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Introduction

The purpose of this paper is the determination of the
level, %(n), of an integer n with respect to the sum of
three squares, when n is not necessarily square-free,

We keep the definitions and basic notations given in [1].

A recursive formula for the main term in the evaluation
of 2(n) is given in theorem 5, using p-adic densities.

The error term in the determination of £(n) can be now
estimated, unconditionally, thanks to Shimura's lifting,
which allows to know the growth of the Fourier coefficients
of certain cusp forms of weight 3/2 from some of weight 2,
when the index runs through a fixed quadratic class. This
estimation of the error term becomes important when n increases
in such a gquadratic class. For this reason, the square-free

case was handled separately in a previous paper [1].

We conclude that if n Z 0,4,7(mod 8) is a positive integer

sufficiently large (see Section 3), then
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i) f2(n) 2 , if g.c.d.(n,10) # 1,

ii) 2(n) 3, if g.c.d.(n,10) = 1.



Finally, we give an application of this result to solve
an embedding problem of Galois theory.

The authors want to express their gratitude to E. Nart
for his careful reading and improvements of an earlier version

of this paper.

1. The main term in the determination of 2(n)

as in [1], given a positive integer n Z 0,4,7(mod B), we
define the level of n as the maximum value of £ such that
there exists a representation of n as a sum of three integer
squares with 2 summands prime to n. It will be denoted by
L(n).

We consider also the functions

s, (n) s,(n) - 2s,(n)
g, = —2— , g, = 3 2 :
r(n,I3) r(n,I3)

51(") - sz(n) + s3(n)

g(n)= ’
3 r(n,I3)
where
_ A | 2 2.2
s;j(n) = oy (ﬁ) (-1)"ufa )u(a)ulay) r(n.<a1.a2.a3>) P

for 1 = 1,2,3. The sum (1) is taken over those square-free
dpositiye integers aj » 3 =1,2,3, such that 1 < aj]n for
:’ js i and ay = 1 for j > i . We take p; = 3 - 2(i/3} .
. i f!e éall ([1], prop. 1) that #(n) > i is equivalent
A 4, .‘. v
Lhia o
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Let £ = <ai,a§,a§> be a quadratic form such that

r(n,f) # 0, and where the a,'s are assumed to be square-

3

free positive integers dividing n. Let

dij = g.c.d.(ai,aj) y 1 <i, 3<3,1#5,

d123 = g.c.d.(al,az,a3) ,

-2

d = d123 d d

d

12 713 “23 -

The possible common factors of the a.'s can be avoided
by setting

2
1

- 2
r(n,<ai,a§,a§>) = r(nd 2,<b ,bg,b3>) ’
-1 d“l

where bi = dij ik d

123 ai y for i =12,3.
In particular we have g.c.d.(bi,bj) =1, for i # j and
g.c.d.(d,bi) =1, for i = 1,2,3.

Throughout this paper,ai,bi, for i = 1,2,3 and 4 will
have the meaning just explained.

Next, we introduce the following average alternating

sums ¢

I (=Dlutaulay)vlay) r(nd”?,gen<b?,b2,b25)

(1)

si(n) Py

for i = 1,2,3. The sum (1) and Py are defined as for si(n).
Here gen f stands for the genus of the quadratic form

f(see [6]).
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Note that if n is square-free, the average alternating

sums S, (n) are equal to the ones introduced in [1].

Now we define as in [1] :
' -1 .
Si(n) = r(n,I3) Si(n) ' i=1,2,3.

L]
We make the convention that Si(l) =0, for i=1,2,3.

Proposition 1. I§ n Z 0,4,7(mod 8), then

: : 35 (nd™%, <b7,b3,b3>)
S;(n) = py X (-1)"u(aj)ulay)u(ay) i
(1) q'alaza3 q aq (an3)
don 1 = 1,2,3, where q nuns over all prime factorns of a,ajay,

and 3 stands fon the g-adic density (see [1]).

Proof. It suffices to apply Siegel's Hauptsatz and observe

that
-2 2.2 ,2
aq(nd I<blrb2'b3>) = aq(n113) ’

for all prime q not dividing ajaja, and that

2 p? bz,b§>) . am(n,13)"1 = 1 g1,

3w (nd” ' =
1"72
q'a1a2a3

for q prime.
The preceding formulae allow to extend the definition

L]
of the si(n) to those integers n = 7(mod 8). This extension

will be needed later in an inductive step.



We define the main term Gi(n) in the determination of

the level of n as follows (cf.{1], Sect. 1) :

G (n) = S1(n) , G,(m) = S (n) - 253(n) ,

Gy(m) = 5,(n) - Sy(n) + Sy(n) .

Since the evaluation of the main term'leads tc consider

1

R R -2 2.2 .2 -
guotients of densities Bq(nd ,<bl,b2,b3>) . 3q(n,13) ,

we begin by studying these densities first.
We denote by vp(n) the p-adic valuation of n.

Definition. Let n Z 0,4(mod 8) be a positive integer and fect
p be a paime such that vp(n) = a > 0. Wiiting n = mp®, we

intrnoduce the folLLowing notation:

L]
ap(mpud—2,<bf,bg,b§>) ap(m,a), if p[bi §on exactly cne i,

p 3, (mp%, 1) 3 5(m,a), <f pld.
P

1]
That is, the above quotient is denoted by ap(m,a) if p
'
divides exactly one a;, and by 9 2(m,a) if p divides more

p
than one a; .

From the definition of p-adic density (cf.[l]) it follows
immediately that

2
3p(n,<p ¢1,15)

i) ap(m,a) = ’
p ap(n.13)




-2
ap(np ,13)

L]
i) 3 ,(ma) = —————— .
p p Bp(n.IJ)

Siegel in his paper [6] about representations of positive
integers n by integral quadratic forms f gave formulae to cal-
culate the p-adic densities Bp(n,f) when pf2 det £. In the case

f = I3 , we get the following

Proposition 2. Let n be a positive integen such that 4)n. Let

p be a prime such that vp(n) =q > 0 and write n = mpa. Then:

(14p 1) (1-p~ (B*D)y | i o = 2841,

"

i) Bp(n.13)

-1
(+p Y (1-p By + (p2-1)p ‘B+2’{1—(7§)p L,
L§a= 28,
jor p # 2.
3/2 i§ n = 1,2,5,6 (mod 8),
ii) 3,(n,I4) = 1 (4 n=3 (mod 8),

= 7 (mod 8).

o
-

[~ N
=
"

Proog. i) This is an immediate consequence of [6] Hilfssatz 16.
ii) az(n,13) is reduced to count r 3(n,I3), from which the
2

result follows.

Next, we explicit the values of ap(n,<p2,1,1>) when

vp(n) > 0.



For a positive integer n let €n = 1 if n = 1(mod 4), and
€n = i if n = 3(mod 4).
The densities appearing in the next proposition are not

covered by Siegel's formulae.

Proposition 3. Llet n be a positive integer such that 4fn. Let

p be a prime such that vp(n) = qa > 0 and write n = mpa. Then:

2ee201-p7h - p7P2eph), 4§ @ = 2641,
i) ap<n,<p2.1,1>) =

2+e;(1—p'1)—{1—(§§)1p'8. if o =28,

jon p # 2.

3/2 4§ n £ 1,5 (med 8),

11) 3,(n,<2%,1,15) = 1 4§ n=2,6 (mod 8),

3,7 (med 8).

0 44 n

Proof. i) In order to calculate these densities we consider
the following Gauss-Weber sums associated to a quadratic

ternary form f(xl,xz,x3) :

0 (m'f) - ; exp (M) :
p° 5.3 pS
xe(3/p72)

5 *
for me (2/p2) .

Each ger/Zp,g # 0 admits a unique representative in

]

Qp of the form mp > with 0 <m-¢ps, g.c.d.(m,p) = 1. This

allows us to define

ote,f) = p % 0 (m 1)

P



Then, one can see (cf.[3],[8]) that

3p(n,f) = Z el(g,f) <g,-n> ,

Ee Qp/zp

where <,> denotes the usual pairing between 2_ and Qp/zp .

Let Bs(n,f) = z 0(g,f) < £,-n> .

e Qp/zp
vp(E) = -8

From now on, f will be the quadratic form <p2,1,1> .
*
Then, for any m e(z/psz)

%] s(m,f) = po s(m'IB) , if 8 > 3. Therefore

p P
Bs(n,f) = p Bs(n,13) for s > 3. So :
ap(n.f) = 5;3 p Bs(n,I3) + B,(n,f) + By(n,f) + B (n,f).
PP
v(E) <- 2

Taking into account well-known results about the values
taken for the ordinary Gauss sums (cf.[2], Ch.7), it is easy

to evaluate the sums Bs(n,f). They are given by :

p 5/ 2(p-1) , if s

E o
1) B (n,f) = pr )2 e s = a4l
0 , 1f s > o+1

if s is odd.



[}
-~

i1) B (n,f) I !

0 , 1f s > o+l

if s is even.

To achieve the asserted results, it suffices now to
substitute these values in the expression of 8p(n,f).
ii) If p = 2, the calculation of az(n,f) can be reduced

to that of r 3(n,f).
2

If n # 0,4(mod B8) is a positive integer, we consider
a prime p dividing n such that vp(n) = qa > 0 is even if
not all the exponents in the factorization of n are odd.
We can further assume that p # 2 (unless n = 2, in which
case the values of ap(z,f), for £ = I3 or <22,1,1>, were
already calculated). We shall write n = mpa . Under this

convention we have.

Lemma 4. With our previous notations, {§ q 45 a prime

dividing a,aa; , g #p , 4% holds

a -
i) Bq(mp rI3) = aq(mrI3) .
-2 ,2.2.2 .
aq(m l<bllb21b3>)l 46 F’Xalaza:{ ’

g - -2 22,22,
15) 3 (mp% 2,05,65,b%) = {3, (nd"2,blp"%,b3,b%) 4§ Play.pfayay .

~22 .2

2
3gmd %, <by.

. 2
b2,b§>), i p lala2 .



Proog. 1) This follows, under our convention on pa,

immediately from prop. 2.

ii) Let us suppose that p!alaza3 .
If q divides exactly one a;, say a;, then, as is

easily seen

-2 2.2 .2 2
aq(mp“d +<by,b5,b3>) = aq(mp“,<q (1,15),

2

similarly, 3, (md” ,<b2,b2,b§>) = 8q(m,<q2,1,1>) .

Applying now prop. 3, under the convention made on pu, we

get
Bq(mpaﬁqz,l,b) = 3q(m,<q2,1,1>) .

If g divides more than one a; then

aq(mpad— ,<b Bq(mpad-2,13) and

eq(md‘2,<bf,b2,b§>)

-2
aq(md ,13) .

By prop. 2, account being taken of the convention made on

pa, we get

u.-2 _ -2
8q(mp d ,13) = Sq(md ,13) .

This proves the first case of ii).
The other two cases of ii) can be proved in a similar

manner.

If one substitutes all the values obtained in props.
2 and 3 in the corresponding expressions of the main term,

there appear rather complicated alternating sums. However,



the preceding lemma allows to simplify most of the densities
by comparing Gi(n) with Gi(m), m = np-a . In this way, we
obtain the following recursive formulae for the evaluation

of the main term.

Theorem 5. Lef n be a positive integen such that 4fn and
wrnite n = mp®, with o = vp(n) >0. We assume that o {5 even
iL§ not alf the exponents ocunhing £in the factordization of

n are odd. Then:
1) Gy(n) = Gy + 3 (m,a) (Gy(m) - Gy(m)) +

+ 9 ,(m,0) (1-G, (m)
p

ii) Gz(n) = Gz(m) + Bé(m,a)(G3(m) - Gz(m)) +

+

a;z(m,a)(l + Gz(m) - 2G3(m)) y

G3(m) + (38;(m,a) - 28'2(m,a»(1 - G3(m)) .

iii) G,(n)
3 p

T
Proof. Let us consider the sums Si(n) . We break them up
into partial sums according to the number of aj's such that
a, .
play
Applying the results of lemma 4 and the definitions of
L]

a‘(m,u) and 3 ,(m,a) we obtain :
p p2

S;mp%) = §;(m) + 3 (m,@) (3 - 5 (m)



s, mp%) = 5, (m) + 23;(m,0)(8;(m) - 5, (m) +

+

a;z(m,a)(3 - 25;(m) + S,(m) ,

S3(mp%) = §3(m) + 3, (m,a) (S,(m) - 3sy(m)) +

+

a;z(m,a)(l - S,(m) + 2 Sy(m) .

So, the assertion of the thecorem follows from the defi-

nition of the main term.

2. Bound of the main term

In order to bound the main term we first bound the values

L L]
of ap(m,a) and 3 2(m,a). From props., 2 and 3, we get the
P

following

Proposition 6. Let n Z 0,4(mod 8) be a positive integex.

o]

Write n = mp , with vp(n) = o > 0 and p # 2. Then

(2+52) pBH--e:2 pB -(p+1)
P P , Af o = 2841 .

g+1 _ 1)

n

1) 8;(m,u)
(p+1) (p

2
P
-1

{(p+1) [(p8-1)+(1-p-1) (1-(—‘5’—“)p-1} }

2, B _ B=1 _(q_¢=m
(2+ep)p efp {1-¢( p)J

ft

ii) ag(m,u)

-12 -



' 8

iii) 3 ,(m, )

= B =1 if = 2841 .
p

vii) 1§ p = 2, then

a;(m,l) = 1/3 , a;z(m,l) =0 .

Corollary 7. let n # 0,4(mod 8) be a positive integen.

Write n = mp” with vp(n) = o > 0 and p # 2. Then

' 1
i) 0 < ap(m,a) < 7 -
! -1
ii) 0 < 3 2(m,ot) <p .
P
' ' 7 .
i1i) 0 < 39, (m,0) - 23p2(m.c) <qy3 - t8 P #S5,
and
) 1
335(m,a) - Zasz(m,a) =1.
. ' ' 4
iv) 0 < Zap(m,a) - 9 2(m,u) < g -

- 13 -



Proof. The proof of the above statements is elementary. One
needs only to consider the different cases : p =z 1 or

3(mod 4), o being odd or even, (%?) = 1 or ~1 , and use the

expressions of prop. 6.

o

o
Theorem 8. let n = pll...pkk

4fn. Then thene exist constants c; = ¢y (By---py) such that :

be a positive integen with

Gi(n) < ci(pl...pk) <1,

dor i = 1,2,3 {§ g.c.d.{(n,10) =1 ; and i = 1,2 i{

g.c.d.(n,10) # 1 . In the Laftern case we have G3(n) = 1.

Proof§. Let us suppose that g.c.d.(n,10) = 1 ., We prove the
assertion of the theorem by induction on the number of
distinct prime factors of n.

If p# 2,5 . Then, by cor. 7 we have

1 1
G,(p®) =33 (1,0) - 23 ,(1,c) < U 1 ; and we can take
3 p p2 i3

cq(p) = 7/13 .
o Oy a o
Let now n = pll...pk§11 pkk , with k > 1 and pkk chosen

o %1
as in th. 5, and write m = pl ...pk_1 . Then, we have,

by virtue of th. 5, cor. 7 and the induction hypothesis,

that
) 4 d (1-Go(m)) = <4 + w5 G.(m) < cqf Yo 1
G3(n) < G3}m i3 3(m =13 13 3 < c3(pPy--.py)<

o 7,6
with c (py...p,) ¢ = —+— Co{py...P,_4) .
3'F1 k ' 13 13 371 k-1

.
1



By induction and applying again th. 5 and cor. 7, we get

that 0 < Gl(n) < Gy{n < G3(n) < 1 . Therefore, it suffices
to take €) = ¢y, =0Cy.

Let us now consider the case g.c.d.(n,10) # 1 . If Zln R
proceeding by induction on the number of distinct prime
factors of n, and taking into account th. 5 and cor. 7, we
get G3(n) = 1 . On the other hand, in order to prove that
there exist cz(pl...pk) such that Gz(n) < gy < 1, we write
n = mp;:k in accordance with th, 5, where Py can be taken

different from 2, unless n = 2 in which case

2
2
again with th. 5 and lemma 7, allows us to estimate Gz(n)

G2(2) =3 ,(1,1) = 0 . The fact that G3(m) = 1 , together

also by induction as follows :

G,(n) = G,(m) + (23;k(m,ak) -3 ,may)) (1-G,(m)) <
k

A

G, (m) + % (1 = Gy(m)) < cy(pyenpy) < 1,

with cz(pl...pk) : = é + % cz(pl"'pk—l) .
If 5|n , we proceed in an analogous way, distinguishing the
case p, = 5 from the one in which Py # 5.

By induction and applying again th. 5 and cor. 7, we
get 0 < Gl(n).g Gy(n) < G3(n) = 1 . Therefore, it suffices
to take ¢, = c, -

1

~ 15 -




3. The error term in the determination of %(n). Asymptotic

behaviour of £(n)

In this section we first estimate the growth of

r{n,f) - r(n,genf) .
Lemma 9. Lef n = nos2 be a positive integen, n £ 0,4,7(mod 8),
where n, 44 i{ts squanre-free part, let f = <b2,b§,b§> be a
quadnratic form such that biln, g.c.d.(bi,bj) =1, forn i # j,
and bi square-gree for i = 1,2,3, Then

e
r{n,f) - r(n,genf)= 0 (s )

’

e,n ,f

o'

gon every e > 0.

Proog. Under these conditions, the theta series 0(f, z)

associated to f belongs to the space M_(3/2, 4bib§b§) of

modular forms of weight 3/2 with respect to Fo(4b§b§b§)

Then, we can prove as in lemma 6 of [1] that r(n,gen f) =

= r(n,spn £f) , where spn £ stands for the spinorial genus of ﬁ.
By results of Schulze-Pillot (4] , we have that

0(f,2z) - O0(spn f,z) lies in u' , Where Ul is the orthogonal

complement, in the space of cusp forms 50(3/2, 4bib§b§) of

the space U = @ U(no) ¢ Ny square-free, with

oo

Uy = S,(3/2, 826N (£(2) = £ bnexp (2minp’z)} ,

n=1



with ¢(n) a chicracter modulo an integer r such that

2 2,2 2
r no, b1b2b3 .

If n runs into a quadratic class n = nos2 , then by
Shimura's n_ - lifting [5] and the theorem of Eichler-
Igusa (i.e., Ramanujan-Petersson for weight 2), we know
the growth of the Fourier coefficients a(n) of a cusp form

1
g lying in U(no) , in the sense that

(s )

2, .
a(nos ) = OE,no,g '

for every ¢ > 0 , (cf.[4], Hilfscatz 5).
Therefore, it suffices to apply these results to the

coefficients of o(f,z) - O(spnf,z) .

From lemma 9 we can give the growth of the error term:
g;(m - Gi(n).
Theorem 10. Let n = n_s?, n # 0,4,7(med 8), Let m_ = rad n
be the product of the distinct prime factors of n. For every
€ > 0, we have

1
.._2.+C

gi(n) - Gi(n) = oelno'mo(s ) ’

gon i = 1,2,3.

Let n.m, be two square-free positive integers. We define

the following family

F(n_,m) : = (n£0,4,7(mod 8 |n=ngs’ radn=m).

-7 -



Theorem 11. let n 7 0,4,7(mod B) be a positive integea, fLet
F(n_,m_) the famify to which n belongs. Then, there exists

a constant c(no,mo) such that {4 n > c(no,mo), then :

2 44 g.c.d.(n,10) # 1,
2(n) =

3 4i{ g.c.d.(n,10) = 1.

2

k) , where

» ] 2 %i4q a
noof. Write n = ns” = pl...pj(pj+1 -+ Py

Pyre++sPy May appear among Py,qses-sPy - Let

k
o(n) = '5' oy v and ¢ = 4/9 .
i=j+1
If g.c.d.{n,10) = 1 , by th. 8 there exist a constant
c3(mo); and by th. 10 there exist a constant

Cy = c4(4/9,no,mo) such that :

93(n) < ey tocy s-l/ls. Therefore, to achieve that g3(n) < 1
c
. 4 . _
it suffices to take a(n) > 18 log(l_c3) , if m, = ng and

c 1
4 .
a(n}) > 18 log(I:E;)'IBE—E; , if n, # mo . Here P, denotes
the least prime factor of n.

Then, we can take :

C
4 . _
no + 18 log (ﬁ;) if no = mo '

cin_,m ) =
o’o
- Cy log P,

n, exp l36 log (T:E;) 156 . ] if ng # m, .
o

Here Py denotes the greatest prime factor of n.

- 18 ~



Obviously, if n > c(n,m ), o(n) verifies the above
inequalities, and so g3(n) < 1.
Similarly, if g.c.d.(n,10) ¥ 1 , to achieve that

gz(n) <1, it suffices to take :

c
n_+ 18 log (1_2 ) y 1if n_=m H

o
cin m =
( 0' 0)

- Cs log Py } )
n, exp [36 log (I:E;) 166—5; , if ng # m i

where cz(mo) is the constant given in th. 8, and c5(4/9,n0,m0)
the O-constant in th. 10 corresponding to the error term

gz(n) - G, (n).

The following table, computed by P. Llorente, shows
that the constants c(no,mo) are, in general, non-trivial.
All non-square-free positive integers n < 105 not contained

in table II have the level expected from th. 8. v

Table II
F(in _,m) n=n 52 £(n) c{n_,m ) >
c’'o [ o'o’ =
2
F(10,30) 90 = 2.5.3 1 90
F{130,390) 1170 = 2.5.13.32 1 1170
F(190,570) 1710 = 2.5.19.32 1 1710
F(2210,6630) 19890 = 2.5.13.17.32 1 19890




Finally, we give an application to solve an embedding
problem of Galois theory.
Corollary 12. let n = 3(mod 8), and n Z0 (mod 5) be a
positive integern such that n > c(no,mo) . Then, eveny

central extension of the alternating group A, can be

nealised as a Galois group oven Q(T) and, moreover, ovea Q.

Proo§. One needs only to observe that all these integers

have level equal to 3, and apply th. 5.1 of [7].
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