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Abstract. We consider the motion around an oblate primary, keeping only the h term in the 
expansion of the potential in spherical harmonics. The problem has cylindrical symmetry. It has 
been suspected for a long time, due to numerical evidences, that the problem is non integrable. 
This has been proved recently [4]. However, even if the system is non integrable, the size of the 
stochastic zones can be so small that they can be neglected for all practica! purposes. This is what 
we study here, and we show that for the case of the Earth and considering possible real orbits, i.e., 
non colliding with the Earth, the effect of the non integrability can be completely neglected. 

§ 1. Introd uction 

Let q = (x,y,z)T the coordinates of a particle around an oblate planet and p the 
corresponding momenta. The Hamiltonian of the system is 

(1) 1 µ µll; (z) H = 2(p,p)-; + h7P2 :; , 

where µ is the gravitational constant, r = llqll, lle the equatorial radius of the attracting 
body, P2 the Legendre polynomial of second degree and J2 the coe:fficient of the zonal 

harmonic of order two. For the Earth these quantities are, approximately, lle = 6378 km, µ = 
398600 km3 sec-2, J2 = 1082 • 10-6 • Dueto the cyclicity of the longitude in the Hamiltonian, 

we can use cylindrical coordinates (p,8,z) and then (1) is expressed as 

(2) H = ! (P2 + p2) _ ~ + c
2 
/2 + Í2 (~ (:.)

2 
_ !) , 

2 z P r p2 r 3 2 r 2 

where e is the component in the z direction of the angular momentum and J2 = J2ll; µ. 

This is a two degrees of freedom Hamiltonian. The dynamics of (2) can be studied by using 

an analytical approach or a numerical one. Probably the best thing is to combine both of 
them. The system obtained from (2) depends on the parameters µ, e, J2 and on the value of 
the energy, h. 
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Ou th<! (p, Pµ) plane the available domain is defined by p; ~ 2h+ 
2

µ - e 
2 

+ J;. The boundary 
p p p 

2 -
(Pz = O) is an orbit ofthe Hamiltonian on the equatorial plane. Let V(p) = -t+ e!/- J2

;
2

. 
p r p 

TIH'n tliis orbits is writtcn as P! = 2(h- V(p)). The function V(p) has two extrema provided 

c4 > ü1d2. We denote them by P1,P2 with O< Pt < P2· Assume O> h > V(pz). Then p 
can range in two intervals, one of them containing p = O and being skipped in the case of the 
Earth bccause it is fully contained inside the Earth. We also assume e not too small to have 
ll(p1) > O, i.e. c4 > 8µi2 (see figure 1). 
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Figure 1 Figure 2 

We can study a representation of the motion by using the Poincaré section through z = O. 

The section is the interior of the available domain described befare. If J2 = O and e -:/; O 
tlie Poincaré map is the identity inside the boundary, and the boundary is an orbit of the 
flow. Compactifying the Poincaré section (topologically an open disk) to a sphere (by adding 
one point which represents the boundary orbit) we have the identity on S2 . As J2 is small 
and under the previous constrains on e we shall have a near the identity map for the case of 
the Earth. This map has, at least, two fixed points of elliptic type. There are also invariant 
curves and chaotic (or stochastic) zones associated to the resonances. The largest chaotic zone 
is related to the 1 to 1 resonance known to occur near the critical inclination [3]. Figure 2 

shows a qualitative picture of the Poincaré map when the two symmetric hyperbolic poiuts 
are present. In fact the heteroclinic orbits between them do not agree. They create a very 
narrow stochastic layer whose size we shall bound. 

§ 2. The normal form. Hyperbolic fixed points 

If J2 is small and r is bounded away from zero we can compute a useful normal form 

of ( 1 ). As the system has, essentially, two degrees of freedom, as displayed by (2), the normal 
form is integrable. We learn from [1] that the Hamiltonian can be approximated, to the second 
order in J2, by 



µ2 2 ( 1 3H2) 
(3) N = - 2L2 + J2n(aeµ) - 4Gª + 4Gs 

1 2 4 { 15 15H2 105H4 1 ( 3 9H2 27H
4

) 

+ 2 J 2 n(a2 µ) 64G7 32G9 64G11 + L 16G6 + 8G8 16G10 

1 ( 15 27H
2 

15H
4

) 

+ L2 - 64G5 + 32G7 - 64G9 

[ 
39 33H2 225H 4 G2 + LG + L2 ( 3 9H2 15H4

) 

+ cos(29) - 32G7 + 4G9 - 32G11 + L(L + G) 4G7 - 2G9 + 4G11 

+ ;, ( 32~5 - !!; + ~~!:)]} , 
where L, G and H are the Delaunay momenta and g is the angle canonically conjugated to 
G. The variables L, G and H are related to the Keplerian semimajor axis, eccentricity and 

inclination by 

(4) L(µa) 1l 2
, G = L(l - e2)1l2, H = Gcos I, 

and the problem is considered asan O(J2) perturbation of the Keplerian motion with mean 
motion n. We remark that G and H are nothing else then the total angular momentum 
and the z-component of the angular momentum. Hence H = c. The variables L and H 
being invariant we have that (3) is, essentially, a one degree of freedom Hamiltonian. The 

fi d · b ' d b . {)N O {)N I . 1 b . h b li xe pomts are o tame y settmg fJG = , 
89 

= O. n part1cu ar one o tams yper o e 

points for 

lt is also possible to obtain the eigenvalues at those points. The hyperbolic points of (3) 
( concerning the ( G, g) couple) are related to the hyperbolic points of the Poincaré section 

mentioned in section l. By using ( 4) and the relation between a and h for the Kepler problem 
one obtains for the eigenvalues of the hyperbolic points: 

(5) _21r(aeµ) 3 
1¡2 (3 30h)

112 
logAPoincari - 1ocs5s/2 (3h) c2 + 7 J2(l + O(h))' 

)
1/2 

provided the factor (3c-2 + 30hµ- 2 is not too small (then the higher order terms in J 2 
become important ). 

As said in section 1, the separatrices of figure 2 are, in fact, splitted. In the next section we 
shall give bounds on the size of the splitting. The expression (5) will play a very important 

role. It agrees quite well with direct numerical computations of the Poincaré map. 
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§ 3. The maximal width of th~ stochastic zone 

As shown in [5] for the standard map the width of the stochastic zone is exponentially 
small with respect to the parameter of that map. In [2] it is preved that the size of the 

stochastic zone is bounded by expressions of the type M exp (-
2
,r~g~ r¡)) , where A is 

the eigenvalue at the homoclinic or heteroclinic points of the analytic near the identity area 
preserving map, r¡ is any positive quantity (to be choosen small), Mis a constant which 
only depends on r¡ (and not on the small parameter, J2 in our case) and 6 is the mínimum 
distance to the real axis of the singularities of the separatrix of sorne Hamiltonian planar flow 
(see [2] for the details). In our case the planar fl.ow is essentially a pendulum as it follows 
from (3) using the fact that G changes by an small amount along the separatrix. So, with 
the required scalings (see again [2]) one has 6 = ,r /2. 

The basic idea now is that to have the largest possible values of the stochastic zone we had 

to use the largest possible value of >. as given by (5). Let D the mínimum value allowed to 

the perigeon distance of an artificial Earth satellite. Typically D can be taken as 6600 km. 

Then ( 5) should be maximized under the constrain q = a( 1 - e) ~ D. By using 

G = v'5c ( 1 + O ( J 2)), and 1 - e
2 = ( ~) 

2 

, 

one obtains the equivalent constrain (skipping, from now on, the terms O(J2) when they 

appear as 1 + O(h)) 

(6) [ ( 
10c

2
h)l/2] ( µ ) 1- 1+-- -- >D. 

µ2 -2h -

To maxim1ze (5) it is enough to maximize the factor depending on e and h, 1.e. 

c-5 
( } 2 + 3;:) 
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• By using (6) this factor is bounded by 

(7) 

where we have skipped numerical factors or factors depending only on µ. Let w = 2Dhµ- 1 • 

e -- (3µ10D)l/2 The maximum of (7) is obtained for w = -1/2 and this implies h = - :n, 
1 

and e = 2. Hence 

(8) 4,r (ªe) 3 
3/2 max log APoincaré = gJs D J 2 • 

11"2 - 9 
Using D = 6600 km this amounts to 2 • 10-5 • As 6 = 1r /2 we can take r¡ = -- '.::::'. 0.1384 

211" 
to have the simple value 21r(6 - r¡) = 9. It remains to estímate M to have the desired 
upper bound. But this is irrelevant. Indeed one can use the constructive method given in [2] 



or simply we can compute numerically for much larger values of J2. Numerically one can 
estímate M to be of the order of units, but even a relative error by a factor of 10100 is 

irrelevant beca use the dominant term is exp ( - lo: .J ~ exp ( - 4.5 · 105
). 

§ 4. Conclusion 

It has been obtained that the J2 problem for a feasible artificial Earth satellite, even 
being non integrable, can be considered as integrable for all practica! purposes. This behaviour 
is shared by many other problems (for instance, the Hénon-Heiles problem for energies less 

then 0.04). We remark that despite the practica! integrable character it is a hard task to 
obtain, in general, rather good analytical approximations to the solutions. Normal forros up 
to high order can be very useful for this purpose. 

Acknowledgements. This work has been partially supported by a CICYT Grant PB 86-527. 
The computing facilites were provided by a CIRIT Grant. 

References 

[1] Coffey, S., Déprit, A., Déprit, E., Healy, L.: Painting the Phase Space Portrait of an 
Integrable Dynamical System, Science 247 (1990), 833-836. 

[2] Fontich, E., Simó, C.: The splitting of separatrices for analytic diffeomorphisms, Ergod. 
Th. & Dynam. Sys. 10 (1990), 295-318. 

[3] Hagihara, Y.: Celestial Mechanics, Vol. 2, Part 1, p.422, MIT Press, 1972. 

[4) lrigoyen, M.: Non integrability of the J2 problem, preprint, Univ. de París 2, 1990. 

[5] Lazutkin, V. F.: Splitting of separatrices for the Chirikov's standard map, Preprint 
VINITI 6372/84, Leningrad, 1984. 

MA 1 .:iMA TIQUES 




