
A-, p 32. / 

UNIVERSITAT DE BARCELONA 

SECOND ORDER STOCHASTIC DIFFERENTIAL EQUATIONS 

WITH DlRICHLET BOUNDARY CONDITIONS 

by 

David Nualart and Eticnne Parcloux 

AMS Subjcct. Classification: 60H10, 60J25 

Jvia.tlwmatics Preprint Series No. 78 

March 1990 



SECOND ORDER STOCHASTIC DIFFERENTIAL EQUATIONS 

WITH DIRICHLET BOUNDARY CONDITIONS 

David Nualart 

Facultat de Materna.tiques 

Universitat de Barcelona 

Gran Via, 585 

08007 Barcelona - Spain. 

by 

Etienne Pardoux 

Mathématiques, URA 225 

Université de Provence 

13331 Marseille Cedex 3 

France 

Abstract. We consider the second order stochastic differential equation Xt + f(Xt, Xt) = 
Wt where t runs on the interval [O, 1], {Wt} is an ordinary Brownian motion and we impose 

the Dirichlet boundary conditions X(O) = a and X(l) = b. We show pathwise existence 

and uniqueness of a solution assuming sorne smoothness and monotonicity conditions on 

f, and we study the Markov property of the solution using an extended version of the 

Girsanov theorem dueto Kusuoka. 

O. Introd uction 

In this paper we study a second order stochastic differential equation of the type: 

d
2 
Xt f(X dXt) = dWt 

dt2 + t, dt dt (0.1) 

where the time parameter t runs over the interval [0,1] and we impose the Dirichlet type 

boundary conditions 

Xo = a, X1 = b, 

a and b being fixed real numbers. Here { W 1 } is a one-dimensional Brownian motion 

starting at zero. First we will give sufficient conditions on the function f : IR-2 -+ IR for 

the existence and uniqueness of a solution for any fixed continuous function W E Co(O, 1). 
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Then we will study the Markov property of the solution assuming that W is the trajectory 

of a Brownian motion. We recall the following types of Markov property: 

(1) We say that a stochastic process {X1 , O :::; t :=:; 1} is a Markov process if for any 

t E [O, 1] the past and the future of {Xs} are conditionally independent, given the present 

state X 1• 

(2) We say that {X1 , O:::; t :=:; 1} is a Markov field if for any O:::; s < t :=:; 1, the values 

of the process inside and outside the interval [s, t] are conditionally independent, given 

Xs and X1. 

(3) We say that {X1 , O :::; t :=:; 1} is a germ Markov field if for any O :::; s < t :=:; 1, the 

values of the process inside and outside the interval [s, t] are conditionally independent, 

given the germ o--field n€>O o-(Xu, u E (s - €, s +€)u (t - €, t + €)). 

Our main result is the following. The solution of (0.1) is a Markov process if f is 

an affine function, and is not a germ Markov field otherwise. The main tool to study 

the Markov property is an extended version of the Girsanov theorem dueto Kusuoka [2), 

which allows us to compute conditional expectations under a law under which the Markov 

property is known to hold. 

A similar negative result for first order stochastic differential equations with a more 

general boundary condition has been obtained in the companion paper [5). See also Donati

Martin [1) for related results concerning another class of stochastic differential equations 
with boundary conditions. 

The organization of the paper is as follows. Section 1 is devoted to show the existence 

and uniqueness theorems assuming sorne smoothness and monotonicity conditions on the 

function f. In section 2 we compute the Radon-Nikodym derivative using Kusuoka's 

theorem, and finally we study the Markov property in section 3. 

l. Existence and uniqueness of a solution 

We denote by C0 ([0, 1)) the set of all continuous functions on [O, 1) which vanish at 

zero. Suppose we are given a locally bounded and measurable function f : IR-2 -4 1R, an 

element W E C0 ([0, 1)), and two real numbers a, b E lR. Our aim is to find a solution for 

the integral equation 

(1.1) 

with the boundary conditions X o a, X 1 = b. Observe that the equation (1.1) can 
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be formally written as Xt + J(Xt, Xt) = Wt and, therefore, it can be regarded as a 

nonlinear second order differential equation. 

In the sequel we set e = b - a and we denote by Yi(W) ( or simply Yi when there is 

no confusion) the solution of equation (1.1) for f = O. That means, 

(1.2) 

and we also have 

(1.2)' 

Notice that the transformation W-+ Y(W) from C0 ([0, 1]) into the space C! 6(0, 1) of 
' 

continuously differentiable functions Y on (0,1) such that limt!O Y(t) = a and limtp Y(t) = 
bis bijective and for any Y E C~ 6 (O, 1) we can recover W by the formula Wt = Yí - Yo. 

' 
In order to sol ve the equation ( 1.1) when the function f is non zero, we introduce the 

mappmg T: C0 ([0, 1])-+ C0 ([0, 1]) defined as follows 

T(W)t = Wt + 1t f(Ys, Ys) ds. (1.3) 

We remark the following two facts: 

(I) If T(r¡) = W, then the function Xt = Yi(r¡) is a solution of the equation (1.1). In 

fact, we have 

Xt = Yí(r¡) = b- a -11 

r¡8 ds + r¡t 

= Xo + Wt - 1t f ( X s , X s) ds . 

(II) Conversely, if we are given a solution Xt of equation (1.1), then T(Y- 1 (X)) = iv. 
lndeed, if we set y- 1(X) = r¡, then 

T(r¡)t = r¡t + ¡t f(Ys(r¡), Ys(r¡)) ds = r¡t + Wt + Xo -Xt = Wt. 

Consequently, we obtain the following result: 

Proposition 1.1. Suppose that T is a bijection. Then equation (1.1) has the unique 

solution X= Y(T- 1(W)). 

We are going to present sorne sufficient conditions on the function f for the transfor

mation T to be bijective. 
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Proposition 1.2. Suppose tbat f is noníncreasing in eacb coordinate, locally Lipscbitz 

and with linear growtb, then T is bijective. 

Proof: Given r¡ E C0 ([0, 1]) we have to show that there exists a unique function W E 

C0 ([0, 1]) such that T(W) = 17. Set V = r¡ - W. Then V satisfies the differential equation 

where 

½ = f(t 11 

Vs ds -1t Vs ds + ~t, 11 

Vs ds - ½ + Pt), 

V0 = O, 

~t =a+ et - t 11 

"ls ds + 1t n 8 ds, and 

Pt = e - fo 1 r¡ s ds + "lt . 

For any x E 1R we consider the differential equation 

{ 
½(x) = J(tx - 1; Vs(x)ds + ~t, x - ½(x) + Pt) 
Vo(x) = O 

(1.4) 

(1.5) 

By a comparison theorem for ordinary differential equations and using the monotonicity 

properties of f we get that the mapping x ~ ½ ( x). is continuous and nonincreasing for 

each t E [O, 1]. Therefore, 10

1 
½(x)dt is a nonincreasing and continuous function of x, 

and this implies the existence of a unique real number x such that 1; ½(x )dt = x. This 

completes the proof of the proposition. Q.E.D. 

It is also possible to show that T is bijective assuming that f is Lipschitz and the 

Lipschitz constant of f is small enough: 

Proposition 1.3. Suppose that f is such that lf(x, y) - f(x, y)I ~ K(lx - xi+ IY - i7I) 
witb K < ½- Tben T is bijective. 

Proof: As in the proof of Proposition 1.2 we denote by ½(x) the solution of equation (1.5). 

Then it suffices to check that the mapping x ~ 1: ½( x) dt has a unique fixed point, 

which is true because under our assumptions this mapping is a contraction: 

1 /

1 

½(x) dt - Í
1 

½(x) dt 1 ~ sup l½(x) - ½(x)I lo lo o~t~l 

~ ~ K I x - x 1 + ~ K sup 1 ½ ( x) - ½ ( x) 1 
2 2 099 
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Q.E.D. 

To conclude this section we discuss the particular case of an affine function f ( x, y) = 
ax + ¡3y + 1 . In this particular case we have the following result. 

Proposition 1.4. Suppose tbat f is affine. Tben tbere exists a unique solution of equation 

(1.1) for every W E C0 (0, 1) (tbat means, T is bijective), if tbe following condition is 

satisfied ¡1 
( exp ((1 - s )M]) 21 (as+ /3) ds =/- 1 , (1.6) 

wbere M denotes tbe matrix [~,8-;] and tbe subindex 21 means that we take the entry 

of the second row and first column. 

Proof: We want to show that there exists a unique function W E C0 (0, 1) such that 

T(W) = r¡, for any given function r¡ E C0 (0, 1). Setting, as before, V= r¡ - W, we want 

to show the existence and uniqueness of a solution for the equation 

{ 

· 1 t I Vi - a t fo Vsds + a fo Vsds - aet - /3 fo Vsds + ,BVi - .8Pt - , = O 
V0 =0, 

where et and Pt are defined by (1.4). Putting '1ft = aet + f3Pt +,, and Ut = f: V8 ds we 
obtain the second order differential equation 

{ 
Üt - ( ~t + ,8) U1 + aUt + f3Út - '1ft = O 
Uo = Uo =O, 

which can be written in matrix form as 

Consequently, 

Ut = ¡t ( exp [ ( t - s )M]) 
21 

( ( as + /3) U1 + 't/J s) ds , 

and applying condition (1.6) the value of U1 is uniquely determined and the desired result 

is proved. Q.E.D. 

Note that if the matrix M has two different real and nonzero eigenvalues .X1 and .X2, 
then the condition (1.6) can be rewritten as 

{ 

e).1 e).2 } 

-(a+ /3) + (.X1 - .X2)-1 ,B( .A¡ - .X
2

) + a(e).1 
- e). 2

) =/- l. 
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2. Computation of a Radon-Nikodyn1 derivative 

Let us now introduce the Wiener measure P on the Borel o--field F of n = C0 ([0, 1]) 

so that the continuous function W in the equation ( 1.1) becomes a path of the Brownian 

motion. Our aim is to study the Markov property of the stochastic process { Xt} solution 

of ( 1.1). This will be the contents of the next section. In this section we will construct a 

new probability measure Q on C0 ((0, 1]) such that the law of {Xt} under Pis the same as 

the law of the process {Yt} given by (1.2) under Q, and we will give an explicit expression 

for the Radon-Nikodym derivative of Q with respect to P. To do this we will apply the 

following nonadapted extension of the Girsanov theorem proved by Kusuoka ( see Theorem 

6.4 of [2]). 

Theorem 2.1. Considera mapping T : n -+ n of the form T(w )t = Wt + f0t K 8 (w) ds, 

where K is a measurable function from n into the Hilbert space H = L 2 ( O, 1) , and suppose 

that the following conditions are satisfied: 

(i) T is bijective. 

(ii) For all w E n there exists a Hilbert-Schmidt operator DK(w) frum H into itself such 

that: 

(1) IIK(w+ J~ hsds)-K(w)-DK(w)(h)IIH = o(llhllH) forallw En as llhllH tends to 
zero. 

(2) h ~ DK(w + J~ h8 ds) is continuous from H into L 2 ([0, 1]2) for aJl w. 

(3) I + DK(w) : H -+ H is invertible, for ali w. 

Then the process {Wt + fot Ks(W) ds} is a Wiener process under the probability Q on 
Co(O, 1) given by 

dQ l ¡1 
dP = ldc(-DK)I exp ( - 8(K) - 2 Jo K¡ dt), (2.1) 

where dc(-DK) denotes the Ca1'1eman-Fredholm determinant of the square integrable 

kernel DK E L2([0, 1}2) and 8(1{) is the Skorohod stochastic integral of tbe process K. 

We recall that the Carleman-Ferdholm determinant of a square integrable kernel 

BE L2 ([0, 1}2) is defined by 

00 (-1t r A 

dc(B)=l+¿ 1 Jr, det(B(t¡,t;))dt1•··dtn, 
n=2 n. [O,l]" 

where ÍJ(t¡, t;) = B(ti, t;) if i-=/ j and ÍJ(t¡, t¡) = O. lf Bis a square matrix then dc(B) 
coincides with det (J - B) exp ( trB). We refer to [10] for a survey of the main properties 

of this determinant. 
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On the other hand let us recall briefly the notions of derivation on Wiener space and of 

Skorohod integral. Let S denote the subset of L2 (n) consisting of those random variables 

of the form: 

where n E 1N; h1, ... , hn E L 2 (0, 1 ); f E Cb(lRn). For FE S, we set 

and we denote by JD1
•
2 the completion of S with respect to the norm 11 · lli,2 defined by 

Then the Skorohod integral is the adjoint of the derivation operator D considered as an 

unbounded operator from L2(n) into L2(n X [O, l]). If a process u E L2(n X [O, 1]) is 

Skorohod integrable, the Skorohod integral of u denoted by 8( u) is determined by the 

duality relation 

From the proof of Theorem 5.2 in Kusuoka's paper [2) it follows that a process Kt verifying 

the above condition (ii) is locally Skorohod integrable in the sense that there exists a 

sequence {(nn, Kn)} such that nn E :F, Kn E L2 (0, 1; ID1
•
2

), n E 1N; 11n j 11 a.s., as 

n -+ oo and K = Kn on nn x [O, 1). Then for every n Kn is Skorohod integrable and 8(K) 
is well defined by 8(K)(w) = 8(Kn)(w), w E nn, n E 1N (see [4]). For more information 

about the operators D and 8, we refer in particular to Nualart-Zakai [6] and Nualart

Pardoux [4]. 

We are going to apply the above theorem to the particular case Kt = f(Yt, Yi), where 

Yt and }í are given by the expressions (1.2) and (1.2)'. From the properties of the operator 

D we deduce that 

DsYt = -t(l - s) + (t - s )+ = st - s /\ t 

DsÍ't = -(1- s) + l¡o,t](s) = s - l¡t,1](s). 

(2.2) 

(2.3) 

Therefore, if f is a continuously differentiable function, conditions (ii.1) and (ii.2) of The

orem 2.1 are satisfied, and by the chain rule we get 

Ds(f(Yt, Yi)) = f~(Yt, Yt)(st - s /\ t) + J;(Yt, Yi) (s - l¡t,1](s)). (2.4) 
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In the sequel we will use the notation O'.t = f~(Yí, Yt) and f3t = f~(Yí, Yt). Moreover, 
we denote by Mt the matrix [-f1 -;i] and by <I>t the solution of the linear differential 

equation 

d<I>t = Mt<l>t dt 

<I>o = I 

We will also denote by <I>(t,s) the matrix <I>t<I>;- 1 . We now have: 

(2.5) 

Proposition 2.2. Let f : IR-2 ---+ IR be a continuously differentiable function such that for 

I<t = f(Yí, Yt), the transformation T given by (1.3) is bijective. Assume moreover that 

(2.6) 

Then I<t verifi.es the conditions of Theorem 2.1. 

Proof: It remains to show that I + DI< is invertible. From the Fredholm alternative, it 

suffices to check that -1 is notan eigenvalue of DI<(w), for each w En. Let h E L 2(0, 1) 

such that (I + DI<)h = O. Then 

ht+at¡
1 

h8 (st-s/\t)ds+f3t¡
1 

hs(s-l¡t,1](s))ds=0, 

which can be written as 

Setting 9t = J; hs ds and Ut = J; 9s ds we obtain 

9t - (tat + f3t) 11 

9s ds + Ot ¡t 9s ds + f3t9t =O, 

and 

Then the solution of the second order differential equation (2. 7) is given by 

and condition (2.6) implies Ut = O for all t. 

(2.7) 

(2.8) 

Q.E.D. 

Let us exhibit two examples of functions f verifying the conditions of Proposition 2.2. 
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(I) We denote by Cb the class of continuously differentiable functions f : IR-2 - IR such 

that ¡; ~ O , J; ~ O and f has linear growth. Then any function f E Cb verifies the 
assumptions of Proposition 2.2. In fact, Proposition 1.2 implies that T is bijective, and 

(2.6) is satisfied because we have sa:s + /3s ~ O and <P21(t,s) 2: O for ali t 2: s. 

(II) If f is an affine function, then conditions (2.6) and (1.6) are equivalent. 

Suppose that J : 1R2 
- IR is a function verifying the hypotheses of Proposition 

t . 
2.2. Then we can apply Theorem 2.1 and the process rtt = Wt + fo f(Ys(W), Ys(W))ds 
is a Wiener process under the probability Q given by (2.1). The equation (1.1) has a 

unique pathwise solution Xt(W) given by X(W) = Y(T- 1(W)) (see Proposition 1.1). 

Consequently the law of the process Xt(W) under the probability P coincides with the 

law of Yt(W) under Q. In fact, P{X(W) E B} = Q{X(T(W)) E B} = Q{Y(W) E B} for 

any Borel subset B of C~ b(O, 1). 
' 

In order to study the Markov property of the process Xt(W) we need an explicit 

expression for the Radon-Nikodym derivative J = ~- This expression will be given by 

the next theorem. 

Theorem 2.3. Let f : IR 2 
- IR be a continuously differentiable function satisíying the 

assumptions oí Proposition 2.2. Then we have 

dQ ( 1 (1 , · ¡1 · 1 ¡1 · 2 ) 
dP = IZ11 exp 2 Jo Jy(Yt, Yt) dt - Jo J(Yt, Yt) o dWt - 210 f(Yt, Yt) dt , (2.9) 

where f0
1 f(Yt, Yí)odWt is an extended Stratonovich integral (see {41), and Z 1 is the solution 

at time t = l oí the second arder differential equation 

(2.10) 

O:t and f3t being, as befare, J;(Yt, Yí) and f~(Yt, Yí). 

The main ingredient in the proof of this theorem is the computation of the Carleman

Fredholm determinant of the kernel DK, where Kt = J(Yt, Yí). The details of this com

putation are presented in the following lemma. 

Lemma 2.4. Under the assumptions oí Theorem 2.3 we have, for Kt = f(Yt, Yí), 

(2.11) 

Proof: The idea of the proof is to approximate K by a sequence of elementary processes. For 

each n 2: 1 we introduce the orthonormal functions e¡= ynl¡t,-i,t;) , t¡ = !; , 1 ~ i ~ n. 
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Then we define 

l n t- n l i-1 
Kf = y'n ~!(a+ et¡ - ~ ~ W(tj) +-;; ~ W(t¡), 

1 n 

e - -;; ~ W(tj) + W(t¡_i)) e¡(t). 
J=I 

By taking a subsequence if necessary, it holds that 

lim ¡1 ¡1 IDsKt - DsK;l 2 dsdt =O, 
n lo lo 

(2.12) 

for every W and, consequently, using the continuity in the Hilbert-Schmidt norm of the 

Carleman-Fredholm determinant, we deduce that dc(-DKn) converges to dc(-DK) as n 

tends to infinity, for all W. The kernels DKn are elementary in the sense that they can 

be expressed as 
n 

K; = L '11? (W(e1), ... , W(en)) e¡(t), (2.13) 
i=l 

where W( e¡)= J; e¡(t)W(dt) = fo (W(t¡)- W(t¡_i)), and the functions \lln : 1Rn--+ IRn 
are given by 

n 1 ( ci Í ~ W¡(v1, ... ,vn)= vnf a+-- 2vn(L..,(v1+···+vi)) 
n n n n . 

J=I 

1 i-1 
+ n 'n ( L ( V1 + ... + v j)) ' 

V" J=l 

1 n 1 
C - n 'n ~ ( V¡ + · · · + Vj) + 'n ( V1 + · · · + Vi-I)) 

V" J=l V lh 

= _l_ f (a+ ci - -
1
-{- nv1 + (i - 2n)v2 + (2i - 3n)v3 

y'n n n2 vn 
+ • • • + ((i - 2)i - (i - l)n)v¡_1 

+ ( -i)( n - i + 1 )v¡ + ( -i)( n - i + 2)vi+I + · · · + ( -i)vn} , 

e-
1
~(nv1 + (n -i)v2 + · · · + vn) + ~(v1 + · · · + Vi-1)) 

nvn n 
1 

= vnf (p¡(v),q¡(v)). 

From (2.13) we deduce 

n 8'11~ 
DI<n = L r (W(e1), ... , W(en)) e¡ Q9 ej, 

i,j=I X j 
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and, therefore, the Carleman-Fredholm determinant of -DKn is equal to that of the 

Jacobian matrix of wn composed with the vector (W(e1 ), ... , W(en)). That means 

(2.15) 

(
awn ) where Jwn denotes the matrix ~ (W(e1 ), ... , W(en)) . From (2.14) we get that 

(2.16) 

where af and /3I' denote, respectively, the functions f~(Pi(v), q¡(v)) and J;(p¡(v), q¡(v)) 
evaluated at v = (W(e1 ), ..• , W(en)). Thus the trace of the matrix Jwn is equal to 

1 n · n 
~ ( . ) ( ia¡ ¡3n) - 2 ~ n-z+l -+ i , 

n i=I n 

which converges as n tends to infinity to 

- fo 1 

[t(l - t) f~(Yi, Yi) + (1 - t) J;(Yi, Yi)] dt, 

and, therefore, the exponential appearing in the equation (2.15) converges to the exponen

tial term in (2.11 ). So, it only remains to show that 

lim det Un+ Jwn) = Z1. 
n 

(2.16) 

Substracting every column from the next one we obtain that the determinant det (In+Jwn) 
is equal to 

det 

= det 

1- ¼(~ + /3f) 
1 n 

-ñT0 2 

1 n 
-ñT 0 3 

1 n 
-ñT 0 4 

1 ( an ) - ~ ~ + /3f ( n - l) 
1 - J!,-(2~2 + /32)(n - 1) 

-;!,-( (2 - ¾)a3 - /33) 

-~((2-!)a:-/3;) 

-~a;: -J!,-(a;: - /3;:) 

1-;&(i+/3f) 
-1 + ~ ( (1 - ¾)o2 + (n - 1)/32) 

1 (ªn ) -ñT 7 + /3f ( n - 2) 
1 ( 2an ) -ñT ~ + /32 ( n - 2) 

1 - ~C~ª + ,aa)(n - 2) 

-~ ( (3 - ~)a; - 2/3¡1) 

-J!,-(a: - 2/3::) 

-;&(~ + ,8f) 
1 - ~(2~2 + /32) 

-~ ( (1 - ¾ )03 - /33) 

-~((1-¼)o:-/3;) 

-1 + ~ ( ( 1 - ¾) a 3 + ( n - l) /33) 

~ ( (1 - ¼)a: - /3¡1) 

1 ¡3n 
-~ n 
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1 o -~(~ + /3f) 

-2 + ~(a2 + n/32) 1 _ 1 (~ + ¡3n) 
~ n 2 

= det 1 - !5.. -2 + ~(a3 + n/3f) _ 1 Cºª + ¡3n) n ~ n 3 

o 1-~ -~ (4~4 + /34) n 

o o 1 - ~(a:+ /3::) 

In conclusion we have to evaluate the determinant of the matrix 

1 o o o -O"¡ 

P2 1 o o -0"2 

M= 71"3 p3 1 o -0"3 

o 71"4 p4 1 -0"4 

o o o o 1 - O'n 

where o-i = ~c:r + /3f), Pi = -2 + ~(af + n/3f) and 71"¡ = 1 - ~- Define 
recursively é¡ = 0-1, é2 = 0-2 - P2é1 and ék = O"k - PkEk-1 - 7rk Ek-2, 3 ::; k ::; n - l. 

Then, multiplying the first n-1 columns of the matrix M by é1, é2, ... , én-1 and 

addding the result to the last column we obtain that 

det (In+ J'l!n) = (1 - O"n) + Pn én-1 + 7l"n én-2 

= (1-:2(a:+/3:)) + (-2+ : 2(a:+n/3:))én-1 

/3:: + (1 - -) én-2 • 
n 

Notice that ª[nt] converges uniformly in t to O!t = f~(Yt, Yí) as n tends to in

finity, and in the same way /3{:it] converges to f3t- In particular, a: and /3:: con

verge, respectively to f~(Yi, }í) and J;(Yi, Y1 ). Therefore, in order to show (2.16) 

it suffices to prove that limn én-1 = limn én-2 = 1 - Z1. Actually, it holds that 

limn é[nt] = t - Zt for every t E (O, l]. In fact, making a discretization of the dif

ferential equation (2.10) and approximating the coefficients ªk/n and f3k/n by <l'.Í: 

and /3'í:, respectively, we obtain the recursive equation 

n 2(bk - 2bk-1 + bk-2) + /3í:(nbk-1 - bk-2) + aí:bk-1 = O, 

where bk is an approximation of Z(k/n). If we substitute bk for ~ - ék we obtain the 

recursive equation which defines ék. We omit the additional details of this limit argument. 

The proof of the lemma is now complete. Q.E.D. 

Proof of Theorem 2.3: From the expression (2.1) and Lemma 2.4 we deduce that 

dQ ( ¡1 . . 
dP = IZ1I exp Jo (tf~(Yt, Yt)+f~(Yt,Yt))(l-t)dt 
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. 1 . 2 ¡l ¡l 
-

0 
f(Yí,Yt)dWt- 2 0 

f(Yí,Yí) dt), (2.17) 

1 . . 
where here fo f(Yí, Yí) d Wt denotes the Skorohod integral of f(Yí, Yí). Now from the 

results of [4] we know that this Skorohod integral is equal to the extended Stratonovich 

integralminusacomplementarytermgivenby ½ f0
1 [nt(f(Yí, Yi))+D;(J(Yí, Yi))] dt, 

where D¡ Kt = limeio Dt+e K1 and D¡ Kt = lime!O Dt-e K1. We remark that the 

process f(Yí, Yi) belongs to the class 1L2~oc (see [4]) which allows to apply these 
' 

results. Then, from (2.4) we obtain that 

(2.18) 

and substituting (2.18) into (2.17) we get the desired result. Q.E.D. 

3. The Markov property. 

In this section we want to study the Markov properties of the process {Xt} solution 

of equation (1.1 ), where {Wt} is a standard Brownian motion. As a solution of a second 

order stochastic differential equation we might conjecture that this process is 2-Markovian 

(see, for instance, Russek [9]), that means, the two dimensional process {(X1 , X1)} is a 

Markov process. We first show that this is true for the process {Yt} i.e., when f = O. 

Proposition 3.1. The process {(Yí, Yt ), O :S: t :S: 1} deiined by the equations (1.2) and 

(1.2)' is a Markov process. 

Proof: Let 'ljJ(x,y) be a real valued bounded and measurable function. Fix s < t and set 
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( = f
0

1 Wt dt. We have to compute the conditional expectation 

E(1/J(Yt, Yt)l(Yr, Yr), O::; r:::; s) 

= E(1/J(a + et - t( + 1t ltVudu, e- ( + Wt) 1 (, Wr, O:::; r:::; s) 

= E(1/J(a + et -t( + 1s TYudu + ¡t(Wu - Ws)du + (t - s)Ws, 

e - ( + Wt - vVs + TYs)IC Wr, o:::; r:::; s) 

= r 1/J(a + et - t( + rs Wu du +X+ (t - s)Ws, e - (+y + Ws) 
1112 lo 

. N(((t - s)2(3- 2s -t) jl(W -W )du 
2(1-s)3 s u s ' 

3(t - s)(2 - s - t) (1 (W _ W) d ) /\) (d d ) 
2( 1 - S )3 J s u s U ' X' y 

where /\ denotes the conditional covariance matrix of the Gaussian vector (Í:(Wu -
Ws) du, Wt - Ws ), given J: (Wt - Ws )dt. Consequently, the above conditional expectation 

will be a function of the random variables 

-t(+ 1s Wudu+(t-s)Ws=(t-s)Ys+Ys-ct-a, 

- ( + Ws = Ys - e, 

¡1 

(Wu - Ws) du = - (l - s)Ys - Ys +a+ e, 

and this implies the Markov property. Q.E.D. 

We will see that, except in the linear case, the Markov property does not hold for the 

process { X t}. One might think that the Markov field property is better adapted to our 

equation because we impose fixed values at the boundary points t = O and t = l. However 

this is not the case and, as we shall see, the nonlinearity of the function f prevents for any 

type of Markov property. The main result of this section is the following. 

Theorem 3.2. Let {Xt, t E [O, 1]} be the solution of equation (1.1) where {Wt, t E [O, l]} 

is an ordinary Brownian motion. Then, 

(i) If f is an aHine function veri(ying condition (1.6) the process {(Xt, Xt)} is a Markov 

process. 
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(ii) If f is a íive times continuously differentiable function of tbe class Cb (i.e. J; _:::; O, 

J; _:::; O and f bas linear growtb) and tbe process {(Xt, Xt); t E [O, 1]} is a Markov íield, 
tben tbe function f must be afflne. 

Before proving this theorem let us show a preliminary technical lemma. We recall ( see 

[4]) that ID¡~~ is the set of random variables F such that there exists {(fln, Fn)} C Fx ID1
•
2 

with nn j n a.s. and F = Fn a.s. on nn. 

. 1 
Lemma 3.3. Let 9t be tbe a-algebra generated by Yt, Yt and fo Ws ds. Tbat means 

9t = a{ f0
1 

W 8 ds, Wt, J: W 8 ds}. Let F be a random variable in the space ID¡~~ sucb that 

F 1 G is 9t-measurable for some set G E 9t. Then there exist random variables At ( w), 

Bt(w ), and Ct(w) sucb that 

DeF(w) = [At(w)8 + Ct(w)] l¡o,tJ(8) + Bt(w)(8 -1) l¡t,iJ (8), 

for dP x d8 almost all (w, 8) E G x [O, 1]. 

Proof: Consider the subspace K of H = L2 (0, 1) spanned by the derivatives of the genera

tors of the a-algebra 9t. This is the so-called tangent space of the a-algebra 9t and, in 

our case, it is the deterministic subspace spanned by (see the expressions (2.2) and (2.3)) 

DeYt = t(l - 8) + (t - 8)1¡o,t](8) = 8(t - l)l¡o,tJ(8) + (8 - l)t l¡t,1](8), (3.1) 

De Yt = -(1 - 8) + l¡o,tJ(8) = 8 l¡o,tJ(8) + (8 - l)l¡t,iJ(8), (3.2) 

and 

De ( 11 

Wt dt) = 1 - 8 . 

Thus, K is the three-dimensional subspace generated by 81¡o,t](8), l¡o,tj(B) and (8 -
l)l¡t,1](8). Then the fact that the a-algebra 9t is generated by a finite number of random 

variables of the first chaos allows to apply Lemma 4.5 of [5] and to conclude that D F 

belongs to K a.s. on G, which gives the result. Q.E.D. 

Remark 3.4. Let <I>(t) be the solution of the linear system (2.5). Then, the components 
of the matrix <I> ( t) satisfy the relations 

4>11(t) = -/Jt4>11(t) - Ot4>21(t), 

4>21(t) = <I>11(t), 

4>12(t) = -/Jt4>12(t) - Ot4>22(t), 

1>22( t) = <I>12(t). 
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Observe that the entries of the matrix <I>( t) are nonnegative and <I> 11 ( t) > O, <I>21 ( t) > O 

and <I> 22 (t) > O for t E (O, 1) if we assume O:t ::; O and f3t :::; O. The same results hold for 

t~e entries of <I>(t,s) for O< s < t. The inverse matrix <1>- 1 (t) solves the linear system 

P(t) = -<I>-1(t)Ji,ft. Consequently, we also have 

that means 

4>(1, t) = <I>(1~1(t) = -<I>(l)<I>-1(t)Mt = -<I>(l, t)Mt, 

4>11(1,t) = f3t<I>11(l,t)- <I>12(l,t), 

4>12(1, t) = O:t<l>11 (1, t), 

4>21(1,t) = f3t<I>21(l,t) - <I>22(l,t), 

4>22(1, t) = O:t<l>21 (1, t). 

Proof of Theorem 3.3. Let Q be the probability measure on on Co([0, 1]) given by Theorem 

2.3. From the results of Section 2 we know that the law of the process {Xt} under P is 

the same as the law of {Yi} under Q. Therefore, we can replace the process {(Xt, Xt)} by 

{(Yi, Yt)} and the probability P by Q in the statement of the theorem. By Proposition 3.1 

we already know that {(Yi, Yt)} is a Markov process under P and now we have to study 

the Markov property with respect toan equivalent probability measure Q. For any fixed 

t E (O, 1) and using Theorem 2.3 we can factorize the Radon-Nikodym derivative J = ~ 
as follows 

where 

, • • • 2 l ¡t ¡t l ¡t 
Lt = exp ( 2 0 

Íy(Ys, Ys) ds -
0 

J(Ys, Ys) o d Ws - 2 0 
f(Ys, Ys) ds), 

t , · • l · 2 111 11 11 L = exp ( 2 t Íy(Ys, Ys) ds - t f(Ys, Ys) o d W 8 - 2 t J(Y8 , Y 8 ) ds). 

We define the a-algebras 

:Ft = a {(Ys, Y8 ), O:::; s:::; t} 
P = a { (Ys, Ys), t:::; s :::; 1}, and :FJ = :¡:t V a{Yo, Yo} = P V a{f

0

1 Wt dt}. 

For any random variable e integrable with respect to Q we set 

/\ = E (tj:F) = Ep(eJ/:Ft) 
e Q 1,, t Ep(J/:Ft) . 

Then we have 
Ep(e1z1 ¡Lt /:Ft) 

/\e= Ep(IZ1ILt/:Ft) ' 
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because Lt is Ft-measurable. 

(i) Suppose first that f is an affine function verifying (1.6). In that case Z1 is deterministic 

and we get 
Ep(eLt / Ft) 

/\e= Ep(Lt/Ft) . 

Then if e is Ft_measurable, using the fact that Lt is also Ft-measurable and applying the 

Markov property of (Yi, Yí) under P we deduce that Ae is u{Yi, Yí}-measurable and this 

implies that {(Yi, Yt); t E [O, 1]} is a Markov process under Q. 

(ii) To prove the second assertion of the theorem we suppose that {(}í, Yt); t E [O, 1]} is 

a Markov field under Q. This implies in particular that for any t E (O, 1) and any FJ

measurable random variable e, integrable with respect to Q, the conditional expectation 

/\e = Eq(e/ Ft) is 9t = u{Yi, Yí, fo1 
Wt dt}-measurable. Recall that J E cb implies 

f~ :S O and J; :S O and, therefore, Zt ~ O for all t because Zt is given by the equation 

(2.10). Consequently, we can put IZ11 = Z 1 in the formula (3.4). We can also transform 

the expression (3.4) by means of a suitable decomposition of the random variable Z1 . Set 

[!:] = ~(1,t) [!:], (3.5) 

that means, 

Z1 = 4>21 (1, t)Zt + 4>22(1, t)Zt, (3.6) 

In the sequel we will denote by F the conditional expectation of the random variable 

F under P •ith respect to the u-algebra 9t. The random variables Zt and Zt are Ft

measurable and, on the other hand, 4>21 (1, t), and 4>22(1, t) are Ft-measurable. Thus, from 

(3.4) and (3.6) and applying the Markov field property of (Yi, Yt) under P we deduce that 

and by our hypotheses this expression is 9t-measurable. Therefore we obtain the follo
wing equation 

which is valid for any FJ-measurable random variable e integrable with respect to Q. ,ve 
are going to apply this equation to the following random variables 

6(t) = [cl>21(l, t)Lt]- 1 

l2(t) = [«l>22(l, t)Lt]- 1
, 
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assuming that t E (O, 1). First we remark that for t E (O, 1) ~¡(t) is Q-integrable and 

nonnegative. In fact, using the equations satisfied by the matrix <P(t, s) as a function of t, 

(see Remark 3.4) we have O~ <P 21 (1,t)-1 ~ (l -t)-1 and O~ <P22(l,t)-1 ~ l. Then we 

define 
A} = 1\~1 (t)<P21 (1, t)Lt - l 

Bl = Ae1 (t)<P22(l, t)Lt - [<P21(l, t)J-1<P22(l, t) 

A;= /\6(t)<P21(l, t)Lt - <P21(l, t)[<P22(l, t)J-1 

B¡ = Ae2 (t)<P22(l, t)Lt - l 

From (3. 7) and (3.8) we deduce 

(3.9) 

Observe that the processes A~ and B; are 9t-adapted. For any t E (O, 1) we define the set 

(3.10) 

Note that on Gt we also have Bf = B; = O because Zt > O for t E (O, 1). Then the rest of 

the proof will be done into several steps. 

Step 1: The random variables lat :~~g::~ and laf ::~m are 9t-measurable. 

Proof of Step 1: The definition of the set Gt leads to the following equalities 

1 [<P21(l, t)J-1 <P22(l, t) 
====;:::=~-
<P21 (1, t)Lt <P22(l, t)Lt 

[<P22(l, t)J-1<P21(l, t) 1 

<P21 (1, t)Lt <P22(l, t)Lt' 

a.s. on Gt, Consequently, we obtain <P 21 (1, t)(<P22(l, t)J-1 = { [<P 21 (1, t)J-1 <P 22 (1, t)} -i, 
and by the strict Jensen inequality applied to the measure space ( Gt, Flat, P) we get 

that the random variable lat : 21 g•g is Gt-measurable. Note that Zt = <P 21 (t), and from 
22 , 

Remark 3.4 we deduce Zt = <P11(t). Therefore on the set G~ we have that the random 
variable 

Zt <P21(t) 
Zt - <P11(t) 

is 9t-measurable. 

Step 2: Two basic inequalities [(3.18) and (3.19) below). 

Proof of Step 2: We define 

<P21(l,t) 
'-Pt = -<P-22-( 1-, t-) and 
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From the properties of the matrices cl>(t,s) (see Remark 3.4), we deduce that 'Pt and '!pt 

are continuously differentiable processes on [ü,1], c.p1 = O, -¡/;0 = O, 'Pt > O for t E [O, 1) and 

'l/Jt > O for t E (O, 1]. Also, from the linear differential equations satisfied by cl>(t) and 4>(1, t) 
we can derive Ricatti type differential equations for l.f)t and 'l/Jt. In fact, differentiating with 

respect to t the equations 

4>21(1, t) = l.{)t<l>22(l, t) 

4>21(t) = 'l/Jt<l>11(t), 

and using the relations given in Remark 3.4 we obtain 

(3.12) 

(3.13) 

It is not hard to show that the random variables 4> 21 ( 1, t), 4> 22 ( 1, t), 4> 21 ( t) and 4> 11 ( t) 

belong to the space IDt~~, for any t E (O, 1 ). Consequently, the same is true for the random 

variables l.f)t and 'l/Jt-

Applying the operator D , which commutes with the derivative with respect to the 

time variable, to the equations (3.12) and (3.13) gives 

Dei.pi= O, 

De'l/Jo = O. 

These linear differential equations can be solved and we get 

(3.14) 

(3.15) 

where 

'Yts = exp ( - iª (/3r - 21.{)rO'.r )dr) , and 

éts = exp (it (/3r + 2'l/Jrar )dr) , for any s, t E [O, 1]. 

In order to get a more explicit expression for the derivatives Dei.pt, De'l/Jt we have to 

compute Def3t and Deat. Henceforth we will use the following notations 
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From (3.1) and (3.2) we obtain 

Deat = [(t - l)J~'x(t) + f~'y(t)]Bl¡o,t](B) + [tf~'x(t) + J:y(t)](B - l)l¡t,1](8), (3.16) 

and 

De/31 = [(t - l)f~y(t) + J;'y(t)]Bl¡o,t](B) + [tf~y(t) + J~y(t)](B - l)l¡t,1J(B). (3.17) 

Set 
R1(s) = '-Psf~y(s) - <.p;J~'x(s) 

T1(s) = '-Psf;'y(s) - <.p;J~y(s) 

R2(s) = t/Jsf~'y(s) + t/J;J~'x(s) 

T2(s) = t/Jsf;'y(s) + t/J;J~y(s) 

We want to show the following equalities: 

fo1 

R1(shesds + T1(B) = O, 

18 

R2(s)ceads -T2(B) = O, 

Proof of {9.18} and {9.19): 

for 

for w E Gt, t ::; B::; 1, a.e. 

w E G~, O :S: B ::; t, a.e. 

(3.18) 

(3.19). 

We will first show the equality (3.18). Using the expressions (3.16) and (3.17) we get 

the following formula for De'-Pt, if B ~ t and w E Gt, 

(3.20) 

where 
a1(s) = (s - l)R1(s) + T1(s), and 

a2(s) = sR1(s) + T1(s). 

Now by step 1 of the proof and applying Lemma 3.3 to the random variable '-Pt and to the 

set Gt, there exists a random variable r 1 ( t) such that 

De<.pt = (8 - l)f1(t), (3.21) 

for all 8 E [t, 1], w E Gt, a.e. Comparing (3.20) with (3.21) gives by choosing B = t 

-t 11 f1(t) = -- "ltsa1(s)ds, 
1 - t t 
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and hence 

le ¡1 t(0 - 1) 11 
(0-1) t ,tsa2(s)ds+0}

8 
1tsa1(s)ds= t-l t 1tsa1(s)ds, (3.22) 

for w E Gt and 0 E [t, 1), a.e. Multiplying the expression (3.22) by ,1t and differentiating 

with respect to 0 we obtain 

iº ,1sa2(s)ds + (0 - lh1ea2(0) + 11 
,1sa1(s)ds - 0,1ea1(0) 

t 11 

= -- ,1sa1(s)ds. 
t - l t 

(3.23) 

Put 0 = l in ( 3.23) and observe that a 1 ( 1) = O beca use cp 1 = O. This implies 

J1 
,1s((t - l)a2(s) - ta1(s))ds =O. (3.24) 

From (3.22) (with ,ts replaced by 11 8 ) and (3.24) we get 

(3.25) 

that means 

fe1 

,1s[(0- s)R1(s)-T1(s)]ds = O, 

which implies (3.18) by differentiating with respect to 0. The proof of the equality (3.19) 
would follow exactly the same steps. To avoid repetitions we omit the details of this proof. 

Step 3: The second derivative J;'y is identically zero. 

Proof of Step 9: The equations (3.18) and (3.19) imply that T1(s) is differentiable on (t, 1) 

for w E Gt a.s., and T2 (s) is differentiable on (O,t) for w E Gf a.s. Consequently the 

quadratic variation of these functions must vanish on these intervals. We can compute 

these quadratic variations applying the extended Itó-Stratonovich formula (see [4]) to the 

processes T1 ( s) and T2 ( s). In this way we obtain 

s E [t, 1), w E Gt a.e., (3.26) 

and 

s E [O,t], w E G~ a.e. (3.27) 

Computing again the quadratic variation yields 

s E [t, 1], w E Gt a.e., (3.28) 
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and 

s E [0,t], w E G~ a.e. (3.29) 

Now we can use again the generalized lto-Stratonovich stochastic calculus to compute the 

di:fferential of the processes appearing in the preceding equations. In particular, di:fferen

tiating the left hand sides of the equalities (3.26) and (3.27) yields 

¡ (4) ( )Y. ¡(4) ( )Y. ¡(3) ( ) · _ Ü yyyx S s - xyyx S s'Ps - xyy S 'Ps - , s E [t, l}, w E Gt a.e., (3.30) 

and 

s E [O, t], w E G~ a.e. (3.31) 

Now we compute the quadratic variation of the functions appearing in the equations (3.30) 

and (3.31) and we get 

¡ (5) ( )Y. ¡(5) ( )Y. ¡(4) ( ) ¡(4) ( ) · ¡(4) ( ) yyyyx S s - xxyyy S s'Ps + yyyx S - 'Ps xyyx S - 'Ps yyyx S 

- Ji!~(s)('Psf;'y(s) - cp;J~y(s)) = O, 

for s E [t, l] and w E Gt a.e., and 

f~!tyx( S )Ys + fi!)yyy( S )YsV,s + f~;tx( S) + V'sf~;~x( S) + Jsf~!tx( S) 

+ f~!)y(s)(V'sf;'y(s) + v,;J~y(s)) = O, 

(3.32) 

(3.33) 

for s E [O, t} and w E Gf a.e. Using once more the extended lto-Stratonovich stochastic 

calculus, we differentiate the functions appearing in the equations (3.28) and (3.29) and 

we obtain 

! (5) ( )Y. _ ¡(5) ( )Y. _ · ¡(4) ( ) _ Q yyyyx S s xxyyy S s'Ps 'Ps yyyx S - , s E [t, l], w E Gt a.e., (3.34) 

and 

(5) . (5) . . (4) _ 
Íyyyyx(s)Ys + Íxxyyy(s)YsV's + V'sÍyyyx(s) - O, s E [O, t], w E G~ a.e. (3.35) 

Substituting (3.34) and (3.35) into (3.32) and (3.33), respectively, and using (3.30) and 

(3.31) yields 

(3) (;.. . ) -Íxyy(s) 'rs - YsT1(s) - O, s E [t, l], w E Gt a.e., (3.36) 

and 

s E [O, t], w E G~ a.e. (3.37) 
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Define F1 (s) = 'Ps - Y8 T1(s) and F2(s) = Js -Y8 T2(s). Note that the quadratic variations 
of these functions vanish for s E [t, 1], w E Gt and s E [O, t], w E G~, respectively. On the 

other hand, if we differentiate these functions we obtain: 

and 

F1 ( S) = (f~'y( S )r.ps - f~'x( S )r.p;) Ys 
+ (/3s - 2a 8 <p 8 )'Ps - Y/I'1(s), 

F2(s) = (f~y(s)1/Js + f~'x(s)1/J;) Ys 

+ ( /3 s + 2a s 1/J s ) J s - Ys 'I'z ( s ) , 

s E [t, 1], w E Gt a.e., 
(3.38) 

s E [O, t], w E Gf a.e. 
(3.39) 

We come back now to the equations (3.18) and (3.19). lf we differentiate the left hand 

side of these equations we get 

R1(s) + T1(s)(/3s - 2as'Ps) - 'I'1(s) = O, 

R2(s) + T2(s)(/3s + 2as1/Js) - 'I'z(s) = O, 

s E [t, 1], w E Gt a.e., 

s E [O, t], w E Gf a.e. 

So, from (3.38), (3.39), (3.40) and (3.41) we deduce 

.F'i(s) = (/38 - 2a8 <p 8 )F1(s), 

F2(s) = (/3s + 2a 8 1/; 8 )Fz(s), 

s E [t, 1], w E Gt a.e., 

s E [O,t], w E G~ a.e. 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

Moreover, F1(l) = -1 and F2(0) = l. Being the solutions of linear equations, we have 

F 1(s) < O a.s. for s E [t,1] and w E Gt, and F 2 (s) > O a.s. for s E [0,1] and w E G~. 
Consequently, from (3.36) and (3.37) we get Ji;~(s) = O for s E [t, 1] and w E Gt a.s., and 

also for s E [O, t] and w E G~ a.s. Now from (3.26) and (3.27) we deduce J~;~( s) = O for 
the same values of s and w. 

We apply now the generalized Ito-Stratonovich formula to the processes Ys and Ys, 
and to the function J;'y ( x, y) , and we get 

and 

Therefore for all t in (O, 1) we have J;'y(Yt, Yi) = Jiy(Y1, Y1) on Gt a.s. and J;'y(Yt, Yi) = 
J;'y(Y0 , Yo) on G~ a.s. Putting s = l in the equation (3.40) and s = O in (3.41), and using 

the fact that r.p1 = O, <p1 = -1, 1/;0 = O and Jo = 1 we deduce J;'y(l) = O on Gt and 
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J;'y(O) = O on G¡. Therefore the process {J;'y(t)} vanishes a.s., and we have J;'y(x, y)= O 

for all x, y. 

Step 4: From Step 3 we know that the function f is of the form f(x, y)= YÍ1(x) + h(x). 
We are going to show that f{ = O and J;' = O. First notice that our hypothesis J; :=; O 

implies J{(x) = O for all x. On the other hand, the equations (3.18) and (3.19) can be 

written now in the following form 

(3.44) 

for 0 E [t, 1] and w E Gt, and 

(3.45) 

for s E [O, t] and w E G~. Differentiating these functions, we obtain that the process J;' (Ys) 
is identically zero. Therefore, ¡;1 

( x) = O for all x, which completes the proof of Step 4. 

Q.E.D. 

Remark 3.4 

(1) If the function f(x, y) depends only on the variable x or on the variable y, then 

the last part of the proof can be simplified. In fact, in these particular cases the equations 

(3.18) and (3.19) imply directly that the second derivative off vanishes. Moreover, in this 

case we only need f to be twice continuously differentiable. 

(2) lf we assume in part (ii) of Theorem 3.2 that the process {(Xt, Xt)} is a Markov 

field for each choice of the boundary conditions a, b E IR then the last part of the proof 

can also be simplified and we only need f of class C3
• 

Corollary 3.5. Under tbe conditions of Part (ii) of Tbeorem 3.2, if {(Xt, Xt)} is a germ 

Markov field, tben J ís afline. 

Proof: Fix t > O and for any € > O consider the a -field defined by 9i = a(Yu, Yu, u E 

[O, E) U ( t - t, t + t) ). It suffices to check that the germ_ a-field íli:::,-o QE coincides up 

to zero measure sets with the a-field generated by Yo, Yo, Yt and Yi, which is 9o = 
a(f

0
t W 8 ds, J/ W 8 ds, Wt). Denote by H0 the linear span in L2 ([0, 1]) of the functions 

s ----+ l¡o,t] ( s ), s -+ l¡o,t] ( s )( t - s ), and 1 - s. For each € > O let HE be the minimal closed 

space containing H 0 and the functions 1B, B being a Borel subset of [O,€) U (t - €, t + e). 
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Clearly we have that for every E 2:: O gf is the a-field generated by the random variables 

fo1 htdWt, h E He. By Lemma 3.3 of [3] the germ a-field nE>O gf is equal to the a-field 
generated by the stochastic integrals of the functions of the space ílf>D He. Consequently: it 
suffices to check that the intersection of the subspaces He is H0 , and this is straightforward. 

Q.E.D. 
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