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THE CONCEPT OF k-LEVEL FOR POSITIVE INTEGERS

Angela Arenas

Introduction.

It is said (cf. [6]) that a positive integer n satisfies property

(N) if there exists a representation of n as a sum of 3 squares,

2, 2,2 . 2 n+1
= + = < -
n x1 x2+x3, with (x1,n) 1 and X, £ 3

every positive integer n < 600000, n = 3(mod 8), verifies property (N).

It has been checked that

Such property appears in connection with the resolution of a Galodis
embedding problem in the following sense [6] : every central extension

of the alternating group An can be realised as a Galois group over @

if n 3(mod 8) and n satisfies property (N).

In this paper, we introduce, for a positive integer n, the concept
of k-fevel related to the representations of n as a sum of k squares.
By considering the case k = 3 we exhibit a class of positive integers

satisfying property (N).

Definition. For a positive integer n we define the k-level, %(n,k), of
n as the maximum value of £ such that there exists a representation of

k
2 X .
n as a sum of k squares, n = Z X, , xicz , with £ summands prime to n,
i=1

It is well known that every positive integer is a sum of four
squares. If n is not a sum of k squares (k<3), then we agree that

L£(n,k) = -1,

Obviously, for every positive integer n is -1 < L(n,k) < k. If
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The determination of %(n,2) is fairly easy and it is given in

Progosition 1. Let n>1 be a positive integer. Then :
i) 1f 4*n and every odd prime divisor of n is congruent to 1 modulo 4,
then 2(n,2) = 2.
ii) Either if 4'n and n is a sum of two squares or if each prime divi-
sor of n congruent to 3 modulo 4 appears in the factorization of n into
primes with a positive even exponent, then £(n,2) = O.

iii) In all the other cases is £(n,2) = -1,

The following proposition characterizes the positive integers n

having strictly positive 4-level
Proposition 2. %£(n,4) > 1 if and only if n$0(mod 8).

Proof. If n = O(mod 8), then every representation of n as a sum of 4
squares, n = x2+y2+z2+t2)verifies that g.c.d.(x,vy,z,t) > 2 , and so
£(n,4) = O.

Furthermore, if n = 2,3,4,6,7(mod 8), then obviously
n-1=1,2,3,5,6(mod 8) and, thus, n-1 is a sum of 3 squares, so we have
%(n,4) > 1 . Finally, if n £ 1,5(mod 8), then n-4 = 5,1(mod 8) and ,

consequently/n-4 is also a sum of three squares so that %(n,4) > 1,

because ZIn.

Remark. For k>4 , we have {&(n,k) > 1 for all n, just because n-1 is a

sum of four squares.

Let us concentrate from now on in the case k=3 . It is well known
thatﬂaﬂﬁqsitive integer n is expressible as a sum of three integer
. Squares if and only if n is not of the form 4°(8m+7) . Dirichlet

(ks [4]) pfoved, moreover, that a positive integer admits a primitive

iepfesentation as a sum of three square if and only if n $ 0,4,7(mod 8).
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For 2(n,3) we have the following elementary

Proposition 3. Let neZt then :
i) £(n,3) <0 if n = O(mod 4),

ii) &(n,3) < 3 if n O(mod 2) or (mod 5).

The proof is immediate by passing to Z/mZ withm = 4,2,5.

We next prove that given an odd rositive integer with &(n,3) > 1 ,
if we increase, preserving their parity, the exponents of its prime
factors congruent to 1 modulo 4, then one can obtain level greater than

or -equal to 2.

Lemma 4. (see [1]) If a,n¢25+are such that a = af+a§ and n = bf+b§+b§ ,
then
2 _ 2,2 2
an*®= C1+C2+C3 '
with

c, = ab1 - 2(a1b1+a\2b2)a1 '

2]
[

o = @by = 2(abrabola,

3 ab3 .

Q
[}

The interest of the above lemma lies on the special values of the
ci which allow us to obtain the

aa o B Bs

i r ’ . -
Proposition 5. Let n = 2 Py -.eP, : PR with p, F 1 (mod 4),
1<i<randgq, E3(mod 4), 1< j<s,a=0 51, a; > 0. Then if

J
@Yy Y By B >a -
L(n,3) > 1, and m = 2 Py +eeDp G SEEL S with Yi 5 and Y; Za

(mod 2}, it turns our that :
i) If 5 = O, then g¢(m,3) > 2,

ii) If ¢ = 1, then %(m,3) 1.

v




Proof.

i) Writem = a2n , with

S )
1 r :
as= P, ...pr , so that Y, = 261+ai s i=1,...,x; Gi > 1.
. 2,2 :
Then a is a sum of two squares : a = 1+a2 with (a @) =131 <1 <2,
2 2 .
As 2(n,3) > 1 vwe can write n = b 2 3 with (b3,n) = 1 and
(b1,b2,b3) = 1.
: 2 2,2 2 :
Now apply lemma 4 to writem = a'n = c1+c2+c3 . We are going to

see that (c1,m) = (cz,m) =1, and so %(n,3) > 2 .

Let p = 1(mod 4) be a prime dividing m such that p*b‘ and p b2 i

T -2a,ba, $ o(mod p),

[s]
i

(o]
1

5 F Za1b1a2 f O(mod p),

because pla.

Interchanging the roles of b, and b the same result is obtained.

1 2
Let p  1(mod 4) be a prime dividing m with plb1 and p,|’b2 now ,

if ¢; = Olmod p) for some ie{*,2}, then

a1b1+azb2 = O(mod p),

As p*b1 we are allowed to write -

a.b

- 272
a1 E-5 (mod p)

1

and as pl|a we get
2.2 2
a_b a
0z-22, 52 i(b )(modp) ,

2 2 2
b, by

2 .
whence b +b Z O(mod p). Thus b = b3(mod p), which is a contradiction

since p divides b but not b3.



We have thus proved that both c1 $ O(mod p) and c2 # Of{(mod p), for

every prime factor p £ 1(mod 4) of m,
On the other hand, if ¢ = 3(mod 4) is a prime factor of m, we
necessarily have that q*c3 , and as both <, and c, are nonzero , by

lemma 1 of [1] we have that q*c1cé . So, %(n,3) >2.

ii) is proved in a similar way as i).

Next we state the following

Theorem 6. Let n be a positive integer, and write its factorization into
prime factors as
n = za @ at 31 Bs
Py +-e P dy .- g ’

1
1]

with p 1(mod 4), qj S 3(mod 4). With this notation we have :

% %

i) If n = p1 ces B ¢ then £(n,3) > 2.

a 01 a
ii) If n =25 92 ves pk ' a+a1 >0,0<a<1,0¢%¢ & then

L(n,3) = 2.

iit) If n = p‘1 vea pk and n is a numerus i1doneus of Euler, then

£(n,3) = 2.
81 s
ivy If n = Qe G and n § 7(mod B), then %(n,3) = 3.
BB, B, B

v) Ifn=25 q,°...q andn § 7(mod 8) +8 > O, 0 <B< 1 then

2(n,3) = 2 if B or 81 =0, and £(n,3)2 1 otherwise.

o, B Bq
vi) If n = p,'q ... q  andn $ 7(mod 8), then (n,3) > 2 .

. oy oy By Bq
vii) If n = p 'p,°q, ... q  andn f 7(mod 8), then L(n,3) > 1.

ay By Bs
viii) If n = Zp1 SO then %(n,3) > ..
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Proof.

i) In this case n admits a primitive representation as a sum of two
squares and therefore %(n,3) > 2.

ii) It suffices to apply i) and proposition 3.

iii) These integers admit a primitive representation as a sum of two
squares but do not have any reprecentation as a sum of 3 positive
squares (cf. [5]). Integers of this type are 13 and 37, and these

are up to now the only known examples not greater than 107 [2].

iv), vi), vii) and viii) are immediate consequences of lemma 1 of {1].
v) Under these conditions n admits a primitive representation as a
sum of tgree positive squares and it suffices to apply lemma 1 of [1]

together with proposition 3,

Now we give an application of the above theorem to the Galois
embedding problem ( cf, [6], Th. 5.1 ).

B B
Theorem 7. Let n = q11 cee qss with 9 Z 3(mod 4}, 1 < i <s, and

n = 3(mod 8), then every central extension of the alternating group

An can be realised as a Galois group over Q(T) and, so, over Q.
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