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0. Introduction

Let my be the moduli space of smooth, complete curves of genus g over the complex field
C. We try to investigate the subloci mrg of mg. These are defined as the loci of curves
having a ©-characteristic (i.e. a line bundle L suchthat L ® L = K.), of (projective) dimension at
teast r and of the same parity as r .

By Clifford's Theorem, it is clear that m'g is empty if r> 1/2(g-1). On the other

hand, one can easily see that hyperelliptic curves have theta-characteristics of all dimensions r with
0<r < 172(g-1).

In (H], Harris proves

(0.1) Theorem. (cf. [H] Th. (1.10)). Let X —» S be a family of curves and L a line bundle on

X such that the restriction L(s) to every fiber X(s) satisfies Lz(s) = X(s). Then the subset
of S {s e Siho (X(s), L(s)) 2r+1 and WO (X(s)‘ L(s)) =141 (2)} has codimension at

most 172 r(r + 1) in S at all of its points.
Combining this with the above facts, one obtains:

(0.2) Theorem (Ilarris). The locus mfg is empty if and only if r> (1/2) (g-1). If

1 < (1/2) (g-1), then any component of m’g has codimension at most (1/2) 1(r + 1) in mg.

One could ask if the fower bound of Harris for the dimension of the components of m"g is in
fact an equality. This is not always the case, even for those components of m"g whose general point

corresponds to a curve with a halfcanonical series without fixed points, of dimension exactly r




giving a birational morphism of C in Pf. A countcrexample is provided, for instance, by the work of
Accola [A}, on curves of genus 3r which possess a (necessarily halfcanonical) simple series of
dimension r.

In this case however g is very small compared with r, as (hese are Castelnuovo extremat
curves. In his paper, Harris asks whether the situation becomes regular when g grows. Here we give
an affirmative answer for r < 4.

In the first place, we find an upper bound for the dimension of the components of m’g ,
namely 3 g-2r + 2. This is sharp in the sense that for eveiy 1, thereisone g(g = 2 r + 1), for
which it is attained . In this case m"g is the hyperelliptic locus.

For r = 1 and 2, the upper bound coincides with the lower bound of Harris. It follows from

this that ng has pure codimension 3 in my as well as the classical result that m'g is a divisor
in my (see [F), IB]).
For 1 > 3, the upper bound is sharp only in the case mentioned above, namely g=2r+ 1.

As a consequence, m3g has codimension 6 in my when g 2 8. For r 2 4 the upper bound may be

refined when g >> r and from this refinement the solution in case r =4 follows.

We show moreover that, for r < 4 and g >> r, a generic point of a component of m"g

has only one halfcanonical series of this dimension which is simple and that for ¢ = 1 and 2 it has no
fixed points.

The proof uses the deformation theory developped by Arbarello and Cornalba in (A, C1 1, 2
combined with some ideas inspired by recent work of Diaz [D].

1 would like to thank Gerald Welters for his guidance during the preparation of this work.

I have received partial support from CIRIT and Institut d'Estudis Catatans.

Definitions and preliminaries

We recall first 2 few well known facts and introduce notations that we are going to use
throughout the paper.

In this work, C will always denote a projective, non-singular curve of genus g defined over the

complex field C. If Fis a sheafon C, the cohomology groups i (C, F) will often be written



Hi (F). If f: X-» S is a morphism of schemes, X(s)} will denote the fiber over s € S. For any

scheme S, Tg(s) will mean the tangent spacc to S at s, Tg the tangent sheaf on S.

(1.1)  With C as above, there exist irreducible, non-singular varieties X, S, S quasi-projective and
a flat projective morphism p: X — S such that
a) any fiber of p is a non-singular curve of genus g and one of then is C.

b) Forevery s in S, the Kodaira-Spencer map
Ts (9 > H! (X6) Tx(s))

is an isomorphism

c) p has a section.

For such a family, there exists a Picard scheme Pic d(X/S) (that we shall write Pic d for

short), together with a Poincaré bundle on X xg Pic d . This parametrizes line bundles of degree d
on the fibers of p.

There is also a scheme Gfy parametrizing linear series on the fibers of p (see [A.C 1] § 2).
If t is a poiat in GFy corresponding to a curve C, a line bundle L on C and a subspace of

dimension 1+ 1 in HO (L), then there is an exact sequence ({A, C 1} p. 17-18).

(12) 0> Hom (W HOLYW) - T , (0 - H'(Z,) - Hom (W, H! (L))

%

Here EL denotes the sheaf of differential operators of order at most one acting on L. The space

1 (%) is naturally identified with T g-1 (L) and the last morphism is given by cup-product.
Pic

(1.3) Definition. We define a schemme P by means of the following pull-back diagram



P o pied!
{ A

s o pic28?

where the morphisms from Pic g1 and S to Pic 28-2 are obtained by means of the universal

property of Pic 28-2 by using the square of the Poincaré bundle and the dualizing sheaf respectively.

The scheme P parametrizes curves of the family p and theta-characteristics on them so it
projects onto S with degree 228, It is known (IM]) Th. p. 184), that the parity of a
theta-characteristic is locally constant. Therefore, P decomposes into two parts P0 and P!
corresponding to even and odd theta-characteristics respectively.

We define T¥ by means of the pull-back diagram

r r

T -5 G
2

l l

-1

pr+tl o pic gl
where the superindex in P'+ 1is understood modulo 2.

The scheme 1" is closed in G'g.y  and parametrizes semicanonical series of dimension r on
X — 8 whose corresponding bundle L satisfies WOL=r+1 (2). It projets onto mrg ~ h(S),

where h:S > my is the classifying morphism induced by p.

(1.4) Proposition. Let g and r satisfy g > (1/2) (12+r+2). Let M be a component of
m'g. Then a generic point C of M cannot be a covering of a curve of genus g2 1.

Moreover, if g > (1/2) (2 + 31 +2), v2 2, then C has only simple halfcanonical series of

dimension r.



Proof. Assume the first statement were false ie. Cis a covering of degree t>2 of a curve of genus=
g =1
The curves of genus g which are coverings of degree t of some curve of genus g’ depend on

2g-2 «(2t-3) (g-1) moduli (see [L] Satz l). Therefore, by using (0.2), one finds
282 2 2g-2 {(2t3) (-2 3g-3 - (1/2) r(r+1)
which contradicts the hypothesis on g.

Assume now that g 2 (1/2) (r2 +3r+2), r 2 2 and C has a non-simple semicanonical
series of dimension r. So this series should give rise to 2 morphism in P' which could be factored
C— C' - Pr, where the first morphism has degree t22 and C' is a rational curve contained in
no hyperplane of P'. This latter condition implies that the degree of C' is at least r ie.
(/1) (g-1- k) > r where k is the number of fixed points of the semicanonical series. Hence

(14.a) ts (g-1-%) < (M) (g-1.

Moreover, as C is a covering of degree t of a rational curve, M is contained in the set of t-gonal

curves and one has the inequality of dimensions (cf. (0.2)) 2g-2+2t-323g-3- /2 1(r + 1). Therefore
(14.b) t2 (V2 @E+2)-(d)r+1)
From (1.4.a) and (1.4.b), incase r > 2 one finds

g<s (M2 +3r+2)

which contradicts the hypothesis.
Inthecase r =2, from (14.2) and (1.4.b) one finds

k=0 t=(2)@D

Hence g is odd and for a generic point of the setof t-gonal curves of genus g (which is

irreducible of dimension 3 g-6), the line bundle L giving rise to the unique linear series of degree t



and dimension one satisfies 4 L = K. This cannot be true: for a hyperelliptic curve C, consider the
line bundle L =1L, ® O ((172) (g-5) P) where Ly is the sheaf defining the g12 and P isnota
Weierstrass point in C. Then 4L # K. Moreover, for a family as in (1.1), having C as a
fiber, it can be seen that G"t is irreducible (see the Appendix). So, the condition on
the restriction of the Poinca‘ré bundle 4 L = Pl‘ © yg will fail in an open (and therefore dense)

neighborhood of (C g‘d Yin (‘.}l , which projects onto a dense subset of the variety of t-gonal curves.

The following lemma is implicit in [A,C] 2. We include a proof here for the convenience of

the reader.

(1.5) Lemma. (Arbarello-Cornalba). Let M be a subvariety of mg of dimension at least g,

p: X — U afamiliy of curves such that the classifying map projects U onto an open dense subset of

M and fet
X-> SxU

(15.1) L {
> U

be a family of birational morphisms from the fibets of p in a non singular algebraic surface S. Then,

for a generic point u in U, the normal bundle N to be morphism X(u) —» S satisfies hIN-oO.
Proof: The normal sheaf N to f is defined by means of the exact sequence
(1.5.2) 05 T, > f*Tg > N> 0

Let D be the ramification divisor of f and N’ the invertible rank one sheaf which fits in the exact

sequence

05 TcMD-> (*Tg -+ N >0



There is a conmutative diagram

=~I Y 1

0
! l

05T, - f*Tg—> N0

(1.5.3) { ] l
05 TeD>1*Tg—> N0

l
T.®0p (D)
!
0
and clearly
(1.54) H=z TC®OD(D)‘-‘-' p

let t be a general point of U. Consider the Horikawa map Ty (t)— Ho (N) associated to the family of

morphisms (1.5.1). By lemma (1.4) in [A, C 2], the image of this map intersects uo ) in 0 and so it
maps injectively in HO (N') . Moreover, it is standard that the composition of the Horikawa morphism

with the natural map
HO )y — H! (T

deduced from (1.5.2), is the Kodaira-Spencer map associated to X — U. (See [Ho). As tis general in

U, the dimension of the image of this map is at least dim M. So, because of the hypothesis on M)

W(C N) 2 dim M>g.



As N'is a line bundle on a curve of genus g, this implies that it is non-special and so W Ny=0 .
Then, from (1.5.3), (1.5.4) it follows ht (N) = 0 as stated.

(1.6) Corollary. Let g be at least 6. For a generic point C of a component M of ng any

halfcanonical linear series of dimension 2 on C is simple and gives rise to a morphism in P2 whose

associated normal sheaf N satisfes h! N)=0.

Proof: For g = 6, if L has fixed points, then C is hyperelliptic and (0.2) contradicts the genericity of
C. If L has no fixed points, as g-1 = 5 is prime, L is necessarily simple.

If g 2 7, (1.4) gives the first assertion.

Then use (0.2) and (1.5).

§ 2 Infinitessimal study of T and applications.

1 Some considerations about the tangent space to T'-

Let p: X — S be a family of curves satisfying the conditions of (1.1). Let t be a point in
T' corresponding to a curve C, a theta-characteristic L on C and a subspace W of dimension r =1

(of B0 (L). Because of the definition of T (cf. (1.3.)), there is a pull-back diagram

@n
T ® - Tt
U Gg-l
i
T (O » T €K
s Pic28-1

As the morphisin of Pic g1 in Pic 282 given by tensor square is étale, it induces an

isomotphisnt of tangent spaces. So, one finds

HI(Z) =T CL=T €K =H (Z,).
Pice- Pic2g-2



We recall that, by hypothesis (cf (1.1.h)), Tg(C) is isomorphic to H‘(TC). The image of
Tg(C) in Hl! (ZK) are those first order infinitessimal deformations Kg of K which give the

canonical sheaf on the corresponding deformation C. of C, i e those deformations of K which
maintain the g sections.
Therefore, by using (1.2), diagram (2.1) becomes
0
l
Hom ( W HO (Lyw)
!

0->T @® - T @O
T r
T G,
4 {
0 HI(TE) —» HY(Z,) = H! (X)) - Hom (HOK). HI(K)) — 0

l
Hom ( W, (L))

where the square is a pull-back diagram.

1t can be checked that the isomorphism Hl(zl) = gl (ZK) sends a cocycle
) € HI (2D w0 de s+ 5 ®1d) € Ht (ZI) . So, the composed map.

T L Hom (MO (X), H!(K))
Gg-l
factors through

Hom (HO(Kyw -w, HI(K))

where W.W denotes the image of W @ W in HO(K) by means of the Petri morphism.

One finds a diagram



0 0

{ {
Hom (W, HOWLyW) = Hom ( W, I0(LyW) 0
{ l L
05T ® o T ® - tom(ul®yw.w, H'K)
T G'
g-1
2.2) i 4 {
0 HTE - HIZ)) = HI(X) - Hom(HOK), HI(K) -0
i !
Hom (W, H1 (L)) - Hom{(W-w, 111 (K))
d

0
This is exact, exactness in the upper row being deduced from the fact that the left lower square is a
pull-back.
We shall repeatedly consider the following situation:
(2.3). Let t be a point of T' corresponding to a curve C a theta-characteristic L on € and an
(r+1)-dimensional subspace W of Ho (L). Let D be the fixed part of the series corresponding to

W, kits degree, q an equation for D, L'=L ® O (-D), W' the subspace of HO (L) whose image

by the naturat inclusion

q: HOw) > HO@)

is W, Let t' = (C,L'W") be the corresponding point in Grg-l~k~ Denote by f the morphism of

C in PI associated to W',

Consider the following diagram (cf. [AC, 1] (4.!))



0

p 1T
W ®¢wW - W @H? (K-Ly - 1O K)
I f T
24) my
weewosw aHOKL) 5> H0OK® X'\ ‘
0 0 !
m
Ker P - 02K
T
0

Here P is the Petri morphism, the vertical sequence in the right is exact, my is the dual of the
natural contraction map and m is obtained from my by restriction.

Consider also the following diagram of exact sequences {cf. {A.C 1] 5.1)

{ !
c = 9
l l
05X, - W'QL5>N-0
l l I
0 T, —)f‘Tp2 - N0
1 {
0 0

where N is the normal sheaf to f, the vertical sequence in the middle is obtanied by pulling-back to
C the Euler sequence in PT and the morphism of EL’ in Ww* ® L' = Hom (W', L) is defined

by contraction.

Taking homology one obtains



Hlwy = Hly
l !t

HOMN) —» HI(Z, ) - Hom(W,H!I(L)) - HIN) - 0

[ \ \ [
HON) —» HYTY) - HUF Tpn - HINy 5 0
! 4
0 0

Therefore HI(f* Tpr) is identified with the dual of Ker P. Moreover, because of (1.2), the image

of T o () in u! (EL) =T g-l-k(u) is the image of the morphism above from HO(N)

Gg-l-k Pic

to H‘(ZL.). So one obtains the following diagram ([A, C 1] p. 35)

h
T, @© - H(X) - Hom(W,H' L)) -» HIN) - 0
G
g-1-k
@5 I ey i f
mt
T ;- Hi(TY) - (Ker P)* 5 (Kerm)* 50
G
g-1-k
) , i
0 0

Suppose now that the point t corresponds to a complete theta-characteristic of dimension r,

ie W=HO(L) andhence W' = HO(L).

Assume that t is a generic point of a component of T¥ . Then, up to a finite base-change,
there are k sections s ... 5 of p: X — S defined in a neigborhood of C in S such that, when

restricted to the image of T' in S they give rise to the fixed points of the theta-characteristc in the

fibers of p.

12



One obtains then a commutative diagram

r r r
T Gg-l—k - Gg-l

{ 1
$ - pict!

Taking tangent spaces, one has a factorization of one the morphisms in (2.2)

0 0 0 0
$ l l l
05T ;M = Te) > T () - Hom (HOKYywW.w), H! (K))
T G G
g-1-k g-1
(2.6) i i l {
0 - HI(TY » HI(Z,)~HI(Z,) ~HI(Z,) - Hom (HOK), HI(K)) — 0
l { $
Hom(W', HI(L) » Hom(W,H! (L)) - Hom(W.w, H! (X))
i {
H! (v ‘ 0
0

where the isomorphism H‘(ZL.) «Hl (ZL) is the differential of the isomophism from picg-1-k

10 Pic8-1 given by tensor product with the sheaf 0, (5{(S) +...+ s ($)).

As the upper left rectangle is a pull-back, so is the upper left square.
From the commutative diagram
Picg- 1k 5 Ppicg-! o pic282
l
> S <+~

one obtains, by taking tangent spaces



Hi(re) )

il -
HI(Z ) « 1)) = uH(Zy) "1
g b gt ek !

vees s o

ni(r) - i) - A1) -

Therefore i (intepreted through the isomorphisms in the upper row) is a section of g » . Hence, with the

notations of (2.5),

@7 i) c g, (W@ ) -Ker m*
Go-1-k
where the last equality follows from (2.5).
Then, one finds

28) dimTF<dimT () <dimj(T () Sdim Ker m* = 3g-3 - dim Ker P + dim Ker m
T T

we recall now that, by hypothesis, 2L = K, i.e. K-L = L, Therefore, if s and §' are elements in W',

s® q2 §-5'® q2 s belongs to Ker P. In particular, Ker P has dimension at least (1/2) r (r+1), as it

contains the independant elements s; ® q2 5j- 5@ q2 5{,0<i<j<r, forabasiss; of W

(2.9). Definition. The elements of Ker P of the form s ® qz -8 ® q2 s will be called
decomposable. The set of decomposable elements will be denoted by G and its projectivization by G'.

We point out that the point in G’ coming from s @ q2 s-5®qs depends only on the
one-dimensional linear subseries of (L', W') generated by s and s'. In fact G' is isomophic to the
Grasmannian of lines in Pf canonically immersed in a linear subspace of dimension 1/2 r(r+1) - 1 of

the projectivization of Ker P.

(2.10) Lemma. Let t be a generic point of a componenmt of TT corresponging to a complete

theta-characteristic of dimension r. Assume Ker m intersects <G > in (cf. (2.9)). Then,

14



dim Ker P = 1/2 ¢(r+1) + dim Ker m

and the image of T ¥ in HI(T_) is the Kemel of m* .

Proof: As <G >N Kerm=0, dimKerP2 dim <G > + dim Ker m = (1/2) r(r+1) + dim Ker m .
Then, (2.8) gives dim T' < dim Ker m* < 3g-3-dim Ker P + dim Ker m < 3g-3-(1/2) t(r+1). On the
other hand, by (0.1), dim T > 3g-3-(1/2) 1(r+1). Thercfore all the inequalities are equalities and the

result follows using (2.7).

II. Non-existence of fixed points

(2.11) Proposition. If the generic point of a component of T' is a complete halfcanonical series of
dimension r such that the associated morphism m {cf. 2.4)) satisfies Ker m = 0, then the halfcanonical

series has no fixed points.

Proof: The hypothesis in (2.10) is satisfied. Therefore, taking into account that (Ker m)* = H’(N) (cf.
(2.5)), diagram (2.6) may be completed to.

0 0 0
l l {

05 T) - T, ) — Hom(HYKYWW), H! (K))
T G

g-1-k
(2.6) l i) 1

0-»RITY - H‘(zu) - Hom (HO(K), H(K)) - 0
1 om | L

0 — (KerP)* - Hom(W,H! (L)) > Hom{w.w, H!(K))
! A l
0 0 0




Here the 0 in the lower row is obtanied by diagram chasing, using the fact that the upper left square is a
pult-back.

By the Snake's lemma and the exactness of the left column, coker | =0. By (2.10),
dim P = (1/2) 1(r+1) . Then, a computation using the first row and column gives
dimT ; (1) = 4g-3-(r+1)2
g-1-k v

From the central column

dimT () = 4g3+@+1) WLy -4g3- (D)2 -k (r+1)
('g-l‘k

where last equality follows by Riemann-Roch because of the hypothesis of the series being complete.

Therefore k = 0.

L. An upper bound in the dimension of the components of m"
g

(2.12) Lemma. Completing notations in (2.3), let V' be a two-dimensional finear subspace of
W', F the fixed part of the corresponding one-dimensional series and R the ramification divisor of the
morphism C — Pl it induces. Then, the image by m (cf. 2.4)) of the one-dimensional subspace of
Ker P associated to this series (cf. (2.9)) is the one dimensional linear space in HOGK) corresponding
to the divisor R+2D +2F.

Proof: Choose a basis a, b of V' so that b has no multiple zeros outside F. Write a = fb withf

a meromorhic function. Then f, as a morphism of Cin P!, is unramified at infinity.
By definition (cf. (2.4)), m is obtanied from my by restriction and my is the dual of the

natural contraction

H (2[) - Hom (W, HI(L)) = Hom (W' ® HO (K-L), HI(K))

16



More explicitly, once an affine covering U; of C has been chosen, any element in ul (ZL) is

represented by a cocycle (Sij) .

Then m‘ ((sij)) (W) = (sij (w)) € H'(L)
1

if we W' or

m () (w @ 0)= (55w 0) € HIK)
1

if we W', ® € HO(K-L) .

In particular, if vij is the derivation associated to Sijr then m'l(sij) (a® q2 b-b® q2 a) =
(-‘ij (a) . q2 b- 5ij (b) q2 a)= vij M 212,

Therefore, the dual of the restriction of m to the subspace a ® q2 b-b® q2 a operates as

contraction with f

HU (T) » < 3a®¢2b-b®q2a>" « HI(K)

i) > vij (D g2 b2

Hence,

m(2a®q2b-b®qla)=(dNqlb2

Denote by Dy and Dy, the divisors of zeros of aand b respectively.

By the choice of a and b, df is a meromorphic differential whose divisor of zeros is R
and whose divisor of poles is twice the divisor of poles of f ie 2(Dy, - F). Therefore the divisor of
af - q2 b2 is

R-2(Dy-F)+2D+2Dp=R+2F+2D

17



as asserted.

r
(2.13) Theorem. Any component M of mg has dimension at most 3g-2r-2. Forr2 3

equality holds only for g = 2r+ 1 and in this case M is the hyperelliptic locus. For r >4 and

g = max (12r-22,(l12)(r2+3r+2)), one has dim M<3g-4r+3.

(2.14) Corollary For r=3 and g2>8 and for r=4 and g2 26, ata generic point of a
component of T projecting onto M, Ker mn <G >=0 (cf. (2.9) (2.4) for the no(alions) .

Proof of (2.13), (2.14): A general point of M is a curve which has a complete semicanonical series

r+2k
of dimension r+2k, k20. If k>0, M is acomponent of mg . As the upper bound we
try to prove is a decreasing function of r, we may assume k = 0.

Let T be a component of T' projecting onto M and t a generic point of T. By (2.12)
the set G defined in (2.9) cuts Ker m, in 0. Hence G’ does, not intersect the linear subspace

L =P (Ker m).

Therefore,

dimKer m + dim G' £ dim Ker P-1
As G’ is a grasmannian of lines in PY, it has dimension 2(r -1). So,
dimKer m < dimKer P-2(r-1)-1

and (2.8) gives

2.13.1) dim j (T ; (V) <3g-3-dim KerP + dim Ker m <3g-2r-2
T

which proves the first assection in (2.13).

Assume now



a) r23, g>2r+1 and dim M=3g-2r-2

or

b) 124, g>max (I/2)(r2+3r+2), 12r-22),and dim M > 3g-4r+3

Condition a) implies that L has the maximal dimension of a linear subspace in P not
intersecting G'. Therefore the linear space generated by L and a generic point in G' intersects G' in

other points.

Conditon b) implies (cf. (2.13.1)) that ;iim Kerm 2> dim Ker P-4t + 7. Therefore L.
meets the variety of chords of G' (which has dimension 4 r - 7).
. In both cases there is a pair of points in G having the same image by m. In case a) one of
the points in the pair (and hence also the other) may be assumed to be generic in G.

Using (2.12) we find two one-dimensional linear subseries gy, g3 of (L, W) with fixed parts

F{, Fy and ramification divisors Ry, Ry such that

(2.13.2) Ri+2F; = Ry +2F)
Let R be the greatest effective divisor contained in R; and Ry and writte R; =R + A;,
Then Ay +2F) = Ay +2F, and Ay, Ay have no points in common, so Ay < 2 Fy (2.13.3).

Consider the morphism (f), f3): C— P! x Pl obtained as the product of the two

morphisms associated to the two one-dimensional linear series considered above.

This morphism is ramified at the points shared by the two ramification divisors of f) and f;

i.e atR. Hence, one finds a diagram defininf N' (cf. (1.5.3))

* *
()—)Tc -~)fl 'rl,,easzl,l—)N—;o
N\ I 1
* *
0 - Tc(R) - fI Tl" $f2TP| - N -0
! 4
T, ® ogR) 0
1
0

By Hurwitz's Formula, f'i Tp] = T¢ (R). Therefore, computing with the lower row, one

19



finds

N =T Ry) ® Te R ® (T (R)Y = Tc Ry + Ag)
Hence W) =0 (KR-NY=h0 2K-R-Ap2h0(2K-Ry-2F)) 21
where the first inequality comes from (2.13.3) and the last from the fact (see (2.12))
Ry + 2F1+2D= 2K

As dim M > g and hl (N) = ! (N), this means by (1.5) that the morphism (fy, f) is
composed with an involution.

In case b) (1.4) asserts that C is not a covering of a curve of genus g > 1 and that the
morphism C — PT induced by the halfcanonical series, is simple.

In case a) a proof as in (1.4) using the conditions dim M = 3g-2r-2 and g>2r+ 1

.

gives the same result.

The morphism fj is obtained from a one-dimensional linear subseries of (L, HO L.
Equivalently, f; is obtained by composing f with a projection from a codimension 2 subspace Xj in
P, The condition for (f} , f3) 1o be composed with an involution of degree k is that fy and fp

should be composed with the same involution. This means that the intersection of the hyperplanes

generated by X; and a generic point of C contains k - 1 further points.
In case a), by the genericity of X; and the principle of general position, this implies

k Sr-1. As the Hurwitz-scheme of coverings of degree r -1 and geaus g of Pl has
dimension 2 g + 2(r - 1) - 2, one obtains
3g-2r-2+2(@-1) = dim M+ dim Gr(r-2,P7) < 2g+2(-1)-2

so r > g/2 which contradicts a)

Consider now case b). We are assuming that the morphism (f{ f3) given by the two linear



subseries g1, gz of (L, KO (L)) considered abave may be factored

1
c o pl 5 plxp!

where the first morphism has degree k and the second bidegree (ny,ny) with kn; < g- 1. Hence

the dimension of M must be at most the dimension of the set of k- gonal curves, namely
2g+2k-5.

Assume n; = 3, then k< (1/3) (g-1) and dim M $2 g + (2/3) (g-1) - § which contradicts b).
If np=ny=1, then Ry =Ry and by (2.13.2) Fj = Fy . So, g1 = g7 which is not the case.

If ny = ny = 2, then g;,gy are one-dimensional subseries of I* HO(G pl(2)) +Fy
and 1* Ho(opl(Z)) + Fo respectively. As, by hypothesis, the line bundle for both series is the
same, one obtains Fy = Fy. If Fj = Fp, because * H0(0p1(2)) is 3-dimensional, gy and g,
would share asection. But this implies that the line in < G' > joining the points corresponding to
g1 and gy is entirely contained in G'. By assumption, the image by m of the 2-plane of G

corresponding to this line is a line in HO (2K), s0 G would cut Ker m and this contradicts (2.1 1).
If Fy # Fy, then no (F1)2 2 and C is (g-1-2k) gonal. Therefore, by b)

2g+24+2(g-1-2k)-5 > 3g4r+3
2g424+2k-5 > 3g4r+3

But these inequalitie, are incompatible with b).

Wnp=1 nyp=2 then gy =I*HOOpPI) + Fy , gg ¢ FHOO I +Fy: s0
Ry =Ry +Ap+Ay where Aje I* no pl(1) are the puli-back of the ramification points of the
double covering rl 5 Pl From (2.13.2)

AI+A2+2F2=2F|
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As A), A, have dispoint supports, this implies that all points in the support of A; have even
multiplicity in A; and are in the support of Ry and | is ramified over at most 2 g + k - 2 distinct

points. Hence C depends onat most 2 g + k - 5 moduli. As k < (1/2) (g-1), this contradicts b) and
ends the proof of (2.13). )

We point out that, incase r=3 and g > 8 and incase r=4 and g > 26, we have
proved that Ker m interects the variety of chords of G in 0 and in both cases this chordal variety

coincides with the span <G > of G in Ker P, Hence (2.14) is also proved.

(2.15) Corollary. Let M be a component of m'g , C agenericpointin M. If r<3 or r=4

and g 2 38, then C has no halfcanonical linear series of dimension greater than 1.

Proof: Assume that C had a semicanonical series of dimension greater than r. Then M would be
contanied in a component of mg" +1 o mgr +2 so, by (2.13), dim M< 3g-2r-4, and
dimM< 3g-17 if r=4 and g> 38. But this contradicts (0.2).

IV Uniqueness of the halfcanonical series

(2.16) Theorem. For r =1, r = 2 and g26, r = 3 and g29 orr = 4 and g> 38, a

generic point of any component M of m"g has only one halfcanonical series of dimension r.

Proof: Let M be a component of m’g with g and r satisfying the hypothesis. Let C be s

generic point in M. From (2.15), a halfcanonical linear series on C is complete. Assume C had

two of them, then they would correspond to two different line bundles Ly andLy on C. Let t; and
ty be the corresponding points in TT. By the genericity of C in M and the fact that the image in
Hl (T,) of the tangent spaces to T' at both points has dimension equal to the dimension of M (cf.

(2.8), (2.10), (2.14)), these images must be the same. Moreover they are the kernels of the

2



corresponding morphisms m = my (cf. (2.10)). By duality, the images of the morphisms my are
also the same. i i

From (2.5) (Ker m)* is identified with HI(N) and this is zero when r = 1 and also when

t = 2 (cf. (1.6)). When r= 3 or 4, Ker m intersects the space < Gy, > in 0 (cf. 2.14)).
i

For r = 1 or 2 <G, >=Gy, . For r = 3 (resp. 4). G, has dimension 4 (resp. 6) and
i i i

< Gy, > has dimension 6 (resp. 16). As <Gy > n Ker m = 0, these are also the dimensions of the
i i

images of G, and <Gp > by m. Therefore Gy, and Gy, must intersect. By (2.12), this means
i i 1 2

that there are one dimensional linear subseries of (L; HO (L)) such that the corresponding fixed parts

F; and ramification divisors R; satisfy

(2.16.1) Ry +2F;+2D) = Ry +2F +2D;

Where Dj denotes the fixed part of (L;, no (Lj)). Moreover for + = 1 or 2 the one-dimensional
series may be assumed to be generic in Ho (Lj),so F; = 0.

This pair of linear series gives rise to the morphism (fy, f) : C — P! x P! ramified over the
divisor R of points shared by Ry and Rj. All we need to prove is that this morphism is birational.

Then the proof is finished as in (2.13) by application of (1.5).

By (1.4) (fy, f;) is not composed with a non-rational involution.
Incase r = 1 and 2, Dy =Dy =0 by (2.11) and we found already Fy =Fy =0. If the
morphism were composed with a rationat involution, then Ly = Ly contradicting the hypothesis.

We study now the case 1 = 3, the case 1 = 4 being similar will be left to the reader.

Assume (fy, f3) could be factored as

1
co pl 5 plx pt

where |has has degree k and the second morphism has bidegree (n} , ny).
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If ny =np = 1, then Ry = R and from (2.16.1) Fy+Dy = Fp+Dy. As

Li = I‘Opl (1) + Fj+ Dy,
this gives Ly = Ly and contradicts the hypothesis.

If ny=1ny 22, then Ry=Ry +Z A; where each A; is the divisor of a fiber of

L and there are atleast two different A; in the summation. Now (2.16.1) is
2F  +2Dj= 2, Aj+2Fy +2Ds,

therefore all points in A; are counted with multiplicity at least 2 and so they appear in the ramification
divisor of 1. It follows that the set of coverings of P! such as 1 depend onat most2g+ k-5
moduli. As k < (1/2)(g-1) and dim M2 3g-9, thiz implies g<9 andin thiscase k =4 .
Now for g =9, one wouid havely = o pl (2). Therefore C would be contained in a quadric
cone in P3. But this is impossibie by a moduli count (cf. (0.2) and [A,C) 3, Lemma (3.13)).
If nj, ny 2 2, then Li=1!'0pl (2) + T; where T; is effective. As Ly # Ly

and 2Ly =K=2Ly, Ty# Ty and 2Ty = 2T7. So C is (g-1-2k)-gonal. This implies
28-5+2(-1-k) 2 38-9. As C is also k-gonal, one finds 2g-5+2k 2 3g-9. Hence

k23, g#9g <10 and if g =10 for all trigonal curves of genus 10, 6 g|3 = K which is not

the case (see the proof of (1.4)).

V. Conclusions for r < 4

(2.17) Theorem. The locus mlg (resp ng) has pure codimension 1 (resp. 3) in my ifg23

(resp g 25) and a generic point of any of its components is a curve which has only one halfcanonical
series of dimension 1 (rep 2 if g > 6). Moreover this halfcanonical series is not composed with an

involution (resp. if g 2 6) and has no fixed points.

Proof: The dimensionality statement follows from (0.2) and (2.13). The uniqueness of the

halfcanonical series from (2.16).
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For r =1, (1.4) says that the series cannot be composed with a non-rational involution. If it
were composed with a rational involution, then the dimension of the series would be at least 2,
contradicting (2.15). For r = 2 the simplicity of the series is contained in (1.4).

From (2,5), the condition Ker m = 0 is equivalent to h! (N) = 0. From (1.6) this is satisfied

for r=2 and it is obviously satisfied for r= 1. Then (2.11) gives the non-existence of fixed points.

We have obtanied similar results for r =3 and 4 that we sum up in the following theorem.
We point out however that the bounds given on the genus for v =4 are not the best posible and could

be improved by ad hoc methods.

(2.18) Theorem. The locus m3g (resp. m"g) has pure codimension 6 (resp. 10) if g> 8 (resp. 26).

If g >9 (resp g > 38), a generic point in a component of this locus has only one halfcanonical series

of dimension 3 (resp. 4) and this gives rise to a birational morphism in Pl (respectively rd).

Appendix. Irreductibility of Gld

We include a proof of this fact here because we have not been all to find a proper reference in the

literature.
Letp:X - S be afamily as in (1.1). Choose a d such that p(g,d, )=2d-g-2<0. We
want to prove that G lg is irreducible. We shall assume that this is not the case and reach a

contradiction.

(3.1) it is known that G‘d is non-singular and has dimension 2d+2g-5 ifg>2 {cf

(A, CI 1, p. 35).

As the set of d-gonal curves "“g,d is irreducible of dimension 2g + 2d -5 if g>2 anda
generic d-gonal curve has only one linear series g‘d (1A, C] 2 Th. 2.6), thgre is exactly one
component of G1 d- projecting onto m 'g,d-

Consider a component G of G‘d not projecting onto m lg.d . We claim that a generic point of
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G is alinear series without fixed points. Otherwise if k were the number of fixed points of a generic

series in G, then dim G = dim G‘d-k + k and this contradicts (3.1).

Replace S by the image of G in the S above by means of the natural map and denote by q

q
the morphism G — S. Now dim § £ dim mlg,d -1<2g+2d-6. and therefore, by

(3.1) the dimension of the fibersof q is a> 1,
Writte G x4 G = U Tj the irreducible components of the product. The fibers of the surjective
morphism G xg G -5 § are the product of the fibers of q, hence their generic dimension is 2a.

Therefore there is one Tj, say T, projecting onto S with generic fiber of dimension 2 a. Consider the

pull-back diagram

qa
T - G
@ ! tq
G - S
q

As T projects onto S, 50 does the image of T by q). Therefore the dimension of the generic fiber of

qy is at most the dimension of the fibers of q. Hence,

dim S +2a=dim T <dimq;(T) + dim fiber q; < dim q(T) + dim fiber q =dimqq (T} + a<

< dim G +a =dimS +2a.

Hence qq (T) = G and similarly q3(T) = G and as generic point of T corresponds to a paic of
linear series which have no fixed points (as this happens for the generic point in G). Moreover, as
dim T = G + 2 a > dim G, T is not continued in the diagonal of G x G and the two linear series in the
pair are different.

Caonsider the morphism f: C — Pt x P! associated to this pair of linear series.

Assume f were birational. Then, by [A, C12, prop. (2.4), dim T =g +4d-7.Hence
dim G =g +4d-7-a. This, together with (3.1), gives 1 < a =2 d - g - 2 contradicting the
hypothesis p < 0.

.., Therefore f is composed with an involution, i.e, f may be factored
N
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1
C-o C -»prlxrp!

where 1 has degree m 2 2, C has genus g' and the two rulings of P! x P! cut linear series on C'

of degree d/m whose pull-back to C are the two series on C considered above . Hence
dmT< dimT +[2g-2-m@2¢g-2)]

where T is a component of G! x G! for curves of genus g’ whose general point gives rise to
d/m d/m 4

a birational morphism of C in P! x P! and the second sumand is the number of moduli of an
m-cover of C of degreeg.
If g'2 2, by [A,C] 2 prop (2.4)

dim T =g+ 4d/m-7

Hencedim G=dimT-a<2g+(1-2m@e-1N)+4dm-9<2g+2d-5 and this

contradicts (3.1).
g =0, C=P!, Then m < d because, otherwise g1d=1t'0pl (y=hly.
Hence dim G < dim Gl +dim Gl PH=2g+2m-5+2(Wm-1)<2g+2d-5.
Similarly, if g' =1, Cis elliptic and.
dim G < dimmy +dim Gld,m(C') +2-2=2g+2dm<2g+2d-5.

in both cases this contradicts (3.1).
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