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ON HIGHER DIMENSIONS OF MODULES OVER LOCAL RINGS
J-L. Garcia Roig

Throughout this paper (R,w) denotes a Noetherian
local ring and M a finitely generated R-module.

If 8yy-0es8y is a system of parametres for M,
we know that the lengths of the Koszul homology modules
HiK(ag....,aglM), for 1=0,1,...,d, are bounded above in
length by polynomials in n of degree at most d-i (cf. [3]).
Now, for each 1, Ogig¢d, we can consider the least degree of
all polynomials in n which bound the length of HiK(an,..,aglM).
For instance, if i=0, this least degree is just the dimension

d of M. Tosee this, it suffices to bear in mind the chain

of inclusions (al,...,ad)dng;(a?,...,ag)gg(al,...,ad)n

together with the fact that n length(M/(a ny)

1,...,ad)
is a polynomial function in n of degree d, for m>>0. 1If, on
the other hand, i=d, then it is clear that the least degree
is zero. In both these cases we see that the least degree
considered is the same fbr all systems of parametres and
we can ask whether this is so for the other Koszul homology
modules, i.e., whether the least degree considered for
HiK(aT,...,aSIM), O< i<d, does or does not depend on the
particular system of parametres al,...,ad chosen for M.

In this paper we show that this least degree is

independent of the system of parametres and so, we have



been Eaturally led to the definition of what we have called

"higher dimensions” of a module. Similar considerations also

hold for the higher Euler-Poincaré characteristics.
I wish to thank Dr. D.Kirby for all his helpful

suggestions.
We begin with some introductory lemmas.

Lemma 1. Let al.....ad and bl,....,bd be systems of parametres

for M. Then there exists C.EMm such that both cl,az,....ad and

cl’bz""’bd are gystems of parametres for M.

Proof. It suffices to take c, in wm not belonging to the

1
finite set of primes consisting of the minimal primes

Pl,...,P of

M
r /(32""’ad)M and the minimal ones Ql,...,Qs

of M/(b », 811 of coheight 1, i.e., submaximal.

2,...,bd)M
Such a selection is possible by virtue of Proposition 1.11

of [1]. #

As any permutation of a system of parametres is
still a system of parametres, repeated application of lemma 1
allows us to connect any two systems of parametres by a se-
quence of not more than 2d+1 systems of parametres with the
property that two consecutive systems of parametres differ
by at most one element.

This fact reduces our problem to the case of two



systems of parametres which differ by just one element and

which we will denote by al,...,ad_l,a and al""’ad-l'b'

With this notation, and writing R = &/ , we have the

Ann(M)
following

Lemma 2. The elements al,....ad_l.ab constitute a system

of parametres for M and, if I = (a?,...,ag_l,an)ﬁ, and

n n
Jn = (al,...,ad

such that IknangIn , for all n.

_l,anbn)ﬁ, then there exists a constant k

Proof. Neither a nor b belong to any minimal prime of

so the same happens to ab and thus,

M
/(al.....a )] e

d-1
al,...,ad_l.ab is a system of parametres for M, or what

amounts to the same, for R. This implies that the radical
of J, = (al,...,ad_l,ab)ﬁt is M (= image of . in R),
eand as a em , we have & €J1 for some t, where a stands
for the coset defined by a in R. Consequently, for all n,

_tdn dn

a €Jl c J,

and so, it suffices to take k = td. #
We still need another technical lemma.

Lemma 3. If a¢R, then we have:

i) l(O:an) < n-2(0:a), and
M M

11) 2 M/ ) < nee My .



Proof. By induction on n. From the exact sequence

Lan-1

a R R
/ ar /ghg —> /n-1p —> O,

R

if we apply HomR(* M), we get i), for Hom ( / M)=0:a" ,
M

a"Rr’

R M
and if we apply «@M, we get ii), for '/ eM="/ . #
R a“RR a™

Remark. Though lemma 3 is quite general, we will be interested
only in the case where the lengths involved are finite. More-
over, lemma 3 can be gereralised in the form:

1) 2(0:ab)ge(0:a)+2(0:b), and
M M M

M M M
1) 1Y )t C/ g )4 O/ )«
Next the aim of this paper.

Lemma 4. For i>0 and all n, we have the inequality

n
LHiK(al,....a " IM)<k-2H K(al,...,ad 108 IM),

da-1"

the constant k being that of lemma 2.

Proof. Consider the exact sequences {(cf. Lg] p.1v-2)
n n n n
0 — HOK(leiK(al....,ad_llM)) —_— HiK(al,...,ad~1,x|M)
— Hlx(xiﬁ K(al....,a lM)) —> 0,

with x=a" or a™p™, Thus our lemma will be proved if similar

inequalities as the one stated in the lemma hold for the

- 4 -



side terms of the above exact sequences.
Now, from lemma 2 we can write, for some A in R
(depending on n),

akn 222" modulo(a’f,...,an

4.1 »AnnM) .

n

n
As (al""'ad-l'

AnnM) kills the homology modules of the

Koszul complex K(a yeeesal M) (see (6] p.IV-7), for the

d-1
right hand term, we have

tH K(a™pMH, .K(a®,..,a . [M))=2(0:a™") <
1 i-17'8y d-1 ; H. .K(aD a )
1-17'810 20849
sL(O:kanbn n =£(O:akn)
i 1K(al,...ad 1|M)

K(aj,..,ay_ 1M),

H1 1 pree0@

and this last length, by lemma 3 i), is less than or equal to

k-t(0:a") : =k-tH K(a"|H;_ K(al,...,a5 ;IM).

n n
Hi-lK(al""ad—llm)

We proceed in a complete parallel manner with

n n n
LHOK(anb |H1K(a1,....ad_1|M)) and get
n n n n n n
ot
tH K(a"b" [H K(a],..,ay_, M))sk-tH K(a" |HK(al,...,ay 1 IM)).
These two inequalities establish that

tH K(a yees,al ,ananM)sk-LHiK(a?,...,an ,allim),

d-1 d-1

and the conclusion follows, for, according to lemma 1 of LE],

an_l,anbnlM). #

MiM)<eH K(al,..., 4

n n
tHiK(al,...,ad_l,

From these lemmas the proof of the following

theorem is immediate.



Theorem 5. Let al,....ad be a system of parametres for M.

If the length of H1K(a?,...,a3|M), i>0, is bounded above

by a polynomial in n of degree g, then zHix(b?...,bSIM)

is also bounded above by a polynomial in n of degree g,

for any other system of parametres bl""'bd for M. #

This theorem makes possible the following

Definition. The i‘th dimension of M (Osigd), denoted by

dimi(M) is the least integer g such that for a system of

parametres ayseeeydy of M, there exists a polynomial in n

of degree g which bounds the length of HiK(a?,...,ag|M).

Observe that this definition is independent of
the system of parametres chosen by virtue of theorem 5.
Moreover, dimo(M)=d1m(M) and, in general, dimi(M)sd-i (cf.
[3]), so that, in particular dimd(M)=0.

With this terminology, generalised Cohen-Macaulay
modules can be characterised by the condition diml(M)=0

(cf. Lg] Satz 3.3).

The results above carry over to the case of the

higher Euler-Poincaré characteristics X i>0, defined by

1'
the formula {(cf. {6] Ch.IV App.II)
j-1
xi(al,...,adIM)=jZi(-1) LH K(ay, ... a4lM)

where al....,ad is a system of parametres for M.



! .
Lemma 6. With our previous notations, for i>0 and all n, we

have the inequality

xi(a?,...,ag_l,bnlM)sk-xi(ag....,ag_l.anlﬁ),

where k is the constant of lemma 2.

Proof. This follows from the expression (see [6]p.IV-56)

x,(a],...,a5 ,,e™ M) = tH K(a"o" IH M)+

1aK(a]eeiag g

' Un ""RHT\I
' 'Ll‘l()NA

ERM

lM))gk-l.HlK(aan K(al, . ,a _ 1)

n.n n n
+x°(a b Ixi(al,....ad_llm)).
The proof of lemma 4 gives

n n n
tH K(a b IH,_ K(a], ... 8y 4

which we link with the obvious inequality
n n n n.n n n
zHlK(b |H1_1K(a1,...,ad_llM))slHIK(a b IHi—IK(al""’ad-1|M))'

On the other hand, from ak™oa ap" mod(a?,...,ag_l,AnnM)

(cf. Lemma 2), we have the inequality (of nonnegative integers)
n n n nn n n _
xo (b Ix (ay, . aay 4 IM))sx (Aa'd Ix (ay,eeerag o IM))=
kn n n n n n
=x (a8 ix (a,..0ray , IM))=k-x (a IxsCayseensag 1 IM)).

This is enough to conclude the proof. #

Remark. For i=0, if al,...,ad is a system of parametres for M,

Xo(a?....,aglM) is a polynomial in n of degree d=dim(M).

n d *
,adIM)-n oxo(a

(This is because X, (a” 1""'adlM) and

prece



x(ay,...,84IM)>0.)

Theorem 7. Let 8yrecenty be a system of parametres for M.

If xi(a?....,aglm), for 120, is bounded above by a poly-

nomial in n of degree g, then xi(bg,...,bglM) is also

bounded above by a polynomial in n of degree g, for any

other system of parametres bl,...,b of M. #

d

Theorem 7 makes possible the following

Definition. The i'th Euler-Poincaré dimension of M (0<i<d),

denoted dimI(M) is the least integer g such that, for a

system of parametres al,...,ad of M, there exists a poly-

nomial in n of degree g which bounds xi(a?,....aglm).

Observe that dim’(M)=dim_(M)=dim(M) and that, in
general, dim;(M)sdimi(M) as a consequence of the fact that
lHi=xi+xi+1 and that Xi;O.

In terms of ihese new higher dimensions, genera-

lised Cohen-Macaulay modules can also be characterised by

the condition dim(M)=0 (cf. [5] Satz 3.3).

Remark. All the statements and proofs of this paper carry
over almost immediately to the case the ring R is assumed
to be semilocal, in which case, m denotes its Jacobson

radical.
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