UNIVERSITAT DE BARCELONA

FACULTAT DE MATEMATIQUES

THE CONCEPT OF k-LEVEL FOR POSITIVE INTEGERS

by

ANGELA ARENAS

Introduction.

It is said (cf. [6]) that a positive integer n satisfies property (N) if there exists a representation of n as a sum of 3 squares, $n=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$, with $\left(x_{1}, n\right)=1$ and $x_{1}^{2} \leq \frac{n+1}{3}$. It has been checked that every positive integer $n \leq 600000, n \equiv 3(\bmod 8)$, verifies property (N).

Such property appears in connection with the resolution of a Galois embedding problem in the following sense $[6]$: every central extension of the alternating group A_{n} can be realised as a Galois group over Q if $n \equiv 3(\bmod 8)$ and n satisfies property (N).

In this paper, we introduce, for a positive integer n, the concept of k-level related to the representations of n as a sum of k squares. By considering the case $k=3$ we exhibit a class of positive integers satisfying property (N).

Definition. For a positive integer n we define the $k-l e v e l, \ell(n, k)$, of n as the maximum value of ℓ such that there exists a representation of n as a sum of k squares, $n=\sum_{i=1}^{k} x_{i}^{2}, x_{i} \in \mathbb{Z}$, with \& surmands prime to n.

It is well known that every positive integer is a sum of four squares. If n is not a sum of k squares ($k \leq 3$), then we agree that $\ell(n, k)=-1$.

Obviously, for every positive integer n is $-1 \leq \ell(n, k) \leq k$. If $k<k^{\prime}$, then $\ell(n, k) \leq \ell\left(n, k^{\prime}\right)$. And for every $k>1$ is $\ell(1, k)=k$, ,

The determination of $\ell(n, 2)$ is fairly easy and it is given in

Proposition 1. Let $n>1$ be positive integer. Then :
i) If 4 ln and every odd prime divisor of n is congruent to 1 modulo 4 , then $\ell(n, 2)=2$.
ii) Either if $4 \mid n$ and n is a sum of two squares or if each prime divisor of n congruent to 3 modulo 4 appears in the factorization of n into primes with a positive even exponent, then $\ell(n, 2)=0$.
iii) In all the other cases is $\ell(n, 2)=-1$.

The following proposition characterizes the positive integers n having strictly positive 4 -level

Proposition 2. $\ell(n, 4) \geq 1$ if and only if $n \neq O(\bmod 8)$.

Proof. If $n \equiv O(\bmod 8)$, then every representation of n as a sum of 4 squares, $n=x^{2}+y^{2}+z^{2}+t^{2}$, verifies that g.c.d. $(x, y, z, t) \geq 2$, and so $\ell(n, 4)=0$.

Furthermore, if $n \equiv 2,3,4,6,7(\bmod 8)$, then obviously $n-1 \equiv 1,2,3,5,6(\bmod 8)$ and, thus, $n-1$ is a sum of 3 squares, so we have $\ell(n, 4) \geq 1$. Finally, if $n \equiv 1,5(\bmod 8)$, then $n-4 \equiv 5,1(\bmod 8)$ and, consequently, $n-4$ is also a sum of three squares so that $\ell(n, 4) \geq 1$, because $2 \nmid n$.

Remark. For $k>4$, we have $\ell(n, k) \geq 1$ for all n, just because $n-1$ is a sum of four squares.

Let us concentrate from now on in the case $k=3$. It is well known that a, positive integer n is expressible as a sum of three integer squaxes if and only if n is not of the form $4^{\mathbf{a}(8 m+7) \text {. Dirichlet }}$ (cf: [4]) proved, moreover, that a positive integer admits a primitive fepresentation as a sum of three square if and only if $n \neq 0,4,7$ (mod 8).

For $\ell(n, 3)$ we have the following elementary

Proposition 3. Let $n \in \mathbb{Z}^{+}$, then :
i) $\ell(n, 3) \leq 0 \quad$ if $n \equiv O(\bmod 4)$,
ii) $\ell(n, 3)<3 \quad$ if $n \equiv 0(\bmod 2)$ or $(\bmod 5)$.

The proof is immediate by passing to $\mathbb{Z} / \mathrm{m} \mathbb{Z}$ with $m=4,2,5$.

We next prove that given an odd fositive integer with $\ell(n, 3) \geq 1$, if we increase, preserving their parity, the exponents of its prime factors congruent to 1 modulo 4 , then one can obtain level greater than or equal. to 2 .

Lemma 4. (see [1]) If $a, n \subset Z^{+}$are such that $a=a_{1}^{2}+a_{2}^{2}$ and $n=b_{1}^{2}+b_{2}^{2}+b_{3}^{2}$, then

$$
a^{2} n=c_{1}^{2}+c_{2}^{2}+c_{3}^{2}
$$

with

$$
\begin{aligned}
& c_{1}=a b_{1}-2\left(a_{1} b_{1}+a_{2} b_{2}\right) a_{1} \\
& c_{2}=a b_{2}-2\left(a_{1} b_{1}+a_{2} b_{2}\right) a_{2} \\
& c_{3}=a b_{3}
\end{aligned}
$$

The interest of the above lemma lies on the special values of the c_{i} which allow us to obtain the
Proposition 5. Let $n=2 p_{1}{ }^{\alpha} \ldots p_{r}{ }^{\alpha}{ }^{\alpha} q_{1}^{\beta} \ldots q_{s}^{\beta_{s}}$, with $p_{i} \equiv 1(\bmod 4)$, $1 \leq i \leq r$ and $q_{j} \equiv 3(\bmod 4), 1 \leq j \leq s, \alpha=061, \alpha_{i}>0$. Then if $\ell(n, 3) \geq 1$, and $m=2 p_{1}^{\alpha} \gamma_{1} \ldots r_{x} \gamma_{1} q_{1}^{\beta_{1}} \ldots q_{s}^{\beta_{s}}$, with $\gamma_{i}>\alpha_{i}$ and $\gamma_{i} \equiv \alpha_{i}$ (mod 2), it turns our that :
i) If $\alpha=0$, then $\ell(m, 3) \geq 2$,
ii) If $\alpha=1$, then $\ell(m, 3) \geq 1$.

Proof.

i) Write $m=a^{2} n$, with
$a=p_{1}{ }_{1} \ldots p_{r}^{\delta} r$, so that $\gamma_{i}=2 \delta_{i}+\alpha_{i}, i=1, \ldots, r ; \delta_{i} \geq 1$.
Then a is a sum of two squares : $a=a_{1}^{2}+a_{2}^{2}$ with $\left(a_{i}, a\right)=1,1 \leq i \leq 2$.
As $\ell(n, 3) \geq 1$ we can write $n=b_{1}^{2}+b_{2}^{2}+b_{3}^{2}$ with $\left(b_{3}, n\right)=1$ and $\left(b_{1}, b_{2}, b_{3}\right)=1$.

Now apply lemma 4 to write $m=a^{2} n=c_{1}^{2}+c_{2}^{2}+c_{3}^{2}$. We are going to
see that $\left(c_{1}, m\right)=\left(c_{2}, m\right)=1$, and so $\ell(n, 3) \geq 2$. Let $p \equiv 1(\bmod 4)$ be a prime dividing m such that $p \nmid b_{1}$ and $p \mid b_{2}$; then

$$
c_{1} \equiv-2 a_{1} b, a_{1} \equiv O(\bmod p),
$$

and

$$
c_{2} \equiv-2 a_{1} b_{1} a_{2} \not \equiv O(\bmod p),
$$

because pla.
Interchanging the roles of b_{1} and b_{2} the same result is obtained. Let $p \equiv 1(\bmod 4)$ be a prime dividing m with $p \nmid b_{1}$ and $p \not b_{2}$ now , if $c_{i} \equiv O(\bmod p)$ for some $i \in\{:, 2\}$, then

$$
a_{1} b_{1}+a_{2} b_{2} \equiv O(\bmod p)
$$

As $\mathrm{p} \not \mathrm{b}_{1}$ we are allowed to write

$$
a_{1} \equiv-\frac{a_{2} b_{2}}{b_{1}}(\bmod p)
$$

and as pla we get

$$
0 \equiv \frac{a_{2}^{2} b_{2}^{2}}{b_{1}^{2}}+a_{2}^{2}=\frac{a_{2}^{2}}{b_{1}^{2}}\left(b_{2}^{2}+b_{1}^{2}\right)(\bmod p)
$$

whence $b_{1}^{2}+b_{2}^{2} \equiv O(\bmod p)$. Thus $b \equiv b_{3}^{2}(\bmod p)$, which is a contradiction since p divides b but not b_{3}.

We have thus proved that both $c_{1} \neq O(\bmod p)$ and $c_{2} \neq O(\bmod p)$, for every prime factor $p \equiv 1(\bmod 4)$ of m.

On the other hand, if $q \equiv 3(\bmod 4)$ is a prime factor of m, we necessarily have that $q \nmid c_{3}$, and as both c_{1} and c_{2} are nonzero, by leman 1 of $[1]$ we have that $q \nmid c_{1} c_{2}$. So, $\ell(n, 3) \geq 2$.
ii) is proved in a similar way as i).

Next we state the following

Theorem 6. Let n be a positive integer, and write its factorization into prime factors as

$$
n=2 p_{1}^{\alpha \alpha_{1}} \ldots p_{r}^{\alpha_{r}}{ }^{\beta_{1}}{ }_{1} \ldots q_{s}^{\beta_{s}}
$$

with $p_{i} \equiv 1(\bmod 4), q_{j} \equiv 3(\bmod 4)$. With this notation we have :
i) If $n=p_{1}{ }_{1} \ldots p_{k}^{\alpha_{k}}$, then $\ell(n, 3) \geq 2$.
ii) If $n=2^{\alpha}{ }^{\alpha_{1}}{ }_{p_{2}}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}, \alpha+\alpha_{1}>0,0 \leq \alpha \leq 1,0 \leq \alpha_{1}$, then $\ell(n, 3)=2$.
iii) If $n=p_{1}^{\alpha_{i}} \ldots p_{k}^{\alpha_{k}}$ and n is a numerus idoneus of Euler, then $\ell(n, 3)=2$.
iv) If $n=q_{1}{ }_{1} \ldots q_{s}^{B_{s}}$ and $n \neq 7(\bmod B)$, then $\ell(n, 3)=3$.
v) If $n=25^{\beta}{ }^{\beta_{1}} q_{2}^{\beta_{2}} \ldots q_{s}^{\beta_{s}}$ and $n \neq 7(\bmod 8) \beta+\beta_{1}>0,0 \leq \beta \leq 1$ then $\ell(n, 3)=2$ if β or $B_{1}=0$, and $\ell(n, 3) \geq 1$ otherwise.
vi) If $n=p_{1}{ }_{\alpha_{1}} \beta_{1} \ldots q_{s}^{\beta_{s}}$ and $n \neq 7(\bmod 8)$, then $\ell(n, 3) \geq 2$.
vii) If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} q_{1}^{\beta_{1}} \ldots q_{s}^{\beta_{s}}$ and $n \neq 7(\bmod 8)$, then $\ell(n, 3) \geq 1$. viii) If $n=2 p_{1}^{\alpha_{1}} q_{1}^{\beta_{1}} \ldots q_{s}^{\beta_{s}}$, then $\ell(n, 3) \geq 1 \ldots$

Proof.
i) In this case n admits a primitive representation as a sum of two squares and therefore $\ell(n, 3) \geq 2$.
ii) It suffices to apply i) and proposition 3.
iii) These integers admit a primitive representation as a sum of two squares but do not have any representation as a sum of 3 positive squares (cf. [5]). Integers of this type are 13 and 37, and these are up to now the only known examples not greater than 10^{7} [2]. iv), vi), vii) and viii) are immediate consequences of lemma 1 of [1]. v) Under these conditions n admits a primitive representation as a sum of three positive squares and it suffices to apply lemma 1 of [1] together with proposition 3.

Now we give an application of the above theorem to the Galois embedding problem (cf. [6], Th. 5.1).

Theorem 7. Let $n=q_{1}^{\beta_{1}} \ldots q_{s}^{\beta_{s}}$ with $q_{i} \equiv 3(\bmod 4), 1 \leq i \leq s$, and $\mathrm{n} \equiv 3(\bmod 8)$, then every central extension of the alternating group A_{n} can be realised as a Galois group over $Q(T)$ and, so, over Q.

Bibliography

[1] Arenas Sola, A.: On a certain type of primitive representations of 'rational integers as sum of squares. Pub. Sec. Mat. Univ. Auto notiéde Barcelona. Vol. 28; Núm. 2-3 (1984), 75-80.
[2] Chowla, s., Briggs, w.: On discriminants of binary quadratic forms with a single class in each genus. Can. J. of Math. $\underline{6}$ (1954), 463-470.
[3] Dickson, l.e.: History of the theory of numbers, vol. II. Chelsea Pub. Comp., 1971.
[4] Dirichlet, P.G., Lejeune: La possibilite de la decomposition des nombres en trois carres. J. de Math. Pures et Appl. (2), $\underline{4}$ (1859), 233-240.
[5] Schinzel, A.: Sur les sommes de trois carres. Bull. Acad. Pol. des Sciences. Vol. II, $\underline{6}$ (1959), 22-25.
[6] Vila, N.: On central extensions of A_{n} as a Galois group over \mathbf{Q}. Arch. Math., Vol. 44, (1985), 424-437.

```
Departamento de Algebra y Fundamentos
Facultad de Matemáticas
Universidad de Barcelona.
C/ Gran Via, 585
08007 Barcelona
SPAIN
```

