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Abstract 

In this paper we establish the existence and uniqueness of a so­
lution for stochastic Volterra equations assurning that the coefficients 
F(t, s, x) and Gi(t, s, x) are .Ft-rneasurable, for s $ t, where {.Ft} "de­
notes the filtration generated by the driving Brownian rnotion. We 
have to irnpose sorne differentiability assurnptions on the coefficients, 
in the sense of the Malliavin calculus, in the time interval [s, t]. Sorne 
properties of the solution are discussed. 
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1 Introduction 

The purpose of thís paper is to study stochastíc integral equatíons ín lRd of 
the form 

t k t 
Xt = Xo + [ F(t, s, X 8 )ds + ¿ [ Gi(t, s, X 8 )dW!, t E [O, T], (1.1) 

lo i=l lo 
where W ís a k-dímensíonal Brownian motion, and the coefficients F(t, s, x) 
and Gi(t, s, x) are Ft-measurable. Although the solution Xt will be adapted 
to the filtration {.rt} generated by W, the integrand of the stochastic in­
tegral appearing in Equation (1.1) is not adapted because Gi(t, s, X 8 ) is 
Ft-measurable. 

In this paper we will interpret the stochastic integral appearing in (1.1) in 
the Skorohod sense. The Skorohod integral introduced in [12] is an extensíon 
of the Itó integral which allows to integrate nonadapted processes. In [3] 
Gaveau and Trauber proved that the Skorohod integral coincides with the 
adjoint of the derivative operator on the Wiener space. Starting from this 
result, the techniques of the stochastic calculus of variations on the Wiener 
space (see [6]) have allowed to develop a stochastic calculus for the Skorohod 
integral (see [8]), which extends the classical Itó calculus. The Skorohod 
integral possesses most of the main properties of the Itó stochastic integral 
like the local property, and the quadratic variation. 

Stochastic Volterra equations where the diffusion coefficient Gi(t, s, x) 
is .r8-measurable have been studied among others in [1] and [11]. Berger 
and Mizel considered linear stochastic Volterra equations with anticipating 
integrands in [2], using the notion of forward integral. In this paper the 
solution was obtained by means of the Wiener chaos expansion, taking into -
account the linearity of the coefficients. On the other hand, in [10] Pardoux 
and Protter considered stochastic Volterra equations where the coefficients 
F(t, s, x) and Gi(t, s, x) are Frmeasurable, but Gi(t, s, x) can be written in 
the form 

Gi(t, s, x) = Gi(Ht; t, s, x), 

where Ht is an adapted m-dimensional process and Gi(h; t, s, x) is .r8 -mea­
surable for each h E lRm, t 2'.: s, and x E JRd. This particular form of the 
coefficient Gi(t, s, x) permits to control the V-norm of the Skorohod integral 
J¿ Gi(Ht; t, s, Xs)dW; using the substitution formula for this integral. 

Our aim is to prove th~ existence and uniqueness of solution for stochas­
tic Volterra equations of the form (1.1) when the coefficients F(t, s, x) and 
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Gi(t, s, x) are Ft-measurable and the stochastic integral is interpreted in the 
Skorohod sense. In order to control the L2-norm of the Skorohod integral 
J¿ Gi(t, s, X 8 )dW; we will assume that the coefficient Gi(t, s, x) is infinitely 
differentiable (in the sense of the stochastic calculus of variations) in the 
time interval [s, t], and the derivatives D~/_.,s,. (Gi(t, s, x)), s1, ... , Sn E [s, t], 
verify a suitable Lipschitz property in the variable x. These hypotheses gen­
eralize the case where Gi(t, s, x) is .r8-measurable. 

The paper is organized as follows. In Section 2 we present sorne prelim­
inary technical results concerning the Skorohod integral that will be needed 
later. Section 3 is devoted to show the main result on the existence and 
uniqueness of solution to Eq. (1.1). Finally in Section 4 we discuss the 
continuity of the solution in time. 

2 Preliminaries 

Let n = C([O, T]; lRk) be the space of continuous functions from [O, T] into 
lRk equipped with the uniform topology, let F denote the Borel a-field on 
n and let P be the Wiener measure on (O, F). The canonical process W = 
{Wt, t E [O, T]} defined by Wt(w) = w(t) will be a k-dimensional Brownian 
motion. Let J="? = a{Ws, O ~ s ~ t} and set Ft = J="? V N, where N the 
class of P-negligeable sets. Let H be the Hilbert space L2 ([0, T]; !Rk). For 
any h E H we denote by W ( h) the Wiener integral 

k T 

w(h) = I: r h¡(t)dwf. 
i=I Jo 

Let S be the set of cylindrical random variables of the form: 

F = f(W(h1), ... , W(hn)), (2.1) 

where n ~ l, f E Cgc'(!Rn) (f and all its derivatives are bounded), and 
h1, ... , hn E H. Given a random variable F of the form (2.1), we define its 
íth derivative, i = 1, ... , k, as the stochastic process { DiF, t E [O, T]} given 
by 

. ~ a¡ -
D;F = ~ -

0 
. (W(h1), ... , W(hn))hí(t), 

j=l X3 

t E [O, T]. 

In this way the derivative DF is an element of L2([0, T] x O; JRk) ~ L2(0; H). 
For each i = 1, ... , k, Di is a closable unbounded operator from L2(0) into 
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.. 
L2 ([0, T] x O). We denote by [))¡' 2 the closure of S with respect to the norm 
defined by 

2 2 . 2 11 F !k1,2=II F IIL2(n) + 11 D'F IIL2([0,T]x!1) · 
Define [))1,2 = nk [))1

'
2 and set i=l i , 

k 
2 2 '°' i 2 11 F 111,2=1! F IIL2(n) + L.J 11 D F IIL2([0,T]x!1) · 

i=l 

More generally, we can define the iterated derivative operator on a cylindrical 
random variable by setting 

Dtn,i t F = Dti ... Dti F. 
l,···, n 1 n 

These operators are closable and we denote [))~'2 the closure of S by the 
norm: 

n 

11 F llr,n,2=11 F lli2(n) + L 11 Dl,ip lli2([0,Tjlx!1) . 
l=l 

Set [J)n,2 = n~ [))~'2 and i=l i , 

k n 

11 F ll~.2=11 F lli2(n) + L L II Dl,ip lli2(¡0,T]'xn) · 
i=l l=l 

For any Borel subset A of [O, T] we will denote by FA the u-field generated 
by the random variables {J[ 1B(s)dW8 , BE B(T), Be A}. The following 
result is proved in (8, Lemma 2.4]: 

Proposition 2.1 Let A be a Borel subset of [O, T], and consider a random 
variable F E ID1•2 which is FA -measurable. Then DtF = O almost everywhere 
in Ac X n. 

For each i = 1, ... , k we denote by Ói the adjoint of the derivative op­
erator Di that will be also called the Skorohod integral with respect to the 
Brownian motion {Wl}. That is, the domain of Ói (denoted by Domói) is 
the set of elements u E L2([0, T] x O) such that there exists a constant e 
verifying 
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.. 
for all F E S. lf u E Dom 1\, ói( u) is the element in L2 (D) defined by the 
duality relationship 

E(ói(u)F) = E foT n:Futdt, FE S. 

We will make use of the following notation: Jl UtdWf = Ói (u). 
The set L~([O, T] x D) of square integrable and adapted processes is 

included into Dom Ói and the operator Ói restricted to L~([O, T] xD) coincides 
with the Itó stochastic integral with respect to {Wf }. This property can be 
proved as a consequence of the following lemma proved in [8]. For any 
h E L2([0, T]) we will set DiF = (Di F, h), and we will denote by ]1))7•2 the 
closure of S by the norm (E(JFl 2) + E(IDiFl2)) 112 . 

Lemma 2.2 Let F be a random variable in the space ]1))7•2 for some function 
h E L2 ([0, T]). Then the process Fh(t) belongs to Domói, and 

ói(Fh) = FWi(h) - D~F. 

Let JLr•2 
= L 2([0, T]; ]]))r·2) equipped with the norm 

n 

11 v IIT,n,2=11 V III,2([0,T]xn) + L 11 DJ,iv III,2(¡0,T]i+lxn)• 
j=l 

d t ]Ln 2 nk ]Ln,2 ]Loo,2 n ]Ln,2 ]LOO 2 nk n ]Ln,2 an se ' = i=l i , i = n~l i , ' = i=l n~l i · 

We recall that JLJ•2 is included in the domain of Ói, and for a process u in 
JLJ•2 we can compute the variance of the Skorohod integral of u as follows: 

E(6i(u)2) = E foT u¡dt + E foT foT D!utD;u8 dsdt. (2.2) 

We will make use of the following notation: 

.ó.';; = {(s1, ... , Sn, s) E [O, Tt+l : s1 2: .. · 2: Sn 2: s }, 

and 
¿;; = {(s1, .. ,,sn,s) E [O,Tt+l: s1 2: s, .. •,sn 2: s}. 

Let ST be the class of cylindrical L2 ([0, T])-valued random random variables 
of the form 

q 

V= L Fihi, Fi Es, hi E L2 ([0, T]). 
i=l 
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We introduce the space Lf'2,/ as the closure of SH by the norm: 

n 

11 v llf,n,2,/ = 11 V 117-2([0,T]xn) + ¿ 11 Dj,iv lli2(liTxn)• (2.3) 
j=l J 

where 

Weset 

H.. n,2,f = n~ [..n,2,/ 
i=l i • 

[.. oo,2,/ = n [.. n,2,/ 
i n:2:1 i , 

[.. oo,2,f = nk n [.. n,2,/ 
i=l n:2:1 i · 

That is, H..¡·2,/ is the class of stochastic processes { vt} that are differ­
entiable with respect to the ith component of the Wiener process -(in the 
sense of the stochastic calculus of variations) in the future. For a process 
v in H..¡·2,f we can define the square integrable kernel {D!vt, s ~ t} which 
belongs to L2(fl..f x O). More generally, if v E Lf'2,/ we can introduce the 
square integrable kernel {D!1, ... ,sn Vt, s1, ... , Sn ~ t} which is in L2(.ó.~ x O). 
Notice that in the definition (2.3) we could have integrated over the set .3.~ 
and get an equivalent norm. 

Lemma 2.3 The space L~([O, T] x O) is contained in JL.00
•
2,/. Furthermore, 

for all v E L~([O, T] X O) we have D!1 , .. ,,sn Vt = O for almost all s1, ... , Sn ~ t, 
and for all i = l, ... , k, n ~ 1, and, hence, 

11 V 117,n,2,/=II v IIL2([0,T)xn) · (2.4) 

Proof: We will denote by SfJ, the class of elementary processes of the form 

N 

Vt = L Fjl(tj,t;+1](t), 
j=O 

(2.5) 

where O= to< t1 < · · · < tN+l = T and for all j =O, ... , N, Fj is a smooth 
and Fti-measurable random variable. The set Sf} is dense in L~([O, T] x O). 
On the other hand, we have Sf} e H...00

•
2,f and for any v of the form (2.5) 

we have, using Proposition 2.1, D!1, .. ,,sn Vt = O, for almost all s¡, ... , Sn ~ t, 

6 



and for all i = 1, ... , k, and n 2:: l. This allows us to complete the proof. 
QED 

The next three results are extensions of known resuls for the space ]1}1•2 

(see [7, Proposition 1.2.2, Exercice 1.2.13 and Proposition 1.3.7]). 

Proposition 2.4 Let 'ljJ : Rm - R be a continuously differentiable function 
with bounded partial derivatives. Suppose that u = ( u 1 , ... , um) is an m­
dimensional stochastic process whose components belong to the space JL¡•2

,/. 

Then 'lj;( u) E JL¡•2
•1, and 

. ~81 .. 
D;('lj;(us)) = ¿_ ~(u)D;u{, 

j=l ux1 

for almost all ( t, s) E A.f. 

Proposition 2.5 Let u, v E JL¡•2
,/ be two stochastic processes such that u 8 

and J[ (Dius)2dt are bounded uniformly in s. Then uv E JL¡•2
•1 and, for 

almost all (t, s) E A.f, D~(UsVs) = UsDtVs + VsDtUs. 

Proposition 2.6 Let u E L¡'2,/ and A E F, such that u8 (w) = O a.e. on the 
product space [O, T] x A. Then Dius(w) = O, for almost all (t, s,w) E A.f xA. 

We will use the two following results for getting V estimates (p 2:: 2)for 
the Skorohod integral of processes in the space L¡·2

,/. 

Lemma 2. 7 Consider a process u in L¡·2
,/. Suppose that D~ul¡r,o] belongs 

to the domain of 8i for each interval [r, 0] e [O, TJ, and, moreover, 

T 1 8 
2 

E 1 1 D~u8 dW; d0 < oo. . (2.6) 

Then ul¡r,t] belongs to the domain of 8i for any [r, t] C [O, TJ, and 

E llt Usdw;¡2 = E lt u~ds + 2E lt ue(1
8 

D~usdW;)d0. (2.7) 

Proof: To simplify the proof we will assume that W is a one-dimensional 
Wiener process. In tha:t case we omit the index i in ali the notations. 
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Suppose first that u has a finite Wiener chaos expansion. Then we can 
write: 

E lit u8 dWsl
2 

= E it u;ds + E it it Dsu0D0usd0ds 

= E it u;ds + 2E it 1º D8 u9D9u8 d0ds 

= E it u;ds + 2E it u9 (1
8 

D0usdWs) d0. 

Now, let us denote by uk the sum of the k first terms in the Wiener chaos 
expansion of u. lt holds that uk converges to u in the norm 11 · 111,2,/, as k 
tends to infinitt For each k we have 

E lit u!dWsl
2 

= E i\u!)2ds + 2E it u~(1
8 

Dou!dWs)d0. (2.8) 

It suffices to show that the right-hand side of (2.8) converges to the right­
hand side of (2.7). This convergence is obvious for the first term. The 
convergence of the second summand follows from condition (2.6). QED 

Remark 1: In the statement of Lemma 2. 7 the assumptions are equivalent 
to saying that u E Li'2,/ is such that {D~usl¡o,0](s),s E [O,T]} belongs to 
the domain of 6i as a processes with values in the Hilbert space L2([0, T]). 

Remark 2: Lemma 2. 7 generalizes the isometry property of the Skorohod 
integral for processes in the spaces L~([O, T] x !1) and Lf·2

• 

Lemma 2.8 Let p E (2, 4), a = 42}!P. Consider a process u in n.,¡•2
•1 n -

vi([o, T] x !1). Suppose also that, for each interual [r, 0] e [O, T], D~ul¡r,8] 
belongs to the domain of Di, and, moreover, 

T 8 1
2 

E 1 1 D~u8 dWj d0 < oo. (2.9) 

Then 8i(ul¡r,t]) belongs to V for any interual [r, t] C [O, T] and we have: 

E lit Usdw;r = Cp(t - r)!- 1{E it iuslªds + E it 1 ¡0 
D~usdW;J 2d0}, 

(2.10) 
where Cp is a constant depending only on p and T. 
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Proof: We deduce from Lemma 2.7 that ul¡r,O] belongs to the domain of 
8i, Now using Corollary 2.2 of [4] we deduce that (2.10) is true in the set 
'PT of processes u of the form: 

N 

Ut = ¿Fjl[tj,t;+1](t), 
j=O 

(2.11) 

where O = t0 < · · · < tN+l = T and for all j = O, ... , N, Fj are smooth 
random variables of the form (2.1), f being a polynomial function. We know 
that 'PT is dense in Lª([O,T] x O). So, we can get a sequence {un,n 2: 1} 
of processes in 'PT such that un converges to u in Lª([O, T] x O). Moreover, 
if we consider the Ornstein-Uhlenbeck semigroup {Tt, t 2: O}, we know that, 
for all t, Ttu is also an element of 'PT, and we can easily prove that, for all 
[r, t] e [O, T] : 

limlimE {TIT1u:-uslªds - O, 
n k Jo k 

limlimE1t l 18
(D~(T1u:) - D~u8 )dW;¡2d0 = O, 

n k r r k 

which allows us to complete the proof. QED 

Note that (2.7) implies 

t 2 t t t O 2 

E 11 usdw;¡ ~ E 1 u;ds + 2 E 1 u;dsE 11 Diu8dWJ d0. 

The iteration of this inequality leads to an estimation of the L2 norm of 
the Skorohod integral 8i(u) using only derivatives D81 , ... ,snUt in future times -
s1, ... , Sn 2: t. In order to introduce a norm that dominates El8i(u)l 2 we 
require the definition of a suitable class of positive sequences. 

We will denote by 'R the class of positive sequences a = { an, n 2: O} such 
that the sequence b( a) = { bn (a), n 2: O} defined by 

bo(a) = a5, 

b,,( a) = a~ + 2ao a¡ + 2a, ✓ aJ, + 2a,J- · · J a;;_, + 2•n-1 a,,, 

for n 2: 1, satisfies B(a) := limn-oo bn(a) < oo. Notice that the sequence 
bn (a) is nondecreasing. 
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Proposition 2.9 The class R coincides with the class of positive sequences 
a = { an, n ~ O} such that there exists a positive sequence € = { En, n ~ O} 
satisfying: 

1 00 2 

SE(a) := a5(l + -) + ¿ a~(Ek-1 + €k-l) < oo, (2.12) 
€Q k=l €k 

and, furthermore, 
B(a) = min SE(a). 

E 
(2.13) 

Proof: a) Let us first proof that B(a) :$ SE(a) for any positive sequence €. 

For all R > O, x,y ~ O we have 

2xy :$ Rx2 + !y2
. (2.14) 

Using recursively (2.14) we have that, for all Ro, Ri, ... , Rn-1 > O, 

b ( ) < 2(l Ro) a1(l + R1) a~(l + R2) ª~-i (1 + Rn-1) 
n a - ª0 + + Ro + RoR + · · · + RoR 

1 1 · · · Rn-2 
ª2 + n 

RoR1 · · · Rn-1' 

Finally, putting Ei = i, i = 1, ... , n - l we obtain: 
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which shows that for any positive sequence E we have B(a) :S: S€(a). 

b) Let us now prove that if a E 'R there exists a positive sequence E( a) such 
that B(a) = S€(a)(a). Because B(a) < oo we can define, for all n 2: O, 

which satisfies that, for all n 2: O, 

(i) B(a) = a5 + 2ao ay+ 2a1 ✓a~+ 2a2J· · · ✓ a~_1 + 2an-1 JQn(a), 

(ii) Qn(a) = a~+ 2anQn+1(a) = a~(l + Rn(a)) + n..\a)Qn+1(a), where 

Rn(a) = yQ::1(a). 

With these notations we can write 

B( ) = 2(l D-( )) ay(l + R1(a)) a~(l + R2(a)) 
ª ª0 + -'tU ª + R_o(a) + R,o(a)R1(a) 

ª~-1(1 + Rn-1(a)) Qn(a) 
+ ... + ( + ' R,o(a)R1(a) · · · Rn-2 a) R_o(a)R1(a) · · · Rn-1(a) 

and taking Ek(a) := Ro(a)Ri(~)-·•Rk(a) we have that 

B(a) 2 1 ~ 2 E¡ 1(a) 
- ao(l + -(-)) + ~ ak(Ek-1(a) + -( ) ) + lim En(a)Qn(a) 

€O a k::::l Ek a n-oo 

- S€(a)(a) + lim En(a)Qn(a), 
n-oo 

which shows that S€(a)(a) :S: B(a). The proof is now complete. .QED 

Remark: Obviously all the square summable sequences belong to R. On 
the other hand, it is easy to find nonsquare summable sequences in R. For 
example: 

(i) {Mn, n 2: O}, where Mis a positive constant, 

(ii) { n!, n 2: O}, 

(iii) { enm, n 2: O}, where m is a positive constant. 
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The following property is an immediate consequence of the definition of 
the class R. 

Lemma 2.10 Let a = { an, n 2: O} be a positive sequence in the class R. 
Suppose that b = {bn, n 2: O} is another positive sequence such that bn ~ pan, 
for all n 2: O, and for some constant p > O. Then b belongs also to the class 
R, and B(b) ~ p2B(a). 

We now define Li as the class of processes u in L~'2,/ such that the 
sequen ce ~ (u) = { ~n (u), n 2: O} defined by 

<fo(u) = llullL2((0,T]xn), 

and 

for n 2: 1 belongs to R. For u E Li we define 

The corresponding class Lí (!Rd) of d-dimensional processes can be defined 
analogously, by considering the sequence IIDn,iullL2(A[x!1;JRd)· 

Proposition 2.11 Lí e Dom 8í and we have that, for all u in Lí, 

(2.15) 

Consider p E (2, 4) and a = 42!:P. If, furthermore, u belongs to the space 
V:k([O, T] x 11) we have that, for all [r, t] C [O, T], 8i(ul¡r,t]) is in V and 

where Cp is the constant appearing in {2.10). 

Proof: Let us denote by uk the sum of the first k terms of the Wiener chaos 
decomposition of u. Applying Lemma 2. 7 and using Schwartz inequality 
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yields 

Elá;(u)I' < 11 u 111,([o,T]xn) +211 u IIL'([O,T]xn) E J.T \J.' Dju,dWj\
2 

di) 

< 11 u lli2c¡o,T]xn) +2 11 u IIL2 ([0,T]x11) 

X ( 11 D 1·iu lli2cafxn) +2 11 D
1
·iu IIL2(afxn) 

x E f J.' IJ." D~Dju,dWjl
2 

dudB) 
112 

By a recursive argument and the fact that uk has a finite Wiener chaos 
decomposition 'it follows that (2.15) holds for every uk. Now using the fact 
that limk II uk-u IIL¡= O it follows that (2.15) holds for u. In order to show 
(2.16) we observe that, using Lemma 2.8 we have for p E (2, 4) anda= 42!}P, 

:e r rt r(J - . 
Elói(ul¡r,t])IP = Cp(t - r) 2 -

1{E lr luslªds + E lr l 1r D9UsdW;l 2d8}, 

(2.17) 
and now applying (2.15) to the second term of the sum, the result follows. 
Notice that J; 11 viul¡r,B] IIL d8 is finite if u belongs to Li because we have 

QED 

We have the following local property for the operator Ói: 

Proposition 2.12 Considera process u in Li and a set A E F such that 
Ut(w) = O, for almost all (t,w) in the product space [O, T] xA. Then ói(u·) = O 
a.s. on A. 

Proof: Consider the sequence of processes defined by 

It is easy to show that for all m the mapping u 1--+ um is a linear bounded 
operator on Li with norm bounded by T. On the other hand, it is clear 
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that for all k, limm-oo 11 (uk)m - uk l!Li= O, where uk denotes the sum of 
the first k terms of the Wiener chaos decomposition of u. This allows us to 
deduce that limm-oo 11 um - u IIL;= O. Using now Proposition 2.11 we have 
that 8i(um - u) tends to zero in L2(0) as m tends to infinity. On the other 
hand, Lemma 2.2 allows us to write: 

and by the local property of the operator Di in the space Lf •2•1 (Proposition 
2.6) we have that this expression is zero on the set {J{ u;ds = O}, which 
completes the proof. 

QED 

We can localize the spaces L~'2,¡, n ~ 1, Lr•2.f and Li as follows. We 
will denote by Lf,,!f the set of random processes u such that there exists a 

sequence {(On, un), n ~ 1} e :F x 1.f•2
•1 with the following properties: 

(i) On i O, a.s. 

(ii) u = un, a.s. on [O, T] X On. 

We then say that {(On, un)} localizes u in L¡/j. Then, by Proposition 
2.6 we can define without ambiguity the derivative n;u, by setting 

for each n ~ 1, (t, s) E ~f. In a similar way we can introduce the 
spaces LfJ;;/ and Li,loc· For a process u in LfJ;.f the iterated derivátives 
n:;! ... ,sn u,, si, ... , Sn ~ s, are well defined. On the other hand, if u E Li,loc, 

and {(On, un)} localizes u in Li,loc, then by Proposition 2.12 we can define 
without ambiguity the Skorohod integral 8¡ (u) by putting 

for each n ~ l. 
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3 Existence and uniqueness of solution for anti­
cipating Volterra equations 

Consider a d-dimensional stochastic integral equation of the following type: 

t k t 
Xt = xo + { F(t, s, Xs)ds + L { Gi(t, s, X 8 )dW;. (3.1) 

lo í=1 Ío 

We assume that the initial condition is a fixed point xo E JR.d. We will 
make use of the following hypotheses on the coefficients. In the sequel M = 
{Mn,n ~ O} is a positive sequence such that M 2 = {M~,n ~ O} is in R, 
and K > O is a constant. 

(Hl) F, Gi : n x D.f x JR.d - JR.d, i = 1, ... , k, are measurable functions such 
that F(t, s, x) and Gi(t, s, x) are Ft-measurable for each (t, s, x). 

(H2) For all t E [O, T], i = 1, ... , k, j = 1, ... , d, and x E JR.d we have 
G{ (t, ·, x)l¡o,t] (·) E L'r'2,/. Furthermore, Gi(t, ·, O)l¡o,t] (·) belongs to 
Li (JR.d) for all t E [O, T], i = 1, ... , k, and IIGi(t, ·, O)l¡o,t] ( ·) IIL;(JRd) ~ K. 

(H3) Lipschitz property: For all (t, s) E D.f, x, y E JR.d, and i = 1, ... , k we 
have 

IF(t, s, x) - F(t, s, y)I < Molx - YI 

IGi(t, s, x) - Gi(t, s, y)I < Molx - y¡. 

(H3') Lipschitz property for the derivatives of G¡: For all (t, s) E D.f, x, y E 
lR.d, i = 1, ... , k, and n ~ 1, we have 

{ l(D~/ .. ,snGi)(t,s,x)- (D~L-,snGi)(t,s,y),
2 

dsi ·· ·dsn 
l{t?:.s1?:.···,?:.sn?:.s} · 

~ M~lx-y¡2. 

(H4) Linear growth condition: For all (t, s) E D.f we have IF(t, s, O)I ~ K. 

Remark: Suppose that for all ( t, s) E D.f, and x E lR.d the variable 
Gi(t, s, x) is Fs-measurable, and E J¿ IGi(t, s, O)l 2ds ~ K 2 for all t E [O, T], 
i = 1, ... , k, and the conditions (H3) and (H4) holds. Then hypotheses 
(H2) and (H3') are automatically true due to Lemma 2.3. Notice that the 
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derivatives in future times are zero due to the measurability of Gi(t, s, x) 
with respect to F8 • 

A consequence of the above hypotheses is the following chain rule which 
is similar to Lemma 2.3 in [9]. 

Lemma 3.1 Suppose that Gi(t, s, x) satisfies the above hypothesis (Hl}, 
(H2}, (H3} and (H3'}, and consider an adapted process U E L~([O, T] x 
O; IRd). Then, Gi ( t, ·, U.) 1 ¡o,t] ( ·) belongs to n..~·2,f (IRd), and 

D:{ .. ,Sn (Gi(t, S, Us)) = (D:{..,Sn Gi)(t, S, Us), (3.2) 

for almost all s¡, ... , Sn 2 s. Moreover, we have that Gi(t, ·, U.)l¡o,t¡(·) 
belongs to Li (IRd): 

Proof: To simplify we will assume that Gi(t, s, x) is real valued. Let {1Pe, E> 
O} be an approximation of the identity in !Rd such that the support of '/Pe is 
contained in the hall of center the origin and radius €. Define 

Then, from hypotheses (H2), (H3) and (H3') and using Propositions 2.1, 

2.4, and 2.5 it follows that GHt, ·)l¡o,t¡(·) belongs to n..~•2.J, GHt, ·)l¡o,tJ(·) 
converges in L2([0, T] x O) to Gi(t, ·, U.)l¡o,t¡(·) as E tends to zero, and the 
derivatives 

D:L.,sn (Gf(t, s)) = k,d '/Pe(z - Us)D:{ .. ,sn (Gi(t, s, z))dz 

converge in L2 (A~ x O), as E tends to zero, to (D~{ .. ,sn Gi)(t, s, U8 ). This 
allows us to prove (3.2). On the other hand, using this equality and the 
hypotheses (H2) and (H3') we can write for all n ~ O, 

11 Dn,i(Gi(t, ·, U.)) lll2cahxn) = 11 (Dn,iai)(t, ·, U.) lll2ca~xn) 

< 2 11 Dn,iai(t, ·, O) lll2cahxn) 

+2M~E ht IUsl 2ds. 

As a consequence, the sequence 

i(G, U)= {11 (Dn,iai(t, ·, U.))l¡o,t] lli2(A~xn)• n 2 O} 
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is in the class R, and, therefore, Gi(t, ·, U.)l¡o,t¡(·) belongs to Li-
QED 

Consider a d-dimensional square integrable adapted process U, namely, 
U E L~([O, T] x O; JR.d). Define, for each t E [O, T] 

lt(U) = fot F(t, s, U8 )ds. (3.3) 

Lemma 3.2 Assume (H1}, (H3} and (H4). ForallU, V E L~([O,T]x11;1Rd) 
we have 

sup Ellt(U) 12 < oo (3.4) 
tE[O,T] 

Ellt(U) - It(V)l 2 ~ MJt fot EIUs - Vsl 2ds. (3.5) 

Proof: Using (H4) we have 

Ellt(U)l2 ~ 2t2 K 2 + 2MJtE fot IUsl 2ds < oo, 

on the other hand, (3.5) follows easily from (H3). QED 

We are going to deduce a similar estimation for the Skorohod integral of 
Gi(t, s, Us) with respect to the Brownian motion Wi. 

Proposition 3.3 Assume (H1), (H2}, (H3), (H3'} and (H4)- For any pro­
cess U E L~([O, T] x n; IRd) and for all i = l, ... , k, for all t E [O, T] we have 
that the Skorohod integral 

Jf(U) := fot Gi(t, s, Us)dW; (3.6) 

exists. Furthermore, if U, V E L~([O, T] x O; IRd) then for each i = l,: .. , k 
we have 

EIJf(U) - Jf (V)l2 ~ B(M2)E ht IUs - Vsl 2ds. (3.7) 

Proof: Fix an index i = 1, ... , k and fix t E [O, T]. Thanks to Proposition 
2.11 and Lemma 3.1 we have that Jf (U) exists. In order to prove (3.7) we 
define the d-dimensional process 

v! = (Gi(t, s, Us) - Gi(t, s, Vs)). 
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From hypothesis (H3') and Lemma 3.1 we obtain 

11 Dn,ivi III,2(.::l;.xíl;JRd)::; M~E fot IUs - Vsl 2ds. 

Hence, by Lemma 2.10 v! belongs to the space Li(lRd), and 

11 vi llt::; B(M2)E fot IUs - Vsl 2ds. 

Therefore, Proposition 2.11 (properly extended to d-dimensional processes) 
allows us to conclude the proof of the proposition. 

QED 
With these preliminaries we can state and prove the main result of this 

paper. 

Theorem 3.4 Assume the hypotheses (Hl}, (H2), (H3}, (H3') and (H4). 
Then, there is a unique solution X to Equation (3.1) in the space L~([O, T] x 
f2; lRd). 

Proof of uniqueness: Using the notations introduced above we can write 
Equation (3.1) in the form 

k 

Xt = xo + lt(X) + L Jf (X). (3.8) 
i=l 

Consider another solution 

k 

Yi = xo + lt(Y) + L Jf(Y). (3.9) 
i=l 

Applying Proposition 3.3 and Lemma 3.2 we get 

EIXt - Yil2
::; (2MJT + 2kB(M2)) fot E I Xs - Ys 12 ds, 

and by Gronwall's lemma we deduce that Xt - Yi = O for each t E [O, T]. 

Proof of existence: 
defined by 

xº = t 

Consider the sequence of Picard approximations of 

Xo, 
k 

Xf+l = Xo + lt(Xn) + L Jl(xn), n~O. 
i=l 
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Using Proposition 3.3 and Lemma 3.2 one can prove as usual that 

where S = 2MJT + 2kB(M2). From hypotheses (H2), (H3) and (H4) we 
deduce 

t 2 k t 2 

EIXl - Xfl 2 ~ 2E lfn F(t, s, xo)dsl + 2E ¿ fo Gi(t, s, xo)dW; 
O i=l O 

t 2 k t 2 

~2STlxol 2 +4Elfo F(t,s,O)dsl +4E ~fo Gi(t,s,O)dW; 

~ 2STlxol 2 + 4T2 K 2 + 4kK2
. 

From these estimations it follow easily that the sequence xn converges in 
L~([O, T] x O; JR.d) to a process solution of (3.1). QED 

Let us now discuss the existence of local solutions. We will say that a 
stochastic process X = {Xt, t E [O, T]} is a local solution of (3.1) if for all 
t E [O, T], i = 1, ... , k, we have 

(a) J¿ IF(t, s, Xs)l 2ds < oo, a.e. 

(b) The stochastic process {Gi(t, ·, X.), l¡o,tJ(·)} belongs to Li,loc(lR.d). 

( c) The process X satisfies 

fot k lt 
Xt = Xo + F(t, s, Xs)ds + L Gi(t, s, Xs)dw;, a.s .. 

O i=l O 

Theorem 3.5 Consider measurable functions F, Gi : O x ~r x JR.d - JR.d, i = 
1, ... , k, such that there exists a sequence { On, pn, Gf., ... , G~, n ~ l} veri­
fying 

(i) For each n ~ l, On E F and On l O. 

{ii) For each n ~ l, pn and Gf satisfy the hypotheses (H1), {H2), (H3), 
{H3') and (H4). 
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(iii) For each n ~ 1, F = pn,ci = Gf on Dn x Af x lRd. 

Then Eq. (3.1} has a local solution in L~([O, T] x n). 

Proof: By Theorem 3.4 we have that for all n ~ 1 there exists an unique 
xn E L~([O, T] x ü) so that for all t E [O, T], i = 1, ... , k, It(Xn), Jf (Xn) 
are well defined and we have 

(3.10) 

The solution of Eq. (3.10) is obtained as the limit of Picard approximations. 
As a consequence, and taking into account hypothesis (iii) and the local 
property of the Skorohod integral in the space Li (Proposition 2.12) we 
obtain that Xf = xr+i a.s. on Ün. Now we define a stochastic process X 
by setting X = xn on ün n n;_ 1. We have Xt = Xf a.s. on Ün, for each 
t E [O, T], and we can write 

t k !ot 
Xt = Xo + [ pn(t, s, x;)ds + L Gf(t, s, x:)dW;, 

h i=l o 

a.s. -on Ün. The process X verifies the above conditions (a) and (b) by 
localization. Finally, using Lemma 3.1 and Proposition 2.12 we obtain 

t k [t 
Xt = xo + lo F(t, s, Xs)ds + L Jo Gi(t, s, X 8 )dW;, 

O i=l O 

a.s. on Ün, which implies that X satisfies condition (e). The proof is now 
complete. 

QED 

4 Continuity of the solution 

In this section we will provide additional conditions under which the solution 
of Eq. (3.1) is an a.s. continuous process. The main ingredient in proving 
the existence of a continuous version for the solution to Eq. (3.1) will be 
the estimations given in Proposition 2.11. 

In the sequel, we will assume that O < € < 1 and /3 > ½. We will need 
the following additional hypotheses: 
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(H5) For all (t, r, s) E ~r. x E IPl.d we have 

IGi(t, s, x) - Gi(r, s, x)I ~ Molt - rl,6(1 + lxl)1
-e. 

(H5') For all (t,r,s) E ~f, i = 1, ... ,k, n ~ l and x E IPl.d we have 

f l(D~{ .. ,sn Gi)(t, s, x) - (D~{ .. ,sn Gi)(r, s, x) 1
2 

ds1 · · · dsn J { r2'.s12:··•2:sn2:s} 

~ M~lt - rl 2,a(l + lxl)2
• 

(H6) Sub-linear growth condítion: For ali (t, s) E ~f, x E IPl.d we have 

IGi(t, s,x)I ~ Mo(l + lxl)1
-e. 

(H7) The mapping ti--+ F(t, s, x) is continuous on [s, T] for each (s, x, w). 

Then we can prove the following result: 

Theorem 4.1 Under condítions {Hl), {H2), {H3), {H3'), {H4), (H5), {H5'), 
{H6) and {H7), the unique solution of equation (3.1) has an a.s. continuous 
modification. 

Proof: Using hypotheses (H4) and (H7) and the dominated convergence 
theorem it is easy to show that lt(X) is a continuous function of t. 

Let us now prove the continuity of the processes {Jf(X), t E [O, T]}, i = 
1, ... , k. To simplify we will assume that all processes are one-dimensional. 
Fix r < t. For each i = 1, ... , k and p E (2, 4) we can write 

EIJf(X) - J;(X)P' < Cp{EI lar Gi(t, s, X,) - Gi(r, s, Xs)dW;IP 

+ El 1t Gi(t, s, X,)dW,:IP} 

Cp(T1 + T2), 

where Cp is a positive constant depending only on p. Now, using hypothesis 
(H6) we can show that {Gi(t,s,X,)l¡o,t¡(s),s E [O,T]}, is a process in the 

21!... 
space L 4-P([O,T] x O), provided 2 < p ~ 2~e· On the other hand we have 
seen that this process is in Li (IPl.d). As a consequence, applying Proposition 
2.11 and setting o= 42!}P we have: 
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T1 < Kp(E lar \Gi(t, s, Xs) - Gi(r, s, Xs)lºds 

+ lar \\ D~(Gi(t, ·, X.) - Gi(r, ·, X.))l[o,o¡(·) \\L d0), 

where Kp is a constant depending only on T, p. Notice that 

r 8 2 

E f f f n;!
1

1
'i s (Gi(t,s,Xs)-Gi(r,s,Xs)) ds1•·•dsndsd0 lo lo l A.! , , ... , n 

$ M~+1lt - rl 2
,8 E lar (1 + \X.,l)2ds. 

Hence, we obtain, using that a(l - E) $ 2, 

Ti < KpMtlt - r¡o.a E for (1 + ¡x.,¡)2ds 

+ B({Mf,Mi,Ml,···})lt-r\2,8E laT(l+\Xs\)2ds. 

In a similar way we can deduce the following estimates for the term T2: 

T2 < Kplt - r¡J-1(E(1t \Gi(t, s, X.,)lºds 

+ lt II Di(Gi(t, ·, X.))l[o,oi(-) IIL d0) 

< Kp(Mg + B({Mf,Mi,Ml,· ··}))lt- r¡!-1E ¡\1 + IX~l)2)ds. 

Note that from the proof of Theorem 3.4 we have sup095r EIXtl2 < oo. 
Hence, we can write 

EIJt (X) - .l;(X)IP $ clt - rl6
, (4.1) 

where 6 = min(2.B, ;) > 1 and e is a constant. By Kolmogorov's conti­
nuity criterion, Property (4.1) implies that the process {J:(X), t E [O, T]} 
possesses a continuous version, and now the proof is complete. 

QED 

Remark: We can obtain another type of continuity result imposing condi­
tions over the V-norm of Gi and its derivatives, and working with solutions 
X in the space of adapted. processes Yo([O, T] x O), for p > 2. 
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