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1IALFCANONICAL SERIES ON ALGEBRAIC CURVES y

Montserrat Teixidor i Biga"i

0. Introduction

Let ntg be the moduli space ofsmooth, complete curves of genus g over the complex field
C. We try lo investígate the subloci mrg of nig. These are defined as the loci of curves

having a 9-characteristic (i.e. a line bundle L such that L ® L - Kc), of (projective) dimensión at

least r and of the same parity as r .

By Clifford's Theorem, it is clear that mrg is empty if r > l/2(g-l). On the other
hand, one can easily see that hypereiliptic curves have theta-characteristics of all dimensions r with
0 < r < 1/2(g-l).

In (HJ, Harris proves

(0.1) Thenrem. (cf. (H) Th. (1.10)). Let X -» S be a family of curves and L a line bundle on

X such that the restriction L(s) to every fiber X(s) satisfies L^(s) “ X(s). Then the subset

of S {s e S | h° (X(s), L(s)) 2 r + 1 and h° (X(s), L(s)) a r + 1 (2)} has codimension at

most 1/2 r(r ^ 1) in S at all of its points.

Combining this with the above facts, one obtains:

(0.2) Theorem (Ilarris). The locus mrg is empty if and only if r > (1/2) (g-1). If
r < (1/2) (g-1), then any componen! of mrg has codimension at most (1/2) r(r+l) in mg.

One could ask if the lower bound of Harris for the dimensión of the components of mrg is in
fact an equality. This is not always the case, even for those components of mrg whose general point
corresponds to a curve with a halfcanonical series without fixed points, of dimensión exactly r and.



giving a hirational morphism of C ¡n Pr. A counterexample is provided, for inslance, by the work of
Accola [A], on curves of genus 3r wliich possess a (necessarily halfcanonical) simple series of
dimensión r.

In (bis case however g is very smal! compared with r, as (hese are Castelnuovo extrema!
curves. In his paper, Harris asks wlietlier the situalion becomes regular wlten g grows. Mere we give
an affirmative answer for r < 4.

In the first place, we find an upper bound for the dimensión of the components of mrg ,

namely 3 g-2r r 2. This is Sharp in the sense that for every r, lliere is one g (g = 2 r + I), for
which it is altained . In this case mrg is the hyperelliplic locus.

For r = 1 and 2, the upper bound coincides with the lower bound of Harris. It fotlows froni

this that has puré codimension 3 in ntg as well as the classical result that m'g is a divisor
in mg (see |F), IB]).

For r > 3, the upper bound is sharp only in the case mentioned above, namely g - 2 r + I.

As a consequence, m^g has codimension 6 in mg when g 2 8. For r > 4 the upper bound may be
refined when g » r and from this refinement the solution in case r - 4 follows.

We show moreover that, for r < 4 and g » r, a gencric point of a componen! of mrg
has only one halfcanonical series of this dimensión which is simple and that for r ^ 1 and 2 it has no

fixed poinls.

The proof uses the deformaron theory developped by Arbarello and Cornalba in (A, C1 1, 2
combined with sonie ideas inspirad by recent work of Díaz ID].

I would like to thank Gerald Welters for his guidance during the prepararon of this work.
1 Itave received partial suppoit from CIRIT and Instituí d Fstudis Catalans.

Definitions and preliniinnries

We recall first a few well known facts and introduce nolations that we are going to use

throughout the paper.

In this work, C will always denote a projective, non-singular curve of genus g deftned over the

complex field C. If F is a sheaf on C, the cohomology groups II1 (C, F) will often be written
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H1 (F). If f: X -* S is a morphism oí schemes, X(s) will denote the fibcr over s e S. For any

schetne S, T$($) will mean the tangent spacc to S at s, Tg the tangent sheaf on S.(1.1)With C as above, there exist irreducible, non-singular varieties X, S, S quasi-projcctive and

a Hat projective morphism p : X -> S such that

a) any fiber of p is á non-singular curve of genus g and one of then is C.

b) For every s in S, the Kodaira-Spencer map

TS (s) -> H’ (X(s), TX(s))

is an isomorphism

c) p has a seclion.

For such a family, there exists a Picard scheme Pie d(X/S) (that we shall write Pie d for

short), togelher with a Poincaré bundle on X xj Pie d. This parametrizes line bundles of degree d
on the fibers of p.

There is also a scheme Gr,j parametrizing linear series on the fibers of p (see (A. C 1 ] § 2).
If t is a point in corresponding to a curve C, a line bundle L on C and a subspace of

dimensión r + 1 in (L), then there is an exact sequence ([A, C 1] p. 17-18).

(1.2) 0 -> Hom (W H°(L)/W) —> T r (t) —> fl'CXp) -» Hom (W, If1 (L))

Here Xl denotes the sheaf of differential operators of order at most one acting on L. The space

H* (X,J is naturally identified with T g.] (L) and the last morphism is given by cup-product.
Pie(1.3)Definition. We define a scheme P by means of lite following pull-back diagram
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P -» Pie g 1

i i

S Pie 2g-2

where (he morphisms from Pie 8'* and S to Pie ^g-2 are oblained by means of the universal

properly of Pie ^8'2 by uS¡ng the square of the Poincaré bundle and the dualizing sheaf respectively.

The scheme P parametrizes curves of the family p and theta-eharacteristics on them so it

projeets onto S wilh degree 2^8. It is known ([M1) Th. p. 184), that the parity of a

theta-characteristic is locally constant. Therefore, P decomposes into two parts P^ and P'
corresponding to even and odd theta-eharacteristics respectively.

We define Tr by means of the pull-back diagram

T

l

pr + 1

r

i

Pie 8 *

where the superindex in Pr + * is understood modulo 2.

The scheme T* isclosedin Org.i and parametrizes semicanonical series of dimensión r on

X -» S whose corresponding bundle L satisfies h® L * r + 1 (2). It projets onto mrg n h (S),
where h : S —» mg is the classifying morphism induced by p.

(1.4) Propositinn. Let g and r satisfy g > (1/2) (r2 + r + 2). Let M be a componen! of

mrg. Then a generic poinl C of M cannot be a covering of a curve of genus g > !.
Moreover, if g > (1/2) (rJ + 3 r +2), r > 2, then C has only simple halfcanonical series of

dimensión r.
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Proof. Assume the first slatement were false i.e. C is a covering of degree 12 2 of a curve of genua

g'2 1.

The curves of genus g which are coverings of degree t of some curve of genus g' depend on

2g-2 -(2t-3) (g'-l) moduli (see [L1 Satz l). Therefore, by using (0.2), one finds

2g-2 2 2g-2 -(2 t-3) (g'-l) a 3g-3 -(1/2) r(r+l)

which contradice the hypothesis on g.

Assume now that g a (1/2) (r*- + 3 r + 2), r > 2 and C has a non-simple semicanonical
series of dimensión r. So this series should give rise to a moiphism in Pr which could be factored

C —> C' —> Pr , where the first morphism has degree 12 2 and C is a rational curve contained in

no hyperplane of Pr. This latter condition implies that the degree of C is at least r i.e.

(1/t) (g - 1 - k) 2 r where k is the number of fixed points of the semicanonical series. Henee

(1.4. a) t £ (1/r) (g - 1 - k) < (1/r) (g-1) .

Moreover, as C is a covering of degree t of a rational curve, M is contained in the set of t-gonal

curves and one has the inequality of dimensions (cf. (0.2)) 2g-2 + 2t - 3 > 3 g-3- 1/2 r(r + 1). Therefore

(1.4. b) t 2 (1/2) (g + 2) - (1/4) r (r + 1)

From (1.4.a)and(I.4.b), mease r > 2 one finds

g < (1/2) (r2 + 3 r + 2)

which contradicts the hypothesis.
Inthecase r =2, from (1.4.a) and (1.4. b) one finds

k - 0 t - (1/2) (g-1)

Henee g is odd and for a generic point of the set of t-gonal curves of genus g (which is
irreducible of dimensión 3 g-6), the line bundle L giving rise to the unique linear series of degree t
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and dimensión one satisfies 4 L * K. This cannot be true: for a hyperelliptíc curve C, consider the

Une bundle L - L2 <S> O ((1/2) (g-5) P) where I>2 is Ihe sheaf defining the g*2 and P is not a

Weierstrass point in C. Then 4L * K. Moreover, for a famity as ¡n(1.1), having C as a

fiber, it can be seen that G^ is irreducible (see the Appendix). So, the condition on

the restrietion of the Poincaré bundle 4 L = pj* <0 ^<5 will fail in an open (and therefore dense)

neighborhood of (C ) in , which projects onto a dense subset of ihe variety of t*gonal curves.

The following lemnia is implicit in [A,CJ 2. Wc inelude a proof here for the convenience of
the reader.

(1.5) Lemma. (Arbarello-Cornalba). Let M be a subvariety of mg of dimensión at least g,

p: X-> U a familiy of curves such that the classifytng map projects U onto an open dense subset of

M and let

X-> S x U

(15.1) I l
L u

be a family of birational morphisms from the fibers of p in a non singular algébrate surface S. Then,

for a generic point u in U, the normal bundle N to be morphism X(u) -> S satisfies h' N = 0.

Proof: The normal sheaf N to f is defined by means of the exact sequence

(1.5.2) 0 -> Tc -> f * Ts -> N-> 0

Let D be the ramification divisor of f and N’ the invertible rank one sheaf which fits in the exact

sequence

0 -> Tc (D) -> f * T$ -» N’ -> 0
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There is a conmutative diagratn

0

l

0 H

4. i

0 —>Tc —> f*Ts—> N—>0

(1.5.3) l || i

0 Tc(D)-*f*Ts-> N'-»0

l

Tc®Od(D)
l

0

and clearly

(1.5.4) H “ Tc ® O D (D) - O D

let t be a general point of U. Consider the Horikawa map Ty (t)—* (N) associated to tile family of

morphisms (t.5.1). By lemma (1.4) in [A, C 2], the image of this map interseets H® (H) in 0 and so it

maps injectively in H® (N'). Moreover, it is standard thal the composilion of the Horikawa morphism
with the natural map

H° (N) -» H* (Tc)

deduced from (1.5.2), is lite Kodaira-Spencer map associated lo X -> IJ. (See[Ho|. As t is general in

U, the dimensión of the image of this map is at least dim M. So, because of the hypolhesis on M)

h® ( C N') > dim M > g .
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As N' is a line bundle on a curve of genus g, this implies that it is non-special and so h* (N’) = 0 .

Then , from (1.5.3), (1.5.4) ¡t follows h* (N) = 0 as stafed.

(1.6) Corollary. Let g be at least 6. Por a generic point C of a componen! M of m^g any
halfcanonical linear series of dimensión 2 on C is simple and gives rise to a morphism in whose
associated normal sheaf N satisfes h< (N) = 0 .

Proof: For g - 6, if L has fixed points, llien C is hyperelliptic and (0.2) contradicts the genericity of

C. If L lias no fixed points, as g-I = 5 is prime, L is necessarily simple.
If g > 7, (1.4) gives the first assertion.
Then use (0.2) and (1.5).

§ 2 Infinitessimnl study of Tr and applications.
I Some consideralions about (he tangent space to Tr-

Let p : X -> S be a family of curves salisfying the conditions of (1.1). Let t be a point in
Tr corresponding to a curve C, a theta-characteristic L on C and a subspace W of dimensión r - I

(ofH°(L). Becauseof the definitionof Tr (cf. (1.3.)), thereis aputl-back diagram

(2.1)
T (t) -

Tf

l

T (C) ->
S

l

T

g-1

(C, K)
Pic^g-í

As the morphism of Pie 8*1 in Pie 2g-2 given by tensor square is étale, it induces an

isomorphisní of tangent spaces. So, one finds

H1 (IL) 3 T (C,L) 3 T (C, K) 3 H1 (Ek) .

p¡cg< P¡c282
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Wc recall thal, by hypolhesis (cf (1.1.b)), TjíC) is ¡soniorphic lo Il'(T(-;). The image of

TS(C) in II1 (XR) are those first order infinitessimal deformations Ke of K whicli give the

canonical sheaf on the corresponding deformation Ce of C, i e those deformations of K which
niainiain the g sections.

Therefore, by using (1.2), diagram (2.1) becomes

0
i

Hom ( W 1|0 (L)/W)
l

0-> T (t) -> T (I)
r r

T G ,gl
i J-

0-> H'(TC) -* “ H1 (XK) -> Hom (H°(K), ll'(K)) —> 0
i

Hom ( W, II1 (L>)

where the square is a pull-back diagram.

It can be checked that the ¡somorphism H “ H * sends a cocycle

(Sjj) e H* (X^) to (Id ® s¡j + s¡j ® Id) eH* (XjJ • So, the composed map.

T
r (0 -> Hom (H° (K), H'(K))

factors through

Hom (H°(K)/W-W, H!(K))

where W.W denotes the image of W ® W in H^(K) by means of the Petri morphism.

One flnds a diagram

i
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(2.2)

O O
l l
Hom ( W, tl®(L)/W) = Hom ( W, H°(L)/W) 0

i l l

0 -4 T (t) -> T (I) -4 llom (H°(K)/\V . w, H1 K)
Tr Gf

g->

i i l

0 -4 H'(TC) -> H'(Zl) “ H1 (XK) -> Hom(H°(K), H1 (K)) -4 0
i i

Hom (W,H' (L)) -> Hom( W W, II1 (K))
i
0

Tliis is exact, exactness in ihe upper row being deduced from thc fact thal (he left lower square is a

pull-back.

We shall repealedly consider (he following situation:

(2.3). Let t be a point of Tr corresponding to a curve C a theta-characteristic L on C and an

(r+l)-d¡mens¡onal subspace W of (L). Let D be the fixed part of the series corresponding to

W, k its degree, q an equation for D, V =■ L ® 0C (-D), W' the subspace of (L') whose image

by the natural inclusión

. q : H° (L') -4 H° (L)

is W. Let t' = (C, L’W') be the corresponding point in Grg-i .|(. Denote by f the morphism of
C in Pr associated to W'.

Consider the following diagram (cf. |A,C, 1] (4.1))
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o

p t
W' ® q2 W' -> W ® H° (K-L') -> H° (K)

II II t
(2.4) ni]

W ® q2W' -> W' ®H°(K-L') -> IIo (K® X*L') '
T T 1

m

Ker P -> IIo (2 K)
T
o

Here P ¡s the Petri morphism, the vertical sequence in the right is exact, mj ¡s the dual of the

natural contraction map and m is obtained from nt| by restriction.

Consider also tlie following diagram of exact sequences (cf. [A. C 1J 5.t)

0 0

1 l

O
. oc uc

4. i

0 -» ZL. -> W'* ® L’ -> N -> 0

l l ||

0-> Tc -> f*Tp2 —» N -> 0
l 4.

o o

where N is the normal sheaf to f, the vertical sequence in the middle is obtanied by pulling-back to

C the F.uler sequence in Pr and the morphism of Xl' 'n w'* ® L' - Hom (W', L') is defined

by contraction.

Taking homology one obtains

II



H'íOc) = H'(Oc)
4. 4. p*

H°(N) -> H1(Xl) -> Hom(W', H* (L')) -> H'(N) -> 0

II x 4- II

H°(N) -> H'(TC) -» n'(f*TPr) -> ll'(N) -> 0

4. 4.

0 o

Therefoie li'(f* Tpr) is ¡dcntified with the dual ofKerP. Morcover, because of (1.2), the image

ofT r (l) ¡n H' (Xl')=T g-l-lc(L) *s die image of the morphism above from H®(N)
G , . Pieg-l-k

to h’(Zl.) . So one obtains the following diagram ([A, Clip. 35)

(2.5)

T r (t) -> II'(XL.) -* Hom(W’, H1 (L)) -> H'(N) 0
G

i t,g-l-k
II -1- gL- í II

T r(t) -> Il'(Tc) (Ker P)* (Ker m)* 0
G

, .g-l-k
i i

0 0

Suppose now Ihat the polnt t corresponds to a complete theta-characteristic of dimensión r,

i.e W - H° (L) and henee W - H° (L) .

Assume that t ís a generic polnt of a component of T* . Then, up to a fínite base-change,

there are k sections sj ... of p : X —> S defined in a neigborhood of C in S such that, when

restrícted to the image of Tr in S they give rise to the fixed points of the theta-characteristc in the
fibers of p.
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One obiains then a commutative diagram

r r

T _v G
g-i-k 8-1

4.

Pie8'1

Taking tangent spaces, one has a factorization of one ihe morphisms in (2.2)

0 0 0 o
j> 4 4 4

0 -> T r(t) -» Tr(t') -» T r (t) —> Hom (H°(K)/W.W), H* (K))
T G

, . G ,B-l-k g-1
(2.6) 4. 4. 4. 4-

0 -i H’(TC) -> H'(Zl) * H'(Xl) * H'(Xk) -> Hom (H°(K), n'(K)) -> 0

Hom(W', H'(L')-> Hom(W, H* (L)) -> Hom(W.W, H1 (K))
4. 4.

H’ (N) o
4.
o

wliere Ihe isomorphism “ H* (X^) *s ti» differential of ihe isomophism from Pic8
(o Pic8"l given by tensor product with the sheaf Ox (sj(S) +...+ s^ (S)).

As üie upper left rectangle is a pull-back, so is the upper left square.

From the commutative diagram

Picg-l-k Pic8-' -» Pie2?'2

4.

s ^

one obtains, by taking tangent spaces
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H’(TC)
i l

h'(Il.) « hHIl) « H'(Ik)
?L' ^ ÍL ^ ?K ^

h’(tc) = h'(tc) - h'(tc) <

Id.

Therefore ¡ (intepreted throwgh the isomorphisms in tlie upper row) ¡s a section of g| •. Henee, vvith the

notations of (2.5),

(2.7) j (Trr (0) C g[, (h(T r(t) )) = Ker m*
Gg-l-k

wliere tile last equality follows from (2.5).

Then, one finds

(2.8) dim Tr < dim T r (() < dim j (T r (t) < dim Ker m* = 3g 3 - dim Ker P + dim Ker m
T T

we recall now that, by hypothesis, 2L » K, i.e. K-L >= L. Therefore, if s and s' ate elements in W,

s ® q^ s’ - s' ® q2 s belongs (o Ker P. In particular, Ker P has dimensión at least (1/2) r (r+1), as it

contains the independant elements s¡ ® q^ Sj - sj ® q^ s¡, 0 < i < j < r , for a basis s¡ of W.(2.9). Definition. The elements of Ker P of the form s ® q^ s' - s' ® q^ s will be called

deeomposable. The set of decomposable elements will be denoled by G and its projectivization by G'.

We point out that the point in G- Corning from s ® q^ s’ - s' ® q^ s depends only on the

one-dimensional linear subseries of (L\ W') generated by s and s'. In fact G' is isomophic to the

Grasmannian of lines in Pr canonically immersed in a linear subspace of dimensión 1/2 r(r+l) - 1 of

the projectivization of Ker P.

(2.10) Lemnta. Let t be a generic point of a componenmt of Tr corresponging to a complete

theta characleristic of dimensión r. Assume Ker m interseets < G > in 0 (cf. (2.9)). Then,
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dim Ker P - 1/2 r(r+l) + dim Ker m

and the image of T fr in H'(TC) is the Kemel of m* .

Proof: As < G > r\ Ker m = 0, dim Ker P £ dim < G > + dim Ker m = (1/2) r(r+l) + dim Ker m .

Then, (2 8) gives dim Tr< dim Ker m* < 3g-3-dim Ker P + dim Ker m < 3g-3-( 1/2) r(r+l). On the

other hand, by (0.1), dim Tr > 3g-3-(l/2) r(r+l). Thercfore all the inequalities are equalities and the
result follows using (2.7).

II. Non-exislence of fixed poinls

(2.11) Proposition. If the generic point of a componen! of Tr is a complete halfcanonic.il series of

dimensión r such that the associated morphism m (cf. 2.4)) satisfies Ker m = 0, then the halfcanonical
series has no fixed points.

Proof: The hypolhesis in (2.10) is satisfied. Therefore, taking into account that (Ker m)* . H*(N) (cf.

(2.5)), diagram (2.6) may be completed to.

0 0
i l

0
i

o -> T r(t) -> T r (0 -> Hom (H°(K)/W.W), H1 (K))
T G

, .g-l-k
i I i

0 -> H1 (Tc) -> hKI^,) —> Hom (H°(K), Il'(K)) -> 0
l m* 4. i

0 -> (Ker P)* -i Hom(W, H1 (L')) -> Hom(W.W, H1 (K))
i J- i
0 0 0
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Here the O in tile lower row is obtanied by diagram chasing, using (he fací that the upper left square is a

puli-back.

By the Snake's lemma and the exactness of the left column, coker I - 0. By (2.10),
dim P - (1/2) r(r+l). Then, a computation using the first row and column gives

dimT, (t') - 4 g-3-(r+l)^

From the central column

dim T r (f) = 4 g-3 + (r+l) h'(L') = 4 g-3- (r+1)2 - k (r+1)

where last equality follows by Riemann-Roch because of the hypothesis of the series being complete.

Therefore k = 0.

III. An upper bound in the dimensión of the componente of mr
B

(2.12) Lemma. Completing notations in (2.3), let V’ be a two-dimensional linear subspace of

W’, F the flxed part of the corresponding one-dimensional series and R the ramificaüon divisor of the

morphism C —» F^ it induces. Then, the image by m (cf. 2.4)) of the one-dimensiona! subspace of

Ker P associated to this series (cf. (2.9)) is the one dimensional linear space in H^2K) corresponding

to the divisor R + 2 D + 2 F.

Proof: Choose a basis a, b of V* so that b has no múltiple zeros outsíde F. Write a ** f b with f

a meromorhic function. Then f, as a morphism of C in P* , is unramified at infinity.

By definition (cf. (2.4)), m is obtanied from mj by restriction and mj is the dual of the

natural contracüon

H1 (Zl) -> Hom (W, TI*(L')) = Hom (W ® H° (K-L1), H>(K))
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More explicilty. once an affine covering U¡ of C has been chosen, any element in H* (Xj ) is

represented by a cocycle (s¡j).

Tlien m* (<s¡j)) (w) “ (sij (w)) e H*(L)
1

if w e W' or

m* ((Sij)) ( w ® (o) = (sjj (w) ü>) e H>(K)
1

if w e W , «o € H° (K-L) .

In particular, if v¡j is the derivation associated to s¡j, then m*](sjj) (a ® q2 b - b ® q2 a) -

(sjj (a) . q2 b - s¡j (b) q2 a) - v¡j (0 q2 b2 .

Therefore, the dual of the restriction of m to the subspace a ® q2 b - b ® q2 a opérales as

contracüon wíth f

H* (Tc) < a ® q2 b - b ® q2 a >* » H1 (K)

(vjj) -> v¡j (0 q2 b2

Henee,

m ( a ® b - b ® a ) « (d f)

Denote by Da and Db the divisors of zeros of a and b respectively.

By the choice of a and b, df is a meromorphic differential whose divisor of zeros is R

and whose divisor of poles is twice the divisor of poles of f i.e 2(Db - F). Therefore the divisor of

df • is

R-2(Db-F) + 2D + 2Db = R + 2F + 2D
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as asseried.

r

(2.13) Theorcm. Any component M of tn^ has dimensión at most 3g - 2 r - 2. For r£ 3
equality holds only for g » 2 r + 1 and in this case M is the hyperelliptic locus. For r > 4 and

g > max (l2r-22, (1/2) (r2 + 3 r + 2)), one has dim M < 3g - 4 r + 3.

(2.14) Corollary For r * 3 and g 8 and for r * 4 and g > 26, at a generic point of a

component of Tr projecting onto M, Ker m n < G > * 0 (cf. (2.9) (2.4) for the notations) .

Proof of (2.13), (2.14): A general point of M isa curve which has a complete semicanonical series
r + 2 k

of dimensión r + 2 k , k > 0 . If k > 0, M isa component of m^
try lo prove is adecreasing function of r, we may assume k * 0.

As the upper bound we

Let T be a component of T* projecting onto M and t a generic point of T. By (2.12)
the set G defined in (2.9) cuts Ker m, in 0. Henee G’ does, not intersect the linear subspace
L = P (Ker m).

Thereforc,

dim Ker m + dim G’ ^ dim Ker P - 1

As G' is a grosmannian of lines in Pr, it has dimensión 2(r -1). So,

dim Ker m < dim Ker P - 2 (r - 1) - I

and (2.8) gives

(2.13.1) dim j (T r (t)) < 3g-3-dim Ker P + dim Ker m < 3g-2 r - 2
T

which proves the First assertion in (2.13).

Assume now
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a) r > 3, g>2r+l and dim M = 3g-2 r- 2
or

b) r 2 4, g > max (t/2) (r^ + 3 r + 2), 12 r - 22), and dim M > 3g-4 r + 3

Condition a) implies that L has the maximal dimensión of a linear subspace in P not

intersecling G'. Therefore the linear space generated by L and a generic point in G' intersects G' in
olher poinus.

Conditon b) implies (cf. (2.13.1)) that dim Ker m > dim Ker P - 4 r + 7. Therefore L
meets the variety of chords of G' (which has dimensión 4 r - 7).

In both cases there is a pair of points in G having the same image by m. In case a) one of
the points in the pair (and henee also the other) may be assumed to be generic in G.

Using (2.12) we find two one-dimensional linear subseries g),g2 of (L, W) with fixed parts

Fj, F2 and ramification divisors Rj , R2Suchthat

(2.13.2) R| + 2 F¡ = R2 + 2 F2

Let R be the greatest effective divisor contained in R| and R2 and writte R¡ - R + A¡.

Then Ai+2F|= A2 + 2 F2 andAj,A2 have no points in common, so A2S 2 F] (2.13.3).

Consider the morphism (f|. Í2>: C —* P' x P* obtained as the product of the two

morphisms associated to the two one-dimensional linear series considered above.

This morphism is ramified at the points shared by the two ramification divisors of f| and f2

i.eatR. Henee, one finds a diagram defininf N' (cf. (1.5.3))

0 -» Tc -* f, TPI ®f2TPl -» N -a 0
i II i

♦ ♦

0 -> Tc(R) -> f, Tpi ©f2Tpi —> N' —> 0

By Ilurwitz's Formula, f*j Tp* * Tc (R¡). Therefore, computing with the lower row, one

19



finds

N’ = Tc (R,) ® Tc (R2) ® (Tc (R))v - Tc (R, + A2)

Henee h1 (N1) - h° (K - N') = h° (2 K - R| - A2) 2 h° (2 K - Rj - 2 F|) > 1

where (he first inequality comes from (2.13.3) and the last from the fact (see (2.12))

R, + 2 Fj + 2 D = 2 K

As d!m M > g and h* (N') - h* (N), this means by (1.5) that the morphism (f|, f2) is

composed wilh an involution.
In case b) (1.4) asserts that C is not a covering of a curve of genus g > 1 and that the

morphism C -> Pr induced by the halfcanonical series, is simple.

In case a) a proof as in (1.4) using the conditions dim M - 3g - 2 r - 2 and g>2r+l

gives the same result.

The morphism f¡ is obtained from a one-dimensional linear subseries of (L, H® (I.) .

F.quivalently, f¡ is obtained by composing f with a projection from a codimension 2 subspace X¡ in

Pr. The condition for (fj , f2) to be composed with an involution of degree k is that fj and f2
should be composed with the same involution. This means that the intersection of the hyperplanes

generaled hy X¡ and a generic point of C contains k - 1 further points.

In case a), by the genericity of Xj and the principie of general position, this implies
k < r - 1. As the Hurwitz-scheme of coverings of degree r- 1 and genus g of P* has
dimensión 2 g + 2 (r - 1) - 2, one obtains

3 g - 2 r - 2 + 2 (r - 1) = dim M + dim Gr (r - 2, Pr) < 2 g + 2 (r - 1) - 2

so r > g/2 which contradicts a)

Consider now case b). We are assuming that the morphism (f j f2) given by the two linear
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subseries gj, g2 of (L, (L)) considered above may be factored

1

C -> P1 -» P1 * I’*

where Ihe firsl morphism has degree k and (he second bidegree (nj.nj) wilh kn¡ < g - 1. Menee

(he dimensión of M must be at most (lie dimensión of the set of k - gonal curves, namely
2 g + 2 k - 5.

Assume n¡ > 3, then k< (1/3) (g-1) and dim M S 2 g + (2/3) (g-1) - 5 which contradicts b).

If n| = n2 - 1 , then R| - R2 and by (2.13.2) F) = F2 . So, gj - g2 which is not the case.

If nj - nj = 2, then gj, g2 are one-dimensional subseries of I* H® (d pl(2)) + F|

and I* H®(dpl{2)) + F2 respeclively. As, by hypolhesis, the line bundle for both series is the

same, one obtains Fj * F2. lf F| « F2, because I* H^(ripl(2)) is 3-dimensional, gj and g2

would share a section. Bút this implies that the line in < G’ > joining the points corresponding to

gl and g2 is entirely contained in G'. By assumption, the image by m of the 2-plane of G

corresponding to this line is a line in (2K), so G would cut Ker m and this contradicts (2.11).

If Fj sí F2, then h®(Fj)> 2 and C is (g-1-2 k) gonal. Therefore, by b)

2 g + 2 + 2 (g-1-2 k) - 5 > 3 g-4 r + 3

2g + 2 + 2k-5 > 3 g-4 r + 3

Bul (hese inequalitie, are incompatible with b).

ir n, = 1 n2 = 2, then g, - I* H° 0 Pl(1) + Ft f g2 C 1* H° 0 PI(2) + F2 ; so

R2,R, + A| + A2 where A¡ € I* 0 pl(l) are the pull-back of the ramífícatíon points of the

double covering P* —» P* . From (2.13.2)

A y + A2 + 2 F2 = 2 F |
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As A|, A2 have dispoint supports, this implies that all points in ihe support of A¡ have even

multiplicity in A¡ and are in the support of Rj and I is ramifíed over at most 2 g + k - 2 distinct

points. Henee C dependí on at most 2 g + le - 5 moduli. As k < (1/2) (g-1), this contradicts b) and
ends the proof of (2.13).

We point out that, in case r = 3 and g 2 8 and in case r * 4 and g > 26, we have

proved that Ker m intereeis the variety of chords of G in 0 and in both cases this chordal variety
coincides with the span < G > of G in Ker P. Henee (2.14) is also proved.

(2.15) Corollary. Let M be a componen! of mrg , C a gcneric point in M. If r<3 or r = 4
and g > 38, then C has no halfcanonical linear series of dimensión greater thatt r.

Proof: Assume that C had a semicanonical series of dimensión greater than r. Then M would be

contanied in a component of nigr + * or mgr+2. So, by (2.13), dim M( 3g-2r-4, and
dim M £ 3g - 17 if r = 4 and g 2 38. But this contradicts (0.2).

IV Uniqueness of the halfcanonical serles

(2.16) Theorem. For r = I, r = 2 and g 2 6, r » 3 and g>9 or r = 4 and g> 38, a

generic point of any component M of mrg has only one halfcanonical series of dimensión r.

Proof: Let M be a component of mrg with g and r satisfying the hypothesis. Let C be a

generic point in M. From (2.15), a halfcanonical linear series on C is complete. Assume C had

two of them, then they would correspond to two different line bundles L} and 1-2 on C. Let t] and

t2 be the corresponding points in Tr. By the genericity of C in M and the fact that the image in

H* (Tc) of the tangent spaces to Tr at both points has dimensión equal to the dimensión of M (cf.
(2.8), (2.10), (2.14)), these iinages must be (he same. Moreover they are the kernels of the
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corresponding morphisms m = (cf. (2.10)). By duality, the images of Uie morphisms tri| .are

also the same. 1 1

From (2.5) (Kcrm)* is ¡dentified with H*(N) and this is zero when r = 1 and also wlien

r = 2 (cf. (1.6)). When r= 3 or 4, Ker m intersects the space < Gl > in 0 (cf. (2.14)).
i

For r - I or 2 <Gl > ■= Gl • For r - 3 (resp. 4). Gj has dimensión 4 (resp. 6) and
i i i

< Gj > has dimensión 6 (resp. 10). As < Gl > o Ker m - 0, these are also the dimensions of the
i i

images of Gl and <Gl> by m. Therefore Gl and Gl must intersect. By (2.12), this means
i i 12

that there are one dimensional linear subseries of (L¡ (L¡)) such that the corresponding fixed parís

Fj and ramification divisors Rj satisfy

(2.16.1) R, + 2 F| + 2 Dj - R2 + 2F2 + 2 D2

Where D¡ denotes the fixed part of (L¡, (L¡)). Moreover for r = 1 or 2 the one-dimensional

series may be assumed to be generic in H® (Lj), so F¡ - 0.

This pair of linear series gives rise to the morphism (f(, f2): C —> P* x P' ramiried over the

divisor R of points shared by Rj and R2. All we need to prove is that this morphism is birational.
Then the proof is finished as in (2.13) by application of (1.5).

By (1.4) (fj, f2) is not composed with a non-rational involution.

Incase r = 1 and 2, D| = D2 = 0 by (2.11) and we found already F| = F2 =0. If the

morphism were composed with a rational involution, then L| = L2 contradicting the hypothesis.
We study now the case r = 3, the case r - 4 being similar will be left to the reader.

Assurne (fj, f2)could be factored as

I

C -> P1 -> P1 x P1

where I has has degree k and the second morphism has bidegree (n | , n2).
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If ni - n2 - 1, then R] - R and from (2.16.1) Fj + D| * F2 + D2 . As

L¡ - l*Cípl (1) + Fj + D¡,
this gives Lj = L2 and contradicls the hypothesis.

If n| » 1, 112 ¿ 2, Üien R2”Rj + £ A¡ where each A¡ is the divisor oF a fíber of

L and there are atleast twodifferent A¡ in the summation. Now (2.16.1) is

2 Fi + 2 D] - Z Aj + 2 F2 + 2 D2,

therefore all points in A¡ are counted with multiplicity at least 2 and so they appear in the ramificaron

divisor of I. K foilows that the set of coverings of P* such as 1 depend on at most 2 g + k - 5
moduli. As k S (1/2) (g-1) and dim Mí 3 g - 9, this implies g<9 and in this case k = 4.
Now for g = 9, one would have « I* O pl (2). Therefore C woutd be contained in a quadric

cone in P-*. But this is impossible by a moduli count (cf. (0.2) and |A, C) 3, Lemma (3.13)).
If n|, n2 > 2. then L¡ =» rt* 0 pl (2) + T¡ where Tj is effective. As Li * L2

and 2 Li = K - 2 L2 , I ] * T2 and 2T] = 2 T2. So C is (g-1-2 k)-gonal. This implies

2g - 5 + 2 (g-l-k) 2 3g - 9. As C is also k-gonal, one finds 2g-5 + 2k 2 3g-9. Henee
k 2 3, g / 9 g í 10 and if g = 10 for all trigonal curves of genus 10. 6 g'3 = K which is not

the case (see the proof of (1.4)).

V. Conclusions for r < 4

(2.17) Theorem. The locus m*g (resp m^g) has puré codimension 1 (resp. 3) in mg if g 2 3
(resp g > 5) and a generic point of any of its components is a curve which has only one halfcanonical
series of dimensión 1 (rep 2 if g > 6). Moreover this halfcanonical series is not eomposed with an

involution (resp. if g > 6) and has no fixed points.

Proof: The dimensionality statement foilows from (0.2) and (2.13). The uniqueness of the
halfcanonical series froin (2.16).
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For r -- 1, (1.4) says Ihat (he series caniiot be composed willi a non-rational involution. If il
were composed wilh a rational involution, liten the dimensión of Ihe series would be at least 2,

contradicting (2.15). For r = 2 the simplicity of the series is contained in (1.4).
From (2,5), the condition Ker m = 0 is equivalen! to h* (N) - 0. From (1.6) this is salisfied

for r-2 and it is obviously satisfied for r» 1. Then (2.11) gives the non-existence of fixed points.

We have obtanied similar results for r - 3 and 4 that we sum up in the following theorem.
We point out however that the bounds given on the genus for r * 4 are not the best posible and could
be improved by ad hoc methods.

(2.18) Theorem. The locus m^g (resp. m^g) has pura codimension 6 (resp. 10) if g> 8 (resp. 26).
If g > 9 (resp g ¿ 58), a generic point in a componem of this locus has only one halfcanonicat series

of dimensión 3 (resp. 4) and this gives rise to a birational morphism in (respectively I’'*).

Appendix. Irrediictibility of

We inelude a proof of this fact here because we have not been all to find a proper reference in the
literatura.

Let p : X -♦ S be a family as in (1.1). Choose a d such that p (g, d, 1) = 2d - g - 2 < 0. We

want to prove that G is irreducible. We shall assume that this is not the case and reach a

contradiction.

(3.1) It is known that G*,j is non-singular and has dimensión 2d+2g-5 if g > 2 (cf.
|A, C] 1, p. 35).

As the set of d-gonal curves m * gj is irreducible of dimensión 2g + 2d-5 if g > 2 and a

generic d-gonal curve has only one linear series g'j (|A, CJ 2 Th. 2.6), thgre is exactly one

componen!of G'<j. projecting onto m*g,j.
Consider a componen! G of G'j not projecting onto m*g ¿ . We claim that a generic point of
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G is a linear series without fixed points. Olherwise if k were the number of fixed points of a generic

series in G, then dim G = dim g',)^ + k and this conlradicls (3.1).

Replace S by the image of G in the S above by meaos of the natural map and denote by q

q
lite morphism G-» S. Now dim S < dim m'g j - 1 < 2 g + 2 d - 6. and therefore, by
(3.1) the dimensión of the fibers of q is a > 1.

Writte G xs G - U T¡ the irreducible components of the product. The fibers of the surjective

morphism G xs G —> S are the product of the fibers of q, henee their generic dimensión is 2a.

Therefore there is one T¡, say T, projecting otilo S with generic fiber of dimensión 2 a. Consider the

pull-back diagram

qi
T —> G

q2 J- i q
G -> S

q

As T projeets onto S, so does the image of T by q2- Therefore the dimensión of the generic fiber of

q} is at most the dimensión of the fibers of q. Henee,

dim S + 2 a - dim T í dim qj(T) + dim fiber q| S dim q|(T) + dim fiber q » dim qj (T) + a 5
< dim G + a = dim S + 2 a.

Henee q| (T) -= O and similarly q2<T) * G and as generic point of T corresponds to a pair of

linear series which have no fixed points (as this happens for the generic point in G). Moreover, as

dim T =. G + 2 a > dim G, T is not continued in the diagonal of G x G and the two linear series in the

pair are different

Consider the morphism f: C —» P* x P* associated to this pair of linear series.
Assume f were birational. Then, by [A, C) 2, prop. (2.4), dim T » g + 4 d - 7 . Henee

dim G = g+ 4d-7-a. This, together with (3.1), gives I < a = 2 d - g - 2 contradicting the

hypothesis p < 0.

Therefore f is composed with an involution, i.e, f may be faclored
'

\ '■
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I

c -> c -> r1 x pi

where 1 has degree m 2 2, C'hasgenus g' and the two rulings of P* x P* cul linear series on C'
of degree d/m whose pull-back to C are the two series on C considerad above . Henee

dim T < dim T' + f 2 g - 2 - m (2 g' - 2)]

where T is a componen! of f'd/m * G'd/m for curves of genus g'whose general point gives rise to

a birational morphism of C’ in P* x P* and the second sumand is the number of moduli of an

m-cover of C of degree g.

If g’ > 2, by |A, C] 2 prop (2.4)

dim T - g + 4 d/m - 7

Henee dim G « dim T-a<2g + (l-2m) (g'- 1) + 4 d/m -9<2g+2d-5 and this

contradicts (3.1).

lf g' - 0, C = P1 . Tlien m < d because, otherwise g'j =■ a* O pl (1) - h*d ■

Henee dim O S dim G*m + dim í» * d/m (P*) = 2g + 2m-5 + 2 (d/m - 1) < 2 g + 2 d - 5

Similarly, if g - 1, C' is elliplic and.

dim G S dim m j + dim G (C‘) + 2g-2 = 2g + 2 d/m < 2 g + 2 d - 5.

in both cases this contradicts (3.1).
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