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O. Introduction. The aim of this paper is to prove the existence

and smoothness of the density of the probability law on Bm induced

by the solution of the stochastic integral equations in the plañe

x1 = X1 + I [A1(x )dWj + B1(x ) dr], i=l,...,m, (0.1)
Z J[0,z] J r r

z£B^ , where W = (w\....W^) is a d-dimensional two-parameter
+ z z z

Wiener process, and assuming some conditions on the coefficients

A* and B1. If these coefficients are globally Lipschitz functions,

it is known (cf. Cairoli [2], Hajek [4]) that this system has a

unique continuous solution, which has a particular Markov property.

There exists a transition semigroup corresponding to these Markov

processes, but this semigroup acts on continuous functions over the

sets of the form {(x,t): x^s} U {(s,y): y^t}. Then, we cannot

expect the probability distribution of to satisfy a second order

partial differential equation.

In the case of an ordinary stochastic differential equation

with respect to the Brownian motion, Malliavin has developed in [6]

probabilistic techniques to show the existence and smoothness of

density for the solution of these equations under Hormander's condi¬

tions. Alternative approaches to Malliavin's theory were given by

Shigekawa [7], Bismut [ 1 ] and Stroock[8], The extensión of Malliavin

calculus to the case of two-parameter Wiener functionals is straight-

forward. In Section 1 we have briefly discussed Shigekawa’s presenta-

tion of Malliavin Calculus adapted to functionals of a multidimensio-

nal Wiener sheet. However when we apply this stochastic calculus

to the solution of the system (0.1}, some technical difficulties
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appear, in relation with the following facts:

X
a) The inner products <DXz> DXz>H (in the notation of Shigekawa)
are not Solutions of a similar system of equations, because the two-

parameter stochastic differentiation rules involve the presence of

double integráis over the set { (z,z’ )e E2xB2 : z, < z', z >z‘}

(cf. [10]).

b) Unlike the one-parameter case, there is no flow of transforma-

tions of Bm naturally associated to the system (0.1). Also, the

solution of a linear system cannot be expressed as an exponential

(because of the two-parameter stochastic calculus) and is not inver¬

tible, in general.

For these reasons, in the development of Malliavin calculus applied

to the functional X we have avoided the use of Ito's formula, and
z

the fact that X* (and other functionals deduced from X^) belongs to
the space H ^ (in the notation of Ikeda-Watanabe [5]) is proved by means

of a direct approximation method. To do this, a good class of processes

is introduced in Section 2, and in Section 3 we show that the process

X = ÍX , z€¡0,z ]) is included in this class.
z o

Section 4 is devoted to prove the non-degeneracy condition, follo¬

wing the ideas developed by Stroock in Section 8 of [9]. We remark that

the two-dimensional character of the parameter set makes this demonstra-

tion a little simpler and, in fact, we do not need estimates for the

inverse of the solution of a linear system of equations in the

plañe. In conclusión, the existence and smoothness of
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the density of (at any point z outside the axes) is obtained as-

suming that the vector space spanned by the vector fields A ,...,A ,

aYa ., 1 < i, j < d, A^7 (AVA ), 1 < i, j ,k < d, at the point x is
ij — — íjk — —

Em. Here ÁYa . denotes the covariant derivative of A. in the direc-
i J J

tion of A^. This property is strictly weaker than the restricted
Hormander’s conditions, which are expressed in terms of Lie brackets

instead of covariant derivatives.

1. Elements of Malliavin calculus. The set of parameters will be

T = [O.s^] x [0,t ], with the partial ordering (s^,t^)£ ^S2’^2^
if and only if s^< s^ and t^< t^; (s^t )< {& means that

Sl< S2 aní* ^'1< ^2* Zl< Z2* (zi *z2] denote the rectangle
{ z 6 T: z^ < z < z^}. We put R^ = [0,z], and z^ ® z^ = (s^ , t^) if

2
z^=(s^,t^) and . The increment of a function f: R+—► R
on a rectangle (z tz^] is given by f{{z^,z^\) = f(z1> - f(zj®z2) -

2
- f(z^z^) + f(z2). The Lebesgue measure of a Borel set B C R+
is denoted by |B|.

Our probability space is the canonical space associated

to the d-dimensional two-parameter Wiener process, that is, 8 is

the space of all continuous functions w: T ► R^ which vanish

on the axes, P is the two-parameter Wiener measure and F is the com-

pletion of the Borel o-field of ft with respect to P. We also consider

the increasing family of o-fields {/“ , z£T}, where F is generated

by the functions {w(r), wGft, r< z} and the nuil sets of F, The

familyí^, z€T> satisfies the usual conditions of [3]. The following
subset of 8 plays an important role:
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H = {u>GÍ2 :

üji(z)

there exists

= | ¿i(r)
K

¿^G L2(T), i=l, , .

dr, for any z G T

, d, such that

and for any i}.

H is a Hilbert space with the inner product

Ü2>H ir Í (r) (r) dr

Any measurable function defined on the Wiener space is called

a Wiener functional. A Wiener functional F: P —► R is smooth if

there exists some n >1 and a C2-function f on Rn such that

(i) f and its derivatives up to the second order have at most poly-

nomial growth order,

(ii) F(w) = f ( <d( z„ (o( z )) for some z,,...,z £T.
1 n 1 n

Every smooth functional is Fréchet-differentiable, and we have

DF(w )(w) = y* X (<*> (z ),...,id (z )) íd^(z.).
° £í ni 3x*? 1

We also need the operator L defined on smooth functionals as follows:

2„
LF (o y ¿ -d.- . («(z ),... ,o»(z ))r(z.jh iX=l 3xJ3x,J 1i k

*‘k' DF(üí ) (<u ),

where r(z.,z ) = (x.Ax )(y.Ay, ), if z. = (x.,y.)t i=l,..,n. Note that
lK 1 K 1 K 1 IX

r is the covariance function of the Brownian sheet.

For any p >1, will denote the space of Wiener functionals F:

íí ► which are valued on the space H, and such that

E( ||F||£) < ®. If we fix o) e and a smooth functional F, DF(u>):

H ► R is a continuous linear map, and, so, it may be considered

as an element of H. In this sense we have DF € L.£ for any p> 1.
n —
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Let H {p^ tp^ ;p^), P1»P2»P3^1» be tbe sPace of* real valued
Wiener functionals F such that there exists a sequence of smooth

functionals ÍF , k>l} satisfying:

(a) F F in LPl ,k k

LP2
n

(b) (DFk' k > 1} is a Cauchy sequence in

(c) (LFk, k > 1} is a Cauchy sequence in LP3

For a Wiener functional Fe H(p, ,p0;p.) we define DF = lim DF1 ¿.ó K

and LF = lim LF , and it is proved that these limits are uniquely
k k

determined by F. ^pi,p2;p3^ is a Banach space with the norm
|| F || + || DF || + II LF II . We set H = fl H(p,p;p).

P1 P2 P3 " P>2

Let Fie H for i=l,...,d, and let u: R^ —R be a twice

continuously differentiable function such that u and its first

and second derivatives have at most polynomial growth order. If we

set F = (F^t...,F^), then u °F e H^, and the following differen-

tiation rules hold

D(uoF) = (
dU

F) DF

and

L(u°F) - (
32u

3 x. a x .

F) <DF ,DFJ> + (
3u

3X.
LF

The next result is the two-parameter versión of Malliavin's

theorem. The proof of this theorem in the one-parameter case can

be generalized without any problem.

Theorem 1.1 (cf. Ikeda-Watanabe, [5]). Let F = (F*,...,Fm) be an

]Rm-valued two-parameter Wiener functional. Assume that F satisfies

the following two conditions:
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i=l,...,m and also the class defined by(i) F1eH ,

C = {F1, <DF1,DFJ>U, LF1; i,j=l,...,m)
O H

satisfies that C CH , Furthermore assuming C c H we de-
o r-1 «»

fine the class C by
r

C = C ,U{<DF1,DG> ; GSC ,, i=l,...,m}
r r-1 H r-1

and assume that C for every r=0,l,...

(ii) Setting Q1^ = <DF1,DF^>„ we suppose that (det Q) forrl

all p>_l.

Then, the probability law of F is absolutely continuous with respect

to the Lebesgue measure and it has a infinitely differentiable densi-

ty.

2. A class of two-parameter processes. In order to prove that the so-

lution Xz of the stochastic differential system (0,1) (assuming that
the coefficients are smooth and have bounded derivatives) satisfies

condition (i) of theorem 1.1, we are going to introduce a rich class

of processes H which ineludes the process X , and such that
W z

has the following properties:

(i) If F e Hm, then for any z6T.

(ii) If F.Ge//^, then the processes LF = (LF^, zGT) and<DF,DG>^=
= (<DF ,DG >„, z€T) are also in H .

Z Z H «o

4 ,
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Consider the processes of the form F (to) = f(z,<*>(z, wíz ))
z 1 n

where:

(i) z1f...,2 are n fixed points of T, not on the axes.
i n

(ii) The functions f(z,*) and all their derivatives have at most

polynomial growth order and are continuous functions of z.

(iii) For any zGT, the function (x„ , ...,x ) ► f(z,x, ,... ,x )
1 n 1 n

depends only on the coordinates x.ep^ such that z^< z, i=l,...,n.

With these assumptions { F^, z€ T } is a continuous and adapted pro-
cess such that F is a smooth functional for each z€T. We will

z

cali such processes, smooth processes. Note that for any h€H

DF (h) =
z

where

= ¿ ¿ (z,u)(z ),... ,<d(z )) h^(z.) = I £.(z,r)h
n hí 3Xj 1 n 1 Jrz j

£.(z,r) = X (z.u(z ) u(z ))1
J 41 1 11 KZ4

)hJ(r)dr,

i=i axr

The process £ (z,r) vanishes

ne, for ^*••*,JNeí1.•••,d),

UIUC&S

5. . (z,r.,r„)
Jr--JN 1 N

More generally, we defi-

3XJ1...8x9n
X1 XN

(ZildtZj)! o(z_)) lc 1R (r,,).

These processes vanish unless z j>r^V ...V rR, and they will be
called the N-th derivatives of F. Observe that for any h€H
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D5 (z,r r )(h) =1 5- • . (z,r , . . . ,r ,r)h^1 N JR 1 N
(r) dr.

For any subset K = { < . . . < e^} of í 1 N} we put K =
= í1* — »N>-K, j(K) = j ... j£ and r(K) =rCl ,... ,rE . We defineti «-n «-i fcn

Vj(KC)(z-r(K >> e?k j4 ir?..iN=i JN "<zn)5

R / *e '
e6KC Z^e / \ c€K

II !r ÍI'Jt(íL1' (2.1)

The expression (2.1) represents a múltiple stochastic integral with

respect to the Brownian sheet. We remark, however, that these sto¬

chastic integráis will not follow the rules of the stochastic calcu-

lus because the processes E^... •) are not adapted. We will
write I. instead of I(.}, and I{1 N)í(z> for ^ N}«j (» )<z’ r<* » •
Note that I

v

For any integer M >1 and any real p^l, we set

'p.M = [E(m |Fz' >’Pwl/P

i y sup [ E(sup III c(z,r (Kc)) ||P)] 1|/p,
“l KC{lt^.,N) r ,eeKC K

where II • II denotes the Hilbert-Schmidt norm. Let // w be the closed
P«“

hull of the family of smooth processes with respect to this norm. The

processes of ti „ are continuous, and if F € tí . then F €H(p,p;p)
p t M p, M Z

for any zG T. Set H = n n H For any Fe// there exista a se-
ob D. M ®

M> 1 p>l y '
quence of smooth processes Fn such that lim E(sup |F^-F |**) = ® for

all p>l, and such that {Fn, n>l} is a Cauchy sequence for all
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norms || * |] „* We will cali {Fn,n>l}
p, M ~

process F.

an approximating sequence for the

Proposition 2.1. Suppose that F and G belong to // . Then, the

processes LF and <DF,DG>H are also in

Proof. Let {Fn,n>.l} be an approximating sequence for the process

F. Without loss of generality we may assume that F^ = f^(z,(i)(z^),
...,u)(z )). We denote by £n the N-th derivatives of Fn. Then,

n

Zk)¿n 2y — V1— (z.ulz,) Ol(z ))r(z. ,
-

j=l iffel 3xJ3x¿ 1 n 1i k

- ¿ ? (z,w(z ) , . , . ,ü)(z ) ) Íü^íz.
pi él 3xJ 1

■|JR
We have lim E(sup|LFn - LFm|P) = 0 for all p, because Fn is a

n,m zKI z z1

Cauchy sequence with respect to the norms || • || , In consequence,
p, M

LF^ exists for all zg T, and we may choose a versión of the pro¬
cess { LF , zGT) such that lim E(sup |LF -LFn|P) = 0, for any p.

z n z z z

Therefore, it suffices to show that the sequence of smooth processes

{LFn, n >1} is Cauchy for all norms || • || M. Denote by
P»M Jl • *•JN

the N-th derivatives of LFn. We have

*j <*.*!> = ¿ ÍJl 3=1 JR JJJ,
(z.r.r rl>

. . 11 , > 11 .

dr -15 (z,r ) -5 (
J1 J1 ,ri),

and, by induction we obtain

9



Jl"’jN 1
<z.r, = f r cn.. . (z, ’rl rN )dr

I1 5j ...j (z*rl rN) " N Cj ...j (z'rl rN)‘J1 JN J1 JN

From this expression it is easy to check that

ÍÍB rfVfeKC E(S^P 11 - V"|IP) = °-

for any KC{1,..,N}, N_^l, and p>l.

In order to show the second part of the proposition, assume that

G^ = g (z,u( ) , . . . »ü)(z )} is an approximating sequence for G, with de¬
rivativos íi1? . , and compute

<DF , DG
z

, Js JL, 3fn 3S
,>H = X X ~T~ ),...,u(z )) T (z,ü)(z u(z ))pl iHt=l 3xf 3x¿

•r(zi’Zk)

dr.

As above, we have

lim E(sup |<DFn,DGn> - <DFm,DGm> |P) = 0,
n,m z z zH z zH

for all p. Thus, the random variables F^ and G^ belong to Hw for any

z£T, and there is a versión of the process {<DF ,DG>,,, z£T) satis-
z z H

fying

lim E(sup |<DFÍ',D(Í’>„ -<DF ,DG >|P) = 0
n z z zH z zH1
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for all p. Finally, it remains to show that {<DFn,DGn>, n> 1} is a
H —

Cauchy sequence for all norms | Let 6 • .be the N-th de-
P.M VJN

rivatives of the smooth process <DFn,DGn>u. We haveH

3"
i <z,r rN> = A 5Z I c"i(K)(z.r.r(K))*"i(Kc)(z.r,r(Kc)}dr,1 N KC{l,7r ,N> Jr JJ(K) JJ(K ’

and, from this expression it is easy to verify that

rS“PceKC E(s^ H V" ' VmH P) ’ °’

for any KC{1,...,N}, N>1, and p>l. □

3. Some results on stochastic differential equations in the plañe

Henceforth, the d-dimensional two-parameter Wiener process in

the canonical probability space will be denoted by W = {W , zGT).
z

We remember that T = R„ , being z = (s ,t ). Let V = íV , z G tizo ® o o o z

be a continuous and adapted M-dimensional stochastic processes such

that 6 = sup E( |V |P)< ® for all p>l. Suppose that
P ze T 2 “

a : s”x*m ^dRaí? and b: R x R

are continuous functions verifying the following properties, for some

positive constant K:

(i) ||o(xty)-o(xty') || + |b(x,y)-b(x,y' ) | £ K |y-y'|» for any x G Rm;
y,y' G Rm.

(ii) The functions x—►o (x,0) and x—*b(x,0) have at most polynomial

growth order. That means, ||o (x,0) || + |b(x,0) | £ K(l+|x(v) for some

integer v £ 0.
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With these assumptions we have the next result.

Lemma 3.1. Fix r6 T and an F -measurable random vector a = ía'*'. ,ara)
r ’

such that E(| ex |**) < “ for any p^l. Then, there is a unique conti-

nuous and adapted m-dimensional process Y = { Y , z6[r,zjl satis-
fying the stochastic differential System

(Vu’Yu)du^’ 1=1 m- (3’1)Y* = ct1 + 1 [ol(V ,Y )dW¿ + b1J[r,z] J U U U

Moreover, E( sup |Y |p) < C, , and E(|Y(fi)|P) < C \h\v^Z,
zefr.zj z - 1 - 2

for any p^>2 and for any rectangle [ z^,z^]c [ r(ZQ], where and
are positive constants depending on p, zqI K, and E(|a|P).
Proof. Using Picard's iteration scheme we introduce the processes

Y¿(z) = 0 ,

and

Y* (z) = o1 + I [c/(V ,Y (u))dWj + bX(V ,Y (un+1 J[r,z] J U n
))du ] ,

for any n > 0.

Now, applying Burkholder and Holder's inequalities and condition

(i) we obtain, for any p> 2,

E( sup |Y (z)-Y (z)|P) < C KP
t ■» n+1 n — p

zelr.zj jJ [r,¡
E(|Y (u)-Y ,(u)|P) du .

i n n-1

It follows inductively that the above expression is bounded by

(C KP|[ r,z ]|)n(n!) 2 I
J[r. Zo]

E(|Y1(u)]P) du.

12



In consequence, by condition (ii) we have

^ E( sup
n ze[r,z1

o

Y (z)-Y (z)|P) < «> ,n+1 n

which implies the existence of a continuous process Y satisfying (3.1) ,

and such that

E ( sup | Y |P) < » , for all p>^2.
ze[r,zo] z

Furthermore, this expectation can be bounded by a constant depending

only on p,zQ, K, and E(|a|P). The uniqueness of this solution
can be proved as usual. Finally, the inequality E(|Y(A)|P) je C^Ia]*^
can be easily derived using first Burkholder and Holder's inequalities

and, secondly, applying conditions (i) and (ii), and the above remark

on the quantity E( sup |Y |P). □
ze[r,z ] Z1 oJ

Observe that in the preceding lemma the process V needs only to

be defined on [r,z ]. Also, we remark that the constants C, and C_
o 12

do not depend on r.

We are going to state a lemma on the approximation of Solutions

of equation (3.1) by polygonal paths. For any integer n^l we consider

the set Sn of points (i2~nsQ, j2-nto), i,j = 0,1,...,2n. Define
♦ (z) = sup <ueSn: u<z) and i (z) = inf {ue5n: u>z} for any

n — n ~

z€ T.

Our processes will depend on a parameter X which belongs to an

arbitrary set A. We consider a map r: A ► T. For any X, let lv(z,x),

ze[r(X),zQ]} be a continuous and adapted M-dimensional process such
that sup E(|V(z,X)|p) < » for all p^l. We also consider a sequence

X, z /
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of processes lv (z, X), ze[r(X),z ]}, n > 1, with the same properties

as V(z,X) and verifying

lim sup E(|V(z,X)-V (z,X)|p) = 0, for all pjil.
n X, z

We also assume that for all p^l, the mapping z—►V(z#X) is continuous

in Lp, uniformly with respect to X. That means, for any e>0, there

exists 6 > 0 such that

sup sup E(|V(z,X)-V(z’,X)|P)< e . (3.2)
X z,z’>r(X)

|z-z*|< 6

Let o and b be functions satisfying (i) and the next condition (which

is stronger than (ii)):

{ii ’) ||o(x,y)-o(x',y)|| + | b(x,y )-b(x' ,y) | < K | x-x' | (1+1 y |V ),

for some integer v ^0.

Then we have the following result.

Lemma 3.2. Suppose that for any XGA and n^l ÍY(z,X)t z^r(X)) and

(Y (z.X), z >r(X)} are the continuous Solutions of the stochastic dif-
n

ferential systems

y1(z,X) = a1(X ) + 1 {o1(v(u,X ) ,Y(u,X ))dWj+b1(V(u,X ) ,Y(u,X ))du] ,

J [ r (X ) ,z ] J
(3.3)

Y^(z,X) = a^(X) +1 [°í<V„(»Ju),x).YnU (u),x)) dW¿n n Ir. , .... i j n n n n uJ [^(rtX) )A2,z]

+ bX(V (♦ (u),X),Y (* (u),X))du], (3.4)n n n n

14 -



where a(X) and cl(X) are F , v-measurable m-dimensional ran
“ r(x) —

dom vectors satisfying sup E(|a(X)|p)< • » and lim sup E(|a(x)-a (x)|P)=
X n X n

=0, for all p> 1. Then, with the above hypotheses, we have

lim sup E( sup |Y(z,x) - Y (z,x)|P) = 0,
n X z>r(x)

for all p >1.

Proof. Using Burkholder and Holder’s inequalities we have

E( sup |Y(z,X)-Yn(z,X)|p)
zG [r( X), zj

< C(p,z ) <E(|a(X)-a (X)|p)
“o / n

í[*ri(r(x)),zo]
E(||o(V(u,X ),Y(u,X))-o(Vn(*n(u),X),Yn(tn(u),X ))||P)du

r ...... z ]
n oJ

.f
*í

E(|b(V(u,X),Y(u,X)) - b(Vn(*n(u),X),Yn(lt.n(u))X))|P)du

[r(X)z]-[*(r(X))z]
o n o

E(||o(V(u,X),Y(u,X))||p+|b(V(u,X),Y(u,X))|p)du

= C(p,Z ) (Y, + Y_+ Y, + Y, ),O 12 3 4

where C(p,z ) represente a constant which depends only on p and z
o o

and may be different from one formula to another one. By hypothesis

we know that lim sup Y- = 0. Applying conditions (i) and (ii' ) we
n x 1

deduce the following majorations for the second term.

< C(p,z ) I
° Jl[* (r(X)),z ]

~ O

E(||o(V(u,X)(Y(u,X))-o(V(* (u),X),Y(u,X))||P

15



+ ||a(V(*n(u) ,X) ,Y(u,X)) - a(Vn(ifn(u) ,X ) ,Y(u,X ) ) ||p
+ II0 <vnU’n(u),A),Y(u,X)) - 0(Vn(4>n(u),X),Y{tn(u)>X))||P

Ik (Vn<»n(u) >x ) ,Y(i|>n(u) ,x)) - 0(vn(ltin(u) ,X ) , Yn(*n(u) ,X )) ||P) du

<C(p,Zo)KP| sup [E(|V(u,X)-V(u\X)|2p)]^(l+ sup [E(|Y(u,X)|2vp)]^)
' u,u'>r(X) u>r(x)

|u-u-T<ín

+ sup [E(|V(u,X)-Vn(u,X)|2p)]^(l + sup (E(|Y(u,X)|2up)]^
u>r(x) u>r(x)

+ sup E(|Y(u,X)-Y(u',X)|P)
u,u'>r(X )

lu-u'T<«n

í[r(x),zo]
E ( sup

u 'e [ r (X), u

|Y(u*,X)-Y (u',X)|
n

P)du (3.5)

where í = (s vt )2 n. A similar bound can be derived for Y„. Finally
n o o 3

Y. < C(p,z )KP« { sup E(|Y(u,X)|P) +1+ sup E(|V(u, X) |P)1.° ' u>r(X) u>r(x) ’

From lemma 3.1 we know that sup sup E(|Y(u,X )|P)< ”, and
x u^r(X)

lim sup sup E(|Y(u,X)-Y(u',x)|P) = 0, for all p^l.n x u,u'>r(X )

|u-u’T<ín

Therefore. lim sup y. - 0, and the first three sumands of the
n x 4

expression (3.5) converge also to zero when n tends to infinity, uni-

formly with respect to X , using (for the first two terms) the condi-

tions that we have imposed to the processes V and V . Thus by Gron-
n

wall's lemma the proof of lemma follows easily. □
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We remark that the process Y(z,X) solution of (3.3) satisfies

the continuity property (3.2). The preceding lemmas will be useful

in proving that the solution of a system of stochastic differential

equations in the plañe belongs to the class of two-parameter processes

tí introduced in Section 2.

Proposition 3.3. Consider the m-dimensional continuous process X =

ÍX^, z€T } given by the system of stochastic differential equations

X* = x1 + I [A^(Xr)dW^ + B1(Xr)dr]t i=l,...,m,
•'R

z

where x e ÜRm, and the functions A*, B1 have bounded derivatives
J

of all orders greater than or equal to one. Then, the process X belongs

to tím.

Proof. For any n>l we introduce the process X^ = {X^(z), z£T} de-
fined by

X*(z) = x1 + 1 [A^(X (* (r)))dW¿ + B1(X (* (r)))dr], i=l m .n I 1 J n n r nn

Notice that this is a recursive system and, therefore, X1, i=l,,..,m,
n

are smooth processes. We are going to prove that {X*, r^l) is an appro-

ximating sequence for X*, i=l,...,m. Denote by . (z,r ,...,r )
J ^ * * * J ^ 1 N

the N-th derivatives of the process X*. First, by lemma 3.2 we have

lim E(sup|X (z)-X(z)|P) = 0 for all p>l. If z£(0,s ] x(0,t ] and
n z n ■— o o

u = sup{v65n: v<z}, then X*(z) is given by

Xn(z) = Xn(z®u) + x„(u®z) “ x*(u) + Ah(Xn(u) )Wh( (u,z]) + Bx<X (u)) | (u,z] | .

17



As a consequence, we obtain

E^H^Íz.r) = +

+ (Xn(u))5<n)k(u,r)Wh((u.z]) + A¿(Xn(u)){; l(u>z](r)
+ (X (u) )£^.n^k(u,r) | (u,z]| .

3xk n J

Therefore, Cjn^(u,r) is the solution of the following system of equa-
tions

f^n)i(z,r) = Aj(Xn(+n(r))) I a^T (xn(^n(u)) H(,n)k('tl (u),r)dWkJ[*n(r)Az,z]L3Xk " n j n

+ 7^— (X (<t> {u)))tín^k(# (u),r)drI , i=l,...¿a;
3x^ n n j n J

(3.6)

Then, if we introduce the processes (Sj(z,r), z^r ) defined by the
system

^(z.r) - Aj(xr) +J ,[Sr(V ^(u’r)dwÜ+ ür(xuKj(u’J[r,zJ k k
r)du] ,

(3.7)

applying lemma 3.2 we obtain

n),lim sup E( sup || C(z,r) - ;(z,r) ||M) = 0,

for all p.

r(n) iWe need a similar result for the derivatives K. of arbitrary

(n) J1'"JN
order and for the stochastic integráis £v introduced in Section

2. First we will see that the successive derivatives of the smooth pro¬

cesses X1 can be deduced by a recursive argument. To do this, define
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(n)i . . Va (u,r r ) = /hjl“'JN 1 N

and

8x-k--:..axkK1 % 1

.. í!>,r(g),

„ín)i , , V 9V
'"•'1 V ’ 2, SCTTT

K1 Kv 1

... 5<^(u,r(IJ),
where the sums are extended to the set of all partitions (1 N) =

= I U ...UIy, and we have employed the notations of Section 2. We

also set a<.nU = A^fX^íu)). Then, we can write the following formula
for the N-th derivatives of X1,

_(n)i , .
. (z,r ,...,r )^ ^

, (* (rJ.r, r ..

rE+l rN)

í
B

I0,!"11 , (♦ (u),r
[ (r V.. .Vr,,)Az,z]ni N

i (♦ (u) ,r r )du ] •J1’“JN n 1 N

..,rM)dWN u

(3.8)

This expression can be proved by induction on N. For N=1 it reduces

to formula (3.6). Suppose that (3.8) is true for N. Remark that for

any gGH we have

D(ahj’!..jN(z-ri rN))(g)
- I <x(n)i (Z r r- JR hJ1...jHJt 1* ’ N’

r)gJ(r)dr,
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and

D(Bj"--.jN(Z’ri”"’rN))(g) = f 6V'.V(Z-I'l V*^j z

(r)dr.

In consequence, we obtain

D(C(n)l (z,r r ))(g) = ^ i a'"!1 . . .(* (r J.r-,él Jrz JeJl"'Je-lJe+r”JNJ n E 1

•••’re-l,re+l rN,r)¿J(r)dr

f. “jV..jN(*n(r),rl V ¿J(r)dr

U[*{*H • . (♦ (u),r ,.,f41 (r v...Vr Vr)Az,zl n
z L rn 1 N J

^ jH^1 , i (<t> (u),r ,.. . ,rN,r)du ] (r) dr ,
i' ' ^ ^

.,rM,r)dWN u

which implies that (3.8) holds for N+l.

Now, for any r ,...,r , we introduce the processes fé1 . (z,r ,

jx...jn 1
...,rN), !>r1V,..VrK(, i=l ^ jNe{l,... ,d}, givenby
the stochastic differential systems

^ ...j (z,ri’J1 JN ' ’Je-lJ c+l' '' jN E 1 e-1’ e + l ’

Jak-^u’r' r»)dw*
<u.r, rJdu ] ,

[ (r.V.. .Vr„)Az
1 N

- 20 -



being

a. . . (u,r ,...,r )
hJ1---JN 1 N

»x
(X )C .(u,r(I ))

9x, . . .3x. u j(I. ) '"1'
K1 L

- #Iv)(u.r<Iv)>.

Bi ...j (u-rl rN> = 2^J1 JN ^ *—*
\ " 3VB kl

8xk

K ■ '¡1 ■, (u.rll,)),J V \> '

and aj<u) = Aj(xu)-

Here we have used the same notations as above.

We claim that

iim sup E( sup ||E(z,r ,...,r )-£(n)(z,r r )||p) = °»
n rx rN . .y/rN 1 N 1 N

(3.9)

for any p.

Indeed, this can be shown by induction on N. We have already remar-

ked that (3.9) is true for N=l. Suppose that it holds for N-l. Observe
3 A¿

%j1...jN (U’ri rN) ÍBO,»“lto 55j(Xu)ej1...JH(u*rl Vthat

plus a polynomial function of the derivatives

8 Ah
3x. ••• 3 x.

K1 Kv

(X with \)^2,

and the processes C. . (u,r(I)) with card(I)£ N-l. Therefore, (3.9)

will follow frora the induction hypothesis and lemma 3.2 applied to X =

21



= (r! V e TN, r( X) = riV...VrN> yV.X) = ^(z,^ rN>
(we may fix the indexes j jN), and V(u,l) equal to the m(2N-2)-di
mensional process whose components are X* and ^^^(u,r(I)) being i

IC{1,..,N}, 0 < card(I) < N. The processes a (X ), a (X)
n

and V (u,x) would be defined in an obvious way.
n

By the same methód, for any subset K of we can prove

that

iim sup _ SUP ||l Uz,r(KC)) - I £ (z, r (K°)) || P) = 0,
n rc'eeK z>V{re,eGKC} K K

for any p, being the processes defined by the following system

of equations:

"K'-jíRC)'1''' vrL ^ = ^ IK°jr j(Kc-{e})(re-r(K “
(O))

„C » . ,, ,Je

IK5j(KC)(z,r(K

+ ^ 1 _ I*.., °¡ iíxc^re ,r(Kv'))dW“
e6K J UV(re,eeKc »Az,z] K (el Jej(K ) 'I

+ I . c [:Kah i(KCl(u-r(KC))dw'’ + I 8tKC1(u,r(Kc))duJ,J[(V{re>eeKC))Az,z] Khj(K) u K J<KC>

I., o.1 (u,r(KC)) = ^
-v.i
3 Ah

K hj(Kc)v O'JW « WT (u, r (I -K))
3X 3x u Km, j(I,-K) 1 l"

kl " kv

IKnivCj(iy-K)(u,r(Iv-K))’
K

and

ÍK B5(KC)(u,r(Kc)) -]£
kl kv

«5(i _„>,r(I,-K))

'• IKTlIv Ej(Iv-K)(u,r(I«"K))-

- 22 -



The proof of the proposition is now complete. □

4. Application of Malliavin calculus to the solution of stochastic dif-

ferential equations in the plañe. In order to State the main result

of this section, we need two preliminar lemmas.

Lemma 4.1. Let Q(tu) be a symmetric non-negative definite mxm random

matrix. Define the random variable A =,max, v^Qv. Then for each p>l|vT=l -

there exist a universal constant C = C(p,m) such that

E[(detQrP] 1 C { sup E[ (vtQvr2(p+"’+1 > ] E [(1+A)2m+6] > ^.
I v | =1

Proof. See Stroock [9], page 359.

Lemma 4.2. Let = Y^+M^+V^ a con^:*-nuous semimartingale adapted
to an increasing family of o-fields { F , t^0> satisfying the usual

M , t > 0conditions. We assume that M = {M^, t£0) is a continuous local martin-
gale such that M^=0 and <M>A
Vt = Ysds’

Jo

s ds, and we also assume that
s

v. = I Y. ds, where a and y are progressively measurable processes

such that the preceding integráis exist. Let S: ft —>-[0,t] be a bounded

stopping time and suppose that sup{ | | y^(üí) | } £ M for any w G Í1
and t£S(w). We fix real numbers ó > 4n > 0, a,b> 0 and p£l.

Then, we have

! r **1 *•* • r <■dt > ben < e

for any e< c where £ depends on p, M,T,a,b,$ and n.
o o
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Proof. The proof of this lemma follows the same lines as that of theorem

8.26 in Stroock [9]. For the sake of completeness we will give the main

arguments of this demonstration. First we will show that for all cons-

tants A>0 and B>0 the next inequality holds

(4.1)

In order to prove (4.1) we may assume that for some 8 >0, |o (o))| >_ 8

for any <*> and t. Indeed, suppose that {B^_, t >0} is a standard Brownian
motion independent of V f . Then, the semimartingale Y/ = Y, + 8 B

t^O t t t t
verifies this property, and making 8+0 we get the desired result

for Y . Set B = M(A ), t ^0, being A = inf{s^0: <M> >_t}. Thent u t r S

(B^, /•. , t>0} is a Brownian motion. Ift At -
we have

and, therefore,

> 0](B(-)) - t M),

2
where for any real and continuous function f on [0,B], o ^ gj(f) deno¬
tes the quantity

«
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In consequence,

fS 2 fSI dt < A, I
Jo Jo

P< I Y; dt < A, | dt > B)

< P(M B(ojq B j(B( • ) )-tM) < A} <P(ojq bj(B(-)) < M(A2B j+t)} ,

and applying lemma 8.6 (pag. 343) of Ikeda-Watanabe [5] we obtain the

inequality (4.1).

Now, to achieve the proof of the lemma we fix an integer n^.1 and

we compute

< n2^ exp [-2'V2(TbA*n/2n'^ Ji JV2)-n (4.2)

We take q such that q>^ and > 2q + 2n. Then for any c<l we may

choose n such that n< e ^<n+l, and (4.2) is bounded by

■q2^exp [■ •2-7M -2(2,b^e<q-'1)/2 a^E(V2)-q-n}-2 j

which is less than for any e < e . □
—

o

Theorem 4.3. Let X = { X , z£T) be the continuous solution of the
z

stochastic differential system

- 25 -



X* = x1 + I [A^(X )dW¿ + B1(x )dr], i=l m, (4.3)2 Jrz J r r
where x€Bm, and the functions A1, B1 have bounded derivatives of

J

all orders greater than or equal to one. Assume further that the follo-

wing property holds:

ÍP) The vector space spanned by the vector fields A^,*..,A^, ¿?A^,
l£i,j£d, aY(/P!a ), 1 < i,j,k £ d, ...» has full rank at the point1 3 k

x.

Then, for any point (s,t)GT with st^O, the law of the random vec

tor X admits an infinitely differentiable density function.

Proof. We fix z = (s,t) € T with st¿0. We have to check conditions

(i) and (ii) of theorem 1.1 for the Wiener functional X . The first con-
z

dition follows from propositions3.3 and 2.1. In order to prove the second

condition we set Q1^ = < DX1, DX^>„. From the results of Section 3 we
z z H

know that

Qlj = X I 5h(z,r) £¡j<z-r>dr = Z | Cl(z'r)Ah(X )c:jt(z,r)Ahx )dr,h=ljRz h=ljRz (4.4).

where, for any r, the processesUj(z,r), z^rí are defined as the solution
of the stochastic differential system:

íj(z.r) 6* +| ^—— (X )ck(u,r)dWh + (X )Ck(u,r)dul .J J[r,z]L3xk U J U 3xk u j J
(4.5)

We want to show that E[(det Q) ^]<<» for all p>l. Set A= max v^Qv < ||Q||.
I v|=l

Using the estimates for the monents of the Solutions of stochastic diffe¬

rential equations in the plañe, obtained in lemma 3.1, we deduce that E(||0||*>)<“
for any p. Therefore, by lemma 4.1 it suffices tosee that sup E[( v^Qv)

M=1

- 26 -



To this end we are going to show that for all p> 1 we have

P { vV < e} < e P (4.6)

for any v such that v|=l and e < e , ’where c depends on p, x. z
— o o

and the coefficients of system (4.3). Suppose that 0 < e < 1, and using

(4.4) compute

P(v Qv< e} = p{

< P{

r)A¿(X ))2dr < e}h r —

< Pí

(X )) dr 1 e}

(Xot))2do < 4c1/3}

P{ (X ))2do > 4e1/3,
h at

t

(v.t.(z,r)A¿(X))2dr<e }
0 J t-E

2/3' i j ' "V r
(4.7)

The second probability of this expression is bounded by

(Xat))tda>4E, ^ |oj^2/3(v.^(z,r)AJ(Xr))2dr<c
1 p!£ J(X ))2dr> ej

-q/3 q
i e s sup .

re[o,s]x[t-e'

-q/3 q
< E ^ S sup ,

r £ [0,s]x[t-E ,t ] [E(||lm-C!z,r)||4q) E(||A(Xr)||4q)Jyí
for any q> 1. Here I denotes the identity matrix of order m. In the

— m
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following C(q) will represent a constant which may depend on q,x,z and

the coefficients of system (4.3).

Applying the second inequality deduced in lemma 3.1 to the stochas-

tic differential system (4.5) we obtain

sup E( || I -C(z,r) ||4q) £ C(q)
■ e[o,s]*[t-e2^3,t ]

s2qe4q/3

In consequence, the second sumand of expression (4.7) is bounded by

C(q)eC1^, which provides the desired majoration. Then, it suffices to

study the term

P í h(Xot)2do < 4c1/3). (4.8)

Set - ( A. , 1 < h < d ) and = (A?V, 1< h<d, V6§!>.,) for anyoh-- j h j-1

j >1. By property (P) there exists an integer j ^0 such that the li¬
jo

near span of U at the point x has dimensión m. This implies that
j=0 J

there is an R > 0 and c > 0 such that

¿ Z (vVly)) > C ,

Fó vegt

for all v and y with |v|=l and |y-x| < R. Consider the stopping time S

with respect to the family of o-fields { F , 0 *0) defined as

S = inf (o > 0: sup |X -x| > R) A s.
_

i:<a tT -

T<t

1 -4 i
For any jssO,l#...,j we put m(j) = ~ 2 and'we introduce the set
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We remark that

rS(vy(Xat))2dc < 4

! ¿ j[S (viAh(Xct))2 d° i 4el/3j c V
Consider the decomposition

E C (E OE,) U (E. flEjU .o o 1 1 ¿
. . U (E . .O E. )UF,

J^1 ^

where F = E HE^n ,,.n E, . Then, the probability given in (4.8) is
bounded by

Jo

SP(E. ,n ec) + P(J-1 j
F)

and we are going to estímate each term of this sum. This will be done

in two steps:

(i) We can write

P(F) < P(FO{S ¿eB» + PÍS< eB) ,

where 0 < B <mU For e sraall enough, the intersection Fn(s>e8}

is empty. In fact, if S ^ e® we have

£ r [Vj=o VE Sf. Jo (xat))2do >c eB ,

whereas on F this integral is bounded by 4( jQ+l) e1"^0^. Moreover it
holds that
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P{ S < e ) 1 P { sup |X -x|> R }
u<(eB,t) U

u < ( e ® , t) * Rui£ R ^ E ( sup il [Ah(Xr)dWr + B(X_Jdr] |q ),

for any q >1. Now, using Burkholder and Holder inequalities we deduce

8 q fj / 2PÍS< eD) C(q) eM for any q^2, and, therefore, we have obtained

a majoration of the type (4.6) for P(F).

(ii) For any j = we consider the probability

P ( E . O E .)
J-l J

= P Z fS(v. V1
ve^_1 Jo 1

. Z pj Pív.V1ve Sí f Jo

)2do < 4cm(j-1)(X . ))cio < 4c
ot —

. T p(v.v‘AeSí Jo 1

(Xot))2do <4Em(j'1),

(Xot))2 do > 4n(j-l)-1 em(j)|

(X ))2do>4em<j)i
ot )

(4.9)

where n{j) = card ^y We fix j=l,...,Jo and a vector field ve®
Applying Ito's formula in the first coordínate we obtain

V (X ) = V
uv

i( \ f 3V(x) + I rrJr 3xk (X0V> Ah(XOT> dWOT

f
h

I _ 1 3x, 'Ao»'“ '"ot' t 2 3x. 3x. w'ov' Z_i "h'"or'”h''otk k j
uv

[ (X )Bk(X ) + \ ^-4 (X„ ) Y Ak(X„T)Ad(X„J] dodx .

Then, by lemma 4.2 we have the following estimation
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! JcSv‘'
> n(j-l)-1 E3m(J> (4.10)

for any p > 1 and c < eQ ( £q depending on p). In fact, note that
12m(j). Finally, we have the following majorations

*)& <Vi (Xot)Ah(Xot))2 d0 > -ln(j-l)-1 c"<J».

trs. (Vi (Xot)Ah(XOT))2d°dT < "(J-1) 1 e3m<j)j)|

■■'tÍÍ 2m( j)j)(vi 7^ (Xot)Ah(Xot))2d0dT =* «Hj-1)-1 ^m(J) .

ttt
k “ ot

8V1 ..k.„ ,.2 1

< P IÍLfL™(V* Í (X0t)(Ah<X0t)-Ahk(X,„))>2d^>'’(J-l)-1e3m(j)¡

< Sqe qm(j)n(j-l)q sup E(|V (v |^-(X )(A^(X )

-Ak(xoT)))2|q)

< Sqe qm(j)n(j-l)q sup ( E( llj^íX . ) || 4q)
. »6(0,sJ,t€[t-e2'<jl,t] 3x 0t

■E<||A(Xot)-A(XaT)||4q)> ,
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for any q^l. Using lemma 3.1, this expression is less than or equal
_ qm(j )to C(q) e . This result combined with inequalities (4.9) and (4.10)

gives us the desired sort of estímate for the term P(E^ i ° Ej ^ ’ wh;¡-ch
achieves the proof of the theorem. □

In the one-parameter case, the existence of a density for the solu-

tion of a stochastic differential equation can be proved under Horman-

der's condition:

(P1) The vector space spanned by A,,.,.,A,, [A.,A.l, l<i,i<d,1 a i j — —

[A.,[A.,A ]] , 1 <_ i , j ,k £ d, ... , at the point x is Bm.i J k

Actually, a more general condition using Lie brackets formed with

the vector field B as generators would be sufficient. We have been una-

ble to generalize this kind of condition to the two-parameter case.

Remark that hypothesis (P ) is weaker than (F^) and, in fact, theo¬

rem 4.3 can be applied to a family of situations that did not appear

in the one-parameter case. Consider, for instance, the following exam-

ple. Assume that m^2, d=l, x=0, A^(x) = (1,x^,x^,...,xm * ) and B=0.
Then property (P*) does not hold and, for m=2, the one-parameter solu-

tion Xt= ftwsdWs = *[(W¿Jo
)^-t] satisfies 2X^ ~ (X^)^-t.

However, in the two-parameter case, theorem 4.3 can be used, and, for

z = (s,t), st¡¿0, the joint distribution of the iterated stochastic inte-

grals - Wz\ Xz2 = *£ dwj, X2 = J ÍJ «X'W X1 =
S- *7 <7 ' T' '

L Xm has an infinitely differentiable density on Rm. Observe

that here the stochastic differentiation rules (cf. [10]) claim that

(x1)2 = 2X2 + 2 I 1, , „ , ^ .

/ Z JVRz {(r,r ): ri-rÍ- r2-r2)
X is not a function of X*.

dW dW , + st, and
r r'
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