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Abstract. We consider the motion around an oblate primary, keeping only the Jo term in the
expansion of the potential in spherical harmonics. The problem has cylindrical symmetry. It has
been suspected for a long time, due to numerical evidences, that the problem is non integrable.
This has been proved recently [4]. However, even if the system is non integrable, the size of the
stochastic zones can be so small that they can be neglected for all practical purposes. This is what
we study here, and we show that for the case of the Earth and considering possible real orbits, i.e.,
non colliding with the Earth, the effect of the non integrability can be completely neglected.

§ 1. Introduction

Let ¢ = (z,y,2)T the coordinates of a particle around an oblate planet and p the
corresponding momenta. The Hamiltonian of the system is

(1) H= 100~ L+ e (2),

where p is the gravitational constant, r = ||q||, a. the equatorial radius of the attracting
body, P; the Legendre polynomial of second degree and J; the coefficient of the zonal
harmonic of order two. For the Earth these quantities are, approximately, a. = 6378 km, u =
398600 km? sec=2, J, = 1082-10~%. Due to the cyclicity of the longitude in the Hamiltonian,
we can use cylindrical coordinates (p,6,2) and then (1) is expressed as

2 7 2
(2) H=gEer) -2t 2 (3(0)- 1),
where ¢ is the component in the z direction of the angular momentum and J, = Jaa? u.
This is a two degrees of freedom Hamiltonian. The dynamics of (2) can be studied by using
an analytical approach or a numerical one. Probably the best thing is to combine both of
them. The system obtained from (2) depends on the parameters p,e¢, J> and on the value of
the energy, h.
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(pz = 0) is an orbit of the Hamiltonian on the equatorial plane. Let V(p) = — %-}- -C?/g— !—:g
Then this orbits is written as p2 = 2(h—V(p)). The function V(p) has two extrema provided
> U/tjz. We denote them by py,p2 with 0 < p; < p;. Assume 0 > h > V(p3). Then p
can range in two intervals, one of them containing p = 0 and being skipped in the case of the
Earth because it is fully contained inside the Earth. We also assume ¢ not too small to have
V(py) >0, i.e. ¢* > 8uJ, (see figure 1).

Oun the (p,p,) plane the available domain is defined by pf, < 2h+

Figure 1 Figure 2

We can study a representation of the motion by using the Poincaré section through z = 0.
The section is the interior of the available domain described before. If J, = 0 and ¢ # 0
the Poincaré map is the identity inside the boundary, and the boundary is an orbit of the
flow. Compactifying the Poincaré section (topologically an open disk) to a sphere (by adding
one point which represents the boundary orbit) we have the identity on §2. As J, is small
and under the previous constrains on ¢ we shall have a near the identity map for thke case of
the Earth. This map has, at least, two fixed points of elliptic type. There are also invariant
curves and chaotic (or stochastic) zones associated to the resonances. The largest chaotic zone
is related to the 1 to 1 resonance known to occur near the critical inclination [3). Figure 2
shows a qualitative picture of the Poincaré map when the two symmetric hyperbolic points
are present. In fact the heteroclinic orbits between them do not agree. They create a very
narrow stochastic layer whose size we shall bound.

§ 2. The normal form. Hyperbolic fixed points

If J, is small and r is bounded away from zero we can compute a useful normal form
of (1). As the system has, essentially, two degrees of freedom, as displayed by (2), the normal
form is integrable. We learn from [1] that the Hamiltonian can be approximated, to the second
order in J;, by
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where L,G and H are the Delaunay momenta and g is the angle canonically conjugated to

G. The variables L,G and H are related to the Keplerian semimajor axis, eccentricity and
inclination by

(4) L(p,a)l/z, G=L(1- ez)l/z, H = Gcos I,

and the problem is considered as an O(J;) perturbation of the Keplerian motion with mean
motion n. We remark that G and H are nothing else then the total angular momentum
and the z—component of the angular momentum. Hence H = ¢. The variables L and H
being invariant we have that (3) is, essentially, a one degree of freedom Hamiltonian. The

N
fixed points are obtained by setting g el =0 = 0. In particular one obtains hyperbolic

' By

points for

T N Jy p?a? H? HY/L? 5
g—-:tL,G—\/E-)H [1+500 H4< 13+35L2+401+\/3H/L +0(J3)| .

It is also possible to obtain the eigenvalues at those points. The hyperbolic points of (3)
(concerning the (G,g) couple) are related to the hyperbolic points of the Poincaré section
mentioned in section 1. By using (4) and the relation between @ and h for the Kepler problem
one obtains for the eigenvalues of the hyperbolic points:

27 (a.p)? e (3 30R\'/?
(5) log /\Poincaré = W(3J2) / 2'2‘ + 72" J2(1 + O(J2)) y

provided the factor (3c-2 + 30h,r2)1/2 is not too small (then the higher order terms in J;
become important).

As said in section 1, the separatrices of figure 2 are, in fact, splitted. In the next section we
shall give bounds on the size of the splitting. The expression (5) will play a very important
role. It agrees quite well with direct numerical computations of the Poincaré map.
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§ 3. The maximal width of the stochastic zone

As shown in [5] for the standard map the width of the stochastic zone is exponentially
small with respect to the parameter of that map. In [2] it is proved that the size of the

M) , where X is
log A

the eigenvalue at the homoclinic or heteroclinic points of the analytic near the identity area
preserving map, 7 is any positive quantity (to be choosen small), M is a constant which
only depends on 7 (and not on the small parameter, J; in our case) and § is the minimum
distance to the real axis of the singularities of the separatrix of some Hamiltonian planar flow
(see [2] for the details). In our case the planar flow is essentially a pendulum as it follows
from (3) using the fact that G changes by an small amount along the separatrix. So, with
the required scalings (see again [2]) one has § = 7 /2.

stochastic zone is bounded by expressions of the type M exp (-—

The basic idea now is that to have the largest possible values of the stochastic zone we had
to use the largest possible value of A as given by (5). Let D the minimum value allowed to
the perigeon distance of an artificial Earth satellite. Typically D can be taken as 6600 km.
Then (5) should be maximized under the constrain ¢ = a(1 — e¢) > D. By using

G:ﬁc(1+o(J2)), a:-—%%(l-{—O(Jg)) and 1-e2=(%)2,

one obtains the equivalent constrain (skipping, from now on, the terms O(J;) when they
appear as 1+ O(J;))

(6) [1 - (1+ 10::”)1/2] (_—’;h-) > D.

To maximize (5) it is enough to maximize the factor depending on ¢ and h, ie.

(3  30R\? . . .
c = + o . By using (6) this factor is bounded by

(14228)p3
[(1 + ﬂjﬁ)z _ 1]3 ,

where we have skipped numerical factors or factors depending only on p. Let w = 2Dhyu™!.

(7)

1/2
The maximum of (7) is obtained for w = —1/2 and this implies h = _“% » €= (3f()D)

and e = -;— Hence

. _ 4 Qe 3 3/2
(8) max 10g APoincaré = m (3) J2 .

2 _
Using D = 6600 km this amounts to 2-107%. As § = /2 we can take n = =9 ~ 0.1384

T
to have the simple value 27(6 — ) = 9. It remains to estimate M to have the desired
upper bound. But this is irrelevant. Indeed one can use the constructive method given in [2]




or simply we can compute numerically for much larger values of J,. Numerically one can
estimate M to be of the order of units, but even a relative error by a factor of 10190 is

9
irrelevant because the dominant term is exp ( - m) <exp(-45- 105).

§ 4. Conclusion

It has been obtained that the J, problem for a feasible artificial Earth satellite, even
being non integrable, can be considered as integrable for all practical purposes. This behaviour
is shared by many other problems (for instance, the Hénon~Heiles problem for energies less
then 0.04). We remark that despite the practical integrable character it is a hard task to
obtain, in general, rather good analytical approximations to the solutions. Normal forms up
to high order can be very useful for this purpose.
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