CHIXA 31.24

٠

UNIVERSITAT DE BARCELONA FACULTAT DE MATEMÀTIQUES

ON TRANSLATION INVARIANCE FOR W

by

Montserrat Teixidor i Bigas

PRE-PRINT N.⁰ 27 maig 1985

ON TRANSLATION INVARIANCE FOR W^r_d.

6 O INTRODUCTION

Let us consider a projective non-singular curve C of genus g.The set of all line bundles of degree d on C is a variety denoted by $\operatorname{Pic}^{d}(C)$.There is a natural action of the Jacobian JC=Pic^O(C) of C (which is an abelian variety) on Pic^d(C)for any d.We may consider the subschemes $W_{d}^{r}(C)$ of Pic^d(C) parametrizing those divisors on C of degree d whose space of sections has dimension at least r.Let us write $G(W_{d}^{r}(C))$ for the subgroup of the Jacobian leaving $W_{d}^{r}(C)$ invariant under translation.

In his paper [W] (cf Hilfsatz 3) Weil proved that for any curve C and $d \le g-1, G(W_d^O(C)) = 0$ (for $d \ge g W_d^O = \operatorname{Pic}^d(C)$ and then obviously $G(W_d^O(C)) = JC$). We could ask whether the same holds for other values of r. The answer is no if we do not impose any restrictions on C. For instance, we could consider a bielliptic curve, that is to say, a curve whith a two to one morphism onto an elliptic curve E. Then $W_4^1(C)$ is the pull-back of $W_2^1(E)$, and so is isomorphic to E and we get $G(W_4^1(C)) = E$ (see § 4,5 for more counterexamples). Nevertheless, we have proved that, when C is assumed to be generic (in the sense of moduli) and $W_d^r(C)$ is neither empty nor the whole of Pic^d(C), then $G(W_d^r(C))=0$.

This paper is organised as follows: In $\oint 1$ we have gathered a few well-known definitions and results, either to have them at hand or because we have not been able

to find a proper reference in the literature. The second paragraph is rather technical; in it we prove that when a curve moves in a good family, the subgroups of the Jacobians leaving the $W_d^{\mathbf{r}}$'s invariant fit toghether This allows us to show $G(W_d^{\mathbf{r}}(C))=0$ in $\oint 3$ by reduction to the case of a rational cuspidal curve (see the introduction to $\oint 3$ for more details). In $\oint 4$ and 5 we study the possible dimensions of $G(W_d^{\mathbf{r}}(C))$ for a fixed r and give examples of curves for which those dimensions are reached. The last paragraph is of a different nature; in it we determine all curves for which $G(W_{g-2}^{\mathbf{l}}(C)) \neq 0$. These turn out to be the bielliptic ones Moreover we show that $G(W_{p-1}^{\mathbf{l}}(C))=0$ for all C.

I would like to thank Gerald Welters for his guidance before and during the preparation of this work.

- 2 -

♦ 1 PRELIMINARIES

Let $C \xrightarrow{p} S$ be a projective morphism of schemes of finite type over the field ¢ of complex numbers whose fibers are curves of arithmetic genus g which are either non singular or whith cusps as their only singularities.We shall assume that p has disjoint sections $s_1, \dots s_t$ for t big enough.Under those conditions there exist Picard schemes Pic d(p) for every $d \ge 0$ (see [G] V Th.3.1).Moreover,Pic^o (p) has a natural structure of a group scheme over S and there is a natural action of Pic^o(p) on Pic^d(p) for every d.

One can also define a scheme $W_d^r(p)$, a subscheme of Pic^d(p) which parametrizes the linear equivalence classes of divisors of degree d and dimension at least r (see [A,C] and [F,L]). We recall here its definition.

Let $\int be a$ Poincare bundle over Pic^d(p) x C.We S denote by p ,p the canonical projections

If $t \ge 2g-1-d$, then $E = p_{1*} \begin{bmatrix} 1 & 0 p \ge 2 \\ 0 & (ts_0(S)) \end{bmatrix}$ is a vector bundle on $\operatorname{Pic}^d(p)$ of rank d+t+1-g. This follows from the fact that the dimension of the cohomology of the fibers is constant (see [H], Ch III Th(1.2.8)).

We define the divisor on $C D_t = s_1 (S) + \ldots + s_t (S)$

and $F_t = \int \alpha p_2^* O_{D_t} (ts_o(S))$. We have an exact sequence $o \rightarrow \lambda I^{p} p_2^* O_{T} (ts_o(S) - D_t) \rightarrow \lambda Q p_2^* O_{T} (ts_o(S)) \xrightarrow{\overline{\sigma}} \lambda Q p_2^* O_{D_t} (ts_o(S)) \rightarrow 0$ The direct image of $\overline{\sigma}_t$ under p_1 gives rise to a morphism σ_t from E_t to F_t which fits in the direct image of the above sequence:

$$0 \rightarrow p_{1*} \left[\left[e_{p_{2}} \right] \otimes O_{C} \left(t_{s_{0}} \left(s \right) - D_{t} \right] \rightarrow e_{t} \xrightarrow{\sigma_{t}} F_{t} \rightarrow \cdots \right]$$

(1.1).<u>Definition</u>.One defines W_d^r (p) as the locus where rank $\sigma_t \leq t+d-g-r$ with its natural structure given locally by the vanishing of the minors of the matrices of σ_t .

(1.2). Remark. The construction of $W \frac{r}{d}(p)$ commutes with base change, that is to say, given a morphism

if we consider the pull-back family

$$C' = C \times T \rightarrow C$$

$$\int_{V}^{V} p' \qquad \int_{V}^{V} p$$

$$T \rightarrow S$$

then $W_d^r(p') = W_d^r(p)_{XS}T$.

Proof: It is known that $\operatorname{Pic}^{d}(p^{\prime})$ is obtained as the pull-back of $\operatorname{Pic}^{d}(p)$ and that the pull-back of a Poincaré bundle f on $\operatorname{Pic}^{d}(p)x_{S}$ C is a Poincaré bundle f^{\prime} on $\operatorname{Pic}^{d}(p^{\prime})x_{T}$ C ([G]VI Th.3.3.1).

By definition $W^{\Gamma}_{d}(p)$ and $W^{\Gamma}_{d}(p')$ are given by the

vanishing of the minors of the morphism of fiber bundles

$$p_{1*} \left(\int \mathfrak{O}p_2^* \mathcal{O}_C(\mathsf{ts}_o(\mathsf{S})) \right) \xrightarrow{} p_{1*} \left(\int \mathfrak{O}p_2^* \mathcal{O}_D(\mathsf{ts}_o(\mathsf{S})) \right)$$

and

$$p_{1*}(\underbrace{f}_{0} p_2 \overset{*}{\mathcal{O}}_{\mathbb{C}}(\operatorname{ts}_{0}^{-}(T))) \xrightarrow{} p_{1*}^{-}(\underbrace{f}_{0} p_2 \overset{*}{\mathcal{O}}_{\mathbb{D}}(\operatorname{ts}_{0}^{-}(T)))$$

pespectively, where $s_i: T \rightarrow C'$ are obtained from $s_i: S \rightarrow C$ by base extension and D_t is defined similarly to D_t .

Because of the base change property for Pic^d this last morphism is

 $p'_{1*} (\bar{\varphi} \times \mathrm{Id})^{*} (\pounds \mathfrak{g}_{2} \mathfrak{g}_{2}^{*} \mathcal{O}_{C} (\mathrm{ts}(S))) \rightarrow p'_{1*} (\bar{\varphi} \times \mathrm{Id})^{*} (\pounds \mathfrak{g}_{2}^{*} \mathcal{O}_{D} (\mathrm{ts}(S)))$ where $\bar{\varphi}$ denotes the morphism $\mathrm{Pic}^{d}(p') \rightarrow \mathrm{Pic}^{d}(p)$ coming from φ .

Therefore our assertion will be proved if we show that the natural morphisms([H]III Rem.9.1) $p'_{1*}((\tilde{\varphi} \times \mathrm{Id})^*(\operatorname{Lop} O_{\mathcal{O}}(\mathrm{ts}(S)))) \leftarrow \tilde{\varphi}^*(p_{1*}(\int \mathrm{Op} O_{\mathcal{O}}(\mathrm{ts}(S))))$

and

$$\mathbf{p}_{1*} \left(\left(\vec{\varphi} \times \mathbf{Id} \right)^{*} \left(\mathcal{L}_{\boldsymbol{\vartheta} \mathbf{p}}_{2}^{*} \mathcal{O}_{\mathbf{D}_{t}} \left(\mathbf{ts}_{\mathbf{o}}(\mathbf{S}) \right) \right) \right) \leftarrow - \tilde{\varphi}^{*} \left(\mathbf{p}_{1*} \mathcal{L}_{\boldsymbol{\vartheta} \mathbf{p}}_{2}^{*} \mathcal{O}_{\mathbf{D}_{t}} \left(\mathbf{ts}_{\mathbf{o}}(\mathbf{S}) \right) \right)$$

are isomorphisms.This is true because the above holds over closed points.

(1.3).<u>Remark.</u>Every component of $W_d^r(p)$ has dimension at least equal to dim S + ρ , where ρ is the Brill- Noether number $\rho = g - (r+1)(g - d + r)$. In particular, for a given curve C, $W_d^r(C)$ has dimension at least ρ at every closed point. In fact this follows from the definition of $W_d^r(p)$ (see [A,C,G,H] p.83).

- 5 -

(1.4).<u>Remark.</u> If $s \in S$ is such that dim $W_d^r(C(s)) = \rho$, then $W_d^r(p) \xrightarrow{\pi} S$

is flat in a neighborhood of s.

Proof:Because of (1.3), there is a neighborhood S' of s where all fibers of π have dimension ρ . Then, when restricting to the pull-back family $C' = C_xS' \rightarrow S'$, all components of $W_d^r(p')$ project onto S'(by (1.3)and(1.2)). Under those conditions, $W_d^r(p')$ being the locus where a certain morphism of vector bundles drops rank, it must be Cohen-Macaulay(see for instance [A,C,G,H] Prop.(4.1)). Then we deduce flatness from the criterion in [H]Ch.III Ex.10.9.

(1.5).<u>Lemma.</u>Let C be a cuspidal rational curve, F a torsion free sheaf on C of rank one (i.e.F@K(C)=K(C), where K(C) denotes the field of rational functions on C).If P is a cusp in C, then the fiber F_p of F over P is isomorphic either to the local ring O_p of C at P or to its maximal ideal M.

Proof:As K(C) is the quotient field of O_p , $F_p \oplus K(C)$ is the symmetrization of F_p in the set $S=O_p-\{0\}$. Moreover, F_p being torsion free, the morphism $F_p \rightarrow S^{-1}F_p$ is injective. Therefore we may assume that F_p is a submodule of K(C).

We shall use the model $Q_{p} = (f(t^{2}, t^{3})) (t^{2}, t^{3})$, so $M = (t^{2}, t^{3})$ and $K(C) = (f(t))_{(0)}$.

- 6 -

$$t^{k}F_{p}CR=(c(t))$$

So we may assume also $F_{D} \subset R$.

(1.5.1).Because K(C) is the quotient field of $\mathcal{O}_{\rm P}$, the condition $F_{\rm P} \overset{\rm o}{\mathcal{O}_{\rm P}} K(C) \cong K(C)$ is seen to be equivalent to $F_{\rm P} \overset{\rm o}{\mathcal{O}_{\rm P}} IQ \neq 0$.

Now let I be an ideal of Q_p , I = 0 . We claim:

(1.5.2).I is isomorphic either to $O_{\rm p}$ or to M.

Proof:If I \ddagger M,then I= O_p .So we may assume ICM. Every element of I is of the form

$$\frac{s(t^{2}, t^{3})}{q(t^{2}, t^{3})}$$

with $Q(0,0) \neq 0, S(0,0) = 0$. The elements of the form $S(t^2, t^3)$ also generate I.

Let us choose S in I S=a $k + a + b + 1 + \dots + a + b + m$, a $k \neq 0$ and k minimal over all SEI. Then

$$(t^{2} - t^{3} a_{k+1}/a) S = t^{k+2}(a_{k} + ct^{2} + ...)$$

so, as the element in the parenthesis is a unit in Q_p , we have $t^{k+2} \in (S) \subset I$. Then

$$s.t^{3}-(a_{k+1}t^{2}).t^{k+2}=t^{k+3}(a_{k}+ct^{2}+...)$$

so t^{k+3} also belongs to the ideal generated by S, and therefore the same holds for t^{k+r} for $r \ge 2$.

I f I=(S), it is isomorphic to O_P . So we may assume I \neq (S). Then there must be an element of the form

 $b_k t^{k} + b_{k+1} t^{k+1}$ in I such that $b_k / a_k + b_{k+1} / a_{k+1}$. We have therefore that t^{k+1} and t^k belong to I and so $I = (t^k, t^{k+1})$ is isomorphic to M, the isomorphism being given by multiplication with $1/t^{k-2}$.

Write now $I = F_p \cap Q_p$.

Let us assume first that $I = \bigcirc P$. If $I \approx F_P$ there is nothing to prove.Otherwise, let us consider the exact sequence

where g(f) = (df)(0) is the differential of f at 0. The condition $O_p \neq F_p$ means that $g(F) \neq 0$, so we must have g(F) = c and F = R. Now R is isomorphic to M as an O_p module, the isomorphism being given by multiplication by t^2 .

If $F_P \subseteq M,(1.5.2)$ gives the desired result. Thus, it only remains to consider the case $F_P \ddagger F_P \cap Q_P \subseteq M$. We shall see that this never happens. In fact $F_P \clubsuit Q_P$ means there are f in Q_P and g in $Q_P - \{0\}$ such that $f/g \in F_P - Q_P$ Then, $f \in F_P \cap Q_P \subseteq M$ so f(0) = 0, df(0) = 0. We deduce d(f/g)(0) = 0which contradicts $f/g \notin Q_P$.

(1.6).<u>Corollary.</u>On a rational cuspidal curve the tensor product of torsion free rank one sheaves is a closed operation.

Proof:From (1.5) and keeping the same notation it suffices to prove that MØM≅M.We have a presentation of M

$$0 \rightarrow 0_{\mathbf{p}} \rightarrow 0_{\mathbf{p}} \oplus 0_{\mathbf{p}} \xrightarrow{\mathbf{h}} \mathsf{M} \rightarrow 0$$

where $h(f,g)=t^2 f+t^3 g$. By tensoring this exact sequence with M we obtain the result.

$\oint 2$ construction of a scheme $g(w_{1}^{r}(p))$.

We keep the notations of $\oint 1$. Moreover, we shall assume that $W_d^r(p)$ is flat over S.We shall show that there is an S-subscheme of Pic^O(p) whose closed points correspond to a curve C(s) in the family p and a point a $\in \text{Pic}^O(C(s))$ such that $a+W_d^r(C(s))=W_d^r(C(s))$. As one could expect, this scheme is in fact a group scheme, has a universal property and behaves well under base change.

In what follows we shall supress the indication to p from the notation where there is no danger of confusion.

Let us write $A=\operatorname{Pic}^{O} \times_{S} \operatorname{W}_{d}^{r}$. Since by hypothesis W_{d}^{r} is flat over S and flatness is preserved under base change([H] ChIII (9.2.b)), it follows that A is flat over Pic^O.

We define

 $\widetilde{\psi}_{d} = (p_{1}, \psi_{d}): \operatorname{Pic}^{O} \operatorname{xPic}^{d} \to \operatorname{Pic}^{O} \operatorname{xPic}^{d}$ where ψ_{d} is the natural action of Pic^{O} over Pic^{d} and $p_{1} \quad \text{denotes projection onto the } i^{\underline{t}h} \quad \text{factor.Then } \widetilde{\psi}$ is an isomorphism because it has an inverse

$$\tilde{\psi}_{d}^{-1} = (p_1, \psi_{d} (\psi_{-} p_{1}, p_{2}))$$

where Ψ denotes "inverse" in Pic.

We shall denote by B the scheme-theoretic image of A under $\tilde{\psi}_d$.As $\tilde{\psi}_d$ is a Pic^O-isomorphism,B must be flat over Pic^O.So,both A and B induce classifying isomorphisms of Pic^O to the Hilbert scheme of subschemes of Pic^d flat over S

Pic^o
$$\chi_{A}$$
 Hilb d
 χ_{B}^{2} Hilb d Pic /s

(2.1). <u>Definition.</u>Let G be the maximal subscheme of Pic^o where those two morphisms coincide, i.e. the subscheme defined by the pull-back diagram

$$\begin{array}{ccc} g & \rightarrow & \text{Hilb, Pic}^{d}/S \\ & & & \downarrow^{(X_{A}X_{B})} & & \downarrow^{\Delta} \\ \text{Pic} & \rightarrow & \text{Hilb}_{\text{Pic}}^{d}/S & \times & \text{Hilb}_{\text{Pic}}^{d}/S \end{array}$$

where Δ denotes the diagonal morphism (which is an immersion).

(2.2). <u>Proposition.</u> If all fibers of p are non-singular, then G is projective over S.

Proof:Under these conditions $\operatorname{Pic}^{\circ} \rightarrow S$ is projective $([G] VI, \operatorname{Cor.4.2.}), \operatorname{so,it}$ is enough to show that G is closed in $\operatorname{Pic}^{\circ}$.

The Hilbert scheme of flat subschemes whith a given Hilbert polynomial P of a scheme X projective over S is projective ([G] VI Th.3.1) and, in particular

separated.Let P_1 (P_2) be the Hilbert polynomial corresponding to the fibers of A (B) over Pic^o.As G is nonempty,we must have $P_1=P_2$ and G can be obtained by replacing Hilb Pic^d/S by Hilb^P Pic^d/S in Definition (2.1) Then the diagonal map is a closed immersion and so G is a closed subset of Pic^o.

(2.3).<u>Remark.</u>The subscheme G is a final object among those subschemes of Pic^O which leave W_d^r invariant under the natural action.More precisely,given a morphism $B = -\frac{f}{2} \operatorname{Pic}^O$

such that

$$R + W_{d}^{r} = (W_{d}^{r})_{R}$$

then f may be factorised in a unique way through

$$R \rightarrow Pic^{\circ}$$

(Here $(W_d^r)_R$ denotes $\operatorname{Rx}_S W_d^r = \operatorname{Rx}_Q$ (Pic^o x $\operatorname{S}^W_d^r$) and $\operatorname{R+W}^r_d$ is the image of $\operatorname{Rx}_{\operatorname{Pic}} \circ (\operatorname{Pic}^o x_S W_d^r)$ under the morphism $\operatorname{Idx} \widetilde{\psi}_d$).

Proof: The pull-back of A by f is $(W_d^r)_R$ and that of B is $Rx(R+W_d^r)$. As A and B are flat over Pic⁰, these two schemes are flat over R. Therefore we have classifying morphisms Y

$$\begin{array}{c} \lambda_{RXA} \\ R \chi_{RXB} \end{array} \quad Hilb Pic^{d}/S \end{array}$$

which in fact are the compositions fo χ_A and fo χ_B .Since,

by hypothesis, $X_{Rx\overline{A}} X_{RxB}$, the product of those two morphisms factorises through the diagonal morphism

and we dedude from this the morphism R $- {\boldsymbol{\Rightarrow}} g$.

(2.4), <u>Proposition</u>. G has a natural structure of a group-subscheme of Pic^o.

Proof: This follows from Remark (2.3) coupled with the formal properties of Pic⁰ as a group-scheme and those of the action of Pic⁰ on Pic^d.

(2.5). <u>Proposition.</u> The construction of G commutes whith base change. In particular, the restriction of G to a geometric fiber C(t) of the family p is the subgroup of the Jacobian of C(t) of those elements leaving the scheme $W_d^r(C(t))$ invariant under translation

Proof:Given a pull-back diagram

we noted in (1.2) that we have pull-back diagrams

$$\begin{array}{ccc} \operatorname{Pic}^{d}(p^{r}) \twoheadrightarrow \operatorname{Pic}^{d}(p) & \operatorname{W}^{r}(p^{r}) \twoheadrightarrow \operatorname{W}^{r}(p) \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ S^{r} & \longrightarrow & S & \text{and} & S^{r} \twoheadrightarrow & S \end{array}$$

So, there is a natural morphism

Hilb
$$Pic^{d}(p)/s^{\rightarrow}$$
 Hilb $Pic^{d}(p)/s^{x}s^{5}$

Moreover $A' = Ax_S S'$ and $B' = Bx_S S'$. Therefore the diagram defining G(p') factors through the pull-back of the diagram defining G(p). Therefore G(p') is the pull-back of G(p).

3 vanishing of $9(w_a^{-}(c))$ for a generic curve

In all of these paragraph,g,r,d will denote three integers ≥ 0 such that the Brill-Noeter number

$$\rho = g - (r+1)(g - d + r)$$

satisfies

0≤p< g

This is equivalent with the fact that for any genus g curve $W \frac{r_i}{d}(C)$ is neither empty nor the whole of Pic^d.

We are going to show that, $G(W_d^r(C))=0$ for a generic curve C of genus g over (\mathbf{C}) for a generic parts. In the first one we show that, under suitable conditions, the property $G(W_d^r(C))=0$ extends to all curves in a neighborhood of C. In the second we prove that $G(W_d^r(C))=0$, for a cuspidal rational curve C and that , when we deform the curve to a non singular one, we can also deform the group which becomes a member of a projective family. We have encountered here a few difficulties arising from the fact that $\operatorname{Pic}^o(C)$ is non compact and that, when we compactify it, it loses its group structure.We have been able to overcome this problem by proving first that the action of Pic^O(C) over Pic^d(C) extends to an action of their compactifications and secondly that the family of groups we defined in § 2 is in fact closed in the compactification of the family of Pic^O of the curves.

(3.1).<u>Proposition.</u>Let $G \xrightarrow{P} T$ be a projective groupscheme,T a non-singular scheme over the field \ddagger such that the fiber $G(t_o)$ over a closed point $t_o \in T$ is the zero group.Then G(t) = 0 in a neighborhood of t.

Proof:No fiber of p can be empty because p has the zero section e:T -> G .As $G(t_0)$ is zero-dimensional, we may assume ,by restricting T if necessary, that all fibers are zero-dimensional.Before we proceed we need to prove the following:

(3.1.1). Lemma. Under the above conditions, if x is a closed point of G belonging to a component which projects onto T, then G is non-singular at x and the morphism p is unramified at x.

Proof:Denote by t the point p(x).We have an exact sequence of tangent spaces

$$0 \xrightarrow{} T_{g(t),x} \xrightarrow{} T_{g,x} \xrightarrow{} T_{T,x}$$

As $g(t)$ is a group-scheme over f it is non-singular,so,

being zero-dimensional, $T_{G(t),x} = 0$. Then the above exact sequence proves the second assertion.

The assuption of the lemma is dim T \leqslant dim $_{\rm X}{\rm G}$.So we have

dim T \leqslant dim $_x$ $g \leqslant$ dim T $_{g,x}$ \leqslant dim T and the first assertion of the lemma follows.

Now the lemma gives us that g is non-singular at the single point x_0 of $g(t_0)$ because x_0 belongs to the component G which contains the zero section.So, this must be the only component of g containing x_0 . The morphism being projective, we may restrict T to a neighbor hood of t_0 and assume that all components of g project onto T.Then p is flat ([H] III ex.10.9).As it has finite fibers and is unramified by (3.1.1),it is étale. So $h^0(g(t), 0_{g(t)})$ is exactly the number of elements of the fiber g(t).By assumption it is one for $t=t_0$ and we have already noted that it is always at least one because all fibers contain the zero element.So,(3.1) follows by upper-semicontinuity.

(3.2).<u>Corollary.</u>If C_o is a non-singular curve such that dim $W_d^r(C_o) = o$ and $G(W_d^r(C_o)) = 0$, then $G(W_d^r(C)) = 0$ for all curves C in an open neighborhood of C_o in the moduli space. Proof:Use (1.4), (2.1), (2.2), (2.4) and (3.1) together whith the well-known existence theorem for a family containing C and projecting onto an open neighborhood of C in the moduli space of curves.

(3.3).Let $C \xrightarrow{P} T, T \ddagger \{t_o\}$, be a projective flat morphism of finite presentation whith C and T nonsingular irreducible schemes over the complex field such that the fiber over the point t_o is a rational curve whith g cusps and the fiber over any closed point $t \ddagger t_o$ is a non-singular curve of genus g.We shall assume moreover that p has disjoint sections $s_o \dots s_t$.For the existence of such a family see [E,H] p.394 and apply the usual technical device to construct the sections(see for instance [C],(1.2)).

Since for a cuspidal curve $W_d^r(C_0)$ has dimension ρ , by Remark (1.4),we may also assume that $W_d^r(p)$ is flat over T and construct G as in (2.1).

By restricting the natural action of $Pic^{O}(p)$ over $Pic^{d}(p)$, we then have a morphism

$$\Psi_d: \operatorname{g} \mathsf{x} \mathsf{W}_d^r(p) \twoheadrightarrow \mathsf{W}_d^r(p)$$

Under our conditions, we may apply the theory of Altman and Kleiman ([A,K] 1 and 2) showing the existence of projective T-schemes $\overline{\text{Pic}^{d}(p)}$ which compactify the schemes Pic d(p). They represent the equivalence classes of flat families of sheaves over \mathcal{C} whose geometric fibers are torsion free rank one sheaves on the fibers of p with Euler characteristic d+1-g.Moreover, there is a universal sheaf $\overline{\int_{d}}$ on Pic^d(p)x \mathcal{C} normalized along a section of p (see [K] for a summary of results).

(3.4).<u>Lemma.</u>The action of Pic⁰ (p) over Pic^d(p) extends to an action of $\overline{Pic^{0}(p)}$ over $\overline{Pic^{d}(p)}$

$$\frac{\operatorname{Pic}^{o}(p) \times_{T} \operatorname{Pic}^{d}(p)}{\operatorname{Pic}^{o}(p) \times_{T} \operatorname{Pic}^{d}(p)} \xrightarrow{\Psi} \frac{\operatorname{Pic}^{d}(p)}{\operatorname{Pic}^{d}(p)}$$

Proof:For a cuspidal curve the tensor product of torsion-free rank one sheaves is again a torsionfree rank one sheaf (cf.(1.6)).Obviously the same holds for non-singular curves.

Let us consider the scheme $\operatorname{Pic}^{\circ}(p) \times_{T}^{Pic} \operatorname{Pic}^{d}(p) \times_{T}^{e}$ and denote by p_{j} (resp. p_{kj}) the projection onto the factor j (resp. onto the product of the factors k and j). Then $p_{13}^{*} \overline{\int_{0}} p_{23}^{*} \overline{\int_{d}}$ is a flat sheaf over this scheme because $\overline{\int_{0}}$ is flat over $\operatorname{Pic}^{\circ}(p) \times_{T}^{e}$ and $\overline{\int_{d}}$ is flat over $\operatorname{Pic}^{d}(p) \times_{C}^{e}$.

By restricting this sheaf to a fiber of the projection p we get $(p_{13}^* \overline{L_o} p_{23}^* \overline{L_d}) (L_b) \times (L_b) \times C(t)^{=} \overline{L_o} |_{\{L_b\}} \times C(t)^{=} \overline{L_d} |_{\{L_d\}} \times C(t)$

which is a torsion-free rank one sheaf on \mathcal{C} (t) as mentioned above.

Because the family is flat, the Hilbert polynomials over the fibers are constant ([H] III p.261-262) and on the generic non-singular fibers they are nd+1-g. Then we apply the universal property of $Pic^d(p)$ to obtain the morphism .

We can copy the construction in (1.1) replacing Pic^d(p) by $\overrightarrow{Pic^d}(p)$ and the Poincaré bundle $\int by \overline{\int_d}$ We get in this way a closed subscheme $\overline{w_d^r(p)}$ of $\overrightarrow{Pic^d}(p)$ which parametrizes those torsion-free rank one sheaves on the fibers of p whose space of sections has dimension at least r+1.

(3.5).<u>Lemma.</u>No point of $\overline{\text{Pic}^{\circ}(C_{0})}$ -Pic^o(C₀) leaves $\overline{\Psi_{d}^{r}(C_{0})}$ invariant under the action $\overline{\Psi_{d}}$ of (3.4).

Proof:By the results of Eisenbud and Harris ([E,H] Cor.(4.4)),we have

$$\overline{w_{d}^{r}(C_{o})} = w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i \\ i_{1} \cdots i_{j} \\ j \ge 1}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{1} \cdots i_{j}}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{1} \cdots i_{j}}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{1} \cdots i_{j}}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{j} \ge 1}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{j} \ge 1}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{j} \ge 1}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{j} \ge 1}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{j} \ge 1}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{j} \ge 1}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{j} \ge 1}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{j} \ge 1}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{j} \ge 1}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{j} \ge 1}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{j} \ge 1}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{j} \ge 1}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{1} \cdots i_{j} \\ i_{j} \ge 1}} w_{d}^{r}(C_{o}) \cup \bigcup_{\substack{i_{j} \ge 1}} w_{d}^{r}($$

where $C_{i_1\cdots i_j}$ is the normalization of C_{o} at the cusps $P_{i_1}\cdots P_{i_j}$ and the elements of W_d^r $(C_{i_1}\cdots i_j)$ are interpreted as those torsion-free rank one sheaves on C_o which fail to be locally free precisely at the cusps $P_{i_1}\cdots P_{i_j}$. Let j_o be the maximum integer j such that

 $W_{d-j}^{r}(C_{i_1},\ldots,i_j) \neq \emptyset$

As the curves C are rational cuspidal curves $i_1 \cdots i_j$ of genus g-j,this is equivalent (by [E,H] Th.5.1) to

 $0 \leq \rho(d-j,r,g-j)$

and because

$$\rho(d-j,r,g-j) = \rho(d,r,g) - j$$

we have

$$j \leq \rho(d,r,g) < g$$

the last inequality following from our initial hypothesis on d,r,g.

Let L be an element in $\overline{\text{Pic}^{\circ}(C_{o})}$ -Pic^o(C).As L corresponds to a non- invertible sheaf on C_{o} , it fails to be locally free at at least one of the cusps, say P_{g} . We want to show

$$L + w_d^r(c_o) \notin w_d^r(c_o)$$

Let L_o be an element in $\overline{W_d^r(C_o)}$ corresponding to a point in $W_{d-j_0}^r(C_{1},...,j_o)$. Then LmsL_o fails to be locally of ree at the cusps $F_1...F_{j_o}$ and P_g . Therefore, by definition of j_o, it does not belong to $W_d^r(C_o)$.

(3.6). Lemma. $g(c_0) = 0$.

Proof:Let us consider the scheme-theoretic closure $\widehat{g(c_o)}$ of $\widehat{g(c_o)}$ in $\overline{\operatorname{Pic}^{o}(c_o)}$ (see [E.G.A] p.324-325). Because $\widehat{g(c_o)}$ is a group-scheme over \emptyset , it is reduced and so is $\widehat{g(c_o)}$. Moreover, by definition, $\widehat{g(c_o)}$ is dense in $\widehat{g(c_o)}$. We also have that $W_d^r(C_o)$ is dense in $\overline{W_d^r(C_o)}$ and reduced ([E,H] Th.4.5 and Th.5.1)

By construction, $G(C_0)$ leaves $W_d^r(C_0)$ invariant.So by continuity,we get a factorization of $\overline{\psi}_d$ in the following way:

Now, by Lemma (3.5), we have $\widetilde{\mathcal{G}(C_o)} \subset \operatorname{Pic}^{O}(C_o) \cong \mathfrak{c}^{g}$. As $\widetilde{\mathcal{G}(C_o)}$ is proper and \mathfrak{c}^{g} is affine, $\widetilde{\mathcal{G}(C_o)}$ is finite. Moreover, $\widetilde{\mathcal{G}(C_o)} \subset \mathfrak{c}^{g}$ implies $\widetilde{\mathcal{G}(C_o)} \approx \widetilde{\mathcal{G}(C_o)}$. So, $\widetilde{\mathcal{G}(C_o)}$ being a group subscheme of \mathfrak{c}^{g} which is torsion-free, it is trivial.

We shall denote by \tilde{g} the scheme-theoretic closure of(g(p)) inside $\overline{\text{Pic}^d(p)}$.

 $(3.7).\underline{Lemma.} \quad G(p)_{red} x_T W_d^r(p) \text{ is dense in } \tilde{G} x_T W_d^r$ $Proof:Let y be a point in \quad \tilde{G} x_T W_d^r(p) - \quad G(p) x_T W_d^r(p)$ and x,w the projections of y in \tilde{G} and $W_d^r(p)$ respectively. We have that $p_o(x) = p_d(w) = t$ where $p_i : \overline{Pic^i(p)} \to T$ is the structural morphism.

If x=0,x belongs to the component which contains the zero section 0:T -> \tilde{g} and this component dominates T.If x=0,then by Lemma (3.6),x= $\widetilde{g(c_o)}$.So,in either case, there is a component G of \tilde{G} containing x such that $p_0(G) = T' \neq \{t_0\}$ is a closed irreducible subset of T.

We know that $W_d^r(p)x_T^r$ coincides whith $W_d^r(p')$; here p' is obtained by pulling back p to T' (cf.(1.2)).As all fibers of $W_d^r(p)$ over the closed points of T have dimension ρ (by (3.3)),the same must be true for the fibers of $W_d^r(p')$ over the closed points of T'.Hence we deduce that all the components of $W_d^r(p')$ have dimension equal to dim T'+ ρ and dominate T' (see (1.4)). Because $W_d^r(p')$ is dense in $\overline{W_d^r(p')}$ (see [E,H] \cdot p.394) the same is valid too for the components of $\overline{W_d^r(p')}$.Let W be a component of $\overline{W_d^r(p')}$ containing w.Then,there is a closed irreducible set in Gx_T , W containing y and such that its projections on Q(p) and $\overline{Pic^d(p)}$ are G and W respectively (see [E.G.A] Ch.I (3.4)).This proves the lemma.

(3.8). Lemma. \tilde{g} coincides whith g(p) and so g(p) is projective.

Proof:By applying (3.7),we get a factorization of the restriction of ψ_d to $(\tilde{G}x_T \psi_d^r(p))$ as shown in the red diagram below.Then,because of (3.5),it follows that $\tilde{G}=(G(p))$.So,G(p) is a closed set of Pic⁰(p) and in red particular it is projective.

$$(\tilde{g} \times_{T} W_{d}^{r}(p)_{red})_{red} \rightarrow W_{d}^{r}(p)_{red}$$

$$(\tilde{g} \times_{T} W_{d}^{r}(p)_{red})_{red} \longrightarrow W_{d}^{r}(p)_{red}$$

$$(\tilde{g} \times_{T} W_{d}^{r}(p)_{red})_{red} \longrightarrow W_{d}^{r}(p)_{red}$$

$$(\tilde{g} \times_{T} W_{d}^{r}(p)_{red})_{red} \longrightarrow W_{d}^{r}(p)_{red}$$

(3.9).<u>Theorem.</u>For a generic (non-singular) curve of genus g,the only translation leaving $W_d^r(C)$ invariant is the identity ($0 \le \rho(d,r,g) \le g-1$).

Proof:By (3.1),(3.3),(3.8) and (3.6) there are non-singular curves whith $G(w_d^r(C))=0$ and such that dim $w_d^r(C)=\rho$. Then use Corollary (3.2).

4. POSSIBLE DIMENSIONS OF THE GROUPS $g(w_d^c(c))$.

We show here that, for any curve $C, 0 \leq \dim \mathcal{G}(W_d^r(C)) \leq r$. Conversely, for any s such that $1 \leq s \leq r$ we construct curves such that dim $\mathcal{G}(W_d^r(C)) = s$. For s = 0, we have already seen (cf. $\int 3$) that for a generic curve $\mathcal{G}(W_d^r(C)) = 0$, so $\mathcal{G}(W_d^r(C))$ is zero dimensional. We have not been able to find an example of a curve whith $\mathcal{G}(W_d^r(C))$ zero dimensional but not trivial (see (5.8)).

 $(4.1) \underbrace{\text{Lemma.If } a_{+}(W_{k}^{r})}_{\text{k red}} \subset (W_{k}^{r}) \quad \text{and } r+g-k \ge 1$ (or equivalently $W_{k}^{r} \downarrow JC$), then $a_{+}(W_{t}^{r}) \subset (W_{t}^{r}) \quad \forall t \le k$. Proof:Let $L \in W_{t}^{r}$, $D_{t} \in |L|$ and D_{k-t} be a generic effecti-

- 22 -

ve divisor of degree k-t.Then $\mathcal{O}_{C}(D_{t}+D_{k-t}) \in W_{k}^{r}$.So,by hypothesis, $\mathcal{O}_{C}(a+D_{t}+D_{k-t}) \in W_{k}^{r}$.By Riemann-Roch this is equivalent to

 $h^{o}(K-a-D_{t}-D_{k-t}) \ge r+g-k \ge 1$ So,D_{k-t} being generic in C^(k-t)

$$h^{O}(K-a-D_{t}) \ge r+g-k+(k-t)=r+g-t$$

which again by Riemann-Roch gives

$$h^{o}(a+D_{t}) \ge r+1$$

or equivalently $O_{c}(a+D_{t}) \in W_{t}^{r}$.

(4.2). <u>Proposition.</u> If $\rho(d,r,g) < g$, then dim $Q(w_d^r) \leq r$.

Proof:Let d_o be the minimum integerd such that $W_d^r \ddagger \phi$.Under those conditions Fulton,Harris and Lazarsfeld proved (see [A,C,G,H] p.329) :dim $(W_{d_o}^r) \le r$.Moreover, by (4.1), $G(W_d^r)$ leaves the support of $W_{d_o}^r$ invariant.So, when we choose an element w in $W_{d_o}^r$, we get an injection

$$\begin{array}{ccc} g(w_{d}^{r}) & \twoheadrightarrow & w_{d}^{r} \\ a & \twoheadrightarrow & a + w \\ (w_{d}^{r}) \leq \dim & w_{d}^{r} \leq \end{array}$$

Hence, we deduce dim $g(w_d^r) \leq \dim w_d^r \leq r$

(4.3).<u>Proposition.Let</u> C be a generic genus h curve $1 \leq h \leq r, C \xrightarrow{p} C_o$ a (ramified) double covering of C such that $g(C) \geq 6r+13$.Then W_{2h+2r}^{r} (C) is reduced and coincides whith the pull-back of Pic^{h+r} (C_o) under the morphism induced by p.So $G(W_{2k+2r}^{r})$ is the subgroup of dimension h in $Pic^{O}(C)$ obtained as the pull-back of $Pic^{O}(C_{n})$.

Proof:By Riemann-Roch W_{h+r}^{r} (C)=Pic $^{h+r}$ (C).So,in order to prove the proposition we must show that

a) if $L \in W_{2h+2r}^{r}$ (C), there exists a $L_{0} \in W_{h+r}^{r}$ (C₀) such that $L = p^{*}L_{0}$;

b) W_{2h+2r}^{r} (C) is reduced.

Proof of a):Let $L \in W_{2h+2r}$ (C).Then any subspace of dimension r+1 in H^O (L) determines a morphism fof C onto a non-degenerate curve \tilde{C} of P^{r} .

$$C \rightarrow \tilde{C} \rightarrow \mathbb{P}^r$$

We shall use the following two classical lemmas (see for instance [A,C,G,H] p.116 and p.366 resp.).

(4.3.1).<u>Lemma.</u>(Castelnuovo).Let C be a curve of degree d in p^r not contained in any hyperplane and let g be its geometric genus.Then

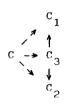
$$g \leq \binom{m}{2}(r-1) + me$$

where $m = \left[\frac{d-1}{r-1}\right]$ (that is to say, the largest integer less than or equal to $\frac{d-1}{r-1}$) and e = d-1 - m(r-1).

(4.3.2).<u>Lemma.</u>Let C be a covering of degree d_1 of a curve C₁ of geometric genus g_1 and a covering of degree d_2 of a curve C₂ of geometric genus g_2 .Then either the geometric genus of C satisfies

$$g(C) \leq (d_{1i}-1)(d_2-1)+g_1d_1+g_2d_2$$

or both coverings are composite with the same involution (i.e. there is a third curve C_3 and a morphism of degree at least two C -> C_3 such that the given morphisms factorize



If r > 1 (4.3.1) tells us that g(C) > g(C), so the morphism is not birrational. For r=1 this is obviously true. Let k be the degree of f.

As the curve C is non-degenerate in p^r , it has degree at least r.So, we have $\frac{2h+2r}{k} \ge r$ and therefore $k \le 4$. We can use now (4.3.1) to prove that the genus of C is bounded by h+1. Then, by (4.3.2), we may conclude that f and p are composite with the same involution. As p has degree 2, this means that f factorizes through

Thus we can write $L=p + L_0 + F$, where L_0 is an invertible sheaf of degree at most h+r and dimension at least r in C_ and F is the fixed part of L.

On the other hand, \mathop{C}_{O} being generic, we have

dim
$$W_{h+r-1}^{r}(C) = \rho(h+r-1,r,h) < 0$$

that is to say, $W \stackrel{r}{h+r-1} (C) = \phi$, so L has degree exactly h+r and F=0. This completes the proof of a).

Proof of b): We shall prove that the tangent space to $W \stackrel{\mathbf{r}}{_{2h+2r}}(C)$ at the point $L=p^{*}L$ has dimension h and so, because of a), $W \stackrel{\mathbf{r}}{_{2h+2r}}(C)$ is non-singular.

Let us denote by A the ramification divisor of p and let D be a (not necessarily effective) divisor such that 2D=A and $p_{*} Q_{C} = Q_{C_{0}} Q_{C_{0}} (-D)$. Then, by Hurwitz Formula 2deg D +2(2h-2)=2g-2. So, deg D =g-2h+1.

Since $H^{o}(L)=H^{o}(L_{o})\Theta H^{o}(L_{o}-D)$ and $deg(L_{o}-D) < 0$, we have $H^{o}(L)=H^{o}(L_{o})$. (Note that those are spaces of sections of line-bundles on different curves, we hope it is clear to which curve they refer in each case). In particular, this implies $h^{o}(L)=h^{o}(L_{o})=r+1$, where the last equality has been seen to hold at the end of the proof of a). This allows us to compute the tangent space to $W^{r}_{h+r}(C)\subset Pic^{d}(C)$ as the subspace orthogonal to the image of the Petri morphism:

where $H^{O}(K)$ is to be interpreted as the dual of the tangent space to Pic^d(C) (see for instance [A,C,G,H] p.189)

By taking into account that $K_c = p^* K_c + p^* D$ ([H] IV Prop.2.3), we get $K_c - L = p^* (K_c + D - L)$ and so

$$H^{O}(K_{C}-L)=H^{O}(K_{C}+D-L_{O})$$
 \oplus $H^{O}(K_{C}-L_{O})$

We may now decompose the Petri morphism in the following way:

$$H_{O}(\Gamma^{O}) \otimes H_{O}(K^{O}+D-\Gamma^{O}) \rightarrow H_{O}(K^{O}+D)$$

$$H_{O}(\Gamma^{O}) \otimes H_{O}(K^{O}-\Gamma^{O}) \rightarrow H_{O}(K^{O}+D)$$

We have $h^{O}(K_{C_{O}}-L_{O})=0$ because deg $L_{O}=h+r$ $2h-2=deg K_{C_{O}}$.So, the second component of the Petri morphism_is zero.Then, as $h^{O}(K_{C_{O}})=h$, showing that dim $T_{L}W_{2h+2r}^{P}$ (C)=h is equivalent to proving that the morphism

$$H^{\circ}(L_{o}) \otimes H^{\circ}(K_{C}^{+D-L_{o}}) \rightarrow H(K_{C}^{+D})$$

is onto and that follows from the Castelnuovo Generalized Lemma ([M] Th.2.1).

5.A_FURTHER_EXAMPLE.

In this paragraph we give an example of a curve C of genus 37 such that the subgroup of JC leaving the set $W_{12}^1(C)$ invariant is zero-dimensional but not trivial.

(5.1).<u>Definition.</u>Let Q_1 and Q_2 be two rank 3 quadrics of p^5 whose vertices are two disjoint 2-planes (whith a suitable choice of coordinates we may assume that their equations are $x_0^2 - x_1 x_2$ and $x_3^2 - x_4 x_5$).Let Q be a generic quadric and S a generic cubic hypersurface in p^5 .We define C as the complete intersection of Q_1, Q_2, Q and S.By the genericity of Q and S,C is nonsingular.It has degree 24 and its canonical divisors are cut by the hypersurfaces of degree 3 in $|P^5|$ (i.e. K = $Q_4(3)$) (see [H] II ex.8.4).

(5.2).<u>Lemma.</u>Given k points in p^r not contained in a hyperplane, for any j such that 1 < k < jr+1, there are j hyperplanes of p^r whose union contains exactly k-1 of those points.

Proof:Use induction on j.

(5.3).<u>Lemma.</u>Given a g_k^1 on C whithout fixed points and $k \leq 12$, the divisors of the g_k^1 generate a linear space of dimension at most 3 in p^5 .

Proof:Let $D \in g_k^1$, D = P + E where P is a point in C and E an effective divisor.By hypothesis, $h^{O}(E) = h^{O}(D) - 1$. So, by Riemann-Roch, $h^{O}(K-E) = h^{O}(K-D)$. This means that any canonical divisor containing E must also contain P.

Let us assume now that D is not contained in any hyperplane of p^5 . Then, by (5.2) we could find three hyperplanes of p^5 whose union would contain all points of D except one. This is impossible because the union of the hyperplanes cuts a canonical divisor on C. Hence we have D $\subset p^4 \subset p^5$. If D were not contained in a hyperplane of 19⁴,we could apply (5.2) again and reach a contradiction as above.

(5.4).<u>Lemma.</u>Given a g_k^1 without fixed points on C whith $k \ge 12$, this must be the non-fixed part of the series cut on C by the rulings of a quadric of $|P^5|$ whose rank is at most 4 and which contains C.

Proof:Let us denote by L the line bundle corresponding to the hyperplane section of $|P^5.By|(5.3), h^o(L-g_k^1) \ge 2$. Let us write $L-g_k^1 = F+g_j^r$, where F is the fixed part of the series $L-g_k^1$ and $r \ge 1.$ We choose D_1, D_2 in g_k^1 and \tilde{D}_1 \tilde{D}_2 in g_j^r such that there is no common point to any pair of those four divisors and such that no one of those divisors contains a point of F.As $D_1 + \tilde{D}_j + F$ belongs to |L| and C is projectively normal (see for instance [H] II ex.8.4), there must be a hyperplane in $|P^5$ containing this divisor.Let l_{ij} be an equation for this hyperplane.Then, the rational function

$$\frac{1}{11} \frac{1}{12} \frac{1}{21}$$

cuts on C the divisor $D_1 + D_2 + \tilde{D}_1 + \tilde{D}_2 + 2F - (D_1 + \tilde{D}_2 + D_1 + \tilde{D}_1 + 2F) = 0$, so it must be constant on C:

$$\frac{\frac{1}{11}\frac{1}{22}}{\frac{1}{12}\frac{1}{21}} |_{c} = k \neq 0$$

Thus C is contained in the quadric of equation

$$11122^{-k}12^{1}21$$

One of the two (possibly coincident) rulings of this quadric is the set of three-planes whith equations

$$al_{11}+bl_{21}=0$$

 $kal_{12}+bl_{22}=0$

For b=0 the corresponding plane cuts $D_1 + F$ and for a=0 it cuts $D_2 + F$ as we wanted to show.

(5.5).Lemma.The only quadrics of \mathbb{P}^5 of rank ≤ 4 containing C are Q and Q $_2$.

Proof:As C is a complete intersection, the quadrics containing C are those of the two-plane generated by $Q_1 \ Q_2$ and Q inside the P^{20} of all quadrics in P^5 (see [A,C,G,H] p.139). The set of quadrics of rank ≤ 4 form a variety of pure codimension 3 in this P^{20} . Let us denote it by V. The pencil generated by Q_1 and Q_2 , say 1, cuts V in exactly those two points, as one can check from the equations of Q_1 and Q_2 given in (5.1). We need to prove that one can choose Q in such a way that the two-plane generated by Q_1, Q_2 and Q cuts V in exactly those two points. To this end, let us cut V whith 17 generic hyperplanes containing 1. The intersection is a finite number of points in a P^3 containing 1, so we can choose a two-plane inside this P^3 containing 1 and avoiding all the other points except Q_1 and Q_2 .

(5.6).Lemma.The curve C has exactly two linear series of degree 12 and dimension $1, g_{12}^1$ and h_{12}^1 , which are cut by the rulings of Q_1 and Q_2 .

Proof:Use (5.4),(5,5) and the fact that the vertices of Q_1 and Q_2 cannot cut C because of the generic selection of Q and S.

(5.7).<u>Corollary</u>.The subgroup of the Jacobian of C leaving the set W_{12}^1 invariant under translation consists of two elements.

Proof: It is clear from (5.6) that $2g_{12}^1 = 2h_{12}^1$. So, $L_0 = g_{12}^1 - h_{12}^1 \neq 0$ leaves $W_{12}^1(C)$ invariant (as a set).

(5.8).<u>Remark.</u>In this case W_{12}^1 (C) is non-reduced as one can see by computing its tangent space by means of Petri's morphism ([A,C,G,H] p.189).We do not know whether the translation whith L_o preserves the scheme structure.

- 31 -

 $\begin{cases} 6 & \underline{CALCULATION} & OF & \underline{g(w_{g-2}^1)} & \underline{AND} & \underline{g(w_{g-1}^1)} \\ \end{cases}$

We show in this paragraph that $G(W_{g-1}^{1}(C))=0$ for all C and that $G(W_{g-2}^{1}(C))=0$ for any curve of genus $g \ge 7$ except when C is bielliptic (in which case it is isomorphic to the corresponding associated elliptic curve).

(6.1).<u>Lemma.</u>For a hyperelliptic (resp. trigonal) curve of genus at least 2 (resp. 5) and a k such that $2 \le k \le g$ (resp. $3 \le k \le g$), the condition $a + W_k^1 = W_k^1$ implies a=0.

Proof:By our condition on the genus W_2^1 (resp. W_3^1) consists of a single point (use for instance (4.3.1)). Then by (4.1),we would have $a+g_2^1=g_2^1$ (resp. $a+g_3^1=g_3^1$) and so a=0.

(6.2).Lemma.Let C be a curve of genus $g \ge 7.If$ we have the set-theoretical equality $a+W_{g-2}^{1} = W_{g-2}^{1}$ whith $0 \ddagger a \in JC$, then there is a component of dimension at least g-3 in the inverse image of W_{g-2}° -a by the morphism $C^{(g-2)} \rightarrow Pic^{g-2}(C)$

Proof:Let us assume the contrary and we shall reach a contradiction.

For a given $L \in W_{g-2}^1$ and $P, Q \in C$, we have $h^O(L-P+Q) \ge 1$ So $W_{g-2}^1 + C - C \subset W_{g-2}^0$. Because of condition $a + W_{g-2}^1 = W_{g-2}^1$, we have

$$W_{g-2}^{1} + C - C - a = W_{g-2}^{1} + C - C$$

Therefore

$$w_{g-2}^{1}+c-c \subseteq w_{g-2}^{0} \quad (w_{g-2}^{0}-a)$$

Our assumption means that the dimension of the right hand side is g-4, so the intersection of W_{g-2}^{O} and W_{g-2}^{O} - a is proper and the dimension of the left hand side is at most g-4.

On the other hand, for any curve the dimension of any component W of W_{g-2}^{-1} is at least the Brill-Noether number $\rho(g-2,1,g)=g-6$ (cf. (1.3)).As C generates JC, dim(W+C-C)=dim W+2.Therefore, dim W=g-6 and dim(W+C-C)=g-4. The latter equality implies that W+C-C is a component of $W_{g-2}^{0}(W_{g-2}^{0}-a)$.

The cohomology classes of any translate of W_{g-2}^{1} , C and W_{g-2}^{0} in the cohomology ring of JC are (because of the fact that W_{g-2}^{1} has the right dimension g-6)

$$\frac{\theta^{6}}{3!4!} \qquad \frac{\theta^{g-1}}{(g-1)!} \quad \text{and} \quad \frac{\theta^{2}}{2!}$$

respectively (see [A,C,G,H] p.320).So,the cohomology class of $W_{g-2}^{o}(W_{g-2}^{o}-a)$ is given by the intersection

$$\frac{\theta^2}{2} \frac{\theta^2}{2} = \frac{\theta}{4}$$

and the cohomology class of $W = \begin{pmatrix} 1 \\ g-2 \end{pmatrix} + C - C$ is computed by means of the Pontrjagin product

$$\frac{1}{x} \frac{\theta^{6}}{3!4!} * \frac{\theta^{g-1}}{(g-1)!} * \frac{\theta^{g-1}}{(g-1)!} = \frac{1}{x} \frac{5(g-5)(g-4)}{4!} \theta^{4}$$

x being the degree of the map

$$W_{g-2}^1 \times C-C \rightarrow Pic^{g-2}(C)$$

(we recall that C cannot be hyperelliptic by (6.1)and so the morphism C-C -> JC is birrational).

We are going to compute x.Let L be a generic point in a component W of $W_{g-2}^{1}(C)$ and P and Q generic points in C.Assume that we have the equality $L+P-Q\equiv E+P=Q$; whith L'in W_{g-2}^{1} and P',Q'in C.If we had $h^{O}(L+P+Q') \ge 3$, because L is generic in W and P generic in C we would obtain dim $W_{g}^{2} \ge \dim W+1=g-5$.This is a contradiction because, by Riemann-Roch, $W_{g}^{2} \cong W_{g-2}^{1}$. Therefore, |L+P+Q'| = |L|+P+Q'

and because of the hypothesis $L+P+Q'\equiv L'+P'+Q$, also

$$|L'+P'+Q| = |L'|+P'+Q$$

Then, by the genericity of Q, we deduce Q=Q' and therefore L+P=L'+P'.

Let F (resp. F⁻) be the fixed part of the series |L| (resp. |L^{$-}|) and write L=L +F (resp. L^{<math>-}=L^{<math>-}_1+F^{<math>-$}). Because of (6.1) C is not trigonal, so g-2-deg F > 3. Moreover, |L +F+P=|L^{$-}_1|+F^{<math>-}+P^{<math>-$} implies F+P=F⁻+P^{<math>-}. Therefore, either P⁻=P or P⁻ \leq F.So, the degree x of the morphism</sup></sup></sup></sup></sup></sup></sup>

$$W_{g-2}^1 \times C-C \rightarrow Pic^{g-2}(C)$$

satisfies $x=\deg F +1 \leq g-5$.

- 34 -

Now,from the fact that W_{g-2}^{1} +C-C is a set-theoretic component of W_{g-2}^{0} (W_{g-2}^{0} -a),the above computations and assuming W_{g-2}^{1} reduced we obtain

Therefore

 $g-5 \ge (\deg F+1) \ge \frac{5}{6}(g-5)(g-4) \ge \frac{10}{6}(g-5)$

which is a contradiction.

It only remains to prove that under our conditions $W = \frac{1}{\sigma-2}$ is reduced.Let us assume this were not the case.Then by the Cohen-Macaulayness of W_{g-2}^1 (cf.[A,C,G,H] Prop.4.1) we would have a component W of $W = \frac{1}{g-2}$ contained in the singular locus of $W^{1}_{\varrho-2}$. This locus is the union of $W = \frac{2}{g-2}$ and those points not in $W = \frac{2}{g-2}$ for which the Petri morphism is not injective ([A,C,G,H] p.189).As dim W $\frac{2}{p-2} \leq g-7$ by (6.1) and Martens Theorem ([A,C,G,H] Th.5.1), our hypothesis would imply that for a generic point L of W the Petri morphism is not injective.Let us write $L=L_1+F$, where F is the fixed part of L.Then the kernel of the Petri morphism is $H^{0}(K-2L_{1}-F)$ ([A,C,G,H] p.196). Therefore we have $h^{O}(K-2L_{1}-F) \ge 1$. Let t be the degree of F.When L moves in W,L moves in a component $V \neq \phi$ of dimension at least g-6-t of W_{g-2-t}^1 . As dim $W_{g-2}^1 = g-6$, C is neither hyperelliptic or trigonal nor bielliptic or a plane quintic. Then Mumford's Theorem ([A,C,G,H]

p.193) gives dim V=g-6-t ≥ 0 and so F is generic in C .Therefore $h^{O}(K-2L) \ge t+1$ and we obtain a component of $W \begin{array}{c} t \\ 2g-2-2(g-2-t) \\ \overline{y} \\ 2t+2 \end{array}$ of dimension at least g-6-t

On the other hand, by using Mumford's Theorem again, we obtain dim $W_{2t+2} \ge 0.$ So, t=g-6, deg $L_1 = 4$ and $h^0(2L_1) \ge 4$. Moreover, by (4.1), W_4^1 cannot consist of a single point. Let $g_4^1, h_4^1 \in W_4^1$ and consider the product of the

morphisms associated to those linear series

$$C \rightarrow |P^{1}x|P^{1} \rightarrow |P^{3}$$

Then, by (4.3.1), either the morphism is birrational and $g \le 9$ or it has degree 2 and C is either bielliptic or hyperelliptic (which contradicts dim $W_{g-2}^{-1} = g-6$). Now by the study of Coppens of quatrigonal curves of genus at least 7 ([C] p.32), the only curves which have more than one g_4^1 one of which satisfies $h^0(2g_4^1) \ge 4$ are of genus 7 and have exactly 2 linear series of degree 4 and dimension 1 g_4^1 and h_4^1 with $h^0(2g_4^1) = 4$, $h^0(2h_4^1) = 3$. Then the condition $a+W_4^1 = W_4^1$ means $a=g_4^1-h_4^1=h_4^1-g_4^1$. So, $2g_4^1 = 2h_4^1$ which is a contradiction because the space of sections of those bundles have different dimensions.

(6.3).<u>Lemma.</u>Let C be a bielliptic curve, C $-\frac{p}{s}$ E the associated double covering.Then for all k,4 $\leq k \leq g^2$, we have $W_k^1(C) = p^* W_2^1(E) + W_{k-4}^0(C)$ and $G(W_{g-2}^1) \cong E$.

Proof:Let $L \in W_k^1$ and consider the morphism $C \xrightarrow{f} P^1$ associated to a two-dimensional subspace of H^0 (L).By (4.3.2), the morphism

 $C \rightarrow E \times |P^{1}$

cannot be birrational.So,f is composite whith p.Then, g_k^1 is a pull-back of a series of dimension at least one in E.So,this series must have degree at least two in E.This proves the first assertion.It follows from this that p *Pic ^O(E) \cong leaves w_k^1 invariant settheoretically.The second assertion is that equality also holds scheme-theoretically when k=g-2.To this end it is enough to check that there are no iMmersed components in w_{g-2}^1 (C).Were that to happen,they would have dimension at least equal to the Brill-Noether number g-6 (see [EN] p.202).We shall check that the singular locus of w_{g-2}^1 (C) coincides whith w_{g-2}^2 (C) and so has dimension g-7 by Mumford's Theorem.

Let $L \in W_{g-2}^{1} - W_{g-2}^{2}$. Then $L=p^{*}D+F$ with deg D=2 and no divisor of the form $p^{*}P$ whith P in E satisfies $p^{*}P \in F$, for, otherwise L would belong to W_{g-2}^{2} . Let us consider the canonical immersion of C in $||^{g-1}$. There is a point X in $||^{p-1} - C$ such that the projection from X is the morphism p (A,C,G,H p.269) and we have the diagram

$$(6.4.1) \qquad \begin{array}{c} C & \stackrel{\mathbf{p}}{\rightarrow} & E \\ \uparrow & \uparrow \\ \psi & \psi \\ |\mathbf{p}^{g-1} \rightarrow |\mathbf{p}^{g-2} \end{array}$$

The tangent space to W_{g-2}^{-1} at L is the subspace orthogonal

- 37 -

to the image of the Petri morphism (see [A,C,G,H] p.189)

$$H^{O}(L) \otimes H^{O}(K-L) \rightarrow H^{O}(K)$$

and the kernel of this morphism is easily proved to be $H^{O}(K-2p^{*}D-F)$ ([A,C,G,H] p.196). Therefore L is a singular point of W_{g-2}^{1} if and only if $h^{O}(K-2p^{*}D-F) \ge 2$

On the other hand, by diagram (6.4.1) and denoting
by M the sheaf which gives the immersion of E in
$$|P|^{g-2}$$
, we have

$$h^{o}(C,K -2p^{*}D-F)=h^{o}(E,M-2D-p(F))=1$$

where the last equality follows from the Riemann-Roch Theorem.

(6.4).<u>Theorem.</u>Let C be a curve of genus $g \ge 7$.Then $G(w_{g-2}^{-1}(C))=0$ if and only if C is bielliptic.

Proof:Necessity is proved in (6.3).We are going to prove sufficiency.Let us assume $a+W \begin{pmatrix} 1 \\ g-2 \end{pmatrix} = W \begin{pmatrix} 1 \\ g-2 \end{pmatrix}$. Then by (6.2),we have that the inverse image A of $W_{g-2}^{O}-a$ in $c^{(g-2)}$ has dimension at least g-3. Therefore for a generic divisor D in $c^{(g-3)}, D+C \hookrightarrow c^{(g-2)}$ must cut A. This means that there is a point in C, P(D), such that

By Riemann-Roch this is equivalent to

$$h^{O}(K-a-D-P(D)) \ge 2$$

If for a generic D we had $h^{O}(K-a-D) \ge 3$, then

$$h^{O}(K-a) = h^{O}(K-a-D) + g - 3 = g$$

and a would be zero contrary to our hypothesis.Thus,for a generic D we have that $h^{O}(K-a-D)=2$ and P(D) is a fixed point of the series |K-a-D|.

Let us assume first that the complete linear series |K-a| has no fixed points and consider the morphism associated to it

$$C \rightarrow \tilde{C} \rightarrow |K-a|^{*} \cong |F^{g-2}$$

If f were birrational, \tilde{C} would have degree 2g-2. The condition that |K-a-D| has a fixed point for generic D means that given g-3 generic points of \tilde{C} , the linear variety of codimension two in $|P^{g-2}|$ which contains them, contains also another point of \tilde{C} . This contradicts the principle of general position ([A,C,G,H] p.109). So, f has degree d ≥ 2 .

As \tilde{C} is a non-degenerate curve in $|P^{g-2}|, \tilde{C}$ must have degree at least g-2.We must have

$$d(g-2) \leq d.deg C = deg (K-a) = 2g-2$$

So

$$2 \leq d \leq \frac{2g-2}{g-2} < 3$$

i.e. d=2 and \tilde{C} has degree g-1.It follows that \tilde{C} is an elliptic curve (use for instance (4.3.1)) and so C is bielliptic.

Let us consider now the case when |K-a| has a fixed point P.Then $h^{O}(K-a-P)=h^{O}(K-a)=g-1$ and, by Riemann-

Roch this means that $h^{O}(a+P)=1.So, a+P=Q$ and a=Q-P.

Let us assume that C is not bielliptic.Then,the hypothesis a+W $\begin{array}{c}1\\g-2\end{array}=W$ $\begin{array}{c}1\\g-2\end{array}$ $a\neq 0$,gives that $a=Q-P,Q\neq P$,as we have just seen.But,as

$$2a + W \frac{1}{g-2} = a + (a + W \frac{1}{g-2}) = W \frac{1}{g-2}$$

we should have either 2a=0 or 2a=R-S. The former condition is 2P=2Q and the latter 2P+S=2Q+R. So, in the former case C would be hyperelliptic and in the latter trigonal which contradicts (6.1).

(6.5).<u>Theorem</u>.For any curve C $a+W_{g-1}^{1}$ (C)= W_{g-1}^{1} (C) implies a=0.

Proof:By a result of Welters ([We] Th.5.1),if a is such that $a+W_{g-1}^{-1}(C) \subset W_{g-1}^{-0}$, then $a \in C-C$. Then we can imitate the last part of the proof of (6.4) to obtain that a=0.

REFERENCES.

- [A,C,G,H] E.Arbarello,M.Cornalba,P.Griffiths,J.Harris, Geometry of algebraic curves I,Springer-Verlag, 1985.
- [A,K] 1.A.Altman,S.Kleiman,Compactifying the Picard Scheme,Adv.in Math.35,50-112,(1980).
- [A,K] 2 A.Altman,S.Kleiman,Compactifying the Jacobian,
 Bull.of the Am.Math.Soc. <u>82</u>, N.6,947-949, (1976).

- 40 -

- [C] M.Coppens,One dimensional linear systems of type II on smooth projective curves,Thesis, Utrecht,(1983).
- [E.G.A] A.Grothendieck, J.Dieudonné, Elements de Geometrie Algebrique I, Springer-Verlag, (1971).
- [E,H] D.Eisenbud, J.Harris, Divisors on general curves and cuspidal rational curves, Inv. Math. <u>74</u>, 371-418, (1983).
- [E, N] J.Eagon,D.Northcott,Ideals defined by matrices, Proc.Roy.Soc.,269,(1967).
- [G] A.Grothendieck, Techniques de descente et théorèmes
 d'existence en Geometie Algébrique, Seminaire
 Bourbaki, IV Les Schémas de Hilbert, E 221, 1960-61.
 - V Les Schémas de Picard,Thèoremes d'existence,E.232,1961-62.
 - VI Les Schémas de Picard, Propietés générales, E.236, 1961-62.
- [H] R.Hartshorne,Algebraic Geometry,Springer-Verlag, (1977).
- [K] S.Kleiman, The structure of the compactified Jacobian, Preprint N.1, Kobenhaus Universitet, Matematisk Institut, (1983).
- [M] D.Mumford,Varieties defined by quadratic equations C.I.M.E.,(1969).

- [W] A.Weil,Zum Beweis des Torellischen Satzes,Nach. Akad.Wiss.Gottingen,Math.Phy.,Kl <u>II_a</u>,33 (1957).
- [We] G.Welters, The surface C-C on Jacobi Varieties and $2^{\underline{nd}}$ order theta functions, Preprint , Universitat de Barcelona, (1984).

Montserrat Teixidor i Bigas Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 586, 08007 Barcelona, SPAIN

Dipòsit Legal B.: 18.770-1985 BARCELONA - 1985

: *

.

.