# UNIVERSITAT DE BARCELONA

CAIXA 31 27

FACULTAT DE MATEMATIQUES

1

## THE CONCEPT OF k-LEVEL FOR POSITIVE INTEGERS

by

ANGELA ARENAS



PRE-PRINT N.º 31 ENERO 1986



#### THE CONCEPT OF k-LEVEL FOR POSITIVE INTEGERS

### Angela Arenas

#### Introduction.

It is said (cf. [6]) that a positive integer n satisfies property (N) if there exists a representation of n as a sum of 3 squares,  $n = x_1^2 + x_2^2 + x_3^2$ , with  $(x_1, n) = 1$  and  $x_1^2 \le \frac{n+1}{3}$ . It has been checked that every positive integer n < 600000, n  $\equiv$  3(mod 8), verifies property (N).

Such property appears in connection with the resolution of a Galois embedding problem in the following sense [6] : every central extension of the alternating group  $A_n$  can be realised as a Galois group over Q if  $n \equiv 3 \pmod{8}$  and n satisfies property (N).

In this paper, we introduce, for a positive integer n, the concept of k-level related to the representations of n as a sum of k squares. By considering the case k = 3 we exhibit a class of positive integers satisfying property (N).

<u>Definition</u>. For a positive integer n we define the k-level, l(n,k), of n as the maximum value of l such that there exists a representation of n as a sum of k squares,  $n = \sum_{i=1}^{k} x_i^2$ ,  $x_i \in \mathbb{Z}$ , with l summands prime to n.

It is well known that every positive integer is a sum of four squares. If n is not a sum of k squares  $(k \le 3)$ , then we agree that  $\ell(n,k) = -1$ .

Obviously, for every positive integer n is  $-1 \leq l(n,k) \leq k$ . If  $k \leq k'$ , then  $l(n,k) \leq l(n,k')$ . And for every  $k \geq 1$  is l(1,k) = k,  $U_{N_{1} \setminus n}$ .

- 1 -

The determination of l(n,2) is fairly easy and it is given in

Proposition 1. Let n>1 be a positive integer. Then :

i) If  $4 \not\mid n$  and every odd prime divisor of n is congruent to 1 modulo 4, then  $\ell(n,2) = 2$ .

ii) Either if  $4 \mid n$  and n is a sum of two squares or if each prime divisor of n congruent to 3 modulo 4 appears in the factorization of n into primes with a positive even exponent, then  $\ell(n,2) = 0$ .

iii) In all the other cases is  $\ell(n,2) = -1$ .

The following proposition characterizes the positive integers n having strictly positive 4-level

Proposition 2.  $\ell(n,4) > 1$  if and only if  $n \neq 0 \pmod{8}$ .

<u>Proof.</u> If  $n \equiv 0 \pmod{8}$ , then every representation of n as a sum of 4 squares,  $n = x^2 + y^2 + z^2 + t^2$ , verifies that g.c.d.  $(x,y,z,t) \ge 2$ , and so l(n,4) = 0.

Furthermore, if  $n \equiv 2,3,4,6,7 \pmod{8}$ , then obviously  $n-1 \equiv 1,2,3,5,6 \pmod{8}$  and, thus, n-1 is a sum of 3 squares, so we have  $\ell(n,4) \geq 1$ . Finally, if  $n \equiv 1,5 \pmod{9}$ , then  $n-4 \equiv 5,1 \pmod{8}$  and, consequently, n-4 is also a sum of three squares so that  $\ell(n,4) \geq 1$ , because  $2\ell n$ .

<u>Remark</u>. For k>4, we have  $l(n,k) \ge 1$  for all n, just because n-1 is a sum of four squares.

Let us concentrate from now on in the case k=3. It is well known that a positive integer n is expressible as a sum of three integer squares if and only if n is not of the form  $4^{a}(8m+7)$ . Dirichlet (cf. [4]) proved, moreover, that a positive integer admits a primitive representation as a sum of three square if and only if n  $\ddagger 0,4,7 \pmod{8}$ . For l(n,3) we have the following elementary

<u>Proposition 3.</u> Let  $n \in \mathbb{Z}^+$ , then :

i) 
$$\ell(n,3) \leq 0$$
 if  $n \equiv 0 \pmod{4}$ ,

ii)  $\ell(n,3) \leq 3$  if  $n \equiv 0 \pmod{2}$  or  $\pmod{5}$ .

The proof is immediate by passing to  $\mathbb{Z}/m\mathbb{Z}$  with m = 4, 2, 5.

We next prove that given an odd positive integer with  $l(n,3) \ge 1$ , if we increase, preserving their parity, the exponents of its prime factors congruent to 1 modulo 4, then one can obtain level greater than or equal to 2.

Lemma 4. (see [1]) If  $a, n \in \mathbb{Z}^+$  are such that  $a = a_1^2 + a_2^2$  and  $n = b_1^2 + b_2^2 + b_3^2$ , then

$$a^{2}n = c_{1}^{2} + c_{2}^{2} + c_{3}^{2}$$

with

$$c_{1} = ab_{1} - 2(a_{1}b_{1}+a_{2}b_{2})a_{1} ,$$

$$c_{2} = ab_{2} - 2(a_{1}b_{1}+a_{2}b_{2})a_{2} ,$$

$$c_{3} = ab_{3} .$$

The interest of the above lemma lies on the special values of the  $c_i$  which allow us to obtain the

Proposition 5. Let  $n = 2 p_1^{\alpha} \dots p_r^{\alpha} q_1^{\alpha} \dots q_s^{\beta_5}$ , with  $p_i \equiv 1 \pmod{4}$ ,  $1 \leq i \leq r \text{ and } q_j \equiv 3 \pmod{4}$ ,  $1 \leq j \leq s$ ,  $\alpha \equiv 0 \leq 1$ ,  $\alpha_i > 0$ . Then if  $l(n,3) \geq 1$ , and  $m = 2 p_1^{\alpha} \dots p_r^{\alpha} q_1^{\beta_1} \dots q_s^{\beta_s}$ , with  $\gamma_i > \alpha_i$  and  $\gamma_i \equiv \alpha_i$ (mod 2), it turns our that : i) If  $\alpha = 0$ , then  $l(m,3) \geq 2$ , ii) If  $\alpha = 1$ , then  $l(m,3) \geq 1$ . Proof.

i) Write  $m = a^2 n$ , with  $a = p_1^{\delta_1} \dots p_r^{\delta_r}$ , so that  $\gamma_i = 2\delta_i + \alpha_i$ ,  $i = 1, \dots, r; \ \delta_i \ge 1$ . Then a is a sum of two squares :  $a = a_1^2 + a_2^2$  with  $(a_i, a) = 1$ ;  $1 \le i \le 2$ . As  $l(n,3) \ge 1$  we can write  $n = b_1^2 + b_2^2 + b_3^2$  with  $(b_3, n) = 1$  and  $(b_1, b_2, b_3) = 1$ .

Now apply lemma 4 to write  $m = a^2n = c_1^2 + c_2^2 + c_3^2$ . We are going to see that  $(c_1,m) = (c_2,m) = 1$ , and so  $\ell(n,3) \ge 2$ .

Let  $p \equiv 1 \pmod{4}$  be a prime dividing m such that  $p/b_1$  and  $p/b_2$ ; then

 $c_1 \equiv -2a_1b_1a_1 \neq 0 \pmod{p}$ ,

and

 $c_2 \equiv -2a_1b_1a_2 \neq 0 \pmod{p}$ ,

because pla.

Interchanging the roles of  $b_1$  and  $b_2$  the same result is obtained. Let  $p \equiv 1 \pmod{4}$  be a prime dividing m with  $p/b_1$  and  $p/b_2$  now, if  $c_1 \equiv 0 \pmod{p}$  for some  $i \in \{1, 2\}$ , then

$$a_1b_1+a_2b_2 \equiv O \pmod{p}$$
,

As p/b, we are allowed to write -

$$a_1 \equiv -\frac{a_2b_2}{b_1} \pmod{p}$$

and as p a we get

$$0 \equiv \frac{a_2^2 b_2^2}{b_1^2} + a_2^2 = \frac{a_2^2}{b_1^2} (b_2^2 + b_1^2) \pmod{p}$$

whence  $b_1^2 + b_2^2 \equiv 0 \pmod{p}$ . Thus  $b \equiv b_3^2 \pmod{p}$ , which is a contradiction since p divides b but not  $b_2$ .

We have thus proved that both  $c_1 \neq 0 \pmod{p}$  and  $c_2 \neq 0 \pmod{p}$ , for every prime factor  $p \equiv 1 \pmod{4}$  of m.

On the other hand, if  $q \equiv 3 \pmod{4}$  is a prime factor of m, we necessarily have that  $q/c_3$ , and as both  $c_1$  and  $c_2$  are nonzero, by lemma 1 of [1] we have that  $q/c_1c_2$ . So,  $\ell(n,3) \ge 2$ . ii) is proved in a similar way as i).

-

Next we state the following

<u>Theorem 6.</u> Let n be a positive integer, and write its factorization into prime factors as

 $n = 2 p_1^{\alpha} \cdots p_r^{\alpha} q_1^{\beta} \cdots q_s^{\beta_s},$ 

with  $p_i \equiv 1 \pmod{4}$ ,  $q_j \equiv 3 \pmod{4}$ . With this notation we have : i) If  $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ , then  $\ell(n,3) \ge 2$ . ii) If  $n = 2 \frac{\alpha \alpha_1}{2} \frac{\alpha_2}{p_2^2} \dots p_k^{\alpha_k}$ ,  $\alpha + \alpha_1 \ge 0$ ,  $0 \le \alpha \le 1$ ,  $0 \le \alpha_1$ , then  $\ell(n,3) = 2$ . iii) If  $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$  and n is a numerus idoneus of Euler, then  $\ell(n,3) = 2$ . iv) If  $n = q_1^{\beta_1} \dots q_s^{\beta_s}$  and  $n \ddagger 7 \pmod{8}$ , then  $\ell(n,3) = 3$ . v) If  $n = 2 \frac{\beta \beta_1}{\beta_2} \frac{\beta_2}{\beta_2} \dots q_s^{\beta_s}$  and  $n \ddagger 7 \pmod{8}$ ,  $\beta + \beta_1 \ge 0$ ,  $0 \le \beta \le 1$  then  $\ell(n,3) = 2$  if  $\beta$  or  $\beta_1 = 0$ , and  $\ell(n,3) \ge 1$  otherwise. vi) If  $n = p_1^{\alpha_1} q_1^{\beta_1} \dots q_s^{\beta_s}$  and  $n \ddagger 7 \pmod{8}$ , then  $\ell(n,3) \ge 2$ . vii) If  $n = p_1^{\alpha_1} q_2^{\alpha_2} q_1^{\beta_1} \dots q_s^{\beta_s}$  and  $n \ddagger 7 \pmod{8}$ , then  $\ell(n,3) \ge 1$ .

### Proof.

i) In this case n admits a primitive representation as a sum of two squares and therefore  $\ell(n,3) > 2$ .

ii) It suffices to apply i) and proposition 3.

iii) These integers admit a primitive representation as a sum of two squares but do not have any representation as a sum of 3 positive squares (cf. [5]). Integers of this type are 13 and 37, and these are up to now the only known examples not greater than 10<sup>7</sup> [2].
iv), vi), vii) and viii) are immediate consequences of lemma 1 of [1].
v) Under these conditions n admits a primitive representation as a sum of three positive squares and it suffices to apply lemma 1 of [1] together with proposition 3.

Now we give an application of the above theorem to the Galois embedding problem ( cf. [6], Th. 5.1 ).

Theorem 7. Let  $n = q_1^{\beta_1} \dots q_s^{\beta_s}$  with  $q_i \equiv 3 \pmod{4}$ ,  $1 \le i \le s$ , and  $n \equiv 3 \pmod{8}$ , then every central extension of the alternating group  $A_n$  can be realised as a Galois group over Q(T) and, so, over Q.

### Bibliography

[1] Arenas Sola, A.: On a certain type of primitive representations of rational integers as sum of squares. Pub. Sec. Mat. Univ. Aut<u>o</u> nome de Barcelona. Vol. <u>28</u>; Núm. 2-3 (1984), 75-80.

- 6 -

- [2] Chowla, S., Briggs, W.: On discriminants of binary quadratic forms with a single class in each genus. Can. J. of Math. 6 (1954), 463-470.
- [3] Dickson, L.E.: History of the theory of numbers, Vol. II. Chelsea Pub. Comp., 1971.
- [4] Dirichlet, P.G., Lejeune: La possibilité de la décomposition des nombres en trois carrés. J. de Math. Pures et Appl. (2), <u>4</u> (1859), 233-240.
- [5] Schinzel, A.: Sur les sommes de trois carrés. Bull. Acad. Pol. des Sciences. Vol. II, 6 (1959), 22-25.
- [6] Vila, N.: On central extensions of  $A_n$  as a Galois group over Q. Arch. Math., Vol. 44, (1985), 424-437.

Departamento de Algebra y Fundamentos Facultad de Matemáticas Universidad de Barcelona. C/ Gran Via, 585 08007 Barcelona

SPAIN

1



- 7 -



Dipòsit Legal B.: 2.097-1986 BARCELONA-1986

1