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THE CONCEPT OF k-LEVEL FOR POSITIVE INTEGERS

Angela Arenas

Introduction.

It is said (cf. [6]) that a positive integer n satisfies property

(N) if ther.e exists a representation of n as a sum of 3 squares,

n = x^+x^+x^, “it*1 (x^,n) = 1 and . It has been checked that
every positive integer n < 600000, n = 3(mod 8), verifies property (N).

Such property appears in connection with the resolution of a GaJtoÁi

embzddíng pAob-tem in the following sense [6] : every central extensión

of the alternating group An can be realised as a Galois group over Q
if n = 3(mod 8) and n satisfies property (N) .

In this paper, we introduce, for a positive integer n, the concept

of k-LeVtL related to the representations of n as a sum of k squares.

By considering the case k = 3 we exhibit a class of positive integers

satisfying property (N).

Definítion. For a positive integer n we define the k-level, Z(n,k), of

n as the maxÁmum valué of t, such that there exists a representation of
k

n as a sum of k squares, n = x. , x.eS , with 5, summands prime to n.
i=1 1 1

It is well known that every positive integer is a sum of four

squares. If n is not a sum of k squares (k<3), then we agree that

S.(n,k) « -1.

Obviously, for every positive integer n is -1 < í.(n,k) < k. If

k<k‘ , then £(n,k) < f,(n,k') . And for every k>1 is £(1,k) = ky/^á ,,
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The determination of Un,2) is fairly easy and it is given in

Proposition 1. Let n>1 be a positive integer. Then :i)If 4j'n and every odd prime divisor of n is congruent to 1 modulo 4

then Un, 2) = 2.ii)Either if 4|n and n is a sum of two squares or if each prime divi¬

sor of n congruent to 3 modulo 4 appears in the factorization of n into

primes with a positive even exponent, then Z(n,2) = O.iii)In all the other cases is £(n,2) = -1.

The following proposition characterizes the positive integers n

having strictly positive 4-level

Proposition 2. í.(n,4) > 1 if and only if n|o(mod 8).

Proof. If n i O(mod 8), then every representation of n as a sum of 4

2 2 2 2
squares, n = x +y +z +t , verifies that g.c.d.(x,y,z,t) > 2 , and so

A (n, 4) = O.

Furthermore, if n = 2,3,4,6,7(mod 8), then obviously

n-1 = 1,2,3,5,6(mod 8) and, thus, n-1 is a sum of 3 squares, so we have

)l(n,4) > 1 . Finally, if n = 1,5 (mod 8), then n-4 5 5,1 (mod 8) and t

consequent^ n-4 is also a sum of three squares so that ¿(n,4) > 1 ,

because 2^n.

Remark. For k>4 , we have £(n,k) > 1 for all n, just because n-1 is a

sum of four squares.

Let us concéntrate from now on in the case k=3 . It is well known

that ,a-,positive integer n is expressible as a sum of three integer

.squares if and only if n is not of the form 4a(8m+7) . Dirichlet

x (c£,- [4]) proved, moreover, that a positive integer admits a primitive

(representation as a sum of three square if and only if n | 0,4,7(mod 8)
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For Z(n,3) we have the following elementary

• • 4*
Proposition 3. Let neZ2 then :

i) í,(n,3) <0 if n = 0(mod 4),

ii) í,(n,3) <3 if n : 0(mod 2) or (mod 5).

The proof is immediate by passing to 7L/v\7L with m = 4,2,5.

We next prove that given an odd positive integer with S, (n,3) > 1 ,

if we increase, preserving their parity, the exponents of its prime

factors congruent to 1 modulo 4, then one can obtain level greater than

or equal. to 2.

Lemma 4. (see [i]) If a,n«2Z+are such that a = a2+a2 an<^ n = '

then

2 2 2 2
a n = =,+<=2+03

with

c

c

c

1

2

3

ab„

ab„

ab.

2(aib1+a2b2)ai '

2U1b1+a2b2)a2 '

The interest of the above lenma lies on the special valúes of the

c. which allow us to obtain the
1

« a, ar »t Ba
Proposition 5. Let n - 2 -**Pr <3^ • ' with = 1 (mod 4),
1 < i < r and = 3 (mod 4),1<j<s,aa0o1, cx^>0. Then if

í.(n,3) > 1, and m = 2 p^.-.p^ q11...qgS , with y± > and yL =

(mod 2), it turns our that :

i) If a = O, then £,(m,3) > 2,

ii) If a = 1» then í,(m,3) > 1.
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Proof.

2
i) Write m = a n , with

6, S1 j»
a = P1 •••Pr » so that = 20^+01^ , i=1,...,r; > 1.

2 2
Then a is a sum of two squares : a = a^+a2 with (a^,a) =1 j 1 < i < 2.

2 2 2
As í.(n,3) > 1 we can write n * b^+bj+b^ with (b^,n) * 1 and

'VW “ K
2 2 2 2

Now apply lemma 4 to write m = a n = C1+C2+C3 ' 31,8 9oln'3 t°
see that (c^ ,m) = (c2#m) = 1 , and so Jl(n,3) > 2 .

Let p i 1(mod 4) be a prime dividing m such that p|b1 and p|b2 ;
then

c1 5 -2a1b1a1 £ O (mod p) ,

and

o2 = -2a ^a £ °<mod P> r

because p|a.

Interchanging the roles of b^ and b2 the same result is obtained.
Let p i 1 (mod 4) be a prime dividing m with p|b^ and pIfb^ now ,

if i O(mod p) for some ií{(,2}, then

a1b1+a2b2 i O(mod p),

As p|b1 we are allowed to write
a b

2 2
a = r— (mod p)1 b1

and as p|a we get
2. 2 2

a2b2 2 *2 2 2
O i -4^ + a2 = (b2+b^) (mod p) ,

b1 b1
2 2 2

whence b^ +b2 i O(mod p). Thus b i b^(mod p), which is a contradiction
since p divides b but not b

4



We have thus proved that both | O(mod p) and | O(mod p), for

every prime factor p 5 1(mod 4) of m.

On the other hand, if q : 3(mod 4) is a prime factor of m, we

necessarily have that qjc^ , and as both c^ and c^ are nonzero , by
lemraa 1 of [t ] we have that q^c^c^ . So, í. (n,3) > 2 .

ii) is proved in a similar way as i).

Next we State the following

Theorem 6. Let n be a positive integer, and write its factorization into

prime factors as
a a, ar 6, 6S

n -2P( pr q1 ••• qs '

with p^ 5 1(mod 4)

i) Xf n =
a)

P) "•

ii) If n *

a a, (
2 5 p.

*.(n,3) = 2.

iii) If n =
ai

P1 ••

f(n,3) = 2.

iv) If n = qi "

V) If n =

6 6, I
2 5 q.

l(n,3) « 2 if

Vi) If n =
«1 61

P1 ql

vii) If n =
a1 «2

P1 P2 ‘

viii) If n =
6

2P, qt

3

“k
tb

’k ' the
1 «2 «k
“2 "• Pk

“k
a

• ana



Proof.

i) In this case n admits a primitive representation as a sum of two

squares and therefore £(n,3) > 2.

ii) It suffices to apply i) and proposition 3.

iii) These integers admit a primitive representation as a sum of two

squares but do not have any representation as a sum of 3 positive

squares (cf. [5]). Integers of this type are 13 and 37, and these

are up to now the only known examples not greater than 10^ [2].iv), vi), vii) and viii) are immediate consequences of lemma 1 of [i],
v) Under these conditions n admits a primitive representation as a

sum of three positive squares and it suffices to apply lemma 1 of [i]
together with proposition 3.

Now we give an application of the above theorem to the Galois

embedding problem ( cf. [(,), Th. 5.1 ) .

Theorem 7. Let n = q q with q. = 3(raod 4), 1 < i < s, and
si - -

n i 3(mod 8), then every central extensión of the alternating group

A^ can be realised as a Galois group over Q(T) and, so, over Q.
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