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Abstract

In this paper we establish the existence and uniqueness of a so-
lution for stochastic Volterra equations assuming that the coefficients
F(t,s,z) and G;(t, s, z) are Fi-measurable, for s < ¢, where {F;} de-
notes the filtration generated by the driving Brownian motion. We
have to impose some differentiability assumptions on the coefficients,
in the sense of the Malliavin calculus, in the time interval [s,t]. Some
properties of the solution are discussed.
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1 Introduction

The purpose of this paper is to study stochastic integral equations in R% of
the form

t kot ,
Xt=xo+/ F(t,s,Xs)ds+Z/ Git,s, X )dW:, te[0,T], (L1)
0 i=1 0

where W is a k-dimensional Brownian motion, and the coefficients F(¢, s, z)
and G;(¢, s, r) are Fi-measurable. Although the solution X; will be adapted
to the filtration {¥;} generated by W, the integrand of the stochastic in-
tegral appearing in Equation (1.1) is not adapted because Gi(t, s, X;) is
JFi-measurable.

In this paper we will interpret the stochastic integral appearing in (1.1) in
the Skorohod sense. The Skorohod integral introduced in [12] is an extension
of the It6 integral which allows to integrate nonadapted processes. In [3]
Gaveau and Trauber proved that the Skorohod integral coincides with the
adjoint of the derivative operator on the Wiener space. Starting from this
result, the techniques of the stochastic calculus of variations on the Wiener
space (see [6]) have allowed to develop a stochastic calculus for the Skorohod
integral (see [8]), which extends the classical It6 calculus. The Skorohod
integral possesses most of the main properties of the It6 stochastic integral
like the local property, and the quadratic variation.

Stochastic Volterra equations where the diffusion coefficient Gi(t, s, z)
is Fs-measurable have been studied among others in [1] and [11]. Berger
and Mizel considered linear stochastic Volterra equations with anticipating
integrands in [2], using the notion of forward integral. In this paper the
solution was obtained by means of the Wiener chaos expansion, taking into
account the linearity of the coefficients. On the other hand, in {10} Pardoux
and Protter considered stochastic Volterra equations where the coefficients
F(t,s,z) and Gi(t, s, x) are Fi-measurable, but G;(¢, s, z) can be written in
the form

Gi(t9 S, IL’) = Gi(Ht; t7 S, 1‘),
where H, is an adapted m-dimensional process and G;(h;t, s, z) is Fs-mea-
surable for each h € R™, t > s, and z € R%. This particular form of the

coefficient G;(, s, z) permits to control the LP-norm of the Skorohod integral
fot Gi(Hy;t, s, Xs)dW} using the substitution formula for this integral.

Our aim is to prove the existence and uniqueness of solution for stochas-
tic Volterra equations of the form (1.1) when the coefficients F(t, s, z) and



G;i(t, s, z) are Fi-measurable and the stochastic integral is interpreted in the
Skorohod sense. In order to control the L%-norm of the Skorohod integral
fot Gi(t, s, Xs)dW! we will assume that the coefficient G;(t, s, z) is infinitely
differentiable (in the sense of the stochastic calculus of variations) in the
time interval (s, t], and the derivatives D?{f...,s,, (Gi(t, 8,x)), S1,..-,8n € [s, 8],
verify a suitable Lipschitz property in the variable z. These hypotheses gen-
eralize the case where G;i(t, s, z) is Fs-measurable.

The paper is organized as follows. In Section 2 we present some prelim-
inary technical results concerning the Skorohod integral that will be needed
later. Section 3 is devoted to show the main result on the existence and
uniqueness of solution to Eq. (1.1). Finally in Section 4 we discuss the
continuity of the solution in time.

2 Preliminaries

Let = C([0,T}; R¥) be the space of continuous functions from [0, 7] into
R* equipped with the uniform topology, let F denote the Borel o-field on
2 and let P be the Wiener measure on (2, F). The canonical process W =
{W;,t € [0,T]} defined by Wi(w) = w(t) will be a k-dimensional Brownian
motion. Let P = o{W,,0 < s < t} and set F; = F? VN, where N the
class of P-negligeable sets. Let H be the Hilbert space L2([0,T];R¥). For
any h € H we denote by W(h) the Wiener integral

k T )
W(h) = ; /0 hi(t)dW}

Let S be the set of cylindrical random variables of the form:

F = f(W(h1), ..., W(ha)), (2.1)

where n > 1, f € C{°(R™) (f and all its derivatives are bounded), and
hi,...,hn € H. Given a random variable F of the form (2.1), we define its
ith derivative, i = 1,...,k, as the stochastic process {D;F,t € [0, T]} given
by

DiF = Z 5 W ()., WRDB(®), € [0,T).

In this way the derivative DF is an element of L2([0, T)x Q; R*) = L(Q; H).
For each i =1,...,k, D' is a closable unbounded operator from L?(f) into



L%([0,T) ). We denote by D} the closure of S with respect to the norm
defined by ‘
I F 12 12=ll F liZ20) + I DF 22011 -

Define D! = ﬂf__.lDiu, and set

k
I F132=N F 320 + 2 | D'F |220myx) -

=1

More generally, we can define the iterated derivative operator on a cylindrical
random variable by setting

These operators are closable and we denote D?’z the closure of S by the
norm:

n
I F 2 n2=Il F 72 +>_ | D"*F 220 1y -
=1

Set D™2 = N_,D?, and

k n

| F iz 2=Il F 2y +>_D_ Il D¥F 12201y xe -
i=11=1

For any Borel subset A of [0, T] we will denote by F4 the o-field generated
by the random variables { fOT 1p(s)dWs, B € B(T), B C A}. The following
result is proved in [8, Lemma 2.4]:

Proposition 2.1 Let A be a Borel subset of [0,T], and consider a random
variable F € D12 which is F4-measurable. Then DF = 0 almost everywhere
in A° x Q.

For each ¢ = 1,...,k we denote by §; the adjoint of the derivative op-
erator D* that will be also called the Skorohod integral with respect to the
Brownian motion {W}}. That is, the domain of 6; (denoted by Dom §;) is
the set of elements u € L?([0,T] x ) such that there exists a constant ¢

verifying

T |
‘E / DiFudt| < c | F |lz2(q),
0




for all F € S. If u € Dom &;, &;(w) is the element in L2(Q)) defined by the
duality relationship

T
E(6(u)F) = E / DiFwdt, FeS.
0

We will make use of the following notation: fOT udWi = 6;(u).

The set L2([0,T] x Q) of square integrable and adapted processes is
included into Dom §; and the operator §; restricted to L2([0, T x ) coincides
with the Ité stochastic integral with respect to {W}}. This property can be
proved as a consequence of the following lemma proved in [8]. For any
h € L3([0,T]) we will set DiF = (D'F,h), and we will denote by D? the
closure of S by the norm (E(|F|?) + E(| D} F|?))/2.

Lemma 2.2 Let F be a random variable in the space ID?’2 for some function
h € L?([0,T)). Then the process Fh(t) belongs to Dom §;, and

8i(Fh) = FW*'(h) — DLF.

Let L% = L2([0, T}; D}?) equipped with the norm
2 > i
1o 1 n2=ll v 122q0m1x) + 2 Il D*'0 220 mp+1x0s
j=1

and set L™2 = N L2, L2 = Nps L2, L2 = Nk Moy L2

We recall that H..,-l‘z is included in the domain of é;, and for a process u in
IL: 2 we can compute the variance of the Skorohod integral of u as follows:

T T T . ~
B@w?) =E [ wdt+E [ [ DiuDjudsds (2.2)
0 0 0

We will make use of the following notation:

A£={(sl""’sn)s) € [O’T]n+1:v51_>_"'23n>3}’

and 3
AT ={(s1,-..,5n,8) €[0,TI"* 151 > 5, -+, 5, > s}

Let St be the class of cylindrical L?([0, T))-valued random random variables
of the form

q
v=3 Fh, FE€S, hielL?[,T]).

i=1



2/ as the closure of Sy by the norm:

We introduce the space L

n
2 2 i 112
Nvlin2s = Wollzzqozxe) + > | DMy HLz(A;_er), (2.3)
=1
where
o 9
| D0 |2 a7 ey = B /A IDE g vsldsy - dsjds.
5
We set
V21 — k 727
L2 = b,
Liooy2vf —_ nnZIL?yzuf,
Loo,2,f — nl’C:l mnzl ]L:l,2,f_

That is, L}"®/ is the class of stochastic processes {v;} that are differ-
entiable with respect to the ith component of the Wiener process (in the
sense of the stochastic calculus of variations) in the future. For a process
v in ]L,-l’z’f we can define the square integrable kernel {Div;,s > t} which
belongs to L2(AT x ). More generally, if v € L"®/ we can introduce the
square integrable kernel {D% | w;,s1,...,8, > ¢} which is in L2(AT x Q).
Notice that in the definition (2.3) we could have integrated over the set AT

and get an equivalent norm.

Lemma 2.3 The space L2([0,T] x Q) is contained in L=/, Furthermore,
for allv € L([0,T) x ) we have D}, vy =0 for almost all sy,...,s, > t,
and foralli=1,...,k, n > 1, and, hence,

| v ”12,11,2,]’:" v II%Z([O,T]xQ) . (2.4)

Proof: We will denote by S% the class of elementary processes of the form

N
bt = Z Fjl(tj,tj+1](t)a (2.5)
j=0

where 0 =ty <t < -+ <tyj1 =T andforall j =0,...,N, Fj is a smooth
and F;;-measurable random variable. The set 5% is dense in L2([0, T] x ).
On the other hand, we have & < L%/ and for any v of the form (2.5)
we have, using Proposition 2.1, Dgl’_“,s"vt = 0, for almost all s1,...,8, > ¢,



and for all : = 1,...,k, and n > 1. This allows us to complete the proof.
QED

The next three results are extensions of known resuls for the space D!2
(see [7, Proposition 1.2.2, Exercice 1.2.13 and Proposition 1.3.7]).

Proposition 2.4 Let ¢ : R™ — R be a continuously differentiable function
with bounded partial derivatives. Suppose that u = (ul,...,u™) is an m-
dimensional stochastic process whose components belong to the space ILI 2

Then ¢(u) € L}'*/, and
m
w
j=1

for almost all (t,s) € AT.

Proposition 2.5 Letu,v € ILil 2 be two stochastic processes such that us

and fo ius)2dt are bounded uniformly in s. Then wv € ]Lil’z’f and, for
almost all (t,s) € AT, Di(usvs) = usDyvs + vsDyus.

Proposition 2.6 Letu € ]Lil’z’f.andA € F, such that ug(w) = 0 a.e. on the
product space [0,T]x A. Then Diug(w) = 0, for almost all (t,s,w) € AT x A.

We will use the two following results for getting L? estimates (p > 2)for
the Skorohod integral of processes in the space ]I..1 2f

Lemma 2.7 Consider a process u in ]L} 27 Suppose that Dgulw,] belongs
to the domain of &; for each interval [r,8] C [0,T], and, moreover,

2
df < oo. (2.6)

Then uly,y belongs to the domain of 6; for any [r,t] C [0,T), and

t 2
/ usdW
T

Proof: To simplify the proof we will assume that W is a one-dimensional
Wiener process. In that case we omit the index 7 in all the notations.

E

t t ’] . i
—E / uds + 2 / ue( / Diu,dW?)ds. @7
T T T




Suppose first that u has a finite Wiener chaos expansion. Then we can

write:
t 2
/ usdW
T

t t ot
E = FE / uﬁds—&-E / / D ugDougdfds
r T T

t t 8
- E / ulds + 2E / / Dyug Dyusddds
T T T

t t ]
- E / wlds + 2 / us ( / Doude3> do.
T T r

Now, let us denote by u* the sum of the k first terms in the Wiener chaos

expansion of u. It holds that u* converges to u in the norm || - |l1,2,7, as &
tends to infinity. For each k we have
t 2 t t ]
E / ukaw,| = E / (uk)2ds + 2E / uk( / DoukdW,)ds.  (28)
T T T T

It suffices to show that the right-hand side of (2.8) converges to the right-
hand side of (2.7). This convergence is obvious for the first term. The
convergence of the second summand follows from condition (2.6). QED

Remark 1: In the statement of Lemma 2.7 the assumptions are equivalent
to saying that u € IL} 2J s such that {Djuslpg(s),s € [0,T]} belongs to
the domain of 6; as a processes with values in the Hilbert space L%([0, T1).

Remark 2: Lemma 2.7 generalizes the isometry property of the Skorohod
integral for processes in the spaces L2([0,7] x Q) and 11.}'2.

Lemma 2.8 Let p € (2,4), a = 4—2}1,. Consider a process u in ]Lil’z’f N

L*([0,T) x ). Suppose also that, for each interval [r,8] C [0,T], Djyulj. g
belongs to the domain of §;, and, moreover,

T
E/

Then 6;(uly,y) belongs to L for any interval [r,t] C [0,T] and we have:

t .
/ s dW?

T

2

0 )
/ DiugdWi| df < co. (2.9)
T

E

P t t o .
=Gyt =) YE / lus|%ds + E / | / DijusdW[2d6},
T T T
(2.10)

where Cy, is a constant depending only on p and T.




Proof: We deduce from Lemma 2.7 that ulj, g belongs to the domain of
;. Now using Corollary 2.2 of [4] we deduce that (2.10) is true in the set
Pr of processes u of the form:

N
Ue = ZFjl[tj,th](t)) (2.11)
7=0

where 0 =t < - < tyy1 =T and for all j = 0,..., N, F; are smooth
random variables of the form (2.1), f being a polynomial function. We know
that Pr is dense in L*([0,T] x ). So, we can get a sequence {u",n > 1}
of processes in Pr such that u™ converges to u in L*([0,T] x Q). Moreover,
if we consider the Ornstein-Uhlenbeck semigroup {Tt,t > 0}, we know that,
for all t, Tyu is also an element of Pr, and we can easily prove that, for all
[r,t] C[0,T}:

T
limlimE/ |Tiufy —us|*ds = 0,
n k 0 k

t 8 . . .
lim lim E / | / (DH(T1u?) — Diug)dWil2dd = 0,
n ok S *

which allows us to complete the proof. QED
Note that (2.7) implies
t 12 t t t| o 12
E / wdWi| <E / ulds + 2, | E / w2dsE / / DiusdWi| do.
r T r T T

The iteration of this inequality leads to an estimation of the L? norm of
the Skorohod integral 6;(u) using only derivatives Dy, . s, u; in future times
81,...,8n > t. In order to introduce a norm that dominates E|6;(u)|? we
require the definition of a suitable class of positive sequences.

We will denote by R the class of positive sequences a = {an,n > O} such
that the sequence b(a) = {bn(a),n > 0} defined by

bo(a) = ag,

bn(a) = ag + 2ao\j a? + 2a, \/a% + 2a2\/- .. \/a%_l + 2an_1an,

for n > 1, satisfies B(a) := limp—oo bn(a) < co. Notice that the sequence
bn(a) is nondecreasing.



Proposition 2.9 The class R coincides with the class of positive sequences
a = {an,n > 0} such that there ezists a positive sequence € = {€,,n > 0}
satisfying:
1 ad €2
Se(a) == ad(1+ =)+ > af(ex—1 + =L)< o0, (2.12)
R “k

and, furthermore,

B(a) = mﬁin Se(a). (2.13)
Proof: a) Let us first proof that B(a) < Sc(a) for any positive sequence e.
For all R > 0, z,y > 0 we have

1 9

2zy < Rz? + + 5y (2.14)
Using recursively (2.14) we have that, for all Ry, R;,...,Rn—1 > 0,
31+ Ry)  a3(1+Ry) a2_;(1+4 Rn—y)
bn(a) < a2(1 + Ro +a1( + 2 .4 =L
n(a) < ag ) Ry RoR, RoRy---Rp-2
PR
- RoRy---Rn-1’
and now, denoting Sy = Rp, S1 = RoR3,..., S, = RoR; --- R, we can write
2 S S.
bn(a) < a2(1+So)+ i‘l(1 + —‘) + “2(1 + 52
a2 2
Sn_ a
+. = (1+ + =2
Sn ( Sn 2) Sn—l
= a2(1+So)+—%+—2+ +a’2‘“1+ an
0 S Spcg Sno
252 2 Sn-1

+a15§ tobgt ot
n

Finally, putting ¢; = -_z};, i=1,...,n—1 we obtain:

1 n-1 €2
(@) < a1+ 2)+ Y aflen-r + ) +adenss
k=1

1 n
< 03(1‘*'5)*'20 €k 1+—*),

10



which shows that for any positive sequence € we have B(a) < Sc(a).

b) Let us now prove that if a € R there exists a positive sequence €(a) such
that B(a) = S(,)(a). Because B(a) < co we can define, for all n > 0,

—0

which satisfies that, for all n > 0,

() (a)—a0+2a0\Ja1+2a1\/a2+2a2\/ \/ a;_y +2an- 1v@n(a),

(1) Qn(a) = 02 + 28nQns1(a) = a2(1 + Ra(a)) + zkgQne1(a), where
Rn(a) = szl(a).
With these notations we can write

., a2(1+ Ri(a) . a3(1+ Ra(a))
Bla) = a5+ Rola)) + =5~ * Re@Ri(a)

a2 y(1+Roor(@) Qn(a)
Ro(@)R1(a) - Rn-2(@) * Fo(@)R1(@) - R-1(a)’

and taking ex(a) := Ro(a)Rl(iz)mRk(aj we have that

.o+

B(a) = a2(1+

—) + z aZ(ex_1(a) + - 1(a)) + hm en(a)Qn(a)

() ex(a)

= e(a)(a)+,}1,ngoen( a)Qn(a),

which shows that S(4)(a) < B(a). The proof is now complete. QED

Remark: Obviously all the square summable sequences belong to R. On
the other hand, it is easy to find nonsquare summable sequences in R. For
example:

(i) {M™,n > 0}, where M is a positive constant,
(i) {n!,n >0},

(iii) {€"™,n > 0}, where m is a positive constant.

11



The following property is an immediate éonsequence of the definition of
the class R.

Lemma 2.10 Let a = {an,n = 0} be a positive sequence in the class R.
Suppose that b = {bn,n > 0} is another positive sequence such that b, < pan,
for all n > 0, and for some constant p > 0. Then b belongs also to the class
R, and B(b) < p*B(a).

We now define L,- as the class of processes u in Lf°’2’f such that the
sequence d'(u) = {d%(u),n > 0} defined by

do(u) = llull2(o.1)x0)»

and

1/2
dp(u) = | D™ ullL2aTx0) = (E/AT |D§‘{f...,snus|2d81"'dsnd8> »
for n > 1 belongs to R. For u € L; we define
| w li7s:= B(d*(uw)).

The corresponding class L;(R%) of d-dimensional processes can be defined
analogously, by considering the sequence || D™ ul| 2(AT xo;r4)-

Proposition 2.11 L; C Dom §; and we have that, for all u in L;,
El&w)? <llu 3, . - (215)

Consider p € (2,4) and o = 4—2%. If, furthermore, u belongs to the space
L2([0,T] x ) we have that, for all [r,t] C [0,T), 8;(ulyy) is in LP and

t t .
Epsi(ulg)P < Colt =) [ Bluslds+ [ || Djulyrg I, 46}, (2.16)
T T
where Cp, is the constant appearing in (2.10).

Proof: Let us denote by u* the sum of the first k terms of the Wiener chaos
decomposition of u. Applying Lemma 2.7 and using Schwartz inequality

12



yields

El&w)? < |lu ||;,2(0T]xn) +2 || u || 2o, 1yx ) J / ‘/ Dgude'

I 1 22gomyxay +2 1 2orixe)

IA

X ( | DY “%ﬂ(Afo) +2 || DYy “Lz(AlTxQ)
5 1/2
dadﬂ) .

By a recursive argument and the fact that u* has a finite Wiener chaos
decomposition ‘it follows that (2.15) holds for every u*. Now using the fact

that limy || ©* —u ||z, = 0 it follows that (2.15) holds for u. In order to show

(2.16) we observe that, using Lemma 2.8 we have for p € (2,4) and a = ;4—2%,

/ Di Diu,dWi

t t 0 ‘
El8i(uly)P = Cplt =r)EE [ ful?ds + B [ | [ Dyusawifas),
’ T (2.17)
and now applying (2.15) to the second term of the sum, the result follows.
Notice that frt I D},ullr,g] [|2L2 df is finite if u belongs to L; because we have

t t t )
lulpglZ, = /r Elusl2d8+2\/ / Elus|2ds / | Dyulpg i3, d6.
T T

QED
We have the following local property for the operator §é;:
Proposition 2.12 Consider a process u in L; and a set A € F such that
ug(w) = 0, for almost all (t,w) in the product space [0,T]x A. Then §;(u) =
a.s. on A.
Proof: Consider the sequence of processes defined by

2m—1 jo=m

ut—-ZTZ"‘/

It is easy to show that for all m the mapping u — u™ is a linear bounded
operator on L; with norm bounded by T. On the other hand, it is clear

usds)1(rjo-m 1(j+1)2-m](f)-
T(G-1)2—m™

13



that for all k, limm—eo || (u*)™ — u* ||1,= 0, where u* denotes the sum of
the first k terms of the Wiener chaos decomposition of u. This allows us to
deduce that limy, oo || ¥™ — u ||L,= 0. Using now Proposition 2.11 we have
that 6;(u™ — u) tends to zero in L%(Q2) as m tends to infinity. On the other
hand, Lemma 2.2 allows us to write:

T(j-1)2~m
T(j+1)2"™ Tj2~™ .
- / / pusdsdd | ,
Tj2-m™ T(j-1)2-™
L2f

and by the local property of the operator D! in the space L;"“’ (Proposition
2.6) we have that this expression is zero on the set { I u2ds = 0}, which
completes the proof.

i Tj2~™ , ,
51('U.m) = z T2m (( ust)(W%(j+l)2-m - W%jz—m)
j=1

QED

We can localize the spaces L?’z’f ,n>1, L,‘-’°’2’f and L; as follows. We
will denote by L12/ the set of random processes u such that there exists a

i,loc
sequence {(€p,u™),n > 1} C F x ]L,1 2 with the following properties:

(i) 2, TQ, as.

(if) u=1u" as. on [0,T] x Q.
We then say that {(Q2,,u")} localizes u in L:focf Then, by Proposition

2.6 we can define without ambiguity the derivative Diu, by setting
D:uslnn = Dzuglnn’

for each n > 1, (t,s) € AT. In a similar way we can introduce the
spaces Lf,‘;"i'f and L;,.. For a process u in Lﬁi‘f the iterated derivatives

D?{f...,s,.us, 81,...,8n 2 8, are well defined. On the other hand, if u € L; 1o,

and {(Q,u")} localizes u in L; jo, then by Proposition 2.12 we can define
without ambiguity the Skorohod integral 6;(u) by putting

6i(u)la, = 6:i(u™)la,,

foreach n > 1.

14



3 Existence and uniqueness"’é)f solution for anti-
cipating Volterra equations

Consider a d-dimensional stochastic integral equation of the following type:
¢ LI ,
X, = z0 + / F(t,s, X)ds + 3 / Gilt, s, X,)dW. (3.1)

We assume that the initial condition is a fixed point zo € R%. We will
make use of the following hypotheses on the coefficients. In the sequel M =
{M,,n > 0} is a positive sequence such that M? = {M?2,n > 0} is in R,
and K > 0 is a constant.

(H1) F,Gi: Qx AT xR? - R%, i = 1,...,k, are measurable functions such
that F(t,s,z) and Gi(t, s, z) are F;-measurable for each (t, s, z).

(H2) For all t € 0,7),i=1,....,k,5=1,...,d, and z € R% we have
G(t,-, x)1y(-) € ]Lf°’2’f. Furthermore, Gi(t,-,0)1j04(-) belongs to
L;(RY) forallt € [0,T],i=1,...,k, and ||G;(t, 20y )lz,mey < K.

(H3) Lipschitz property: For all (t,s) € AT, z,y e RY, and i =1,...,k we
" have

|F(t,s,z) — F(t,s,y)] < Molz -~y
|Gi(t,s,2) — Gi(t,5,y)] < Molz - yl.

(H3’) Lipschitz property for the derivatives of G;: For all (t,s) € AT, z,y €
R% i=1,...,k and n > 1, we have

.....

/{t2312"'y28n23}
2 2
< Mnlz - yl .

(H4) Linear growth condition: For all (¢,s) € AT we have |F(t,s,0)| < K.
Remark: Suppose that for all (t,s) € AT, and z € R? the variable
Gi(t, s, ) is Fy-measurable, and E [f |Gi(t,s,0)|2ds < K2 for all t € [0, T},

i = 1,...,k, and the conditions (H3) and (H4) holds. Then hypotheses
(H2) and (H3’) are automatically true due to Lemma 2.3. Notice that the
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derivatives in future times are zero due to the measurability of G;(¢, s, z)
with respect to F.

A consequence of the above hypotheses is the following chain rule which
is similar to Lemma 2.3 in [9].

Lemma 3.1 Suppose that Gi(t,s,z) satisfies the above hypothesis (HI),
(H2), (H3) and (H3’), and consider an adapted process U € L2([0,T) x
Q;R%). Then, Gi(t,-, U)lpg(-) belongs to ]Lf°’2’f(]Rd), and

Dyt en(Giltys,Us)) = (D35, G)(t,5,Us), (3.2)

for almost all sy,...,sn > s. Moreover, we have that Gi(t,-,U.)l[O,t](-)
belongs to L;(R%):

Proof: To simplify we will assume that G;(¢, s, z) is real valued. Let {¢, € >
0} be an approximation of the identity in R? such that the support of v is
contained in the ball of center the origin and radius e. Define

Gilt, s) = /R ez = Un)Gilt, s, 2)d.

Then, from hypotheses (H2), (H3) and (H3’) and using Propositions 2.1,
2.4, and 2.5 it follows that G(¢, )1 4(-) belongs to Lf°’2’f, Gi(t, ) o,q(°)
converges in L2([0,T] x §) to Gi(¢,-, U)1p,q(") as € tends to zero, and the
derivatives

.........

converge in L2(A} x Q), as € tends to zero, to (D%, Gi)(t,s,Us). This
allows us to prove (3.2). On the other hand, using this equality and the
hypotheses (H2) and (H3’) we can write for all n > 0,

| D™ (Gilt U lragney = 1 (D™G(E V) lEacagxan
2 || D™'Gilt,-,0) ||%2(As,xn)

t
+2M2E / |U,[2ds.
0

IN

As a consequence, the sequence

d'(G,U) = {|| (D™Gi(t,", U)oy 2(azxa) = 0}
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is in the class R, and, therefore, G;(t, -, U.)lnto,t](-) belongs to L;.
' QED

Consider a d-dimensional square integrable adapted process U, namely,
U € L%([0,T] x ©;R?). Define, for each t € [0, T]

LU) = /0 “F(t, s, Us)ds. (3.3)

Lemma 3.2 Assume (H1), (H3) and (H{). For allU,V € L2([0,T]xQ;R%)
we have

sup E|L(U)|? < o0 (3.4)
t€[0,T)
t
EVLW) - L(V)P < M3t [ BYU, - Vif2ds. (3.5)
0

Proof: Using (H4) we have
t
E|LW)|? < 222K? + 2M3E / U, |2ds < oo,
0

on the other hand, (3.5) follows easily from (H3). QED

We are going to deduce a similar estimation for the Skorohod integral of
Gi(t, s, Us) with respect to the Brownian motion W*.

Proposition 3.3 Assume (H1), (H2), (H3), (H3’) and (H{). For any pro-
cess U € L2([0,T] x ;R?) and for alli =1,...,k, for allt € [0,T] we have
that the Skorohod integral )

THU) = /0 “Gilt, s, Uy)dW (3.6)

exists. Furthermore, if U,V € L2([0,T] x ;R%) then for each i = 1, . k
we have

. . t
E|J{(U) - (V) < BUME [ |U, - Vilds. (37)
0
Proof: Fix anindexi=1,...,k and fix t € [0,T]. Thanks to Proposition

2.11 and Lemma 3.1 we have that J}(U) exists. In order to prove (3.7) we
define the d-dimensional process

vt = (Gilt, s, Us) — Gilt, s, Vy)).
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From hypothesis (H3’) and Lemma 3.1 we obtain
o t
| D0 13w S MEE [ 1U, = VilPds.
Hence, by Lemma 2.10 v} belongs to the space L;(R?), and
: t
v 13,< BOEE [ U, - Vifds
0

Therefore, Proposition 2.11 (properly extended to d-dimensional processes)
allows us to conclude the proof of the proposition.
QED

With these preliminaries we can state and prove the main result of this

paper.

Theorem 3.4 Assume the hypotheses (H1), (H2), (HS), (H3’) and (H4).
Then, there is a unique solution X to Equation (8.1) in the space L2([0, T] x
Q;RY).

Proof of uniqueness:  Using the notations introduced above we can write
Equation (3.1) in the form

k
Xy =z0+ L(X)+ ) Ji(X). (3.8)
i=1
Consider another solution
k .
Yi=zo+ L(Y)+ ) J(Y). (3.9)
i=1

Applying Proposition 3.3 and Lemma 3.2 we get
t
B|X, - Yi* < M3T +2B(M) [ E|X, =Y, [*ds,
0

and by Gronwall’s lemma we deduce that X; — Y; = 0 for each t € [0, T}.

Proof of existence:  Consider the sequence of Picard approximations of
defined by

0 _
Xt = Iy,

k
XM = o+ L(XM+ Y JHXM), n>0.
~

)
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Using Proposition 3.3 and Lemma 3.2 one can prove as usual that

E\XM' - XP*<S"E ot |XL — X2 |°ds; - - dsp
LS Lon
4N
< —— sup E|X} - X?2.
. tef0,7T)

where S = 2MZT + 2kB(M?). From hypotheses (H2), (H3) and (H4) we
deduce

2

¢ 2
E|X! — X912 < 2E ‘/ F(t,s,z0)ds| +2E
0

k t )
S / Gi(t, s, zo)dW
=170

2 2

< 28T |zo|2 + 4E +4E

t kot )
/ F(t,s,0)ds )y / Gilt, s,0)dW:
0 = Jo

< 28T|zo|? + 4T%K? + 4k K2

From these estimations it follow easily that the sequence X™ converges in
L2([0,T] x 2;R?) to a process solution of (3.1). QED

Let us now discuss the existence of local solutions. We will say that a
stochastic process X = {X,t € [0,T]} is a local solution of (3.1) if for all
te(0,T),i=1,...,k, we have

(a) f(f |F(t, s, Xs)|%ds < oo, a.e.
(b) The stochastic process {Gi(t,", X.), 1jo,4(-)} belongs to L; 10c(R%).

(c) The process X satisfies

t kot )
X, = 20 + / F(t,5, X,)ds + 3 / Gilt, s, X,)dW?, ass..

Theorem 3.5 Consider measurable functions F,G; : 1% Afx]Rd —RY,i=
L,...,k, such that there erists a sequence {Q,, F",G%,...,G},n > 1} veri-
fying

(i) For eachn>1,Q, € F and Q, T .

(i) For eachn > 1, F™ and G? satisfy the hypotheses (H1), (H2), (HS),
(H3’) and (Hj).
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(iit) For eachn>1, F = F",G; = G} on Q/n X A'{ x R¢.
Then Eq. (3.1) has a local solution in L2([0,T] x ).

Proof: By Theorem 3.4 we have that for all n > 1 there exists an unique
X" € L2([0,T) x Q) so that for all t € [0,T}, ¢ = 1,...,k, L(X™), J{(X™)
are well defined and we have

t kot .
XP =20+ / F(t,s, XM)ds + Y / Gl(t, 5, XP)dW?. (3.10)

The solution of Eq. (3.10) is obtained as the limit of Picard approximations.
As a consequence, and taking into account hypothesis (iii) and the local
property of the Skorohod integral in the space L; (Proposition 2.12) we
obtain that X? = XP*! as. on €,. Now we define a stochastic process X
by setting X = X™ on 2, NQ5_;. We have X; = X[ a.s. on {1, for each
t € [0,T], and we can write

t kot ,
X, = 2o+ / Fr(t,s, XM)ds + 3 / GM(t, 5, XT)dW?,
0 i=1 0

a.s. on ,. The process X verifies the above conditions (a) and (b) by
localization. Finally, using Lemma 3.1 and Proposition 2.12 we obtain

t kot )
X, =120+ / F(t,s, X,)ds + 3 / Gilt, s, Xs)dW,

a.s. on {2y, which implies that X satisfies condition (c). The proof is now
complete.

QED

4 Continuity of the solution

In this section we will provide additional conditions under which the solution
of Eq. (3.1) is an a.s. continuous process. The main ingredient in proving
the existence of a continuous version for the solution to Eq. (3.1) will be
the estimations given in Proposition 2.11.

In the sequel, we will assume that 0 < ¢ <1 and 8 > -% We will need
the following additional hypotheses:
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(H5) For all (¢,7,s) € AF, z € R* we have

|Gi(t, s,2) — Gi(r, s,x)| < Mp|t — r|ﬁ(1 + |x|)1“.

(H5’) For all (t,r,s) € AT, i=1,...,k,n>1 and z € R? we have

, ; 2
Lo (DR 01GO0,9.0) = (DI GO 3,0)] di - ds
7‘_ 1“..‘_ "—s

< M2Jt —r|®(1 + |z|)2.

H6) Sub-linear growth condition: For all (t,s) € AT, € R? we have
1

|Gi(t, s, 2)| < Mo(1 + |z|)! .

(H7) The mapping t — F(t, s, x) is continuous on [s, T] for each (s, z,w).
Then we can prove the following result:

Theorem 4.1 Under conditions (H1), (H2), (H3), (H3’), (H4), (H5), (H5’),
(H6) and (H7), the unique solution of equation (8.1) has an a.s. continuous
modification.

Proof: Using hypotheses (H4) and (H7) and the dominated convergence
theorem it is easy to show that I;(X) is a continuous function of ¢.

Let us now prove the continuity of the processes {J}(X),t € [0,T]}, i =
1,...,k. To simplify we will assume that all processes are one-dimensional.
Fix r <t. Foreachi=1,...,k and p € (2,4) we can write

EJ{(X) - FXOP < Go{B| [ Gult s, Xe) = Gilr, 5, Xa)dWiP

t .
+ Bl [ Gilt, s, X)aWiF}
r
= CP(TI + T2)7
where C, is a positive constant depending only on p. Now, using hypothesis
(H6) we can show that {Gi(t, s, Xs)1py(s),s € [0,T}}, is a process in the

space L%([O, T] x Q), provided 2 < p < ﬁ—;. On the other hand we have
seen that this process is in L;(R%). As a consequence, applying Proposition

2.11 and setting a = ff—p we have:

21



T, < K(E / IGi(t, 8, X,) — Gi(r, s, X,)|°ds
0

+ [ IDHGUt X) = Gulry -, X)) 10 () I, 4B),

where Kp is a constant depending only on T, p. Notice that

e

< M2,,|t - r|E / (1 + |X,|)%ds.
0

2

D!t | (Gi(t,s, Xs) ~ Gi(r, 8, Xs))| dsy- - dsndsdd

Hence, we obtain, using that a(1 —¢€) < 2,
T
Ty < KyMgit—r|*E / (14 |X4])%ds
0

T
+ BUMEME MR, Dl —r™E [ 1+ 1X,])ds.
0

In a similar way we can deduce the following estimates for the term T5:

T» < Kplt— r|‘f’-1(E(/t |G;(t, s, Xs)|%ds
+ [ 1 DG X)10a () I, d6)
S Kp(Mg + BUME, ME,ME, - )it~ rf=B [ (14 1X,)))ds.

Note that from the proof of Theorem 3.4 we have supg<;<1 E|X¢[* < 0.
Hence, we can write

E|JH(X) — HX)P < cft — 1%, (4.1)

where § = min(23,5) > 1 and c is a constant. By Kolmogorov’s conti-
nuity criterion, Property (4.1) implies that the process {J;(X),t € [0,T]}
possesses a continuous version, and now the proof is complete.

QED

Remark: We can obtain another type of continuity result imposing condi-
tions over the LP-norm of G,- and its derivatives, and working with solutions
X in the space of adapted processes LE([0, T] x ), for p > 2.
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