UNIVERSITAT DE BARCELONA
FACULTAT DE MATEMATIQUES

ON TRANSLATION INVARIANCE FOR Wa

by

Montserrat Teixidor i Bigas

BIBLIOTECA DE LA UNIVERSITAT DE BARCELONA

0701570610

PRE—PRINT N.° 27
maig 1985






ON TRANSLATION INVARIANCE FOR wg.

0 INTRODUCTION

Let us consider a projective non-singular curve C of
genus g.The set of all line bundles of degree d on C is
a variety denoted by Picd(C).There is a natural action of
the Jacobian JC=PicO(C) of C (which is an abelian variety)
on Picd(C)for any d.We may consider the subschemes WS(C)
of Picd(C) parametrizing those divisors on C of degree d
whose space of sections has dimension at least r.Let
us write g(w;(c)) for the subgroup of the Jacobian léaving
W;(C) invariant under translation.

In his paper [w] (cf Hilfsatz 3) Weil proved that
for any curve C and ng—l,g(WZ(C))=0 (for d>g WZ:Picd(C)
and then obviously g(WZ(C))zJC).We could ask whether the
same holds for other values of r.The answer is no
if we do not impose any restrictions on C.For instance,
we could consider a bielliptic curve,that is to say,
a curve whith a two to one morphism onto an elliptic
curve E.Then Wi (C) is the pull-back of W; (B), and
so is isomorphic to E and we get g(wi(c)):ﬁ (see §4,5
for more counterexamples).Nevertheless,we have proved

that,when C 1is assumed to be generic (in the sense



of moduli) and W ;(C) is neither empty nor the whole
of Picd(c), then g(w;(c))=0.

This paper is organised as follows: In §1 we have pga-
thered a few well-known definitions and results,either
to have them at hand or because we have not been able

to find a proper reference in the 1literature.The

second paragraph is rather technical,in it we prove
that when a curve moves in a good family,the subgroups
r

of the Jacobians leaving the Wd’s invariant fit toghether

This allows us to show Q(Wi(C))=0 in § 3 by reduction
to the case of a rational cuspidal curve (éee the
introduction to § 3 for more details).In § 4 and
5 we study the possible dimensions of g(w;(c)) for
a fixed r and give examples of curves for which those
dimensions are reached.The last paragraph |is of a
different nature;in it we determine all curves for which
g(w;_&p))#O.These turn out to be the bielliptic ones
Moreover we show that g(wéig))zo for all C.

I would like to thank Gerald Welters for his guidance

before and during the preparation of this work.



1 PRELIMINARIES

Let e Py s be a projective morphism of schemes
of finite type over the field ¢ of complex numbers
whose fibers are curves of arithmetic genus g which
are either non singular or whith cusps as their only

singularities.We shall assume that P has disjoint

sections s_,...8

1 for t big enough.Under those conditions

t
there exist Picard schemes Pic d(p) for every d20 (see
[G] V Th.3.1).HMoreover,Pic® (p) has a natural structure
of'a group scheme over S and there is a natural action
. O . d
of Pic (p) on Pic (p) for every d.
One can also define a scheme w; (p),a subscheme
of Pic d(p) which parametrizes the 1linear equivalence
classes of divisors of degree d and dimension at least r

(see [A,C] and [F,L] ).We recall here its definition.

Let Ll be a Poincare bundle over Pic d(p) x C .we
S

denote by p ,p the canonical projections

1 2 d p
Pic (p) g@ 22 €
t |
v P v
Picd(p) -» S

If t22g-1-d,then E (L epx @e (ts (s))] is a vector

=p1*
bundle on Picd (p) of rank d+t+l-g.This follows from
the fact that the dimension of the cohomology of the
fibers is constant (see [H],Ch 11T Th(1.2.8)).

We define the divisor on e Dy =s, (S)+...+st (s)



= * t S .We have an exact sequence
and Ft meZODi So( )) q

3
o->Lﬂp5q2<tso<s)_Dt)_> Lapg%z(tso(s))—gLapggbt(tso(s))->o

The direct image of &, under Py gives rise to a morphism Ut

t
from Et to F & which fits in the direct image of the

above sequence:

Oy
0-> p, [ Less Oc(tso (5)-D] > B > F -> ...

(1.1).Definition.One defines W) (p) as the locus
where rank Gts t+d-g-r With its natural structure

given 1locally by the vanishing of the minors of the

matrices of Ut.

r
(1.2).Remark.The construction of W d (p) commutes

with base change,that is to say,given a morphism
Y:T -» S

if we consider the pull-back family

C=CxT-> @
s

r, . r
then Wd(p )—Wd(p)xST .
Proof:It is known that Picd (p”") is obtained as
the pull-back of Pic d(p) and that the pull-back of
: . d . . .
a Poincaré bundle L on Pic (p)xg e is a Poincaré

bundle [- on Picd(p')xT G- ([e}vI Th.3.3.1).

By definition WS(p) and Wg(p') are given by the



vanishing of the minors of the morphism of fiber bundles
* - * - [
Py { LQpZGC(tso(S))) > by, (LopyO (s (5)))

t
and

P L 8%%”% (1)) -> p, (L epz”"OD(ttso (T)))
respectively,where s}fT -3 Q' are obtained from siS—>C
by base extension and D; is defined similarly to Df.

Because of the base change property for Pic(j this
last morphism is

. - * . 5 3%

P (Wx1a) (Lo (ts, (5)))-> py (Px1a)* (Lomy OD(ttoo (s)))
where Y denotes the morphism Picd(p’) - Picd (p) coming
from V.

Therefore our assertion will be proved if we show
that the natural morphisms{[H]ITI Rem.9.1)

. G 3 _ %

P (Pxral LopCpts (1)) «= ¥ (p, ( L epOs(ts (5))
anad

— %

- * - »*

Py, ((Pxraf (LQPZODitSo(S)))) «§ (pl*.[szODit(so(S)))
are isomorphisms.This is true because the above holds
over closed points,

r

(1.3).Remark.Every component of W

_______ d(p) has dimension

at least equal to dim S +p,where p is the Brill- Noether
number 9=g—(r+1)(g—d+r).ln particular, for a given
curve c.wg(c) has dimension at 1least P at every closed
point.In fact this follows from the definition of

wi(p) (see [A,C,6,H] p.83).



wg(p) s
is flat in a neighborhood of s.
Proof:Because of (1.3), there is a neighborhood
S° of s where all fibers of 7Tl have dimension e .Then,
when restricting to the pull-back family G’: CéS'—; s-,
all components of wg(p’) project onto S (by (1.3)and(1.2)).

Under th it (p- i
ose cond1tlons,wd (p") being the locus where

a certain morphism of vector bundles drops rank,it
’

must be Cohen~Macaulay(see for instance [A,C.G H]
d r

Prop.(4.1)).Then we deduce flatness from the criterion

in [H]ch.111 Ex.10.9.

(1.5).Lemma.Let C be a cuspidal rational curve,

F a torsion free sheaf on C of rank one (i.e.F®K(C)=K(C),
where K(C) denotes the field of rational functions

on C).If P is a cusp in C,then the fiber Fp of F over P

is isomorphic either to the local ring O[)of C at P

or to its maximal ideal M.
Proof:As K(C) is the quotient field of OI”FE @K (C)

in the set S=Op—{0).Horeover,
-1 . s .
FP being torsion free,the morphism FP-> S FP is injecti-

ve.Therefore we may assume that Fpis a submodule of K(C}.

is the symmetrization of FP

2 3
= 3 ’
We shall use the model OP (¢t ,t 7)) (t2,t )

2 .3
so M=(t“,t”) and K(C)=(¢(t))(0) .



Then,because FP has a finite number of generators,
there is a k such that
k

t FPCR:(¢(t))(t) .

S0 we may assume also Fﬁ:R.

(1.5.1).Because K{(C) is the quotient field of OF”
the condition FP‘@ﬁfc)EK(C) is seen to be equivalent
to FPHQ:F o .

Now let I be an ideal of OP'I* 0 .We claim:

(1.5.2).1 is isomorphic either to Opor to M,

Proof:1f I ¢ M,then I= @P.So we may assume ICM.

Every element of I is of the form

s(2 ta)
IS
with 9(0,0)40,8(0,0)=0.The elements of the form S(tz,t )
also generate 1I.
k+1

: k m
Let us choose S in I S=a t+g ¢ too.va ,ak%o

and k minimal over all S€I.Then
(t -t /a )S= t ( +c€-+...)
&+ % %

so,as8 the element in the parenthesis is a unit in ()P, we

k+2
have t '€ (S)C1I.Then

3 2 k+2 _k+3 2
S.t -(ak+1t ). t =t (ak+ct +.o..)
so tk+3 also belongs to the ideal generated by S,and
k+r
therefore the same holds for t for rz2.

I f I=(8),it is isomorphic to OI).SO we may assume

I*(S).Then there must he an element of the form



k k+1
g i + W
b t +bk+¥ in T such that b k/ak +tl<+1 /a e have

k k+1
k+1 k k tk+1

therefore that t and t  belong to I and so I=(t )

is isomorphic to M,the isomorphism being given by
. . . . k-2
multiplication with 1/t .
. “F N .
Write now I FP Op
Let us assume first that I=(Q .If I:Fp there is
P
nothing to prove.Otherwise,let us consider the exact
sequence
0 -> OP -

A ¢ -0
" A
0 -» OP—->

R

A

v 4

%;9g(F)—> 0

where g(f)=(df)(0) is the differential of f at O.The

condition OP*FP means that g(F)$0,s0 we must have

g(F)=¢ and F=R.Now R is isomorphic to M as an()Pmodule ’
2

the isomorphism being given by multiplication by t .

If ITP c M,{(1.5.2) gives the desired result.Thus,
it only remains to consider the case FP F pﬂ Op C M.We
shall see that this never happens.In fact F, g Op means
there are f in OP and g 1in OP —{0} such that f/ger—@P
Then,f € FPHOPCM so £(0)=0,df(0)=0.We deduce d{(f/g){0)=0

which contradicts f/g ¢(3P.

(1.6).Corollary.0On a rational cuspidal curve the
tensor product of torsion free rank one sheaves is
a closed operation.

Proof:From (1.5) and keeping the same notation

it suffices to prove that MEM=M.We have a presentation



of M

h
- - 5> M -
0 -» OP >Opﬂ)@p M1 -> O
where h(f,g):g f+t3g.By tensoring this exact segquence

with M we obtain the result.

§2 cONSTRUCTION OF A SCHEME J(w} (p)).

We keep the notations of §I.Moreover,we shall
assume that Wg (p) is flat over S.We shall show that
there is an S—-subscheme of Pic® (p) whose closed points
correspond to a curve ((s) in the family p and a point
a € Pic® (e(s)) such that a+W S(G(s))=w g(e (s)).As one
could expect,this scheme is in fact a group scheme,has
a universal property and behaves well under base change.

In what follows we shall supress the indication
to p from the notation where there is no danger of

confusion,

Let us write A=Pic ° Xg wg .Since by hypothesis W

r
d

is flat over S and flatness 1is preserved under base
change( [H] ChIITI (9.2.b)),it follows that A is flat
over Pico.

We define

v :(pl,wd):Pico xPic? -5 Pic® xpic?

d S s
where wdis the natural action of Pic® over Picd and
. . . th ~
p denotes projection onto the i- factor.Then y
i d

is an isomorphism because it has an inverse



~=1_ °
wd—(pl. Yg (y_ p1'°2))
o
where Y denotes "inverse” in Pic.
We shall denote by B +the scheme-theoretic image
~ ~ . .0 . .
of A under wd.As w(i is a Pic -isomorphism,B must be
flat over Pico.So,both A and B induce classifying isomor-
phisms of Pico to the Hilbert scheme of subschemes

of Picd flat over S

. O A . d
Pic® I 2Hilb
X35> Pic /S

(2.1).Definition.Let § be the maximal subscheme

. O . . . .
of Pic  where those two morphisms coincide,i.e.the

subscheme defined by the pull-back diagram
g -» Hilb p; d/g

| | A
. v (XX g) M

pic © -3 Hilbpicd/sx Hilb
S

d
Pic /g

where A denotes the diagonal morphism (which is an immersion).

(2.2).Proposition.If all fibers of p are non- singular,then
Q is projective over S.

Proof:Under these conditions PicO -» S is projective
( [6]vi,cor.4.2.),s0,it is enough to show that g is

o

closed in Pic .

The Hilbert scheme of flat subschemes whith a
given Hilbert polynomial P of a scheme X projective

over S is projective ([G] VI Th.3.1 ) and,in particular



separated.Let P (P2) be the Hilbert polynomial corres-—

1

o

ponding to the fibers of A (B) over Pic  .As g is non-

P and § can be obtained by

empty,we must have P]= 2

replacing Hilb Picd/S by HilbP Picd/S in Definition (2.1)

Then the diagonal map is a closed immersion and so

Q is a closed subset of Pic®.

(2.3).Remark.The subscheme ( is a final object

among those subschemes of Pic® which leave wg invariant

under the natural action.More precisely,given a morphism
R -L pic®
such that

r I
=(wW
R+W, = ( J

d R

then f may be factorised in a unique way through

R -» Pic®

, 2

agu
r r ) r r
(Here (W d)R denotes Rx swd =Rx b1 (Pic x Swd ) and R+Wd

. ) r .
is the image of Rxpico(Plc xswd) under the morphism Idxgd).
Proof:The pull-back of A by f is (w; Jg and  that

of B is Rx(R+w;).As A and B are flat over Pico,these

two schemes are flat over R.Therefore we have classifying

morphisms x
RxA
—

Ry Hilb p; d/g
RxB

which in fact are the compositions fo X and foXB .Since,

A



X ,the product of those two mor-

by hypothesis, XRxK RxB

phisms factorises through the diagonal morphism

R -» PicC-» HilD Picd/SxS”ilb picl/s
A A
' '
. —-_——— i .
g —‘}.1711b plcd/s

(2.4).Proposition. G has a natural structure of
a group-subscheme of Pic©®.
Proof:This follows from Remark (2.3) coupled Wwith

the formal properties of Pic® as a group-scheme and

those of the action of Pico on Picd.

(2.5).E£ggg§i§ig£;The construction of g commutes
whith base change.In particular, the restriction of
J to a geometric fiber C (t) of the family p is the
subgfoup of the Jacobian of e (t) of those elements

leaving the scheme W; (C(t))invariant under translation

Proof:Given a pull-back diagram

5” -» S

we noted in (1.2) that we have pull-back diagrams

Picd(p’) - Picd(p) wi(p) -» wiip)
| 3 d ;d
v v
s -> S and §° -» S

So,there is a natural morphism



X S’

Hilb
picd(p)/s 'S

-> Hilb
picd(p-)/s-

Moreover A’:AXSS’ and B’=Bxs S”.Therefore the diagram
defining { (p°) factorsi! . through the pull-back of
the diagram defining g(p).Therefore J(p~) is the pull-back

of g(p).

§3 VANISHING OF g(yéig)) FOR A GENERIC CURVE

In all of these paragraph,g,r,d will denote three
integers 20 such that the Brill-Noeter number

e:g—(r+1)(g—d+r)
satisfies
0$?<g

This is equivalent with the fact that for any genus g
curve W ;C) is neither empty nor the whole of Pic i

We are going to show that,g(WZ(C)):O for a generic
curve C of genus g over ¢.The proof consists of two
parts.In the first one we show that,under suitable
conditions,the property g(w ;(C)):O extends to all
curves in a neighborhood of C.In the second we prove
that g(w g(c)):o,for a cuspidal rational curve C and
that ,when we deform the curve to a non singular one,
we can also deform the group which becomes a member
of a projective family.We have encountered here a
few difficulties arising from the fact that Pic® (c)

is non compact and that,when we compactify it,it loses



its group structure.We have been able to overcome
this problem by proving first that the action of Pico(c)
over Picd(C) extends to an action of their compactifica-
tions and secondly that the family of groups we defined
in § 2 is in fact closed in the compactification of

the family of Pic® of the curves.

scheme,T a non-singular scheme over the field ¢ such
that the fiber g(to ) over a closed point t:OET is the
zero group.Then g(t):o in a neighborhood of t .

Proof:No fiber of p can be empty because p has
the zero section e:T —>g .As g(to ) is zero-dimensional,
we may assume ,by restricting T if necessary, that
all fibers are zero—-dimensional.Before we proceed

we need to prove the following:

(3.1.1).&9559;Under the above conditions,if X
is a closed point of @ belonging to a component which
projects onto T,then g is non-singular at x and the
morphism p is unramified at x.

Proof:Denote by t the point p(x).We have an exact
sequence of tangent spaces

o] T

- Tg(t)'x-u) Tg,x—> T,x

As J(t) is a group-scheme over ¢ it is non-singular,so,



being zero-dimensional,T =0.Then the above exact
g(t),x
sequence proves the second assertion.
The assuption of the 1lemma is dim T < dim xg .So
we have

dim T < dimx Jg<dim T <Ldim T

9. x

and the first assertion of the lemma follows.

Now the lemma gives us that g is non-singular
at the single point xo of g(to ) because xo belongs
to the component G which contains the =zero section.So,
this must be the only component of g containing xo. The
morphism being projective,we may restrict T to a neighbor
hood of to and assume that all components of g project
ento T.Then p is flat ( [H] III ex.10.9).As it has
finite fibers and is unramified by (3.1.1),it is étale.

so h°(Q(t),0

g(t) ) is exactly the number of elements
of the fiber J(t).By assumption it is one for t=t_ and we
have already noted that it is always at least one

because all fibers contain the zero element.So0,(3.1)

follows by upper-semicontinuity.

(3.2).Corollary.If C0 is a non-singular curve

such that dim W5(C )=o and J(w (c ))=0,then Q(w  (c))=0
d o d "o d

for all curves C in an open neighborhood of C0 in the

moduli space.



Proof:Use (1.4),(2.1),(2.2),(2.4) and (3.1) together
whith the well-known existence theorem for a family
containing Coand projecting onto an open neighborhood

of Coin the moduli space of curves.

(3.3).Let CHh 1,74 ‘to} ,be a projective flat
morphism of finite presentation whith G and T non-
singular irreducible schemes over the complex field
such that the fiber over the point to is a rational
curve whith g cusps and the fiber over any closed
point t#to is a non-singular curve of genus g.We shall
assume moreover that p has disjoint sections so...st.For
the existence of such a family see [E,H] p.394 and
apply the usual technical device to construct the
sections(see for instance [C ],(1.2)).

Since for a cuspidal curve w;(co) has dimension e .
by Remark (1.4),we may also assume that Wr(p) is flat

d

over T and construct §J as in (2.1).

By restricting the natural action of Pic® (p) over
Picd(p),we then have a morphism
Y, gxwg(p) -> w;(p)
Under our conditions,we may apply the theory
of Altman and Kleiman ( [A,K] 1 and 2) showing the
existence of projective T-schemes Picd(p) which compacti-

fy the schemes Pic d(p).They represent the equivalence



classes of flat families of sheaves over (2 whose geome-
tric fibers are torsion free rank one sheaves on the
fibers of p With Euler characteristic d+l-g.Moreover,
there is a universal sheaf I; on Pic d(p)xe normalized
along a section of p (see [K] for a summary of results).

(3.4).Lemma.The action of Pic® (p) over Pic d(p)

extends to an action of Pic®(p) over Pic {p)

Pico(p)xTPicd(p) -> Pic?(p)
!

Pico(p);TPica(p) 5& Picg(p)
Proof:For a cuspidal curve the tensor product
of torsion-free rank one sheaves is again a torsion-
free rank one sheaf (cf.(1.6)).0bviously the same

holds for non-singular curves.

Let us consider the scheme Pic® (p)pricd(;s-)x(%
and denote by pj (resp. pkj ) the projection onto the
factor j (resp. onto the product of the factors k
and j).Then p?a I;np2§ I; is a flat sheaf over
this scheme because I; is flat over ;;c o(p)xTG and
I;is flat over Picd(p)xe.

T

By restricting this sheaf to a fiber of the projec-

tion p we get
(P*I—.P* T =[— o[
13 %0 23 d1([,o} x[[ti] xC(t) OI{LO} C(1) Ldl{Ld} xC(t)
which is a torsion-free rank one sheaf on C (t) as

mentioned above.



Because the family is flat,the Hilbert polynomials
over the fibers are constant ([H} ITII p.261-262) and

on the generic non-singular fibers they are nd+l-g.Then

we apply the wuniversal property of Picd (p) to obtain

the morphism .

We can copy the construction in (1.1) replacing

Pic d(p) by Pic d(p) and the Poincaré bundle I'by Ld

d

We get in this way a closed subscheme wg(p) of Pic (p)
which parametrizes those torsion-free rank one sheaves

on the fibers of p whose space of sections has dimension

at least r+l.

(3.5).Lemma.No point of Pico(Clj) -Pico(Co ) leaves
WF(C ) invariant under the action Wﬁ of (3.4).
d o d
Proof:By the results of Eisenbud and Harris ( [E,H]

Cor.{(4.4)),we have

T r r
= N A
wd(Co) wd((‘o)u. U. Jd (Ci ...i,)
i,..1, 1
1 J
j=21
where Ci i is the normalization of C0 at the cusps
100y
P, ...P, and the elements of W\ (C, . ) are inter-
11 lj d 11"'lj

preted as those torsion-free rank one sheaves on Co which

fail to be locally free precisely at the cusps Pi e Pi.
1 J
Let jo be the maximum integer j such that

r
¥a-yt€ 11...13*0



As the curves C i ; are rational cuspidal curvec
RRELE

of genus g-j,this is eguivalent (by [E,H] Th.5.1 ) to

0 =p(d-j,r,g-j)
and because

?(d—JyP,R-j)= e(d,r.g)~j

we have

J = ?(d,r,g)<:ﬂ
the last inequality following from our initial hypothesis
on d,r,g.

Let 1. be an element in Pico(Co)-Pico(q;.As I. corres-—
ponds to a non- invertible sheaf on Co ,it fails to
be locally free at at least one of the cusps,say Pg . Ve
want to show

r r
L+wd(co) ¢ wd(co)

Let Lo be an element in VJ;(CO ) corresponding to a

point in wh (cC . ). Then LgL fails to be locally
d-Jo 1...30 o

free at the cusps Pl"°Pi and PP.Therefore,by definition

o
. : "
of Jo,lt does not belonp to ud(Co).

(3.6).Lemma. g(co)=o.

Proof:Let ur conrider the scheme-theoretic closure

°¢

TN
Q(Co) of Q(CO ) in Pic (C_) (=see [F.c.a] p.324-325).

Becaure g(C ) is a fprroup-scheme over ¢,it is reduced
o

/\/
and so i= 9(00 ) .Moreover,by defirition, g(ﬂ 0) is dense

N
in Q(c ).

o



T
(Co } and

r
We also have that W 4(C,) is dense in W d

reduced ([E,H] Th.4.5 and Th.5.1)

By construction, g(Co ) leaves w;(co ) invariant.So

by continuity,we get a factorization of Wd in the

following way:

g(co) )‘( wic) -» wd(lc )
TN v v

— —_—

g(c) >|< wc) -» wd('co)
v . v

. O . d - d
Pic (C J)xPic (C ) -» Pic (C )
o o o
TN o g TN
Now,by Lemma (3.5),we have g(CO)C Pic (CO)§¢ .As Q(Co) is
g TN
proper and ¢ is affine, g(Co ) is finite.Moreover,
TN

g(CO)C ¢® implies g(Co)=~g(Co).So, Q(Co ) being a group
subscheme of ¢g which is torsion-free,it is trivial,

We shall denote by g the scheme-theoretic closure

of(g(p))red inside Picd(p) .

(3.7).Lemma. Q(P)redew:(p) is dense in { xTw;

Proof:Let y be a point in ( xTW;(p)— g(p)xTWS(p)
and x,w the projections of y in é and W;(p) respectively.
We have that p 0(x)=pd (w)=t where P, :Pici (p) -» T
is the structural morphism.

If x=0,x belongs to the component which contains
the zero section 0:T -» é and this component dominates

N
T.If x$0,then by Lemma (3.6),x¢ g(c0 ).So,in either



case,there is a component G of g containing x such
that po(G)zT’¥ {tol is a «closed irreducible subset
of T.

We know that w;(p)xTT’ coincides whith Wg (p”); here
p” is obtained by pulling back p to T° (cf.(1.2)).As

all fibers of W ;(p) over ‘the closed points of T have

dimension ? (by (3.3)),the same must be true for the

fibers of W;(p') over the closed points of T .Hence

we deduce that all the components of W; (p°) have dimen-

sion equal to dim T + e and dominate T~ (see (1.4)).

r

Because W gp’) is dense in Wd(p') (see [E,H]' p.394)

the same is valid too for the components of w; (p”).Let

W be a component of wg (p”) containing w.Then,there

is a closed irreducible set in GxT . W containing y

and such that its projections on g{p) and Picd (p)
are G and W respectively (see [E.G.A] Ch.I (3.4)).This

proves the lemma.

(3.8).Lemma. § coincides whith g(@ed and so Q(p) is

projective.
Proof:By applying (3.7),we get a factorization

of the restriction of wd to (ngw gp)) as shown in the
red
diagram below.Then,because of (3.5),it follows that

g=-Qm) .80,3(p) is a closed set of Pico(p) and in
red
particular it is projective.



~ r r

€8 x¥3P) eq)req ~* wd("fred

e N :
T T, .
( g xde(p)red)red'“~> wd(p)red

f |

v v
Pic®(p)x Pic Tp)  -> Pici(p)

(3.9).Theorem.For a generic (non~singular) curve
r

of genus g,the only translation 1leaving W, (C) invariant

d

is the identity (0<@(d,r,g)<g-1).
Proof:By (3.1),(3.3),(3.8) and (3.6) there are

non-singular curves whith G(w ;(C)):O and such that

dim ¥ 30):?.Then use Corollary (3.2).

4.POSSIBLE DIMENSIONS OF THE GROUPS Q(Wg(c)).

We show here that,for any curve C,0< dim g(wg(C))S r.
Conversely,for any s such that 1 € s £ r we construct
curves such that dim g(wdr(c)):s.For 5=0,we have already
seen (cf. § 3) that for a generic curve g (%; (Cc))=0,s0
g (WS(C)) is zero dimensional.We have not ©been able
to find an example of a curve whith g (W; (C)) zero

dimensional but not trivial (see (5.8)).

r r
. . . C - >
(4.1).Lemma.If a+(W, ) . (W, ) .q @and reg-k >1
r r r
c vV t< k.
(or equivalently Wk+JC ), then a+(wt)red (wt)red

Proof:Let Lew., DtEILI and D

t be a generic effecti-

k-t



s r
> -t. e .
ve divisor of degree k-t.Then @é[)t+0k_t ) wk So,by
. . r . :
hypothesis, O(#a+D t+Dk_t ) e W k.By Riemann-Roch this
is equivalent to
o
~a-D, - > -k =
h (K-a Dt Dk_t),,r+g k =1
So,D being generic in c(k-t)

'Tk-t
hO(K—a—Dt) 2r+g-k+(k-t)=r+g-t

which again by Riemann-Roch gives
o
h (a+Dt)>r+1

or equivalently Oéa+Dt)E WE.

Proof:Let do be the minimum integer d such that

w; +$.Under those conditions Fulton,Harris and Lazarsfeld

proved (see [A,C,G,H] p.329 ) :{dim (W S )< r.Moreover,
o
by (4.1}, g(wg) leaves the support of W; invariant.So,
o
when we choose an element w in W;o,we get an injection
r r
g(wd) - Wy
o
a —> a+w
. r R r
Hence,we deduce dim g(wd)s dim Wd <r
o
(4.3).g£ggg§1£iggLLet C be a generic genus h
curve 1 < h< r,C L Co a (ramified) double <covering
of C such that g(C) 26r+13.Then W r (C) is reduced
2h+2r
and coincides whith the pull-back of Pich+r (CO) under

the morphism induced by p.So J(w 2ki?r) is the subgroup



of dimension h 1in Pic® (C) obtained as the pull-back
of Pic®(c ).

o
h+r

r

Proof:By Riemann-Roch W
h+r

(C )=Pic (C ).So,in
o o

order to prove the proposition we must show that

r r
i S
a) if Lew,, ., (C),there exists a L Woee (CQ)
such that sz*Lo;
r
b) w2h+2r (C) is reduced.
Proof of a):Let LEW (C).Then any subspace

2h+2r

of dimension r+1 in Ho (L) determines a morphism tof

C onto a non-degenerate curve E of Pr.
C -» 6 S Pr
We shall use the following two <classical lemmas
(see for instance [A.C,G,H] p.116 and p.366 resp.).
(4.3.1).Lemma.(Castelnuovo).Let C be a curve of
degree d 1in Pr not contained in any hyperplane and
let g be its geometric genus.Then
gx ?(r—1)+me

where m= [ﬂ:l] (that is to say,the largest integer

r-1
a-1
r-1

less than or equal to ) and e=d-1-m(r-1).

(4.3.2).ngmg;Let C be a covering of degree d1

of a curve C 1 of geometric genus gl and a covering

of degree d2 of a curve 02 of geometric genus g 2.Then

e 1ther the geometric genus of C satisfies

g(c) = (dll-l)(dz -1)+gldl+g2d2
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or both coverings are composite with the same involution

(i.e. there is a third curve C 3 and a morphism of

degree at least two C -» C3 such that the given morphisms

factorize

C1

/11
C\f’ C3
bR
C2

If r >1 (4.3.1) tells us that g(C) > g(C),so the
morphism is not birrational.For r=1 this 1is obviously

true.lLet k be the degree of f.

As the curve € 1is non-degenerate in Pr ,it  has
degree at least r.So,we have EE%EL 2 r and therefore

k < 4.We can use now (4.3.1) to prove that the genus
of C is bounded by h+1.Then,by (4.3.2),we may conclude
that f and p are composite with the same involution.As
p has degree 2,this means that f factorizes through

o

»2/ \‘-c
[oRE TN e]

> P

Thus we can write L=p *Lo +F,where LO is an invertible
sheaf of degree at most h+r and dimension at least
r in C0 and F is the fixed part of L.

On the other hand,q)being generic,we have




. r
dim wh+r—ﬁc )—?(h+r—1,r,h)< 0
that is to say,wh+£_1 (C0 }=4,s0 Lo has degree exactly

h+r and F=0.This completes the proof of a).

Proof of b):We shall prove that the tangent space

to W r (C) at the point L:p* I. has dimension h and
2h+2r o
sorbecause of a),W r (C) is non-singular.
2h+2r
Let us denote by A the ramification divisor of p

and let D be a (not necessarily effective) divisor
such that 2D=A and p_ Q.= O, @ (. (-D).Then,by Hurwitz
* “C C0 C0
Formula 2deg D +2(2h-2)=2g-2 .So,deg D =g-2h+1.
. o o, o

Since H (L)=H (LO)QH (LO—D) and deg(Lo—D) < 0,we
have HO(L):HO(LO).(Note that those are spaces of sections
of 1line-bundles on different curves,we hope it is
clear to which curve they refer in each case).In particu-
lar this implies hO(L)=ﬁ%LO)=r+1,where the last equality
has been seen to hold at the end of the proof of a).This

allows us to compute the tangent space to W rr(C)CPicd(C)

h+
as the subspace orthogonal to the image of the Petri
morphism:

HAL) & HAK-L) -» HAK)
where H o(K) is to be interpreted as the dual of the
tangent space to Pic d(C) (see for instance [A'C,G,ﬂ
p.189)

* 3
By taking into account that Kc=p Ke +p D ([H] v
o

-L=p*(KC +D—Lg and so
o

?f?rop.2.3);we get KC

1



(o] o o
H (K _,-L)= - -
(CL)H(KC+DL0)QH(I% L)
o o

We may now decompose the Petri morphism in the following

way:

o) O, o]
H -L _

(Lo) 8 H (KC+D I o) > H (KC +D}
o ° o
KC—LO) -> H (KC )

o] O

o o
H(Lo)ﬂH(

We have hO(KC —Lo):O because deg Lo:h+r 2h-2=deg KC .So,

o
the second component of the Petri morphism _is zero.Then,

o r
K = S i i = i i -
as h ( CO) h,showing that dim TI,w2h+2r (C)=h is equiva

lent to proving that the morphism

o o
H (Lo) ® H (KCO+D-LO) -» H (K(n;D)

is onto and that follows from the Castelnuovo Generalized

Lemma ([M] Th.2.1).

5.A_FURTHER EXAMPLE.

In this paragraph we give an example of a curve
C of genus 37 such that the subgroup of JC 1leaving

the set W_ (€} 1invariant 1is zero-dimensional but not

of PS whose vertices are two disjoint 2-planes (whith

a suitable choice of coordinates we may assume that

2—x X and x2
[¢) 12

their equations are x 37X 4%Xg

).Let Q be

a generic quadric and S a generic cubic hypersurface



in PS.We define C as the <complete intersection of
QI'QZ’Q and S.By the genericity of @ and S,C is non-
singular.It has degree 24 and its canonical divisors
are cut by the hypersurfaces of degree 3 in IPS (i.e.

K :0&3)) (see [H] II ex.8.4).

(5.2).Lgmmg;civen k points in Pr not contained
in a hyperplane,for any j such that 1 k< jr+l,there
are j hyperplanes of Pr whose union contains exactly
k-1 of those points.

Proof:Use induction on j.

(5.3).Lemma.Given a gi on C whithout fixed points

and k <« 12,the divisors of the g i generate a linear
space of dimension at most 3 in P5.

Proof:Let Degi ,D=P+E where P is a point in C
and E an effective divisor.By hypothesis,h® (E)=h> (D)-1
So,by Riemann-Roch,h C (K-E)=h ° (K-D).This means that
any canonical divisor containing E must also contain P.

Let us assume now that D is not contained in any
hyperplane of P5.Then,by (5.2) we could find three
hyperplanes of PS whose union would contain all points
of D except one.This is impossible because the wunion

of the hyperplanes cuts a canonical divisor on C.Hence

4
we have Dc p cC Ps.If D were not contained in a hyper-



4
plane of [P ,we could apply (5.2) again and reach

a contradiction as above.

(56.4).Lemma.Given a gi without fixed points on

C whith k 2= 12,this must be the non-fixed part of the
series cut on C by the rulings of a quadric of PS whose
rank is at most 4 and which contains C.

Proof:Let us denote by L the 1line bundle correspon-

ding to the hyperplane section of PS.By (S.3),ho(L—gi)>2

1

Let us write L-g k=F+g ,where ¥ is the fixed part of

r
J
the series IL- L and r = 1.We choose D _,D i\gl and D

By 1°72™ By 1

[éing g such that there is no common point to any

pair of those four divisors and such that no one of
those divisors contains a point of F.As I& +% +F belongs
to |L| and C is projectively normal (see for instance
[H] I1 ex.8.4),there must be a hyperplane in PS con-
taining this divisor.Let 1 i be an equation for this
hyperplane.Then,the rational function

l11122

l12121
cuts on C the divisor %_+%2+%_+D2+2F—(%‘4% +% +Dl+2F)=0,

so it must be constant on C:

Ja e

112121

C=k40



Thus C is contained in the quadric of equation
Lidtoomkho by
One of the two (possibly coincident) rulings of this
quadric is the set of three-planes whith equations
al. _+bl,__=0

11 21

kal bl o]

12¥°%00=

For b=0 the corresponding plane cuts D1 +F and for

a=0 it cuts D 2+F as we wanted to show.

(5.5).£ggmnghe only quadrics of PS of rankg4 containing
C are Q 1and Q .

Proof:As C is a complete intersection,the quadrics
containing C are those of the two-plane generated
by 01 02 and G inside the on of all quadrics in
P 5 (see [A,c,G6,H] p.139).The set of quadrics of rank <4
form a variety of pure codimension 3 in this PZO .Let
us denote it by V.The pencil generated by %_ and %,say i,
cuts V in exactly those two points,as one can check
from the equations of @ 1 and % given in (5.1).VWe
need to prove that one can choose @ in such a way
that the two-plane generated by Ql ,Q2 and Q cuts V
in exactly those two points.To this end,let us cut
V whith 17 generic hyperplanes containing 1.The intersec-

tion is a finite number of points in a FQ containing

l,s0 we can choose a two-plane inside this P3 containing



1 and avoiding all the other points except Ql and 02.

(5.6).Lemma.The curve C has exactly two linear

series of degree 12 and dimension l,g; and hlz ,which

are cut by the rulings of 01 and 02.
Proof:Use (5.4),(5,5) and the fact that the vertices
of QlAand Q2 cannot cut C because of the generic selec-

tion of Q@ and S.

(5.7).Corollary.The subgroup of the Jacobian of

C leaving the set w;é invariant wunder translation

consists of two elements.

1 1
Proof:It is clear from (5.6) that 2g12 =2h .So,

12

!n 1%0 leaves wfé(c) invariant (as a set).

Lo=8157hyp

(5.8).Remark.In this case (C) 1is non-reduced

1

——————— w12

as one can see by computing its tangent space by means
of Petri“s morphism ([A,C,G,H] p.189).We do not know

whether the translation whith Lo preserves the scheme

structure.



§ 6 .CALCULATION OF Q(wl _) AND Q(WSEl).
5T T T T T T
We show in this paragraph that g(wgl1 (C))=0 for
all C and that g(w g12 (C))=0 for any curve of genus
g> 7 except when C is bielliptic (in which case it
is isomorphic to the corresponding associated elliptic

curve).

(6.1).Lemma.For a hyperelliptic (resp. trigonal)

curve of genus at least 2 (resp. 5) and a k such that
2<k<g (resp.3< k < g),the condition a+W i:w‘l( implies

a=0.

(resp. W L )

Proof:By ocur condition on the genus wl 3

2

consists of a single point (use for instance (4.3.1)).

Then by (4.1),we would have a+g;=g1 (resp. a+%;=g; ) and

2

so a=0.

(6.2).Lemma.Let C be a curve of genus g = 7.If

we have the set-theoretical equality a+wg12 =W 12 whith

O4a € JC,then there is a component of dimension at

least g-3 in the inverse image of wg° -a by the morphism

2
c(8-2) | pic82(()

Proof:Let us assume the contrary and we shall

reach a contradiction.

For a given L€ ng and P,QE€C,we have ho(L—P+Q) 21

-2

So W 1 +C~-CCW ° .Because of condition a+W :Wl ,we
g-2 -2 g-2 g-2



have

Therefore

w !l sceccw ©®  (w°®

g-2 g-2 g-2 %

Our assumption means that the dimension of the right
hand side is g-4,s0 the intersection of Wg?2and Wg?2-a
is proper and the dimension of the 1left hand side
is at most g-4.

On the other hand,for any curve the dimension
of any component W of ngzis at least the Brill-Noether
number g(g—z,l,g)zg—s (cf. (1.3)).As C generates JC,
dim{W+C-C)=dim W+2.Therefore,dim W=g-6 and dim(W+C-C)g-4.

The latter equality implies that W+C-C is a component

o o
w - .
of g_2(wg_2 a)

The cohomology classes of any translate of wgiz , C
and wg°2 in the cohomology ring of JC are {because
of the fact that ngz has the right dimension g-6)

6 g-1 2
o o - 5]
— —_— and —_—
314! (g-1)1 2!

respectively (see [A,C,G,H] p.320).So,the cohomology

class of wgoz(wgoz—a) is given by the intersection
' 2 2 4
o © ©
2 2 4
and the cohomology class of W giz +C~C 1is computed by

means of the Pontrjagin product



6 p~1 g-1
1 (3] 6 3] 1
—_— * * - L
x 314! (g~-1)! (g-1)! x

A
5(g-5)(g-4) ©
41

x being the degree of the map

wl xc-c-»rpic®?(C)
g-2

(we recall that C cannot be hyperelliptic by (6.1)
and so the morphism C-C -» JC is birrational).

We are going to compute x.Let L be a generic point

1

g_2(C) and P and Q generic points

in a component W of W
in C.Assume that we have the equality L+P~-Q=[4+PZQ;

whith Lin w; ,and P7,Q7in C.If we had ho(L+P+Q") 23 ,

because L is generic in W and P generic in C we would

2

obtain dim wg > dim W+1=g-5.This 1is a contradiction
because, by Riemann-Roch,W;EWgIZ.Therefore,

[L+P+Q | =|L|+P+Q~
and because of the hypothesis L+P+Q =L "+P +Q,also
L +P +Q]=|L " |+P +Q

Then,by the genericity of Q, we deduce Q=Q° and therefore
L+P=L7+P",

Let F (resp. F° ) be the fixed part of the s#énries
|L] (resp. |L°} ) and write L=L +F (resp. L'=Li+F’ Y.
Because of (6.1) C is not trigonal,so g-2-deg F > 3.

Moreover, { L l+F+P=|L}J+F’+P’ implies F+P=F +P .Therefore,

1
either P"=P or P"x< F.So,the degree x of the morphism

1 g-2
wg_2 x C-C -» Pic (c)

gsatisfies x=-deg F +1< g-5.



Now, from the fact that W 12 +C-C is a set- theoretic
component of Wg?z (go? ~a),the above computations and
assuming ng?reduced we obtain

5(g-5)(g-4) 1
< —
4V (degF+1) 4

Therefore
2-5 > (degF+1) >2(g-5) (g-4)2 2 (g-5)
which is a contradiction.

It only remains to prove that under our conditions

w 1 is reduced.Let us assume this were not the case.Then

g-2
1

by the Cohen-Macaulayness of W __ (cf.[A,C,G,H] Prop.4.1)

2

we would have a component W of wgl2 contained in the
singular locus of Wg12 .This locus is the wunion of

ng2 and those pointsnotiﬂwgf2 for which the Petri’

morphism is not injective ([A,C,G,H] p.189).As

dim wng < g-7 by (6.1) and Martens Theorem ( [A,C,G,H]
Th.5.1),our hypothesis would imply that for a generic
point L of W the Petri morphism is not injective.let
us write L=L 1+F,where F is the fixed part of L.Then
the kernel of the Petri morphism is HK-2L -F) ([a,C,6,H]
p.196 ).Therefore we have h° (K—2L1 -F) = 1.Let t be

the degree of F.When L moves in W,L moves in a component

vid of dimension at least g-6-t of W L s dim w!

g-2-t Y -27876

C is neither hyperelliptic or trigonal nor bielliptic

or a plane quintic.Then Mumford’s Theorem ( [A,C,G,M



p.193) gives dim V=g-6~t > 0 and so F is generic 1in

C .Therefore ho(K-ZL ) >t+1 and we obtain a component

t t

£ W W
O Yog2-2(g-2-tY 2t+2

of dimension at least g-6-t

On the other hand,by using Mumford” s Theorem again,we

. t o
btain dim W = 0. =g- =4 and 2 >4 .
obtain dim Dta2 0.50,t=g-6,deg L1 and h ( Ll) 4
Moreover, by (4.1),Wi cannot consist of a single
point.Let gi,hziEwi and consider the product of the

morphisms associated to those linear series
c->» Pxplsp?
Then,by (4.3.1),either the morphism is birrational

and g<9 or it has degree 2 and C is either bielliptic

or hyperelliptic (which contradicts dim Wg12 =g-6).Now

by the study of Coppens of quatrigonal curves of genus
at least 7 ( [C ] p.32 ),the only curves which have
1

more than one gi one of which satisfies W (2g4) > 4

are of genus 7 and have exactly 2 1linear series of

degree 4 and dimension 1 gi and hi with h°(2gi )=4,
o 1 : e s 1 1 1 1.1 1
h (2h4)_3.Then the condition a+w4_w4 means a_ga—hd-h4—g4.

So,2gi=2hi which 1is a contradiction because the space

of sections of those bundles have different dimensions.

(6.3).Lemma.Let C be a bielliptic curve,C -8

the associated double covering.Then for all k,d4<kgp?,

1 % 1 o 1
we have Wk(C)-p WZ(E)+Wk_4(C) and g(wg_2
1

f
Proof:Let LEwk and consider the morphism C —5]&

)2E.

associated to a two-dimensional subspace of H0 (L).By



(4.3.2),the morphism
C -» E x|P1

cannot be birrational.So,f is composite whith p.Then,

gi is a pull-back of a series of dimension at least

one in E.So,this series must have degree at least

two in E.This proves the first assertion.It follows
. *®_ . o ~ 1 R -

from this that p "Pic (E)ZE leaves Wk invariant set-

theoretically.The second assertion is that equality

also holds scheme-theoretically when k=g-2.To this

end it is enough to check that there are no iMmersed

components in ng? (C).Were that to happen,they would

have dimension at 1least equal to +the Brill-Noether

number g-6 (see [EN] p.202 ).We shall check that the

singular 1locus of W 1 (C) coincides whith W 2 (c)
g2 g-2

and so has dimension g-7 by Mumford s Theorem.

Let LEW 1 -W 2 .Then L:p* D+F with deg D=2 and
g-2 g~2

no divisor of the form ;)*P whith P in E satisfies

2
p* P € F,for,otherwise I would belong to wg_ .Let us

2
< . s . s Ig—l
consider the canonical immersion of C in i .There
is a point X in [P -1 _¢ such that the projection from
X is the morphism p ( A,C,G,H p.269 ) and we have

the diagram

(6.4.1)

mes O

Ip R Ip
1

The tangent space to Wg 5 at L is the subspace orthogonal



to the image of the Petri morphism (see [A,C,G,H] p.189)
HUAL) @ HOAKR-L) -» H UAK)

and the kernel of this morphism 1is easily proved to

be H%(K-2p*D-F) ( [A,C,G,H] p.196 ).Therefore I is

a singular point of ngzif and only tf

hC (K-2p®D-F) = 2
On the other hand,by diagram (6.4.1) and denoting

by M the sheaf which gives the immersion of E in

P g-2’ we have

h(c,kK -2p*D-F)-h®(E,M=2D-p(F))=1
where the last equality follows from the Riemann-Roch

Theorem.

(6.4) .Theorem.Let C be a curve of genus g= 7.Then

Q‘ngz(C))=o if and only if C is bielliptic.

Proof:Necessity is proved in (6.3).We are going

to prove sufficiency.lLet us assume a+ng2 =wgi2 .Then

by (6.2),we have that the inverse image A of wg?z—a in

>

C(g—2) has dimension at least g-3.Therefore for a

c(82) Lust cut A.This

generic divisor D in ég-32D+C [
means that there is a point in C,P(D),such that
)
h  (D+P(D)+a) =21
By Riemann-Roch this is equivalent to
h®(K-a-D-P(D))= 2

If for a generic D we had ho(K—a—D)>3,then



ho(K—a)=h0(K—a—D)+g—3=g
and a would be zero contrary to our hypothesis.Thus, for
a generic D we have that h® (K-a-D)=2 and P(D) is a
fixed point of the series |K-a-D].

Let us assume first that the complete 1linear series
|K-a| has no fixed points and consider the morphism
associated to it

C -> C -» }K—aﬁ';[ng

If f were birrational,a would have degree 2g-2.The
condition that |K-a-D| has a fixed point for generic
D means that given g-3 generic points of E,the linear
variety of codimension two in Pg—2 which contains
them, contains also another point of E .This contradicts
the principle of general position ([A,C,G.H] p.lOQ).éo,
f has degree d =2.

As € is a non-degenerate curve in Il"g_2

,C must
have degree at least g-2.We must have

d(g-2)< d.deg C =deg (K-a)=2g-2

2gdg 28223
g-2
i.e. d=2 and 6 has degree g-1.I1t follows that 6 is
an elliptic curve (use for instance (4.3.1)) and so
C is bielliptic.

Let us consider now the <case when [K-al has a

fixed point P.Then ho(K—a—P)zho(K—a)=g~l and,by Riemann-



Roch this means that h®(a+P)=1.S0,a+PZQ and a=Q-P.

Let us assume that C is not bielliptic.Then, the
hypothesis a+wgi2 =W giz af0,gives that a=Q-P,Q4P,as
we have just seen.But,as

2a+wgi2=a+(a+wgi2)=wgi2
we should have either 2a=0 or 2a=R-S.The former condition
is 2P=2Q and the latter 2P+5S=2Q+R.So,in the former
case C would be hyperelliptic and in the 1latter trigonal
which contradicts (6.1).

(6.5).Theorem.For any curve C a+W 1 (C)=W 1 (C)

————————— g-1 g-1
implies a=0.

Proof:By a result of Welters ([We] Th.5.1 ),if

o

1 ythen ae C-C.Then we

a is such that a+W'1{C)C w
g- 14
can imitate the last part of the proof of (6.4) +to

obtain that a=0.
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