x_{1}, \ldots, x_{n}\right) \longrightarrow f\left(z, x_{1}, \ldots, x_{n}\right)$ depends only on the coordinates $x_{i} \in R^{d}$ such that $z_{i} \leq z, i=1, \ldots, n$. With these assumptions $\left\{F_{z}, z \in T\right\}$ is a continuous and adapted process such that F_{z} is a smooth functional for each $z \in T$. We will call such processes, smooth processes. Note that for any $h \in H$ $D F_{z}(h)=\sum_{j=1}^{d} \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}^{j}}\left(z, \omega\left(z_{1}\right), \ldots, \omega\left(z_{n}\right)\right) h^{j}\left(z_{i}\right)=\int_{R_{z}} \xi_{j}(z, r) \dot{h}^{j}(r) d r$,
where

$$
\xi_{j}(z, r)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}^{j}}\left(z, \omega\left(z_{1}\right), \ldots, \omega\left(z_{n}\right)\right) 1_{R_{z_{i}}}(r)
$$

The process $\xi_{j}(z, r)$ vanishes unless $r \leq z$. More generally, we define, for $j_{1}, \ldots, j_{N} \in\{1, \ldots, d\}$,

$$
\begin{aligned}
& \xi_{j_{1} \ldots j_{N}}\left(z, r_{1}, \ldots, r_{N}\right) \\
& =\sum_{i_{1}, \ldots, i_{N}=1}^{n} \frac{\partial^{N_{f}}}{\partial x_{i_{1}}^{j 1} \ldots \partial x_{i_{N}}^{j_{N}}}\left(z, \omega\left(z_{1}\right), \ldots, \omega\left(z_{n}\right)\right) 1_{R_{z_{i_{1}}}}\left(r_{1}\right) \ldots 1_{R_{z_{i N}}}\left(r_{N}\right) .
\end{aligned}
$$

These processes vanish unless $z \geq r_{1} \vee \ldots \vee r_{N}$, and they will be called the N-th derivatives of F. Observe that for any $h \in H$

$$
D \xi_{j_{1}} \ldots j_{N}\left(z, r_{1}, \ldots, r_{N}\right)(h)=\int_{R_{z}} \xi_{j_{1}} \ldots j_{N} j\left(z, r_{1}, \ldots, r_{N}, r\right) \dot{h}^{j^{j}(r) d r} .
$$

For any subset $K=\left\{\varepsilon_{1}<\ldots<\varepsilon_{n}\right\}$ of $\{1, \ldots, N\}$ we put $K^{c}=$ $=\{1, \ldots, N\}-K, j(K)=j_{\varepsilon_{1}} \ldots j_{\varepsilon_{\eta}}$ and $r(K)=r_{\varepsilon_{1}}, \ldots, r_{\varepsilon_{\eta}}$. We define

$$
\begin{align*}
& I_{K} \xi_{j}\left(K^{c}\right) \\
&\left(z, r\left(K^{c}\right)\right)= \sum_{\varepsilon \in K} \sum_{j_{\varepsilon}=1}^{d} \sum_{i_{1}, \ldots, i_{N}=1}^{n} \frac{\partial^{N_{f}}}{\partial x_{i_{1}}^{j 1} \ldots \partial x_{i_{N}}^{j N}}\left(z, \omega\left(z_{1}\right), \ldots, \omega\left(z_{n}\right)\right) \tag{2.1}\\
& \cdot\left(\prod_{\varepsilon \in K^{c}} 1_{R_{z_{i_{\varepsilon}}}}\left(r_{\varepsilon}\right)\right)\left(\prod_{\varepsilon \in K} \omega^{j_{\varepsilon}\left(z_{i_{\varepsilon}}\right)}\right)
\end{align*}
$$

The expression (2.1) represents a multiple stochastic integral with respect to the Brownian sheet. We remark, however, that these stochastic integrals will not follow the rules of the stochastic calculus because the processes $\xi_{\mathrm{j}_{1}} \cdots \mathrm{j}_{\mathrm{N}}(\mathrm{z}, \cdot)$ are not adapted. We will write I_{i} instead of $I_{\{i!}$, and $I_{\{1, \ldots, N\}}{ }^{\xi(z)}$ for $I_{\{1, \ldots, N\}}{ }^{\xi} j(\Phi){ }^{(z, r(\phi))}$. Note that $I_{\phi} \xi=5$.

For any integer $M \geq 1$ and any real $p \geq 1$, we set
$\|F\|_{p, M}=\left[E\left(\sup _{\mathcal{Z} \in \mathrm{T}}\left|\mathrm{F}_{\mathrm{z}}\right|^{\mathrm{p}}\right)\right]^{1 / \mathrm{p}}$

$$
+\sum_{N=1}^{M} \sum_{K \subset\{1, \ldots, N)} \sup _{r_{\epsilon}, \varepsilon \in K^{c}}\left[E\left(\sup _{z \in T}\left\|I_{K} \xi\left(z, r\left(K^{c}\right)\right)\right\|^{p}\right)\right]^{1 / p}
$$

where $\|\cdot\|$ denotes the Hilbert-Schmidt norm. Let $H_{p, M}$ be the closed hull of the family of smooth processes with respect to this norm. The processes of $H_{p, M}$ are continuous, and if $F \in H_{p, M}$, then $F_{z} \in H(p, p ; p)$ for any $z \in T$. Set $H_{\infty}=\bigcap_{M>1} \bigcap_{p>1} H_{p, M}$. For any $F \in H_{\infty}$ there exists a sequence of smooth processes $\frac{\mathrm{p} \geq 1}{\mathrm{~F}^{n}}$ such that $\lim _{\mathrm{n}} \mathrm{E}\left(\sup _{\mathrm{z}}\left|\mathrm{F}_{z_{z}}^{\mathrm{n}} \mathrm{F}_{\mathrm{z}}\right|^{\mathrm{p}}\right)=0$ for all $p \geq 1$, and such that $\left\{F^{n}, n \geq 1\right\}$ is a Cauchy sequence for all
norms $\|\cdot\|_{p, M}$ We will call $\left\{F^{n}, n \geq 1\right\}$ an approximating sequence for the process F.

Proposition 2.1. Suppose that F and G belong to H_{∞}. Then, the processes LF and <DF,DG> ${ }_{H}$ are also in H_{∞}.

Proof. Let $\left\{F^{n}, n \geq 1\right\}$ be an approximating sequence for the process F. Without loss of generality we may assume that $F_{z}^{n}=f_{n}\left(z, \omega\left(z_{1}\right)\right.$, $\ldots, w\left(z_{n}\right)$). We denote by $\xi_{j_{1} \ldots j_{N}}^{n}$ the $N-t h$ derivatives of F^{n}. Then, $L F_{z}^{n}=\sum_{j=1}^{d} \sum_{i, k=1}^{n} \frac{\partial^{2} f_{n}}{\partial x_{i}^{j} \partial x_{k}^{j}}\left(z, \omega\left(z_{1}\right), \ldots, \omega\left(z_{n}\right)\right) \Gamma\left(z_{i}, z_{k}\right)$
$-\sum_{j=1}^{d} \sum_{i=1}^{n} \frac{\partial f_{n}}{\partial x_{i}^{j}}\left(z, \omega\left(z_{1}\right), \ldots, \omega\left(z_{n}\right)\right) \omega^{j}\left(z_{i}\right)$ $=\sum_{j=1}^{d} \int_{R_{z}} \xi_{j j}^{n}(z, r, r) d r-I_{1} \xi^{n}(z)$.

We have $\lim _{\mathrm{n}, \mathrm{m}} \mathrm{E}\left(\sup _{\mathrm{Z}}\left|\mathrm{LF} \mathrm{F}_{\mathrm{Z}}^{\mathrm{n}}-\mathrm{LF}_{z}^{m}\right|^{p}\right)=0$ for all p , because F^{n} is a Cauchy sequence with respect to the norms $\|\cdot\|_{p, M}$. In consequence, $\mathrm{LF}_{\mathbf{z}}$ exists for all $\mathrm{z} \in \mathrm{T}$, and we may choose a version of the process $\left\{\operatorname{LF}_{z}, z \in T\right\}$ such that $\lim _{n} E\left(\sup _{Z}\left|L F_{z}-L F_{z}^{n}\right|^{p}\right)=0$, for any p. Therefore, it suffices to show that the sequence of smooth processes $\left\{L F^{n}, n \geq 1\right\}$ is Cauchy for all norms $\|\cdot\|_{p, M}$. Denote by $\psi_{j_{1} \ldots j_{N}}^{n}$ the N-th derivatives of $L F^{n}$. We have
$\psi_{j_{1}}^{n}\left(z, r_{1}\right)=\sum_{j=1}^{d} \int_{R_{z}} \xi_{j j_{j}}^{n}\left(z, r, r, r_{1}\right) d r-I_{1} \xi_{j_{1}}^{n}\left(z, r_{1}\right)-\xi_{j_{1}}^{n}\left(z, r_{1}\right)$,
and, by induction we obtain

$$
\begin{aligned}
& \psi_{j_{1}}^{n} \ldots j_{N}\left(z, r_{1}, \ldots, r_{N}\right)=\sum_{j=1}^{d} \int_{R_{z}} \xi_{j j j_{1}}^{n} \ldots j_{N}\left(z, r, r, r_{1}, \ldots, r_{N}\right) d r \\
& -I_{1} \xi_{j_{1} \ldots j_{N}}^{n}\left(z, r_{1}, \ldots, r_{N}\right)-N \xi_{j_{1} \ldots j_{N}}^{n}\left(z, r_{1}, \ldots, r_{N}\right) .
\end{aligned}
$$

From this expression it is easy to check that

$$
\lim _{n, m} \mathrm{r}_{\varepsilon} \sup _{\in \in K^{c}} E\left(\sup _{z}\left\|I_{K} \psi^{n}-I_{K^{\prime}} \psi^{m}\right\|^{p}\right)=0,
$$

for any $K \subset\{1, \ldots, N\}, N \geq 1$, and $p \geq 1$.

In order to show the second part of the proposition, assume that $G_{z}^{n}=g_{n}\left(z, \omega\left(z_{1}\right), \ldots, \omega\left(z_{n}\right)\right)$ is an approximating sequence for G, with derivatives $\phi_{j_{1} \ldots j_{N}}^{n}$, and compute

$$
\begin{aligned}
\left\langle D F_{z}^{n}, D G_{z}^{n}\right\rangle= & \sum_{j=1}^{d} \sum_{i, k=1}^{n} \frac{\partial f_{n}}{\partial x_{i}^{j}}\left(z, \omega\left(z_{1}\right), \ldots, \omega\left(z_{n}\right)\right) \frac{\partial g_{n}}{\partial x_{k}^{j}}\left(z, \omega\left(z_{1}\right), \ldots, \omega\left(z_{n}\right)\right) \\
& \cdot \Gamma\left(z_{i}, z_{k}\right) \\
= & \sum_{j=1}^{d} \int_{R_{z}} \xi_{j}^{n}(z, r) \phi_{j}^{n}(z, r) d r .
\end{aligned}
$$

As above, we have

$$
\lim _{n, m} E\left(\sup _{z} \mid\left\langle D F_{z}^{n}, D G_{z}^{n}\right\rangle-\left\langle D F_{z}^{m},\left.\left.D G_{z H}^{m}\right|^{p}\right|^{p}\right)=0,\right.
$$

for all p. Thus, the random variables F_{z} and G_{z} belong to H_{∞} for any $z \in T$, and there is a version of the process $\left\{\left\langle D F_{z}, D G_{z}\right\rangle, z \in T\right\}$ satisfying

$$
\lim _{n} E\left(\sup _{z} \mid\left\langle D F_{z}^{n}, D G_{z}^{n}\right\rangle H-\left\langle D F_{z}, D G_{z}>\left.\right|^{p}\right)=0\right.
$$

for all p. Finally, it remains to show that $\left\{\left\langle D F^{n}, D G^{n}\right\rangle_{H}, n \geq 1\right\}$ is a Cauchy sequence for all norms $\|\cdot\|_{p, M} \cdot \operatorname{Let} \beta_{j_{1}}^{n} \ldots j_{N}$ be the $N-$ th derivatives of the smooth process $\left\langle\mathrm{DF}^{\mathrm{n}}, \mathrm{DG}^{\mathrm{n}}\right\rangle_{H}$. We have
$B_{j_{1} \ldots j_{N}}^{n}\left(z, r_{1}, \ldots, r_{N}\right)=\sum_{j=1}^{d} \sum_{K \subset\{1, \ldots, N\}} \int_{R_{z}} \xi_{j j(K)}^{n}(z, r, r(K))_{\phi_{j j}\left(K^{c}\right)}^{n}\left(z, r, r\left(K^{c}\right)\right) d r$, and, from this expression it is easy to verify that

$$
\lim _{n, m} \sup _{\varepsilon}, \varepsilon \in K^{c} E\left(\sup _{Z}\left\|I_{K} B^{n}-I_{K} \beta^{m}\right\|^{p}\right)=0
$$

for any $K \subset\{1, \ldots, N\}, N \geq 1$, and $p \geq 1, \square$

3. Some results on stochastic differential equations in the plane

Henceforth, the d-dimensional two-parameter Wiener process in the canonical probability space (Ω, F, P) will be denoted by $W=\left\{W_{z}, z \in T\right\}$. We remember that $T=R_{z_{0}}$, being $z_{0}=\left(s_{0}, t_{0}\right)$. Let $V=\left\{V_{z}, \quad z \in T\right\}$ be a continuous and adapted M-dimensional stochastic processes such that ${\underset{p}{p}}^{p} \sup _{z \in T} E\left(\left|V_{z}\right|^{p}\right)<\infty \quad$ for all $p \geq 1$. Suppose that

$$
\sigma: \mathbf{R}^{M} \times \mathbf{R}^{m} \longrightarrow \mathbf{R}^{\mathrm{m}}: \mathbf{R}^{\mathrm{d}} \quad \text { and } \quad \mathbf{b}: \mathbf{R}^{\mathrm{M}} \times \mathbf{R}^{\mathrm{m}} \longrightarrow \mathbf{R}^{m}
$$

are continuous functions verifying the following properties, for some positive constant K :
(i) $\quad\left\|\sigma(x, y)-\sigma\left(x, y^{\prime}\right)\right\|+\left|b(x, y)-b\left(x, y^{\prime}\right)\right| \leq K \quad\left|y-y^{\prime}\right|$, for any $x \in \mathbf{R}^{m}$; $y, y^{\prime} \in \mathbf{R}^{\mathbf{m}}$.
(ii) The functions $x \rightarrow \sigma(x, 0)$ and $x \rightarrow b(x, 0)$ have at most polynomial growth order. That means, $\|\sigma(x, 0)\|+|b(x, 0)| \leq K\left(1+|x|^{\nu}\right)$ for some integer $v \geq 0$.

With these assumptions we have the next result.

Lemma 3.1. Fix $r \in T$ and an F_{r}-measurable random vector $\alpha=\left(\alpha^{1}, \ldots, \alpha^{m}\right)$ such that $E\left(|\alpha|^{p}\right)<\infty \quad$ for any $p \geq 1$. Then, there is a unique continuous and adapted m-dimensional process $Y=\left\{Y_{z}, z \in\left[r, z_{o}\right]\right\}$ satisfying the stochastic differential system

$$
\begin{equation*}
Y_{z}^{i}=\alpha^{i}+\int_{[r, z]}\left[\sigma_{j}^{i}\left(v_{u}, Y_{u}\right) d w_{u}^{j}+b^{i}\left(V_{u}, Y_{u}\right) d u\right], i=1, \ldots, m \tag{3.1}
\end{equation*}
$$

Moreover, $E\left(\quad \sup _{z \in\left[r, z_{0}\right]} \quad\left|Y_{z}\right|^{p}\right) \leq C_{1}, \quad$ and $\quad E\left(|Y(\Delta)|^{p}\right) \leq C_{2}|\Delta|^{p / 2}$, for any $p \geq 2$ and for any rectangle $\Delta=\left[z_{1}, z_{2}\right] \subset\left[r, z_{o}\right]$, where C_{1} and C_{2} are positive constants depending on $p, z_{o}, K, \beta_{p v}$ and $E\left(|\alpha|^{p}\right)$.

Proof. Using Picard's iteration scheme we introduce the processes

$$
Y_{o}^{\mathbf{i}}(z)=0
$$

and

$$
Y_{n+1}^{i}(z)=a^{i}+\int_{[r, z]}\left[\sigma_{j}^{i}\left(V_{u}, Y_{n}(u)\right) d W_{u}^{j}+b^{i}\left(V_{u}, Y_{n}(u)\right) d u\right]
$$

for any $n \geq 0$.

Now, applying Burkholder and Hölder's inequalities and condition
(i) we obtain, for any $p \geq 2$,

$$
E\left(\sup _{z \in\left[r, z_{0}\right]}\left|Y_{n+1}(z)-Y_{n}(z)\right|^{p}\right) \leq C_{p} K^{p} \int_{\left[r, z_{o}\right]} E\left(\left|Y_{n}(u)-Y_{n-1}(u)\right|^{p}\right) d u
$$

It follows inductively that the above expression is bounded by

$$
\left(c_{p} K^{p}\left|\left[r, z_{o}\right]\right|\right)^{n}(n!)^{-2} \int_{\left[r, z_{o}\right]} E\left(\left|Y_{1}(u)\right|^{p}\right) d u
$$

In consequence, by condition (ii) we have

$$
\sum_{n} E\left(\sup _{z \in\left[r, z_{o}\right]}\left|Y_{n+1}(z)-Y_{n}(z)\right|^{p}\right)<\infty,
$$

which implies the existence of a continuous process Y satisfying (3.1), and such that

$$
E\left(\sup _{z \in\left[r, z_{o}\right]}\left|Y_{z}\right|^{p}\right)<\infty \quad, \quad \text { for all } p \geq 2
$$

Furthermore, this expectation can be bounded by a constant depending only on $p, z_{o}, K, \beta_{p v}$ and $E\left(|\alpha|^{p}\right)$. The uniqueness of this solution can be proved as usual. Finally, the inequality $E\left(|Y(\Delta)|^{p}\right) \leq C_{2}|\Delta|^{p / 2}$ can be easily derived using first Burkholder and Hölder's inequalities and, secondly, applying conditions (i) and (ii), and the above remark on the quantity $E\left(\sup _{z \in\left[r, z_{0}\right]}\left|Y_{z}\right|^{p}\right)$.

Observe that in the preceding lemma the process V needs only to be defined on $\left[r, z_{0}\right]$. Also, we remark that the constants C_{1} and C_{2} do not depend on r.

We are going to state a lemma on the approximation of solutions of equation (3.1) by polygonal paths. For any integer $n \geq 1$ we consider the set S^{n} of points $\left(i 2^{-n} s_{o}, j 2^{-n} t_{o}\right), i, j=0,1, \ldots, 2^{n}$. Define $\phi_{n}(z)=\sup \left\{u \in S^{n}: u \leq z\right\} \quad$ and $\quad \psi_{n}(z)=\inf \left\{u \in S^{n}: u \geq z\right\}$ for any $z \in T$.

Our processes will depend on a parameter λ which belongs to an arbitrary set Λ. We consider a map $r: \wedge \longrightarrow T$. For any $\lambda, \operatorname{let}\{V(z, \lambda)$, $\left.z \in\left[r(\lambda), z_{0}\right]\right\}$ be a continuous and adapted M-dimensional process such that $\sup _{\lambda, z} E\left(|V(z, \lambda)|^{p}\right)<\infty$ for all $p \geq 1$. We also consider a sequence
of processes $\left\{v_{n}(z, \lambda), z \in\left[r(\lambda), z_{o}\right]\right\}, n \geq 1$, with the same properties as $V(z, \lambda)$ and verifying

$$
\lim _{n} \sup _{\lambda, z} E\left(\left|V(z, \lambda)-v_{n}(z, \lambda)\right|^{p}\right)=0, \text { for all } p \geq 1
$$

We also assume that for all $p \geq 1$, the mapping $z \rightarrow V(z, \lambda)$ is continuous in L^{p}, uniformly with respect to λ. That means, for any $\varepsilon>0$, there exists $\delta>0$ such that

$$
\begin{equation*}
\sup _{\lambda} \sup _{\substack{z, z^{\prime}>r(\lambda) \\\left|z-z^{\prime}\right| \leq \delta}} E\left(\left|V(z, \lambda)-V\left(z^{\prime}, \lambda\right)\right|^{p}\right)<\varepsilon . \tag{3.2}
\end{equation*}
$$

Let σ and b be functions satisfying (i) and the next condition (which is stronger than (ii)):
(ii') $\left\|\sigma(x, y)-\sigma\left(x^{\prime}, y\right)\right\|+\left|b(x, y)-b\left(x^{\prime}, y\right)\right| \leq k\left|x-x^{\prime}\right|\left(1+|y|^{\nu}\right)$,
for some integer $v \geq 0$.

Then we have the following result.

Lemma 3.2. Suppose that for any $\lambda \in \Lambda$ and $n \geq 1\{Y(z, \lambda), z \geq r(\lambda))$ and $\left\{Y_{n}(z, \lambda), z \geq r(\lambda)\right\}$ are the continuous solutions of the stochastic differential systems

$$
\begin{align*}
& Y^{i}(z, \lambda)=a^{i}(\lambda)+\int_{[r(\lambda), z]}\left[\sigma_{j}^{i}(v(u, \lambda), Y(u, \lambda)) d W_{u}^{j}+b^{i}(V(u, \lambda), Y(u, \lambda)) d u\right], \tag{3.3}\\
& Y_{n}^{i}(z, \lambda)=\alpha_{n}^{i}(\lambda)+\int_{\left[\psi_{n}(r(\lambda)) n z, z\right]}\left[\sigma_{j}^{i}\left(v_{n}\left(\phi_{n}(u), \lambda\right), Y_{n}\left(\Phi_{n}(u), \lambda\right)\right) d w_{u}^{j}\right. \\
& \left.+b^{i}\left(V_{n}\left(\phi_{n}(u), \lambda\right), Y_{n}\left(\phi_{n}(u), \lambda\right)\right) d u\right], \tag{3.4}
\end{align*}
$$

$i=1, \ldots, m$, where $\alpha(\lambda)$ and $\alpha_{n}(\lambda)$ are $F_{r(\lambda)}$-measurable m-dimensional ran dom vectors satisfying $\sup _{\lambda} E\left(\left.\left.\right|_{\alpha}(\lambda)\right|^{p}\right)^{\prime}<\infty, \quad$ and $\lim _{n} \sup _{\lambda} E\left(\|_{\alpha}(\lambda)-\left.\alpha_{n}(\lambda)\right|^{p}\right)=$ $=0$, for all $p \geq 1$. Then, with the above hypotheses, we have

$$
\lim _{n} \sup _{\lambda} E\left(\sup _{z \geq r(\lambda)}\left|Y(z, \lambda)-Y_{n}(z, \lambda)\right|^{p}\right)=0,
$$

for all $p \geq 1$.

Proof. Using Burkholder and Hölder's inequalities we have

$$
\begin{aligned}
& E\left(\sup _{z \in\left[r(\lambda), z_{0}\right]}\left|Y(z, \lambda)-Y_{n}(z, \lambda)\right|^{p}\right) \\
& \leq C\left(p, z_{o}\right)\left\{E\left(\left|\alpha(\lambda)-a_{n}(\lambda)\right|^{p}\right)\right. \\
&+\int_{\left[\psi_{n}(r(\lambda)), z_{0}\right]} E\left(\left\|\sigma(V(u, \lambda), Y(u, \lambda))-\sigma\left(V_{n}\left(\phi_{n}(u), \lambda\right), Y_{n}\left(\phi_{n}(u), \lambda\right)\right)\right\|^{p}\right) d u \\
&+\int_{\left.\left[\psi_{n} i r(\lambda)\right), z_{o}\right]} E\left(\left|b(V(u, \lambda), Y(u, \lambda))-b\left(V_{n}\left(\phi_{n}(u), \lambda\right), Y_{n}\left(\phi_{n}(u), \lambda\right)\right)\right|^{p}\right) d u \\
&\left.+\int_{\left[r(\lambda), z_{0}\right]-\left[\psi_{n}(r(\lambda)), z_{0}\right]}^{\left.E\left(\|\sigma(V(u, \lambda), Y(u, \lambda))\|^{p}+|b(V(u, \lambda), Y(u, \lambda))|^{p}\right) d u\right\}}\right\} \\
&= C\left(p, z_{o}\right)\left\{\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}\right\},
\end{aligned}
$$

where $C\left(p, z_{o}\right)$ represents a constant which depends only on p and z_{o} and may be different from one formula to another one. By hypothesis we know that $\lim _{n} \sup _{\lambda} r_{1}=0$. Applying conditions (i) and (ii') we deduce the following majorations for the second term.
$\gamma_{2} \leq C\left(p, z_{o}\right) \int_{\left[\psi_{n}(r(\lambda)), z_{o}\right]} E\left(\left\|\sigma(V(u, \lambda), Y(u, \lambda))-\sigma\left(V\left(\phi_{n}(u), \lambda\right), Y(u, \lambda)\right)\right\|^{p}\right.$

```
\(+\left\|\sigma\left(V\left(\phi_{n}(u), \lambda\right), Y(u, \lambda)\right)-\sigma\left(V_{n}\left(\phi_{n}(u), \lambda\right), Y(u, \lambda)\right)\right\|^{P}\)
\(+\left\|\sigma\left(v_{n}\left(\phi_{n}(u), \lambda\right), Y(u, \lambda)\right)-\sigma\left(V_{n}\left(\phi_{n}(u), \lambda\right), Y\left(\phi_{n}(u), \lambda\right)\right)\right\|^{p}\)
\(\left.+\left\|\sigma\left(V_{n}\left(\Phi_{n}(u), \lambda\right), Y\left(\Phi_{n}(u), \lambda\right)\right)-\sigma\left(V_{n}\left(\Phi_{n}(u), \lambda\right), Y_{n}\left(\phi_{n}(u), \lambda\right)\right)\right\|^{p}\right) d u\)
\(\leq C\left(p, z_{o}\right) K^{p}\left\{\sup _{\substack{u, u^{\prime}>r(\lambda)}}\left[E\left(\left|v(u, \lambda)-v\left(u^{\prime}, \lambda\right)\right|^{2 p}\right)\right]^{1 / 2}\left(1+\sup _{u>r(\lambda)}\left[E\left(|Y(u, \lambda)|^{2 v p}\right)\right]^{1 / 2}\right)\right.\)
\(+\sup _{u \geq r(\lambda)}\left[E\left(\left|V(u, \lambda)-v_{n}(u, \lambda)\right|^{2 p}\right)\right]^{1 / 2}\left(1+\sup _{u \geq r(\lambda)}\left[E\left(|Y(u, \lambda)|^{2 u p}\right)\right]^{1 / 2}\right.\)
\(+\sup E\left(\left|Y(u, \lambda)-Y\left(u^{\prime}, \lambda\right)\right|^{p}\right)\)
    \(u, u^{\prime}>r(\lambda)\)
    \(\mid u-u^{\prime} T_{\leq} \delta_{n}\)
\(\left.+\int_{\left[r(\lambda), z_{o}\right]} E\left(\sup _{u^{\prime} \in[r(\lambda), u]}\left|Y\left(u^{\prime}, \lambda\right)-Y_{n}\left(u^{\prime}, \lambda\right)\right|^{p}\right) d u\right\}\),
where \(\delta_{n}=\left(s_{0} \vee t_{0}\right) 2^{-n}\). A similar bound can be derived for \(\gamma_{3}\). Finally
\[
Y_{4} \leq C\left(p, z_{o}\right) K^{p} \delta_{n}\left\{\sup _{u \geq r(\lambda)} E\left(|Y(u, \lambda)|^{p}\right)+1+\sup _{u \geq r(\lambda)} E\left(|V(u, \lambda)|^{p}\right)\right\} .
\]


Therefore, \(\lim _{\mathrm{n}} \sup _{\lambda} \gamma_{4}=0\), and the first three sumands of the expression (3.5) converge also to zero when \(n\) tends to infinity, uniformly with respect to \(\lambda\), using (for the first two terms) the conditions that we have imposed to the processes \(V\) and \(V_{n}\). Thus by Gronwall's lemma the proof of lemma follows easily.

We remark that the process \(Y(z, \lambda)\) solution of (3.3) satisfies the continuity property (3.2). The preceding lemmas will be useful in proving that the solution of a system of stochastic differential equations in the plane belongs to the class of two-parameter processes \(H_{\infty}\) introduced in Section 2.

Proposition 3.3. Consider the m-dimensional continuous process \(X=\) \(\left\{X_{z}, z \in T\right\}\) given by the system of stochastic differential equations
\[
x_{z}^{i}=x^{i}+\int_{R_{z}}\left[A_{j}^{i}\left(x_{r}\right) d w_{r}^{j}+B^{i}\left(x_{r}\right) d r\right], \quad i=1, \ldots, m
\]
where \(x \in \mathbb{R}^{m}\), and the functions \(A_{j}^{i}, B^{i}\) have bounded derivatives of all orders greater than or equal to one. Then, the process \(X\) belongs to \(H_{\infty}\).

Proof. For any \(n \geq 1\) we introduce the process \(X_{n}=\left\{X_{n}(z), z \in T\right\}\) defined by
\[
X_{n}^{i}(z)=x^{i}+\int_{R_{z}}\left[A_{j}^{i}\left(X_{n}\left(\phi_{n}(r)\right)\right) d w_{r}^{j}+B^{i}\left(X_{n}\left(\phi_{n}(r)\right)\right) d r\right], \quad i=1, \ldots, m
\]

Notice that this is a recursive system and, therefore, \(X_{n}, i=1, \ldots, m\), are smooth processes. We are going to prove that \(\left\{X_{n}^{i}, n \geq 1\right\}\) is an approximating sequence for \(x^{i}, i=1, \ldots, m\). Denote by \(\xi_{j_{1}}^{(n) i} \ldots j_{N}\left(z, r_{1}, \ldots, r_{N}\right)\) the \(N\)-th derivatives of the process \(X_{n}^{i}\). First, by lemma 3.2 we have \(\lim _{n} E\left(\sup _{z}\left|X_{n}(z)-X(z)\right|^{p}\right)=0 \quad\) for all \(p \geq 1\). If \(z \in\left(0, s_{0}\right] \times\left(0, t_{0}\right]\) and \(u=\sup \left\{v \in S^{n}: v<z\right\}\), then \(X_{n}^{i}(z)\) is given by \(X_{n}^{i}(z)=X_{n}^{i}(z \otimes u)+X_{n}^{i}(u \otimes z)-X_{n}^{i}(u)+A_{h}^{i}\left(X_{n}(u)\right) w^{h}((u, z])+B^{i}\left(X_{n}(u)\right)|(u, z]|\).

As a consequence, we obtain
\[
\begin{aligned}
\xi_{j}^{(n) i}(z, r)= & \xi_{j}^{(n) i}(z \otimes u, r)+\xi_{j}^{(n) i}(u \otimes z, r)-\xi_{j}^{(n) i}(u, r) \\
& +\frac{\partial A_{h}^{i}}{\partial x_{k}}\left(X_{n}(u)\right) \xi_{j}^{(n) k}(u, r) w^{h}((u, z])+A_{h}^{i}\left(X_{n}(u)\right) \delta_{j}^{h} 1_{(u, z]}(r) \\
& +\frac{\partial B^{i}}{\partial x_{k}}\left(X_{n}(u)\right) \xi_{j}^{(n) k}(u, r)|(u, z]|
\end{aligned}
\]

Therefore, \(\xi_{j}^{(n) i}(u, r)\) is the solution of the following system of equations
\[
\begin{align*}
& \xi_{j}^{(n) i}(z, r)=A_{j}^{i}\left(X_{n}\left(\phi_{n}(r)\right)\right)+\int_{\left[\psi_{n}(r) \wedge z, z\right]}\left[\frac{\partial A_{h}^{i}}{\partial x_{k}}\left(X_{n}\left(\phi_{n}(u)\right)\right) \xi_{j}^{(n) k}\left(\phi_{n}(u), r\right) d w_{u}^{h}\right. \\
& \left.+\frac{\partial B^{i}}{\partial x_{k}}\left(X_{n}\left(\phi_{n}(u)\right)\right) \xi_{j}^{(n) k}\left(\phi_{n}(u), r\right) d r\right], i=1, \ldots, n ; j=1, \ldots, d . \tag{3.6}
\end{align*}
\]

Then, if we introduce the processes \(\left\{\xi_{j}^{i}(z, r), z \geq r\right\}\) defined by the system
\(\xi_{j}^{i}(z, r)=A_{j}^{i}\left(X_{r}\right)+\int_{[r, z]}\left[\frac{\partial A_{h}^{i}}{\partial x_{k}}\left(X_{u}\right) \xi_{j}^{k}(u, r) d w_{u}^{h}+\frac{\partial B^{i}}{\partial x_{k}}\left(X_{u}\right) \xi_{j}^{k}(u, r) d u\right]\),
applying lemma 3.2 we obtain
\[
\lim _{n} \sup _{r} E\left(\sup _{z \geq r}\left\|\xi(z, r)-\xi^{(n)}(z, r)\right\|^{p}\right)=0
\]
for all \(p\).

We need a similar result for the derivatives \(\xi_{j_{1}}^{(n) i} \ldots j_{N}\) of arbitrary order and for the stochastic integrals \(I_{K} \xi^{(n)}\) introduced in Section 2. First we will see that the successive derivatives of the smooth processes \(X_{n}^{i}\) can be deduced by a recursive argument. To do this, define
\[
\begin{gathered}
\alpha_{h j_{1} \ldots j_{N}}^{(n) i}\left(u, r_{1}, \ldots, r_{N}\right)=\sum \frac{\partial^{v A_{h}^{i}}}{\partial x_{k_{1}} \ldots \partial x_{k_{v}}}\left(X_{n}(u)\right) \xi_{j\left(I_{1}\right)}^{(n) k_{1}\left(u, r\left(I_{1}\right)\right)} \\
\\
\ldots \xi_{j\left(I_{v}\right)}^{(n) k_{v}\left(u, r\left(I_{v}\right)\right),}
\end{gathered}
\]
and
where the sums are extended to the set of all partitions \(\{1, \ldots, N\}=\) \(=I_{I} \cup \ldots \cup I_{v}\), and we have employed the notations of Section 2 . We also set \(\alpha_{j}^{(n) i}=A_{j}^{i}\left(X_{n}(u)\right)\). Then, we can write the following formula for the \(N\)-th derivatives of \(X_{n}{ }^{i}\)
\[
\begin{aligned}
\xi_{j_{1}, \ldots j_{N}}^{(n) i}\left(z, r_{1}, \ldots, r_{N}\right)= & \sum_{\varepsilon=1}^{N} \alpha_{j_{\varepsilon} j_{1} \ldots j_{\varepsilon-1}}^{(n) j_{\varepsilon+1} \ldots j_{N}}\left(\phi_{n}\left(r_{\varepsilon}\right), r_{1}, \ldots, r_{\varepsilon-1},\right. \\
& \left.r_{\varepsilon+1}, \ldots, r_{N}\right)
\end{aligned}
\]
\[
+\int_{\left[\psi_{n}\left(r_{1} \vee \ldots \vee r_{N}\right) \wedge z, z\right]}\left[a_{h j_{1} \ldots j_{N}}^{(n) i}\left(\phi_{n}(u), r_{1}, \ldots, r_{N}\right) d w_{u}^{h}\right.
\]
\[
\begin{equation*}
\left.+B_{j_{1} \ldots j_{N}}^{(n) i}\left(\phi_{n}(u), r_{1}, \ldots, r_{N}\right) d u\right] \tag{3,8}
\end{equation*}
\]

This expression can be proved by induction on \(N\). For \(N=1\) it reduces to formula (3.6). Suppose that (3.8) is true for N. Remark that for any \(g \in H\) we have
\(D\left(\alpha_{h j_{1} \ldots j_{N}}^{(n) i}\left(z, r_{1}, \ldots, r_{N}\right)\right)(g)=\int_{R_{z}}^{\alpha_{h j_{1}}(n) i}{ }_{n} j_{N}\left(z, r_{1}, \ldots, r_{N}, r\right) \dot{g}^{j}(r) d r\),
\[
\begin{aligned}
& \cdots \xi_{j\left(I_{v}\right)}^{(n) k_{v}}\left(u, r\left(I_{v}\right)\right) \text {, }
\end{aligned}
\]
and
\[
D\left(\beta_{j_{1} \ldots j_{N}}^{(n) i}\left(z, r_{1}, \ldots, r_{N}\right)\right)(g)=\int_{R_{z}} \beta_{j_{1} \ldots j_{N} j}^{(n) i}\left(z, r_{1}, \ldots, r_{N}, r\right) \dot{g}^{j}(r) d r
\]

In consequence, we obtain
\[
\begin{aligned}
& \left.D\left(\xi_{j_{1} \ldots j_{N}}^{(n) i}\left(z, r_{1}, \ldots, r_{N}\right)\right)(g)=\sum_{\varepsilon=1}^{N} \int_{R_{z}} a_{j_{\varepsilon} j_{1} \cdots j_{\epsilon-1} j_{\varepsilon+1} \cdots j_{N}{ }^{(n) i}\left(\Phi_{n}\left(r_{\varepsilon}\right), r_{1},\right.} \quad \ldots, r_{\varepsilon-1}, r_{\varepsilon+1}, \ldots, r_{N}, r\right) g^{j}(r) d r
\end{aligned}
\]
\(+\int_{R_{z}} \alpha_{j j_{1} \ldots j_{N}}^{(n) i}\left(\phi_{n}(r), r_{1}, \ldots, r_{N}\right) \dot{g}^{j}(r) d r\)
\(+\int_{R_{z}} \int_{\left[\psi_{n}\left(r_{1} v \ldots \vee r_{N} v r\right) \wedge z, z\right]}\left[a_{h j_{1} \cdots j_{N} j^{(n)}\left(\phi_{n}(u), r_{1}, \ldots, r_{N}, r\right) d w_{u}^{h}, ~}\right.\)
\(\left.+\beta_{j_{1} \ldots j_{N}}^{(n) i}\left(\phi_{n}(u), r_{1}, \ldots, r_{N}, r\right) d u\right) \dot{g}^{j}(r) d r\),
which implies that (3.8) holds for \(N+1\).
Now, for any \(r_{1}, \ldots, r_{N}\), we introduce the processes \(\left\{5_{j_{1}}^{i} \ldots j_{N}{ }^{\left(z, r_{1}\right.}\right.\), \(\left.\left.\ldots, r_{N}\right), \quad z \geq r_{1} \vee \ldots \vee r_{N}\right\}, \quad i=1, \ldots, m, \quad j_{1}, \ldots, j_{N} \in\{1, \ldots, d\}\), given by the stochastic differential systems
\[
\begin{aligned}
& \xi_{j_{1}}^{i} \ldots j_{N}\left(z, r_{1}, \ldots, r_{N}\right)=\sum_{\varepsilon=1}^{N} a_{j_{\varepsilon} j_{1} \ldots j_{\varepsilon-1} j_{\varepsilon+1} \ldots j_{N}}\left(r_{\varepsilon}, r_{1}, \ldots, r_{\varepsilon-1}, r_{\varepsilon+1},\right. \\
&\left.\ldots, r_{N}\right)+\int_{\left[\left(r_{1} \vee \ldots v r_{N}\right) \wedge z, z\right]}\left[a_{h j_{1}}^{i} \ldots j_{N}\left(u, r_{1}, \ldots, r_{N}\right) d w_{u}^{h}\right. \\
&\left.+\beta_{j_{1} \ldots j_{N}}^{i}\left(u, r_{1}, \ldots, r_{N}\right) d u\right],
\end{aligned}
\]
being
\[
\begin{aligned}
& \alpha_{h j_{1}}^{i} \ldots j_{N}\left(u, r_{1}, \ldots, r_{N}\right)=\sum \frac{\partial^{\nu} A_{h}^{i}}{\partial x_{k_{1}} \ldots \partial x_{k_{v}}}\left(x_{u}\right) \xi_{j\left(I_{1}\right)}^{k_{1}}\left(u, r\left(I_{1}\right)\right) \\
& \ldots \xi_{j\left(I_{v}\right)}^{k_{v}}\left(u, r\left(I_{v}\right)\right), \\
& B_{j_{1} \ldots j_{N}}^{i}\left(u, r_{1}, \ldots, r_{N}\right)=\sum \frac{\partial{ }_{B}^{v i}}{\partial x_{k_{1}} \ldots \partial x_{k_{v}}}\left(X_{u}\right) \xi_{j\left(I_{1}\right.}^{k_{1}}\left(u, r\left(I_{1}\right)\right) \\
& \ldots \xi_{j\left(I_{v}\right)}^{k_{v}}\left(u, r\left(I_{v}\right)\right),
\end{aligned}
\]
and \(\quad \alpha_{j}^{i}(u)=A_{j}^{i}\left(X_{u}\right)\).

Here we have used the same notations as above.

We claim that

for any \(p\).

Indeed, this can be shown by induction on \(N\). We have already remarked that (3.9) is true for \(N=1\). Suppose that it holds for \(N-1\). Observe that \(\alpha_{h j_{1} \ldots j_{N}}^{i}\left(u, r_{1}, \ldots, r_{N}\right)\) is equal to \(\frac{\partial A_{h}^{i}}{\partial x_{k}}\left(X_{u}\right) \xi_{j_{1}}^{k} \ldots j_{N}\left(u, r_{1}, \ldots, r_{N}\right)\) plus a polynomial function of the derivatives
\[
\frac{\partial^{\nu} A_{h}^{i}}{\partial x_{k_{1}} \cdots \partial x_{k_{v}}}\left(x_{u}\right) \quad \text { with } \quad v \geq 2
\]
and the processes \(\xi_{j_{1} \ldots j_{N}}^{k}(u, r(I))\) with card \((I) \leq N-1\). Therefore, (3.9) will follow from the induction hypothesis and lemma 3.2 applied to \(\lambda=\)
\(=\left(r_{1}, \ldots, r_{N}\right) \in T^{N}, \quad r(\lambda)=r_{1} \vee \ldots \vee r_{N}, \quad Y^{i}(r, \lambda)=\xi_{j_{1}}^{i} \ldots j_{N}\left(z, r_{1}, \ldots, r_{N}\right)\) (we may fix the indexes \(j_{1}, \ldots, j_{N}\) ), and \(V(u, \lambda)\) equal to the \(m\left(2^{N}-2\right)\)-dimensional process whose components are \(X_{u}^{i}\) and \(\xi_{j(I)}^{i}(u, r(I))\) being \(i=\) \(=1, \ldots\), m, J. \(\subset\{1, \ldots, N\}, 0<\operatorname{card}(I)<N\). The processes \(a(\lambda), \alpha_{n}(\lambda)\) and \(v_{n}(u, \lambda)\) would be defined in an obvious way.

By the same method, for any subset \(K\) of \(\{1, \ldots, N\}\) we can prove that
 for any \(p\), being \(I_{K} \xi\) the processes defined by the following system of equations:
\[
\begin{aligned}
& I_{K} \xi_{j\left(K^{c}\right)}^{i}\left(z, r\left(K^{c}\right)\right)=\sum_{\varepsilon \notin K} I_{K} \alpha_{j_{\varepsilon} j\left(K^{c}-\{\varepsilon\}\right)}^{i}\left(r_{\varepsilon}, r\left(K^{c}-\{\varepsilon\}\right)\right) \\
& \left.+\sum_{\varepsilon \in K} \int\left[\left(V \text { r }_{\varepsilon}, \epsilon \in K^{c}\right\}\right) \wedge z, z\right] I_{K-\{\varepsilon\}} \alpha_{j_{\varepsilon}}^{i} j\left(K_{c}\right)\left(r_{\varepsilon}, r\left(K^{c}\right)\right) d w_{r_{\varepsilon}}^{j_{\varepsilon}}
\end{aligned}
\]
\[
\begin{aligned}
& I_{K} \alpha_{h j\left(K^{c}\right)}^{i}\left(u, r\left(K^{c}\right)\right)=\sum \frac{\partial A_{h}^{i}}{\partial x_{k_{1}} \ldots \partial x_{k_{v}}}\left(X_{u}\right) I_{K \cap I_{1}} \xi_{j\left(I_{1}-K\right)}^{k_{1}}\left(u, r\left(I_{1}-K\right)\right) \\
& \ldots I_{K \cap I_{\nu}}{ }^{k_{\nu}}{ }_{j}\left(I_{\nu}-K\right)\left(u, r\left(L_{\nu}-K\right)\right),
\end{aligned}
\]
and
\[
\begin{aligned}
& I_{K} \beta_{j\left(K^{c}\right)}^{i}\left(u, r\left(K^{c}\right)\right)=\sum \frac{\partial_{B} B^{i}}{\partial x_{k_{1}} \ldots x_{k_{v}}}\left(X_{u}\right) I_{K \cap I_{1}} \xi_{j\left(I_{1}-K\right)}^{k_{1}}\left(u, r\left(I_{1}-K\right)\right) \\
& \ldots I_{k \cap I_{v}} \xi_{j\left(I_{v}-K\right)}^{k_{v}}\left(u, r\left(I_{v}-K\right)\right) .
\end{aligned}
\]

The proof of the proposition is now complete.
4. Application of Malliavin calculus to the solution of stochastic differential equations in the plane. In order to state the main result of this section, we need two preliminar lemmas.

Lemma 4.1. Let \(Q(\omega)\) be a symmetric non-negative definite mxm random matrix. Define the random variable \(\wedge=\mid \mathrm{max}_{=1} v \mathrm{v}_{\mathrm{Qv}}\). Then for each \(\mathrm{p} \geq 1\) there exist a universal constant \(C=C(p, m)\) such that
\[
E\left[(\operatorname{det} Q)^{-p}\right] \leq C\left\{\sup _{|v|=1} E\left[\left(v^{t} Q v\right)^{-2(p+m+1)}\right] E\left[(1+\Lambda)^{2 m+6}\right]\right\}^{1 / 2} .
\]

Proof. See Stroock [9], page 359.

Lemma 4.2. Let \(Y_{t}=Y_{0}+M_{t}+V_{t}\) be a continuous semimartingale adapted to an increasing family of \(\sigma\)-fields \(\left\{F_{t}, t \geq 0\right\}\) satisfying the usual conditions. We assume that \(M=\left\{M_{t}, t \geq 0\right\}\) is a continuous local martingale such that \(M_{0}=0\) and \(\left\langle M_{t}=\int_{0}^{t} a_{s}^{2} d s\right.\), and we also assume that \(V_{t}=\int_{0}^{t} \gamma_{s} d s\), where \(\alpha\) and \(\gamma\) are progressively measurable processes such that the preceding integrals exist. Let \(S: \Omega \longrightarrow[0, \tau]\) be a bounded stopping time and suppose that \(\sup \left\{\left|\alpha_{t}(\omega) \|,\left|\gamma_{t}(\omega)\right|\right\} \leq M \quad\right.\) for any \(\quad \omega \in \Omega\) and \(t \leq S(\omega)\). We fix real numbers \(\delta>4 \eta>0, a, b>0\) and \(p \geq 1\). Then, we have
\[
P\left\{\int_{0}^{S} Y_{t}^{2} d t \leq a \varepsilon^{\delta}, \quad \int_{0}^{s} a_{t}^{2} d t \geq b \varepsilon^{n}\right\} \leq \varepsilon^{p}
\]
for any \(\varepsilon \leq \varepsilon_{0}\), where \(\varepsilon_{0}\) depends on \(p, M, \tau, a, b, \delta\) and \(\eta\).

Proof. The proof of this lemma follows the same lines as that of theorem 8.26 in Stroock [9]. For the sake of completeness we will give the main arguments of this demonstration. First we will show that for all constants \(A>0\) and \(B>0\) the next inequality holds
\(P\left\{\int_{0}^{S} Y_{t}^{2} d t \leq A, \int_{0}^{S} a_{t}^{2} d t \geq B\right\} \leq 2^{1 / 2} \exp \left[-2^{-7} M^{-2}\left(\tau B^{-1 / 2}+A^{1 / 2} B^{-1}\right)^{-2}\right]\).

In order to prove (4.1) we may assume that for some \(\beta>0,\left|\alpha_{t}(\omega)\right| \geq \beta\) for any \(\omega\) and \(t\). Indeed, suppose that \(\left\{\hat{B}_{t}, t \geq 0\right\}\) is a standard Brownian motion independent of \(\underset{t \geq 0}{V} F_{t}\). Then, the semimartingale \(Y_{t}^{\prime}=Y_{t}+\beta \hat{B}_{t}\) verifies this property, and making \(\beta \nmid 0\) we get the desired result for \(Y_{t}\). Set \(B_{t}=M\left(A_{t}\right)\), \(t \geq 0\), being \(A_{t}=\inf \left\{s \geq 0:\langle M\rangle_{s} \geq t\right\}\). Then \(\left\{B_{t}, \vec{F}_{A_{t}}, t \geq 0\right\}\) is a Brownian motion. If \(\int_{0}^{S} a_{t}^{2} d t \geq B\), we have
\(\int_{0}^{S} Y_{t}^{2} d t=\int_{0}^{\langle M>} S Y^{2}\left(A_{s}\right) a^{-2}\left(A_{s}\right) d s \geq M^{-2} \int_{0}^{B}\left(Y_{0}+B_{s}+\int_{0}^{A_{s}} r_{u} d u\right)^{2} d s\),
and, therefore,
\[
\begin{aligned}
\left(\int_{0}^{S} Y_{t}^{2} d t\right)^{1 / 2} & \geq M^{-1}\left(\int_{0}^{B}\left(Y_{0}+B_{s}\right)^{2} d s\right)^{1 / 2}-M^{-1}\left(\int_{0}^{B}\left(\int_{0}^{A_{s}} Y_{u} d u\right)^{2} d s\right)^{1 / 2} \\
& \geq M^{-1} B^{1 / 2}\left(\sigma[0, B](B(\cdot))-\int_{0}^{A_{B}}\left|r_{u}\right| d u\right) \\
& \geq M^{-1} B^{1 / 2}(\sigma[0, B](B(\cdot))-\tau M)
\end{aligned}
\]
where for any real and continuous function \(f\) on \([O, B], \sigma^{2}[O, B\}^{(f)}\) denotes the quantity
\[
\frac{1}{B} \int_{0}^{B}\left[f(s)^{2}-\left(\frac{1}{B} \int_{0}^{B} f(u) d u\right)^{2}\right] d s
\]

In consequence,
\(P\left\{\int_{0}^{S} Y_{t}^{2} d t \leq A, \int_{0}^{S} \alpha_{t}^{2} d t \geq B\right\}\)
\(\leq P\left\{M^{-2} B\left(\sigma[0, B]^{\left.(B(\cdot))-\tau M)^{2} \leq A\right\} \leq P\left\{\sigma_{[O, B]}(B(\cdot)) \leq M\left(A^{1 / 2} B^{-1 / 2}+\tau\right)\right\}, ~}\right.\right.\)
and applying lemma 8.6 (pag. 343) of Ikeda-Watanabe [5] we obtain the inequality (4.1).

Now, to achieve the proof of the lemma we fix an integer \(n \geq 1\) and we compute
\[
\begin{align*}
& P\left\{\int_{0}^{S} Y_{t}^{2} d t \leq a \varepsilon^{\delta}, \int_{0}^{S} a_{t}^{2} d t \geq b \varepsilon^{n}\right\} \\
& \leq \sum_{k=1}^{n} P\left\{\int_{\left[\frac{k-1}{n} \wedge S, \frac{k}{n} \wedge S\right]} Y_{t}^{2} d t \leq a \varepsilon^{\delta}, \int_{\left[\frac{k-1}{n} \wedge S, \frac{k}{n} \wedge S\right]} a_{t}^{2} d t \geq n^{-1} b \varepsilon^{n}\right\} \\
& \leq n 2^{1 / 2} \exp \left[-2^{-7} M^{-2}\left(\tau b^{-1 / 2} \varepsilon^{-n / 2} n^{-1 / 2}+a^{1 / 2} \varepsilon^{(8 / 2)-n} n\right)^{-2}\right] \tag{4.2}
\end{align*}
\]

We take \(q\) such that \(q>\eta\) and \(\delta>2 q+2 \pi\). Then for any \(\varepsilon<1\) we may choose \(n\) such that \(n \leq e^{-q}<n+1\), and (4.2) is bounded by
\[
\varepsilon^{-q} 2^{1 / 2} \exp \left[-2^{-7} M^{-2}\left(2 \pi b^{-1 / 2} \varepsilon^{(q-n) / 2}+a^{1 / 2} \varepsilon^{(\delta / 2)-q-\eta}\right)^{-2}\right]
\]
which is less than \(\varepsilon^{p}\) for any \(\varepsilon \leq \varepsilon_{0} \cdot \square\)

Theorem 4.3. Let \(X=\left\{X_{z}, z \in T\right\}\) be the continuous solution of the stochastic differential system
\[
\begin{equation*}
x_{z}^{i}=x^{i}+\int_{R_{z}}\left[A_{j}^{i}\left(X_{r}\right) d w_{r}^{j}+B^{i}\left(X_{r}\right) d r\right], \quad i=1, \ldots, m \tag{4.3}
\end{equation*}
\]
where \(x \in \mathbf{R}^{m}\), and the functions \(A_{j}^{i}, B^{i}\) have bounded derivatives of all orders greater than or equal to one. Assume further that the following property holds:
(P) The vector space spanned by the vector fields \(A_{1}, \ldots, A_{d}, A_{i} A_{j}\), \(1 \leq i, j \leq d, \quad A_{i}^{\nabla}\left(A_{j}^{\nabla} A_{k}\right), \quad 1 \leq i, j, k \leq d, \ldots\), has full rank at the point \(x\).

Then, for any point \((s, t) \in T\) with \(s t \neq 0\), the law of the random vec tor \(X_{s t}\) admits an infinitely differentiable density function.

Proof. We fix \(z=(s, t) \in T\) with \(s t \neq 0\). We have to check conditions (i) and (ii) of theorem 1.1 for the Wiener functional \(X_{z}\). The first condition follows from propositions 3.3 and 2.1. In order to prove the second condition we set \(Q^{i j}=\left\langle D X_{z}^{i}, D X_{z}^{j}\right\rangle_{H}\). From the results of Section 3 we know that
\(Q^{i j}=\sum_{h=1}^{d} \int_{R_{z}} \xi_{h}^{i}(z, r) \xi_{h}^{j}(z, r) d r=\sum_{h=1}^{d} \int_{R_{z}}^{\zeta_{l}^{i}(z, r) A_{h}^{l}\left(X_{r}\right) \zeta_{1}^{j},(z, r) A_{h}^{1^{\prime}}\left(X_{r}\right) d r,}\)
where, for any \(r\), the processes \(\left\{\zeta_{j}^{i}(z, r), z \geq r\right\}\) are defined as the solution of the stochastic differential system:
\(\zeta_{j}^{i}(z, r)=\delta_{j}^{i}+\int_{[r, z]}\left[\frac{\partial A_{h}^{i}}{\partial x_{k}}\left(X_{u}\right) \zeta_{j}^{k}(u, r) d w_{u}^{h}+\frac{\partial B^{i}}{\partial x_{k}}\left(X_{u}\right) \zeta_{j}^{k}(u, r) d u\right]\).
We want to show that \(E\left[(\operatorname{det} Q)^{-p}\right]<\infty\) for all \(p \geq 1\). Set \(\Lambda=\max _{|v|=1} v^{t} Q v \leq\|Q\|\).
Using the estimates for the moments of the solutions of stochastic differential equations in the plane, obtained in lemma 3.1 , we deduce that \(E\left(\|Q\|^{p}\right)^{<\infty}\) for any \(p\). Therefore, by lemma 4.1 it suffices to see that \(\sup E\left[\left(v^{t} Q v\right)^{-p}\right]<\infty\).
\[
|v|=1
\]

To this end we are going to show that for all \(p \geq 1\) we have
\[
\begin{equation*}
P\left\{v^{t} Q v \leq \varepsilon\right\} \leq \varepsilon^{p} \tag{4,6}
\end{equation*}
\]
for any \(v\) such that \(|v|=1\) and \(\varepsilon \leq \varepsilon_{0}\), where \(\varepsilon_{0}\) depends on \(p, x, z\) and the coefficients of system (4.3). Suppose that \(0<\varepsilon<1\), and using (4.4) compute
\[
\begin{aligned}
& P\left\{v^{t} Q v \leq \varepsilon\right\}=P\left\{\sum_{h=1}^{d} \int_{R_{z}}\left(v_{i} \zeta_{j}^{i}(z, r) A_{h}^{j}\left(X_{r}\right)\right)^{2} d r \leq \varepsilon\right\} \\
& \left.\leq P_{i} \sum_{h=1}^{d} \int_{0}^{s} \int_{t-\varepsilon}^{t}{ }_{2 / 3}\left(v_{i} \zeta_{j}^{i}(z, r) A_{h}^{j}\left(X_{r}\right)\right)^{2} d r \leq \varepsilon\right\} \\
& \left.\leq P t \sum_{h=1}^{d} \int_{0}^{s}\left(v_{i} A_{h}^{i}\left(X_{\sigma t}\right)\right)^{2} d \sigma \leq 4 \varepsilon^{1 / 3}\right\} \\
& +P\left\{\sum_{h=1}^{d} \int_{0}^{s}\left(v_{i} A_{h}^{i}\left(X_{\sigma t}\right)\right)^{2} d \sigma>4 \varepsilon^{1 / 3}, \sum_{h=1}^{d} \int_{0}^{s} \int_{t-\varepsilon}^{t} 2 / 3\left(v_{i} \xi_{j}^{i}(z, r) A_{h}^{j}\left(X_{r}\right)\right)^{2} d r \leq \varepsilon\right\} .
\end{aligned}
\]

The second probability of this expression is bounded by
\[
\begin{aligned}
& P\left\{\sum_{h=1}^{d} \int_{0}^{s} \int_{t-\varepsilon}^{t} 2 / 3\left(v_{i} A_{h}^{i}\left(X_{\sigma t}\right)\right)^{2} d \sigma>4 \varepsilon, \sum_{h=1}^{d} \int_{0}^{s} \int_{t-\varepsilon}^{t} 2 / 3\left(v_{i} \zeta_{j}^{i}(z, r) A_{h}^{j}\left(x_{r}\right)\right)^{2} d r \leq \varepsilon\right\} \\
& \leq P\left\{\sum_{h=1}^{d} \int_{0}^{s} \int_{t-\epsilon}^{t}{ }_{2 / 3}^{t}\left(v_{i}\left(\delta_{j}^{i}-\zeta_{j}^{i}(z, r)\right) A_{h}^{j}\left(X_{r}\right)\right)^{2} d r>\varepsilon\right\} \\
& \leq \varepsilon^{-q / 3} s^{q} \sup _{r \in[0, s] \times\left[t-\varepsilon^{2 / 3}, t\right]} E\left(\left|\sum_{h=1}^{d}\left(v_{i}\left(\delta_{j}^{i}-\zeta_{j}^{i}(z, r)\right) A_{h}^{j}\left(x_{r}\right)\right)^{2}\right|^{q}\right) \\
& \leq \varepsilon^{-q / 3} s^{q} \sup _{r \in\left[0, s b\left\{t-\varepsilon^{2 / 3}, t\right]\left[E\left(\| I_{m}^{\left.-5(z, r) \|^{4 q}\right) E\left(\left\|A\left(X_{r}\right)\right\|^{4 q}\right)}\right]^{1 / 2}, ~, ~, ~, ~\right.\right.}
\end{aligned}
\]
for any \(q \geq 1\). Here \(I_{m}\) denotes the identity matrix of order \(m\). In the
following \(C(q)\) will represent a constant which may depend on \(q, x, z\) and the coefficients of system (4.3).

Applying the second inequality deduced in lemma 3.1 to the stochastic differential system (4.5) we obtain
\[
\sup _{r \in[0, s] \times\left[t-\epsilon^{2 / 3}, t\right]} E\left(\left\|I_{m}-\zeta(z, r)\right\|^{4 q}\right) \leq C(q) s^{2 q} \varepsilon^{4 q / 3} .
\]

In consequence, the second sumand of expression (4.7) is bounded by \(C(q) e^{q / 3}\), which provides the desired majoration. Then, it suffices to study the term
\[
\begin{equation*}
P\left\{\sum_{h=1}^{d} \int_{0}^{s}\left(v_{i} A_{h}^{i}\left(x_{\sigma t}\right)^{2} d \sigma \leq 4 \varepsilon^{1 / 3}\right\} .\right. \tag{4.8}
\end{equation*}
\]

Set \(\mathscr{S}_{0}=\left\{A_{h}, 1 \leq h \leq d\right\}\) and \(\mathscr{S}_{j}=\left\{A_{h}^{\nabla} V, 1 \leq h \leq d, V \in \mathscr{C}_{j-1}\right\}\) for any \(j \geq 1\). By property ( \(P\) ) there exists an integer \(j_{o} \geq 0\) such that the linear span of \(\bigcup_{j=0}^{j o} \operatorname{S}_{j}\) at the point \(x\) has dimension \(m\). This implies that there is an \(R>0\) and \(c>0\) such that
\[
\sum_{j=0}^{j_{Q}} \sum_{v \in \mathscr{E}_{j}}\left(v_{i} v^{i}(y)\right)^{2} \geq c
\]
for all \(v\) and \(y\) with \(|v|=1\) and \(|y-x|<R\). Consider the stopping time \(S\) with respect to the family of \(\sigma\)-fields \(\left\{F_{\sigma t}, \sigma \geq 0\right\}\) defined as
\[
S=\inf \left\{\sigma \geq 0: \sup _{\substack{ \\\xi \leq \sigma \\ \tau \leq t}}\left|X_{\xi \tau}-x\right| \geq R\right\} \wedge s
\]

For any \(j=0,1, \ldots, j_{0}\) we put \(m(j)=\frac{1}{3} 2^{-4 j}\) and we introduce the set
\[
E_{j}=\left\{\sum_{v \in \mathscr{S}_{j}} \int_{0}^{S}\left(v_{i} v^{i}\left(x_{\sigma t}\right)\right)^{2} d c \leq 4 E^{m(j)}\right\}
\]

We remark that
\[
\left\{\sum_{h=1}^{d} \int_{0}^{s}\left(v_{i} A_{h}^{i}\left(X_{\sigma t}\right)\right)^{2} d \sigma \leq 4 \varepsilon^{1 / 3}\right\} \subset E_{0}
\]

Consider the decomposition
\[
E_{o} \subset\left(E_{o} \cap E_{1}^{c}\right) \cup\left(E_{1} \cap E_{2}^{c}\right) \cup \ldots \cup\left(E_{j_{o}-1} \cap E_{j_{0}}^{c}\right) \cup F
\]
where \(F=E_{o} \cap E_{1} \cap \ldots \cap E_{j_{0}}\). Then, the probability given in (4.8) is bounded by
\[
\sum_{j=1}^{j_{0}} P\left(E_{j-1} \cap E_{j}^{c}\right)+P(F)
\]
and we are going to estimate each term of this sum. This will be done in two steps:
(i) We can write
\[
P(F) \leq P\left(F \cap\left\{S \geq \varepsilon^{\beta}\right\}\right)+P\left\{S<\varepsilon^{\beta}\right\},
\]
where \(0<B<m\left(j_{o}\right)\). For \(\varepsilon\) small enough, the intersection \(F \cap\left\{S \geq \varepsilon^{\beta}\right\}\) is empty. In fact, if \(S \geq \varepsilon^{\beta}\) we have
\[
\sum_{j=0}^{j_{0}} \sum_{v \in \varrho_{j}} \int_{0}^{S}\left(v_{i} v^{i}\left(x_{\sigma t}\right)\right)^{2} d \sigma \geq c \varepsilon^{8}
\]
whereas on \(F\) this integral is bounded by \(4\left(j_{0}+1\right) \varepsilon^{m\left(j_{0}\right)}\). Moreover it holds that
\[
\begin{aligned}
P\left\{S<\varepsilon^{\beta}\right\} & \leq P\left\{\sup _{u \leq\left(\varepsilon^{\beta}, t\right)}\left|X_{u}-x\right| \geq R\right\} \\
\leq & R^{-q} E\left(\sup _{u \leq\left(\varepsilon^{\beta}, t\right)}\left|\int_{R_{u}}\left[A_{h}\left(X_{r}\right) d w_{r}^{h}+B\left(X_{r}\right) d r\right]\right|^{Q}\right),
\end{aligned}
\]
for any \(q \geq 1\). Now, using Burkholder and Hollder inequalities we deduce. \(P\left\{S<\varepsilon^{B}\right\} \leq C(q) \varepsilon^{q^{\beta / 2}}\) for any \(q \geq 2\), and, therefore, we have obtained a majoration of the type (4.6) for \(P(F)\).
(ii) For any \(j=1, \ldots, j_{0}\) we consider the probability \(P\left(E_{j-1} \cap E_{j}^{c}\right)\)
\(=P\left\{\sum_{v \in \mathscr{S}_{j-1}} \int_{0}^{S}\left(v_{i} v^{i}\left(x_{\sigma t}\right)\right)^{2} d \sigma \leq 4 \varepsilon^{m(j-1)}, \sum_{A \in \mathscr{S}_{j}} \int_{0}^{S}\left(v_{i} v^{i}\left(X_{\sigma t}\right)\right)^{2} d \sigma>\Delta \varepsilon^{m(j)}\right\}\)
\[
\begin{array}{rl}
\leq \sum_{v \in \mathscr{G}_{j-1}} P & P \int_{0}^{S}\left(v_{i} v^{i}\left(x_{\sigma t}\right)\right)^{2} d \sigma \leq 4 \varepsilon^{m(j-1)}  \tag{4.9}\\
& \left.\sum_{h=1}^{d} \int_{0}^{S}\left(v_{i}\left(A_{h}^{\nabla} V\right)^{i}\left(x_{\sigma t}\right)\right)^{2} d \sigma>4 n(j-1)^{-1} \varepsilon_{e}^{m(j)}\right\},
\end{array}
\]
where \(n(j)=\) card \(\mathscr{\mathscr { S }}_{j}\). We fix \(j=1, \ldots, j\) and a vector field \(v \in \mathscr{S}_{j-1}\). Applying Ito's formula in the first coordinate we obtain
\(v^{i}\left(x_{u v}\right)=v^{i}(x)+\int_{R_{u v}} \frac{\partial v^{i}}{\partial x_{k}}\left(x_{\sigma v}\right) A_{h}^{k}\left(x_{\sigma \tau}\right) d W_{\sigma \tau}^{h}\)
\(+\int_{R_{u v}}\left[\frac{\partial v^{i}}{\partial x_{k}}\left(x_{\sigma v}\right) B^{k}\left(x_{\sigma \tau}\right)+\frac{1}{2} \frac{\partial^{2} v^{i}}{\partial x_{k} \partial x_{j}}\left(x_{\sigma v}\right) \sum_{h=1}^{\alpha} A_{h}^{k}\left(x_{\sigma T}\right) A_{h}^{j}\left(x_{\sigma \tau}\right)\right] d \sigma d \tau\).

Then, by lemma 4.2 we have the following estimation
\[
\begin{align*}
& P\left\{\int_{0}^{S}\left(v_{i} v^{i}\left(x_{\sigma t}\right)\right)^{2} d \sigma \leq 4 \varepsilon^{m(j-1)}, \sum_{h=1}^{d} \int_{0}^{S} \int_{0}^{t}\left(v_{i} \frac{\partial v^{i}}{\partial x_{k}}\left(x_{\sigma t}\right) A_{h}^{k}\left(X_{\sigma \tau}\right)\right)^{2} d \sigma d \tau\right. \\
& \left.\geq n(j-1)^{-1} \varepsilon^{3 m(j)}\right\} \leq \varepsilon^{p}, \tag{4.10}
\end{align*}
\]
for any \(p \geq 1\) and \(\varepsilon \leq \varepsilon_{0} \quad\left(\varepsilon_{0}\right.\) depending on \(\left.p\right)\). In fact, note that \(m(j-1)>12 m(j)\). Finally, we have the following majorations
\[
\begin{aligned}
P & \left\{\sum_{h=1}^{d} \int_{0}^{S}\left(v_{i} \frac{\partial V^{i}}{\partial x_{k}}\left(X_{\sigma t}\right) A_{h}^{k}\left(x_{\sigma t}\right)\right)^{2} d \sigma>4 n(j-1)^{-1} \varepsilon^{m(j)},\right. \\
& \left.\sum_{h=1}^{d} \int_{0}^{S} \int_{0}^{t}\left(v_{i} \frac{\partial v^{i}}{\partial x_{k}}\left(x_{\sigma t}\right) A_{h}^{k}\left(x_{\sigma \tau}\right)\right)^{2} d \sigma d \tau<n(j-1)^{-1} \varepsilon^{3 m(j)}\right\} \\
\leq P & \left\{\sum_{h=1}^{d} \int_{0}^{S} \int_{t-\varepsilon}^{t} 2 m(j)^{\left(v_{i}\right.} \frac{\partial v^{i}}{\partial x_{k}}\left(x_{\sigma t}\right) A_{h}^{k}\left(x_{\sigma t}\right)\right)^{2} d \sigma d \tau>4 n(j-1)^{-1} \varepsilon^{3 m(j)}, \\
& \left.\left.\sum_{h=1}^{d} \int_{0}^{S} \int_{t-\varepsilon^{2}}^{t} 2 m(j)^{\left(v_{i}\right.} \frac{\partial v^{i}}{\partial x_{k}}\left(x_{\sigma t}\right) A_{h}^{k}\left(x_{\sigma \tau}\right)\right)^{2} d \sigma d \tau<n(j-1)^{-1} \varepsilon^{3 m(j)}\right\}
\end{aligned}
\]
\[
\leq P\left\{\sum_{h=1}^{d} \int_{0}^{S} \int_{t-\varepsilon}^{t} 2 m(j)\left(v_{i} \frac{\partial V^{i}}{\partial x_{k}}\left(X_{\sigma t}\right)\left(A_{h}^{k}\left(X_{\sigma t}\right)-A_{h}^{k}\left(x_{\sigma \tau}\right)\right)\right)^{2} d \sigma d \tau \geq n(j-1)^{-1} \varepsilon^{3 m(j)}\right\}
\]
\[
\leq s^{q} \varepsilon^{-q m(j)} n(j-1)^{q} \sup _{\sigma \in[0, s], t \in\left[t-\varepsilon^{2 m(j)}, t\right]} E\left(\left\lvert\, \sum_{h=1}^{d}\left(v _ { i } \frac { \partial V ^ { i } } { \partial x _ { k } } ( X _ { \sigma t } ) \left(A_{h}^{k}\left(x_{\sigma t}\right)\right.\right.\right.\right.
\]
\[
\left.\left.\left.-A_{h}^{k}\left(x_{\sigma \tau}\right)\right)\right)\left.^{2}\right|^{q}\right)
\]
\[
\leq s^{q} \varepsilon^{-q m(j)} n(j-1)^{q} \quad \sigma \in[0, s], \tau \in\left[t-\varepsilon \sup ^{2 m(j)}, t\right] \quad\left\{E\left(\left\|\frac{\partial V}{\partial x}\left(X_{\sigma t}\right)\right\|^{4 q}\right)\right.
\]
\[
\left.\cdot E\left(\left\|A\left(X_{\sigma t}\right)-A\left(X_{\sigma \tau}\right)\right\|^{4 q}\right)\right\}^{1 / 2},
\]
for any \(q \geq 1\). Using lemma 3.1 , this expression is less than or equal to \(C(q) \varepsilon^{q m(j)}\). This result combined with inequalities (4.9) and (4.10) gives us the desired sort of estimate for the term \(P\left(E{ }_{j-1} \cap E_{j}^{c}\right)\), which achieves the proof of the theorem.

In the one-parameter case, the existence of a density for the solution of a stochastic differential equation can be proved under Hörmander's condition:
( \(P^{\prime}\) ) The vector space spanned by \(A_{1}, \ldots, A_{d},\left[A_{i}, A_{j}\right], 1 \leq i, j \leq d\), \(\left[A_{i},\left[A_{j}, A_{k}\right]\right], 1 \leq i, j, k \leq d, \ldots\), at the point \(x\) is \(R^{m}\).

Actually, a more general condition using Lie brackets formed with the vector field \(B\) as generators would be sufficient. We have been unable to generalize this kind of condition to the two-parameter case.

Remark that hypothesis ( \(P\) ) is weaker than ( \(P\) ) and, in fact, theorem 4.3 can be applied to a family of situations that did not appear in the one-parameter case. Consider, for instance, the following example. Assume that \(m \geq 2, d=1, x=0, A_{1}(x)=\left(1, x^{1}, x^{2}, \ldots, x^{m-1}\right)\) and \(B=0\). Then property ( \(P^{\prime}\) ) does not hold and, for \(m=2\), the one-parameter solution \(x_{t}^{1}=w_{t}^{1}, x_{t}^{2}=\int_{0}^{t} w_{s}^{1} d w_{s}^{1}=1 / 2\left[\left(w_{t}^{1}\right)^{2}-t\right]\) satisfies \(2 x_{t}^{2}=\left(X_{t}^{1}\right)^{2}-t\). However, in the two-parameter case, theorem 4.3 can be used, and, for \(z=(s, t), s t \neq 0\), the joint distribution of the iterated stochastic integrals \(x_{z}^{1}=w_{z}^{1}, \quad x_{z}^{2}=\int_{R_{z}} w_{r}^{1} d w_{r}^{1}, \quad x_{z}^{3}=\int_{R_{z}}\left(\int_{R_{r}} w_{u}^{1} d w_{u}^{1}\right) d w_{r}^{1}, \ldots, x_{1}^{m}=\) \(=\int_{R_{z}} x_{r}^{m-1} d w_{r}^{1}\) has an infinitely differentiable density on \(R^{m}\). Observe that \({ }^{Z}\) here the stochastic differentiation rules (cf. [10]) claim that \(\left.\left(X_{z}^{1}\right)^{2}=2 x_{z}^{2}+2 \int_{R_{z} \times R_{z}} 1\left(r, r^{\prime}\right): \quad r_{1} \leq r_{1}^{\prime}, \quad r_{2} \geq r_{2}^{\prime}\right\} d W_{r^{\prime}} d W_{r^{\prime}}+s t\), and \(X_{z}^{2}\) is not a function of \(x_{z}^{1}\).
[1] Bismut, J.M. "Martingales, the Malliavin Calculus and hypoellipticity under general Hörmander's conditions". Z. Wahrscheinlichkeitstheorie verw. Gebiete 56, 469-505 (1981).
[2] Cairoli, R. "Sur une équation diffêrentielle stochastique". CRAS 274, 1739-1742 (1972).
[3] Cairoli, R. and Walsh, J.B. "Stochastic integrals in the plane". Acta Math. 134, 111-183 (1975).
[4] Hajek, B. "Stochastic equations of hyperbolic type and a two-parameter Stratonovich calculus", Ann. Probability 10, 451-463 (1982).
[5] Ikeda, N. and Watanabe, S. "Stochastic differential equations and diffusion processes". Amsterdam-Oxford-New York: North-Holland and Tokyo: Kodansha 1981.
[6] Malliavin, P. "Stochastic calculus of variations and hypoelliptic operators". Proceedings of the International Conference on Stochastic Differential Equations of Kyoto 1976, pp. 195-263. Tokyo: Kimokuniya and New York: Wiley 1978.
[7] Shigekawa, I. "Derivatives of Wiener functionals and absolute continuity of induced measures". J. Math. Kyoto Univ. 20-2, 263-289 (1980).
[8] Stroock, D.W. "The Malliavin calculus, a functional analytic approach". Journal of Functional Analysis 44, 212-257 (1981).
[9] Stroock, D.W. "Some applications of stochastic calculus to partial differential equations". Lecture Notes in Math., 976, 267-382 (1983).
[10] Wong, E, and Zakai, M. "Differentiation formulas for stochastic integrals in the plane". Stochastic Processes and their Applications 6, 339-349 (1978).
[11] Zakai, M. "The Malliavin Calculus". Preprint.

> D. Nualart and M. Sanz Factultat de Matemàtiques Universitat de Barcelona Gran Via 585 , Barcelona 7 . SPAIN.
Chen```

