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Abstract. In this paper we prove the analogue of the Hu—
Meyer formula for random kernels. More precisely, using a
suitable notion of trace we give the relation between the mul-
tiple Stratonovich integral of a non adapted process and the
multiple Skorohod integral.
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1. INTRODUCTION

This paper has been motivated by the problem of finding the analogue of the Hu-
Meyer formula for random kernels. In [1] the authors present a relation between the
multiple Stratonovich integral of deterministic kernels and the multiple It6- Wiener integral
of traces, giving an intuitive explanation for its validity. Recently, different authors have

given rigorous proofs of this formula, see for instance [2], [3], [9], [10] and [11].
Consider a non adapted stochastic process X = {X¢, t € [0,1]}. Under some smooth-

ness requirements, the stochastic integrals of X with respect to a Brownian motion
W = {W,, t € [0,1]} in the Skorohod and in the Stratonovich sense can be defined. They
usually have been denoted by §(X) and I°*(X) respectively. These two notions of integrals

can be related by means of a trace type term (see Theorem 7.3 in [6] and Theorem 1.9 in
[9]. Formally,

P(X)=6X)+TX. (0.1)

In this article we deal with multiparameter stochastic processes X = {X,, t € [0,1]*}.
The multiple k~th Skorohod integral §¥(X) can be defined as an extension of the one-
dimensional parameter case (see for instance [5] and [4]), as well as the k-Stratonovich
integral, I§(X). For k = 2 the relation between I§(X) and 62(X) has been studied in
Section 2.B of [9]. To this end different notions of traces are introduced, say 71X, TX
and T; 2 X , and it is proved that

B(X)=8X)+26(X)+TX + T, X . (0.2)

Both formulae (0.1) and (0.2) are of the Hu-Meyer type for non deterministic kernels.

Our purpose here has been to find an appropiate notion of trace which unifies all the
notions explained before, allowing us to relate the multiple Stratonovich and Skorohod
integrals of a multiparameter process X . This notion is given in Definition 2.4. The basic

result is presented in Theorem 3.1, where the formula
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is proved. Here T} .(X) denote the traces, and it should be pointed out that for X deter-

ministic this formula reduces to the Hu-Meyer formula

% k' .
(X)) = ——— I;_2; (T’ f),
2 o212

(see Remark 3.2).

2. NOTATION AND PRELIMINARY RESULTS

Let T be the interval [0,1]. We will denote by 7 an arbitrary partition of T, say
T={0=1t <...<ty, <tr,, =1}, and by A; the interval (¢;, tix1], ¢ =1,...,7x.

The norm of 7 is defined as |r| =  max (ti+1 —ti). For any Borel set A of T', |A| means
STy
its Lebesgue measure. We will write ¢t = (¢;,...,t;) for a generic point in TF, k > 1.

Consider a standard one—dimensional Brownian motion {W;, t € T} defined on the
canonical probability space (2, F,P), that means Q = C(T), F = B(f2) and P is the
Wiener measure. Consider also a measurable stochastic process X = {X;, t € T*} defined
on (2, F, P), such that E (ka XZ dg) < 4o00. For any partition w of T we set

0= Y mTE (/ X-‘-di) WiBa)- WBa) @D

il ,...,ik=1

Definition 2.1. The process X is said to be Stratonovich integrable if the family
{S(X), m partition of T} converges in L?(Q) as |r| — 0. We will call this limit the
k-Stratonovich integral of the process X and it will be denoted by I(X).

Remarks

(2.2) In the previous definition the value of Ij(X) can be obtained, equivalently, as the
limit of {Sr(n), 7 > 1} for any increasing sequence of partitions {n(n), n > 1} of T such
that |7(n)] — 0 as n tends to infinity.

(2.3) Let X be the symmetrization of X , that means

~ 1
=5 2 Xew
" 0€6,
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where G denotes the group of permutations of {1,2,...,k} ,andift = (¢1,...,tk), o(t) =
(ta(a)s-- s ta(k)) -

Then it is obvious that the process X is k—Stratonovich integrable if and only; if X pos-
sess the same property, and in this case I3(X) =1 ;(X’ ). Hence, when dealing with the
Stratonovich integral, we will only consider as integrands processes {X;, t = (t,...,tk) €

T*} which are symmetric in the variables t;,...,%x.

For any integer k > 1, D* denotes the Malliavin k-th derivative operator. Given any
real p > 1 we call D*” the set of Wiener functionals F' in Dom D* such that

k
IFllkp == IFllp + Y 1D Fllzzcrsl,

i=1
is finite.
The adjoint of the operator D¥ is the multiple k—~Skorohod integral. It will be denoted
by &* .
By definition L:’2 is the space L?(T*,D%?). That means, Ll,z’2 is the class of processes

X € L*(T* x Q) such that X t € D*2 for any t € T*, and there exists a measurable version

of
{D;c Xy, (s,t) € T* x T*¥} such that

E/ / |D¥u,|?dsdt < + 0.
Tk JT*k - -

The space L',z’2 is included in Dom 6*. If k = 1 we set L12 instead of L}'?, and § instead
of 6.

We refer the reader to [5] and [4] for an extensive treatment of questions concerning
the multiple Skorohod integral.

In the next definition we introduce the notion of trace for processes of L:’2. As it will
be shown in the next section, this is the suitable concept to compare the k—th Stratonovich
and Skorohod integrals, and unifies different definitions given in [9], [6].

Definition 2.4. Let X be a symmetric process belonging to L:’z. Fix j € {0,1,..., [%]}

and r € {0,1,...,k — 2j}. Then X has (j,r)—trace if the L;"3/7"*limit, as n tends to

infinity, of the sequence

"(n) vy _ 1
i (X) = > Bl A

1 y'“aij-f-re{lr'"rt(n)}

‘J’+r|

/ D: Xt dt1 e dtgj dsl dt2j+1 .o dS,- dt2j+,- ’ (22)
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n > 1, exists, where {w(n), n > 1} is an increasing sequence of partitions of T such that

|7(n)| — 0, as n — co.

This limit defines a stochastic process with a (k — 2j — r)-dimensional parameter which
will be denoted by T (X).

Remarks

(2.5) By convention Tpo(X) = X.

(2.6) Let f be a symmetric function of L2(T*). Then f can also be viewed as an element
of L:’z, and D" f(t) = 0 for any ¢t € T* and any r > 1. Therefore T} (f) = 0if r > 1.
For r = 0 the definition of T} o(f) coincides with the definition of trace for deterministic

kernels given in Definition 3.2 [9].

(2.7) Let k = 1 and X € LY2 Then T,,1(X) exist if and only if X is Stratonovich

integrable, and in this case

I3(X) = 6(X) + To3(X) (2.3)

(see Theorem 1.9 [9]. Moreover, under additional hypothesis on X , T ;(X) can be written
as an integral involving the derivative operator D (see Theorem 7.3 [6]).

(2.8) As in Proposition 1.8 [9] (see also Proposition 2.1 [11]) the existence of the
(7,r)—trace of X, Tj.(X) can be given in terms of the existence of traces for the kernels
of the Wiener—chaos decomposition of the random variable X; . The precise statement is as
follows. Let X € L:’z . Consider the Wiener—chaos expansion of the L?—random variable

Xy, say

oo

Xe= Y In(fm(-,1),

m=0

where f,, € L>(T™1*%), m > 0, are symmetric in the first m coordinates. Then

D;:X1= Z ’(;‘n;r‘n_‘"?)—' Im-—r (fm(',.§’ i))

m=r

in the L?(T*+" x Q) convergence.
Denote by 777 f,,, the L? (T™+¥=2/-2")_limit, if it exists, of the sums
> 1
i1 ey $5 40 € {1y, Tr(m ) lAil l ce |Aij+r' (Aay)? XX (A )2 % (844, )2x...x(A,~j+r )2

fm ( *yS, z) dtl . dtzJ dS] dt2j+1 . ..dS,- dt2j+,- .
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Then, if X has (j,r)—trace, 79%" f,,, exists and

Ty (0= 30 gy e (717 ).

m=r

3. HU-MEYER FORMULA FOR RANDOM KERNELS
The aim of this section is to prove the following result.

Theorem 3.1. Let X = {X;,t € T*} be a symmetric process belonging to L:’Z. Let
j€1{0,...,[£]}, r € {0,..., k—2j} and assume that all traces T}, (X) exist. Then every
T; +(X), which is an L?([0,1)¥2/~" x Q) process, is (k — 2j — r)—Skorohod integrable.
Furthermore, X is k—Stratonovich integrable and

[5] k—2j3 .
k— k!
0=y Y (") g AT @) G

j=0 r=0

Remarks

3.2) Let f € L*(T¥) be a symmetric function, and assume that the traces T;o(f), j =
Js

1,..., [-’25] , exist. Then the multiple Stratonovich-It6-Wiener integral, Ii(f), exists and
(%] k1
I(f) = ;U,m,whumu» (3:2)

where I,(-) denotes the multiple It6—Wiener integral.

The formula (3.2) has been established by Hu-Meyer in [1] (see also [2], [3], [9], [10]
and [11]).

(3.3) For k =1, formula (3.1) reduces to (2.3). For k¥ = 2, the result has been proved in
Proposition 2.7 [9].

Before giving the proof of Theorem 3.1 we quote some known results that will be used in

the sequel.

Lemma 3.4. Let X € L:’2. Then, for any Borel set B C T and any r € {1,...,k}, the
random variable [ . 5 X dt belongs to Dom D" and

D: (/ Xl d_t_) = / D; XE di . (33)
- Bx..xB Bx...xB -
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The proof is straightforward and will be omitted.

Lemma 3.5. (cf. Proposition 3.4 [4] and Lemma 1.2 [9]). Let F € Dom D* for some
integer k > 1, and h a symmetric function in L?(T*). Then Fh € ll_;z’2 . Moreover, for any
i=1,...,k the process fT-' (D;F) h(-, s) ds belongs to Dom §%—* and

Fé*h= Z (5) & (Lo ac.s is) | (3.4)
T T
with the convention that for i =0, [ D; Fh(-,s)ds=Fh.

Lemma 3.6. (cf. formula (3.2) [9]). Let B,..., By be disjoint Borel sets of T', and

T1,...,Th positive integers such that ry +... 4+ r, = m. Then

!

7‘1, ,.h__ 7‘1!...7‘h.
W(Bl) W(Bh ZO Z (7‘1 -—2k1)‘ (Th~2kh)‘ kl‘ kh'2]

k1=0,..., 5.}
kn=0,...[ %]
kit...+kp=)

AB1l*t ... |Bp|** Imoaj (1@’("'2’“’@ .® 1®(”"2"“) . (3.5)

Proof of Theorem $.1. 1t has to be shown that, for any increasing sequence of partitions
{m(n), n > 1} of T such that |r(n)| — 0 as n tends to infinity, the sequence of random
variables {Sx(ny (X), n > 1} defined by (2.1) converges in L?(2) to the right hand side
of (3.1). The proof will be done in two steps, following along the ideas of the proof of

theorem 3.4 [9]. However the random character of X adds some difficulties.

(1) Let 7 be a partition of T, and G, the o—field on T generated by the intervals A;, ¢ =
1,..., rr, where we use the notation introduced in Section 2. For any positive integer
m > 1 we denote by &, the conditional expectation operator on the probability space
(T™xQ, B(T™)®F, A x P) with respect to the product o—field G, ® 3 ®GrQF . Then

a.s.,

['5] k-2 .
"(X)-Z 2 (k _rzj) (k—2yl'c)!!j! 576 7 (Ekmajer [T (X)) - (36)

r=0



Indeed,

k k! 1 ‘
SX=Y Y aral, 2 A A

=1 @1, ay>0. il,---yiAE{l ,,,,, rx}
ay4...tay=k [P TP T3

| (/ & di) (W(A)™ - (W(A,))™
(Ai))o1 X% (A4, )%2

We replace the product (W(A,-l))"1 S (W(A,-,\ ))a" by its equivalent expression given
in Lemma 3.6. Then if we denote by X’ the multiple sum

=1 AY s ay>0 £1,..,85 €{1,..., rx} =0
ay+ .. day=k ' '1;\*- #iy o k1=0, ’[251']
k>\=0,...,[g§a-]
ki+ ... +kx=y

we obtain

, k! 1
S+(X) =2 kil k! (an = 2k)! .. (ax = 2ka) 1 27 [A; [k LA [er—Fa

. / XL dt_ Ik—2j (1?5“1"2"71) ® . ® 1?5(’*-21‘:*)) . (3.7)
(B8iy)%1 X % (A, )2 1 N

Set F' = f(A.-l)"l X X (Ay )2 Xy dt and h= (125?1-“1) ®...0 1(01'.':_2,“)) , Where
()~ denotes symmetrization. Then, the hypothesis of Lemma 3.5 are satisfied. Moreover,

for any r € {1,..., k}, D; F is equal to f(A.-l)“lx...x(A;,‘)“A Dg X, dt (see Lemma 3.4).
Therefore, it follows from (3.7) that

k—2j

, k! 1
SHX0=2." 2 HrE (o1 — 2k ). (an — 261 29 [Ag, |k [, [

r=0

. (k - 2]) sk—2i-r [/ / D X, dt
" T (A )orxx(Ag e T T

(e e 120 T)T (L g)ds]
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We also have, by putting vi = a; —2k;, 1 =1,..., A

(5] x—2j Y k—
— - (k—=2j-r)
s=y 3 (Ve[S sy
]=0 r=0 o RA=1 Ry ky20 Y1seen Yy 20
k1+ +Ekax=i mt.Hra=k-2;
kity¢>0
k! Z 1
LRIy onl2d L [A R AL
LB I LN

/ / Dy X, dt) (187 .. 137) (,9)ds .
r (A )M +2k, XX (A, )72 +2ky - Ry X i b

Let P77 be the set of permutations of {1,..., A} with y; repetitions of h, h =
J A, Zi___l v = k — 25 . Then

Sa(X) = Z kf (k 23) (k=23 ’{kZ > >

.’-—0 r=0 1 kg k)20 Y1, Y220
k1+...+k,‘=j Yoty =k—2j
kEi4vi>0
k! 1 Z 1
; j . |k . |k
(k—25)! kil k! 27 i iy €{1 0 rx) |Ag, (Rt A, [atm
iy
> (/ (/ D} X, di) d_s_)
EP:12J1A ia(k-2j—r+1)x"'XAiv(k—2j) (A;1)71+2k1 )(...)((A,’A)."’\*'zkA
1A‘a(1) K...0 lA‘a(k-zj-r) . (3.8)
We prove in the Appendix that
Ex- 2:‘ r [I7 (X)) =
xk Z 2 > > >
kq,..., k)20 Y1aeo Y20 1,000y iy€{1,. ..,re} 'Vl 'YA
VANTRE aiuealy il eer
ki+v;>0
1 1
kil ky! IA,’1 Ik1+71 ce IA,‘A lk*+7’\
: / ( / D} X, dt) ds
"u(k-z,'-r+1)x'“XA"a(k-zj) (A,-l)'u-nk; x_._x(AiA)‘YA+2k>‘ s
' 1A‘«(1) ®...8 lA‘a(k-z,‘-r) ) (3.9)

Then, in view of (3.8), the equality (3.6) is established.

8



(2) Let {m(n), n > 1} be an increasing sequence of partitions of T such that [7(n)| — 0,
851 — 00. Set Sn(X) = Sx(my(X) and TP,(X) = TFV(X).

By hypothesis, for any j € {0,..., [£]}, r€{0,..., k =25}, 1€ {1,..., k——.2j—r}
T (X) —= Tir(X) ,
in L3(T*=%—" x Q), and
D; (T7.(X)) —= D; (Tjr(X)),

in L2(Tk-2i-r+i x Q).

Hence, by Hunt’s martingale convergence theorem
Ex—2jr [T]o(X)] —2 BA{T;r(X)|B(T*7") @ F} = Tj,(X)

in LA(T*23-7 x Q).

Moreover . _
Di (Ex-2j—rlT3( X)) = Erajmr ( DL(TF(X)))
—— D} (T;-(X)),

in L? (T*%-ti x Q) .
Consequently the lim 6¥72/7"(Ex_g;_, [T} (X)]) exists in L*(2) and equals

n—oo

§k=2-7(T; .(X)). Therefore the process X is k-Stratonovich integrable and formula (3.1)

is proved. »



Appendix

In this final section we prove formula (3.9) for the conditional expectations of the approx-
imations of the traces. We recall that k denotes a natural number, 5 € {0, ceey [%]} , T €
{0,..., k—2j}, = isan arbitrary partition of T given by intervals A;, 1 =1,..., rp and
Gr is the o-field generated by these intervals. Finally, given a natural number m > 1, E,,
denotes the conditional expectation operator on the probability space (T’", B(T™), \)

with respect to the o—field G, ® 3 QRGCnr.

Lemma 4.1. Let f(s,t), s € T", t € T* be a function in L' (T™*) symmetric in t.
Set

' 1
trT =
=) TN
11,0347 €{1,., Tx } 1 S+
/ f(_s_,Q dt, ...dtzj dsq dt2j+1 ...ds, dt2j+,-.
(A5 X(85; )2 X (B 1 )2 %o X (B )?
Then
k—j
Er—gj—r [tr], () =3 ) > > >
A=1 :11_',:'-.,:3 ,‘Z:,' 11114.»,:’-\_—%32, o ;';ae{:a.,\ r*} oep]! Az;:-‘n
kit+vi>0
1 1
kil ... k! |Ai1 |k1+71 .. lAi,\ !k*'*"”‘
: / / f(s 1) di) ds
‘ A‘o(h—?j—r-}-l)x"'XA'.o(k—zj) (A;1)71+2"1 X...X(A;)‘)'VA"’?"A
]'A‘a(x) ®...8® lA‘a(k—z,'—r) R (4.1)
where P:l'é'j"* denotes the set of permutations of {1,..., A} with 4 repetitions of h, h =

A
1,..., A, Z7h=k—2j.
h=1

In particular, if X is a symmetric process belonging to LZ’2 and f(s,t) = D] X,, we
obtain (3.9).

Proof. The conditional expectation Ex_g;_, [tr;',,( f )] can be developed as follows

10



. 1
Ei_2;_r [trj,r (f)] = Z |Ap, ... |Ahk il
-2~

hi,..,hp_2jr€{1,..,7x}

/ [tr.;r,r (f)] dt2j+r+1 coodik 1Ah1 ®...0 1A""-2'_'
A"lx XAhk 25 —r J

1
2 2 7Y O V.Y W V.S B V.

hy,..., hk—2j-r€{1,--v, r‘x} £1,.00) i,’+,€{],..., rx} "j+r|

f(s,t) di) ds

/A‘i+1 XoXAg; ., /(A.-l)2><...><(A.-J.)?><A.-i+1 Moo XBi; o XABpy X XBpy_or o

lAhl ®...0 ]'Ahk—zj-r

k—2j
ki, .ks>0  i1,.,i0€{1,..,rx} g=1 Yiin 7g>0 i $g€{L, 0
Ey+. . tks=j .ﬂe ;e., Y1+ +"Iq-k 2j " :;;...;e?q !
j! (k—2j)! 1

kilokst omlooygd AR A R Ay 1 [
k—27)!
ceP] ;e ( 7) Ay (kmgjmrin) T Blo k)

/ f(s,t)dt]) dsy 1a, ®...® la,
(A;l)zkl X...X(A;.)zka X(A-"l )71 x”.x(A:q )7q

to(1) Yo(k—25-r)
k—j
A=1 ky,..., kx20 Y110 YA 20 1,0 I E{Lic re} e pT2 YA
ki4..+ky=i vi1+.-+vr=k-2j i1y k—2j
ki+v;>0
1 1

Eib oo ka! A Rt LA [

J,

lA‘a(l) ®...8 lA‘a(k—zj

(f f(s,2)dt) ds
o (km2jm 1) Koo X A;a(k_”) (A )1 H2RI . X (A, )TA 2R

-r)

Therefore the lemma is proved. =
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