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Abs;ract: We show that the class of all isomorphic images of Booleans
products of members of SR{1] is the class of all Archimedean
W-algebras. And the class of all isomorphic images of CW-

4algebras is the class of all W-algebras such that the family
of all minimal prime implicative filters is the family of

all Stone ultrafilters.

INTRODUCTION AND PURPOSES

W-algebras (or Wajsberg algebras) are the algebraic models of
Qg—valued bukasiewicz's Propotional calculus. Indeed, see [7], they are
equivalent to MV-algebras introduced by C.Chang in [4] and used in [5] to
show the completeness of bukasiewicz's Propositional Calculus. The advan-
tage of to use W-algebras is that they are defined with the operations

"implication" (+) and "negation" (~), which have a clear logic signification.

The class of all W-algebras is a variety generated by the W-algebra
R {1], defined in 1.D., and it has the property that every simple W-algebra
is isomorphic to a subalgebra of it. In the other hand, every W-algebra is
igomorphic to a subdirect product of CW-algebras (or W-algebras which are
chains with the associzted partial order defined in (1.12)). The purpose of
this paper is to give a characterization of the W-algebras wich are isomor-
phic to a boolean product of a subalgebras of R [l] , or isomorphic to a boo-

lean product of CW-algebras.
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In section l, we give a several well known definitions and results,
without proof, on W-algebras which we will need is the paper. In section 2,
we define the toplogical Spectrum of any W-algebra, which is a Bounded Stone
Space, and we show that it is a Boolean Space if and only if the W-algebra
is Archimedean. In section 3, we see that the class of all isomorphic ima-
ges of boolean products of members of SR{l} is the class of all Archimedean
W-algebras, moreover this representation is unique. Finally, in section 4,
we prove that the class of all isomorphic images of boolean products of
CW~algebras is the class of all W-algebras such that the family of all mini-
mal prime implicative filters is the family of all Stone ultrafilters, and

we see that this representation is unique.

To show the last result we could have used the results of R.Cig~
noli, see[ 6] , we give a direct proof because the proof using Cignoli's re-
sults is very large. A complet study of W-algebras has been made in [8] ,
unfortunately this work has not published, any way in [ 7] can be found
the properties used in this paper. For the definition and properties of
boolean product see {2] , and for its conection with boolean sheaf spaces

see [3].

1. W-ALGEBRAS: DEFINITIONS AND PROPERTIES

Along all the paper A = (A,+,~,u) represents an algebraic

structure of type (2,1,0), we write it AgK(2,1,0).

1.A. Let AgK(2,1,0) we say that A is a W-algebra provided that it satisfies
O Nt g~
the following equations:
(1.1) usx = x
(1.2) (x+y)+y = (y+x)+x
(1.3) (x+y) > ((y+2)+(x+2)) = u

(1.5) (x+~y)+(y+x) = u



By definition the class of all W-algebras is a Variety, we denote

To short we write 0 =~u, xo»y =y, and for any 'n<m‘x“+y =
x +(xn—l->y). If P is a property, W = P denote that P is valid iu all W.
It satisfies:
(1.5) WEx+x=u
(1.6) WEx+u=u
.7y ¥E xn-*(ym—b 2} = ym-b(x“-*z), for any n,m < .
(1.8) WFEx+0 =~
(1.9) WE ~x+~y = y»x

(1.‘10) WE~(=) =x

1.B. In any W-algebra we can define a lattice structure in the next way. We set:
(1.11) xvy = (x+y)+y and xAy = ~(~=xv~y).
Then for any é_:g ¥, (A,A,v,~,0,u) is a De Morgan algebra, where A is the meet,
v is the join,~is the nagation, 0 is the lower bound and u is the upper
bound. Moreover the lattice partial order is given by:
(1.12) x<y if and only if x+y = u
To show the above results it is necessary to see the following
properties:
1.13) W E xn->y<xm+y, for any 0<n<n < g
(1.14) WE (xay)+z = (x>2)v(y~+2)
(1.15) WE (xvy)+z = (x+2)A(y~+z)
(1.16) Wk (x+y)v(y+x) = u
QA WEx>(yvz) = (x+y)Vv (x+2)

(1.18) Wk x+(yaz) = (x+y) A(x>2)

1.C. W is an arithmetical Variety with 2/3 minority term: m(x,y,z) = ((x+>y)-+2)A -
A((z+>y)>x)A (xvy) , hence it is Congruence distributive and Congruence

permutable,



1.D. The Variety W is generated by the following algebra:
1] =(lo,1},*,~,1), where [0,1)is the unit interval of the totally

ordered aditive group of reai numbers and a-+b = inf {I,l-a+b}, ~a = l-a.

1.E. Let A€W and fGA we say that f is an jmplicative filter when:

u€ f; for any a,beA, acf and a*bef implies beg £f. The family of all
implicative filters of ﬁ, which we denote @i(é'),is an algebraic closure
system and it is a subfamily of the family of all lattice filters of the
De Morgan algebra defined in 1.B. Hence @ng() is an algebraic lattice
where the meeet is the set-theoretic intersection, the join is: fl’fZ e@i(A)
flV fz = Fi(EIUfZ)( Fiis the associated closure oprator to@i(é)), A is
the upper bound and {u} is the lower bound. To short we write Fi(a) =
F.({a}) and F(X,a) = Fi(XU{a}).

From the properties OE@i(A) we quote the following:
(1.19) (Dedt;ction principle).

Fi(X,a) = {beA/ 2"+ be Fi(X). for some n<w}.

Fi(a) = {beA/ a"+b = u, for some n<uw}.

(1.20 @i(é) hns the family of prime implicative filters (prime as
lattice filters) as a basis, hence every proper implicative filter
is characterized by the set of all prime implicative filters which

contain it.

(1.21) 1If £ s@i@, f is a proper maximal if and only if for amy

a #f there exists n<wsuch that a™> Ocf.

(1.22) For every prime implicative filter there exists a prime implicative
filter contained in it which is minimal in the partial ordered set

of all prime implicative filters.



1.F. Let >A<€V_J_ and let C@‘) be the algebraic lattice of all congruence
relations of A, then the map:
6 :@1.%) — = C@ : £ — Bf = {(a,b) e AxA/ @+b) A (b+a) e £}
is an order isomophism and its inverse is:

= {aeA/ (a,1)ed}.

£ :C(8) ——»@i(é): o H—— £,

Hence@i(é) is a distributive algebraic lattice.
Now we give severgl properties more:
(1.23) 1f $A<eﬂ and BECQ.‘). the quotien algebra A/e is a chain, with the

partial order of 1.B., if and only if f_ is prime implicative

8
filter.
We call CW-algebra to a W-algebra which is chain, and we denote
AN NP Ny
by CW the class of all CW-algebras.
(1.26) If AcH and 0¢C(y), then &/6 is simple if and only if fe

is a proper maximal implicative filter, or equivalently ,

)A(/B is a subalgebra of R{[l1].

2. TOPOLOGICAL SPECTRUM OF A W-ALGEBRA

2,A. Let >A<E_!, we considere:
SpA-= (pe(@i(é)/ p is prime } ,
and for any agA:

8(a) =fpeSp A/ acp)}= {pesSp g / F . (a)gp}

LEMMA 1. For any AeW it satisfies:

(2.1) S(a) = S(b) implies Fi(a) = Fi(b)’ for any a,bg A
(2.2) S(aab) = S(a)Ns(b) , for any a,be A

(2.3) S(avb) = S(a)US(b) , for any a,bg A

(2.4) S(u) = Sp A and $(0) = ¢.

PROOF. (2,1) is a consequence of (1.20)



(2.2) and (2.3) are consequences of the fact that every p g Sp ;}

is a prime lattice filter. (2.4) is trivial.

It is clear that the family (S(a)/aecA) is a basis for a topology
of open sets on Sp é( This topological space is called the topological

spectrum of ;A<and we represent it for Spré.

2.B. In order to determine the properties of SpTé‘ we considere the set
of all principal implicative filters of .ﬁ, or the compact elements
°f®i(>A<)’ which are denoted by Ee _I'_']._‘é is the universe of a sublattice
of @i(ﬁ)', because we have,for any a,beA:
F.(avb) = F,(a)NF (b) and F.(aAb) = F . (a) VF (b).
Hence (_FiA,f\ ,V ) is a distributive lattice, moreover it has a lower
bound {u}= Fi(u) and upper bound A = Fi(O).

Let SP¥ (Q be .'the topological space defined on the set of all
prime lattice filters of EiA' which are denoted by Sp*(4), and as a basis
of open sets the family (F/i\(a) = (PeSp*@/ Fi(a)dP} / agA).

It is easy.to s2e that Sp%(ﬁ) is a Bounded Stone Space (in the sense of

[1),pag 79).

THEOREM 2. For any Ac W, Sp_A and Sp*(A) are homeomorphic
- ™ T

PROOF. Let h be the correspondence defined:

h:SpA—>Sp*@) : ptH— h(p) = {Fi(a) / aép} .

That h is a map is a simple comprovation, trivially is one to one,

To see that it is onto, for any PeSp*(ﬁ) we define p = {aeA/Fi(a) ¢P}
then p is implicative filter, because if a,a+b¢ p, then Fi(a),l"i(a*b) ¢P,
since P is prime Fi(a)VFi(a+b) ¢ P, that is Fi(aA(a+b)) ¢P,

by definition of implicative filter beFi(aA (a+b)), that implies

Fi(b)Q Fi(a A(a+b)) and hence Fi(b) ¢P, and bep.



2.C.

In the other hand if avbep, then F(ajN F(b) ¢ P, that is F(a) ¢ P
or F(b) ¢ P, hence acp or bep. Then p is prime and pe Sp A. Moreover
it is easy to see that h(p)= P.
Finally we have to see that h is homeomorphism:
cee -1 . ~1 . . 2
Pe h(8(a)) iff h "(P)e S(a) iff aech (P) iff Fi(a)iP iff PsFi(a),

= .. -1,
thus h{(S(a)) = Fi(a). Similarly we could be shown that h (Fi(a)) = §(a)

COROLLARY, If ’lge W, then Sp ;A< is a Bounded Stone Space.

To characterize the clopen sets of Sp >A<we need to define a special

elements of the W-algebras.Let AeW and ac A, we say that a is archi-
x - P

medean when there exists n <w such that (an+ 0)v a = u; and we say that

WA AP

a is boolean when it has complement, is this case this is ~a. The set

of boolean elements of ﬁ is denoted by B(Q.

Now we give a previous result:

LEMMA 3. 1If ‘éeﬂ, and ac A, then for any n<uw, Fi(a) = Fi(~(alo)).

PROOF. We use (1.19). From (1.5), (1.7) and (1.8) we have that for any n<uw
a"{~(a%0) = a"+(a">0) +0) = (a">0)+ (a"+0) = u

this implies that ~(an->0) € Fi(a).In the other hand using (1.10) (1.9)

(1.8) and (1.13): ~(a"+0)+a = ~a»(a"»0) =(a»0) > (a"+0) = u

this shows that Fi(a) sFi('*(a“-vo)), and hence the lamma is true.

THEOREM 4, For any As_w_, the following :onditions are equivalent:
(i) N is a clopen subset of Sp ,1_\\
(ii) N = S(a) for some ag¢ A achimedean

(iii) N = S(b) for some bsB(!(\).
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PROOF. (i)=»(ii). Let N be a clopen subset of Sp A, then N and
N® are compact open, since Spré( is Bounded Stone space,there exist
a,ce A such that N = S(a) and N = S(c). We will show that a is
archimedean. It is clear that @ = S(a)N S(c) = S(aac), hence
$(0) = S(aAac), by (2.1) we have Fi(aA c) = F(0), that is, OEFi(aAc)-
= Fi([a,c}), hence by (1.19) there exists n<w such that an*OsFi(c)
this implies that Fi(an*O)CFi(c).‘Thus Fi(av (3" 0)) = F (N F, (" 0)¢
QFi(a)/\Fi(c) = Fi(av ¢). But from S(avc) = S(a)UsS(c) = Sp A= S(u),
we deduce that Fi(av ¢) = {u}, hence Fi(av @"+0)) = {u} then
av (an"'O) = uy. This shows that a is archimedean.
(ii) =% (iii). We suppose (ii),, then there exists n < w such
that av (a“+o) = u. We will show that a" +0 is boolean , then we will have,
by Lemma 3,S(a) = s(~{a" +0)), with ~(a" +0) boolean.
Using Lemma 3, we have:
(u} = F (av (a"+0)) = E(a)NF; (" +0) = E(~(a>0))NF, (a™ 0) =
= F,(~@"»0) v (2"~ 0)).
Hence “'(an->0) v (an-*O) = u, Moreover bince (A,A,v,~,0,u) is a De Morgan
algebra , we have that (an"O)A“‘(an"O) = 0.

(iii) =» (i) is trivial.

Given ,A‘_e! we say thar.;tis archimedean W-algebra,when for any ze A

a is archimedean. Wa denotes the class of all Archimedean W-algebras.

THEOREM 5. Let &Eg, then the following conditions are equivalent:
i € W
(1))1} Wa
(ii) SpDA‘ is Boolean Space
(iii) Sptg.( is Hausdorff

(iv) Sp A is T,



PROOF. (i)¢&> (ii), (ii) = (iii), (iii)=>(iv) are immedate consequences
from Theorem 4. (iv) =»(ii) is satisfied because any Bounded Stone space

'I‘1 is Boolean space.

CROLLARY. Let ;A‘EE, then ésw_a if and only if every prime implicative
filter is a proper maximal implicative filters, that is,the family

of all proper maximal implicative filters is justly Sp >A\

PROOF. By Theorem 3, ée Wa iff SpT;A‘ is Tl’ this is equivalent to every
two prime implicative filters are equal or non comparables, that is
any prime implicative filter is a proper maximal. The fact that any

proper maximal implicative filter is prime concludes the proof.

We remark that the class Wa is not the class W, because Wa is
not definable by means of generalized . implications ( see [8})
since the direct product of members of Wa is not necessarily in Wa.
In the other hand, every Archimedean W-~algebra is semisimple, but
there exist semisimple W-algebras which are not in Wa, since the
class of all semisimple W-algebra is definable by means of generalized

implications (see { 7).

3. BOOLEANS PRODUCTS OF MEMBERS OF SR[1].

§5[1]will denotes the class of all isomorphic images of subal-

gebras of RIl) that is, SRI1}is the class of all simple W-algebras.

3.A. Given a class of algebraic structures K, and‘lalgebra’iof the same
type, we say that Q is Boolean product of members of ,IE, when there
exists a family (Q_X/xs X) of K such that :

(3.1) X can be endowed with a Boolean Space topology
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(3.2) é_ is a subdirect product of Qx/xex)
(3.3) The equalizers are clopen subsets of X. That is if m_:A — A
X' X
is the canonical projection, then for any a,be A the set
fa=b] = {xex/ 7 (a) = ﬂx(b)}is clopen subset of X.

(3.4) For any a,be A and N clopen subset of X we define: an U b/Nc

the element of @(Ax/xe X) given by:
ﬂx(a) if xeN

wx(a/N Ubpe) = , them a

~Ub €A
7 (b) if x¢N /N7 T/ne

To represent that ,A< is Boolean product of the family (Ax/xex)
we will write %pr %x/ xg X). Given a class K we will denote by
I‘a(_l(_) the class of all isomorphic images of Boolean products of members

of K.

The main result of this section gives the relation between Wa and

résr1l).

THEOREM 6. Wa = I (SRI1]).

PROOF.  Wall®(gr1]).
Let éG Wa, we considere X = Sp é(, with the gpectral topology,

which is Boolean space. By (1.20) NX = {u} , henceﬂ(ex/xe )
is the diagonal congruence relation,This implies that A is isomorphic
to a subdirect product of tle family (>A</6x/ xeX) (to - short we will
write,l‘\_x -x/ex, and [a]x the class of a modul ex). We suppose that
the isomorphism is the following:
9 A — : = .

A ‘8>(Ax / xeX): at— 3(a) ([a]x)xex

We need on to see that it satisfies (3.3) and (3.4).

(3.3) is immediate because for any a,b€éA [a = b] = S((a+*b)A (b+a))



- 11 -

(3.4) Let c€B(>A<), and a,beA, we considere d = (c~a)A (~c—+b),

we will show that d(d) = B(a)/S(C)U D(b)/s(c)c .

Let x£ S(c) we need to see that [d]x = [a]x, that is (d+a)A (a~+d)e x.

We write to the next of equalities and of inequalities the properties

used .

(axd)a(d+a) = [a+((e+a)A(~c+b))] A [((c+a)A (~e+b)) +a) =

(1.18)(1.14) / = [(a»(c+a)) A (a> (~e+bNIA [({c+a) »a)v((~e>b) ~a)]=

(1.13)(1.12)(1.11)/ = ua(a+(~c+b)A [(cva)v{(~c>b) »a}] >

(1.10)(1.9)/ 2 (a+(b+ec))Alcva) 2

(1.13)/' 2cA(cva) = ¢

Since x€ S(c) then cex . % is a lattice filter then @=>d)a (d-+a) ¢ x.
Similary,it can to be obtained that for any xe8(e) %= S(~c),

lal, = Bl

r*(srl11) g Wa:

Let ﬁeJ‘a(_S_glll) we suppose that the isomorphism which gives a
Boolean prodmct representation is:
d: A — A/ xeX) : a— 3(a) = (a)) s
where A = a(,A) R a(;‘)gbp@géx/ x€X) and $Xe§13_11] .

First we observe thatﬁe& because W is a variety and SR[l]< W.
We neéd to see. that any a€ A is archimedean. Fixed ac A, since éx is a
simple W-algebra for any xe X, if a # hx, then for any xg X such

that ax # ux there exists n(x) such that u = l.l(x)-*O , that is

x
n(x)

lx(u) = nx<a(a) >0), let X = {xeX/ a # ux}, then we have

X = Yol@a)* ™o = ul) U (3(a) = ul,

since X is compact , there exist XpseeorX € X such that

“(x1)+0 =y U ... U [3(a)n(xr)+0 =u]l U[0(a) = u}

n(x.)

X =[3(a)

1f n = sup {n(xl)...n(xt)} ,then by (1.13) 3(2)"*¥i’-0<3(a)™ 0

; 1U v,
tags: BAR(

EHAI

F’Rsxn-r.
CELC ONA



- 12 -

hence X = [a(a)“+o =u] U18(a) = u) Thus for any xe X we have:

T (@@ >0)v@(a)) = 1 B(2)"+0) vr (3(a)) = u_,this implies

that (a(a)“+0) vd(a) = u, as d is isomorphism,then (aq>0) va = u, That
is, a is archimedean.

.C. In this part we will show that the representation of archimedean W-
algehras by means Boolean products is a good representation in the
sense that every A€ Wa is obtained by Booleans products with stalks in

- =

SR11]in unique way.

THEOREM 7. Let A ®(A / xeX) , where A £ SRIl}for any x¢ X. Then

7‘b

there exist a homeomorphism h: X — SpAsuch that éxg»'yeh(x) .

PROOF. We define h : X — Sp A : xF— h(x) = {acA/ xela =u]}.

Since: x € [a = u] iff ﬂx(a) = ﬂx(u) iff (a,u)ed , thus

Ker 7
X

A € SR[1] implies that h(x) = f € Sp A, hence h is well defined.
X Lt} »

Ker 7
X

h is one to one , because if x,ye X and x # y, then there exist N

clopen subset of X such that xeN and y¢ N, let a = .y U O/NC’ then

N
x€la =u]=Nand y¢[a = u}l , hence ach(x) and a¢ h(y).
We suppose that h is not onto, then there exists qe€ Sp >A<,
such that for any x€ X there exist b ¢ h(x)\q. Thus
X=U([b* =u}/ xeX). By compacity X = {6 = u)u...u [b*T = u])
for some xl,...,xtex, since bi<p®lv ...v b*Y, ue have
X =[b v...vb*r = u] ,» hence b*lv y.. vb™r = u€q. Since q€ Sp A
bxiE q, for some i€ (l,...,r}, that contradicts the assumption, and h is onto.
h is homeomorphism; if N is clopen subset of X , then N =[ a = u]

with a = u/N u Omg, hence we have :

qeh(la = ul) iff h—l(q)ela = y] iff acq , this implies that h([a = u]) =S(a)
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X€ h-]'(S(a)) iff h(x) € S(a) iff ae h(x) iff xefa = ul hence h_I(S(a)) =
={a=ul. -

Tn the other hand, since h(x) = £ we have A 2= A/®
X ~ X

eker T
X

4. BOOLEAN PRODUCTS OF CW-ALGEBRAS

To give the main results of this section we have to analyze

the Stone filters in W-algebras.

Let it—: W, then B(_é) is the univers of a Boolean algkbra with the
operations of A. We represents by @B(;A‘) the family of all lattice
filters of B(;A‘). Given fCA we say that f is a Stone filter when f is
a lattice filter generated by a member of ®(A)'®S(A) will denote
de family of all Stone filters. An Stone ultrafilter iS a proper
maximal element of @S(,A). US()AJ denotes the family of all Stone ul-

trafilters of A.
><

LEMMA 8. If QEE, then it satisfies:
(4.1) Every Stone filter is an implicative filter, i.e.@‘s(é_‘)g@i(ﬁ)
(4.2) f¢ US(Q) if and only if fe@s(i) and £NB(A) is an ultrafilter

of B(A).

PROOF. (4.1): Let fe(P.(A), we suppose acf and a+be f, then there
S

exist €;sc € BAAYNf such that Cl< a and c_S<a-+b. Then ¢ = ¢, Ac_ e £NB(A)

2 2 1 2
and ¢<a and ¢c<a-+b, by (1.12) c*{a+b) = u, by (1.7) a+ (c>b)=u,
hence c¢Ka<c-b, that is ¢>(c~b) = c+b = u (because ¢ is boolean

iff ¢’ ~d =cdyfor any & A), then c<b and be £. This show that fe() ().

(4.2) It deduces from the fact that if fEUS(fQ) iff for any

ceB(A), cef iff ~c# f, and fe@(é)
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We denote by SpmA the family of all minimal prime implicative
filters, in the sense of (1.22). The relation between Us(é‘) and Spmf is

given by the next result.

THEOREM 9. If ;A(e W, then the following conditions are equivalent:

(i) Us(i)g Sp A

(ii) Us(ﬁ) = SpmA

PROOF. (ii) =P (i) is trivial,

(i) =» (ii): Let fEUS(M, < Sp A, if pe Spmﬁ is such that p&f
( it exists by (1.22)), then (£\ p)N B(;A‘) # @ , because if this is not true,
for any-ce f(\B(Q, cep and fgp. Let ce (£\ p)NB(A), since cv~c = ugp
and pe Sp A, ~c¢ pcf, that is not posible. Hence p = f., This shows that
USC_:Spmé.
1f qe SpmA, let f = Fi(q(\B(fQ), it is clear that fg q and EEUS(A)

hence f¢ SpmA, that is £ = q. This shows that US(,-A<) = SpmA.

The main result of this section characterizes the algebras which are Boolean

products of CW-algebras.
THEOREM 10. AcT3(CW) if and only if Acl and Spmp = U (A).

PROOF. =) We suppose that ﬁ;bp Q(éx/ xg X), where )A(\xg(_:g for any x¢g X.
Since CW&W and W is a Variety,chen AeW . Let xeX, we considere

Py = feker . = {agA/ xela =u]}. By (1.23) p_eSp A. To show Spmp = Us(f\(),
x

by Theéorem 9, it sufices to see that Py= {px/ xeg X} = USQA).

PXQUS(Q: Let xe X and € P, then xe{a = u]. If ¢ = u/[a - u]U

0/{3 4’ then cg B(4) and c<a and [a = u] =[c = u} hence c¢ pr\B%).
Then P, E@S(QA)' Since P € Spf.‘ . pr\B(ﬁ) is an ultrafilter of B();A‘), then
P E US(Q' This shows that Us(ﬁ);} PX'
US(A)S- Px: if it is not satisfied, then there exists fsUs(;A\)
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such that for any xe X, f ¢ P, Then for any xe X, there exists
o E(p);\ £)NB(A). Thus X = U ([¢*= u] / x€ X), since X is Booelan

space X = [cxl =ua} U...U [cx“=u] , for some x X E X. Since

e
Fie®tv...vc®n for any ic {1,...,n}, ve have X = [c*lv...vc™n = y]
hence c*lyv...vc™ = ue £N B(}Ii), since £N B(A) is ultrafilter of

B(Q) , then there exists re{l,...,n}, such that re f, that contradicts

. ’ . ?
the assumption. This ghows that Px US()AJ'

<_=- Let Ae W, such that US($A<) = Spm)A<. First we will see that
Spm’Q with the induced topology by the Spectral topology is a Boolean Space.
We write Sm(a) = S(a)N Spmﬁ, for any a€ A. It is clear that for any
c EB(::‘), Sm(€) is a clopen subsetof Spuﬁ. Now we will show that for any
ag A there exist c;: HQ)such that Sm(a) = Sm(ca). If Sm(a) = @ then
c, = 0. We suppose that Sm(a) # @, then [\ Sm(a) E@S(Q, and a¢iSm(a),
hence there exist cae Sm(a) such that ca<a, then we have :
x €Sm(a) 1implies caE:x, hence x€ Sm(ca). This shows that Sm(a)&e Sm(ca)
XE Sm(ca) implies caex, since <, <x, then a€ x and x¢€ Sm(a). This shows
that Sm(a) = Sm(ca). Thus for any aeé,Sm(a) is c¢lopen subset of Spm(A).
Let SptB(ﬁ) be the topological Spectrum of the boolean algebra
B()A(). WE considere the map h : SpmA — Sp B(A):ff— £N B(A), by
Lemma 8 this map is one to one and onto, moreover is easy to see that

h(Sm(c)) = (¢) and h-'l(SB )(c)) = Sm(c) for any cE B(’A), hence

S8(a)
<
h is homeomorphism ..Then Spmix< is Boolean space with the topology induced
by the spectral topology of Sp _A<
From (1.23) it is easy to see that /\SpmA = {u} ’ hence A is
isomorphic to a subdirect product of (ﬁlex/ X € SpmA)

This isomorphism is given by:

A — ®(A/9x/ x€ SpmA): al—— 3(a) = ([a]} x)xESpnﬁ'

Since [d(a) = (b))} = Sm({a*b)A (b>a)) is clopen subset of Spm;\(

S
"
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and 3(a)f3m(c) U a(b)/Sm(_,c) = 3((c->ca)/\ (“e+c,)), then

AT, &XA/O / xe X), hence A€ ra(gg)
> T bp = x <

4.C. THEOREM 11. Let AeWand AS (A / xe X), where A ¢ CW , then there
< = > bp >x <X ==

exists h : X — SpmA homeomorphism such that A =A/8
=<x > h(x).

PROOF. Let h:X ©— SpmA : +— h(x) = p, = {aca/ xgla = ul},
by the proof of first part of the Theorem 10 h is owe to one and onto.
By definition h( [a = ul ) = Sm(a) and h—l(Sm(a)) ={a = ul hence h

is homeomorphism. Since h(x) = £ we have Axg &/9
M >

]

ker 7 h G0
b3

Remark: The archimedean W-algebras are specials cases of W-algebras

represntables by means of Boolean products of CW-algebras. They are the

limit case because the Stone ultafilters are all prime implicative filters.
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