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Abstract. In this paper we prove the analogue of the Hu­
Meyer formula for random kernels. More precisely, using a 
suitable notion of trace we give the relation between the mul­
tiple Stratonovich integral of a non adapted process and the 
multiple Skorohod integral. 
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l. INTRODUCTION 

This paper has been motivated by the problern of finding the analogue of the Hu­

Meyer formula for randorn kernels. In [1] the authors present a relation between the 

multiple Stratonovich integral of deterrninistic kernels and the rnultiple Ito-Wiener integral 

of traces, giving an intuitive explanation for its validity. Recently, different authors have 

given rigorous proofs of this formula, see for instance [2], [3], [9], [10] and [11]. 

Considera non adapted stochastic process X = {Xt, t E [O, 1]}. Under sorne srnooth­

ness requirernents, the stochastic integrals of X with respect to a Brownian rnotion 

W = {Wt, t E [O, 1]} in the Skorohod and in the Stratonovich sense can be defined. They 

usually have been denoted by <5(X) and P(X) respectively. These two notions of integrals 

can be related by rneans of a trace type terrn (see Theorern 7.3 in [6] and Theorem 1.9 in 

[9]. Formally, 

Iª(X) = 6(X) + TX. (0.1) 

In this article we <leal with rnultiparameter stochastic processes X= {Xt, t E [O, l]k}. 
The multiple k-th Skorohod integral bk(X) can be defined as an extension of the one­

dimensional parameter case (see for instance [5] and [4]), as well as the k-Stratonovich 

integral, IZ(X). For k = 2 the relation between I~(X) and <52 (X) has been studied in 

Section 2.B of [9]. To this end different notions of traces are introduced, say T1X, TX 

and T1 ,2 X, and it is proved that 

(0.2) 

Both formulae (0.1) and (0.2) are of the Hu-Meyer type for non deterministic kernels. 

Our purpose here has been to find an appropiate notion of trace which unifies all the 

notions explained before, allowing us to relate the multiple Stratonovich and Skorohod 

integrals of a multiparameter process X. This notion is given in Definition 2.4. The basic 

result is presented in Theorem 3.1, where the formula 

k ! <5k-2j-r (T (X)) 
(k - 2j)! j! 2i i,r (0.3) 
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is proved. Here Tj,r(X) denote the traces, and it should be pointed out that for X deter­

ministic this formula reduces to the Hu-Meyer formula 

[½] '°"' k' . 
IZ(X) = L.,; (k _ 2 j)! j! 2j Ik-2j (Tr' f) , 

j=O 

(see Remark 3.2). 

2. NOTATION AND PRELIMINARY RESULTS 

Let T be the interval [0,1]. We will denote by 1r an arbitrary partition of T, say 

7r = {O = t1 < ... < tr,, < tr,,+i = 1}, and by D.¡ the interval (t¡, t¡+1], i = 1, ... , r1r. 

The norm of 7r is defined as lnl = Ill:ªX (t¡+1 - t¡). For any Borel set A of T, IAI means 
1<1<r,, 

its Lebesgue measure. We will writ; "i_ = (t1 , .•. , tk) for a generic point in Tk, k 2'.: 1. 

Consider a standard one-dimensional Brownian motion {Wt, t E T} defined on the 

canonical probability space (n, :F, P), that means n = C(T), :F = B(n) and P is the 

Wiener measure. Consider also a measurable stochastic process X= {Xt, t E Tk} defined 

on (n, :F, P), such that E (fr1c Xf dt) < +oo. For any partition 1r of T we set 

r,, 

S1r(X) = L 
i1 , ... ,i1c=l 

I I l I I ( [ Xt dt) W(.D.¡1 ) ••• W(.D.¡ 11 ). 
.D.¡1 • • • A¡/c JA¡l x ... x A¡I, - -

(2.1) 

Deflnition 2.1. The process X is said to be Stratonovich integrable if the family 

{S1r(X), 1r partition of T} converges in L2(n) as lnl --+ O. We will call this limit the 

k-Stratonovich integral of the process X and it will be denoted by IZ(X). 

Remarks 

(2.2) In the previous definition the value of IZ(X) can be obtained, equivalently, as the 

limit of { S1r(n): .¡ 2:: 1} for any increasing sequence of partitions { n( n ), n 2:: 1} of T such 

that ln(n)I--+ O as n tends to infinity. 

(2.3) Let .X be the symmetrization of X, that means 
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where 6k denotes the group of permutations of {1, 2, ... , k}, and ifí. =(ti, ... , tk), a(í.) = 

(tu(l), · • •, iu(k)) • 

Then it is obvious that the process X is k-Stratonovich integrable if and only if X pos­

sess the same property, and in this case It(X) = It(X). Hence, when dealing with the 

Stratonovich integral, we will only consideras integrands processes {X1, 'í. = (t1 , .•. , tk) E 

Tk} which are symmetric in the variables ti, ... , tk. 

For any integer k ~ 1, Dk denotes the Malliavin k-th derivative operator. Given any 

real p > l we call ok,p the set of Wiener functionals F in Dom Dk such that 

k 

IIFllk,p := IIFIIP + L 11 IIDi FIIP(Ti) llp 
i=l 

is finite. 

The adjoint of the operator Dk is the multiple k-Skorohod integral. It will be denoted 

by bk. 

By definition LZ'2 is the space L 2(Tk, Dk,2). That means, LZ'2 is the class of processes 

X E L 2(Tk x n) such that X1 E ok,2 for any í. E Tk, and there exists a measurable version 

of 
{D! Xt, (:i,Ü E Tk x Tk} such that - -
E [ f ID! u!. 12 d:idí. < + oo. Jr,. Jr,. -

The space L!•2 is included in Dom hk. If k = l we set L 1 •2 instead of l~'2 , and h instead 

of h1. 

We refer the reader to [5] and [4] for an extensive treatment of questions concerning 

the multiple Skorohod integral. 

In the next definition we introduce the notion of trace for processes of LZ•2
• As it will 

be shown in the next section, this is the suitable concept to compare the k-th Stratonovich 

and Skorohod integrals, and unifi.es different definitions given in (9], [6J. 

Definition 2.4. Let X be a symmetric process belonging to L!•2
. Fix j E {O, 1, ... , [½]} 

and r E {O, 1, ... , k - 2j}. Then X has (j, r)-trace if the L!:;1:;•2 -limit, as n tends to 

infinity, of the sequence 

T~(n) (X)= 
J,r 

1 

l~i1 1- .. l~i;+,. 1 
i1 , ... ,i; +r E {1, ... ,r,..(n)} 
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n 2: 1 , exists, where { 1r( n) , n > 1} is an increasing sequence of partitions of T such that 

l1r(n)I--+ O, as n--+ oo. 

This limit defines a stochastic process with a ( k - 2j - r )-dimensional parameter which 

will be denoted by T;,r(X). 

Remarks 

(2.5) By convention T0,0 (X) =X. 

(2.6) Let f be a symmetric function of L2 (Tk). Then f can also be viewed asan element 

of L!•2
, and nr f (t) = O for any t E Tk and any r 2: 1 . Therefore T;,r(f) = O if r 2: 1 . 

For r = O the definition of T;,o(f) coincides with the definition of trace for deterministic 

kernels given in Definition 3.2 [9]. 

(2. 7) Let k = 1 and X E L 1•2. Then T0 ,1 (X) exist if and only if X is Stratonovich 

integrable, and in this case 

I{ (X)= 8(X) + To,1 (X) (2.3) 

(see Theorem 1.9 [9]. Moreover, under additional hypothesis on X, T0 ,1 (X) can be written 

as an integral involving the derivative operator D (see Theorem 7.3 [6]). 

(2.8) As in Proposition 1.8 [9) (see also Proposition 2.1 [11)) the existence of the 

(j, r)-trace of X, T;,r(X) can be given in terms of the existence of traces for the kernels 

of the Wiener-chaos decomposition of the random variable Xi. The precise statement is as 

follows. Let X E L!•2
. Consider the Wiener-chaos expansion of the L2-random variable 

xi' say 
00 

xi= L Im (fm(. ,!)) ' 
m=O 

where fm E L2(Tm+k), m 2: O, are symmetric in the first m coordinates. Then 

00 m! 
D~ Xi= I=r (m _ r) ! Im-r (fm( · ,§., !)) 

in the L2 (Tk+r x !2) convergence. 

Denote by ri+r f m the L2 (Tm+k-2i-2r)-limit, if it exists, of the sums 

t
. ,·. LE{l r } l..6.¡11•-~j..6.¡;+rl ltl,1 ) 2x ... x(tl,.) 2 x(fl,.+1)2x ... x(tl¡.+ )2 
1, ... , 1+r , ... , ,r(n) J J J r 

f m ( • , :! , í) dt1 ... dt2i ds1 dt2j+1 ... dsr dt2j+r . 
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Then, if X has (j,r)-trace, ,-i+r fm exists and 

oo m' . 
Tj,r (X)= ];r (m -·r) ! Im-r (rJ+r fm). 

3. HU-MEYER FORMULA FOR RANDOM KERNELS 

The aim of this section is to prove the following result. 

Theorem 3.1. Let X = {X1, t E Tk} be a symmetric process belonging to l!'2
• Let 

j E {O, ... , [½]}, r E {O, ... , k -2j} and assume that all traces Tj,r (X) exist. Then every 

Tj,r(X), which is an L2 ([0, 1]k-2i-r x n) process, is (k - 2j - r)-Skorohod integrable. 

Furthermore, X is k-Stratonovich integrable and 

[½) k-
2

j (k-2') k 1 . 
IZ(X) = ¡= L r J (k - 2 ')! '! 2i 8k-2;-r (Tj,r(X)). 

;=O r=O J J 
(3.1) 

Remarks 

(3.2) Let f E L2(Tk) be a symmetric function, and assume that the traces Tj,o(f), j = 
1, ... , [½), exist. Then the multiple Stratonovich-Ito-Wiener integral, IZ(f), exists and 

s l½l k ! 
Ik(f) = L (k _ 2 ")' .1 2j Ik-2j (Tj,o(f)). 

. o J . J. ;= 

(3.2) 

where Im(·) denotes the multiple Ito-Wiener integral. 

The formula (3.2) has been established by Hu-Meyer in [1) (see also [2], [3], [9), [10] 

and [11)). 

(3.3) For k = l, formula (3.1) reduces to (2.3). For k = 2, the result has been proved in 

Proposition 2. 7 [9]. 

Before giving the proof of Theorem 3.1 we quote sorne _known results that will be used in 

the sequel. 

Lemma 3.4. Let X E L!'2
. Then, for any Borel set B C T and any r E {1, ... , k}, the 

random variable ÍBx ... xB X 1 dt belongs to Dom Dr and 

D~ (Lx ... xB X.!. dt) = Lx ... xB D~ X.!. dt. (3.3) 
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The proof is straightforward and will be omitted. 

Lemma 3.5. ( cf. Proposition 3.4 [4] and Lemma 1.2 [9]). Let F E Dom Dk for sorne 

integer k ~ l, and ha syrnrnetric function in L 2(Tk). Then Fh E l!'2
• Moreover, for any 

i = 1, ... , k the process fr; (DlF) h( ·, §..) d§.. belongs to Dom hk-i and 

(3.4) 

with the convention that for i = O, f r, Dl F h( · , §..) d:1 = F h . 

Lemma 3.6. ( cf. formula (3.2) [9]). Let B 1 , .•. , Bh be disjoint Borel sets of T, and 

r1, ... , rh positive integers such that r1 + ... + rh = m. Then 

[ ';'] 
wcB1r1 

••••• w(Bhrh = :E 
j=O 

:E r1 ! ... rh ! 

k1=0, ... ,[4--] 

kh=O, ... , [!f.] 
k1+ ... +kh=j 

. IB11k1 IB lkh J . (1 ©(r1 -2ki) '°" .. • '°" • • • h m-2J Bi IO' ICY 

Proof of Theorem 9.1. It has to be shown that, for any increasing sequence of partitions 

{7í(n), n ~ 1} of T such that 17l'(n)I--+ O as n tends to infinity, the sequence of randorn 

variables {S1r(n) (X), n ~ l} defined by (2.1) converges in L2 (S1) to the right hand side 

of (3.1 ). The proof will be done in two steps, following along the ideas of the proof of 

theorem 3.4 [9]. However the random character of X adds sorne difficulties. 

(1) Let 71' be a partition of T, and 91r the cr-field on T generated by the intervals .6.i , i = 
1, ... , r1r, whe:·e we use the notation introduced in Section 2. For any positive integer 

m ~ 1 we denote by Em the conditional expectation ·operator on the probability space 
m 

(Tm x n, B(Tm) ® F, ,\ x P) with respect to the product cr-field 91r ® : ® 91r ®F. Then 

a.s., 

(3.6) 
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Indeed, 

k 

S,r(X) = L L 
>.=1 °'1•···•ª.>..>º· 

a1+ ... +a.>,.=lo 

k! 
01 ! ... O).! 

i¡, .. ,,i.>,.E{l, ... , r.-} 
it ,¡,! ... ;,!i.>,. 

1 

We replace the product (W( -6¡1 ) )°1 
• ••• • (W(-6¡.>..) )°'.>.. by its equivalent expression given 

in Lemma 3.6. Then if we denote by :E' the multiple sum 

k [ ½] 

L L L I: I: 
>.=1 a¡, ... ,a>,.>O '1 l 

.. ,i.>,.E{t, ... ,r.-} j=O k1=0, ... , [ ;i.] 011+ ... +01.>,.=k i¡ ;,! ... ;,!i .>,. 

0

k.>..=O, ... , [ f] 
k1+ ... +k.1.=i 

we obtain 

(3.7) 

S F r X dt d h (1®(01-2ki) l(o.>,.-2k.>,.))~ h 
et = J(A,1 )ª1 x ... x(A,.>.. )ª.>.. !. - an = A,1 0 ... 0 A;.1. ' w ere 

( • )~ denotes symmetrization. Then, the hypothesis of Lemma 3.5 are satisfied. Moreover, 

for any r E {1, ... , k}, D~ F is equal to J(A,
1
)ªt x ... x(A;.>.. )"'.>.. D~ X1 dt (see Lemma 3.4). 

Therefore, it follows from (3. 7) that 
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We also have, by putting ri = a,¡ - 2 ki, i = l, ... , A 

(½] k-2j ( ) { k-j 
S,(X) = ~ ~ k ~ 2j 5(>-2;-r) ~ 

k! 

i1, ... , i.,._E{l, ... , r,..} 
i¡ ;,i! ... ;,i!i .,._ 

.I:¡ , ... ,A:.,._~ o 
.l:¡+ ... +k.,._=j 

1 

-r1 , ... ,-,.,._ ~o 
'Y¡+ ... +-,.,._ =.l:-2j 

.l:¡+-,¡>O 

Let Pl:i/Y"' be the set of permutations of {1, ... , .X} with rh repetitions of h, h -

1, ... , ). , E~=l rh = k - 2j. Then 

k ! 1 
(k - 2j)! k1! ... k>-! 2i 

i 1 , .. , i.,._E{l, ... , r,..} 
i¡;,i! ... ;,i!i.,._ 

Ep..,1·--'Y). 
(1' k-2j 

lA- ® ... 0 lA, . 
'o-(1) 1 o-{A:-2j-r) 

We prove in the Appendix that 

f k-2j-r [T;:r (X)] = 
k-j 

=i' L 

1 1 

1 

Then, in view of (3.8), the equality (3.6) is established. 
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(2) Let {1r(n), n ~ 1} be an increasing sequence ofpartitions of T such that !1r(n)I---+ O, 

as n ~ oo. Set Sn(X) = S,..(n)(X) and Ti~r(X) = Ti:~n\X). 

By hypothesis, for any j E { O, ... , [ ½]} , r E { O, ... , k - 2 j} , i E { 1, ... , k - 2 j - r} 

in L2(Tk-Zj-r X n), and 

in L2(Tk-Zj-r+i X n). 

Hence, by Hunt 's martingale convergence theorem 

Moreover 

D~ (t'k-2j-r[Tj~r(X)]) = t'k-2j-r(D~(Tlr(X))) 

~ D~ (Tj,r(X)), 

in L2 (Tk-2j-r+i X n) . 

Consequently the }~ hk-Zj-r(Ek-Zj-r [Tj~r(X)]) exists m L2(!1) and equals 

ók-zj-r(Tj,r(X)). Therefore the process X is k-Stratonovich integrable and formula (3.1) 

is proved. • 
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Appendix 

In this final section we prove formula (3.9) for the conditional expectations of the approx­

imations of the traces. We recall that k denotes a natural number, j E { O, ... , [ ½] } , r E 

{O, ... , k-2j}, 1r is an arbitrary partition of T given by intervals .:::\¡, i = 1, ... , rrr and 

9rr is the o--field generated by these intervals. Finally, given a natural number m ~ 1 , Em 

denotes the conditional expectation operator on the probability space (Tm, B(Tm), >.) 
m 

with respect to the o--field 9rr 0 : 0 9rr. 

Lemma 4.1. Let f (.§., :t) , .§. E Tr, i E Tk be a function in L 1 (Tr+k) symmetric in i. 

Set 

trl,r (f) = L 1 

i¡, ... ,i;+rE{l, ... ,r.-} 

f f (.§., Ü dt1 ... dh; ds1 dh;+1 ... dsr dt2;+r. 
J(.6.;1 )

2 X ... X(.6.;j ) 2 X (.6.;j +i )2 X ... X (.6.; j +r )2 

Then 

1 1 

1 A. 1k1+•y¡ 1 A. jk>.+'"Y>. 
L.l.11 • • • u,>. 

la;.,<1> 0 ... 0 la;.,(1,- 2;-r> , ( 4.1) 

where PJ~·2/>- denotes the set of permutations of {1, .. _., >.} with 'Yh repetitions of h, h = 
.X 

1, ... , >. , L 'Yh = k - 2j . 
h=I 

In particular, if X is a symmetric process belonging to l!'2 and f (.§., i) - D~ X 1 , we 

obtain (3.9). 

Proof. The conditional expectation Ek-2;-r [trl,r(f)] can be developed as follows 
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Ek-2j-r [trj,r (!)] = L 1 

h¡, ... , h1e-2;-rE{l, ... , r.-} 

. ( L,, x ... xA,,_,;_, [trj,, (f)j d l2;+r+l ... d t,) lA,, 0 ... 0 lA,,_ ,;-, 

1 

h1 , ... , h1c-2;-rE{l , ... , r.-} i¡, ... , i;+rE{l, ... , r.-} 

j 

=¿ 
s=l 

. ' J. 

le¡, ... le• >O 
k¡+ ... +k•=j 

i¡, ... ,i.E{l, ... , r.-} 
i¡ ,¡L.#,i 1 

(k-2j)! 
11' ... ,Yq! 

k-2j 

I: 
q=l 'Y¡' ... , 'Yq >O 

--,¡+ ... +--,q=k-2j 

1 

I: 'Yl' ... 'Y q' { r 
(k-2j)! Ja, x ... xa, 

uEP;-::_;/q 'cr(lc-2j-r+1) 1 cr(/e-2j) 

i1,···, iqE{l, ... , r,r} 
i¡#, ... #,iq 

· ( f f (§..,í.) dí_) d§..} la¡ ® ... ® la¡ 
luii1) 2"1 x ... x(a;.)2"• x(a¡l)-Y1 x ... x(a,qrq o-(l) cr(lc- 2j-r) 

k-j 

=j! I: 

1 1 

Therefore the lemma is proved. • 
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